
Scalable Principal Component Analysis
Implementation on Husky

Liu Jie, Bao Ergute
Dept. of Compuer Science and Engineering, The Chinese University of Hong Kong

Introduction

This study aims to implement scalable PCA algorithm based
on probabilistic PCA on a distributed computing platform,
Husky, which is developed by Prof. James Cheng’s team, and
employ several optimizations [1] to support large datasets.

Motivation

I Nowadays, websites, social networks and sensors generate
massive amount of data with possibly millions of features.

I Current libraries that offer PCA for distributed clusters, such as
Mahout on MapReduce and MLlib on Spark, do not scale well
to support big data analysis.

Basic Concepts

I PCA : Principal Component Analysis, a statistical procedure
that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components.

I y: input matrix of size N × D, that is, N samples or
observations, D features or variables.

I x: principal components of size N × d , where d is the number
of components to be kept. Also the latent variable in
probabilistic model.

I C: transformation matrix of size D × d

Method

I Probabilistic PCA
I PCA is presented as a latent variable model that seeks a linear

relation between a D-dimensional observed data vector y and a
d-dimensional latent variable x.

y = C ∗ x + µ+ ε

Given N observations {y}N1 as the input data, the log likelihood
is given by:

L({y}) =
N∑

r=1

ln{p(y)}
.
MLE of C is obtained by optimizing argCmaxL({y}).
The main idea of probabilistic PCA is that the MLE solution is
the solution of PCA. Expectation Maximization algorithm is
adopted to solve MLE problem. This is the framework of our
PCA algorithm.

References

[1] T. Elgamal, M. Yabandeh, A. Aboulnaga, W. Mustafa, and M. Hefeeda.

spca: Scalable principal component analysis for big data on distributed

platforms. In SIGMOD, pages 79–91, 2015.

[2] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and

expressive distributed computing framework. PVLDB, 9(5):420–431, 2016.

Optimizations

Figura: From PPCA to sPCA

I Propagate mean to leverage sparsity, and keep original matrix Y
and mean vector Ym in two separate data structures.

YC ∗ C = (Y − Ym) ∗ C = Y ∗ C − Ym ∗ C
I Minimize the intermediate data. Store vectors and small matrices

locally and trade intermediate data footprint with redundant
computation. The above figure shows the change of job
scheduling.

I Make matrix multiplication more efficient.

(AT ∗ B) =
D∑

i=1

(Ai)
T ∗ Bi

If instead A * B we want to compute AT ∗ B, then we can use
the formula above to reduce random accesses to the matrices.

Performance Evaluation

I Our experiments show that sPCA outperforms MLlib-PCA in
terms of running time and intermediate data generated during
the computation when processing datasets with O(1k)
dimensions or more.

Input(N × D) d SPCA MLlib-PCA

353× 2K 300 80sec 225sec

353× 2K 100 22sec 170sec

353× 2K 10 6sec 120sec

64× 47236 50 315sec fail

20242× 47236 10 100sec/iteration fail

Conclusion

We analyzed different methods for computing PCA, and
implemented scalable PCA (sPCA) algorithm which is based on
probabilistic PCA on Husky platform. While PCA on popular
platforms (MapReduce, Spark) cannot scale to large datasets
due to computation and communication bottlenecks, sPCA has
been proved to outperform PCA on Spark and be capable of
processing datasets with O(100K) dimensions.

Acknowledgement

We would like to thank Professor James Cheng and all phd
mentors for their great assistance.


