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ABSTRACT
Inspired by Google’s Pregel, many distributed graph processing
systems have been developed recently to process big graphs. These
systems expose a vertex-centric programming interface to users,
where a programmer thinks like a vertex when designing parallel
graph algorithms. However, existing systems are designed for tasks
where most vertices in a graph participate in the computation, and
they are not suitable for processing light-workload graph queries
which only access a small portion of vertices. This is because their
programming model can seriously under-utilize the resources in a
cluster for processing graph queries.

In this demonstration, we introduce a general-purpose system
for querying big graphs, called Quegel, which treats queries as
first-class citizens in the design of its computing model. Quegel
adopts a novel superstep-sharing execution model to overcome the
weaknesses of existing systems. We demonstrate it is user-friendly
to write parallel graph-querying programs with Quegel’s interface;
and we also show that Quegel is able to achieve real-time response
time in various applications, including the two applications that we
plan to demonstrate: point-to-point shortest-path queries and XML
keyword search.

1. INTRODUCTION
Graph data are very common in real-life applications nowadays,

such as online social networks, mobile communication networks
and the Semantic Web. These graphs often contain billions to tril-
lions of vertices and edges, and require dedicated infrastructure for
efficient processing. Pregel [7] and Pregel-like systems [1, 3, 11,
10, 6] have become popular in recently years due to their user-
friendly programming paradigm and good horizontal scalability.
In a Pregel-like system, a programmer only needs to specify the
behavior of one generic vertex, and the execution of the specified
computation logic on all vertices is automatically scheduled by the
system, which also handles other issues such as fault tolerance and
horizontal scalability.

However, existing Pregel-like systems are designed for graph-
analytic tasks with heavy-weight workload, where most part of a
graph or the entire graph is accessed. For example, the PageRank
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algorithm of [7] accesses all vertices in each iteration. However,
many real-world applications involve various types of graph query-
ing, whose computation is light-weight as they only need to access
a small portion of the input graph. For instance, in our collabora-
tion with researchers in a large online shopping platform, we have
seen huge demands for querying different aspects of big graphs for
all sorts of analysis to boost sales and improve customer experi-
ence. A particular example is that they need to frequently examine
the shortest-path distance between some users in a large network
extracted from their online shopping data. In this case, point-to-
point shortest-path (PPSP) queries studied in this work is much
more efficient than single-source shortest-path (SSSP) [7] because
only the paths between the queried users are of interest.

The importance of querying big graph has also been recognized
in some recent work [5]. The work identifies two kinds of systems:
(1) those for offline graph analytics (e.g, Pregel and GraphLab) and
(2) those for online graph querying, including Horton [9] and G-
SPARQL [8]. However, the online systems are only tailored for
specific queries, and so far, there lacks a general-purpose frame-
work that allows users to easily design distributed algorithms for
efficiently answering various types of queries on big graphs.

While we may also answer graph queries using an existing Pregel-
like system, this approach suffers from the following weaknesses.
There are two solutions to utilizing an existing Pregel-like system
for processing queries on demand:

• to process queries one by one, which results in a low through-
put since the communication workload of one query is usu-
ally too light to fully utilize the network bandwidth and there
can be many synchronization barriers; or

• to hardcode a program to process a batch of queries together
and to take care of the stop conditions manually, which is
not user-friendly and may suffer from the straggler problem
towards the end of the processing, since most queries may
have finished their processing.

There is also no obvious solution to using graph indexing to process
queries in existing Pregel-like systems.

To address the above limitations, we developed Quegel, a dis-
tributed graph-querying engine, which treats queries as first-class
citizens: users only need to write a Pregel-like algorithm for pro-
cessing a generic query, and the system automatically schedules
the processing of multiple incoming queries on demand. As a re-
sult, Quegel is able to answer a query as long as it can be pro-
cessed by a Pregel-style algorithm (but with much better perfor-
mance). Quegel adopts a novel superstep-sharing execution model
to effectively utilize the cluster resources, and uses many other op-
timization techniques to improve system performance and reduce
memory consumption. Quegel also provides a convenient inter-
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Figure 1: System architecture of Quegel

face for constructing graph indexes, which can significantly im-
prove query performance. To our knowledge, Quegel is the first
general-purpose programming framework for querying big graphs
at interactive speeds on a distributed cluster.

The rest of this paper is organized as follows. Section 2 intro-
duces the system design of Quegel, and illustrates how the superstep-
sharing execution model efficiently processes multiple queries on
demand, and manages memory space efficiently. Section 3 presents
the programming interface of Quegel, and demonstrates it is easy
to program graph-querying algorithms in Quegel. Finally, in Sec-
tion 4, we compare the performance of Quegel with the state-of-
the-art vertex-centric systems, and introduce our demonstration plan.

2. THE QUEGEL SYSTEM
Due to space limit, we refer readers to the full paper of Quegel [12]

for more details of Quegel.

System Architecture. Quegel follows a Client/Server architecture.
There is a server program that is responsible for loading the input
graph and processing incoming graph queries. Users submit their
queries to the client programs, which then send them to the server.
Quegel supports an arbitrary number of clients. The architecture of
Quegel is shown in Figure 1. The server program consists of a mas-
ter and a cluster of workers. The master keeps receiving incoming
queries and appending them to a query queue. Queries are periodi-
cally fetched from the queue to be processed, whose information is
maintained in a query table HTQ. The HTQ of master is synchro-
nized to all workers at each communication barrier for processing,
as indicated by “query sync” in Figure 1. Meanwhile, vertices on
different workers exchange messages with each other, as indicated
by “msg sync”.

The server program is deployed on top of Hadoop Distributed
File System (HDFS). Initially, the server program loads an input
graph G from HDFS, i.e., it distributes vertices into main memo-
ries of the workers. After the graph is loaded, if users have enabled
graph indexing, each worker will build an index from its local ver-
tices. Then, the server program receives incoming queries and pro-
cesses them with the user-defined computing logic in a similar way
as in Pregel. To interact with the server program, users may either
type their queries in a client console, or submit a file containing a
batch of queries.

Application Scenarios. Quegel adopts a novel superstep-sharing
execution model to address the problems of existing systems men-
tioned in Section 1. Before introducing the execution model of
Quegel, we first present the design goals of Quegel. Since it is dif-
ficult to achieve both high querying throughput and short response
time in querying a big graph, we target at two big graph query-
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Figure 2: Illustration of superstep-sharing

ing scenarios as follows, both of which are common in real world
applications.

Scenarios (i): Interactive Querying, in which a user submits a
query, checks the result, and then submits another refined query
again, until he/she obtains the desired result. In this scenario, a
query is expected to be answered at interactive speed. For exam-
ple, consider a data scientist in a social media company, who inter-
acts with its social network to study user behaviors. However, no
existing Pregel-like system can meet this requirement.

Scenarios (ii): Batch Querying, in which a user submits a batch
of queries to the system, and these queries need to be answered
in a reasonable amount of time. For example, consider the vertex-
pair sampling approaches for estimating graph metrics (e.g., diame-
ter, betweenness centrality), where a large number of PPSP queries
need to be answered. Quegel is up to two orders of magnitude
faster than existing systems for batch querying, and can thus pro-
vide more accurate estimates of the various graph metrics.

Superstep-Sharing. To meet the requirements of both scenarios
mentioned above, Quegel adopts a novel superstep-sharing execu-
tion model. In this model, each iteration is called a super-round.
In a super-round, Quegel evaluates all queries in HTQ by one su-
perstep (hence the name superstep-sharing); while from the per-
spective of a query, it is processed one superstep after another like
in Pregel. Quegel numbers the superstep of each query separately,
and thus if two queries are submitted at two different super-rounds,
their superstep numbers are different in the same super-round.

Figure 2 illustrates the execution process of superstep-sharing,
in which four queries q1, q2, q3 and q4 are submitted to Quegel
at different time. Assume that all the four queries need 4 super-
steps to be processed. At the first two super-rounds, there is only
one query q1, which executes two supersteps. Since q2 and q3 are
received when Quegel is processing super-round 2, at the begin-
ning of super-round 3, they are fetched from the query queue of
the master for processing together with q1 (note that in this super-
round, the superstep number of q1 is 3, while the superstep number
of q2 and q3 are 1). When Quegel is processing this super-round,
q4 is appended to query queue. When super-round 4 begins, q4 is
fetched for processing along with the other three queries. In this
super-round, q1 executes its last superstep, q2 and q3 execute their
second superstep, and q4 executes its first superstep.

When processing a super-round, different workers run in par-
allel, where each worker evaluates every query q ∈ HTQ. If q
has not been answered yet, the worker performs the user-defined
vertex-centric computation on each of its vertices that are activated
by q; otherwise, the worker reports the results of q and and releases
the resources occupied by q. Messages (resp. aggregator and con-
trol information) of all queries are only synchronized at the end of
a super-round, as illustrated by “msg sync” (resp. “query sync” for
query-specific aggregators and control information) in Figure 1.

Benefits of Superstep-Sharing. For interactive querying where
queries are processed one at a time, the superstep-sharing model
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uses all the resources of the cluster to process each query as in
Pregel. However, Quegel has a shorter query latency since the
graph is already memory-resident, and graph indexing is supported.

For batch querying, superstep-sharing combines the workloads
of multiple queries together in each super-round to better utilize
the cluster resources. This model is more efficient than answer-
ing queries one after another (as in existing Pregel-like systems),
since only one synchronization barrier is required in each super-
round. In other words, in a super-round, the messages of multiple
queries can be sent in one batch to better utilize the network band-
width. The superstep-sharing model also significantly reduces the
synchronization cost. Note that since the workload of processing
each query is light, performing a synchronization barrier for each
query is relatively expensive.

Superstep-sharing also results in a more balanced workload dis-
tribution. We explain the reason with the example given in Fig-
ure 3, which shows the execution of two queries in one superstep
in a cluster of two workers. The first query (darker shading) takes
2 time units on Worker 1 and 4 time units on Worker 2, while the
second query (lighter shading) takes 4 time units on Worker 1 and
2 time units on Worker 2. The figure on the left of Figure 3 shows
the case where the second query needs to wait for the synchroniza-
tion of the first query before starting its processing. Thus, 8 time
units are required in total. In contrast, by using superstep-sharing
as illustrated in the figure on the right of Figure 3, only 6 time units
are required.

System Design. Three kinds of data are managed in Quegel: (i) V-
data, whose value only depends on a vertex, for example, the adja-
cency list of the vertex. (ii) VQ-data, whose value depends on both
a vertex and a query, e.g., the distance of a vertex from the source in
a PPSP query. (iii) Q-data, whose value depends on a query, such
as the superstep number of each query.

As shown in Figure 1, in Quegel, each worker keeps a hash ta-
ble HTQ that holds the Q-data of every query in evaluation. When
a new query q is fetched from the master for processing, its Q-
data is inserted into HTQ of every worker; correspondingly, after
q is finished with evaluation, its Q-data is removed from the ta-
bles. Similarly, each vertex maintains its VQ-data by a lookup table
LUTv , where LUTv[q] refers to the VQ-data for query q. To re-
duce memory consumption, Quegel allocates a VQ-data to a vertex
v for query q only if q accesses v in its processing.

3. PROGRAMMING INTERFACE
To write a program in Quegel, a programmer only needs to (1)

subclass the base classes of Quegel with proper template argu-
ments, and (2) implement the user-defined functions (UDFs) to
specify the application logic. There are two important base classes
in Quegel, Vertex and Worker, which we introduce next.

Vertex Class. The Vertex class has an UDF compute(.) for pro-
grammers to specify the computation behavior of a vertex. In com-
pute(.), function get_query() may be called to get the content of q,
the query currently being processed (e.g., source and destination
vertices in a PPSP query). There are also interfaces for users to

class BFSVertex:public Vertex<VertexID, int, BFSValue, char, intpair>{
virtual void compute(MessageContainer& messages){

if(superstep()==1) {
broadcast message to neighbors

}
else if(qvalue()==INT_MAX){

//step i marks all vertices (i-1) hops away from src
qvalue()=superstep()-1;
if(id == get_query().v2) force erminate();  //dst reached
else {

broadcast message to neighbors
}

}
vote_to_halt();

}
};

class BFSWorker:public Worker<BFSVertex>{
virtual BFSVertex* toVertex(char* line){

parse line to vertex object and return
}
virtual intpair toQuery(char* line){

parse line to (src, dst) and return
}

}

Figure 4: Code snippet of implementation of BFS for PPSP

access the VQ-data of the current vertex (e.g., the vertex value for
query q) or update it (e.g., vote the vertex to halt). One may also
obtain other Q-data of the current query q, such as q’s superstep
number, and may call force_terminate() to terminate the process-
ing of q. The vertex class takes the form Vertex<I , V Q, V V , M ,
Q>, where the five template arguments are given as follows: (1)
<I> specifies the type (e.g., int) of vertex ID. (2) <V Q> speci-
fies the type of the VQ-data of a vertex. (3) <V V > specifies the
type of V-data of a vertex. (4) <M> specifies the type of messages
exchanged between vertices. (5) <Q> specifies the query content
type (e.g., for a PPSP query, <Q> is a pair of source and destination
vertices).

Worker Class. Worker class provides UDFs to specify the for-
mat of data input and output, including how to parse a query string
into a query content, how to parse an input line from HDFS into a
vertex object, how to save the VQ-data of a query (i.e., query re-
sults) to HDFS, how to construct a local index from the vertices
of a worker, etc. The worker class takes the form of Worker<Tvtx,
Tidx>, where <Tvtx> specifies the user-defined subclass of Vertex,
and <Tidx> specifies the optional index class.

The interface of Quegel is easy to use. For example, to imple-
ment a breadth-first search (BFS) based algorithm for answering
PPSP queries, users only need to define the subclasses of Vertex
and Worker as illustrated in Figure 4. The code for the Quegel sys-
tem and various applications on top of it can be found in [2].

4. THE DEMONSTRATION
In this section, we present our demonstration plan, including the

settings of demonstration, and the demonstration scenarios.

4.1 Settings of Demonstration
Environment. We will run the Quegel applications in a cluster of
21 machines (with 1 serving as the master), each with two 2.0GHz
Intel Xeon E5-2620 CPUs and 48GB DDR3 RAM. The machines
are connected by Gigabite Ethernet, running 64-bit CentOS 6.5
with Linux kernel 2.6.32. The HDFS is from Apache Hadoop 2.7.1.

Applications. To demonstrate the efficiency of Quegel for query-
ing big graphs, we have implemented many graph querying algo-
rithms in Quegel, two of which are given as follows (others include
point-to-point reachability queries, terrain shortest path queries,
graph keyword queries, etc.). Table 1 shows the real graph datasets
we will use in our demonstration.
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Table 1: Graph Datasets (M=million)

Dataset |V| |E| Max 
Deg

Avg
Deg

Twitter 52.58 M 1963 M 0.78 M 37.34
BTC 164.7 M 772.8 M 1.64 M 4.69
LiveJ 10.69 M 224.6 M 1.05 M 21.01

(a) Datasets for PPSP Queries

Dataset |V| Doc 
Size

Graph 
Size

DBLP 81.85M 1.4 GB 4.9 GB
XMark 170.53 M 5.5 GB 14 GB

(b) Datasets for XML Keyword Search
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Figure 5: Performance comparison on Twitter and BTC

(i) PPSP Queries. We implemented three algorithms to answer
PPSP queries: BFS, bidirectional BFS (abbr. BiBFS) and Hub2-
Labeling (abbr. Hub2) [4]. Hub2 uses a graph index and achieves
much better performance than BFS and BiBFS, and while it is easy
to implement Hub2 using Quegel, it is not clear how to implement
it in existing vertex-centric systems.

(ii) XML Keyword Search. This application requires each worker
to construct a local inverted index on its vertices, to map each key-
word to those vertices that contain it. The indexing can be easily
implemented in Quegel, and then queries can be evaluated by start-
ing message propagation from the matched vertices.

System Comparison. To give the audience an idea about the per-
formance of Quegel, we compare Quegel with two state-of-the-art
systems, Giraph [1] and GraphLab [3], by running BFS and BiBFS
on the two datasets Twitter and BTC for solving 20 randomly-
generated PPSP queries. Figure 5 shows the average query perfor-
mance of the systems, which shows that Quegel is much faster than
Giraph and GraphLab. In fact, when Hub2 is used in Quegel, we
can answer multiple PPSP queries in a second. More performance
results can be found in the full Quegel paper [12].

4.2 Demonstration Scenarios
For the demo, we built a web interface (of brower/server ar-

chitecture) on top of the Quegel system, and we call the website
Quegel Demo. A user inputs his/her graph queries into a browser,
which transmits them to the web server of Quegel Demo. Quegel
Demo then submits those queries to our Quegel backend, and when-
ever a query gets answered, Quegel Demo sends the results back to
the browser for display.

The web interface of Quegel Demo allows users to select the de-
sired querying application and dataset to start the Quegel server
program. After the program is started, a user can submit queries
through a webpage. Quegel Demo allows users to customize the
visualization module of each specific application. For example, for
PPSP queries, we implemented a module for displaying the shortest
path (see Figure 6), while for XML keyword search, the visualiza-
tion module displays the results as tree fragments. We provide over
10 scenarios for demonstration in Quegel Demo.

The target audience of this demo includes anyone who is inter-
ested in querying big graphs, and Quegel Demo supports many at-
tendees to participate at the same time. The participants can simply

Start Application

Select Application

uegel DemoQ

Choose Application PPSP-Hub2 Choose Dataset Live Journal

PPSP-Hub  on Live Journal is started in 15.22s Stop Application2
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Figure 6: A screenshot of Quegel Demo

select their interested applications on a webpage of Quegel Demo,
and type their queries into the browser. Quegel Demo will process
these queries in parallel and respond to users at interactive speeds.
Users can see the visualized query results and the reported perfor-
mance statistics on the webpage.
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