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A Quick Review of Previous Work 



Recap: Approximate Nearest Neighbor Search  

 
Nearest Neighbor Search: 

Given a set S of points in a space M and a query point q ∈ M, find the closest 

point in S to q. 

Approximate Nearest Neighbor (ANN) Search: 

A generalization of this problem is a k-NN search, finding the k closest points. 

 



ANN  -  Hashing-based methods 

Item A 

Item C Item D 

Item B 

Preprocess: read in item vector. 



ANN  -  Hashing-based methods 

Item B 

Preprocess:  

Send item vector to hash functions to determine 

which bucket they belong to. 

Bucket-2 
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ANN  -  Hashing-based methods 

Item B 

Querying:  

Read in query vector. Send it to hash functions 

and determine which bucket to probe. 

Bucket-2 

Bucket-1 Item C 

Item D 

Item A 

Query ? 



ANN  -  Hashing-based methods 

 

There are generally two categories of hashing-based methods.  

❖ Locality Sensitive Hashing (LSH) 
❖ Learning to Hash (L2H) 

The key difference between them is whether the hash functions are 
dataset-dependent or not. 

 



ANN  -  Locality Sensitive Hashing (LSH) 

Main Idea 

Use a family of predefined hash functions 

Similar items are hashed to the same bucket with higher probability  

Only a small number of buckets need to be checked for items similar to a query. 

 



ANN  -  Learning to Hash (L2H) 

train 

L2H learns tailored hash functions for the given dataset 



ANN  -  LSH vs L2H 

LSH:  
Completely blind, not looking at the 
data at all 

L2H:  
Pick the best rotation of the data (or of the 
hypercube) to minimize quantization errors 
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An input vector 

from given 

dataset 

projected 

vector 

Each entry is a real 

number. 

Find the right bucket:  Hashing   

We choose PCA 

Hashing in our case! 



projected 

vector 

signature(b

inary code) 

Quantization 

p = (0.1, -0.5, 0.4, 0.3) c(p) = (1, 0, 1, 1) 

Assign this item 

vector to the 

corresponding 

bucket 

Find the right bucket:  Quantization 



Related Concepts 

Sorted Projected Vector 

(0.6, 0.2, 0.3) 

(0.2, 0.3, 0.6) 

Projected Vector 

Sorted Projected Vector 

Flipping Vector A binary code help us to convert one signature to another. 

000 

010 

Original Code 

Flipping Vector 

010 New Generated Code 



Related Concepts 

(0.6, 0.2, 0.3) 

(0.2, 0.3, 0.6) 

111 

111 

Projected Vector 

Sorted Projected Vector 

Query Signature 

Bucket with smallest QD 

QD = 0 

Easy to find the bucket 

with the smallest QD. 



Related Concepts 

(0.6, 0.2, 0.3) 

(0.2, 0.3, 0.6) 

111 

Projected Vector 

Sorted Projected Vector 

Query Signature 

100 Sorted Flipping Vector 

010 Flipping Vector 

How to find the bucket with 

the 2nd smallest QD? 

101 
Exclusive Or 

Bucket with the 2nd 

smallest QD 



Related Concepts 

(0.6, 0.2, 0.3) 

(0.2, 0.3, 0.6) 

111 

Projected Vector 

Sorted Projected Vector 

Query Signature 

110 Sorted Flipping Vector 

011 Flipping Vector 

How to find the bucket with 

the 3rd smallest QD? 

100 
Exclusive Or 

Bucket with the 3rd 

smallest QD 



Related Concepts 

Question: 

How can we generate the sequence of sorted 

flipping vector efficiently? 

100 Sorted Flipping Vector 

110 Sorted Flipping Vector 

001 Sorted Flipping Vector 



Bucket Generation 

Append adds a 1 to the right-hand side 

of the rightmost 1 of the vector.  

 

Swap exchanges the positions of the 

rightmost 1 and 0 on its right hand side. 

Append & Swap 1000 

1100 

1000 

0100 

Append 

Swap 



Bucket Generation 

Generation Tree 

1. Root node: (1, 0, …, 0). 

2. Swap parent node get the left 

child node. 

3. Append parent node get the right 

child node. 



Bucket Generation 

Generation Tree - Properties 

Property 1. All possible sorted flipping 

vectors can be obtained from the generation 

tree exactly once. 

Property 2. In the generation tree, the QD of a 

child is always bigger than its parent. 

QD of the child node can be obtained by 

a simple calculation from its parent node. 



Bucket Generation 

Outcome: 

1. Generate each bucket exactly once. 

2. Generate buckets in the order of their QD. 

3. Do not need to calculate QD for each bucket at once. 



Problems in Handling Large Dataset 



The Era of Big Data 

How big is big ? 

Data sets grow rapidly 

In 2012, every day 2.5 exabytes (2.5×10^18) of data are generated 

“Big data” refers to analytics methods that extract value from data 

- real-word nearest neighbor search applications: 

- Pattern recognition, Recommendation systems, DNA sequencing ... 

No single computer can process that much data 



Single Machine VS Distributed System 

How to turn a “toy” into a powerful tool used in practice 

 

 

 

 

“Scale out” : a problem is divided into many tasks, each of which is solved by 

one or more computers, which communicate with each other by message 

passing 



Major Challenges in designing and implementing 

distributed algorithms 

 

～ dividing the problem into relatively independent subproblems 

～ coordinating the behavior of the independent parts of the algorithm 



Single-Probing VS Multi-Probing in Distributed 

Implementation 

Query processing with multi-probing LSH is complicated to be distributed 

Single-probing is straight-forward 

For multi-probing, there exists some dependencies between jobs 

- without info sent from Item, we cannot conduct Query-side evaluation 

- without info sent from Query, we cannot conduct Item-side computation 

Therefore, we need to do iterative query processing 



Difficulities in Using General Computing 

Framework 

- most of the works used the batched processing system MapReduce and 

adopted external-memory implementations 

- iterative nature of our algorithms does not perfectly match the MapReduce 

framework 

- there is a lack of a programming framework specially designed for LSH 

algorithms on existing general-purpose distributed frameworks 

- need to define a complicated dataflow consisting of many steps (lead to 

much performance tuning efforts) 

Higher level abstraction ! 



Our Solution: Distributed GQR 



Abstraction: Query, Bucket and Item 

Query Object 

Bucket Object Item Object 

Query-and-Answer 



Abstraction: Query, Bucket and Item 

Query Object 

Bucket Object Item Object 

Hash Functions 

Signature (Bid) 
Query() 



Abstraction: Query, Bucket and Item 

Query Object 

Bucket Object Item Object 

Hash Functions 

Signature (Bid) 
Query() 

Forward() 

Each bucket object has a list, storing all 

the item ids belonging to this bucket. 



Abstraction: Query, Bucket and Item 

Query Object 

Bucket Object Item Object 

Hash Functions 

Signature (Bid) 
Query() 

Forward() 

Each bucket object has a list, storing all 

the item ids belonging to this bucket. 

Answer() 

Calculate similarity score between 

item and query, return the score as 

well as its ID to query object. 



Details in Initialization Stage 

Query Object 

Bucket Object Item Object 

Read in item dataset from HDFS.  

Creates item objects. Item Object are 

distributed among different workers. 

Uninitialized 

Uninitialized 



Details in Initialization Stage 

Bucket Object Item Object 

Create bucket objects according to 

the generated signatures.  

Bucket objects are also distributed 

among different workers. 

Hash Functions Signature (Bid) 

Each bucket object maintains a list, 

storing all the item ids belonging to this 

bucket. 



Details in Initialization Stage 

Query Object 

Bucket Object Item Object 

Read in query dataset from HDFS.  

Creates query objects. Query object 

are also distributed among different 

workers. 



Details in Initialization Stage 

Query Object 

Bucket Object Item Object 

Broadcast query objects.  

Each worker maintains an query object list, 

containing all the query vector. 



Details in Initialization 

Stage 

Broadcast query vectors 

Pros: 
 
1. No need to pass item vectors 
or query vectors among network. 
 
2. Only need to pass query object 
ID to calculate similartiy. 



Implement Multi-Probing in Iterations 

Query Object 

Bucket Object Item Object 

Query() 

Forward() 

Answer() 

First Iteration Calculate the 
signature for the 
query object. 

Use this signature 
to determine 
which bucket to 
probe. 

Initialize generation 
tree and min heap. 



Bucket Generation 

Generation Tree - Properties 

Property 1. All possible sorted flipping 

vectors can be obtained from the generation 

tree exactly once. 

Property 2. In the generation tree, the QD of a 

child is always bigger than its parent. 

QD of the child node can be obtained by 

a simple calculation from its parent node. 



Implement Multi-Probing in Iterations 

Query Object 

Bucket Object Item Object 

Query() 

Forward() 

Answer() 

Later Iterations 

Call generate_to_probe() 
to determine which bucket to 
probe. 

generation tree 
+ 

min heap 

Pros: 
1. Each bucket will be 
probed only once. 
2. Bucket will be 
generated in the order of 
their quantization 
distance. 



Implement Multi-Probing in Iterations 

Query Object 

Bucket Object Item Object 

Query() 

Forward() 

Answer() 

Later Iterations 
1. Each query object will 
maintains a set which 
contains the top-K nearest 
item to this query. 
 
2. The result will be written to 
HDFS in the last iteration. 



Implement Multi-Probing in Iterations 

Message Reduction: Combiner 

Src: Item A, Worker 1 

Dst: Query X, Worker 2 

Content: (Item A id, sim 

score) Src: Worker 1 

Dst: Worker 2 

Content: [ ( Query X, (Item A id, 

sim score) ), ( Query Y, (Item B 

id, sim score) ) ] Src: Item B, Worker 1 

Dst: Query Y, Worker 2 

Content: (Item B id, sim 

score) 



Experiments Results 



Datasets and Cluster setting 

1. We ran our experiments on 6 machines and each machine ran 20 threads. 

Each thread is processed as a worker. 

2. Dataset: 

 

 



Experiments Results 



Experiments Results 



Experiments Results 



Experiments Results 
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Thank you! 


