Implementation and Analysis of Collision Counting LSH on
The Husky Framework

Cheng, Ti-Chung
Chinese University of Hong Kong

Department of Computer Science and Engineering
tcheng@link.cuhk.edu.hk

Abstract

Locality sensitive hashing (LSH) have been
an important topic when it comes to approxima-
tion nearest neighbor search problems. Over the
past decades, many algorithms has evolved from
the original LSH. During this summer research
project, we aim to understand the difference be-
tween E2LSH and C2LSH. Furthermore, we want
to overcome the challenge of LSH on distribut-
ing systems and build C2LSH on open source dis-
tributed system framework: Husky. The implemen-
tation was then verified and analyzed over both al-
gorithms.

1 Introduction

Nearest Neighbor Search has been an impor-
tant question when it comes to image classifica-
tion, voice recognition, protein structure predic-
tion and item recommendation. However, when
given a large set of data with high dimension, it is
very difficult to have an efficient algorithm when
encountering the curse of dimensionality. Over
the last decade, researchers have developed sev-
eral alternative algorithms to relieve such issue
by using approximation methods, generally called
c-approximate Nearest Neighbor Search (c-ANN
search).

Locality Sensitive Hashing (LSH) [3] is well
known as an efficient solution for finding approx-
imate nearest neighbor in high dimensional space.
It preprocessed the query and data set by creating a
signature hash which allows similar items to have

higher probability of being hashed together. Exact
Euclidean LSH (E2LSH) package [1] aims to ex-
tend the limitation that LSH is originally set only
to be used in hamming distance. Collision Count-
ing LSH (C2LSH) [2] was then introduced to im-
prove the limitation of E2LSH by which it would
be able to probe dynamically to find nearest neigh-
bors while decreasing the space complexity.

On the other hand, massive data sets cannot be
processed immediately on a single machine, dis-
tributed systems provide a platform that clusters
high computing resources. Husky [6] is an open
source, efficient and expressive computing frame-
work that provides the use of flexible APIs to com-
plete the task of implementing distributed applica-
tions. Its generality serves the purpose of imple-
menting C2LSH for this research project.

With the significant usage of C2LSH, I aim
to implement and analysis this algorithm in a dis-
tributed manner within the period of this research
project. In the following report, I will demonstrate
the implementation concepts as well as the analysis
between C2LSH and E2LSH.

2 Background

2.1 LSH

Locality Sensitive Hashing (LSH) was intro-
duced by Indyk and Motwani [3] as follows:

Definition 1 Given a ball B (q,r) centered
at point q with radius . A LSH family H = {h :
S — U} is (r1,r2, p1, p2)-sensitive under similarity



measure D if for any q,p € S,

l.if o € B(q,r1), then P.[h(0o) = h(q)] > p:
2.if o € B(q,r2), then P,[h(0o) = h(q)] < p2

To generate a useful LSH family, it requires
satisfaction of inequality r; <rp and p; >p>. The
definition then shows that when two items are sim-
ilar, they should have a higher probability of be-
ing hashed towards the same bucket and vice versa.
Many similarity measures include but not limited to
Hamming distance, Jaccard distance and Euclidean
distance follows such definition.

By intuition, LSH algorithm aims to hash data
into buckets so that similar items are grouped upon
themselves. That is, to give each data a signature
value. To increase the probability for similar items
to be hashed together, researchers proposed com-
pounding k-hash functions instead of single hash
function. L hash tables were also generated. This
allows data with same k-signature vector in the
same hash table Li to be hashed together. LSH is
proven to achieve a sub-linear querying complex-
ity.

Exact Euclidean LSH (E2LSH) package [1]]
provides a randomized solution for the high-
dimensional NNS in the Euclidean space. The hash
function is defined as the following:

In this hash function, a is a vector drawn ran-
domly over a normal distribution. a shares the same
dimension with o, representing our data. b is a real
number drawn uniformly from [0,w). w is a user
defined constant. To think of this hash function in a
more intuitive manner, each data point mapped on
a Euclidean Space is to be mapped onto a randomly
selected line. This line is then segmented into seg-
ments of length w. The data points mapped onto
the same segment is seen as mapped into the same
bucket.

Based on such definition, E2LSH is able to re-
turn a result if a given query is able to find an exist-
ing data in the given range; otherwise it would re-
turn nothing instead of a nearest neighbor that NNS
problem is trying to solve. Therefore, Collision
Counting LSH (C2LSH) [2] was then introduced
by to resolve the aforementioned issue of E2LSH.
C2LSH inherits the hash function from E2LSH but
adds an additional probing feature so that the pro-
gram would not halt until a nearest neighbor is
found. The hash function is defind as follows:

R h(o)
HR(0) = 7]

This hash function is defined as (R, cR, p1, p2)
- sensitive, and R is an integer power of c. Intu-
itively, the motivation behind this design is to in-
crease the width of each segment so that gradually
it would probe the segments near the original tar-
get.

2.2 Husky

With the explosion of data, distributed sys-
tems such as Spark, Flink and Dryad offers frame-
works for programmers to implement distributed
applications. Husky is an open source project
aimed to provide the platform that stands between
general-purpose systems and domain-specific sys-
tems that leads to the freedom for developers to
easily implement complex systems in a much sim-
ple way. Husky is able to abstract data into mean-
ingful objects. With concepts such as Map-reduce
and Pregel, Husky also emphasised on internal
interaction protocol among objects. Objects are
designed to execute commands, send and receive
messages and other operations.

3 Implementation

3.1 Implementation Framework

The challenge of implementing C2LSH on a
distributed system is to overcome the difficulty of
maintaining the hash table for each element while
allowing the query to probe the buckets efficiently



in order to retrieve the final results. Therefore,
we staged the program into three segments: (1)
Pre-processing, (2) Query-processing and (3) Re-
sult analysis. (Firgure 1) Given that Husky is de-
signed with cooperation between different objects,
we can intuitively transform each query and the
data within the target data set as respective objects
during the Pre-processing phase. By transform-
ing them into objects, we are able to give them
an index id. The target data will also be given its
signature hash value through the hash function in
this stage. During the Query-processing stage, we
compute the hash value for each query object so
that we know which hash signature to probe. With
the send message() API call within the Husky
framework, we would be able to send the details of
the query data by specifying the exact hash value(s)
(buckets we want to look for) we pre-computed for
the dataset data. Given the sender, the dataset data
would be able to reply the actual results and thus
entering the final state: result analysis. Result anal-
ysis will decide if the system would halt or would it
acquire more buckets to be probe since we are look-
ing for the k-NN of each query. If so, the program
would re-enter the Query-process state, otherwise
it would output the results.

Figure 1. C2LSH implementation

S5-_

Data set

_—L

Query

Pre-processing
(1) index
(2) calculate signiture

Query Processing

Query -> signiture Get message from Query Proc.

Decide if halt

\ @ Results

With such design, no physical hash tables
were to be maintained and only necessary commu-
nication between objects has to be used. Thus re-
solves the challenge of implementing a distributed
C2LSH.

Result Analysis
!' Reply exact dist. to Query Proc.

3.2 Implementation Details

Let us first revisit the concept of C2LSH.
Since E2LSH is able to approximately preserve dis-
tance of the data when we map them to buckets.
C2LSH inherits the idea and extends it to probe
nearby buckets as C2LSH believes that similar
items would also be mapped relatively to their pro-
jections.To present this probing feature, we keep
track of two pointers that indicate the left most
bucket and the right most bucket we have probed
in each iteration. During each iteration of Query-
processing, we calculate the signature(s) according
to these two pointers. The pointers would update
after each iteration if there are less then k nearest
neighbors obtained. A sorting would be done be-
fore the final output of the results to trim the addi-
tional nearest neighbors we retrieved from the last
iteration.

4 Results
4.1 Data set and setup

In the experiment we use real data set pro-
vided by the TEXMEX [4], 5] research team. This
data set is generated especially for A-NNS studies.
It consists of 1 million entries of image data each
with 128 dimensions. During our testing we run
base vectors in the data set over itself, which is 1
million queries over 1 million data. The Husky im-
plementation is setup across one master machine
and 20 worker machines. The following experi-
ments would specify the number of machines used
respectively. Hadoop file-system is used as data
storage system.

4.2 Experiment

To verify the implementation of C2LSH, we
use the aforementioned set of data and compute us-
ing E2LSH. Understanding that E2L.SH is the base
case of C2LSH in given conditions, we verified that
the results from both algorithms after the first it-
eration is indeed identical, thus C2LSH is imple-
mented correctly. To further test our motivation
that to implement C2LSH on a distributed frame-
work is to make use of the growing computation



power to supplement the large amount of data we
have today. In the traditional setting of C2LSH un-
der a single machine single thread situation. It took
over two hours to complete the query the above
data set. Th following chart shows the time it took
for single machine single thread, single machine
multi-thread, 5 machine multi-thread, 10 machine
multi-thread and 20 machine multi-thread. We can
see that even if we were able to implement a single
machine multi-thread C2LSH, a distributed version
still ran threee times faster under the same setting.
(Chart 1)

C2LSH Performance

Chart 1. C2LSH performance comparison

On the other hand, to verify the concept of
how C2LSH is able to prob more efficiently when it
comes to k-NN search, we decide to run an exper-
iment to see the returned result of a E2L.SH under
a k =5 setting. We use all 20 worker machines
running 20 threads each for this experiment. By
setting the same width w for C2LSH and E2LSH,
we confirm that (1) each query only returns a lim-
ited amount of results for E2LSH and (2) it is diffi-
cult to obtain a large k-NN search unless fine tun-
ing the width w or other user defined parameters for
many times. From the result in Chart 2, we can see
that over half of the query finds itself as the only
nearest neighbor. Only 1% of the query is able to
return the nearest five neighbors for E2L.SH indi-

References

[1] A. Andoni and P. Indyk.

cating that if users want to use E2LSH to complete
k-ANN search, many trials would be required for
which C2LSH can be easily done.

E2LSH k-ANN performance

50.000%

30.000%

20.000%

vvvvvvv

found 1 found 2 found 3 found 4 found 5 found & found 7 found & found 9

Chart 2. C2LSH and E2LSH under k-ANN search

5 Discussion and Conclusion

LSH algorithms has been widely used in in-
dustry and research. Leveraging the ability of dis-
tributed systems with high computing resources,
the combination between both of them allows even
more computing ability. From the experiment, we
first verified our motivation to combine the ability
of LSH and distributed systems. Later we verified
that C2LSH on Husky guarantees to return the re-
sult and saves users time from fine tuning the pa-
rameter for any k-NN search. We not only believe
that many topics can be experimented using LSH,
but also with more understanding of the algorithm
together with other machine learning techniques
we would be able to develop better algorithms.

6 Acknowledgments

Beside my adviser Prof.James Cheng, I would
like to give special thanks to my tutor Mr.Jinfeng
Li. Without his patience and guidance it would be
nearly impossible for me to complete this research
project. Gratitude should also be given to those
who finished the implementation of Husky.



[2] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based on dynamic collision counting.
In SIGMOD, pages 541-552, 2012.

[3] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May
23-26, 1998, pages 604—613, 1998.

[4] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Trans. Pattern
Anal. Mach. Intell., 33(1):117-128, 2011.

[5S] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one billion vectors: Re-rank with source
coding. In ICASSP, pages 861-864, 2011.

[6] F. Yang,J.Li, andJ. Cheng. Husky: Towards a more efficient and expressive distributed computing framework.
PVLDB, 9(5):420-431, 2016.



	Introduction
	Background
	LSH
	Husky

	Implementation
	Implementation Framework
	Implementation Details

	Results
	Data set and setup
	Experiment

	Discussion and Conclusion
	Acknowledgments

