Term Frequency-Inverse Document Frequency on
Husky

Wu Jiayi
Department of Computer Science and Engineering
the Chinese University of Hong Kong
Email: 1155046964 @link.cuhk.edu.hk

Abstract—Husky is a data-parallel computing system which
was expected to better balance high performance and low
development cost. In this summer research internship, I developed
an efficient, scalable and distributed implementaion of term
frequency-inverse document frequency (TF-IDF) on Husky.

Keywords—Husky, TF-IDF, distributed, machine learning.

I. INTRODUCTION

Husky [2] is developed mainly for in-memory large scale
data mining, and also serves as a general research platform for
designing efficient distributed algorithms. I implemented Term
frequency-inverse document frequency (TF-IDF [1]) algorithm
on it in this summer. TF-IDF is a numerical statistic widely
used in text mining to reflect the importance of a term to a
document in the corpus. An important factor to the importance
of a term to a document is the number of times a term occurs
in a document, which is called its term frequency. In formula,
TF = (Number of times term t appears in a document) / (Total
number of terms in the document). It is obvious that in the
same corpus, if a term occurs more in a document that in
another, the term is more important and has a bigger term
frequency in the former document. However, term frequency
itself is not a good statistics because common words, such
as "the”, ”a” and “for”, will always have big term frequency
values but usually are not helpful to find out the topics of
the documents. So, TF-IDF also includes another statistics,
the inverse document frequency, which measures whether the
term is common or rare across all documents. It is obtained
by dividing the total number of documents by the number of
documents containing the term, and then taking the logarithm
of that quotient. In formula, IDF = log(Total number of
documents / Number of documents with term t in it). For
example, if a term occurs in every document in the corpus,
the inverse document frequency would be 0. For a specific
term, the more documents contain it, the more common it is
and the smaller inverse document frequency it has. TF-IDF
combines these two factors and is defined as the product of
term frequency and inverse document frequency.

II. IMPLEMENTATION
A. Step 1

In this implementation, there are two object lists, the
document list and the term list. The documents are stored in the
document list after being loaded. They are stored on different
workers, but it is still easy to calculate term frequency of each
word to each document directly because the calculation only

requires information for one document and the workers do not
need to exchange information. Each document has a vector
with each non-duplicated term in the document and a vector
with corresponding term frequency. Since each document need
to be dealt with in this step, an aggregator can be used to count
the total number of documents. During the calculation, each
document will also send messages to the terms in the document
which are members in the term list.

B. Step 2

Once a message is sent to a term that the term list does not
contain, the term will be added to the term list. After a term has
been added to the term list, it can know how many documents
contain it by the number of messages it received. Then the term
can get its inverse document frequency since both the number
of documents containing it and the total number of documents
have been counted. As introduced in the algorithm part, IDF =
log(Total number of documents / Number of documents with
term t in it), which is a static value to a term and independent
of which documents the term is in.

C. Step 3

The term frequency of each term to each document and
the inverse document frequency have already been calculated,
so the remaining step is to combine these two statistics and
get TF-IDF value of each term to each document. Here, a
mechanism different from sending messages in the step 1 is
used. In step 1, since workers do not know which worker the
term that a message is sent to is on, the term list is globalized
among all workers which cause much communication. How-
ever, since the term does not exist as an object before receiving
a message, it must be globalized. Here, the objective is to
enable document list get inverse document frequency values.
Since each document has already in the document list, it is not
necessary to globalize document list. Instead, each document
send requests to all terms in it and the ids of the requests
are same as the terms. Then each term broadcasts its inverse
document frequency value as its reply. The term does not need
to know which document requests its reply and each request
sent by a document can find a corresponding reply by finding
the reply given by the term with the same id with itself. Since
each term for each document corresponds a request with has
the inverse document frequency value of the term as its reply, it
can get its TF-IDF value by multiplying the inverse document
frequency value to the term frequency value calculated in step
1. Now the TF-IDF values of terms in a document can be
stored as a vector of the document as the way term frequency
values are stored in step 1.



D. Step 4

The implementation offers a function which enables users
to check the TF-IDF value of a given word in a given
document. This implementation also enables users to get the
list name of the document list so that the user could get all
the information stored in the document list.

III. PERFORMANCE

The dataset is the English Wikipedia corpus, denoted by
”en-wiki * 17, which contains over 4.8 million documents and
1.7 billion terms. I also tested heavier workloads by duplicating
“enwiki * 17 by 2 and 3 times, denoted by “enwiki * 2” and
“enwiki * 37.

Performance on TF-IDF

1684
o 1089 1020
o 510 550
“00 252
- o 150
200 . . 105

erwiki*l enwiki*2 enwiki*3

mHadoop MSpark W Husky

As shown in the figure, Spark is 39% to 58% faster than
Hadoop, but Husky is even around 5 times faster than Spark.
The advantage is more signicant when the datasets get larger.

IV. CONCLUSION

Here, I introduced some basic APIs of Husky and TF-IDF
algorithms. I have presented my distributed implementation of
TF-IDF and showed that it is efficient and scalable.

ACKNOWLEDGMENT

I would like to express my special thanks of gratitude to
Professor James Cheng who gave me the golden opportunity to
do this wonderful project. I would also like to thank Fan Yang,
Jinfeng, Yuzhen, Yunjian, Legend and all the teammates for the
great and patient help in the summer research internship.

REFERENCES

[1] H. C. Wu, R. W. P. Luk, K. Wong, and K. Kwok. Interpreting TF-IDF
term weights as making relevance decisions. TOIS, 26(3), 2008.

[2] F Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and
expressive distributed computing framework. PVLDB, 9(5):420-431,
2016.



