
Scalable and Efficient Querying Methods
for Learning to Hash

JC1704
LIU Jie 1155047039
SONG Yang 1155046870

Outline

● A Quick Review of Previous Work

● Problems in Handling Large Dataset

● Our Solution

● Experiments Results

A Quick Review of Previous Work

Recap: Approximate Nearest Neighbor Search

Nearest Neighbor Search:

Given a set S of points in a space M and a query point q ∈ M, find the closest

point in S to q.

Approximate Nearest Neighbor (ANN) Search:

A generalization of this problem is a k-NN search, finding the k closest points.

ANN - Hashing-based methods

Item A

Item C Item D

Item B

Preprocess: read in item vector.

ANN - Hashing-based methods

Item B

Preprocess:

Send item vector to hash functions to determine

which bucket they belong to.

Bucket-2

Bucket-1 Item C

Item D

Item A

ANN - Hashing-based methods

Item B

Querying:

Read in query vector. Send it to hash functions

and determine which bucket to probe.

Bucket-2

Bucket-1 Item C

Item D

Item A

Query ?

ANN - Hashing-based methods

There are generally two categories of hashing-based methods.

❖ Locality Sensitive Hashing (LSH)
❖ Learning to Hash (L2H)

The key difference between them is whether the hash functions are
dataset-dependent or not.

ANN - Locality Sensitive Hashing (LSH)

Main Idea

Use a family of predefined hash functions

Similar items are hashed to the same bucket with higher probability

Only a small number of buckets need to be checked for items similar to a query.

ANN - Learning to Hash (L2H)

train

L2H learns tailored hash functions for the given dataset

ANN - LSH vs L2H

LSH:
Completely blind, not looking at the
data at all

L2H:
Pick the best rotation of the data (or of the
hypercube) to minimize quantization errors

m learned

hash

functions

Learned hash

functions from

given dataset

input

vector

An input vector

from given

dataset

projected

vector

Each entry is a real

number.

Find the right bucket: Hashing

We choose PCA

Hashing in our case!

projected

vector

signature(b

inary code)

Quantization

p = (0.1, -0.5, 0.4, 0.3) c(p) = (1, 0, 1, 1)

Assign this item

vector to the

corresponding

bucket

Find the right bucket: Quantization

Related Concepts

Sorted Projected Vector

(0.6, 0.2, 0.3)

(0.2, 0.3, 0.6)

Projected Vector

Sorted Projected Vector

Flipping Vector A binary code help us to convert one signature to another.

000

010

Original Code

Flipping Vector

010 New Generated Code

Related Concepts

(0.6, 0.2, 0.3)

(0.2, 0.3, 0.6)

111

111

Projected Vector

Sorted Projected Vector

Query Signature

Bucket with smallest QD

QD = 0

Easy to find the bucket

with the smallest QD.

Related Concepts

(0.6, 0.2, 0.3)

(0.2, 0.3, 0.6)

111

Projected Vector

Sorted Projected Vector

Query Signature

100 Sorted Flipping Vector

010 Flipping Vector

How to find the bucket with

the 2nd smallest QD?

101
Exclusive Or

Bucket with the 2nd

smallest QD

Related Concepts

(0.6, 0.2, 0.3)

(0.2, 0.3, 0.6)

111

Projected Vector

Sorted Projected Vector

Query Signature

110 Sorted Flipping Vector

011 Flipping Vector

How to find the bucket with

the 3rd smallest QD?

100
Exclusive Or

Bucket with the 3rd

smallest QD

Related Concepts

Question:

How can we generate the sequence of sorted

flipping vector efficiently?

100 Sorted Flipping Vector

110 Sorted Flipping Vector

001 Sorted Flipping Vector

Bucket Generation

Append adds a 1 to the right-hand side

of the rightmost 1 of the vector.

Swap exchanges the positions of the

rightmost 1 and 0 on its right hand side.

Append & Swap 1000

1100

1000

0100

Append

Swap

Bucket Generation

Generation Tree

1. Root node: (1, 0, …, 0).

2. Swap parent node get the left

child node.

3. Append parent node get the right

child node.

Bucket Generation

Generation Tree - Properties

Property 1. All possible sorted flipping

vectors can be obtained from the generation

tree exactly once.

Property 2. In the generation tree, the QD of a

child is always bigger than its parent.

QD of the child node can be obtained by

a simple calculation from its parent node.

Bucket Generation

Outcome:

1. Generate each bucket exactly once.

2. Generate buckets in the order of their QD.

3. Do not need to calculate QD for each bucket at once.

Problems in Handling Large Dataset

The Era of Big Data

How big is big ?

Data sets grow rapidly

In 2012, every day 2.5 exabytes (2.5×10^18) of data are generated

“Big data” refers to analytics methods that extract value from data

- real-word nearest neighbor search applications:

- Pattern recognition, Recommendation systems, DNA sequencing ...

No single computer can process that much data

Single Machine VS Distributed System

How to turn a “toy” into a powerful tool used in practice

“Scale out” : a problem is divided into many tasks, each of which is solved by

one or more computers, which communicate with each other by message

passing

Major Challenges in designing and implementing

distributed algorithms

～ dividing the problem into relatively independent subproblems

～ coordinating the behavior of the independent parts of the algorithm

Single-Probing VS Multi-Probing in Distributed

Implementation

Query processing with multi-probing LSH is complicated to be distributed

Single-probing is straight-forward

For multi-probing, there exists some dependencies between jobs

- without info sent from Item, we cannot conduct Query-side evaluation

- without info sent from Query, we cannot conduct Item-side computation

Therefore, we need to do iterative query processing

Difficulities in Using General Computing

Framework

- most of the works used the batched processing system MapReduce and

adopted external-memory implementations

- iterative nature of our algorithms does not perfectly match the MapReduce

framework

- there is a lack of a programming framework specially designed for LSH

algorithms on existing general-purpose distributed frameworks

- need to define a complicated dataflow consisting of many steps (lead to

much performance tuning efforts)

Higher level abstraction !

Our Solution: Distributed GQR

Abstraction: Query, Bucket and Item

Query Object

Bucket Object Item Object

Query-and-Answer

Abstraction: Query, Bucket and Item

Query Object

Bucket Object Item Object

Hash Functions

Signature (Bid)
Query()

Abstraction: Query, Bucket and Item

Query Object

Bucket Object Item Object

Hash Functions

Signature (Bid)
Query()

Forward()

Each bucket object has a list, storing all

the item ids belonging to this bucket.

Abstraction: Query, Bucket and Item

Query Object

Bucket Object Item Object

Hash Functions

Signature (Bid)
Query()

Forward()

Each bucket object has a list, storing all

the item ids belonging to this bucket.

Answer()

Calculate similarity score between

item and query, return the score as

well as its ID to query object.

Details in Initialization Stage

Query Object

Bucket Object Item Object

Read in item dataset from HDFS.

Creates item objects. Item Object are

distributed among different workers.

Uninitialized

Uninitialized

Details in Initialization Stage

Bucket Object Item Object

Create bucket objects according to

the generated signatures.

Bucket objects are also distributed

among different workers.

Hash Functions Signature (Bid)

Each bucket object maintains a list,

storing all the item ids belonging to this

bucket.

Details in Initialization Stage

Query Object

Bucket Object Item Object

Read in query dataset from HDFS.

Creates query objects. Query object

are also distributed among different

workers.

Details in Initialization Stage

Query Object

Bucket Object Item Object

Broadcast query objects.

Each worker maintains an query object list,

containing all the query vector.

Details in Initialization

Stage

Broadcast query vectors

Pros:

1. No need to pass item vectors
or query vectors among network.

2. Only need to pass query object
ID to calculate similartiy.

Implement Multi-Probing in Iterations

Query Object

Bucket Object Item Object

Query()

Forward()

Answer()

First Iteration Calculate the
signature for the
query object.

Use this signature
to determine
which bucket to
probe.

Initialize generation
tree and min heap.

Bucket Generation

Generation Tree - Properties

Property 1. All possible sorted flipping

vectors can be obtained from the generation

tree exactly once.

Property 2. In the generation tree, the QD of a

child is always bigger than its parent.

QD of the child node can be obtained by

a simple calculation from its parent node.

Implement Multi-Probing in Iterations

Query Object

Bucket Object Item Object

Query()

Forward()

Answer()

Later Iterations

Call generate_to_probe()
to determine which bucket to
probe.

generation tree
+

min heap

Pros:
1. Each bucket will be
probed only once.
2. Bucket will be
generated in the order of
their quantization
distance.

Implement Multi-Probing in Iterations

Query Object

Bucket Object Item Object

Query()

Forward()

Answer()

Later Iterations
1. Each query object will
maintains a set which
contains the top-K nearest
item to this query.

2. The result will be written to
HDFS in the last iteration.

Implement Multi-Probing in Iterations

Message Reduction: Combiner

Src: Item A, Worker 1

Dst: Query X, Worker 2

Content: (Item A id, sim

score) Src: Worker 1

Dst: Worker 2

Content: [(Query X, (Item A id,

sim score)), (Query Y, (Item B

id, sim score))] Src: Item B, Worker 1

Dst: Query Y, Worker 2

Content: (Item B id, sim

score)

Experiments Results

Datasets and Cluster setting

1. We ran our experiments on 6 machines and each machine ran 20 threads.

Each thread is processed as a worker.

2. Dataset:

Experiments Results

Experiments Results

Experiments Results

Experiments Results

References

1. Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for high dimensional data. volume 36,

pages 2227–2240, 2014.

2. Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, and Ruihao Zhao. Losha: A general

framework for scalable locality sensitive hashing. In SIGIR, pages 635–644, 2017.

3. Kaiming He, Fang Wen, and Jian Sun. K-means hashing: An affinity-preserving quantization method for learning

binary compact codes. In CVPR, pages 2938–2945, 2013.

4. Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate nearest

neighbor search. In CVPR, pages 2946–2953, 2013.

5. Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In NIPS, pages 1753–1760, 2008.

6. Yunchao Gong and Svetlana Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In

CVPR, pages 817–824, 2011.

7. Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe LSH: efficient indexing for high-

dimensional similarity search. In VLDB, pages 950–961, 2007

8. Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed locality sensitive hashing. In

Proceedings of the 21st ACM international conference on Information and knowledge management, pages 2174–

2178. ACM, 2012.

9. Jinfeng Li, Xiao Yan, Jian Zhang, An Xu, James Cheng, Jie Liu, Kelvin K. W. Ng, Ti-chung Cheng. A General and

Efficient Querying Method for Learning to Hash. In SIGMOD , pages 1333-1347, 2018

Acknowledgement

This is a joint work together with Jinfeng Li, Xiao Yan and Prof. James
Cheng. We would like to express our special thanks of gratitude to

them who gave us this opportunity to join this research work!

Q&A

Thank you!

