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Abstract  

Husky is a distributed computing system, achieving outstanding 

results in large scale data mining and designing efficient distributed 

algorithms. Considering low efficiency of systems like Hadoop and 

Spark, etc., it is a motivation for us to start the Husky open-source 

project, which attempts to strike a better balance between high 

performance and low development cost. Web crawler is a well-known 

method of collecting huge amount of data for implementations relating 

to big data. However, simple compiler system shows low efficiency in 

crawling billions of data. With the help of Husky, it is a motivation 

to create a high-performance distributed web crawler which can 

complete a great quantity of crawl assignments in a high speed. 

 
Figure 1. Performance on TF-IDF 

1. Introduction 

In order to improve and perfect the performance of Husky[2], 

division of labor assigned to different task groups (e.g. Pyhusky group, 

machine learning group, crawler group). I am belonging to crawler group; 

whose task aims at providing plenty of raw data to build a big data 

foundation so that other group members (e.g. machine learning group) 

can train their specific mode or test their existing algorithms. 

Meanwhile, some attempts related with big data can be efficiently 

analyzed by utilizing crawled data (e.g. customer impression analysis, 

prices of houses analysis, conference topic trend analysis). With the 

help of high efficient system Husky, billions of data can be downloaded 
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in few minutes. 

2. Basic Crawler Implementations 

A crawler is a program that automatically collects Web pages to 

create a local index and/or a local collection of web pages. Roughly, 

a crawler starts off with an initial set of URLs, called seed URLs. 
It first retrieves the pages identified by seed URLs, extracts any URLs 

in the pages, and adds the new URLs to a queue of URLs to be scanned. 

Then the crawler gets URLs from the queue (in some order), and repeats 

the process. 

In my approach, basic crawler code is written in python, which has 

powerful library like RE, BeautifulSoup. When facing different 

websites, crawling methods need changing in order to fit different 

situations. In general, two kinds of crawling methods are developed 

and implemented: 

The first method is simple but useful, which only needs few lines 

of code and can crawl thousands of pages. This method makes use of URL 

to distinguish pages’ differences by number changes. We can slightly 

change the number so that we can link to adjacent webpages:  
def trade_price(max_pages): 

    page=1 

    while page<=max_pages: 

        url='http://sz.lianjia.com/ershoufang/luohu/pg' + str(page) 

+ '/' 

page += 1 

Listing 1: Core Code Method 1 

Websites like stocks information, house prices, customer comments 

are usually fit the previous style mentioned above. 

The second method is powerful and comprehensive, which utilizes 

distributed script files which makes each process of crawling clear 

and obvious. First insert the main websites of crawling object, and 

define the limit requesting time for each page, then assign proxy 

servers and make arrangements for RE search rules in order to link 

to wanted resource webpages, finally download related data to HDFS 

files and repeat the whole process. Main functions are defined in 

hcrawl, and it is quite simple for user to import it in program and 

follow steps to crawl: 
__init__.py 

__init__.pyc 

crawler_config.py 

crawler_config.pyc 

crawler_dist.py 

crawler_dist.pyc 

crawler_utils.py 

crawler_utils.pyc 
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Listing 2: Core Code Method 2 

3. The High-Performance Distributed Web Crawler Approach 

Husky is an efficient and expressive distributed computing 

framework; It has been shown that many existing programs can be easily 

implemented and bridged together inside Husky, and Husky is able to 

achieve similar or even better performance compared with 

domain-specific systems. Considering Husky system’s powerful 

computing framework, it is a motivation to combine Husky with crawler 

to make a high-performance distributed web crawler. 

3.1 Workers 

A worker can be regarded as a special type of objects that can read 

from external sources, e.g., Hadoop distributed file system (HDFS), 
and create objects. Husky allows users to specify a partition function 

to assign objects to different workers. An application can achieve 

better performance if the partition function groups objects that 

frequently interact with each other in the same partition.  

3.2 Master-Worker Architecture 

A Husky cluster consists of one master and multiple workers. The 

master is responsible to coordinate the workers, and workers perform 

actual computations. To perform a round computation (by calling list 

execute), a worker first receives all incoming communications (if any) 

from other workers, dispatches messages to objects and invokes their 

execute function, and finally flushes the outgoing communications 

that object have generated. 

Usually a worker flushes outgoing communications only after all 

workers on its same host finishes the current execution round. The 

purpose is to exploit the effective shuffle combiner technique to 

maximize message reduction. However, when no combiner is provided, 

Husky will batch and flush message right after they are generated, 

in order to interleave CPU usage and networking IO.  

 
3.3 Crawler Distribution with Husky 
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Web crawlers are always dealing with massive data processing, 

which usually consume much time and CPU. Generally, a web crawler 

starts with a list of URLs to visit. As the crawler visits these URLs, 

it identifies all the hyperlinks in the page and adds them to the list 

of URLs to visit, called the crawl frontier. URLs from the frontier 

are recursively visited according to a set of policies. If the crawler 

is performing archiving of websites it copies and saves the 

information as it goes. 

 
Figure 2: Basic Two Components of the Crawler 

With the help of Husky, the task of crawler can be distributed to 

workers so that the speed can be greatly enhanced. After simple 

commands in dialog window: 
 ./Master conf/<user>.conf 

 ./Daemon conf/sg.conf 

 python <file_name> --host <master_host> --port <master_port> 

Then add Pyhusky command in order to utilize Pyhusky library which 

make program clear and fast, e.g.: 
 ph.env.pyhusky_start() 

 husky_list=ph.env.parallelize(data_cloud) 

 husky_list.write_to_hdfs("/datasets/stock_company_informat

ion/") 
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Figure 3: Crawler Configuration with Husky 

With the enhancement of Husky system, crawling speed will 

skyrocket up. In single local server, tested program can reach 

approximately 5 to 10 HTML pages per second. By comparison, a 

configuration as the one in Figure 3 would require between 3 to 5 

workstations, and would achieve an estimated peek rate of 250 to 400 

HTML pages per second. 

4. Big Data Applications with Husky 

As the super advantage in crawler with Husky, it is very fast to 

gain a large amount of data. With huge amount data, it is interesting 

to make analysis to obtain accurate insights. Also, by analyzing 

specific data in certain industry, we can even comprehend and forecast 

the future trend, and make corresponding adjustment with the support 

of evidence-based data. 

4.1 City Super Customer Impression Analysis 

City Super is a supermarket in Hong Kong, and it is famous for 

imported product and high-quality service, whose target group is main 

high-income people. For a company, it is very important to investigate 

customer impression and feedback to make better management and further 

progress. However, it is very difficult to know the facts by real 

questionnaires, with big data, we can have the aid of data 

visualization to figure out customer impression by retrieving core 

words from customer comments. 

By web crawler with Husky, customer comments from Da Zhong Dian 

Ping website can be easily downloaded. We specify one store of City 

Super located in IAPM, retrieving its comments from 2014.5.1 to 

2016.5.25. Totally three data sets with 42,955 Chinese words. Then 
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convert the comments into English, and design algorithm to realize 

word count and word selection (e.g. exclude common words “is”, “the” 

etc.). Finally, we can apply Word Cloud Data Visualization technique 

to figure out the customer impression. 

 
Figure 4: City Super Customer Comments 2014-2016 

By carefully observing the data visualization results, it is 

obvious to figure out the main impression of customer toward IAPM store: 

Good, Fresh, Imported, Price, etc. And this just accords with City 

Super’s core ideas. Also, by comparing words through different years, 

it is clear to find out the trend of customers’ impression (e.g. word 

“Japanese” becomes smaller and smaller, it means the attention of 

customers towards Japanese product decreased). Store manager may 

adjust the product model to comply with trend. 

4.2 Topic Modeling and Data Visualization for Conference Analytics 

INTERSPEECH is an academic conference, which usually calls for 

papers referring to a list of tracks with a high-level description 

regarding the scope of the conference. Tracks can offer effective 

approaches where authors can submit papers to their preferred tracks 

(Table 1), reviewers can acquire related papers in preferred tracks, 

readers can search their favorite papers in corresponding tracks.  

 

Table 1: Interspeech Conference Tracks 

By powerful crawler with Husky, we can collect Interspeech 

(2014)’s conference papers. After arranging, Interspeech 2014 

conference released 12 main tracks, 1,078 paper abstracts. The total 

number of paper abstracts is 1,078, words of which are 101,312. The 

average words in a paper abstract are around 94. After pre-processing 

in terms of stemming and removal, the vocabulary contains 5,732 unique 

words. Each data set contains twenty documents with detailed 

statistics of latent topics retrieved from papers in format of .tsv. 
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Each document contains 200 words with specific probabilities both in 

percentage form and exponential form varying from 2000 to 2015. 

In approach to analytics of topic modeling, we can apply Latent 

Dirichlet Allocation (LDA[1]) technique. LDA is a topic probability 

model producing distinct sets of data like text corpora. The formula 

(1) of LDA is illustrated by referring to the notions which 𝛼 and 

𝛽 are hyper-parameters, M is a set of documents with discrete 

probability from a corpus D, 𝜃𝑑 is a topic mixture for document 𝑑, 

𝜔𝑑𝑛 is the 𝑛th word in document 𝑑, and 𝑧𝑑𝑛 is the underlying topic 

assignment for word 𝑤𝑑𝑛 with 𝜃𝑑. 

            
In procedure of LDA, each document is generated by sampling each 

single document-specific topic in proportion of 𝜃𝑑 form a Dirichlet 

distribution, and then each word is separated from a topic-specific 

Multinomial distribution . A low-dimension of data is 

generated with a word distribution of , which represents the 

probability of a word 𝑤 in topic 𝑧 and a topic distribution in 

certain document , which are the mixture of topics in document 

𝑑. The main interest is on  because it is an important criterion 

between latent topics and given tracks. 

 Basically, both an assumption that a 1: N relationship between 

track and topic and a definition that a match is the combination of 

a topic with its highest-rank track according to F-score are 

prerequisite. Based on the information framework which each document 

is a track and each underlying topic is a topic, each topic can be 

generated by means of LDA by selecting its top N = 200 words in 

descending probability order. This parameter’s coverage is around 

80% of the probability space in each single topic. Around 20-50 words 

are pre-processed according to track descriptions. The processing 

system of topic-track matching system is represented (Figure 5) below. 
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Figure 5: The Process of LDA and Topic-Track Matching 

First, implement pre-processing step in both papers and conference 

tracks. Next, retrieve latent topics with a set of words in descending 

order of probability . And then match every topic with the 

highest F-score track by computing corresponding overlapping words, 

where 𝑊𝑘 represents the key words from a track and 𝑊𝑡 represents 

top-ranking words from a topic. Finally, calculate Precision, Recall 

and F-score in sequence: 

       

 (2) 

       

 (3) 

      

 (4) 

With further implementation of matching system [1], analytics data 

sets can be obtained. 

Then we can gain results and make observations. Above all, in order 

to check the correlation degree between expert-defined tracks and 

latent topics, we may implement word clouds (Figure 6) to visualize 

each topic’s concentrations: 

Tracks of maximal F-score 

Calculation of 
F-score 

between 
topic and 

track 

Key words 
pre-processed 

from given 
tracks 

Application of 
LDA in all 
submitted 

papers. 
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Figure 6: A Set of Word Clouds Representing Concentrations of Different 

topics; The bigger the words are, the more popular the concentrations are. 

We can figure out the dominating words in each topic from the 

figures above (e.g. algorithm for the last figure), and then by 

comparison of the key words of expert-defined tracks we can judge 

whether the expert-defined tracks are comprehensive enough to cover 

the latent topics. 

If we want to dig further on specific topics to see whether there is 

predictable trend in certain field. We may implement several data 

visualization steps to gain concrete answer. Here is a set of data 

visualization graphs (Figure 7) which represent a topic’ s 

concentration varying from 2000-2009: 
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Figure 7: A Set of Words Clouds Representing Concentrations of a Topic 

2000-2009 

After observations we can figure out that the concentrations of 

this topic are mainly in aspects of “Speech”, “Noise”, “Signal”, 

“Method”, etc. If we want to figure out the trends in detail about 

the dominating concentrations, heat maps (Figure 8) can offer 

practical approach as it can easily spot the dominating words among 

over 1000 words by color difference: 

 

 

 

 
Figure 8: By implementing heat map to realize data visualization, we can 

specify the important data immediately. 
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And if we want to know more about the dominating words’ trends 

in order to make further evidence-based predictions about the popular 

tracks, which can help conference organizers define more explicit and 

comprehensive track descriptions in the future, we may implement 

several charts (Figure 9) representing the dominating words. 

 

 

 

Figure 9: Several Representations of Dominating Words 

By observations we can figure out that “Speech” keeps rising and 

has the highest value, so further interest should be paid; “Signal” 

has high value but keeps decreasing, so the concentration for next 

year’s conference tracks regarding “Signal” may reduce. Each topic 

can be analyzed in this method and evidence-based predictions can be 

extracted from data ultimately. 
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