
Implementation of SGD for Generalized Linear Model on Husky

Student: NG Ka Lok Supervising Professor: James CHENG

The Chinese University of Hong Kong

Introduction

This work is implementing a library about Stochastic Gradient
Descent (SGD) for Generalized Linear Model on Husky and
PyHusky, which are the open-source framework for
distributed computing[1].

Motivation

1. Provide efficient Big-Data analysis tools on distributed
computing framework

2. Prepare handy API for customized linear model.

Working principles and theories

SGD is an optimization method for minimizing a cost
function. In this method, we take gradient of cost function
with parameters vector, which indicated the worst
direction in parameters space of minimizing the cost
function. Therefore, ones can find the minimal point by
taking step to the opposite direction after calculating the
average gradient of a batch of samples until converge.

Figure 1[2]. SGD in 2-D parameters space
With SGD, ones can find the approximant solution of
Generalized Linear model by defining the cost function as
the mean square error of model’s prediction and output.
For example, in the linear regression model, the prediction
of a data point is

𝑦 = 𝑋𝑇 ⋅ 𝑊
where 𝑋 is the feature of the data point and 𝑊 is the
weighting. Hence, the updating process is:
Until converge:
 For each sample i:

 𝑊𝑗
𝑡+1 = 𝑊𝑗

𝑡 − 𝛼(𝑦 − 𝑊𝑇 ⋅ 𝑋)

in which 𝛼 is the learning rate.

Programming Model

SGD_model can build customized linear model. The key
API:
class SGD_model:

 def initialization(gradient_func,

error func, n_feature)

 def train(object_list)

 def avg_error(object_list)

 def get_param()

In Husky for C++, we have wrapped the linear regression
model, which is inherited from SGD_model so most of the
method is similar, only major difference:
Class SGD_LinearRegression:

def initialization(get_X, get_y,

n_feature)

 def score(object_list)

 … other methods

The Linear Regression API in PyHusky:
Class LinearRegression():

 def initialization()

 def load_pyhusky(pyhusky_list)

 def load_hdfs(hdfs_url)

 def train()

Result and discussion

We can see that PyHusky is more efficient on handling
large-scale data.
The Dataset used in the test is Million Song Dataset, in
which there are over 500,000 line of data and each has 99
features. The number of iterations of SGD is 200.

0

10

20

30

40

PySpark: train PyHusky: load_pyhusky +
train

PyHusky: load_hdfs + train

Time spent on Linear Regression Train (second)

Conclusion

With the efficient distributed computing framework,
Husky, we can analysis data and build linear model in a
faster way.

Acknowledgement

I would like to express my special thanks to my
supervising professor James Cheung who gave this
great opportunity as well as other postgraduate
student who help me a lot to finish this project.

Reference
1. F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient

and expressive distributed computing framework. PVLDB,
9(5):420–431, 2016.

2. R. Ward, "Stochastic Gradient Descent with Importance
Sampling", The University of Texas at Austin, 2014.

