
Implement Density Based Spatial Clustering Application with Noise (DBSCAN) and its

variants on Husky

LI Changji

The Chinese University of Hong Kong

Introduction

With the development of social network and the increase of human beings, how to process

big data to make it fast, efficient and easy to use become an importance problem. Husky[5]

, which developed by the group of Prof. James CHENG, is an efficient, expressive and yet

intuitive programming models for data-parallel computing system. With Husky, the data will

be processed on many machines simultaneously with many threads in one machine such that

it will consume less time and memory. Therefore, we can use Husky to realize many different

machine learning algorithms such as PCA, SVM and Regression. What I tried to implement

is DBSCAN which is a clustering algorithm.

Clustering is the task of partitioning a set of objects into groups which are called cluster so

that the objects in the same cluster are similar to each other. DBSCAN is a density-based

clustering algorithm which is widely used for clustering set of points because it can detect

clusters with arbitrary shape and does not need to know the number of clusters beforehand.

Theoretically, its worst case of running time complexity is O(𝑛2). Therefore, it will consume

too much time and memory to process large scale of dataset with normal computer. Using

Husky will reduce lots of running time. Nevertheless, there are also some problems for using

parallel computing. On the basis of Husky, the algorithm can be modified to make DBSCAN

faster and smarter. This report will introduce how to implement DBSCAN with basic version

and modified version on Husky.

Method

There are two basic parameters for DBSCAN including MinPts which means the minimum

number of points and eps(𝜀) which will be introduced later. What the DBSCAN should do is

to partition the data into different based on density. For each data represented by point, if

there are some other points whose distance to point 𝓅 is less than eps value, these points are

the density-approached to point 𝓅. If two points are density-approached to each other, these

two points must be in the same cluster. By using this basic rule, DBSCAN can find all points

which are density-approached to each other in the same cluster. Before introducing the

producer of DBSCAN, there are three more basic concepts. If two points can be density-

approached directly, these two points are called neighbors to each other. Meanwhile, if the

number of neighbors of one point is larger or equal to MinPts, this point can be called Core

Point. Otherwise, if there is a core point in the neighbor, this point can be called Border Point

and otherwise for Noise.

To realize DBSCAN, the first step is choosing a point arbitrarily and check which type this

point belongs to. If the point is core point and the program will check all of the neighbors of

this point. If not, choose another point and execute the same procedure. However, the

program will choose every point simultaneously but only one on parallel computing system

which will result in that the program cannot distinguish different cluster. To solve this

problem, it is very efficient and concise to use Minhash[4]:

MinHash (𝓅)

1: {𝓅 is the object of data including coordinates, cluster id and neighbors}

2: send the cluster id of 𝓅 to the neighbors

3: do

4: msg ← get cluster id from last sent

5: If msg < cluster id

6: cluster id = msg

7: send the new cluster id to neighbors

8: while (there is no message get)

By MinHash, the cluster id of point will be assigned to the smallest one in the cluster.

The program must calculate the Euclidean distance between two points to check whether

these two points are density-approached. For each point, the program must calculate every

other point with this point that bring about the running time must be worse than O(𝑛2). To

make it faster, there is a variant of DBSCAN which can be called pDBSCAN. The core

thought of pDBSCAN is the dataset will be partition into grid with the length of cell is

eps/√𝑑 (d is the number of features) before processing:

From the figure above, we can find that the points in one cell are all density-approached to

each other such that the Euclidean distance between these point is not necessary to calculate.

Similarly, the cell which contains more than MinPts points is called the core cell. It only

differs in that if the cell contains at least one core point, it can be called core cell. After

partitioning the data, there is another modification that is each non-core cell should only

calculate nearby twenty cells to determine type:

Cells in gray are what we should calculate for point 𝑜10. The last step of this algorithm is

merging these cells into cluster. If there are two points 𝓅, 𝓆 and 𝓅 belongs to 𝑐1 and 𝓆

belongs to 𝑐2, and the distance between 𝓅 and 𝓆 is larger than eps, 𝑐1 and 𝑐2 are neighbors to

each other. After finding all neighbors, we can use MinHash to merge these cells into

relevant clusters.

Result

This chapter will show some result of DBSCAN and its variant. The datasets we choose is

Seed Spreader[2] and HIGGS[1] which are from UCI.

Figure 1. DBSCAN in a grid(2D)

Figure 2.Neighbor cells (in gray) of the cell of 𝑜10

Seed Spreader(SS):

SS is a small and low features dataset for testing the feasibility and precision which is as

follows:

Run the DBSCAN algorithm and mark cluster by different color, we can get:

Figure.4 is applied DBSCAN with eps equals 5000 and Figure.5 with 11300.

HIGGS:

HIGGS contains ten million data and twenty-seven features. For testing the DBSCAN and

pDBSCAN, the datasets will be loaded partly to get more information.

Figure 3. 2D seed spreader dataset

Figure 4. eps = 5000

Figure 5.eps = 11300

The x-axis of figure.6 represents the size of data, e.g. 1m for one million and the y-axis

represents the time of algorit1hm use with second. The number of features is always three.

This figure shows that pDBSCAN is faster than DBSCAN and can handle larger data size.

The same with figure.6, the y-axis is the running time. Meanwhile, the x-axis represents the

number of features, e.g. 2D for two features. This figure shows the pDBSCAN can handle

high dimensional data easier.

Compared with Spark[3]

Spark is another data-parallel computing system and there is implementation of DBSCAN[].

Compare the performance of DBSCAN on Husky and on Spark is like:

Data size: 2,000,000 Number of features: 2
Spark: around 20 minutes with 4 nodes
Husky: 9.5 seconds with 20 workers
 12.6 seconds with 4 workers

Data size: 3,000,000 Number of features: 2
Spark: around 50 minutes with 4 nodes
Husky: 13.9 seconds with 20 workers
 14.9 seconds with 4 workers

Data size: 10,000,000 Number of features: 2
Spark: No Data
Husky: 49.6 seconds with 20 workers

Data size: 2,000,000 Number of features: 3
Spark: No Data
Husky: 13.2 seconds with 20 workers

Table 1 presents that DBSCAN on Husky is faster than on Spark and it can handle larger and

higher dimensional dataset.

Figure 6.Running time vs data size Figure 7. Running time vs number of features

Table 1. Performance of DBSCAN on Husky and on Spark

Discussion

From the result of testing DBSCAN and comparison with Spark, the basic DBSCAN can

perform well because of the Husky and it also has many restrictions. And the pDBSCAN can

handle more and perform better. There are also many other variants of DBSCAN which also

can improve the performance such as approximate version of DBSCAN. For approximate

DBSCAN, the procedure of merge can be modified to O(n). However, because the parallel

computing requires message communication a lot between each object, the running time

complexity will be increased to O(2𝐷) (D for number of dimensions). Therefore,

implementing the approximate DBSCAN on Husky and reaching the expected result is still a

problem and will be the future work.

References

[1] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy

physics with deep learning. Nature communications, 5, 2014.

[2] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. ukasik, and S. Zak.

Complete gradient clustering algorithm for features analysis of x-ray images. In Information

technologies in biomedicine, pages 15–24. Springer, 2010.

[3] DBSCAN on Spark. https://github.com/alitouka/spark_dbscan.

[4] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph computing

systems: An experimental evaluation. PVLDB, 8(3):281–292, 2014.

[5] F. Yang, J. Li, and J. Cheng. Husky: Towards a more efficient and expressive

distributed computing framework. PVLDB, 9(5):420–431, 2016.

