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This study aims to implement Density Based Spatial 

Clustering Application with Noise (DBSCAN) on a data-

parallel computing system, Husky[1], developed by group 

of Prof. James CHENG. Meanwhile, to improve the 

performance of DBSCAN, some variants of DBSCAN 

will be implemented and tested on Husky. 

Basic Concepts 
• Eps (𝜀) : epsilon value, a positive real value; 

• MinPts : a small positive constant positive; 

• Density-approached : For two points, if the Euclidean 

distance between them is less then 𝜀, these two points 

are density-approached (neighbors) to each other. 

• Core Point : For a point 𝓅, if the number of points 

which are density-approached to 𝓅  is more than 

MinPts, 𝓅 will be called Core Point. 

• Border Point : Non-core point and there exist at least 

one neighbor which is Core Point. 

• Noise : Non-core point and non-border point. 
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Procedure of DBSCAN on Husky 

1. Find all Core Points and their neighbors.  

2. Merge the Core Points into their own cluster 

(MinHash) 

3. Find Border and Noise 

 

pDBSCAN[2]: 

1. Partition data with a grid (cell length = 𝜀 / 𝑑) 

2. Find all Core Cell and their neighbors. 

3. Merge the Core Cell into cluster. 

4. Find Border and Noise 

Figure.1 pDBSCAN in a grid (2D)[] Figure 2.Neighbor cells (in gray) of 

the cell of 𝑜10 [] 

DBSCAN vs pDBSCAN: 

The datasets we used is HIGGS from UCI[]. We separate 

dataset into different size for testing the running time with 

different data size.  

Figure.3 Running time vs data size Figure.4 Running time vs number of  features 

The figure.3 shows that pDBSCAN is faster than DBSCAN 

and can handle larger data size. And figure.4 represents that 

the pDBSCAN can handle high dimensional data easier. 

 

Husky vs Spark: 

We compared pDBSCAN on Husky with DBSCAN on 

Spark whose algorithm is similar to pDBSCAN. 

Figure.5 tells us DBSCAN on Husky is faster than on Spark 

and it can handle larger and higher dimensional dataset.  

Figure.5 Husky vs Spark 

• The basic DBSCAN can perform well because of the 

Husky and it also has many restrictions. And the 

pDBSCAN can handle more and perform better.  

• There are also many other variants of DBSCAN which 

also can improve the performance such as approximate 

version of DBSCAN [2]. For approximate DBSCAN, the 

procedure of merge can be modified to O(n).  

• However, because the parallel computing requires 

message communication a lot between each object, the 

running time complexity will be increased to O(2𝐷) (D 

for number of dimensions) . Therefore, implementing the 

approximate DBSCAN on Husky and reaching the 

expected result is still a problem and will be the future 

work. 
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