
Density Based Spatial Clustering Application with Nosie

Implementation and Modification on Husky

Student: LI Changji Aaron

Introduction

Supervising professor : Prof. James CHENG

The Chinese University of Hong Kong

This study aims to implement Density Based Spatial

Clustering Application with Noise (DBSCAN) on a data-

parallel computing system, Husky[1], developed by group

of Prof. James CHENG. Meanwhile, to improve the

performance of DBSCAN, some variants of DBSCAN

will be implemented and tested on Husky.

Basic Concepts
• Eps (𝜀) : epsilon value, a positive real value;

• MinPts : a small positive constant positive;

• Density-approached : For two points, if the Euclidean

distance between them is less then 𝜀, these two points

are density-approached (neighbors) to each other.

• Core Point : For a point 𝓅, if the number of points

which are density-approached to 𝓅 is more than

MinPts, 𝓅 will be called Core Point.

• Border Point : Non-core point and there exist at least

one neighbor which is Core Point.

• Noise : Non-core point and non-border point.

Method

Result

Discussion

References

Acknowledgements

Procedure of DBSCAN on Husky

1. Find all Core Points and their neighbors.

2. Merge the Core Points into their own cluster

(MinHash)

3. Find Border and Noise

pDBSCAN[2]:

1. Partition data with a grid (cell length = 𝜀 / 𝑑)

2. Find all Core Cell and their neighbors.

3. Merge the Core Cell into cluster.

4. Find Border and Noise

Figure.1 pDBSCAN in a grid (2D)[] Figure 2.Neighbor cells (in gray) of

the cell of 𝑜10 []

DBSCAN vs pDBSCAN:

The datasets we used is HIGGS from UCI[]. We separate

dataset into different size for testing the running time with

different data size.

Figure.3 Running time vs data size Figure.4 Running time vs number of features

The figure.3 shows that pDBSCAN is faster than DBSCAN

and can handle larger data size. And figure.4 represents that

the pDBSCAN can handle high dimensional data easier.

Husky vs Spark:

We compared pDBSCAN on Husky with DBSCAN on

Spark whose algorithm is similar to pDBSCAN.

Figure.5 tells us DBSCAN on Husky is faster than on Spark

and it can handle larger and higher dimensional dataset.

Figure.5 Husky vs Spark

• The basic DBSCAN can perform well because of the

Husky and it also has many restrictions. And the

pDBSCAN can handle more and perform better.

• There are also many other variants of DBSCAN which

also can improve the performance such as approximate

version of DBSCAN [2]. For approximate DBSCAN, the

procedure of merge can be modified to O(n).

• However, because the parallel computing requires

message communication a lot between each object, the

running time complexity will be increased to O(2𝐷) (D

for number of dimensions) . Therefore, implementing the

approximate DBSCAN on Husky and reaching the

expected result is still a problem and will be the future

work.

[1]F. Yang, J. Li and J. Cheng, "Husky: Towards a More

Efficient and Expressive Distributed Computing

Framework", PVLDB, 2016.

[2]J. Gan and Y. Tao, "DBSCAN Revisited: Mis-Claim,

Un-Fixability, and Approximation", SIGMOD, 2015.

I would like to express the deepest appreciation to my

supervising professor and postgraduate mentor. Without

their supervision and constant help this research would not

have been possible.

