Distributed Logistic Regression

Wu Yidi
Department of Computer Science and Engineering
the Chinese University of Hong Kong
Email: 1155047054 @link.cuhk.edu.hk

Abstract—The Husky platform is developed mainly for in-
memory large scale data mining, and also serves as a general
research platform for designing efficient distributed algorithms.
In this project, I developed an efficient and scalable logistic
regression algorithm on Husky. This implementation outperforms
the MLLib on the state of art data processing platform Spark in
speed and maintains the same quality, which demonstrates good
potential in practical industry usage.

Index Terms—Husky, machine learning, logistic regression

I. INTRODUCTION

The core of Husky [1] platform is written in C++. Due to
relatively low cost in the programming language compared
with Scala employed in Spark and careful architecture design,
Husky attains a good balance in high performance and low de-
velopment cost. Logistic regression can be viewed as a special
case of generalized linear model. The relationship between the
categorical dependent variable and one or more independent
variables is estimated by computing the probabilities through a
logistic function, where the linear combination of independent
variables appears in the exponent term. It is widely used in
binary or multinomial classification.

A. the Husky platform

The programming model of Husky includes master, workers,
global and local objects, list of objects. Workers can be viewed
as an abstraction of threads on computing clusters. Master is
responsible for coordinating workers while workers perform
the actual computations and message passing. A basic work
flow of an application on Husky has the following procedure:

1) creating basic objects,
2) dividing objects to lists,
3) repeating following until condition satisfied:

a) performing simultaneous computation,
b) passing messages,

4) outputting result.

The task scheduling, message passing and fault handling are
hidden in the core of Husky and can be used through simple
interface thus enable programmers to focus on the algorithm
design. Basic API of Husky is summarised by lists below

class BaseWorker:
def load(url, format)
def create_list (name)
def globalize_list (obj_list)
def localize_list(obj_list)
def add_object (obj_list, obj)
def list_execute{obj_list, mode}

Listing 1: Husky Worker API
class BaseObject:

def partition() # return partition id
def execute()

def get_msgs() # et incoming n
def push(msg, id)

def pull(id)

def migrate (worker_id)

def broadcast (msg, worker_id)

Listing 2: Husky Object API

B. Logistic regression

The logistic regression discussed in this report classifies
the input into binary categories. Multiclass problem can be
handled directly by generalizing the binary case.Given a set of
labeled data, where every data is described as N feature-value
pairs and a label valued O or 1, logistic regression tries to
estimates the parameters as precisely as possible based on the
given data. The coming new data can be labeled according to
its feature-value pairs and the estimated parameters. A cost
function is used to describe the precision of the parameters.
More formally, the probability of label taking value 1 or O is
given by

P(y=1|z;0) = he (x) (1)
P(y=0]z;0) =1 — hy (x) (2)

6 and x are both a vector of size N. hg (x) is the sigmoid
function

ho (2) = i ©
The log likelihood function thus is
l (?‘X; 6> =31 yDloghg (z9) + (1 — yD)log(l — he (1)) (4)

Optimize the log likelihood with respect to 6, we can then
classify new data x according to

o
Y71

if hg () >=0.5
else

II. IMPLEMENTATION

In order to optimize log likelihood function ! Y|X ;0), a
distributed gradient descent optimizer is implemented.

A. Gradient descent

Gradient descent works by repeatedly stepping towards the
opposite direction of the gradient of the function at current
point. When current point is at the local minimum, the gradient
descent algorithm will not move since the gradient at local
minimum is 0. The log likelihood function [Y|X ;0) turns
out to have only one local minimum as global mimimum thus
is suitable for using gradient descent. The updating equation
for the logistic regression is given by

Loop {

for i=1 to m, {

b =8, +n [y[f] - .ﬁg{.r:*])}zi-£]

> (for every j).

}

B. Distribution strategy

Every worker first stores a stale copy of the whole 6 which
is used to compute the gradient. Then the parameter 6 are
divided to equally K parts, where K is the number of workers.
After all the workers finished computing the gradient of the
part that they are allocated, they first send their parts to all
the other workers then using the receiving part to update the
stale version of parameters.

III. EXPERIMENT RESULT

The scalability of the distributed algorithm can be roughly
measured by the linear relationship between the number of
machines and the running time for the same dataset as shown
in the following figure

400

——total time

295
350

——training time
300
250

200

Time in seconds

150

100
49.99

37.85

oo e MR wm

4 6 8 16

number of workers

figure 1 The scalability of logistic regression.

As indicated by the figure, training time and total time both
decrease nearly propotional to the increase in number of
workers.

Besides of runing time, another important indicator is the
convergence graph of the error rate, which is presented below.
The error rate is computed by the number of records whose

predicted label is different from its original label over the total
number of records.

-

0.9
0.8
0.7
0.6
0.5

Errorate

0.4 0.40126
0.3
0.2

0.203219
01 0182949 (166917 0.161275 0.158042 0156107

0 5)) 40 & EY 100

Number of iterations

figure 2. Error rate converging as the number of iterations
increases

It is assumed that the error rate at initial state is 1. After many
iterations of the gradient descent algorithm, the curve drops
slower and slower due to the convergence of the estimated
parameters and the theoretical parameters.

Comparing the performance of logistic regression imple-
mented on Husky with the LogisticRegressionWithSGD im-
plemented on Spark, conclution can be drawn that the con-
vergence time of the former is significantly shortter than the
latter one. The webspam dataset contains 350000 records.Each
record consists of 16609143 features. The a9 dataset is rel-
atively small containing 32561 records and each with 123
features.

2000

1815.463

1800

1600

1400

Time in seconds
S 5
g B
3 3

o
3
3

211.050839

- _
0

webspam

figure 3. Comparison of convergence time for webspam

14.259

Time in seconds
o

2 1.340141

a9

figure 4. Comparison of convergence time for a9

IV. CONCLUSION

In this project, a distributed logistic regression algorithm is
developed on Husky platform. In terms of speed and quality,
this implementation outperforms the state of art MLIlib on
Spark platform.

ACKNOWLEDGMENT

I would like to express my special thanks to Fan Yang,
Yunjian, Jinfeng, Legend, Kelvin and others in lab for their
guidance and generous help. I would also like to thank
professor James Cheng for giving me such great chance to
do the wonderful project on machine learning.

REFERENCES

[1] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and
expressive distributed computing framework. PVLDB, 9(5):420-431,
2016.

