
Principal Component Analysis Implementation on Husky

Liu Jie
Department of Computer Science

and Engineering
The Chinese University of Hong Kong

1155047039@link.cuhk.edu.hk

Bao Ergute
Department of Computer Science

and Engineering
The Chinese University of Hong Kong

1155076717@link.cuhk.edu.hk

Abstract—Principal component analysis (PCA) is a classical
data analysis technique that finds linear transformations of data
that remain the maximal amount of variance. PCA is an impor-
tant tool in many areas including dimensionality reduction, image
processing, data visualization and information retrieval. We im-
plemented several PCA algorithms on the Husky platform, which
is developed mainly for in-memory large scale data mining, and
adopted a few optimizations to achieve scalability in distributed
settings. We present three methods of computing PCA in this
report: Basic-PCA (computing eigen decomposition of covariance
matrix), SVD-PCA (using singular value decomposition), scalable-
PCA, or sPCA (based on Probabilistic PCA).

Keywords—Husky, principal component analysis.

I. INTRODUCTION

Many current machine learning algorithms were designed
for centralized computing system, making it difficult to make
sense of big data. In other words, increasing scale of data
highlights the need for designing distributed machine learning
algorithms. Husky [2] offers a simple yet expressive set of
object interaction primitives, and can serve as a platform for
developing distributed algorithms with comparable efficiency
as low-level codes. We developed PCA libraries on Husky
to avoid common challenges appearing in distributed settings,
such as handling failures, balancing load, etc.

PCA is not only a useful tool in areas like image pro-
cessing, data visualization, but also a key step in many other
machine learning algorithms which do not perform well with
high dimensional data, since it reduces the dimensionality
of data. We implemented three PCA algorithms on Husky:
Basic-PCA (eigen decomposition), SVD-PCA (singular value
decomposition), sPCA (Probabilistic PCA). We will lay stress
on sPCA since Probabilistic PCA promises the best theoretical
scalability. Our experiments showed that PCA algorithms in
popular libraries, such as Mahout on MapReduce and MLlib
on Spark do not scale well to support high-dimensionality
data analysis, and sPCA on Husky can outperform these two
libraries.

The rest of this paper is organised as follows: In Section 2,
we present different PCA methods. In Section 3, we presents
our experimental evaluation. Section 4 concludes the paper.

II. ANALYSIS OF PCA ALGORITHMS

In this section, we analyze different methods of computing
the principle components of a given dataset represented as a
matrix, and also present their implementations on Husky.

We represent the given dataset as matrix Y of size N ×D.
That means that the dataset has N samples and every sam-
ple has D features. A PCA algorithm obtains d principal
components (d ≤ D) that explain the most variance (and
hence information) of the data in Y. Original matrix Y can
be mapped on the principal components using the following
formula: X = Y ∗ C, where C is a transformation matrix of
size D × d.

A. Basic-PCA

One of the simplest way to compute principal components
is to compute the eigen decomposition of the covariance
matrix.

Algorithm 1 Basic-PCA (Matrix Y, int N, int D, int d)
1: Y m = columnMean(Y)

2: Y c = Y.rowwise− Y m
3: for all Yi in Yc.rows do
4: cov mat+ = Y iT ∗ Y i
5: end for
6: C = EigenSolver(cov mat).sort().submatrix()

This method is implemented in MLlib on Spark, however,
it is not suitable for large datasets due to high computational
cost and high communication cost. The computational cost is
dominated by the computation of covariance matrix, which is
O(N*D*min(N, D)). In addition to that, this method generates
a dense covariance matrix of size D×D which can account for
high communication cost. It still works for small dimensional
data. For example, given a dataset of size 3000 × 120, we
prefer basic-PCA than scalable-PCA which we will mention
later, since computing transformation matrix C directly is more
efficient than using EM method in this case.

As shown in algorithm 1, the basic-PCA algorithm is
only partially distributed. Computation of covariance matrix
can be separated into a number of parallel tasks, but the
eigen decomposition cannot. We compute Eigenvectors and
Eigenvalues using EigenSolver in Eigen/Eigenvalues module.
The implementation of this algorithm can now be found in
Husky/examples folder.

B. Singular Value Decomposition

Let A ∈ Rm×n(m ≥ n) have the singular value decompo-
sition A = U

∑
V T . Then the symmetric matrix M = ATA

has eigen values σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
n corresponding to

the eigen vectors vi, i = 1, 2, · · · , n. Now let’s get into our
implementation of SVD on Husky. First, we read the input

matrix A ∈ Rm×n line by line. If m ≥ n, then we use the
method in Basic-PCA to compute M = ATA. Then we collect
the matrix M in one machine and call Eigen to compute the
eigen values σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n and corresponding eigen
vectors vi, i = 1, 2, · · · , n of M. Then matrix V consists of
the right singular vectors we want. Then we can obtain ui,
i = 1, 2, · · · , n by the formula ui = (1/σi)Avi. If m < n, we
need to compute M = AAT first and collect it in a single
machine. Then we call Eigen to compute the eigen values
σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

m and corresponding eigen vectors ui,
i = 1, 2, · · · ,m of M. At last, we obtain vi = (1/σi)A

Tui. As
we can see, when both m and n are large, neither M ∈ Rn×n

nor M ∈ Rm×m can fit in the memory of a single machine.
So our implementation of SVD are only suitable for tall and
skinny matrices or short and fat matrices.

input : A ∈ Rm×n

output: ui, i = 1, 2, · · · , r
σ1 ≥ σ2 ≥ · · · ≥ σr
vi, i = 1, 2, · · · , r

if m ≥ n then
M = AT ∗A in parallel;
vi = ComputeEigenVectors(M), i = 1, 2, · · · , r;
σ2

i = ComputeEigenValues(C), i = 1, 2, · · · , r;
ui = (1/σi)Avi in parallel;

else
M = A ∗AT in parallel;
ui = ComputeEigenVectors(M), i = 1, 2, · · · , r;
σ2

i = ComputeEigenValues(M), i = 1, 2, · · · , r;
vi = (1/σi)A

Tui in parallel;
end

C. SVD-PCA

Singular Value Decomposition has some connections with
PCA. As we can see vi s are exactly the principal components
we wanted in PCA. When m < n, the computation for prin-
cipal components of the Basic-PCA encounters a bottleneck,
i.e. M = AT ∗ A may not fit in the memory when n is
big. However, when A is short and fat we can obtain its
right singular vectors using SVD. Obviously, the right singular
vectors are the principal components we want in PCA. In
conclusion, when the input matrix is short and fat, we can
use SVD to compute the principal components.

D. scalable-PCA

Websites, social networks, and sensors generate massive
amount of data every day, and some datasets may have millions
of dimensions. Our experiments showed that Spark fails to
process datasets of high dimensionality. That is the motivation
for implementing scalable-PCA (sPCA) on Husky.

Scalable-PCA is based on Probabilistic PCA, so we present
Probabilistic PCA in some details first. Probabilistic PCA
(PPCA) is a probabilistic approach, in which PCA is presented
as a latent (unobserved) variable model that seeks a linear
relation between a D-dimensional observed data vector y and
a d-dimensional latent variable x. The model is defined by:

y = C ∗ x + µ+ ε (1)

The motivation is that, with d < D, the latent variables will
offer a more parsimonious explanation of the dependencies
between the observations. x ∼ N(0, I), and ε ∼ N(0, ϕ).
Equation (1) induces a corresponding Gaussian distribution for
the observations y ∼ N(µ,CCT + ϕ). The model parameters
can be determined by maximum-likelihood, although because
there is no closed-form analytic solutions for C and ϕ, their
values can be obtained via EM method.

The x-conditional probability distribution over y-space is
given by

y|x ∼ N(Cx + µ, ss ∗ I)

The marginal distribution for the observed data y is obtained
by integrating out the latent variables:

y ∼ N(µ,M),

where the observation covariance model is specified by M =
CCT + ss ∗ I. The corresponding loglikelihood is then

L = −N
2
{d ln(2π) + ln |M | +tr(M−1S)},

where S is the sample covariance matrix of the observations
{yn}. Estimates for C and ss can be obtained by iterative
maximization of L using EM algorithm, which is a well-known
method to optimize the likelihood of the models when a closed
form solution does not exist. The pseudo code of sPCA is
shown below:

Algorithm 2 sPCA (Matrix Y, int N, int D, int d)
1: C = normrnd(D, d)

2: ss = normrnd(1, 1)

3: Ym = meanJob(Y)
4: ss1 = FnormJob(Y)
5: while not STOP CONDITION do
6: M = CT * C + ss * I
7: CM = C * M−1

8: Xm = Ym * CM
9: {XtX , YtX} = YtXJob(Y, Ym, Xm, CM)
10: XtX += ss ∗M−1

11: C = YtX/XtX

12: ss2 = trace(XtX ∗ CT ∗ C)
13: ss3 = ss3Job(Y, Ym, CM, C)
14: ss = (ss1 + ss2− 2 ∗ ss3)/N/D
15: end while

The function normrnd(r,c) gives a random matrix of size
r × c with Normal Distribution. The algorithm initializes the
transformation matrix C and the variance ss with random
values. At each iteration, it improves C and ss until it reaches
the STOP CONDITION. The time complexity is O(NDd),
which proves itself a potential candidate for performing PCA
for large datasets.

We adopted several optimizations proposed by Elgamal in
his sPCA paper [1]. First, Sparse matrices can achieve a small
disk and memory footprint by storing only non-zero elements,
but subtracting mean from original data would make many
elements non-zero. Therefor we do not subtract the mean
and keep original matrix Y and mean vector Ym in two
separate data structures. We propagate the mean throughout

the different matrix operations.

Y c ∗ C = (Y − Y m) ∗ C = Y ∗ C − Y m ∗ C

Second, we note that storing and exchanging X is expensive
due to its large size, so we redundantly compute X at
each job that consumes it as input. This approach trades
communication cost with computation cost.

III. PERFORMANCE EVALUATION

We present the comparison of sPCA on Husky and
MLlib-PCA on Spark. The experiment result is shown below.
We can see that MLlib-PCA is not capable of processing
datasets of 10000 or more dimensions, while sPCA can do
it without problems. Note that if the number of features is
below one thousand, basic-PCA and MLlib-PCA is more
suitable for that task.

Input(N ×D) d SPCA MLlib

353× 2K 300 80sec 225sec
353× 2K 100 22sec 170sec
353× 2K 10 6sec 120sec
64× 47236 50 315sec fail

20242× 47236 10 100sec/iteration fail

Both SPCA and Basic-PCA was implemented and run on
Husky. Mlib-PCA was run on Spark. All tests were run under
the same environment (20 workers, 20 threads).

IV. CONCLUSION

In this report, we analyzed different methods for computing
principal components of an input matrix in a distributed setting.
Current PCA algorithm on Spark has significant computation
and communication bottlenecks, and sPCA we implemented
on Husky can do much better comparing to MLlib-PCA when
faced with datasets with high dimensions (D > 1k).

ACKNOWLEDGMENT

The authors would like to thank Professor James Cheng
for his encouragement and guidance, and thank all the senior
teammates in Husky Team for their patience and assistance.
We wish to spend another summer with this great team.

REFERENCES

[1] T. Elgamal, M. Yabandeh, A. Aboulnaga, W. Mustafa, and M. Hefeeda.
spca: Scalable principal component analysis for big data on distributed
platforms. In SIGMOD, pages 79–91, 2015.

[2] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and
expressive distributed computing framework. PVLDB, 9(5):420–431,
2016.

