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Abstract
Principal Component Analysis is a powerful tool
for retrieving information and gain valuable in-
sights from large matrices(data). During this in-
tern, we implemented Scalable Principal Com-
ponent Analysis(SPCA) that especially fit for big
data on a distributed platform called Husky, im-
plemented by Prof. Cheng and his PhDs. Then
we compared the performance of our SPCA
implementation with that of the basic Principal
Component Analysis of MLlib on Spark. The
result shows that SPCA on Husky outperforms
MLlib on Spark a lot when the input data is ex-
tremely large.

Introduction
I Big Data Big data is a term for data sets

that are so large or complex that tradi-
tional data processing applications are inad-
equate. Challenges include analysis, cap-
ture, data curation, search, storage, trans-
fer, etc. The main challenge for SPCA im-
plementation is analysis and storage.

I Husky’s Architecture Husky Husky is a dis-
tributed computing system. Husky’s basic
architecture consists of a master represent-
ing an application, a coordinator managing
the workers inside this process and several
workers representing how CPU cores work
with their associated data.

I Husky C++ Basics and APIs In Husky,
the basic unit in Husky is an object, which
is like the object in Object-Orientation of
C++. Husky provides programmers with
some useful APIs, such as Broadcast,
Send_Message and Request. Moreover,
List_Execute can iterate through objects in
a list and achieve synchronization in the
meantime. In our implementation, we mainly
used Aggregator, which aggregates the re-
sults during a List_Execute.

I Principal Component Analysis Principal
component analysis (PCA) is a statistical
procedure that convert a set of observations
of possibly correlated variables into a set
of values of linearly uncorrelated variables
called principal components.

Pseudo Code
input : Y ∈ RN×D

output: C ∈ RD×d

C = normrnd(D, d);
ss = normrnd(1, 1);
Ym = mean(Y ) parallel;
ss1 = FrobeniusNorm(Y ) parallel;
while not STOPCONDITION do

M = CT ∗ C + ss ∗ I;
CM = C ∗M−1;
Xm = Ym ∗ CM;
XtX , YtX = YtXJob(Y , Ym, Xm, CM)
parallel;

XtX+ = ss ∗M−1;
C = YtX/XtX;
ss2 = trace(XtX ∗ CT ∗ C);
ss3 = ss3Job(Y , Ym, Xm, CM, C)
parallel;

ss = (ss1 + ss2− 2 ∗ ss3) ;
end

Algorithm 1: SPCA

Details Of SPCA
We adopted the algorithm and pseudo code of SPCA[1] from Elgamal’s paper and we also did some
refinement. SPCA is a scalable version of Probabilist Principal Component Analysis(PPCA). In this
probabilistic approach, PCA is presented as a latent(unobserved) variable model that seeks a linear
relation between a D-dimensional observed data vector y and a d-dimensional latent variable x. The
model is defined by: y = C ∗ x + µ + e, where C is a D × d transformation matrix (i.e, the columns
of C are the principal components), x ∼ N(0, I), µ is the vector mean of y , and e ∼ N(0, ss ∗ I) is
white noise to compensate for errors.[1] The work in [2] shows that, given N observations yrN1 as
the input data, the log likelihood of data is given by:L(yr ) =

∑
lnp(yr ).Thus, the Maximum Likelihood

Estimate (MLE) of C is obtained by optimizing:

argmaxCL(yr ) (1)

The main idea behind the Probablistic PCA algorithm described in [2] is that the MLE solution of
Equation [3] is equivalent to the solution of PCA. Moreover, [2] proposed an Expectation Maximiza-
tion (EM) [4] algorithm to optimize the likelihood of Equation (1). EM is a well-known method to
optimize the likelihood of models when a closed form solution does not exist. In our implementation,
we obtain C by solving the maximum loglikelihood expectation iteratively, as they did in PPCA.

Implementation Details
There are four parts that involves parallel com-
putation in the algorithm. The first two are done
only once. The latter two are done in every
iteration. In order to speed up the algorithm,
our implementation focus on the code inside the
while loop. In YtXJob, we do the following com-
putation in parallel: XtX = X T ∗ X + ss ∗ M−1,
YtX = YcT ∗ X , where X = Yc ∗ C ∗ M−1

and Yc = Y − Ym. First, we compute X =
y ∗ C ∗ M−1 − Ym ∗ C ∗ M−1 instead of com-
puting X = Yc ∗ C ∗ M−1 to leverage the spar-
sity in Y. Then we make use of the intermedi-
ate matrix X to compute XtX and YtX . Then
we compute YtX = Y T ∗ X − YmT ∗ X instead
of computing YtX = YcT ∗ X directly to lever-
age the sparsity in Y. In ss3Job, we compute
ss3 =

∑N
n=1 Xn ∗CT ∗YcT

n . Similarly, to leverage
sparsity, we do Xn ∗ (CT ∗ Y T

n ) − Xn ∗ CT ∗ Y T
m

since CT ∗Y T
n is small and sparse. For the com-

putation not done in parallel, we just do it in ev-
ery single worker. Although it keeps the worker
working intensively, it actually saves the time of
communication between workers. In particular,
our implementation of SPCA is tailored for large
and sparse matrices.

Performance and Conclusion
Input d SPCA MLlib

Matrix1 300 80sec 225sec
Matrix1 100 22sec 170sec
Matrix1 10 6sec 120sec
Matrix2 50 315sec fail
Matrix3 10 100sec/iteration fail

Matrix1 is of size 353 × 2K , i.e. N = 353 and
D = 2K , Matrix2 is of size 64× 47236 and Ma-
trix3 is of size 20242×47236. SPCA was imple-
mented and run on Husky. MLlib-PCA was run
on Spark. All tests were run under the same en-
vironment. The 353×2K input matrix is dense,
the other 2 input matrices are sparse. As we
can see, although Matrix1 is dense, our SPCA
still outperforms PCA of MLlib. Moreover, when
the input matrix is extremely fat(D big), MLlib
can no longer do the computation.

Known Problems
The limitation of our SPCA implementation lies
within with D, d and the memory limit of each
worker. As we can see, each worker should be
able to store matrices of size D×D and do ma-
trix operations of the same size. Moreover, the
speed is also limited by D and d , the smaller
D and d are, the faster the computation is. In
the future, we may need determine if the input
matrix is sparse or dense during run time and
come up with the optimal storing scheme. We
may also need to look into Eigen, the library we
called to do single-machine matrix operation, to
see if there is anything to refine.

Conclusion
In conclusion, our SPCA is way better than ML-
lib when the input matrix is sparse, large and
fat. Otherwise, it may still outperform MLlib.
Last but not the least, MLlib is more suitable
when the input matrix is tall and thin.
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