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1 Introduction 

Given a query item 𝑞 (or a set of query items), similarity search, also known as 

close item search or proximity search, is defined to search through an existing 

dataset, which usually consists of a significantly large volume of items with the 

same format as the query item, with the objective to find the item(s) that are most 

similar to the current query item. To decide how similar two items are, there are 

different ways to measure the similarity between a pair of items, including 

Euclidean distance, cosine similarity, Jaccard similarity, etc [29, 30].  

In this project, we are trying to explore a graph search method and propose a novel 

algorithm design and implementation based on K-Nearest Neighbor (KNN) graph, 

where each vertex is connected to its nearest 𝑘 neighbors. In the following two 

sections, we will give an overview of two categories of similarity search problems, 

namely the Nearest Neighbor search and its natural relaxation version, i.e., the 

Approximate Nearest Neighbor search, and show that the focus has been on the 

latter due to practical concerns. 

1.1 Nearest Neighbor Search 

The Nearest Neighbor (NN) search requires the item(s) of greatest similarity 

measure to the query item to be returned. NN search is a critical component in 

many learning algorithms such as clustering, retrieval and matching [1]. 

Once a certain similarity measure is adopted, a straightforward solution to NN 

search problem is to perform a linear search, exhaustively scanning through each 

item in the dataset (the “base” set, or simply the “base”), comparing them against 

the query and retrieving the one(s) with highest similarity. For a dataset with 𝑛 

items, each one of which is a d-dimension vector, time complexity of the linear 

search will be 𝑂(𝑛𝑑). Despite the easiness of the implementation, it may not be 
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practical in reality. because the base set can contain millions of items and the 

items can range from 100 to 10,000 dimensions. Beyond the infeasibility of the 

computational cost for exhaustive search, the storage constraint originating from 

loading original data into memory also becomes a critical bottleneck [2]. 

There have been various tree-based structures developed to solve the NN search 

problem [3], [4]. However, the performance of these methods is even worse than a 

linear scan search when the dimensionality of the items is high [5]., not to mention 

that the tree-based structures require significant space complexity and sometimes 

takes up more storage than the original data itself Until now, few computationally 

feasible solutions have been proposed for this scenario. 

1.2 Approximate Nearest Neighbor Search 

Given the intrinsic computational difficulty of exact NN search problem, 

Approximate Nearest Neighbor (ANN) search has been receiving increasing 

interest in response. Instead of looking for the exact closest match, pseudo-

optimal results are expected for ANN search. In fact, for many practical problems, 

such pseudo-closest results are shown to be enough and useful [6]. ANN search 

indeed has been commonly used not only in computer vision problems including 

image/video retrieval [7], recognition [8], and pose estimation [9], but also 

recommendation engines, anomaly detection and database linkage and 

deduplication  
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2 Motivation 

In this section, we highlight the significance of studies of the similarity search 

problem and the incentive to explore efficient solutions for approximate search 

using the KNN graph. 

2.1 Increasing Complexity Challenge from Big Data 

There has been rapid growth in big data in the decade as the widely spread 

Internet has brought along a massive amount of information, thanks to the better 

connectivity and bandwidth brought by information technology advancement. 

Nowadays, the World Wide Web is expected to contain around 400 million 

accessible websites and more than 1 trillion webpages [2]. For instance, WhatsApp 

has a volume of around 55 billion messages per day and WeChat users send some 

38 billion messages per day [10]. Twitter receives over 100 million tweets per day 

and Yahoo! exchanges over 3 billion messages per day. Besides the overwhelming 

textual data, the photo sharing website Flicker has more than 5 billion images 

available, where images are still kept being up loaded at the speed of over 3,000 

images per minute. For the rich media sharing website YouTube, over 100 hours of 

videos are being uploaded per minute.  [2]. 

The explosive increase in the volume of data has challenged the modern 

information technology in terms of not only maintaining a giant database but 

searching for relevant content in it. In fact, compared to the cost of storage, 

searching for relevant content in massive databases turns out to be even a more 

challenging task. In particular, searching for rich media data, such as audio, 

images, and videos, remains a major challenge since there exist major gaps 

between available solutions and practical needs in both accuracy and 

computational costs [2]. 
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Besides the widely used text-based commercial search engines such as Google and 

Bing, content-based image retrieval (CBIR) has attracted substantial attention in 

the past decade [11]. Instead of relying on textual keywords based indexing 

structures, CBIR requires efficiently indexing media content in order to directly 

respond to visual queries. In these use cases, the linear search of 𝑂(𝑛𝑑) time 

complexity is undesired given the realistic large-scale settings. Besides the 

scalability issue, most practical large-scale applications also suffer from the curse 

of dimensionality [12], when the data under modern analytics usually contains 

thousands or even tens of thousands of dimensions, e.g., in documents and 

images. Imagine a database containing 1 billion images and each one of them is 

represented as a vector in real coordinate space 𝑅𝑑. Suppose 𝑑 is 1,000 (in realistic 

problems 𝑑 is usually even larger), a naive query would need at least 1 trillion (1 

billion * 1,000) times calculations of 𝑂(1). For a server that can perform 10^11 

operations per second (100 G), this would translate to 10 seconds of response time, 

which is unaffordable. One might argue that there could be multiple servers to 

distribute the computations, but on the other hand, there could be multiple 

queries from users at a time. In general, the expensive time complexity to 

exhaustively search through the base set with ever growing amount of data very 

much exceed the short response time expected by usual users. 

2.2 Wide Application of Similarity Search - Case Study 

The problem of similarity search is fundamental to many tasks, including database 

record linkage and deduplication, search engines and recommendation system and 

computer vision.  

2.2.1 Application in record linkage and deduplication [13] 

Record linkage is the process of matching records from several databases that refer 

to the same entities. When applied on a single database, this process is known as 
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deduplication, because that task will then be to remove duplicates of a record to 

prevent unnecessary storage usage. Record linkage can help collect information 

that is not available otherwise, or that is too costly to acquire; removing duplicate 

records is a crucial step in the data cleaning process, because duplicates not only 

result in extra storage cost but also severely affect subsequent data processing or 

data mining. Organizations such as government agencies, public organizations, 

businesses and research projects can run into the case when secondary 

information are collected instead of primary information acquisition which can 

sometimes be very costly. For instance, a retail banking initiative needs to collect 

credit card usage information for the population to decide on a marketing 

campaign. The marketing consultancy probably needs to gather information from 

credit card issuers where the data could have gone through data masking 

techniques to ensure privacy of the customers. To effectively detect the usage 

patterns, it is important to perform record linkage to enrich the eventual database. 

Because the data are masked and anonymous, there is no unique key across 

different databases to allow a simple join operation. Hence a similarity search can 

be adopted to cross-check for the records of the same entity. 

2.2.2 Application in search engines recommendation system [14] 

Web search engines like Google or Bing has become an integrated part of everyday 

Internet users nowadays. They provide a user-friendly interface that allows users to 

search by simply typing keywords related to their targets. Although it is easy for 

users to search the Web, a list of keywords do not always accurately describe what 

the user has in his/her mind . One reason for this is the intrinsic ambiguity that of 

natural languages. Queries having ambiguous terms may retrieve unexpected 

results for the user. On the other hand, users may phrase their queries very 

differently even when they are searching for the exact same piece of information. 

For instance, to search for the application of similarity search, one user might 

enter query as “realistic application of similarity search” while another user might 
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type in query like “how can similarity search be used in practice”. Sometimes the 

topic might involve certain technological terminologies about which the case: 

users may have little prior knowledge until they can obtain and study the right 

information; there are also some cases where users did not spell the keywords 

correctly. 

In order to resolve these issues, many search engines have implemented 

recommendation systems to recommend potential alternatives that might lead the 

users to what they are actually after. 

 

Figure 1: Google search engine suggesting alternative search keywords for users. The 
user mis-typed “popular music paradigms” as “popular musc paragms” and Google 
was able to make reasonable recommendation. 
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Figure 2: Google search engines identified and “understood” the context of the 
mistyped keyword “paragms” and suggested “programs” instead. 

As shown in Figure 1 and 2, the mistyped keyword “paragms” could be matched to 

either “programs” or “paradigms”, and the Google search engine is smart enough to 

“guess” the context of the queries and make efficient recommendations on the 

alternative search keywords for the users. The technique behind the screen 

actually involves similarity search, where potential queries are ranked by their 

similarity to the user’s query, based on the URL’s that were clicked for them. 

Similarity search plays a central role in the users’ experiences with the search 

engine because people can easily feel if the engine is intelligently giving them what 

they want constantly. 

2.2.3 Application in computer vision 

Similarity search is widely used in computer vision tasks including image/video 

retrieval [7], recognition [8], classification [15] and pose estimation [9] For 
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instance, the police might have an image of a crime suspect, and also a database of 

photos of the citizens. In order to efficiently identify the closest matches, the 

techniques of similarity search of images can be deployed to assist the screening 

process. In this project, we will also explore novel algorithms design based on KNN 

graph using database of images.  
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Figure 3 [16]: Searching for local feature (nose and smile) matches of images. Same 
technique can be applied to search for matches of the entire image as a whole by 
including multiple local features. 

In computer vision tasks, an image of ℎ ∗ 𝑤 definition can be represented by a 

vector in the real coordinate space of 𝑅𝑑, where each pixel translates to three real 

values (RGB values) hence 𝑑 = 3 ∗ ℎ ∗ 𝑤. To search for an image in the database 

that is similar to the query, the first method that would come into many people’s 

mind may be using machine-learning based techniques like Support Vector 

Machine (SVM) or Convolutional Neural Network (CNN). However, there are 

advantages that similarity search methods have: (i) Avoid overfitting of 

parameters, because no parameter learning is required. (ii) Can naturally handle a 

huge number of classes. (iii) Require no training/learning phase [17] In the studies, 

a method named Naive-Bayes Nearest-Neighbor (NBNN) similarity search based 

methods are also be shown to perform in line with top leading learning-based 

image classifiers [17]. 

https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi9ttSW5OPXAhXKl5QKHcpHCq4QjRwIBw&url=https://neerajkumar.org/projects/attribute-spaces/&psig=AOvVaw19QIE1j6bQdIDL6T7XOWh5&ust=1512044777574908
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2.3 Review of Recent Research Interest in K-Nearest Neighbor Graph 

Search 

There has been continuous interest in developing search methods based on KNN 

graph for the ANN search problem [18], [19] [20], [21], [22]. A KNN graph is a 

directed graph 𝒢 = (𝑿, 𝑬), where 𝑿 is the vertex set containing the 𝑛 items of 𝑑 

dimensions in the database (𝑿 ∈  ℝ𝑑×𝑛) and 𝑬 is the directed edge set in which 

vertex 𝑥𝑖 is connected to vertex 𝑥𝑗 ⟺ 𝑥𝑗 is one of the KNN of 𝑥𝑖. Paredes and Chvez 

[20] construct a KNN graph offline and utilize the graph constructed to use as few 

distance computations as possible for similarity measure during the online 

searching phase since the distance is considered expensive to compute. Paredes 

and Chvez present two search algorithms for both range and nearest neighbor 

queries which use navigational and metrical features of the KNN graph. It is shown 

that their approach is competitive against current ones. For instance, in the 

document metric space our nearest neighbor search algorithms perform 30% more 

distance evaluations than Approximating and Eliminating Search Algorithm 

(AESA) [23] using only a 0.25% of its space requirement. In the same space, the 

pivot-based technique is completely useless. Lifshits and Zhang [19] define a 

visibility graph for any dataset satisfying the disorder inequality, and adopt a 

greedy routing over the graph that can deterministically converge to the NN of a 

target in logarithmic number of steps. Hajebi et al. [18] also build a KNN graph in 

an offline phase and when queried with a new item, perform hill-climbing starting 

from a randomly sampled node of the graph. Theoretical guarantees for the 

accuracy and the computational complexity are provided and the effectiveness of 

their algorithm are also shown in [18]. Jin et al. [21] also construct a KNN graph in 

an offline phase and use a novel algorithm named Iterative Expanding Hashing 

(IEH), which builds an auxiliary index based on the KNN graph and expands 

multiple nodes at each iteration. This auxiliary index can be easily combined with 

all the traditional hashing methods to formulate the initial seeding, i.e.., choice of 
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initial nodes to be expanded. Zhao et al. [22] propose an efficient KNN graph 

construction method based on two means clustering, and adopt the enhanced hill-

climbing similar to IEH but with the support of inverted indexing derived from 

residue vector quantization. We try to explore the KNN graph based search 

methods and, after studying these related works and familiarizing ourselves with 

relevant techniques, to propose novel KNN graph search methods with the 

objective to improve the performance of the promising search methodology. 

 

3 Overview of Common Techniques 

There are two major directions in the literature regarding the ANN search problem. 

One direction is hashing based, utilizing different vector quantization techniques 

to hash the items from a higher dimensional space to a lower dimensional space. 

Alternatively, a KNN graph is utilized to lead the search starting from a randomly 

picked (or computed) seed node to the query target. In this section, we give an 

overview of both paradigms and describe some common algorithms including 

Locality Sensitive Hashing, Principle Component Analysis Hashing and Graph 

Nearest Neighbor Search. 

3.1 Locality Sensitive Hashing 

The Locality Sensitive Hashing (LSH) algorithm is designed to covert an item to a 

binary vector of lower dimensions while preserving its locality metrics. The 

original version of LSH was introduced by Indyk and Motwani [24].  

3.1.1 Notations 

Let 𝑿 = [𝑥1, … , 𝑥𝑛]  ∈  ℝ𝑑×𝑛 denote the base dataset with 𝑛 items of 𝑑 dimensions. 

𝜌 is the distance measure function and 𝜌(𝑥𝑖 , 𝑥𝑗) = ∥ 𝑥𝑖 − 𝑥𝑗 ∥2 is the l2-distance 
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between data point 𝑥𝑖 and 𝑥𝑗. 𝑑𝐻 is the Hamming distance function and 𝑑𝐻(𝒂, 𝒃) is 

the Hamming distance between the two binary codes. To assign each data point 𝑥 

to a 𝑐-bit hash bucket, there are 𝑐 hash functions to convert each data point to a 𝑐-

bit hash code, which is essentially a 𝑐-dimensional binary vector 

𝐻(𝑥) = [ℎ1(𝑥), … , ℎ𝑐(𝑥)] 

where ℎ𝑙(𝑥)  ∈ {0, 1} is the 𝑙-th hash function and ℎ𝑙(𝑥) = 𝑠𝑔𝑛(𝑥𝑤𝑙
𝑇) with 𝑤𝑙 being 

a randomly generated weight vector.  

3.1.2 Algorithm 

The LSH algorithm consists of the following steps: 

Input:  

database 𝑿 = [𝑥1, … , 𝑥𝑛]  ∈  ℝ𝑑×𝑛 

number of bits 𝑐 

search radius 𝑟𝐻 (in terms of Hamming distance) 

query item 𝒒 ∈  ℝ𝑑 

top 𝑘 results to be returned 

Output: 

𝑘 items 𝒙 ∈ 𝑿 that are the approximate nearest neighbors of 𝒒 

Methodology: 

I. Preprocessing: assign each data point in the database to a hash bucket 

a. Randomly generate 𝑙 weight vectors from a zero-mean multivariate 

Gaussian 𝒩(0, 𝐈) of 𝑑 dimensions 

b. For each 𝒙𝑖  ∈ 𝑿, map it to the hash code 𝐻(𝒙𝑖) = [ℎ1(𝒙𝑖), … , ℎ𝑐(𝒙𝑖)] 
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II. Searching: perform searching when a query 𝒒 is raised 

a. Coding stage: map 𝒒 using the same weight vectors generated in I.a. 

to get its hash code 𝐻(𝒒) = [ℎ1(𝒒), … , ℎ𝑐(𝒒)] 

b. Locating stage: collect all the database items in the hash buckets that 

fall within the Hamming distance radius 𝑟𝐻 

c. Scanning stage: perform a linear scan over the items collected and 

return the 𝑘 items that are of minimum ρ measures with 𝒒 

Note that the Hamming distance can be cheap to compute using low-level 

hardware operation XOR. 

 
Figure 4 [21]: Example LSH in 2-D space. A hashing method generates three 
hyperplanes l1, l2, and l3 to separate the 2-D space into seven parts. The points in the 
same part have the same binary codes. The query point is the green star and its NN 
are represented by red circles. The remaining points are black squares. 

As shown in Figure 4, the choice of the search Hamming radius 𝑟𝐻 has a strong 

impact on the performance of the searching. In the above example, to achieve a 

100% recall, one must specify the parameter to be 𝑟𝐻 ≥ 2. However, the trade-off 

exists because a larger 𝑟𝐻  usually means more items in the database will be 

collected in the locating stage and hence more 𝜌 distance computations in the 

scanning stage, which could be expensive given a large 𝑑. 



PAGE 15 

3.2 Principle Component Analysis Hashing 

Instead of generating hash functions randomly, the Principle Component Analysis 

Hashing (PCA Hashing, or PCAH) algorithm [30, 25]tries to “learn” the weight 

vectors in a scientific way based on the distribution of the items in the database. It 

uses a simple but efficient method to get the hash functions. It reduces dimension 

of the data utilizing the power of the PCA technique. Notations and steps are as 

following. 

3.2.1 Notations 

Let 𝑿 = [𝒙1, … , 𝒙𝑛]  ∈  ℝ𝑑×𝑛 denote the base dataset with 𝑛 items of 𝑑 dimensions. 

𝜌 is the distance measure function and 𝜌(𝒙𝒊, 𝒙𝒋) = ∥ 𝑥𝑖 − 𝑥𝑗 ∥2 is the l2-distance 

between data point 𝒙𝑖 and 𝒙𝑗. 𝑑𝐻 is the Hamming distance function and 𝑑𝐻(𝒂, 𝒃) is 

the Hamming distance between the two binary codes. To assign each data point 𝑥 

to a 𝑐-bit hash bucket, there are 𝑐 hash functions to convert each data point to a 𝑐-

bit hash code, which is essentially a 𝑐-dimensional binary vector 

𝐻(𝒙) = [ℎ1(𝒙), … , ℎ𝑐(𝒙)] 

where ℎ𝑙(𝑥)  ∈ {0, 1} is the 𝑙-th hash function and ℎ𝑙(𝒙) = 𝑠𝑔𝑛(𝒙𝒘𝑙
𝑇 − 𝔼𝑘(𝒙𝑘𝒘𝑙

𝑇)) 

with 𝑤𝑙 being a randomly generated weight vector.  

3.2.2 Algorithm 

The main motivation of the PCAH algorithm is to try to maximize the information 

contained in each bit of the resulting binary hash bucket codes. Each bit is 

essentially reflecting the projection on a principle component, a direction in the 

space of the original dimension that the items vary significantly. To maximize the 

information, PCAH tries to maximize the variance of each bit and also keep each 

bit uncorrelated to others, which is essentially to perform a PCA reduction before 

quantizing the values to binary codes. 
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Input:  

database 𝑿 = [𝑥1, … , 𝑥𝑛]  ∈  ℝ𝑑×𝑛 

number of bits 𝑐 

search radius 𝑟𝐻 (in terms of Hamming distance) 

query item 𝒒 ∈  ℝ𝑑 

top 𝑘 results to be returned 

Output: 

𝑘 items 𝒙 ∈ 𝑿 that are the approximate nearest neighbors of 𝒒 

Methodology: 

I. PCA: Perform PCA on the database 𝑿 and get the l projection vectors as 

weight vectors for hashing 

II. Assign each data point in the database to a hash bucket 

a. Generate weight vectors using the projection vectors 

b. For each 𝒙𝑖  ∈ 𝑿, map it to the hash code 𝐻(𝒙𝑖) = [ℎ1(𝒙𝑖), … , ℎ𝑐(𝒙𝑖)] 

III. Searching: perform searching when a query 𝒒 is raised 

a. Coding stage: map 𝒒 using the same weight vectors generated in I.a. 

to get its hash code 𝐻(𝒒) = [ℎ1(𝒒), … , ℎ𝑐(𝒒)] 

b. Locating stage: collect all the database items in the hash buckets that 

fall within the Hamming distance radius 𝑟𝐻 

c. Scanning stage: perform a linear scan over the items collected and 

return the 𝑘 items that are of minimum ρ measures with 𝒒 
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3.3 Graph Nearest Neighbor Search 

The Graph Nearest Neighbor Search (GNNS) algorithm [26] is a hill-climbing 

search method based on KNN graph. Although the algorithm takes an constructed 

KNN graph as input, the method to efficiently construct a KNN graph is also worth 

discussion. We will discuss this further in Section 5. In this section we focus 

ourselves on the GNNS algorithm itself. 

3.3.1 Notations 

Let 𝑿 = [𝑥1, … , 𝑥𝑛]  ∈  ℝ𝑑×𝑛 denote the base dataset with 𝑛 items of 𝑑 dimensions. 

𝜌 is the distance measure function and 𝜌(𝑥𝑖 , 𝑥𝑗) = ∥ 𝑥𝑖 − 𝑥𝑗 ∥2 is the l2-distance 

between data point 𝑥𝑖 and 𝑥𝑗. Let 𝒩𝑘(𝒙) denote the set of k nearest nodes of data 

point 𝒙. A KNN graph is a directed graph 𝒢 = (𝑿, 𝑬), where 𝑬 is the directed edge 

set in which vertex 𝒙𝑖 is connected to vertex 𝒙𝑗 ⟺ 𝒙𝑗  ∈  𝒩𝑘(𝒙𝑖).  

3.3.2 Algorithm 

The GNNS algorithm takes input and involves two stages as following: 

Input: 

database 𝑿 = [𝑥1, … , 𝑥𝑛]  ∈  ℝ𝑑×𝑛 

KNN graph 𝒢 = (𝑿, 𝑬) 

number of restart seeds 𝑅 

number of iterations 𝑇 

number of expansions 𝐸 in each iteration 

query item 𝒒 ∈  ℝ𝑑 

top 𝑘 results to be returned 
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Output: 

top 𝑘 results to be returned 

Methodology: 

𝒮 ← {} is the set of visited nodes 

𝒰 ← {} is the set of 𝜌 distance measures of the visited nodes against 𝒒 

for 𝑟 = 1, … , 𝑅 do 

Randomly select an item 𝒚0 from 𝑿 

for 𝑡 = 1, … , 𝑇 do 

Update 𝒚𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛𝒚∈𝒩𝐸(𝒚𝒕−𝟏)𝜌(𝒚, 𝒒) 

Update 𝒮 = 𝒮 ∪ 𝒩𝐸(𝒚𝒕−𝟏) 

Update 𝒰 = 𝒰 ∪ {𝜌(𝒚, 𝒒) | 𝒚 ∈ 𝒩𝐸(𝒚𝒕−𝟏)} 

Return the 𝑘 items in 𝒮 with minimum corresponding 𝜌 in 𝒰 

 
Figure 5 [26]: The GNNS algorithm on an example search path 

As shown in Figure 5, starting from a randomly selected item, iterative hill-

climbing takes place and lead the search to reach near the query target Q. It is not 

guaranteed that the true nearest neighbors will always be returned because the 
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search can be trapped in local optimum hence the purpose being serving ANN 

search problem instead of NN search one. To avoid being easily trapped in local 

optimum, 𝑅 seeds will be selected in different trials. Obviously trade-off exists for 

𝑅 as well as 𝑇 and 𝐸 [26]: by increasing each of them, the algorithm spends more 

time in search and returns a more accurate result. The difference between 𝐸 and 𝑘 

and 𝐾 should be noted. 𝐸 and 𝐾 are two input parameters to the search algorithm 

(online), while 𝑘 is a parameter of the kNN tree construction algorithm (offline).   

 

4 Related Experiments and Results 

To respond to users in time, the speed of a search algorithm is important. However 

in this context (ANN search), the time complexity alone cannot fully describe the 

performance of an algorithm, given that we are not solving NN search but instead 

ANN search problem. This implies that different algorithms differ not only in 

terms of time but also their ability to recall the ground truth, which is the set of 

the NN of the query. So the criteria to evaluate the performance of an algorithm 

should involve both time and search quality. 

 

Figure 6 Recall quality of KNN VS LSH against time 
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Figure 7 Recall quality of KNN VS SH against time 

We try to replicate the above results done by Jin et al. [21], where the time-recall 

data is recorded for both hashing-alone and enhanced KNN (enhanced with 

hashing for initial seeds) on three different public datasets ((a) CIFAR-10. (b) GIST-

1M (c). SIFT-1M), which are popular in the field. SH denotes for Spectral hashing 

which can be seen as a variation of PCAH and ITQ. 

 

5 Results and Analysis 

We first implement the construction of normal KNN. CIFAR60k is the dataset we 

first adopt, which contains 60,000 items of 512 dimensions. Gradually we improve 

the construction methods and use it on other datasets including GIST_10k and 

SIFT1m_10k. 5/10/20-NN graphs are constructed for each of the dataset. Note that 

GIST_10k is a dataset we build by sampling 10 thousand items from original GIST, 

and same for SIFT1m_10k. 

GNNS is then applied on these constructed graphs to perform searching and the 

performance is recorded and compared against hashing-based algorithms such as 

PCAH and ITQ. 
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We then explore a novel approximate KNN (AKNN) method where we utilize 

PCAH during the construction of the KNN graph to get an approximate KNN 

graph. The recall of the approximate KNN on the exact KNN graph is computed to 

investigate the quality of the approximation. 

Finally, we perform searching on the AKNN graph and compare its performance 

against that of KNN and hashing-based methods mentioned above. 

 

5.1 KNN Graph Construction 

We first set k=5 and target to build a 5-NN graph. 

During the graph construction on dataset CIFAR60k, which contains 60,000 items 

of 512 dimensions, we notice that the naive construction method takes too long to 

construct the KNN graph. The naïve method (naïve_knn) constructs the graph in 

this way: For each item 𝑖, compute the l2-distance between item 𝑖 and all other 

items 𝑗; Use quick-sort to sort all the other 𝑛 − 1 = 60000 − 1 = 59999 items 

based on the l2-distance computed and retrieve 𝑘 = 5 items that are closet to item 

𝑖.  

The method is inefficient because 1) it involves too many l2-distance 

computations. It performs 𝑛 × (𝑛 − 1) ≈ 3.5 billion times of this similarity check, 

each one of which is of 𝑂(𝑑) 𝑤ℎ𝑒𝑟𝑒 𝑑 = 512 complexity; 2) quick-sort is actually 

more than we need and costs extra time, because we only need the top k results, 

instead of sorting all the results. In our experiment setting when the construction 

is run on proj99, it costs 20+ hours to finish. Therefore, we try to make some 

improvement. 

We first notice that we can use a 𝑛 × 𝑛 matrix to store the distance. For example, 

when we compute distance between item 234 and item 567, we store the distance 
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to dist_map[234][567]. This way, when we reach 𝑖 = 567 and 𝑗 = 234, we can 

directly get the distance by referring to dist_map[j][i]. With this design, more 

memory complexity is incurred but half of the distance computations are reduced, 

which is desirable. Secondly, we adopt a findBestK() function instead of quick-sort 

to find the closet k neighbors. This function is of complexity O(N) (usually just 2n) 

which is better than O(NlogN) of quick-sort.  

Originally it takes around 20 hours to construct the 5-NN graph and after the 

improvement only 10 hours are needed. The improved method (fast_knn) is used 

to construct the KNN graphs for k=5/10/20 on three datasets: CIFAR60k, GIST_10k 

and SIFT1m_10k. 

Dataset Cardinality Dimension Construction 

Method 

Time Graph 

Quality1 

SIFT1m_10k 10,000 128 naïve_knn 4m46.990s 100% 

SIFT1m_10k 10,000 128 fast_knn 2m51.005s 100% 

SIFT1m_10k 10,000 128 pcah_aknn2 0m25.055s 84.17% 

Table 1 KNN graph construction time and quality with different methods 

Table 1 shows that how different construction methods perform. The details of the 

third method pcah_knn will be discussed in Section 5.3. Note that both naïve_knn 

and fast_knn are constructing exact KNN graph, hence their graph quality of 100%. 

5.2 Search on KNN graph with GNNS 

With the constructed graphs, we implement and apply the discussed GNNS search 

algorithm. A timer is also applied to control the time. We also compute the ground 

truth for each query using brute force manner with multi-threading, which allow 

us to compute the recall of the GNNS search until different time limits. 

                                                 
1 Number of correct 20-NNs found 
2 To be discussed in Section 5.3 
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We then compare the time-recall performance of GNNS with hashing-based 

techniques including PCAH and ITQ. We test the results on 𝐾 =5/10/20 NN graph 

and the results are following: 

 

Figure 8 Time-recall search performance on CIFAR60k 

We observe in Figure 8 that the 20-NN graph produces the best performance, 

beating the traditional hashing-based techniques including PCAH and ITQ. 

In addition, the performance of GNNS enhances as 𝐾  increases. That is, 

performance from KNN_5, KNN_10 to KNN_20 is gradually increasing. This makes 

intuitive sense because when 𝑘 is larger, more items are available for probing and 

the search is less likely to be constrained in a small local community of nodes. 
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Figure 9 Time-recall search performance on GIST_10k 

 

Figure 10 Time-recall search performance on SIFT1m_10k 
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Similar results are also observed on the other two datasets as in Figure 9 and 10. 

We do notice that the KNN_20 performance on SIFT1m_10k does not beat ITQ. We 

think it is because the parameter 𝐾 is not large enough. With 𝐾 increased, we 

should be able to see a boost in the performance. 

The results suggest that our GNNS based on KNN can beat the traditional hashing 

based techniques including PCAH and ITQ, if 𝐾 is appropriately selected. 

5.3 Construct Approximate KNN Graph 

We look to build a new KNN graph (named Approximate KNN graph, or AKNN 

graph) which can enable faster construction in offline phase and also update/query 

in online phase. The AKNN graph will be built such that each node is connected to 

𝑘 closest nodes that fall within buckets in certain radius of Hamming distance 

(𝑟𝐻, 𝑜𝑟 𝑚𝑎𝑥𝐻𝑎𝑚). In this design, we combine the traditional hashing techniques 

with the graph methods and hope to achieve less offline construction time while 

maintain a decent level of graph quality as well as search performance. Here we 

choose to use PCAH as the hashing technique to get the codebook. 

To examine the quality of the approximation, we compute the graph quality, 

measured also by recall, of AKNN graph against respective KNN graph; i.e., a recall 

of 60% means the AKNN graphs on average captures 60% of true 𝑘 nearest 

neighbors. 

Code 
Len 

8 
  Code 

Len 
16 

  Code 
Len 

32 
 

max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

 max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

 max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

2 73.87 14.62  4 54.87 4.00  8 23.63 0.42 

4 98.55 63.76  8 99.02 59.81  16 99.01 56.87 

Table 2 AKNN graph quality - CIFAR60k 

Code 
Len 

8 
  Code 

Len 
16 

  Code 
Len 

32 
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max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

 max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

 max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

2 67.44 14.98  4 40.51 4.13  8 10.50 0.45 

4 97.46 63.65  8 97.39 59.79  16 96.22 56.93 

Table 3 AKNN qraph quality – GIST_10k 

Code 
Len 

8 
  Code 

Len 
16 

  Code 
Len 

32 
 

max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

 max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

 max 
Ham 

Recall 
(%) 

Scan 
Rate(%) 

2 84.17 14.64  4 69.30 4.46  8 39.40 0.65 

4 99.37 62.36  8 99.67 59.01  16 99.79 56.24 

Table 4 AKNN graph quality – SIFT1m_10k 

Table 2 and 3 show the results of AKNN graph construction. Scan rate denotes 

percentage of distance computations performed compared to fast_knn; i.e., 

𝑆𝑐𝑎𝑛 𝑅𝑎𝑡𝑒 =
# 𝑜𝑓 𝑑𝑖𝑠𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑖𝑜𝑛

𝑁 × (𝑁 − 1)
2⁄

  

As shown in the table, the quality of the graph can be safely above 95% when the 

allowed Hamming distance difference is half of hashing code bit length. We will 

use the lower-right corner setting (CodeLen=32 and maxHam=16) for the below 

experiment in Section 5.4 and 5.5.  

In experiments, we find that we can achieve roughly 85% recall when scan rate is 

15% and 95% recall when scan rate is 55%. Therefore, with AKNN, the time 

required to construct or update the graph will be significantly lower, because 

much less items will be visited and computed distance against, nonetheless the 

quality of the graph is reserved at a good level. 

5.4 Search on AKNN graph with GNNS 

Again we perform GNNS but on the AKNN graph. Time-recall statistics are also 

recorded and compared against those of KNN and hashing-based methods. The 
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AKNN used here is an approximate 20-NN, based on 32-bit PCA hashing and 16-bit 

Hamming distance limit. 

 

Figure 11 GNNS on AKNN_20 VS others – CIFAR60k 
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Figure 12 GNNS on AKNN_20 VS others – GIST_10k 

The AKNN_20 almost coincides with KNN_20, suggesting that the two perform 

very much the same. 

 

 Figure 13 GNNS on AKNN_20 VS others – SIFT1m_10k 

The results are very much consistent on SIFT1m_10k too. Note that as the time 

limits for the first few points are too small so the system may record the time 

differently on different runs even with same setting. 

5.5 New GNNS with Hashing Based Seeding Method 

We also design a new way to perform the searching, named as PCA Hashing-

Seeded GNNS (PS-GNNS). Instead of randomly selecting items as seeds in GNNS, 

we utilize PCAH and compute the hash code of the query item. We then look in 

the dataset for the items that fall within a certain limit of Hamming distance with 

the query. Note that this process is also fast because the Hamming distance can be 
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computed at very low time expense by XOR operation. The items found will be 

used as seeds to perform normal GNNS. 

 

Figure 14 PS-GNNS results - CIFAR60k 

 

Figure 15 PS-GNNS results – GIST_10k 
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Figure 16 PS-GNNS results – SIFT1m_10k 

The results suggest that this idea works very well. The PS-GNNS beats the others 

by quite a lot consistently across all three datasets. This shows that we can use 

PCAH to construct as well as improve searching on the AKNN graph. 

5.6 PS-GNNS VS State-of-The-Art 

Now we want to compare our best performing PS-GNNS result with the state-of-

the-art methods. Before KNN methods were proposed, the state-of-the-art method 

should be Optimized Product Quantization (OPQ) [27]. Later, as pointed out in 

some studies [28], KNN methods tend to perform even better (not considering the 

eventual highest recall available). This suggests that with improvement brought by 

PCAH-based AKNN and novel searching technique PS-GNNS, our method will 

outperform the available algorithms in searching. Due to the difficulty of gathering 

their source code (or their source code is in Python, yet our apps are coded in 

C++), we do not carry out empirical experiment. 
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