
Implementation of BM25 on Husky –
A Distributed Machine Learning Platform

Leung Shing Yuet

The Chinese University of Hong Kong

Supervisor: Prof. James Cheng

Introduction

In 21st Century, big data processing and analyzing is a hot topic
and having an efficient and expressive data computing system is
very important. Hadoop and Spark are some widely used
systems for massive data processing and they are easy to use.
However, the over-simplified API may not be efficient enough
so the users may need to use other domain-specific systems
which raises the development cost. This motivates Prof James
Cheng and his team to develop the Husky [1], an open-source
system, which aims to build a more expressive and most
importantly, more efficient system for distributed data analytics.

There are three main features in Husky, fast, general and easy.
Husky computing model allows more efficient algorithms to be
programmed and has a highly optimized backend. Husky also
supports a variety of applications including text mining, graph
analytics and machine learning. Moreover, Husky has an easy-
to-use interface and even non-technical people can get started
with Husky quickly with the Python/Scala frontends. Besides,
there are three main components in Husky, master, coordinator
and worker. Master represents an application, coordinator
manages the workers and worker represent how CPU cores
work with their associated data.

BM25, also known as Okapi BM25, is a ranking function used by
search engines to rank matching documents according to their
relevance to a given search query. It is based on the
probabilistic retrieval framework developed in the 1970s and
1980s by Stephen E. Robertson, Karen Spärck Jones, and
others[2].

The Husky and BM25

BM25 Implementation

Given a query 𝑄, containing keywords 𝑞
1
, . . . , 𝑞

𝑛
, the BM25 score of

a document 𝐷 is :

score 𝐷,𝑄 =

𝑖=1

𝑛

IDF 𝑞𝑖 ∙
𝑓 𝑞𝑖, 𝐷 ∙ (𝑘1 + 1)

𝑓 𝑞
𝑖
, 𝐷 + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙

𝐷
avgdl
)

Where 𝑓(𝑞
𝑖
, 𝐷) is 𝑞

𝑖
’s term frequency in the document 𝐷, 𝐷 is the

length of the document 𝐷 in words, and avgdl is the average
document length in the text collection from which documents are
drawn. 𝑘1 is the term frequency saturation and 𝑏 is the field-length
normalization. They are usually chosen as 𝑘1 ∈ 1.2, 2.0 and 𝑏 =
0.75.
IDF(𝑞𝑖) is the IDF (inverse document frequency) weight of the query

term 𝑞
𝑖
. It is usually computed as

IDF(𝑞
𝑖
) = log

𝑁 − 𝑛 𝑞𝑖 + 0.5

𝑛 𝑞𝑖 + 0.5

where 𝑁 is the total number of documents in the collection, and
n(𝑞𝑖) is the number of documents containing 𝑞𝑖 [3].

Steps:
Suppose we have a text collection with 𝑁 documents, input a query 𝑄
with 𝑖 terms
1. read the documents and store the information of each document,
including document id and content.
2. read the query 𝑄 and split 𝑄 into and store in a vector
for each document 𝐷, split the content into words and compare with
𝑞𝑖, count the no. of 𝑞𝑖 appear in 𝐷 to get 𝑓(𝑞𝑖, 𝐷), count the no. of

words in 𝐷 to calculate 𝐷 , count the no. of documents that 𝑞𝑖
appear to get n(𝑞𝑖).

3. calculate the IDF score of each 𝑞𝑖.

4. calculate the score 𝐷,𝑄 by summing up score 𝐷, 𝑞𝑖

Users can choose to output the top k documents with their document
id and scores or output the scores of some documents by inputting
the document id.

Reference

[1] F. Yang, J. Li, and J. Cheng, “Husky,” Proc. VLDB Endow. Proceedings
of the VLDB Endowment, vol. 9, no. 5, pp. 420–431, Jan. 2016.
[2]"Okapi BM25", Wikipedia, 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Okapi_BM25. [Accessed: 19- Aug- 2016].
[3]S. Robertson, "The Probabilistic Relevance Framework: BM25 and
Beyond", FNT in Information Retrieval, vol. 3, no. 4, pp. 333-389, 2010.

Conclusion

We can see the BM25 can be implemented on Husky easily and
after that it wrapped to the PyHusky so that it can work with
other API as well and become more user-friendly.

Acknowledgements

I would like to express the deepest appreciation to my
supervising Prof. Cheng and his Ph.D. students for their
supervision and constant support in the research period.

