

Final Year Project - Term 2
Report

EXPLORING EFFICIENT SIMILARITY SEARCH ALGORITHMS WITH K-

NEAREST NEIGHBOR GRAPH

HU Evan | CSCI 4998 | 18 May, 2018

PAGE 1

Table of Contents

Table of Contents .. 1

1 Introduction ... 3

1.1 Nearest Neighbor Search .. 3

1.2 Approximate Nearest Neighbor Search ... 4

2 Motivation.. 5

2.1 Increasing Complexity Challenge from Big Data .. 5

2.2 Wide Application of Similarity Search - Case Study 6

2.2.1 Application in record linkage and deduplication [13] 6

2.2.2 Application in search engines recommendation system [14] 7

2.2.3 Application in computer vision ... 9

2.3 Review of Recent Research Interest in K-Nearest Neighbor Graph Search 11

3 Overview of Common Techniques .. 12

3.1 Locality Sensitive Hashing ... 12

3.1.1 Notations ... 12

3.1.2 Algorithm .. 13

3.2 Principle Component Analysis Hashing ... 15

3.2.1 Notations ... 15

3.2.2 Algorithm .. 15

3.3 Graph Nearest Neighbor Search .. 17

3.3.1 Notations ... 17

3.3.2 Algorithm .. 17

PAGE 2

4 Related Experiments and Results ... 19

5 Results and Analysis .. 20

5.1 KNN Graph Construction .. 21

5.2 Search on KNN graph with GNNS ... 22

5.3 Construct Approximate KNN Graph .. 25

5.4 Search on AKNN graph with GNNS ... 26

5.5 New GNNS with Hashing Based Seeding Method 28

5.6 PS-GNNS VS State-of-The-Art ... 30

6 References ... 31

PAGE 3

1 Introduction

Given a query item 𝑞 (or a set of query items), similarity search, also known as

close item search or proximity search, is defined to search through an existing

dataset, which usually consists of a significantly large volume of items with the

same format as the query item, with the objective to find the item(s) that are most

similar to the current query item. To decide how similar two items are, there are

different ways to measure the similarity between a pair of items, including

Euclidean distance, cosine similarity, Jaccard similarity, etc [29, 30].

In this project, we are trying to explore a graph search method and propose a novel

algorithm design and implementation based on K-Nearest Neighbor (KNN) graph,

where each vertex is connected to its nearest 𝑘 neighbors. In the following two

sections, we will give an overview of two categories of similarity search problems,

namely the Nearest Neighbor search and its natural relaxation version, i.e., the

Approximate Nearest Neighbor search, and show that the focus has been on the

latter due to practical concerns.

1.1 Nearest Neighbor Search

The Nearest Neighbor (NN) search requires the item(s) of greatest similarity

measure to the query item to be returned. NN search is a critical component in

many learning algorithms such as clustering, retrieval and matching [1].

Once a certain similarity measure is adopted, a straightforward solution to NN

search problem is to perform a linear search, exhaustively scanning through each

item in the dataset (the “base” set, or simply the “base”), comparing them against

the query and retrieving the one(s) with highest similarity. For a dataset with 𝑛

items, each one of which is a d-dimension vector, time complexity of the linear

search will be 𝑂(𝑛𝑑). Despite the easiness of the implementation, it may not be

PAGE 4

practical in reality. because the base set can contain millions of items and the

items can range from 100 to 10,000 dimensions. Beyond the infeasibility of the

computational cost for exhaustive search, the storage constraint originating from

loading original data into memory also becomes a critical bottleneck [2].

There have been various tree-based structures developed to solve the NN search

problem [3], [4]. However, the performance of these methods is even worse than a

linear scan search when the dimensionality of the items is high [5]., not to mention

that the tree-based structures require significant space complexity and sometimes

takes up more storage than the original data itself Until now, few computationally

feasible solutions have been proposed for this scenario.

1.2 Approximate Nearest Neighbor Search

Given the intrinsic computational difficulty of exact NN search problem,

Approximate Nearest Neighbor (ANN) search has been receiving increasing

interest in response. Instead of looking for the exact closest match, pseudo-

optimal results are expected for ANN search. In fact, for many practical problems,

such pseudo-closest results are shown to be enough and useful [6]. ANN search

indeed has been commonly used not only in computer vision problems including

image/video retrieval [7], recognition [8], and pose estimation [9], but also

recommendation engines, anomaly detection and database linkage and

deduplication

PAGE 5

2 Motivation

In this section, we highlight the significance of studies of the similarity search

problem and the incentive to explore efficient solutions for approximate search

using the KNN graph.

2.1 Increasing Complexity Challenge from Big Data

There has been rapid growth in big data in the decade as the widely spread

Internet has brought along a massive amount of information, thanks to the better

connectivity and bandwidth brought by information technology advancement.

Nowadays, the World Wide Web is expected to contain around 400 million

accessible websites and more than 1 trillion webpages [2]. For instance, WhatsApp

has a volume of around 55 billion messages per day and WeChat users send some

38 billion messages per day [10]. Twitter receives over 100 million tweets per day

and Yahoo! exchanges over 3 billion messages per day. Besides the overwhelming

textual data, the photo sharing website Flicker has more than 5 billion images

available, where images are still kept being up loaded at the speed of over 3,000

images per minute. For the rich media sharing website YouTube, over 100 hours of

videos are being uploaded per minute. [2].

The explosive increase in the volume of data has challenged the modern

information technology in terms of not only maintaining a giant database but

searching for relevant content in it. In fact, compared to the cost of storage,

searching for relevant content in massive databases turns out to be even a more

challenging task. In particular, searching for rich media data, such as audio,

images, and videos, remains a major challenge since there exist major gaps

between available solutions and practical needs in both accuracy and

computational costs [2].

PAGE 6

Besides the widely used text-based commercial search engines such as Google and

Bing, content-based image retrieval (CBIR) has attracted substantial attention in

the past decade [11]. Instead of relying on textual keywords based indexing

structures, CBIR requires efficiently indexing media content in order to directly

respond to visual queries. In these use cases, the linear search of 𝑂(𝑛𝑑) time

complexity is undesired given the realistic large-scale settings. Besides the

scalability issue, most practical large-scale applications also suffer from the curse

of dimensionality [12], when the data under modern analytics usually contains

thousands or even tens of thousands of dimensions, e.g., in documents and

images. Imagine a database containing 1 billion images and each one of them is

represented as a vector in real coordinate space 𝑅𝑑. Suppose 𝑑 is 1,000 (in realistic

problems 𝑑 is usually even larger), a naive query would need at least 1 trillion (1

billion * 1,000) times calculations of 𝑂(1). For a server that can perform 10^11

operations per second (100 G), this would translate to 10 seconds of response time,

which is unaffordable. One might argue that there could be multiple servers to

distribute the computations, but on the other hand, there could be multiple

queries from users at a time. In general, the expensive time complexity to

exhaustively search through the base set with ever growing amount of data very

much exceed the short response time expected by usual users.

2.2 Wide Application of Similarity Search - Case Study

The problem of similarity search is fundamental to many tasks, including database

record linkage and deduplication, search engines and recommendation system and

computer vision.

2.2.1 Application in record linkage and deduplication [13]

Record linkage is the process of matching records from several databases that refer

to the same entities. When applied on a single database, this process is known as

PAGE 7

deduplication, because that task will then be to remove duplicates of a record to

prevent unnecessary storage usage. Record linkage can help collect information

that is not available otherwise, or that is too costly to acquire; removing duplicate

records is a crucial step in the data cleaning process, because duplicates not only

result in extra storage cost but also severely affect subsequent data processing or

data mining. Organizations such as government agencies, public organizations,

businesses and research projects can run into the case when secondary

information are collected instead of primary information acquisition which can

sometimes be very costly. For instance, a retail banking initiative needs to collect

credit card usage information for the population to decide on a marketing

campaign. The marketing consultancy probably needs to gather information from

credit card issuers where the data could have gone through data masking

techniques to ensure privacy of the customers. To effectively detect the usage

patterns, it is important to perform record linkage to enrich the eventual database.

Because the data are masked and anonymous, there is no unique key across

different databases to allow a simple join operation. Hence a similarity search can

be adopted to cross-check for the records of the same entity.

2.2.2 Application in search engines recommendation system [14]

Web search engines like Google or Bing has become an integrated part of everyday

Internet users nowadays. They provide a user-friendly interface that allows users to

search by simply typing keywords related to their targets. Although it is easy for

users to search the Web, a list of keywords do not always accurately describe what

the user has in his/her mind . One reason for this is the intrinsic ambiguity that of

natural languages. Queries having ambiguous terms may retrieve unexpected

results for the user. On the other hand, users may phrase their queries very

differently even when they are searching for the exact same piece of information.

For instance, to search for the application of similarity search, one user might

enter query as “realistic application of similarity search” while another user might

PAGE 8

type in query like “how can similarity search be used in practice”. Sometimes the

topic might involve certain technological terminologies about which the case:

users may have little prior knowledge until they can obtain and study the right

information; there are also some cases where users did not spell the keywords

correctly.

In order to resolve these issues, many search engines have implemented

recommendation systems to recommend potential alternatives that might lead the

users to what they are actually after.

Figure 1: Google search engine suggesting alternative search keywords for users. The
user mis-typed “popular music paradigms” as “popular musc paragms” and Google
was able to make reasonable recommendation.

PAGE 9

Figure 2: Google search engines identified and “understood” the context of the
mistyped keyword “paragms” and suggested “programs” instead.

As shown in Figure 1 and 2, the mistyped keyword “paragms” could be matched to

either “programs” or “paradigms”, and the Google search engine is smart enough to

“guess” the context of the queries and make efficient recommendations on the

alternative search keywords for the users. The technique behind the screen

actually involves similarity search, where potential queries are ranked by their

similarity to the user’s query, based on the URL’s that were clicked for them.

Similarity search plays a central role in the users’ experiences with the search

engine because people can easily feel if the engine is intelligently giving them what

they want constantly.

2.2.3 Application in computer vision

Similarity search is widely used in computer vision tasks including image/video

retrieval [7], recognition [8], classification [15] and pose estimation [9] For

PAGE 10

instance, the police might have an image of a crime suspect, and also a database of

photos of the citizens. In order to efficiently identify the closest matches, the

techniques of similarity search of images can be deployed to assist the screening

process. In this project, we will also explore novel algorithms design based on KNN

graph using database of images.

real coordinate space of 𝑅𝑑, where each pixel translates to three real values (RGB values) hence 𝑑 = 3 ∗ ℎ ∗ 𝑤. To search for an image in the

database that is similar to the query, the first method that would come into many people’s mind may be using machine-learning based

techniques like Support Vector Machine (SVM) or Convolutional Neural Network real coordinate space of 𝑅𝑑, where each pixel translates to

three real values (RGB values) hence 𝑑 = 3 ∗ ℎ ∗ 𝑤. To search for an image in the database that is similar to the query, the first method that

would come into many people’s mind may be using machine-learning based techniques like Support Vector Machine (SVM) or Convolutional

Neural Network

Figure 3 [16]: Searching for local feature (nose and smile) matches of images. Same
technique can be applied to search for matches of the entire image as a whole by
including multiple local features.

In computer vision tasks, an image of ℎ ∗ 𝑤 definition can be represented by a

vector in the real coordinate space of 𝑅𝑑, where each pixel translates to three real

values (RGB values) hence 𝑑 = 3 ∗ ℎ ∗ 𝑤. To search for an image in the database

that is similar to the query, the first method that would come into many people’s

mind may be using machine-learning based techniques like Support Vector

Machine (SVM) or Convolutional Neural Network (CNN). However, there are

advantages that similarity search methods have: (i) Avoid overfitting of

parameters, because no parameter learning is required. (ii) Can naturally handle a

huge number of classes. (iii) Require no training/learning phase [17] In the studies,

a method named Naive-Bayes Nearest-Neighbor (NBNN) similarity search based

methods are also be shown to perform in line with top leading learning-based

image classifiers [17].

https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi9ttSW5OPXAhXKl5QKHcpHCq4QjRwIBw&url=https://neerajkumar.org/projects/attribute-spaces/&psig=AOvVaw19QIE1j6bQdIDL6T7XOWh5&ust=1512044777574908

PAGE 11

2.3 Review of Recent Research Interest in K-Nearest Neighbor Graph

Search

There has been continuous interest in developing search methods based on KNN

graph for the ANN search problem [18], [19] [20], [21], [22]. A KNN graph is a

directed graph 𝒢 = (𝑿, 𝑬), where 𝑿 is the vertex set containing the 𝑛 items of 𝑑

dimensions in the database (𝑿 ∈ ℝ𝑑×𝑛) and 𝑬 is the directed edge set in which

vertex 𝑥𝑖 is connected to vertex 𝑥𝑗 ⟺ 𝑥𝑗 is one of the KNN of 𝑥𝑖. Paredes and Chvez

[20] construct a KNN graph offline and utilize the graph constructed to use as few

distance computations as possible for similarity measure during the online

searching phase since the distance is considered expensive to compute. Paredes

and Chvez present two search algorithms for both range and nearest neighbor

queries which use navigational and metrical features of the KNN graph. It is shown

that their approach is competitive against current ones. For instance, in the

document metric space our nearest neighbor search algorithms perform 30% more

distance evaluations than Approximating and Eliminating Search Algorithm

(AESA) [23] using only a 0.25% of its space requirement. In the same space, the

pivot-based technique is completely useless. Lifshits and Zhang [19] define a

visibility graph for any dataset satisfying the disorder inequality, and adopt a

greedy routing over the graph that can deterministically converge to the NN of a

target in logarithmic number of steps. Hajebi et al. [18] also build a KNN graph in

an offline phase and when queried with a new item, perform hill-climbing starting

from a randomly sampled node of the graph. Theoretical guarantees for the

accuracy and the computational complexity are provided and the effectiveness of

their algorithm are also shown in [18]. Jin et al. [21] also construct a KNN graph in

an offline phase and use a novel algorithm named Iterative Expanding Hashing

(IEH), which builds an auxiliary index based on the KNN graph and expands

multiple nodes at each iteration. This auxiliary index can be easily combined with

all the traditional hashing methods to formulate the initial seeding, i.e.., choice of

PAGE 12

initial nodes to be expanded. Zhao et al. [22] propose an efficient KNN graph

construction method based on two means clustering, and adopt the enhanced hill-

climbing similar to IEH but with the support of inverted indexing derived from

residue vector quantization. We try to explore the KNN graph based search

methods and, after studying these related works and familiarizing ourselves with

relevant techniques, to propose novel KNN graph search methods with the

objective to improve the performance of the promising search methodology.

3 Overview of Common Techniques

There are two major directions in the literature regarding the ANN search problem.

One direction is hashing based, utilizing different vector quantization techniques

to hash the items from a higher dimensional space to a lower dimensional space.

Alternatively, a KNN graph is utilized to lead the search starting from a randomly

picked (or computed) seed node to the query target. In this section, we give an

overview of both paradigms and describe some common algorithms including

Locality Sensitive Hashing, Principle Component Analysis Hashing and Graph

Nearest Neighbor Search.

3.1 Locality Sensitive Hashing

The Locality Sensitive Hashing (LSH) algorithm is designed to covert an item to a

binary vector of lower dimensions while preserving its locality metrics. The

original version of LSH was introduced by Indyk and Motwani [24].

3.1.1 Notations

Let 𝑿 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑑×𝑛 denote the base dataset with 𝑛 items of 𝑑 dimensions.

𝜌 is the distance measure function and 𝜌(𝑥𝑖 , 𝑥𝑗) = ∥ 𝑥𝑖 − 𝑥𝑗 ∥2 is the l2-distance

PAGE 13

between data point 𝑥𝑖 and 𝑥𝑗. 𝑑𝐻 is the Hamming distance function and 𝑑𝐻(𝒂, 𝒃) is

the Hamming distance between the two binary codes. To assign each data point 𝑥

to a 𝑐-bit hash bucket, there are 𝑐 hash functions to convert each data point to a 𝑐-

bit hash code, which is essentially a 𝑐-dimensional binary vector

𝐻(𝑥) = [ℎ1(𝑥), … , ℎ𝑐(𝑥)]

where ℎ𝑙(𝑥) ∈ {0, 1} is the 𝑙-th hash function and ℎ𝑙(𝑥) = 𝑠𝑔𝑛(𝑥𝑤𝑙
𝑇) with 𝑤𝑙 being

a randomly generated weight vector.

3.1.2 Algorithm

The LSH algorithm consists of the following steps:

Input:

database 𝑿 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑑×𝑛

number of bits 𝑐

search radius 𝑟𝐻 (in terms of Hamming distance)

query item 𝒒 ∈ ℝ𝑑

top 𝑘 results to be returned

Output:

𝑘 items 𝒙 ∈ 𝑿 that are the approximate nearest neighbors of 𝒒

Methodology:

I. Preprocessing: assign each data point in the database to a hash bucket

a. Randomly generate 𝑙 weight vectors from a zero-mean multivariate

Gaussian 𝒩(0, 𝐈) of 𝑑 dimensions

b. For each 𝒙𝑖 ∈ 𝑿, map it to the hash code 𝐻(𝒙𝑖) = [ℎ1(𝒙𝑖), … , ℎ𝑐(𝒙𝑖)]

PAGE 14

II. Searching: perform searching when a query 𝒒 is raised

a. Coding stage: map 𝒒 using the same weight vectors generated in I.a.

to get its hash code 𝐻(𝒒) = [ℎ1(𝒒), … , ℎ𝑐(𝒒)]

b. Locating stage: collect all the database items in the hash buckets that

fall within the Hamming distance radius 𝑟𝐻

c. Scanning stage: perform a linear scan over the items collected and

return the 𝑘 items that are of minimum ρ measures with 𝒒

Note that the Hamming distance can be cheap to compute using low-level

hardware operation XOR.

Figure 4 [21]: Example LSH in 2-D space. A hashing method generates three
hyperplanes l1, l2, and l3 to separate the 2-D space into seven parts. The points in the
same part have the same binary codes. The query point is the green star and its NN
are represented by red circles. The remaining points are black squares.

As shown in Figure 4, the choice of the search Hamming radius 𝑟𝐻 has a strong

impact on the performance of the searching. In the above example, to achieve a

100% recall, one must specify the parameter to be 𝑟𝐻 ≥ 2. However, the trade-off

exists because a larger 𝑟𝐻 usually means more items in the database will be

collected in the locating stage and hence more 𝜌 distance computations in the

scanning stage, which could be expensive given a large 𝑑.

PAGE 15

3.2 Principle Component Analysis Hashing

Instead of generating hash functions randomly, the Principle Component Analysis

Hashing (PCA Hashing, or PCAH) algorithm [30, 25]tries to “learn” the weight

vectors in a scientific way based on the distribution of the items in the database. It

uses a simple but efficient method to get the hash functions. It reduces dimension

of the data utilizing the power of the PCA technique. Notations and steps are as

following.

3.2.1 Notations

Let 𝑿 = [𝒙1, … , 𝒙𝑛] ∈ ℝ𝑑×𝑛 denote the base dataset with 𝑛 items of 𝑑 dimensions.

𝜌 is the distance measure function and 𝜌(𝒙𝒊, 𝒙𝒋) = ∥ 𝑥𝑖 − 𝑥𝑗 ∥2 is the l2-distance

between data point 𝒙𝑖 and 𝒙𝑗. 𝑑𝐻 is the Hamming distance function and 𝑑𝐻(𝒂, 𝒃) is

the Hamming distance between the two binary codes. To assign each data point 𝑥

to a 𝑐-bit hash bucket, there are 𝑐 hash functions to convert each data point to a 𝑐-

bit hash code, which is essentially a 𝑐-dimensional binary vector

𝐻(𝒙) = [ℎ1(𝒙), … , ℎ𝑐(𝒙)]

where ℎ𝑙(𝑥) ∈ {0, 1} is the 𝑙-th hash function and ℎ𝑙(𝒙) = 𝑠𝑔𝑛(𝒙𝒘𝑙
𝑇 − 𝔼𝑘(𝒙𝑘𝒘𝑙

𝑇))

with 𝑤𝑙 being a randomly generated weight vector.

3.2.2 Algorithm

The main motivation of the PCAH algorithm is to try to maximize the information

contained in each bit of the resulting binary hash bucket codes. Each bit is

essentially reflecting the projection on a principle component, a direction in the

space of the original dimension that the items vary significantly. To maximize the

information, PCAH tries to maximize the variance of each bit and also keep each

bit uncorrelated to others, which is essentially to perform a PCA reduction before

quantizing the values to binary codes.

PAGE 16

Input:

database 𝑿 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑑×𝑛

number of bits 𝑐

search radius 𝑟𝐻 (in terms of Hamming distance)

query item 𝒒 ∈ ℝ𝑑

top 𝑘 results to be returned

Output:

𝑘 items 𝒙 ∈ 𝑿 that are the approximate nearest neighbors of 𝒒

Methodology:

I. PCA: Perform PCA on the database 𝑿 and get the l projection vectors as

weight vectors for hashing

II. Assign each data point in the database to a hash bucket

a. Generate weight vectors using the projection vectors

b. For each 𝒙𝑖 ∈ 𝑿, map it to the hash code 𝐻(𝒙𝑖) = [ℎ1(𝒙𝑖), … , ℎ𝑐(𝒙𝑖)]

III. Searching: perform searching when a query 𝒒 is raised

a. Coding stage: map 𝒒 using the same weight vectors generated in I.a.

to get its hash code 𝐻(𝒒) = [ℎ1(𝒒), … , ℎ𝑐(𝒒)]

b. Locating stage: collect all the database items in the hash buckets that

fall within the Hamming distance radius 𝑟𝐻

c. Scanning stage: perform a linear scan over the items collected and

return the 𝑘 items that are of minimum ρ measures with 𝒒

PAGE 17

3.3 Graph Nearest Neighbor Search

The Graph Nearest Neighbor Search (GNNS) algorithm [26] is a hill-climbing

search method based on KNN graph. Although the algorithm takes an constructed

KNN graph as input, the method to efficiently construct a KNN graph is also worth

discussion. We will discuss this further in Section 5. In this section we focus

ourselves on the GNNS algorithm itself.

3.3.1 Notations

Let 𝑿 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑑×𝑛 denote the base dataset with 𝑛 items of 𝑑 dimensions.

𝜌 is the distance measure function and 𝜌(𝑥𝑖 , 𝑥𝑗) = ∥ 𝑥𝑖 − 𝑥𝑗 ∥2 is the l2-distance

between data point 𝑥𝑖 and 𝑥𝑗. Let 𝒩𝑘(𝒙) denote the set of k nearest nodes of data

point 𝒙. A KNN graph is a directed graph 𝒢 = (𝑿, 𝑬), where 𝑬 is the directed edge

set in which vertex 𝒙𝑖 is connected to vertex 𝒙𝑗 ⟺ 𝒙𝑗 ∈ 𝒩𝑘(𝒙𝑖).

3.3.2 Algorithm

The GNNS algorithm takes input and involves two stages as following:

Input:

database 𝑿 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑑×𝑛

KNN graph 𝒢 = (𝑿, 𝑬)

number of restart seeds 𝑅

number of iterations 𝑇

number of expansions 𝐸 in each iteration

query item 𝒒 ∈ ℝ𝑑

top 𝑘 results to be returned

PAGE 18

Output:

top 𝑘 results to be returned

Methodology:

𝒮 ← {} is the set of visited nodes

𝒰 ← {} is the set of 𝜌 distance measures of the visited nodes against 𝒒

for 𝑟 = 1, … , 𝑅 do

Randomly select an item 𝒚0 from 𝑿

for 𝑡 = 1, … , 𝑇 do

Update 𝒚𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒚∈𝒩𝐸(𝒚𝒕−𝟏)𝜌(𝒚, 𝒒)

Update 𝒮 = 𝒮 ∪ 𝒩𝐸(𝒚𝒕−𝟏)

Update 𝒰 = 𝒰 ∪ {𝜌(𝒚, 𝒒) | 𝒚 ∈ 𝒩𝐸(𝒚𝒕−𝟏)}

Return the 𝑘 items in 𝒮 with minimum corresponding 𝜌 in 𝒰

Figure 5 [26]: The GNNS algorithm on an example search path

As shown in Figure 5, starting from a randomly selected item, iterative hill-

climbing takes place and lead the search to reach near the query target Q. It is not

guaranteed that the true nearest neighbors will always be returned because the

PAGE 19

search can be trapped in local optimum hence the purpose being serving ANN

search problem instead of NN search one. To avoid being easily trapped in local

optimum, 𝑅 seeds will be selected in different trials. Obviously trade-off exists for

𝑅 as well as 𝑇 and 𝐸 [26]: by increasing each of them, the algorithm spends more

time in search and returns a more accurate result. The difference between 𝐸 and 𝑘

and 𝐾 should be noted. 𝐸 and 𝐾 are two input parameters to the search algorithm

(online), while 𝑘 is a parameter of the kNN tree construction algorithm (offline).

4 Related Experiments and Results

To respond to users in time, the speed of a search algorithm is important. However

in this context (ANN search), the time complexity alone cannot fully describe the

performance of an algorithm, given that we are not solving NN search but instead

ANN search problem. This implies that different algorithms differ not only in

terms of time but also their ability to recall the ground truth, which is the set of

the NN of the query. So the criteria to evaluate the performance of an algorithm

should involve both time and search quality.

Figure 6 Recall quality of KNN VS LSH against time

PAGE 20

Figure 7 Recall quality of KNN VS SH against time

We try to replicate the above results done by Jin et al. [21], where the time-recall

data is recorded for both hashing-alone and enhanced KNN (enhanced with

hashing for initial seeds) on three different public datasets ((a) CIFAR-10. (b) GIST-

1M (c). SIFT-1M), which are popular in the field. SH denotes for Spectral hashing

which can be seen as a variation of PCAH and ITQ.

5 Results and Analysis

We first implement the construction of normal KNN. CIFAR60k is the dataset we

first adopt, which contains 60,000 items of 512 dimensions. Gradually we improve

the construction methods and use it on other datasets including GIST_10k and

SIFT1m_10k. 5/10/20-NN graphs are constructed for each of the dataset. Note that

GIST_10k is a dataset we build by sampling 10 thousand items from original GIST,

and same for SIFT1m_10k.

GNNS is then applied on these constructed graphs to perform searching and the

performance is recorded and compared against hashing-based algorithms such as

PCAH and ITQ.

PAGE 21

We then explore a novel approximate KNN (AKNN) method where we utilize

PCAH during the construction of the KNN graph to get an approximate KNN

graph. The recall of the approximate KNN on the exact KNN graph is computed to

investigate the quality of the approximation.

Finally, we perform searching on the AKNN graph and compare its performance

against that of KNN and hashing-based methods mentioned above.

5.1 KNN Graph Construction

We first set k=5 and target to build a 5-NN graph.

During the graph construction on dataset CIFAR60k, which contains 60,000 items

of 512 dimensions, we notice that the naive construction method takes too long to

construct the KNN graph. The naïve method (naïve_knn) constructs the graph in

this way: For each item 𝑖, compute the l2-distance between item 𝑖 and all other

items 𝑗; Use quick-sort to sort all the other 𝑛 − 1 = 60000 − 1 = 59999 items

based on the l2-distance computed and retrieve 𝑘 = 5 items that are closet to item

𝑖.

The method is inefficient because 1) it involves too many l2-distance

computations. It performs 𝑛 × (𝑛 − 1) ≈ 3.5 billion times of this similarity check,

each one of which is of 𝑂(𝑑) 𝑤ℎ𝑒𝑟𝑒 𝑑 = 512 complexity; 2) quick-sort is actually

more than we need and costs extra time, because we only need the top k results,

instead of sorting all the results. In our experiment setting when the construction

is run on proj99, it costs 20+ hours to finish. Therefore, we try to make some

improvement.

We first notice that we can use a 𝑛 × 𝑛 matrix to store the distance. For example,

when we compute distance between item 234 and item 567, we store the distance

PAGE 22

to dist_map[234][567]. This way, when we reach 𝑖 = 567 and 𝑗 = 234, we can

directly get the distance by referring to dist_map[j][i]. With this design, more

memory complexity is incurred but half of the distance computations are reduced,

which is desirable. Secondly, we adopt a findBestK() function instead of quick-sort

to find the closet k neighbors. This function is of complexity O(N) (usually just 2n)

which is better than O(NlogN) of quick-sort.

Originally it takes around 20 hours to construct the 5-NN graph and after the

improvement only 10 hours are needed. The improved method (fast_knn) is used

to construct the KNN graphs for k=5/10/20 on three datasets: CIFAR60k, GIST_10k

and SIFT1m_10k.

Dataset Cardinality Dimension Construction

Method

Time Graph

Quality1

SIFT1m_10k 10,000 128 naïve_knn 4m46.990s 100%

SIFT1m_10k 10,000 128 fast_knn 2m51.005s 100%

SIFT1m_10k 10,000 128 pcah_aknn2 0m25.055s 84.17%

Table 1 KNN graph construction time and quality with different methods

Table 1 shows that how different construction methods perform. The details of the

third method pcah_knn will be discussed in Section 5.3. Note that both naïve_knn

and fast_knn are constructing exact KNN graph, hence their graph quality of 100%.

5.2 Search on KNN graph with GNNS

With the constructed graphs, we implement and apply the discussed GNNS search

algorithm. A timer is also applied to control the time. We also compute the ground

truth for each query using brute force manner with multi-threading, which allow

us to compute the recall of the GNNS search until different time limits.

1 Number of correct 20-NNs found
2 To be discussed in Section 5.3

PAGE 23

We then compare the time-recall performance of GNNS with hashing-based

techniques including PCAH and ITQ. We test the results on 𝐾 =5/10/20 NN graph

and the results are following:

Figure 8 Time-recall search performance on CIFAR60k

We observe in Figure 8 that the 20-NN graph produces the best performance,

beating the traditional hashing-based techniques including PCAH and ITQ.

In addition, the performance of GNNS enhances as 𝐾 increases. That is,

performance from KNN_5, KNN_10 to KNN_20 is gradually increasing. This makes

intuitive sense because when 𝑘 is larger, more items are available for probing and

the search is less likely to be constrained in a small local community of nodes.

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.500 1.000 1.500 2.000 2.500 3.000

R
ec

al
l

Time

ITQ

PCAH

KNN_5

KNN_10

KNN_20

PAGE 24

Figure 9 Time-recall search performance on GIST_10k

Figure 10 Time-recall search performance on SIFT1m_10k

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.200 0.400 0.600 0.800 1.000

R
ec

al
l

Time

ITQ

PCAH

KNN_5

KNN_10

KNN_20

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

R
ec

al
l

Time

ITQ

PCAH

KNN_5

KNN_10

KNN_20

PAGE 25

Similar results are also observed on the other two datasets as in Figure 9 and 10.

We do notice that the KNN_20 performance on SIFT1m_10k does not beat ITQ. We

think it is because the parameter 𝐾 is not large enough. With 𝐾 increased, we

should be able to see a boost in the performance.

The results suggest that our GNNS based on KNN can beat the traditional hashing

based techniques including PCAH and ITQ, if 𝐾 is appropriately selected.

5.3 Construct Approximate KNN Graph

We look to build a new KNN graph (named Approximate KNN graph, or AKNN

graph) which can enable faster construction in offline phase and also update/query

in online phase. The AKNN graph will be built such that each node is connected to

𝑘 closest nodes that fall within buckets in certain radius of Hamming distance

(𝑟𝐻, 𝑜𝑟 𝑚𝑎𝑥𝐻𝑎𝑚). In this design, we combine the traditional hashing techniques

with the graph methods and hope to achieve less offline construction time while

maintain a decent level of graph quality as well as search performance. Here we

choose to use PCAH as the hashing technique to get the codebook.

To examine the quality of the approximation, we compute the graph quality,

measured also by recall, of AKNN graph against respective KNN graph; i.e., a recall

of 60% means the AKNN graphs on average captures 60% of true 𝑘 nearest

neighbors.

Code
Len

8
 Code

Len
16

 Code
Len

32

max
Ham

Recall
(%)

Scan
Rate(%)

 max
Ham

Recall
(%)

Scan
Rate(%)

 max
Ham

Recall
(%)

Scan
Rate(%)

2 73.87 14.62 4 54.87 4.00 8 23.63 0.42

4 98.55 63.76 8 99.02 59.81 16 99.01 56.87

Table 2 AKNN graph quality - CIFAR60k

Code
Len

8
 Code

Len
16

 Code
Len

32

PAGE 26

max
Ham

Recall
(%)

Scan
Rate(%)

 max
Ham

Recall
(%)

Scan
Rate(%)

 max
Ham

Recall
(%)

Scan
Rate(%)

2 67.44 14.98 4 40.51 4.13 8 10.50 0.45

4 97.46 63.65 8 97.39 59.79 16 96.22 56.93

Table 3 AKNN qraph quality – GIST_10k

Code
Len

8
 Code

Len
16

 Code
Len

32

max
Ham

Recall
(%)

Scan
Rate(%)

 max
Ham

Recall
(%)

Scan
Rate(%)

 max
Ham

Recall
(%)

Scan
Rate(%)

2 84.17 14.64 4 69.30 4.46 8 39.40 0.65

4 99.37 62.36 8 99.67 59.01 16 99.79 56.24

Table 4 AKNN graph quality – SIFT1m_10k

Table 2 and 3 show the results of AKNN graph construction. Scan rate denotes

percentage of distance computations performed compared to fast_knn; i.e.,

𝑆𝑐𝑎𝑛 𝑅𝑎𝑡𝑒 =
𝑜𝑓 𝑑𝑖𝑠𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑖𝑜𝑛

𝑁 × (𝑁 − 1)
2⁄

As shown in the table, the quality of the graph can be safely above 95% when the

allowed Hamming distance difference is half of hashing code bit length. We will

use the lower-right corner setting (CodeLen=32 and maxHam=16) for the below

experiment in Section 5.4 and 5.5.

In experiments, we find that we can achieve roughly 85% recall when scan rate is

15% and 95% recall when scan rate is 55%. Therefore, with AKNN, the time

required to construct or update the graph will be significantly lower, because

much less items will be visited and computed distance against, nonetheless the

quality of the graph is reserved at a good level.

5.4 Search on AKNN graph with GNNS

Again we perform GNNS but on the AKNN graph. Time-recall statistics are also

recorded and compared against those of KNN and hashing-based methods. The

PAGE 27

AKNN used here is an approximate 20-NN, based on 32-bit PCA hashing and 16-bit

Hamming distance limit.

Figure 11 GNNS on AKNN_20 VS others – CIFAR60k

0

0.2

0.4

0.6

0.8

1

1.2

-0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.200 0.400 0.600 0.800 1.000

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

PAGE 28

Figure 12 GNNS on AKNN_20 VS others – GIST_10k

The AKNN_20 almost coincides with KNN_20, suggesting that the two perform

very much the same.

 Figure 13 GNNS on AKNN_20 VS others – SIFT1m_10k

The results are very much consistent on SIFT1m_10k too. Note that as the time

limits for the first few points are too small so the system may record the time

differently on different runs even with same setting.

5.5 New GNNS with Hashing Based Seeding Method

We also design a new way to perform the searching, named as PCA Hashing-

Seeded GNNS (PS-GNNS). Instead of randomly selecting items as seeds in GNNS,

we utilize PCAH and compute the hash code of the query item. We then look in

the dataset for the items that fall within a certain limit of Hamming distance with

the query. Note that this process is also fast because the Hamming distance can be

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

PAGE 29

computed at very low time expense by XOR operation. The items found will be

used as seeds to perform normal GNNS.

Figure 14 PS-GNNS results - CIFAR60k

Figure 15 PS-GNNS results – GIST_10k

0

0.2

0.4

0.6

0.8

1

1.2

-0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

ps_AKNN_20

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.200 0.400 0.600 0.800 1.000 1.200

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

ps_AKNN_20

PAGE 30

Figure 16 PS-GNNS results – SIFT1m_10k

The results suggest that this idea works very well. The PS-GNNS beats the others

by quite a lot consistently across all three datasets. This shows that we can use

PCAH to construct as well as improve searching on the AKNN graph.

5.6 PS-GNNS VS State-of-The-Art

Now we want to compare our best performing PS-GNNS result with the state-of-

the-art methods. Before KNN methods were proposed, the state-of-the-art method

should be Optimized Product Quantization (OPQ) [27]. Later, as pointed out in

some studies [28], KNN methods tend to perform even better (not considering the

eventual highest recall available). This suggests that with improvement brought by

PCAH-based AKNN and novel searching technique PS-GNNS, our method will

outperform the available algorithms in searching. Due to the difficulty of gathering

their source code (or their source code is in Python, yet our apps are coded in

C++), we do not carry out empirical experiment.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2

R
ec

al
l

Time

ITQ

AKNN_20

KNN_5

KNN_10

KNN_20

ps_AKNN_20

PAGE 31

6 References

[1] J. Cheng, C. Leng, J. Wu, H. Cui and H. Lu, "Fast and Accurate Image

Matching with Cascade Hashing for 3D Reconstruction," in IEEE Conference

on Computer Vision and Pattern Recognition, 2014.

[2] J. Wang, W. Liu, S. Kumar and S. Chang, "Learning to hash for indexing big

data: A survery," in IEEE, 2015.

[3] L. Arge, M. Berg, H. Haverkort and K. Yi, "The priority R-tree: A practically

efficient and worst-case optimal R-tree," in Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data, 2004.

[4] J. Freidman, J. Bently and R. Finkel, "An algorithm for finding best matches in

logarithmic expected time," in ACM Trans. Math. Softw, 1997.

[5] K. Beyer, J. Goldstain, R. Ramakrishnan and U. Shaft, "When is ‘nearest

neighbor' meaningful?," in Proc. Int. Conf. Database Theory, 1999.

[6] J. Wang, H. Shen, J. Song and J. Ji, "Hashing for similarity search: A survey," in

Uni. Princeton , 2014.

[7] J. Sivic and A. Zisserman, "Video google: a text retrieval approach to object

matching in videos," in ICCV, 2003.

[8] A. B. Torralba, R. Fergus and W. T. Freeman, "80 million tiny images: A large

data set for nonparametric object and scene recognition," in TPAMI, 2008.

PAGE 32

[9] G. Shakhnarovich, T. Darrell and P. Indyk, "Nearest neighbor methods in

learning and vision: theory and practice," in The MIT Press, 2006.

[10] ASEAN, "The Star," Star Media Group Berhad, 12 Nov 2017. [Online]. Available:

https://www.thestar.com.my/news/regional/2017/11/12/wechat-users-send-38-

billion-messages-daily/. [Accessed 28 12 2017].

[11] R. Datta, D. Joshi, J. Li and J. Z. Wang, "Image retrieval: Ideas, influences, and

trends of the new age," in ACM Computing Surveys, 2008.

[12] R. Bellman, "Dynamic programming," in 1957, Uni. Princeton.

[13] P. Christen, "A survey of indexing techniques for scalable record linkage and

deduplication," in IEEE Trans. Knowledge Data Eng., 2011.

[14] R. Baeza-Yates, C. Hurtado and M. Mendoza, "Query recommendation using

query logs in search engines," in Uni. Valparaiso, 2004.

[15] O. Boiman, E. Shechtman and M. Irani, "In defense of nearest-neighbor

basedimageclassification," in CVPR, 2008.

[16] W. J. Scheirer, N. Kumar, P. Belhumeur and T. E. Boul, "Multi-attribute

spaces: Calibration for attribute fusion and similarity search," in CVPR, 2012.

[17] O. Boiman, E. Shechtman and M. Irani, "In defense of nearest-neighbor

basedimageclassification," in CVPR, 2008.

[18] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi and H. Zhang, "Fast approximate

nearest-neighbor search with k-nearest neighbor graph," in Proc. 22nd Int.

PAGE 33

Joint Conf. Artif. Intell., 2011.

[19] Y. Lifshits and S. Zhang, "Combinatorial algorithms for nearest neighbors,

near-duplicates and small-world design," in ACM-SIAM Symp. Disrcrete Algo.,

2009.

[20] R. Paredes and E. Chvez, "Using the k-nearest neighbor graph for proximity

searching in metric spaces," in Proc. 12th Int. Conf. String Process. Inform.

Retrieval, 2005.

[21] Z. Jin, D. Zhang, Y. Hu, S. Lin, D. Cai, M. IEEE and X. He, "Fast and accurate

hashing via iterative nearest neighbors expansion," in IEEE Transactions on

Cybernetics, 2014.

[22] W. Zhao, J. Yang and C. Deng, "Scalable nearest neighbor based on knn

graph," in CVPR, 2017.

[23] E. Vida, "An algorithm for finding nearest neighbors in (approximately)

constant average time," in Pattern Recognition Letters, 1986.

[24] R. Motwani and P. Indyk, "Approximate nearest neighbor - Towards removing

the curse of dimensionality," in Proc. 30th Symp. Theory of Computing, 1998.

[25] B. Wang, Z. Li and M. Li, "Efficient duplicate image detection algorithm for

web images and large-scale database," in Micorsoft Research, 2005.

[26] Z. Jin, D. Zhang, Y. Hu, S. Lin and D. Cai, "Fast and accurate hashing via

iterative nearest neighbor expansion," in IEEE Trans. Cybernetics, 2014.

PAGE 34

[27] T. Ge, K. He, Q. Ke and J. Sun, "Optimized Product Quantization for

Approximate Nearest Neighbor Search," in CVPR, 2013.

[28] D. Cai, "A Revisit of Hashing Algorithms for Approximate Nearest Neighbor

Search," in ACM, 2018.

[29] J. Li, J. Cheng, F. Yang, Y. Huang, Y. Zhao, X. Yan, and R. Zhao, "LoSHa: A

General Framework for Scalable Locality Sensitive Hashing," in SIGIR, 2017.

635-644.

[30] J. Li, X. Yan, J. Zhang, A. Xu, J. Cheng, J. Liu, K. W. Ng, T. Cheng:, "A General

and Efficient Querying Method for Learning to Hash," in SIGMOD, 2018.

