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Introduction 

This work is implementing a library about Stochastic Gradient 
Descent (SGD) for Generalized Linear Model on Husky and 
PyHusky, which are the open-source framework for 
distributed computing[1]. 

Motivation 

1. Provide efficient Big-Data analysis tools on distributed 
computing framework 

2. Prepare handy API for customized linear model. 

Working principles and theories 

SGD is an optimization method for minimizing a cost 
function. In this method, we take gradient of cost function 
with parameters vector, which indicated the worst 
direction in parameters space of minimizing the cost 
function. Therefore, ones can find the minimal point by 
taking step to the opposite direction after calculating the 
average gradient of a batch of samples until converge. 
 
 
 
 
 
 
 
 
 

Figure 1[2]. SGD in 2-D parameters space 
With SGD, ones can find the approximant solution of 
Generalized Linear model by defining the cost function as 
the mean square error of model’s prediction and output. 
For example, in the linear regression model, the prediction 
of a data point is 

𝑦 =  𝑋𝑇 ⋅ 𝑊 
where 𝑋 is the feature of the data point and 𝑊 is the 
weighting. Hence, the updating process is: 
Until converge: 
 For each sample i: 

 𝑊𝑗
𝑡+1 = 𝑊𝑗

𝑡 − 𝛼(𝑦 − 𝑊𝑇 ⋅ 𝑋) 

in which 𝛼 is the learning rate. 
 

Programming Model 

SGD_model can build customized linear model. The key 
API: 
class SGD_model: 

 def initialization(gradient_func, 

error func, n_feature) 

 def train(object_list) 

 def avg_error(object_list) 

 def get_param() 

 
In Husky for C++, we have wrapped the linear regression 
model, which is inherited from SGD_model so most of the 
method is similar, only major difference: 
Class SGD_LinearRegression: 

def initialization(get_X, get_y, 

n_feature) 

 def score(object_list) 

 … other methods 

 
The Linear Regression API in PyHusky: 
Class LinearRegression(): 

 def initialization() 

 def load_pyhusky(pyhusky_list) 

 def load_hdfs(hdfs_url) 

 def train() 

Result and discussion 

 
 
 
 
 
 
We can see that PyHusky is more efficient on handling 
large-scale data. 
The Dataset used in the test is Million Song Dataset, in 
which there are over 500,000 line of data and each has 99 
features. The number of iterations of SGD is 200. 
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Conclusion 

With the efficient distributed computing framework, 
Husky, we can analysis data and build linear model in a 
faster way. 
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