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ABSTRACT
The property graph (PG) model is one of the most general graph
data model and has been widely adopted in many graph analytics
and processing systems. However, existing systems suffer from poor
performance in terms of both latency and throughput for processing
online analytical workloads on PGs due to their design defects such
as expensive interactions with external databases, low parallelism,
and high network overheads. In this paper, we propose Grasper, a
high performance distributed system for OLAP on property graphs.
Grasper adopts RDMA-aware system designs to reduce the network
communication cost. We propose a novel query execution model,
called Expert Model, which supports adaptive parallelism control at
the fine-grained query operation level and allows tailored optimiza-
tions for different categories of query operators, thus achieving high
parallelism and good load balancing. Experimental results show that
Grasper achieves low latency and high throughput on a broad range
of online analytical workloads.
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1 INTRODUCTION
Graph analytics has a broad spectrum of applications in industry [49].
Recently, a large number of graph processing systems have been
proposed [61, 66] (e.g., Pregel [40], PowerGraph [26]), which sup-
port efficient offline graph computation such as PageRank, BFS, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362715

connected components. However, processing online graph analyti-
cal queries (or OLAP) remains to be challenging since it has much
stricter requirements on both latency and throughput.

Among various graph data models, the property graph (PG)
model is one of the most general and expressive representations be-
cause of the rich information it carries in addition to the pure graph
topology. Each vertex/edge in a PG can have a label and a set of
properties (or attributes) to describe the modeling entity/relationship.
The properties allow various types of data to be stored and queried,
which makes PG a very flexible model for connected data represen-
tation in practice. Because of this, more and more graph databases
and OLAP graph systems have been developed for PGs, such as
Neo4j [8], TinkerGraph [4], SQLGraph [55], JanusGraph [3], Ti-
tan [2], OrientDB [9] and TigerGraph [10]. In industry, companies
such as Amazon and Alibaba also use PGs to store billion-level
entities and relationships in various applications, while demanding
online graph analytics with millisecond latency over a large PG [24].

Existing systems suffer from various performance problems due
to the challenges of processing online analytical workloads on PGs.
We analyze the limitations of existing systems in Section 3, and
summarize the key challenging factors as follows. (1) Diverse query
complexity: online analytical queries may differ significantly in their
workloads (e.g., from a simple property check on a vertex to compli-
cated pattern matching), and thus a mechanism is needed to support
high parallelism and load balancing for heavy-workload queries,
while at the same time preventing the starvation of light-workload
queries. (2) Diverse data access patterns: query operators (e.g., filter,
traversal, count) often have diverse access patterns on data and hence
require different optimizations (e.g., cache, index), which makes it
challenging to design a unified computational model that optimizes
the execution of different query operators. (3) High communication
and CPU costs: a query may have complex execution logics such as
graph traversals that access a large portion of a PG, aggregation that
collects intermediate results to one place through network, and joins
that are CPU- and data-intensive. Such complex logics often result
in high overheads on both communication and computation.

We propose Grasper, a distributed system designed to address the
aforementioned challenges of processing online analytical queries
on PGs. Grasper adopts Remote Direct Memory Access (RDMA) to
reduce the high network communication cost for distributed query
processing and introduces an RDMA-enabled native PG storage to
exploit the benefits of RDMA. The key design of Grasper is a novel
query execution model, called Expert Model, which achieves high
utilization of CPU and network resources to maximize the processing
efficiency. There are three core benefits brought by Expert Model:
(1) it allows Grasper to support high concurrency in processing
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Figure 1: An example property graph

multiple queries and adaptive parallelism control within each query
according to its workload; (2) it enables tailored optimizations for
different categories of query operations based on their own data
access patterns; (3) underlying system optimizations such as memory
locality and thread-level load balancing are also incorporated into
the design, which are critical for achieving millisecond latency for
processing complex analytical queries.

We compared Grasper with popular systems such as Neo4j, Janus-
Graph, Titan, OrientDB and TigerGraph to highlight its unique
designs. Grasper achieves competitive performance in terms of both
query latency and throughput on benchmark workloads.

2 BACKGROUND
Property Graph. A property graph (PG) consists of a set of vertices
V and a set of edges E, where vertices are entities and an edge
models the relationship between two entities. We give an example
in Figure 1. Each vertex in V has a label to represent its role (e.g.,
person, software) and a set of properties to describe its features
in the form of key-value pairs, e.g., (name, “marko”), (age, 29).
Different vertices may have different properties without a fixed
schema. Edges are usually directed and each edge also keeps a
label and a set of properties. In many applications, vertices have
characteristic properties such as name, age, gender, etc., while edges
have quantitative properties such as weight, cost, distance, etc.

Query Languages. Several graph query languages have been pro-
posed, such as Gremlin [7], Cypher [5] and SPARQL [45]. Cypher
is a declarative query language mainly used in Neo4j [8]. SPARQL
is the standard query language for RDF data, which has an SQL-like
recursive interface matched with the RDF protocol. Gremlin is a
procedural language supported by Apache TinkerPop [4], which
allows users to succinctly express queries as a set of query steps
(also called pipes). Among them, Gremlin is currently the most
popular query language adopted by existing graph databases and
query systems [4, 43] as it is easy to use Gremlin to write a graph
query using intuitive expressions such as high-level traversals, exact
pattern defining (e.g., match()), and even programmatical primitives
(e.g., repeat(), until()). We adopt Gremlin in Grasper.

RDMA. Remote Direct Memory Access (RDMA) can bypass the
OS and supports zero-copy transmission. There are two types of
commands for remote memory access, two-sided send/recv verbs
and one-sided read/write verbs. In one-sided verbs, the memory
address in a remote machine where a message is to be sent is set by
the sender side, and the RDMA operations complete without any
knowledge of the remote process. As one-sided RDMA read/write

verbs can provide higher bandwidth and lower latency than the
two-sided operations, they are more popular in high-performance
distributed system designs such as [15, 53, 72].

The performance characteristics of one-sided RDMA read and
write have been well studied [41, 52]. Compared with Ethernet and
IPoIB (IP over InfiniBand), RDMA can achieve at least an order
of magnitude lower round-trip latencies (< 10us) when the payload
is small (i.e., < 4K bytes). In addition, the latency of RDMA is
relatively insensitive to the increase in the payload size for small-
sized messages, as long as the network is not saturated. To be more
specific, in our RDMA-enabled cluster, the latency of one-sided
read operation increases only 2.2X (from 3.94us to 8.63us) when
the payload size increases 512X (from 8 bytes to 4K bytes). When
the payload continues to grow (> 4K bytes), the latency of RDMA
starts to increase linearly, which is similar to Ethernet and IPoIB, but
RDMA is still an order of magnitude faster than Ethernet and >2X
faster than IPoIB. RDMA also achieves much higher throughput
under all payload sizes, which is about 10X higher than Ethernet and
IPoIB for both small (< 4K bytes) and large payloads (> 4K bytes).

3 MOTIVATION
To find the limitations of existing systems and motivate the design
of Grasper, we report the query latency and throughput of two pop-
ular distributed graph databases, Titan v.1.1.0 [2] and JanusGraph
v.0.3.0 [3]. We used LDBC [23], which is a recognized benchmark
for graph data management [28, 31]. We used a synthetic large graph
(i.e., LDBC in Table 3) created by the LDBC-SNB Data Generator,
and ran the experiments on a 10-node cluster (see configuration in
Section 6).

We first show that it is challenging for Titan and JanusGraph to
achieve low latency for processing complex analytical workloads.
We used one typical complex query IC4 (i.e., Interactive Complex 4),
which has relatively heavy workload. Figure 2 reports the breakdown
of the query latency of IC4 for each query step. The time spent on the
query steps varies significantly. In particular, hasLabel (i.e., a filter
on entities based on their label) and in (i.e., a filter-based traversal on
the graph topology) took up most of the query processing time. Due
to the diverse execution logics and data access patterns of different
query steps, it is common to have large variation in the latency of
processing different query steps of complex analytical queries. Thus,
the underlying query execution system should be better to adaptively
change the parallelism for executing different query steps according
to their workloads, which we found lacking in existing systems,
hence resulting in either high latency for processing expensive query
steps (thus high latency for the whole query) or wasting resource for
processing simple query steps (due to fixed parallelism).

Next, we examine if Titan and JanusGraph are able to efficiently
use resources to achieve high throughput. We used a mixed workload
consisting of IS1-IS4 (i.e., Interactive Short) queries and fed them
to the systems continuously for a period of 180 seconds. While we
report the detailed comparison on the throughput in Section 6, here
we discuss the CPU and network utilization of the systems. Under
a saturated throughput, Figure 3 shows that both systems recorded
low utilization of CPU and network. This is mainly caused by the
non-native graph storage and inefficient query execution model (es-
pecially for processing multiple queries concurrently), where similar
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Figure 2: [Best viewed in color] The query latency breakdown
of IC4 in the LDBC benchmark
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Figure 3: [Best viewed in color] CPU and network utilization
for a mixed workload {IS1-IS4}

conclusions have also been made in [43]. Both Titan and JanusGraph
follow the one-query-one-thread mechanism, and they partition the
PG data among servers and use a third-party relational database
(e.g., HBase) as the underlying storage. Such an architecture leads
to extra overheads on the interaction between the storage layer and
the execution layer. In addition, they adopt a non-native graph model
(i.e., using the relational representation model for graphs), which is
not efficient for traversal-based operations that are common in online
analytical graph queries, e.g., searching neighborhoods starting from
some vertices, path-based queries, expanding a clique, etc.

Design Goals. Based on the above analysis, we come up with the
following design goals. (1) The system should explore the char-
acteristics of OLAP workloads on PGs in its design, in particular,
an efficient query execution model to achieve high utilization on
both CPU and network. This motivates us to design Expert Model
to support efficient processing of various analytical operations (e.g.,
traversals, filters, and aggregations). (2) Due to the diversity of
OLAP queries, Expert Model should achieve high CPU utilization
with both high parallelism (within a machine and across machines)
for processing a heavy-workload query (to achieve low latency) and
high concurrency for processing as many queries simultaneously as
possible (to achieve high throughput). (3) We should avoid using an
external database or data store, but integrate the data store with the
query execution engine tightly to eliminate unnecessary overheads,
and data storage should be native for graph representation. (4) Since
network communication is critical for distributed systems, we can
make use of RDMA to reduce the cost of network communication.
Accordingly, the designs of data store and system components should
be tightly associated with RDMA-related features.
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Figure 4: The architecture of Grasper

4 SYSTEM DESIGN
Overview. We first show the architecture of Grasper in Figure 4. A
Grasper cluster consists of a set of query servers and a set of clients.
Query servers are connected by RDMA network. Each query server
can receive and process multiple queries concurrently with a pool
of worker threads. Grasper supports an arbitrary number of clients,
which are connected to query servers through TCP/IP network. A
client involves only a light-weight communication lib used to submit
query strings and receive query results.

A query server consists of two key components: data store and
query engine. The distributed data stores of all query servers main-
tain the partitioned PG data across multiple machines. To handle
the diverse access patterns of different query operators, we adopt
a heterogeneous storage to keep the graph topology and the ver-
tex/edge properties separately (Section 4.1). The query engines are
responsible for query parsing and query execution (Section 4.3). In
particular, we propose a novel Expert Model to support concurrent
query execution with optimizations tailored for each category of
query operations. To reduce query latency and maximize CPU uti-
lization for various query workloads, Expert Model enables adaptive
parallelism control on query processing both within a query and
across queries.

Grasper also assigns a master node to monitor the progress of
query execution on each query engine through a heartbeat mech-
anism and accordingly to coordinate the assignment of incoming
queries from clients to servers based on the current load of each
engine.

4.1 Data Store
A PG consists of not only the graph topology but also vertex/edge
labels and properties. We may use relational, wide-column or other
NoSQL databases to store graph data. However, these data stores
are not natively designed for storing graph data, which may break
data locality and incur costly multi-way joins on graph traversal
based operations. To enable a query-friendly data layout, we propose
a hybrid, native graph storage, which jointly considers the data
access patterns of graph OLAP workloads and the performance
characteristic of RDMA.

We divide the in-memory space of each Grasper server into two
parts: Normal Memory and RDMA Memory. Normal Memory is
used to store those graph data that are accessed locally during query
execution, i.e., graph topology and intermediate results generated
by queries. RDMA Memory is pre-registered with a fixed size and
used to store the data that could be remotely accessed by other query
engines. Figure 5 gives an illustration using the example PG in
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Figure 1. The String-ID Map in Normal Memory maps all strings in
the labels and property keys into unique IDs after data loading, in
order to save network bandwidth and memory consumption. Vertex
Region stores (in Normal Memory) the graph topology information
of the local partition of vertices, including the vertex ID, the directed
adjacency lists (i.e., in-neighbors and out-neighbors), and the IDs
of the property keys (for property value retrieval). RDMA Memory
in all query servers are connected together to form a distributed
RDMA-enabled key-value store (KVS) for storing vertex labels and
property values, which can be remotely requested by queries. Edge
Region has almost the same layout as Vertex Region but stores the
data of the local edges in Normal Memory and the edge labels and
property values in RDMA Memory.

In such a hybrid data storage design, we use index-free adjacency
lists to support efficient traversal-based query operations and use
RDMA-enabled KVS to achieve low-cost remote access to labels
and property values through one-sided RDMA read. We keep the
graph topology data in Normal Memory since Grasper never directly
accesses remote partitions of the graph topology, as each query
engine only executes query steps on its own local partition and coop-
erates with remote engines by wrapping “non-local graph traversals”
into messages sent through one-sided RDMA write (Section 4.2).

Note that since partitioning properties alongside with their ver-
tices/edges would lead to uneven storage and accordingly cause
load imbalance among query engines, we partition vertices/edges
(in Normal Memory) and their properties (KVS in RDMA Memory)
separately to form independent storage spaces. We give more details
about graph partitioning in Section 5.

We show the overall memory layout of a Grasper server in Fig-
ure 6. In Normal Memory, in addition to the graph topology store,
we also allocate a zone called Index Buff to record the index maps of
properties whose indexes have been built (see index construction in
Section 5). Another zone called Meta Heap is set to maintain those
temporary data necessary for query processing such as metadata of
queries and intermediate results. In RDMA Memory, besides the
two KV-stores (i.e., V-KVS, E-KVS) for V/E properties and the
Meta Heap zone which has the same function as the one in Normal
Memory but for RDMA, we also allocate two zones, Send Buffs
and Recv Buffs, for message management in RDMA communication
(Section 4.2).

Normal Mem RDMA Mem

graph 
topology

Data Store Data Store

V-KVS E-KVS

Send Buffs Recv BuffsIndex Buff Meta Heap

index
maps

meta data
/tmp buff

# (threads x nodes)# threads

... ...
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Figure 6: Memory layout on a Grasper server
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4.2 RDMA Communication
Grasper uses RDMA-based, thread-level communication channels
for message passing among the worker threads in servers. We only
use one-sided RDMA read/write because of their superior perfor-
mance [20, 42, 54]. In each query server, there are w SendBufs and
a (w × n) 2D RecvBufs to form an RDMA Mailbox, where w is the
number of worker threads in a query server and n is the total number
of query servers. Each SendBuf [i] loads the sending messages of a
worker thread for RDMA communication, and each RecvBufs[i][j]
keeps those messages that are received from query server j and to be
consumed by worker thread i for efficient query processing without
locking. We implement each RecvBufs[i][j] as a ring buffer adopted
from FaRM [21].

In Grasper, we define a message as one piece of intermediate or
final query result generated from one specific query step together
with the metadata (e.g., step type). A message is the basic commu-
nication unit among all worker threads, and we impose an upper
bound on its size to benefit from the short RDMA latency with small
payloads (Section 2). Consequently, when the intermediate result is
too large, we will split it into multiple messages. This procedure is
called message splitting. In addition, Grasper also has three other
message dispatching patterns for thread-level communication: trans-
fer, merge, and spawn, as presented in Figure 7. These four RDMA
message dispatching patterns are used in various query steps for
query processing.

4.3 Query Engine
To address the limitations of existing graph systems for process-
ing online analytical queries, we carefully design the query engine
following design goals (1) and (2) presented in Section 3.

We also remark that, although the distributed data stores and
RDMA-based communication channels in Grasper achieve design
goals (3) and (4), the novelty and key contributions of our work lie
in the design of the query engine and Expert Model.

4.3.1 Query Plan Construction. Grasper adopts Gremlin as the
query language but provides its own query execution plan. Instead of
only assigning one worker thread to one query at a time as in existing
graph systems [2, 3, 9], Grasper adopts adaptive parallelism control
based on the workload of a query step. We define a concept, flow
type, to describe the flow pattern of each query step according to
its functionality. There are three flow types in Grasper: sequential,
barrier, and branch, which use the message dispatching patterns,
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transfer, merge, and spawn+merge, respectively. We define each of
the flow types as follows:

• Sequential: A sequential query step receives a message, pro-
cesses it, and generates new message(s) to be processed by
the next step. The traversal-based and filter-based query steps
(e.g., in, out, has) are usually sequential. Multiple messages
may be received by a sequential step and as messages of a
sequential step are independent of each other, they can be
processed in parallel by multiple threads.
• Barrier: A query step of this type collects messages from

the previous step and performs a functional aggregation on
the collected data before proceeding to the next step. Barrier
steps always need synchronization before moving forward
(e.g., count, max).
• Branch: A branch query step (e.g., or, and, union) creates

multiple sub-query branches, where the message received
by the step is duplicated as the input of the sub-queries for
parallel processing. The results of these sub-query steps are
finally merged back into one query step.

When a query is received from a client, the master assigns it to
a query engine, which becomes the coordinator of the query. The
coordinator parses the query string into an ordered list of step_objs,
where each step_obj is an instance of a query step and maintains the
meta data of the step such as the step type, the associated parameters,
and the position of the next step_obj to be processed. We follow
a tree-based parsing rule to recursively parse the query string step
by step in order to construct the logical query plan according to
the query optimization rules. Although the optimization of query
execution plan is out of scope of our paper, and there have been
extensive studies [11, 16, 25, 46, 51], we briefly introduce the fol-
lowing three optimization rules that we apply in Grasper for query
plan construction. We illustrate the idea using an example query in
Figure 8.
• Decomposition: to decompose branch-type query steps (e.g.,

and, or, union) into multiple sub-queries, which can process
in parallel. In Figure 8, the and() step is decomposed into
subQ1 and subQ2.
• Combination: to combine contiguous filter-based steps on

vertices/edges/properties into one single step, which reduces
the redundant overhead of multiple scanning and filtering. In
Figure 8, the two has() steps are combined into one step_obj.
• Reordering: inspired by the optimizations on join [14, 35,

44], to reorder query steps with specific constraints and move
them to the front so as to generate less intermediate results,

1 2 3

4

3

65

DAG of a Query

7 8

Seq Barrier Branch

Figure 9: The DAG of the query in Figure 8

thus reducing the costs of both computation and communica-
tion. In the example query, we move the combined has() step
to the front, as shown in Figure 8.

The constructed query plan of the example query is shown at the
bottom of Figure 8. Note that all the Branch type should be split
into two parts for message spawn (e.g., step 3 is split to start the
execution of the sub-queries, i.e., steps 4-6 and steps 7-8, in parallel)
and message merge (to collect the intermediate results to one query
engine for the processing of the next step). Similarly, the Barrier
type also needs to collect the shuffled intermediate results from all
query engines to the coordinator engine for data aggregation.

Each query step belongs to only one flow type. Thus, based on
the message dependency and execution order in the query plan, we
can generate a directed acyclic graph (i.e., DAG) for each query to
describe its parallelism. We give an example of DAG in Figure 9 for
the query in Figure 8. Then, Expert Model will enable more specific
optimizations for a query based on its DAG structure.

4.3.2 Expert Model. Expert Model is the central idea of Grasper,
which defines the distributed execution workflow for each query and
is the key to Grasper’s high performance.

Design Philosophy. Expert Model provides a top-down query-specific
mechanism and considers the characteristics of OLAP workloads to
address the limitations presented in Section 3 and achieve low latency
and high throughput. Expert Model supports the following three fea-
tures to improve query performance: (1) adaptive parallelism control
at step-level inside each query; (2) tailored optimizations for vari-
ous query steps according to their characteristics; (3) locality-aware
thread binding and load balancing. In particular, we integrate these
features into each expert, which is a physical query operator in
Grasper, to allow fine-grained specialization for various query opti-
mizations.

Intuitively, an expert can be considered as a unique executor
that is responsible for the processing of one specific category of
query steps that share similar functionalities (e.g., has, hasKey and
hasValue), where each expert has its own unique optimizations as-
sociated with a category of query steps. Note that an expert may
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employ multiple threads to concurrently process the query steps of
multiple queries with shared optimizations. Feature (1) in Expert
Model ensures that the runtime parallelism degree of an expert is
adaptive according to the workload. Feature (2) in Expert Model
improves the efficiency of query processing, and Feature (3) han-
dles the underlying cache locality and load balancing among the
threads physically. In this way, each feature takes care of one aspect
for query performance, while these features are specialized in each
expert for each specific category of query steps.

Expert Model is designed to be a general model. Although in
Grasper we select Gremlin as the query language, the design of
Expert Model can be implemented and extended to other query
processing systems with their own query languages. In the following
discussion, we first introduce the three features mentioned above,
and then present the detailed mechanism of experts.

Adaptive Parallelism Control. Inside a query, those query steps
with heavy workloads (e.g., in, has) usually become the performance
bottleneck, as we showed in Section 3. To address this problem,
Grasper has a mechanism to adjust the execution parallelism of each
query step adaptively according to its workload. The workload of a
query step is measured as the number of messages it receives at each
query engine. As the size of each message is bounded (Section 4.2),
an expert can simply set the parallelism (i.e., the number of worker
threads) as the number of messages. As an illustration, Figure 10(a)
shows the parallelism of each query step of the DAG in Figure 9. In
this example, we consider only two query engines and each node in
the DAG has its own runtime parallelism on the two engines, e.g.,
“2|4” on step 2 means that engine 1 and engine 2 assign 2 and 4
threads to process the hasKey operator in parallel. This also indicates
that the load of hasKey on engine 2 is heavier than that on engine
1. Note that the parallelism of the barrier-type step 5 is 1 globally
because of its aggregate function. In constrast, both sequential and
branch query steps have no limitation on parallelism.

Tailored Optimizations for Query Steps. There are groups of
query steps that have similar functionalities. For example, filter-
based query steps such as has(), hasKey() and hasValue() have al-
most the same data access pattern. In addition, we also consider
locality in our design, as similar query steps tend to access the same
shard of graph data in a query server (i.e., spatial locality) and con-
secutive queries may share some common query steps (i.e., temporal
locality). Therefore, we group those query steps that share similar
functionalities and access patterns into one category of executor,

Table 1: The expert pool in Grasper
Expert Query Steps
Init g.V(), g.E()
End N/A [to aggregate the final results]
Traversal in, out, both, inE, outE, bothE, inV, outV, bothV
Filter has, hasNot, hasKey, hasValue
Range range, limit, skip
Order order
... ...
Group group, groupCount
Math min, max, mean,
BranchFilter and, or, not

i.e., an expert, and accordingly to apply tailored optimizations (e.g.,
specific caching strategy, cache size, message routing rules, etc.)
on different experts to achieve high query efficiency. The overall
resource utilization of the system will also be improved through such
optimizations tailored for each category of query steps, as compared
with applying optimizations to individual query steps separately
and maintaining their own private states, which may lead to poor
caching [29] and memory fragmentation [12].

Locality-Aware Thread Binding and Load Balancing. Expert
Model employs a thread pool in each query engine for the parallel
execution of one query and the concurrent processing of multiple
queries. As each expert has its own data structures (e.g., cache)
that occupy memory space, thread switching on OS and NUMA
architecture will lead to extra overheads and negative side-effects [33,
47] on query latency. We propose a locality-aware thread binding
strategy to address this concern. Specifically, we bind each thread to
one CPU core physically and then divide threads in the thread pool
into several regions logically according to the topology of CPUs in
each NUMA node and the number of NUMA nodes per machine.
Each expert is assigned to one region only to ensure that there
is no thread switching and across-node memory access. The load
balancing among worker threads is another important problem, as the
overloading on one thread may create a straggler in the processing
of a query. Hence, Expert Model allows each expert to manage its
own message routing (i.e., to send each message to which thread for
next processing) with a global view of the thread loading, so that
the messages of a query step can be distributed evenly among the
threads in the corresponding region.

The Mechanism of Experts. An expert is a physical query operator
that expertly handles the processing of all query steps belonging to
one category (say, C). Each expert maintains its own data structures
(e.g., indexes, cache) for tailored optimizations, its own execute()
function, and its own routing rules for out-going messages, to han-
dle the concurrent processing of query steps in C. In each Grasper
server, we allow only one expert instance launched for each cate-
gory C. As a consequence, all query steps belonging to one category
will be processed by its unique expert only, with shared data struc-
tures for tailored optimizations. For example, when remote access
is needed (e.g., for processing query step Values), or CPU-intensive
calculation is conducted (e.g., for processing query step Group), the
corresponding expert can use cache to avoid redundant communica-
tion or computation, where the cached data is shared for all worker
threads.
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Table 2: Thread regions with core binding
Thread Region Experts
Cache_Seq Filter, FilterLabel, Key, Values, Properties, La-

bel
Cache_Barrier Group, Order
Traversal Traversal, Init
Normal_Seq Is, As, Select, Where
Normal_Barrier Count, Range, Math, Aggregate, Cap, Dedup
Normal_Branch Branch, BranchFilter

The kernel of Grasper’s query engine is composed by a set of
experts, which forms an expert pool. As an illustration, Table 1 lists
some typical experts 1 as well as the query steps associated with
each of them. In addition, based on the in-memory access patterns
(e.g., flow type, whether using cache or not), we divide the experts
into six thread regions, as listed in Table 2, in order to achieve the
locality-aware thread binding.

As a result, we create a top-down mechanism to provide Grasper
the ability of fine-grained query optimization control according to
the characteristic and the processing load of a query at runtime.
Using cache as an example, we choose to apply LRU cache in a read-
heavy expert, Filter, to avoid repeated remote access on property
values, since the LRU strategy is more likely to retain those items
that are frequently and recently accessed. Instead, we prefer to apply
FIFO cache in the expert Traversal for caching vertex/edge labels,
considering that label access normally happens in query steps such
as д.v ().In().Out (), for which the FIFO strategy is more suitable in
such a BFS-like access pattern.

Figure 10(b) provides more details based on an example query in
Figure 8. In Step 2, the Filter expert is processing the hasKey query
step with a parallelism of 2 on query engine 1. It maintains an LRU
cache with 1,000 slots and an index for fast retrieval of property
keys. Once the execution is completed, the Filter expert will send all
newly generated messages to the query engines for the processing
of next step, where the query engines store the data needed for the
next step. Here, the Filter expert applies the round-robin strategy
to route the messages to idle threads in the thread region which
the next expert belongs to, for efficient memory access in the same
NUMA node. In addition, when we continue to process this query
from Step 2 (i.e., hasKey) to Step 8 (i.e., has), the Filter expert will
be launched again but with a different parallelism adapted to the
workload of Step 8. In Step 4, the Traversal expert is activated to
traverse all in-neighbors (i.e., the in query step) of the input vertices
with a parallelism of 1 on query engine 1. At this time, it holds an
FIFO cache with size 500 and routes the new messages using a static
strategy (i.e., to the coordinator directly), since its next step (i.e.,
count) is a Barrier type.

Work Flow. When a query engine is launched, its expert pool will
be initialized and all experts will be constructed and kept alive until
the engine shuts down. Figure 11 depicts the architecture of Expert
Model, where the expert pool is built upon the core-bound thread
pool, and each thread has its own RecvBufs to receive messages.
When a thread becomes idle, it will try to read one message from
its RecvBufs. If it succeeds, the expert dispatcher will parse this

1Due to the page limit, we cannot list them all in here. More details can be found on the
wiki page of Grasper’s Github repository.

Engine 1

Expert 
Pool

thread 1:
Q1.out

thread 2:
Q1.out

thread 3:
Q2.in

RDMA RecvBufs

. . .   . . .

RDMA RecvBufs

. . .   . . .

Q1: g.V().has(...).out().values(...)

RDMA/w

RDMA RecvBufs

. . .   . . .

RDMA/w
Engine 2 Engine 3

1

2

N

Q2: g.V().limits(...).in()...

expert dispatcher

RDMA Mailbox

. . .. . .

. . . thread-pool
w/ core bind

Figure 11: The architecture of Expert Model

message to obtain its step type and invoke the execute() function of
the corresponding expert to process this query step.

Expert Model can process multiple queries concurrently. We illus-
trate using Q1 and Q2 in Figure 11. The has() step of Q1 generates
2 messages (colored in pink) and the limits() step of Q2 generates 1
message (colored in green). Then, all these 3 messages are processed
in parallel by 3 threads, i.e., threads 1-2 (working on Q1.out) and
thread 3 (working on Q2.in). These 3 threads are employed by the
Traversal expert with shared cache and indexes as well as other
specific optimizations. That is, the cached data, indexed data (if any),
and other data structures of the Traversal expert are being utilized
by these threads through internal sharing. Accordingly, the CPU
utilization and memory locality can be both improved. To distrib-
ute the newly generated messages (colored in blue) evenly among
threads in the receiving query engines, the Traversal expert applies
its own routing rule to determine the specific location (i.e., thread
and engines) of each message.

5 IMPLEMENTATION & OPTIMIZATIONS
Grasper was implemented in C++, currently with 18K+ lines of
code (https://github.com/yaobaiwei/Grasper). The clients connect
to the master and servers using ZeroMQ TCP sockets. The servers
use MPI to coordinate their inter-process communication for graph
data loading and shuffle. The RDMA initialization and one-sided
read/write between servers are based on the librdma library.

Graph Partitioning. Grasper loads the source PG data from HDFS,
where a query server reads a part of the data. Then, we partition
and shuffle the entities of the graph topology (i.e., V and E) into the
data store and the entities of the properties on V and E into the KVS,
separately according to their IDs. We choose a hash partitioning
strategy to achieve evenly data loading. Although partitioning the
graph topology separately with the vertex/edge properties may seem
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to result in more network communication in query processing, this
is actually a better strategy for the following reasons. First, in our
design, as the network is not a bottleneck thanks to RDMA, we
care more about the balanced distribution of data which directly
impacts on the CPU utilization. Second, if we partition the graph
topology and properties together (i.e., vertices and edges, along with
their properties, are distributed to the same query servers), then
the distribution of the properties would be rather uneven among
query servers because the number of properties varies considerably
among different vertices/edges, which could lead to more serious
performance problems (e.g., stragglers) due to unbalanced loads.

Index Construction. Indexes are important for the efficient process-
ing of query steps such as has, hasLabel and hasValue. Grasper
supports various types of common indexes on text and numerical
values for fast look-up or range search on vertex/edge labels and
property values. Users can specify the type of index to build and the
indexable keys (i.e., which property to index) through an interactive
client console. Then, a special expert, Index, will be invoked on each
query engine to construct the corresponding index simultaneously.
The Index expert also creates an index map for the various indexed
keys, and then hands over the indexes as well as the index maps to
the respective experts for processing its associated query steps (e.g.,
an index on the labels of V will be handed over to the Filter expert
for processing the query step hasLabel).

RDMA-Enabled KVS. The RDMA-enabled KVS was implemented
based on DrTM [59], which splits the storage space into two regions:
header and entry. The header consists of N buckets, each of which
contains multiple header slots. A slot is the basic unit in the header,
which maintains a pointer that records the corresponding offset and
length of the value in the entry region. The KVS has a fixed size
in RDMA Memory, where the user-defined capacity should be set
large enough to hold the property values for the whole graph.

Work Stealing. The diversity of OLAP workloads on PGs may lead
to stragglers. In Grasper, the stragglers are mainly overloaded worker
threads as network communication is not the bottleneck anymore due
to the use of RDMA (as our experiments in Section 6 show). Grasper
provides a mechanism for idle threads to steal messages from the
RecvBufs of other busy threads to improve CPU utilization and
reduce query latency. Based on the thread regions and the topology
of NUMA nodes, we define a stealing priority order: an idle thread
first checks the RecvBufs of the other threads in the same thread
region, and then those of the other regions in the same NUMA
node, and finally those of the other NUMA nodes, until it obtains a
message to process.

6 EXPERIMENTAL EVALUATION
The experiments were run on a cluster of 10 machines, each with
two 8-core Intel Xeon E5-2620v4 2.1GHz processors and 128GB of
memory. Each machine is also equipped with a Mellanox ConnectX-
3 40Gbps Infiniband HCA. The machines run on CentOS 6.9 with
the OFED 3.2 Infiniband driver. For fair comparison, we used 24
computing threads in each machine for all systems we compared
with, and tried our best to tune their configuration (i.e., system
parameters) to the setting that gives their best performance. All
results reported in the paper are the average of five runs.

Table 3: Dataset statistics
Dataset |V | |E | |V P | |EP |
LDBC 59,308,744 357,617,104 321,281,654 101,529,501
AMiner 68,575,021 285,667,220 291,161,548 120,381,452
Twitter 52,579,682 1,963,262,821 320,732,961 577,955,736

Table 4: Query benchmark
Q1 g.V().has([filter]).properties([property])
Q2 g.V().hasKey([filter1]).hasLabel([label]).has([filter2])
Q3 g.V().has([filter]).in([label]).values([key]).max()
Q4 g.E().has([filter1]).outV().dedup().has([filter2]).count()

Q5
g.E().has([filter1]).not(outV([label]).has([filter2]))
.groupCount([key])

Q6

g.V().has([filter]).and(
out([label1]).values([key1]).min().is([predicate1]),
in([label2]).count().is([predicate2])

).values([key2])

Q7

g.V().has([filter1]).as(’a’).union(
out([label1]),
out([label2]).out([label3])

).in([label4]).where(neq(’a’)).has([filter2])
.order([property]).limit([number])

Q8
g.V().has([filter1]).aggregate(’a’).in([label1]).out([label2]).
.has([filter2]).where(without(’a’))

Benchmarks. We used the LDBC social network benchmark [23],
which is the currently best known benchmark for graph query work-
loads. We generated a synthetic property graph using the LDBC-
SNB data generator. For the query workload, we select 8 typical ones
from two scenarios: Interactive Complex IC1 - IC4, and Interactive
Short IS1 - IS4.

We also evaluated the systems on a real-world property graph,
AMiner2 from Open Academic Society3. Since the LDBC bench-
mark queries can only be evaluated on its own synthetic dataset,
we followed the design principles of LDBC to carefully create a
benchmark for OLAP on a general PG. The benchmark was designed
based on the following five assessment criteria:

(1) Query complexity: starting from simply finding a certain
property on some vertices and gradually raising the complex-
ity to finding a subgraph involving multi-hop traversals with
a certain pattern.

(2) Scope of data access: some queries start from only one vertex
or one subgraph, while others start from the whole graph.

(3) Query result size: the size of the intermediate/final results
of some queries is fixed (e.g., aggregation queries), while that
of others varies significantly depending on factors such as the
neighborhood size and the graph size.

(4) Diversity of query steps: the query steps cover a wide range
of functional types and flow types.

(5) Execution cost: the queries cover heavy, medium and light
workloads.

We list our benchmark in Table 4, from which we created the
query workloads by sampling some property values and labels in
the dataset for the arguments (e.g., [filter], [property], [label], [key])
in the eight query templates 4. We also give the statistics of LDBC
and AMiner in Table 3, listing the number of vertices, edges, vertex
properties and edge properties, respectively.

2https://academicgraphv1wu.blob.core.windows.net/aminer/aminer_papers_0.zip
3https://www.openacademic.ai/
4The specific keys and values used in the templates will be released on our project
homepage.
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Table 5: Query latency (in msec) of distributed systems
LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper 271 16.7 388 77.3 0.30 2.19 0.91 0.32

Titan 66985 13585 5.8E5 11947 0.71 25.9 2.88 1.32
J.G. 56206 9223 4.5E5 22420 0.83 14.5 2.99 1.17

AMiner Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.17 0.42 17.3 45.2 104 28.8 2.32 4.41

Titan 1.07 12.4 32341 2.1E5 43809 234 9.11 84.08
J.G. 1.34 8.70 27466 2.4E5 39155 276 5.61 84.71

Table 6: Query latency (in msec) of single-machine systems
LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper 1935 75.1 2550 223 0.48 2.51 1.38 0.13
Neo4J 1448 372 15042 293 20.7 77.6 16.3 21.7

OrientDB 32869 2140 20721 2582 0.91 25.1 3.46 1.47
T.G.(install 46517 40739 44048 43685 37745 41629 38799 37708

+ run) +55.3 +18.2 +117 +30.1 +8.03 +11.1 +9.39 +7.66

6.1 Query Latency
We first analyze the query latency, comparing with Titan v.1.1.0 [2],
JanusGraph v.0.3.0 [3], Neo4j v.3.5.1 [8], OrientDB v.3.0.6 [9] and
TigerGraph Developer Edition [10]. These systems are the currently
best known systems for processing online analytical queries on PGs.
In this experiment, each system only processed a single query each
time so as to make sure that the query latency was not affected by
the processing of other queries.

We first report the results of comparing with the distributed sys-
tems, Titan and JanusGraph, running on 10 machines and using the
same number of threads as Grasper. The latency of processing each
type of query is shown in Table 5. Grasper achieves excellent perfor-
mance compared with Titan and JanusGraph for all types of queries
on both benchmarks, especially for processing the heavy-workload
queries (e.g., IC1-IC4, Q3, Q4, Q5). These queries have heavy work-
loads because they have complex query logics (e.g., IC1-IC4) or
the size of the intermediate results between query steps is large
(e.g., Q3-Q5), which are challenging for existing systems to achieve
low query latency. For example, Titan and JanusGraph do not have
optimizations specifically designed for processing heavy-workload
query steps and there is also non-trivial communication overheads
with the external systems (i.e., HBase and Elasticsearch) on which
they are built. In contrast, Grasper integrates the data store with the
query engine, and further reduces the communication cost through
RDMA. As RDMA shifts the bottleneck of distributed query pro-
cessing from network to CPU computation, Expert Model supports
adaptive parallelism to better utilize CPU threads and provides better
in-memory locality through tailored optimizations, both of which are
essential to achieve low latency for processing heavy query steps.

To further demonstrate the effect of an integrated design, Fig-
ure 12 reports the breakdown of the query latency of Grasper for
processing IC4, as well as the CPU and network utilization of a
mixed workload consisting of IS1-4 queries for a period of 180 sec-
onds. Compared with the results of Titan and JanusGraph reported
in Figures 2 and 3 in Section 3, Grasper only needs at most 60ms
to process the bottleneck steps (i.e, hasLabel, in), while Titan and
JanusGraph took more than 10 seconds to process them. In addi-
tion, the CPU and network utilization have also been significantly
improved to around 95% and 380+ MB/s, respectively, due to our
integrated design and Expert Model.
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Figure 12: [Best viewed in color] (a) The query latency break-
down of IC4 on LDBC by Grasper; (b) CPU and network uti-
lization of Grasper for the mixed workload {IS1-IS4}

Next we report the results of comparing Grasper with Neo4j, Ori-
entDB and TigerGraph, where all the four systems were deployed
on a single machine and using the same number of threads. We only
ran the experiment on the LDBC benchmark since for the AMiner
dataset, Neo4j ran into errors during index construction and Ori-
entDB ran out of memory during data loading. Table 6 lists the
query latency of the systems. Grasper achieves very competitive
performance especially compared with Neo4j and OrientDB. Com-
pared with TigerGraph, Grasper has advantage in processing IS1-IS4.
For IC1-IC4, TigerGraph’s run time is very competitive, which is
significantly shorter than the query time of all the other systems.
This is because TigerGraph processes a query first by an “install”
process, which (according to their documentation) pre-translates
and optimizes the query, and then by a “run” process to execute the
installed query. The install process takes a long time, but signifi-
cantly improves the run time for all types of queries. As TigerGraph
is not fully open source, we cannot further analyze what exactly
TigerGraph does in installing a query. Note that TigerGraph can
also be run in an “interpret” mode, which directly processes a query
without installing the query, but its latency is significantly longer
than Grasper and Neo4J for processing any of the queries. Overall,
the results also show that Neo4j performs better on complex queries
(i.e., IC1-IC4), OrientDB is better on simple queries (i.e, IS1-IS4),
TigerGraph has competitive run time but at the cost of a long install
process, and Grasper achieves good balanced performance for all
queries without an expensive installation or optimization process.

As there is no network overhead in the single-machine setting,
this experiment on a single machine also shows that Grasper’s good
performance does not come only from its use of RDMA, but also
comes from its other unique designs such as Expert Model, which we
will further validate in Section 6.3. The results of Table 5 and Table 6
also show that 10 machines (more parallelism) can significantly
speed up the processing of the complex queries that have heavy
workloads, thus justifying the need for distributed query processing
(even though the graph can fit into a single machine).

6.2 Query Throughput
As an OLAP system, the throughput performance is also important.
In one of the world’s largest e-commerce companies and a financial
company we collaborate with, tens of thousands to a hundred thou-
sand queries (the majority are simple ones) can be submitted every
second at peak time. Currently, they achieve the required throughput
using a large number of fast machines but this approach is having
trouble catching up with their business growth rates. Grasper is
designed to achieve high throughput for handling such a situation.
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Figure 13: [Best viewed in color] (a) Throughput on LDBC for
{IS1-IS4}; (b) CDFs of Grasper’s query latency for {IS1-IS4}
(using 10 machines)
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Figure 14: [Best viewed in color] (a) Throughput on AMiner for
{Q1, Q2, Q6}; (b) CDFs of Grasper’s query latency for {Q1, Q2,
Q6} (using 10 machines)

To evaluate query throughput performance, we used the IS queries
in the LDBC benchmark and {Q1, Q2, Q6} in our benchmark as the
query templates to generate as many queries as the systems could
handle. Figure 13 and Figure 14 report the throughput compari-
son with the other two distributed systems. As Figure 13(a) shows,
Grasper achieves a throughput of 13K+ queries/sec on 10 machines
for the LDBC workload. As a comparison, JanusGraph’s through-
put is 2.9K+ queries/sec and Titan’s is 1.7K queries/sec. Compared
with JanusGraph and Titan, Grasper also achieves good scalability
as its throughput increases more than 4 times when the number of
machines increases from 2 to 10. Figure 14(a) shows that on our
benchmark using the AMiner dataset, Grasper’s throughput is about
20-30 times higher than that of JanusGraph and Titan. The gap be-
tween Grasper’s throughput and that of JanusGraph and Titan is
much bigger for this workload than for the LDBC workload because
the queries generated from the {Q1, Q2, Q6} templates have lighter
workload than the LDBC queries, as also reflected by Grasper’s
throughput on these two types of workloads. Grasper achieves much
higher throughput for processing queries of lighter workload because
the design of its Expert Model enables high concurrent processing of
multiple queries: first, adaptive parallelism control sets a minimum
parallelism needed for processing a light workload so that threads
can be more fully used; second, tailored optimizations effectively
share common data structures for the processing of many query steps
that belong to the same category, thus allowing resources to be better
utilized to process more queries.

Figure 13(b) and Figure 14(b) further plot the CDF curves of
each class of queries processed by Grasper. The results show that
the 50th percentile latency is only 2-5 times shorter than the 99th
percentile latency. These steep curves and the absence of long tail
in the CDFs also indicate that there is no starvation phenomenon

Table 7: Query latency (in msec) of Grasper w/ and w/o APC
LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper 271 16.7 388 77.3 0.30 2.19 0.91 0.32

w/o APC 469 24.8 666 131 0.51 3.63 1.43 0.54
AMiner Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.17 0.42 17.3 45.2 104 28.8 2.32 4.41

w/o APC 0.20 0.62 23.7 59.6 111 35.4 4.50 6.15
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Figure 15: (a) Throughput of Grasper on LDBC for {IS1-IS4},
and (b) throughput of Grasper on AMiner for {Q1, Q2, Q6}, w/
and w/o TS&LB

when we process a large number of queries concurrently. The results
verify the effectiveness of Expert Model in handling load balancing
(or stragglers) and high concurrent processing.

6.3 Effects of System Designs & Opts
In this set of experiments, we want to evaluate the effects of Grasper’s
system designs and optimizations on its performance. Note that it
is difficult to measure the performance benefits brought by each
component/technique in Grasper as often we only see a positive
effect when different components/techniques are integrated together.
Thus, we only tested those parts that are easier to be evaluated on
their individual effects.

Table 7 first reports the effect of adaptive parallelism control
(APC) on query latency by comparing the two cases when Grasper
enables/disables APC, where disabling APC means to process mes-
sage (if any) with fixed parallelism of 1 in each server. The results
show that APC achieves speed-ups in processing all the queries,
especially for the complex queries IC1-IC4 that have the heaviest
workloads, because their bottleneck steps are given higher paral-
lelism for their execution.

Then we examined the effect of locality-aware thread binding and
load balancing (TS&LB) on query throughput, using the same work-
loads as in Section 6.2. Figure 15 shows that the overall throughput
of Grasper is considerably improved after the TS&LB mechanism
is enabled. This indicates that the memory locality on CPU, the
side-effects of thread switching and stragglers due to overloaded
threads affect the throughput performance. Grasper’s Expert Model
provides an integrated design to address these issues.

We further tested the effects of other important designs of Grasper,
including RDMA, query plan optimization (i.e., Q.Opts) and work
stealing (i.e., Steal). We disabled them one by one, where -RDMA
means the use of IPoIB instead of RDMA on InfiniBand, -Q.Opts
and -Steal mean without using Q.Opts or Steal, respectively. As re-
ported in Table 8, RDMA can indeed reduce the latency of all queries,
because even the simplest query needs to frequently access the prop-
erties on remote servers through the network. We remark that the per-
formance improvement also comes from Grasper’s RDMA-friendly
designs that enable higher CPU utilization by taking advantage of
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Table 8: Query latency (in msec) of [Grasper-X] (using 10 ma-
chines)

LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper 271 16.7 388 77.3 0.30 2.19 0.91 0.32
-RDMA 1349 17.97 1253 260 1.04 2.57 2.06 1.26
-Q.Opts 374 19.39 558 81.26 0.31 2.38 0.93 0.32
-Steal 488 24.68 671 127 0.57 3.25 1.31 0.54

AMiner Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.17 0.42 17.3 45.2 104 28.8 2.32 4.41
-RDMA 0.54 1.18 21.54 70.47 222 30.69 9.09 6.23
-Q.Opts 0.17 4254 22.84 417 131 35.49 2.89 4.34
-Steal 0.23 0.61 20.91 57.62 111 33.44 4.01 6.07

one-sided RDMA read/write, as we showed in Figure 12(b). While
RDMA is effective, other optimizations also contribute to Grasper’s
overall high performance. The work stealing technique brings the
greatest contribution to the latency improvement of processing IC2
and IS2. Especially for IC2, the benefit brought by RDMA is more
limited due to the heavy computation workload of IC2. Query plan
optimization is critical (far more important than RDMA or Steal)
for processing queries generated from the Q2 and Q4 templates,
both of which have multiple filter-based operators. For processing
these queries, the latency is reduced as much as from 4,254ms to
0.42ms, and from 417ms to 45.2ms, respectively, through query step
combination and reordering.

In conclusion, each individual part evaluated in this subsection has
their own effects on Grasper’s performance. Although the benefits
brought by some parts may seem to be (relatively) smaller, it is by
combining the benefits of all parts together that makes Grasper a
high performance system.

6.4 Scalability
Finally, we evaluated the scalability of Grasper for processing queries
with different workloads. For the eight queries in the LDBC bench-
mark, they are classified into two groups: IC1-IC4 have heavy work-
loads and IS1-IS4 have light workloads. For the eight queries in our
own benchmark, we also classify them into two groups: {Q1, Q2,
Q8} have light workloads due to highly selective filters, and {Q3, Q4,
Q5, Q6, Q7} have heavy workloads with both relatively high CPU
computation (i.e., max, order, where) and network communication
(i.e., large intermediate results).

We increased the number of machines from 2 to 10 to measure the
change on query latency. Figures 16(a) and 16(c) report the results
for the IS queries on LDBC and the light queries on our benchmark
using the AMiner dataset. Processing these queries has relatively
stable performance and using more machines does not reduce the
latency as it is sufficient to process these light-workload queries with
a small amount of computing resources. Comparatively, Figure 16(b)
and 16(d) show that the latency of processing the heavy-workload
queries can decrease quite significantly (note that the figures are in
log scale) when more machines are used. This is because the complex
logic and heavy computation can benefit from more CPU resource
and higher parallelism, where more machines/servers also mean
more experts to process the query steps in parallel. Note that the
traversal-based and filter-based query steps in these queries, which
belong to the sequential flow type, can achieve more speed-ups
with higher parallelism. Although the cost of communication will
increase when we use more machines, the network communication
cost is no longer the major overhead due to the use of RDMA.
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Figure 16: The scalability of Grasper on query latency
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Figure 17: (a) Query latency (in msec) of Q1-Q8 on Twitter by
Grasper (using 10 machines); (b) Throughput of Grasper on
Twitter for {Q1, Q2, Q6}

We further evaluate the system performance on a much larger
graph. We used the Twitter 5 graph, which originally has no prop-
erty attached, and we randomly generated some properties for both
vertices and edges. Some statistics of Twitter is also given in Ta-
ble 3. For this graph, only Grasper can be run and both Titan and
JanusGraph could not finish data loading even in 3 days using 10
machines. Figure 17 reports the results of Grasper for query latency
and throughput. Note that Grasper crashed on 2 machines due to
OOM issue. On this much larger dataset, Grasper also achieves high
performance with short query latency (in milliseconds) and linear
throughput. The results show the competitiveness of Grasper on
processing large graphs compared with existing graph databases.

6.5 Comparison with RDF Systems
The Resource Description Framework (RDF) is another popular
format to express the entities and relationships in real-world. It
usually models the knowledge graph as a list of triplets (i.e., subject,
predicate, object). Logically, the PG and RDF can be converted
into each other. For this reason, we also compared with two RDF
querying systems, Wukong [52] and Virtuoso [22]. Wukong is the
state-of-the-art RDF querying system and significant performance
improvements over existing systems are reported in [52]. It also uses
RDMA and thus serves as a good comparison for Grasper. Virtuoso is

5http://konect.uni-koblenz.de/networks/twitter_mpi
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Table 9: Query latency (in msec) of Grasper vs. RDF systems on
DBPedia (using 10 machines)

DBpedia Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.19 0.20 22.24 97.78 939 7.32 29.23 417
Wukong 0.22 - 157 - - - - -
Virtuoso 0.38 0.86 122 1527 4494 42.20 65.80 2028
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Figure 18: [Best viewed in color] (a) Throughput on DBPedia
for {Q1, Q3}; (b) CDFs of query latency on DBPedia (using 10
machines)

a well-known RDF query systems built on a hybrid RDBMS/Graph
column store.

We used a RDF graph DBpedia6 (including two parts: Citation
Data and Citation Links) for this experiment. When the dataset is
converted from RDF to PG, there is a 25% decrease on the data
size, which indicates that PG model is more compact than RDF.
As Wukong and Virtuoso use SPARQL as the query language, we
converted the Gremlin queries into equivalent SPARQL queries.
However, currently Wukong could only process Q1 and Q3, but not
the other queries, due to the lack of associated SPARQL operators
(e.g., Exist, Union).

Table 9 shows that Grasper achieves shorter latency on all queries,
and the performance gap significantly widens for those queries with
heavier workloads (e.g., Q4, Q5, Q8). This validates the importance
of specialized system designs and optimizations for the efficient
processing of complex queries, regardless of the underlying storage
model. We further used {Q1, Q3} as templates to generate a mixed
query workload for throughput evaluation. Figure 18(a) shows that
Grasper also achieves high throughput compared with Wukong and
Virtuoso. The higher throughput may be explained by Grasper’s
better resource utilization as the CDF curves in Figure 18(b) show
that for Wukong, more than 25% of the queries with light workloads
(i.e., Q1) have much longer latency than the rest, and Virtuoso’s
case is also not much better. In contrast, the difference in query
latency is much smaller for Grasper, as Expert Model processes each
step with adaptive parallelism and tailored optimization, while also
enabling idle worker threads to steal work from others for better
CPU utilization.

7 RELATED WORK
PG-based OLAP Systems. Neo4j [8] and TigerGraph [10] are two
graph databases that adopt a native graph storage and both use SQL-
like query languages. SQLGraph [55] models data as PG but adopts
a relational schema in its database design. JanusGraph [3], Titan [2]

6https://wiki.dbpedia.org/downloads-2016-10

and OrientDB [9] represent and store a PG in a NoSQL system.
GRAKN.AI [6] and HyperGraphDB [1] are two knowledge graph
systems that use PG representation for both OLTP and OLAP ana-
lytics. None of the above systems have a query execution model that
naturally supports a full-fledged set of optimizations for processing
online analytical queries as Grasper’s Expert Model.

RDF-based Systems. The RDF model is widely used for knowledge
representation. However, as RDF represents a graph as a collection of
triples, which is more schematic than PG, many RDF systems store
and query RDF graphs using structured tables in relational databases,
such as TripleBit [69], Trinity.RDF [70] and Virtuoso [22]. Some
other systems [27, 48] simply store RDF data as a massive set of
triples. They adopt MapReduce to partition the RDF triples in a
distributed setting and parallelize index-lookup across multiple ma-
chines for processing RDF queries. More recently, Wukong [52] and
Wukong+G [58] use a KV-store to manage RDF data and leverage
RDMA and GPU to process RDF queries based on graph exploration.
The key differences between PG-based systems and RDF-based sys-
tems are their underlying storage and data schema, which further
determine the system design and implementation for query execution
and optimizations.

Other Graph Systems. A large number of systems have been pro-
posed for batch-processing workloads in large graphs [39, 61, 66,
71]. Most of these systems [13, 26, 40, 50, 64, 65, 67, 68] follow
Pregel’s vertex-centric framework [40], while a few others adopt a
subgraph-centric framework [17, 18, 56, 62, 63]. These systems aim
at offline graph analytics and mining workloads, instead of online
querying that requires low latency.

RDMA-based Systems. The benefits of RDMA stimulate the de-
velopment and new designs of the high-performance distributed sys-
tems/stores, such as key-value stores [32, 41], relational databases [34,
36], and graph systems [19, 30, 60]. RDMA is also used to acceler-
ate the performance in various areas such as in Spark [38], MPI [37],
server monitoring [57]. The design considerations of using RDMA
in Grasper are specific for OLAP workloads on PGs, which are
different from those in above works.

8 CONCLUSIONS
We presented Grasper, a high performance system for processing
online analytical queries on PGs. Grasper leverages RDMA to re-
duce the network cost of distributed query processing and tightly
integrates the data store with the query engine for efficient commu-
nication. A distinguishing feature of Grasper is its query execution
model, Expert Model, which not only enables tailored optimizations
for each specific category of query steps, but also supports adaptive
parallelism control and dynamic load balancing on runtime. Our
experimental results show that Grasper achieves low latency and
high throughput for a broad range of OLAP workloads. For future
work, we have extended Grasper for OLTP workloads and the new
system will be released soon.
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