
1

Dimensionality Reduction Algorithms On Husky
BAO Ergute, LIU Jie

The Chinese University of Hong Kong

Abstract—Dimensionality reduction is a powerful tool for
retrieving information and gain valuable insights from massive
amounts of data. Husky [2] is a distributed computing system
designed to handle mixed jobs of coarse-grained transforma-
tions, graph computing and machine learning. We implemented
three dimensionality reduction algorithms on Husky. The prin-
cipal Component Analysis(PCA) and Singular Value Decompo-
sition(SVD) are widely used in big data processing. PCA is
concerned with explaining the variance structure of a set of
variables through a few linear combinations. In other words,
PCA can be used to reduce the old set of variables to a new
set of fewer variables. While SVD is to find the factorization of
matrix. The factorization can be used for matrix approximation,
data mining, etc. We implemented both Scalable Probabilistic
PCA(SPCA) and Basic-PCA on a distributed platform called
Husky. We also implemented SVD on Husky. Then we compared
and analyze the performance of SVD, Basic-PCA and SPCA. Our
experiment shows that SPCA outperforms SVD and Basic-PCA
when the input data set matrix is tall and fat, whereas SVD and
Basic-PCA is more suitable than SPCA when the input matrix is
tall and skinny.

Keywords—PCA, SVD, distributed platform, Husky.

I. INTRODUCTION

Large amounts of data offer people the opportunity for
extracting valuable insights and retrieve information for further
usage. We can use dimensionality reduction algorithms to
achieve the goal. Moreover, when the data set is big, only
distributed platforms are able to handle the data. Husky is
a distributed computing system designed to handle mixed
jobs of coarse-grained transformations, graph computing and
machine learning. The core of Husky is written in C++ so as
to leverage the performance of native runtime. For machine
learning, Husky supports relaxed consistency level and asyn-
chronous computing in order to exploit higher network/CPU
throughput. During this summer research, LIU Jie and me have
implemented Basic-principal Component Analysis, Scalable
Probabilistic principal Component Analysis and Singular Value
Decomposition on Husky. All of the three algorithms are for
dimensionality reduction for big data on distributed platforms.
In the following sections, we will introduce the three algo-
rithms we have implemented and compare and discuss their
performance and limitations.

II. ANALYSIS OF ALGORITHMS

In this section, we will introduce and compare the three
algorithms we’ve implemented, i.e. Basic-principal Com-
ponent Analysis(Basic-PCA), Singular Value Decomposi-
tion(SVD) and Scalable Probabilistic principal Component
Analysis(SPCA).

A. Basic-PCA
PCA is concerned with explaining the variance/covariance

structure of a set of variables through a few linear combina-
tions. Given an N by D input data matrix A with N observed
data-points, each data-point consists of D potentially correlated
variables x1, x2, ..., xD. We look for a transformation of the D
xis into d new variables zis that are uncorrelated to replace the
old variables. In other words, we want to find the directions
of a set of new axes which minimizes the sum of squared
errors when the original data points are projected on to the
new set of axes. We can mathematically prove that the new
set of d axes have the same directions as the eigen vectors
of A.T ∗A. Essentially, our job is to get the eigen vectors of
AT ∗A. Given the N by D matrix A, we first read the matrix
line by line on the cluster consisting of several workers. We
make each line an object(a basic unit in Husky). Then we want
to get the matrix C = AT ∗ A, i.e.C =

∑n=N
n=1 (An)

T ∗ An.
During this step, each object An only needs to do An

T ∗An and
broadcast the result(or send it to a specific worker), C is the
sum of the result sent by all the workers. Then we just call an
external library called Eigen to get the eigen vectors of C. The
eigen vector corresponding to the largest eigen value of C is
the first principal component of A. Similarly, the eigen vector
corresponding to the second largest is the second principal
component of A, etc. As we’ve noticed, the limitation of this
algorithm is that when D is large, C, which is D by D, can
not fit in the memory of a single worker. In other words, this
algorithm is only suitable for a skinny(D small) input matrix.

input : A ∈ Rm×n

output: vi, i = 1, 2, · · · , d
C = AT ∗A in parallel;
vi = ComputeEigenVectors(C), i = 1, 2, · · · , d;

Algorithm 1: Basic-PCA

B. Singular Value Decomposition
Let A ∈ Rm×n(m ≥ n) have the singular value decompo-

sition A = U
∑
V T . Then the symmetric matrix C = ATA

has eigen values σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
n corresponding to

the eigen vectors vi, i = 1, 2, · · · , n. Now let’s get into our
implementation of SVD on Husky. First, we read the input
matrix A ∈ Rm×n line by line. If m ≥ n, then we use the
method in Basic-PCA to compute C = ATA. Then we collect
the matrix C in one machine and call Eigen to compute the
eigen values σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n and corresponding
eigen vectors vi, i = 1, 2, · · · , n of C. Then matrix V consists
of the right singular vectors we want. Then we can obtain
ui, i = 1, 2, · · · , n by the formula ui = (1/σi)Avi. If
m < n, we need to compute C = AAT first and collect



2

it in a single machine. Then we call Eigen to compute the
eigen values σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

m and corresponding
eigen vectors ui, i = 1, 2, · · · ,m of C. At last, we obtain
vi = (1/σi)A

Tui. As we can see, when both m and n are
large, neither C ∈ Rn×n nor C ∈ Rm×m can fit in the memory
of a single machine. So our implementation of SVD are only
suitable for tall and skinny matrices or short and fat matrices.

input : A ∈ Rm×n

output: ui, i = 1, 2, · · · , r
σ1 ≥ σ2 ≥ · · · ≥ σr
vi, i = 1, 2, · · · , r

if m ≥ n then
C = AT ∗A in parallel;
vi = ComputeEigenVectors(C), i = 1, 2, · · · , r;
σ2

i = ComputeEigenValues(C), i = 1, 2, · · · , r;
ui = (1/σi)Avi in parallel;

else
C = A ∗AT in parallel;
ui = ComputeEigenVectors(C), i = 1, 2, · · · , r;
σ2

i = ComputeEigenValues(C), i = 1, 2, · · · , r;
vi = (1/σi)A

Tui in parallel;
end

Algorithm 2: SVD

C. SVD for PCA

Singular Value Decomposition has some connections with
PCA. As we can see vi s are exactly the principal components
we wanted in PCA. When m < n, the computation for princi-
pal components of the Basic-PCA encounters a bottleneck, i.e.
C = AT ∗A may not fit in the memory when n is big. However,
when A is short and fat we can obtain its right singular
vectors using SVD. Obviously, the right singular vectors are
the principal components we want in PCA. In conclusion,
when the input matrix is short and fat, we can use SVD to
compute the principal components.

D. SPCA for large and sparse matrices

We adopted the algorithm and pseudo code of SPCA [1]
from Elgamal’s paper and we also did some refinement. SPCA
is a scalable version of Probabilist Principal Component Anal-
ysis(PPCA). In this probabilistic approach, PCA is presented
as a latent(unobserved) variable model that seeks a linear
relation between a D-dimensional observed data vector y and
a d-dimensional latent variable x. The model is defined by:
y = C ∗ x + µ + e, where C is a D × d transformation
matrix (i.e, the columns of C are the principal components),
x ∼ N(0, I), µ is the vector mean of y, and e ∼ N(0, ss∗I) is
white noise to compensate for errors.[1] Elgamal makes uses
of the sparsity and also makes some refinement on the original
PPCA to make it scalable. The pseudo code is shown below.

input : Y ∈ RN×D

output: C ∈ RD×d

C = normrnd(D, d);
ss = normrnd(1, 1);
Y m = mean(Y ) in parallel;
ss1 = FrobeniusNorm(Y ) in parallel;
while not STOPCONDITION do

M = CT ∗ C + ss ∗ I;
CM = C ∗M−1;
Xm = Y m ∗ CM ;
XtX, Y tX = YtXJob(Y, Y m,Xm,CM) in parallel;
XtX+ = ss ∗M−1;
C = Y tX/XtX;
ss2 = trace(XtX ∗ CT ∗ C);
ss3 = ss3Job(Y, Y m,Xm,CM,C) in parallel;
ss = (ss1 + ss2− 2 ∗ ss3) ;

end

Algorithm 3: SPCA
There are four parts that involves parallel computation in

the algorithm. The first two are done only once. The latter two
are done in every iteration. In order to speed up the algorithm,
our implementation focus on the code inside the while loop. In
YtXJob, we do the following computation in parallel: XtX =
XT ∗X + ss ∗M−1, Y tX = Y cT ∗X , where X = Y c ∗C ∗
M−1 and Y c = Y − Y m. First, we compute X = y ∗ C ∗
M−1 − Y m ∗ C ∗M−1 instead of computing X = Y c ∗ C ∗
M−1 to leverage the sparsity in Y. Then we make use of the
intermediate matrix X to compute XtX and Y tX . Then we
compute Y tX = Y T ∗ X − Y mT ∗ X instead of computing
Y tX = Y cT ∗ X directly to leverage the sparsity in Y. In
ss3Job, we compute ss3 =

∑N
n=1Xn ∗ CT ∗ Y cTn . Similarly,

to leverage sparsity, we do Xn ∗ (CT ∗ Y T
n )−Xn ∗CT ∗ Y T

m
since CT ∗ Y T

n is small and sparse. For the computation not
done in parallel, we just do it in every single worker. Although
it keeps the worker working intensively, it actually saves the
time of communication between workers.

III. PERFORMANCE

Input(N ×D) d SPCA MLlib Basic-PCA

353× 2K 300 80sec 225sec fail
353× 2K 100 22sec 170sec fail
353× 2K 10 6sec 120sec fail
64× 47236 50 315sec fail fail

20242× 47236 10 100sec/iteration fail fail

Both SPCA and Basic-PCA was implemented and run on
Husky. MLlib-PCA was run on Spark. All tests were run under
the same environment. The 353 × 2K input matrix is dense,
the other 2 input matrices are sparse.

IV. CONCLUSION

On one hand, our implementation of SPCA is most suitable
when the input data set is sparse and fat. Still, our SPCA
on Husky outperforms MLlib-PCA of Spark when the input



3

matrix is 353×2K and dense. It’s mainly because that when D
is high, MLlib is doing CPU intensive computation on a single
machine while SPCA is running EM method on a cluster. On
the other hand, MLlib-PCA and Basic-PCA are better than
SPCA when D is small. When D is small, there is no need
doing parallel computation of EM method for eigen vectors
and thus solving those on a single machine is better.

ACKNOWLEDGMENT

The authors would like to thank Professor James CHENG,
his PhD candidates, LIU Jie and all other people working in
the lab.

REFERENCES

[1] T. Elgamal, M. Yabandeh, A. Aboulnaga, W. Mustafa, and M. Hefeeda.
spca: Scalable principal component analysis for big data on distributed
platforms. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015, pages 79–91, 2015.

[2] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and
expressive distributed computing framework. PVLDB, 9(5):420–431,
2016.


