
Distributed BM25
Leung Shing Yuet

The Chinese University of Hong Kong

1. INTRODUCTION

 In 21st Century, big data processing and analyzing is a hot topic and having an efficient

and expressive data computing system is very important. Hadoop and Spark are some widely

used systems for massive data processing and they are easy to use. However, the over-

simplified API may not be efficient enough so the users may need to use other domain-specific

systems which raises the development cost. This motivates Prof James Cheng and his team to

develop the Husky[2], an open-source system, which aims to build a more expressive and most

importantly, more efficient system for distributed data analytics.

 There are three main features in Husky, fast, general and easy. Husky computing model

allows more efficient algorithms to be programmed and has a highly optimized backend. Husky

also supports a variety of applications including text mining, graph analytics and machine

learning. Moreover, Husky has an easy-to-use interface and even non-technical people can get

started with Husky quickly with the Python/Scala frontends. Besides, there are three main

components in Husky, master, coordinator and worker. Master represents an application,

coordinator manages the workers and worker represent how CPU cores work with their

associated data.

 To be specific, in this paper, the BM25 ranking function on Husky will be described, in

the way of implement, the discussion and then followed by a conclusion. BM25, also known as

Okapi BM25, is a ranking function used by search engines to rank matching documents

according to their relevance to a given search query. It is based on the probabilistic retrieval

framework developed in the 1970s and 1980s by Stephen E. Robertson, Karen Spärck Jones,

and others.

2. IMPLEMENTATION

 Given a query 𝑄, containing keywords 𝑞1, . . . , 𝑞𝑛 , the BM25 score of a document 𝐷 is :

score(𝐷, 𝑄) = ∑ IDF(𝑞𝑖) ∙
𝑓(𝑞𝑖 , 𝐷) ∙ (𝑘1 + 1)

𝑓(𝑞𝑖 , 𝐷) + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

avgdl
)

𝑛

𝑖=1

Where 𝑓(𝑞𝑖, 𝐷) is 𝑞𝑖’s term frequency in the document 𝐷, |𝐷| is the length of the document 𝐷

in words, and avgdl is the average document length in the text collection from which

documents are drawn. 𝑘1 is the term frequency saturation and 𝑏 is the field-length

normalization. They are usually chosen as 𝑘1 ∈ [1.2, 2.0] and 𝑏 = 0.75. IDF(𝑞𝑖) is the IDF

(inverse document frequency) weight of the query term 𝑞𝑖. It is usually computed as

IDF(𝑞𝑖) = log
𝑁 − 𝑛(𝑞𝑖) + 0.5

𝑛(𝑞𝑖) + 0.5

where 𝑁 is the total number of documents in the collection, and n(𝑞𝑖) is the number of

documents containing 𝑞𝑖.[1]

Steps:

Suppose we have a text collection with 𝑁 documents, input a query 𝑄 with 𝑖 terms

1. read the documents and store the information of each document, including document

id and content.

2. read the query 𝑄 and split 𝑄 into and store in a vector

3. for each document 𝐷, split the content into words and compare with 𝑞𝑖, count the no.

of 𝑞𝑖 appear in 𝐷 to get 𝑓(𝑞𝑖, 𝐷), count the no. of words in 𝐷 to calculate |𝐷|, count the

no. of docunments that 𝑞𝑖 appear to get n(𝑞𝑖).

4. calculate the IDF score of each 𝑞𝑖.

5. calculate the score(𝐷, 𝑄) by summing up score(𝐷, 𝑞𝑖)

Users can choose to output the top k documents with their document id and scores or output

the scores of some documents by inputting the document id.

3. DISCUSSION

After finishing the implementation, the BM25 can run on the C++ Husky. After that, the BM25

implementation is wrapped to the PyHusky to be more user-friendly and more API can be used.

4. CONCLUSION

We can see the BM25 can be implemented on Husky easily and after binding to PyHusky, it can

work with other API as well so that it can be more user-friendly.

Acknowledgments

I would like to express the deepest appreciation to my supervising Prof. Cheng and his Ph.D.

students for their supervision and constant support in the research period.

5. REFERENCE

[1] S. E. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and

beyond. Foundations and Trends in Information Retrieval, 3(4):333–389, 2009.

[2] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and expressive distributed

computing framework. PVLDB, 9(5):420–431, 2016.

