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ABSTRACT
In recent years we have witnessed a surging interest in de-
veloping Big Graph processing systems. To date, tens of Big
Graph systems have been proposed. This tutorial provides
a timely and comprehensive review of existing Big Graph
systems, and summarizes their pros and cons from various
perspectives. We start from the existing vertex-centric sys-
tems, which which a programmer thinks intuitively like a
vertex when developing parallel graph algorithms. We then
introduce systems that adopt other computation paradigms
and execution settings. The topics covered in this tutorial
include programming models and algorithm design, compu-
tation models, communication mechanisms, out-of-core sup-
port, fault tolerance, dynamic graph support, and so on. We
also highlight future research opportunities on Big Graph
analytics.

CCS Concepts
•Mathematics of computing → Graph algorithms;
•Networks → Cloud computing; •Theory of com-
putation → Graph algorithms analysis; •Computing
methodologies→ Parallel computing methodologies;
•Computer systems organization → Parallel archi-
tectures;
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1. INTRODUCTION
With the increasing popularity of online social networks

and the prevalence of mobile communication networks and
other types of information networks, there has been a great
interest in developing efficient and scalable techniques to
study these networks, modeled as graphs. In particular,
many Big Graph systems have been developed in recent
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years, which provide a user-friendly, unified framework for
programmers to implement parallel algorithms for all kinds
of graph analytics. As graph data continue to proliferate in
many real world applications, more Big Graph systems are
expected to emerge in the near future. However, the sudden
emergence of so many Big Graph systems easily overwhelm-
s both researchers and general users who are interested in
developing new systems or in using these systems for graph
analytics.

This tutorial provides a comprehensive survey of the ex-
isting Big Graph systems. For each work (or system), we
highlight the key ideas and features of its design, and sum-
marize its strengths and weaknesses. The goal of this tuto-
rial is three-fold. With an in-depth analysis of the various
techniques adopted by existing systems, we aim to (1) help
system researchers avoid reinventing the wheel, but instead,
develop new ideas in system design; (2) help system prac-
titioners apply useful existing techniques to their systems
to improve system performance; and (3) help general users
understand the pros and cons of different systems and select
the right system for their particular graph analytics tasks.

While the existing Big Graph systems can be categorized
in various ways, this tutorial categorizes these systems main-
ly according to their programming models, execution models,
and execution settings. We emphasize them dimensions since
user-friendliness in programming is one important feature of
modern Big Graph systems, while the execution model and
settings are critical to the efficiency of graph computation.

Features of Big Graph Systems. We first consider the
computation model. Vertex-centric computation is proba-
bly the most popular computation model for iterative graph
computations, where a programmer only needs to specify
the behavior for one generic vertex, and the systems auto-
matically apply the user-defined logic to different vertices
in a graph to complete the computation. There also exist
graph-parallel systems that adopt other computation mod-
els. For example, Giraph++ [9] and Blogel [12] extend the
vertex-centric computation model with a novel block-centric
computation model, to avoid incurring communication for
the computation within a subgraph block. GRACE [11] ap-
plies a similar idea to improve the hit rate of CPU caches.
Among others, PEGASUS [5] and GBASE [4] model graph
computation by (generalized) matrix-vector multiplication-
s; while Green-Marl [3] and Galois [6] let users specify the
computation logic by a domain-specific language (DSL). N-
Scale [7] adopts a subgraph-centric model where users define



computation logic on a subgraph of interest, and the model
is better at solving graph problems whose outputs are a set
of possibly overlapping subgraphs, such as graph matching
and motif mining. There are also systems that use Datalog
for Big Graph analytics, such as SociaLite [8].

Other features of big data systems include (1) whether
the execution is synchronous or asynchronous, (2) the sup-
port for topology mutation, i.e., the deletion and addition of
edges and vertices; (3) the support for dynamic graphs with
frequent updates, such as in Kineograph [1], TIDE [10], and
Chronos [2]; and (4) the support for out-of-core execution.
Finally, in terms of hardware platforms, while most graph
systems are designed to run on a cluster, there are a few
systems designed to run in a single machine or to run with
SSDs or GPUs.

2. TARGET AUDIENCE
The target audience for this tutorial includes all who are

interested in graph analytics and its applications.

3. TUTORIAL OUTLINE
The preferred duration of this tutorial is 3 hours, which

covers two parts that consist of 6 topics (see below). Each
part takes around 1.5 hours. Part I covers Topics 1 and 2,
and Part II covers Topics 3, 4, 5 and 6.

3.1 Topic 1: Pregel-Like Systems
In this topic, we first review the computation model of

Pregel, and introduce how to design Pregel algorithms that
have performance guarantees. We then review existing Pregel-
like systems that optimizes the basic model of Pregel from
various aspects, including communication mechanisms, load
balancing, computation model, support for asynchronous ex-
ecution, and fault tolerance.

3.2 Topic 2: Shared Memory Abstraction
In this topic, we review vertex-centric Big Graph systems

that adopt the shared memory abstraction. We first review
the pioneering system GraphLab, as well as its improved
version, PowerGraph. We then introduce three important
systems that adopt shared memory abstraction: GraphChi,
X-Stream and VENUS. These systems are designed to per-
form out-of-core graph processing on a single PC.

3.3 Topic 3: Matrix-Based Systems
In this topic, we first review three matrix-based systems

that rely on MapReduce for execution: PEGASUS, GBASE
and SystemML. We then review three single-machine sys-
tems that adopt a vertex-centric programming model but
perform matrix-based execution: GraphMat, GraphTwist
and GridGraph.

3.4 Topic 4: Single-Machine Systems
While Topics 2 and 3 already covered some single-machine

systems, this topic review more single-machine systems that
can be classified into three categories: (1) out-of-core sys-
tems that process graphs on SSD(s); (2) in-memory systems
for multi-core execution, which emphasize more on ease of
programming and high parallelism; (3) systems for execu-
tion with GPU(s).

3.5 Topic 5: Subgraph-Based Systems

This topic reviews the two recent systems that adopt a
overlapping subgraph-centric model, NScale and Arabesque.
These systems target graph analysis tasks whose output size
can be exponential in the graph size (e.g., graph matching
and finding motifs), or tasks which require reasoning about
neighborhoods or connected components, neither of which
can be well-solved by vertex-centric systems. We also point
out the inefficiencies of these systems in constructing sub-
graphs for processing, and identify the opportunities for fur-
ther research in this field.

3.6 Topic 6: DBMS-Based Systems
In this topic, we discuss connections between DBMS-style

recursive query processing and Big Graph analytical system-
s. We revisit recent research projects that are “resurging”
Datalog in the context of scalable Big Graph analytics, dis-
cuss existing dataflow-based graph systems, and dataflow
systems for incremental graph processing.

4. OPEN PROBLEMS
We end our tutorial with a discussion of open problems in

developing Big Graph analytics platforms. Despite the plu-
rality of graph systems, very few support the analysis of tem-
poral graphs that dynamically change over time. More work
can be done in this area, especially for efficiently supporting
dynamic graphs with frequent vertex and edge deletions. Al-
so, existing systems for graph matching and motif finding all
suffer from various performance problems, thus a more effi-
cient framework for the overlapping subgraph-centric model
remains to be found. Another interesting open problem is to
study how the various models can be integrated together to
solve complicated real-life problems that involve graph ETL
(extract, transform, and load) and computation tasks of all
kinds.
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