
Summer Research Internship

Franklin Lee

SID: 1155077143

Implementation of a High-Performance Distributed Web Crawler and Big Data

Applications with Husky

Franklin Lee

The Chinese University of Hong Kong

Abstract

Husky is a distributed computing system, achieving outstanding

results in large scale data mining and designing efficient distributed

algorithms. Considering low efficiency of systems like Hadoop and

Spark, etc., it is a motivation for us to start the Husky open-source

project, which attempts to strike a better balance between high

performance and low development cost. Web crawler is a well-known

method of collecting huge amount of data for implementations relating

to big data. However, simple compiler system shows low efficiency in

crawling billions of data. With the help of Husky, it is a motivation

to create a high-performance distributed web crawler which can

complete a great quantity of crawl assignments in a high speed.

Figure 1. Performance on TF-IDF

1. Introduction

In order to improve and perfect the performance of Husky[2],

division of labor assigned to different task groups (e.g. Pyhusky group,

machine learning group, crawler group). I am belonging to crawler group;

whose task aims at providing plenty of raw data to build a big data

foundation so that other group members (e.g. machine learning group)

can train their specific mode or test their existing algorithms.

Meanwhile, some attempts related with big data can be efficiently

analyzed by utilizing crawled data (e.g. customer impression analysis,

prices of houses analysis, conference topic trend analysis). With the

help of high efficient system Husky, billions of data can be downloaded

Summer Research Internship

Franklin Lee

SID: 1155077143

in few minutes.

2. Basic Crawler Implementations

A crawler is a program that automatically collects Web pages to

create a local index and/or a local collection of web pages. Roughly,

a crawler starts off with an initial set of URLs, called seed URLs.
It first retrieves the pages identified by seed URLs, extracts any URLs

in the pages, and adds the new URLs to a queue of URLs to be scanned.

Then the crawler gets URLs from the queue (in some order), and repeats

the process.

In my approach, basic crawler code is written in python, which has

powerful library like RE, BeautifulSoup. When facing different

websites, crawling methods need changing in order to fit different

situations. In general, two kinds of crawling methods are developed

and implemented:

The first method is simple but useful, which only needs few lines

of code and can crawl thousands of pages. This method makes use of URL

to distinguish pages’ differences by number changes. We can slightly

change the number so that we can link to adjacent webpages:
def trade_price(max_pages):

 page=1

 while page<=max_pages:

 url='http://sz.lianjia.com/ershoufang/luohu/pg' + str(page)

+ '/'

page += 1

Listing 1: Core Code Method 1

Websites like stocks information, house prices, customer comments

are usually fit the previous style mentioned above.

The second method is powerful and comprehensive, which utilizes

distributed script files which makes each process of crawling clear

and obvious. First insert the main websites of crawling object, and

define the limit requesting time for each page, then assign proxy

servers and make arrangements for RE search rules in order to link

to wanted resource webpages, finally download related data to HDFS

files and repeat the whole process. Main functions are defined in

hcrawl, and it is quite simple for user to import it in program and

follow steps to crawl:
__init__.py

__init__.pyc

crawler_config.py

crawler_config.pyc

crawler_dist.py

crawler_dist.pyc

crawler_utils.py

crawler_utils.pyc

Summer Research Internship

Franklin Lee

SID: 1155077143

Listing 2: Core Code Method 2

3. The High-Performance Distributed Web Crawler Approach

Husky is an efficient and expressive distributed computing

framework; It has been shown that many existing programs can be easily

implemented and bridged together inside Husky, and Husky is able to

achieve similar or even better performance compared with

domain-specific systems. Considering Husky system’s powerful

computing framework, it is a motivation to combine Husky with crawler

to make a high-performance distributed web crawler.

3.1 Workers

A worker can be regarded as a special type of objects that can read

from external sources, e.g., Hadoop distributed file system (HDFS),
and create objects. Husky allows users to specify a partition function

to assign objects to different workers. An application can achieve

better performance if the partition function groups objects that

frequently interact with each other in the same partition.

3.2 Master-Worker Architecture

A Husky cluster consists of one master and multiple workers. The

master is responsible to coordinate the workers, and workers perform

actual computations. To perform a round computation (by calling list

execute), a worker first receives all incoming communications (if any)

from other workers, dispatches messages to objects and invokes their

execute function, and finally flushes the outgoing communications

that object have generated.

Usually a worker flushes outgoing communications only after all

workers on its same host finishes the current execution round. The

purpose is to exploit the effective shuffle combiner technique to

maximize message reduction. However, when no combiner is provided,

Husky will batch and flush message right after they are generated,

in order to interleave CPU usage and networking IO.

3.3 Crawler Distribution with Husky

Summer Research Internship

Franklin Lee

SID: 1155077143

Web crawlers are always dealing with massive data processing,

which usually consume much time and CPU. Generally, a web crawler

starts with a list of URLs to visit. As the crawler visits these URLs,

it identifies all the hyperlinks in the page and adds them to the list

of URLs to visit, called the crawl frontier. URLs from the frontier

are recursively visited according to a set of policies. If the crawler

is performing archiving of websites it copies and saves the

information as it goes.

Figure 2: Basic Two Components of the Crawler

With the help of Husky, the task of crawler can be distributed to

workers so that the speed can be greatly enhanced. After simple

commands in dialog window:
 ./Master conf/<user>.conf

 ./Daemon conf/sg.conf

 python <file_name> --host <master_host> --port <master_port>

Then add Pyhusky command in order to utilize Pyhusky library which

make program clear and fast, e.g.:
 ph.env.pyhusky_start()

 husky_list=ph.env.parallelize(data_cloud)

 husky_list.write_to_hdfs("/datasets/stock_company_informat

ion/")

Summer Research Internship

Franklin Lee

SID: 1155077143

Figure 3: Crawler Configuration with Husky

With the enhancement of Husky system, crawling speed will

skyrocket up. In single local server, tested program can reach

approximately 5 to 10 HTML pages per second. By comparison, a

configuration as the one in Figure 3 would require between 3 to 5

workstations, and would achieve an estimated peek rate of 250 to 400

HTML pages per second.

4. Big Data Applications with Husky

As the super advantage in crawler with Husky, it is very fast to

gain a large amount of data. With huge amount data, it is interesting

to make analysis to obtain accurate insights. Also, by analyzing

specific data in certain industry, we can even comprehend and forecast

the future trend, and make corresponding adjustment with the support

of evidence-based data.

4.1 City Super Customer Impression Analysis

City Super is a supermarket in Hong Kong, and it is famous for

imported product and high-quality service, whose target group is main

high-income people. For a company, it is very important to investigate

customer impression and feedback to make better management and further

progress. However, it is very difficult to know the facts by real

questionnaires, with big data, we can have the aid of data

visualization to figure out customer impression by retrieving core

words from customer comments.

By web crawler with Husky, customer comments from Da Zhong Dian

Ping website can be easily downloaded. We specify one store of City

Super located in IAPM, retrieving its comments from 2014.5.1 to

2016.5.25. Totally three data sets with 42,955 Chinese words. Then

Summer Research Internship

Franklin Lee

SID: 1155077143

convert the comments into English, and design algorithm to realize

word count and word selection (e.g. exclude common words “is”, “the”

etc.). Finally, we can apply Word Cloud Data Visualization technique

to figure out the customer impression.

Figure 4: City Super Customer Comments 2014-2016

By carefully observing the data visualization results, it is

obvious to figure out the main impression of customer toward IAPM store:

Good, Fresh, Imported, Price, etc. And this just accords with City

Super’s core ideas. Also, by comparing words through different years,

it is clear to find out the trend of customers’ impression (e.g. word

“Japanese” becomes smaller and smaller, it means the attention of

customers towards Japanese product decreased). Store manager may

adjust the product model to comply with trend.

4.2 Topic Modeling and Data Visualization for Conference Analytics

INTERSPEECH is an academic conference, which usually calls for

papers referring to a list of tracks with a high-level description

regarding the scope of the conference. Tracks can offer effective

approaches where authors can submit papers to their preferred tracks

(Table 1), reviewers can acquire related papers in preferred tracks,

readers can search their favorite papers in corresponding tracks.

Table 1: Interspeech Conference Tracks

By powerful crawler with Husky, we can collect Interspeech

(2014)’s conference papers. After arranging, Interspeech 2014

conference released 12 main tracks, 1,078 paper abstracts. The total

number of paper abstracts is 1,078, words of which are 101,312. The

average words in a paper abstract are around 94. After pre-processing

in terms of stemming and removal, the vocabulary contains 5,732 unique

words. Each data set contains twenty documents with detailed

statistics of latent topics retrieved from papers in format of .tsv.

Summer Research Internship

Franklin Lee

SID: 1155077143

Each document contains 200 words with specific probabilities both in

percentage form and exponential form varying from 2000 to 2015.

In approach to analytics of topic modeling, we can apply Latent

Dirichlet Allocation (LDA[1]) technique. LDA is a topic probability

model producing distinct sets of data like text corpora. The formula

(1) of LDA is illustrated by referring to the notions which 𝛼 and

𝛽 are hyper-parameters, M is a set of documents with discrete

probability from a corpus D, 𝜃𝑑 is a topic mixture for document 𝑑,

𝜔𝑑𝑛 is the 𝑛th word in document 𝑑, and 𝑧𝑑𝑛 is the underlying topic

assignment for word 𝑤𝑑𝑛 with 𝜃𝑑.

In procedure of LDA, each document is generated by sampling each

single document-specific topic in proportion of 𝜃𝑑 form a Dirichlet

distribution, and then each word is separated from a topic-specific

Multinomial distribution . A low-dimension of data is

generated with a word distribution of , which represents the

probability of a word 𝑤 in topic 𝑧 and a topic distribution in

certain document , which are the mixture of topics in document

𝑑. The main interest is on because it is an important criterion

between latent topics and given tracks.

 Basically, both an assumption that a 1: N relationship between

track and topic and a definition that a match is the combination of

a topic with its highest-rank track according to F-score are

prerequisite. Based on the information framework which each document

is a track and each underlying topic is a topic, each topic can be

generated by means of LDA by selecting its top N = 200 words in

descending probability order. This parameter’s coverage is around

80% of the probability space in each single topic. Around 20-50 words

are pre-processed according to track descriptions. The processing

system of topic-track matching system is represented (Figure 5) below.

Summer Research Internship

Franklin Lee

SID: 1155077143

Figure 5: The Process of LDA and Topic-Track Matching

First, implement pre-processing step in both papers and conference

tracks. Next, retrieve latent topics with a set of words in descending

order of probability . And then match every topic with the

highest F-score track by computing corresponding overlapping words,

where 𝑊𝑘 represents the key words from a track and 𝑊𝑡 represents

top-ranking words from a topic. Finally, calculate Precision, Recall

and F-score in sequence:

 (2)

 (3)

 (4)

With further implementation of matching system [1], analytics data

sets can be obtained.

Then we can gain results and make observations. Above all, in order

to check the correlation degree between expert-defined tracks and

latent topics, we may implement word clouds (Figure 6) to visualize

each topic’s concentrations:

Tracks of maximal F-score

Calculation of
F-score

between
topic and

track

Key words
pre-processed

from given
tracks

Application of
LDA in all
submitted

papers.

Summer Research Internship

Franklin Lee

SID: 1155077143

Figure 6: A Set of Word Clouds Representing Concentrations of Different

topics; The bigger the words are, the more popular the concentrations are.

We can figure out the dominating words in each topic from the

figures above (e.g. algorithm for the last figure), and then by

comparison of the key words of expert-defined tracks we can judge

whether the expert-defined tracks are comprehensive enough to cover

the latent topics.

If we want to dig further on specific topics to see whether there is

predictable trend in certain field. We may implement several data

visualization steps to gain concrete answer. Here is a set of data

visualization graphs (Figure 7) which represent a topic’ s

concentration varying from 2000-2009:

Summer Research Internship

Franklin Lee

SID: 1155077143

Figure 7: A Set of Words Clouds Representing Concentrations of a Topic

2000-2009

After observations we can figure out that the concentrations of

this topic are mainly in aspects of “Speech”, “Noise”, “Signal”,

“Method”, etc. If we want to figure out the trends in detail about

the dominating concentrations, heat maps (Figure 8) can offer

practical approach as it can easily spot the dominating words among

over 1000 words by color difference:

Figure 8: By implementing heat map to realize data visualization, we can

specify the important data immediately.

Summer Research Internship

Franklin Lee

SID: 1155077143

And if we want to know more about the dominating words’ trends

in order to make further evidence-based predictions about the popular

tracks, which can help conference organizers define more explicit and

comprehensive track descriptions in the future, we may implement

several charts (Figure 9) representing the dominating words.

Figure 9: Several Representations of Dominating Words

By observations we can figure out that “Speech” keeps rising and

has the highest value, so further interest should be paid; “Signal”

has high value but keeps decreasing, so the concentration for next

year’s conference tracks regarding “Signal” may reduce. Each topic

can be analyzed in this method and evidence-based predictions can be

extracted from data ultimately.

5. References

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent

dirichlet allocation. Journal of Machine Learning Research, 3:993–
1022, 2003.

[2] Fan Yang, Jinfeng Li, and James Cheng. Husky: Towards a more

efficient and expressive distributed computing framework. PVLDB,
9(5):420–431, 2016.

Summer Research Internship

Franklin Lee

SID: 1155077143

