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counter-intuitive problem in SimRank. Second, we propose the
PageSim algorithm, which takes the influences of indirect neigh-

bors into consideration by applying feature propagation strat-
egy. In PageSim, each object has a unique feature and propa-

gates this feature to its (direct and indirect) neighbors via links.
Similarity between objects is then calculated by comparing the

features they have. Approximation techniques are suggested
for the proposed algorithms to improve their computational
efficiency. Experimental results on real-world datasets show

that they outperform classical algorithms in terms of effective-
ness. Third, we propose a simple but important model called

the Extended Neighborhood Structure (ENS), which defines a
bi-directional (inlink and outlink) and multi-hop neighborhood

structure. Several classical algorithms are extended based on
this model. Experiments show the extended algorithms out-

perform their original versions significantly in accuracy.
Last, we focus on the top-N recommendation problem,

which is described as “given the preference information of users,

recommending a user top-N items that he might like, based on
his basket (the items he likes).” First, we present the item-

graph model, which is constructed directly from the user-item
matrix and is used for tracking the relationships between items.

Second, we propose an item-based top-N recommendation algo-
rithm called GCP (Generalized Conditional Probability), which
refines the “1 item”-based traditional CP (Conditional Proba-

bility) algorithm by taking the “multi-item”-based conditional
probabilities into account. The item-graph is used for ap-

proximately calculate these probabilities. The GCP algorithm
is tested against the traditional CP and COS algorithms on

MovieLens dataset. Experimental results show that GCP per-
forms the best in terms of accuracy.
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測量圖中對象間相似度的技術在不同領域的許多應用中都有需求，比如網絡

挖掘，社區網絡，信息檢索，引用分析，和推薦系統。在本論文中，我們首先關註

基於鄰居的方法。此類方法基於一個直覺，即“相似的對象有相似的鄰居。” 

早期基於鄰居的相似度算法只是簡單地計算兩個對象間相同和/或不同的鄰居

個數，比如 Co‐citation 算法。他們在處理像 Web 這樣的稀疏數據集時，因為缺乏

柔韌性而效果不好。SimRank 算法將鄰居間的相似度考慮進來。但它有一個嚴重的

違反直覺的漏洞。本論文的首要目標，是研究如何通過充分使用對象的鄰域結構，

來提高相似度測量的有效性。 

相應地，我們提出了三個基於鄰居的技術方法。首先，我們提出了 MatchSim

算法。此算法通過定義對象相似度為它們最大匹配的相似鄰居相似度的的平均值，

擴展了“數鄰居個數”的策略。它還遵循相似性的基本直觀條件，所以能夠避免

SimRank 的違反直覺的問題。其次，我們提出了 PageSim 算法。此算法將間接的鄰

居考慮進來。在 PageSim 中，每個對象都有一個唯一的特征，並且都把此特征通過

鏈接傳給它的(直接和間接的)鄰居。對象間的相似度則通過比較它們擁有的特征計

算出來。我們還建議了一些近似技術，來提高 MatchSim 和 PageSim 的計算效率。

基於實際數據的試驗結果顯示，它們都在有效性上優於經典的算法。第三，我們提

出了一個簡單但重要的模型，稱為擴展的鄰域結構(ENS)模型。ENS 模型定義了一

個雙向(鏈入和鏈出)和多跳的鄰域結構。基於這個模型，我們對若幹基於鏈接的算

法進行了擴展。試驗結果顯示，擴展的算法都在準確性上都優於原算法。 
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最後，我們專註於前 N 個物品推薦問題。這個問題可以敘述為：已知用戶的

偏好信息，和一個當前用戶的籃子（他喜歡的物品），推薦他可能喜歡的前 N 個

物品。我們首先描述了一個物品圖(item‐graph)的模型。這個模型直接構建自用戶

—物品矩陣，用來追蹤物品間的關系。其次，我們提出一個基於物品的前 N 個物

品推薦算法，叫做擴展的條件概率(Generalized  Conditional  Probability,  GCP)算法。

通過考慮基於多個物品的條件概率，GCP 算法對傳統的基於單個物品條件概率的

CP 算法進行了改進。物品圖被用來近似地計算這些條件概率。在 MovieLens 數據

集上，我們將 GCP 與 CP 和 COS 算法進行了測試比較。試驗結果顯示，GCP 算法在

準確性上表現最好。 
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Chapter 1

Introduction

1.1 Similarity Measurement

Efficient and effective techniques for measuring similarity

between objects (web pages, persons, academic articles, movies,

etc.) are required by many important applications in different

domains, such as Web mining, social networks analysis, cita-

tion analysis, information retrieval, and recommender systems.

For example, on the Web, besides traditional keyword-based

search, Google also supports instance-based search: searching

similar (or related) web pages (URLs) to a given one. 1 Social

network applications such as Facebook 2 and twitter 3 suggest

friends (persons that a user might has known or want to know)

based on the relatedness of users. Academic search engines

1http://www.googleguide.com/similar pages.html
2http://www.facebook.com
3http://twitter.com/

1



CHAPTER 1. INTRODUCTION 2

(such as Microsoft Academic Search 4 and Google Scholar 5)

and bibliographic citation databases (such as Web of Science 6)

recommend related articles to search results.

Various similarity measures have been proposed, which

can be generally classified into two basic approaches: the con-

tent-based and the link -based. The content-based (or the text-

based) methods evaluate the similarity between two objects’s

contents. The contents can be text of web pages/scientific ar-

ticles [20, 24, 75, 145, 146], profiles of objects/persons [11, 39,

130], or multimedia features of movies/songs [38, 57, 77, 132],

etc. These methods usually work well on traditional databases,

but may perform poorly when objects’s contents are of low-

quality, or even be inapplicable when the contents are unavail-

able. For example, the cosine TFIDF [5, 113, 114], which is the

most classical and widely used text-based similarity measure

in IR, has difficulties when being applied to the Web. First,

it suffers serious scalability problem when dealing with billions

of web pages, due to the large storage and long computing

time it requires for full-text comparison. Second, its accuracy

is heavily damaged by the large amount of poorly-edited web

pages. Last, it is prone to be manipulated by text spamming

techniques [8, 47, 53, 102].

On the other hand, relationships among objects (e.g., hy-

4http://academic.research.microsoft.com
5http://scholar.google.com
6http://www.isiknowledge.com
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perlinks among web pages, citations among articles) are widely

used by link analysis techniques to extract knowledge. Among

the link-based methods, PageRank [15, 73, 103] is perhaps the

most successful example, which is used by Google search engine

as a fundamental algorithm to evaluate web page authorities

by analyzing the hyperlink structure of the Web. Currently,

link structures are being widely used in many popular applica-

tions for similar object searching tasks. For example, Facebook

suggests friends to users based on the friend-of-friend network.

Web of Science “finds similar records based on shared refer-

ences.” 7 Recently, many link-based techniques and applications

are proposed for the Web, in which hyperlinks are exploited to

extract web page similarities [17, 28, 58, 124].

The link-based similarity measures can be further divided

into the graph-based and the neighbor -based. The graph-based

methods take the global structure of graph into consideration.

These methods include Minimum Cut/Maximum Flow [91] and

Katz measure [63], which originated from graph theory, and

Companion [31], which is derived from HITS algorithm [67],

etc. The neighbor-based methods share a simple intuition that

“similar objects have similar neighbors.” They focus on com-

paring local neighborhood structures of objects. Many of them

originated from traditional fields such as IR, set theory, and

citation analysis. Classical methods include Co-citation [123],

Bibliographic coupling [64], Jaccard Measure [119, 131], and

7http://www.isiknowledge.com
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SimRank [60]. The link-based methods are inherently resistant

to text-based manipulation techniques, but they have to fight

against link spamming [9, 30, 47, 48].

In the first part of this thesis, we concentrate on the neighbor-

based approach. Traditional neighbor-counting methods mea-

sure overlaps and/or differences between neighbor sets of ob-

jects. For example, Co-citation and Bibliographic coupling

work by counting the numbers of common inlink and outlink

neighbors, respectively. Jaccard Measure defines similarity be-

tween objects by the size of the intersection divided by the

size of the union of their neighbor sets. These methods are

very efficient and easy to implement, and are being used in

various applications. But for huge and sparse data sources like

the Web, in which web pages usually have very few (< 100)

direct neighbors compared to the total web pages (> 109), con-

sidering only direct neighbors is obviously not enough. Al-

ternatively, SimRank makes an extension by taking similarity

between neighbors into account. However, it has a counterin-

tuitive contradiction [35], which may influence its accuracy as

a result.

Consequently, we propose two novel similarity measures

called MatchSim [85, 86] and PageSim [83], respectively. Both

methods overcome the drawbacks of classical neighbor-based

methods in different ways. MatchSim recursively defines the

similarity between two objects by the average similarity of their

maximum-matched similar neighbors. By this way, the similar-
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ities between neighbors are taken into consideration. More-

over, we prove that MatchSim conforms to the basic intuition

of similarity. Therefore, potentially it can produce better re-

sults. In PageSim, the influences of both direct neighbors and

indirect neighbors are considered. To achieve this, PageSim

employs a strategy of feature propagation. Each object con-

tains unique feature and propagates the feature to its local

(direct and nearby indirect) neighbors via links. After the fea-

ture propagation of all objects, the PageSim similarity scores

are calculated by comparing the features contained by objects.

Accelerating techniques are also suggested to improve the com-

putational efficiency the proposed algorithms. Extensive ex-

periments are conducted on real-world datasets to evaluate the

accelerating techniques and the proposed similarity measurers,

showing that the proposed techniques achieve higher perfor-

mance than classical methods.

Additionally, we propose a simple model called the Ex-

tended Neighborhood Structure (ENS ) [84] to help link-based

methods improve their accuracy. The ENS model defines a bi-

directional (in-link and out-link) and multi-hop neighborhood

structure. Based on this model, existing similarity measures

can be extended, and experiments show that their accuracy

is improved significantly. In this thesis, we use the Web as

an example to illustrate our ideas. Nevertheless, the proposed

methods and techniques are also applicable to any data sources

with graph structures.
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1.2 Top-N Recommendation

The fast growing of E-commerce has led to the develop-

ment of recommender systems [2, 54, 110, 117]. In recent years,

recommender systems have been used in a number of different

applications such as recommending products a customer will

most likely buy, finding movies a user will enjoy, and identify-

ing web pages that will be of interest to a web surfer. Online

companies such as Amazon.com, Netflix.com, Half.com, and

CDNOW have successfully deployed commercial recommender

systems to improve customer online shopping experience. We

refer to [117] and [110], which contain excellent reviews of var-

ious recommender systems for different applications.

The recommendation problem can be informally described

as “based on the items a certain user likes and the preference

of other users, recommend him other items he might also like.”

Users can be customer or web surfer, etc; items can be prod-

uct or web page, etc. Furthermore, there are two basic types

of recommendation problems. The first one is the prediction

problem: predicting whether an active user (the user whom

the recommendation is for) will like a particular item. An ex-

ample is predicting the rating value of a given item for an ac-

tive user. The second one is the top-N recommendation

problem which can be described as a standard computation

problem of conditional probability: given the transaction his-

tory of users, compute the probability that an active user will
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buy a particular item based on the items in his basket (already

been purchased).

In the second part of this thesis, we focus on the top-

N recommendation problem. Particularly, we are interested

in performing recommendation task by analyzing the relation-

ships among items, i.e., the item-based approach. Two item-

based top-N recommendation algorithms have been proposed

in [33]. One is the CP (conditional probability)-based algo-

rithm, which defines the similarity between items by “1-item”-

based conditional probability. Technically, the method first

computes the probabilities that the active user buys a partic-

ular item ir if he has bought item ib, based on the transaction

database. The final recommendation strength for item ir is the

sum of all of the “1-item”-based conditional probabilities, i.e.,

CP (ir, B) =
∑

ib∈B P (ir|ib). The CP algorithm assumes the

items are purchased independently, which is untrue in many

real-world cases. We generalize the idea by taking into account

the “multi-item”-based conditional probabilities, aiming to im-

prove the accuracy of recommendation.

The work in this thesis is motivated by developing effec-

tive top-N recommendation algorithm based on analyzing the

relationships among items. We first present a statistical graph

model called the item-graph (IG) model, which can be built ef-

ficiently and incrementally from the user preferences database.

Based on this model, link-based algorithms, such as similarity

measures, can be potentially adopted to perform recommenda-
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tion tasks. Second, we develop an item-based top-N recommen-

dation algorithm called GCP (Generalized Conditional Prob-

ability). Preliminary experimental results on the MovieLens

dataset show that the GCP algorithm outperforms traditional

CP and COS algorithms significantly in terms of accuracy.

1.3 Relationships among the Proposed Meth-

ods

In this thesis, we propose three neighbor-based similarity

measurement techniques (MatchSim, PageSim, and the ENS

model) and one item-based top-N recommendation algorithm

(the GCP method). The relationships among the proposed

methods can be described as follows. Figure 1.1 illustrates the

relationships.

First, all of the proposed similarity methods extend the

traditional neighbor-counting approach, but in different ways.

MatchSim relaxes “hard-counting” to “soft-counting” by con-

sidering the similarity of neighbors. Moreover, it defines a more

reasonable “counting” method than SimRank. By recursive

definition and iterative computation, the impacts of indirect

neighbors can be taken into account and the final similarity

of objects can be reached as the iteration converges. PageSim

counts not only the overlapping of direct neighbors but also

the overlapping of indirect neighbors, by using the strategy of

object feature propagation. It is a natural extension of Jac-
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Figure 1.1: Relationships among proposed methods

card Measure - a well-known direct neighbor-counting method.

The Extended Neighborhood Structure model is proposed for

helping neighbor-based similarity measures make better use of

neighborhood structures. In this model, both direct neighbors

and indirect neighbors, as well as both inlink neighbors and

outlinks neighbors, are considered as valuable data sources for

similarity measurement. It is a general concept rather than a

concrete algorithm. The common ground of the three proposed

methods is that, simply counting neighbors is not enough, es-

pecially for large and sparse graphs; therefore more extensive

neighborhood structural information should to be considered

to achieve better accuracy.

Second, for top-N recommendation algorithms, measur-
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ing similarity between items or users is a core function. An

item-graph can be constructed based on historical transactions,

with weights of edges representing times of co-purchases of two

items. Obviously, the item-item similarities can be computed

by applying link-based similarity measures to the item-graph.

We have done some experiments but the results are not yet

satisfying. We think that it mainly caused by the nature of

item-graphs, which is different from ordinary graphs. Alterna-

tively, we follow the idea of CP(conditional probability)-based

method and enhance the method by taking into account the

“multi-item”-based conditional probabilities to improve accu-

racy. Nevertheless, we believe that link-based similarity mea-

sures can be applied to the item-graph and then solve the item-

based top-N recommendation problem in a better way. We

leave it as one of our future work.

1.4 Contributions

The main contributions of this thesis are summarized as

follows.

1. The MatchSim algorithm

We propose the MatchSim algorithm, which recursively

defines the similarity between objects by the average sim-

ilarity of their maximum-matched similar neighbors. We

show that MatchSim conforms to the basic intuition of
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similarity; therefore it can overcome the counterintuitive

contradiction in SimRank. Moreover, MatchSim can be

viewed as an extension of the traditional neighbor-counting

scheme by taking the similarities between neighbors into

account, leading to higher flexibility. We present the Match-

Sim score computation process and prove its convergence.

We also analyze its time and space complexity and sug-

gest two accelerating techniques: (1) proposing a simple

pruning strategy and (2) adopting an approximation algo-

rithm for maximum matching computation. Experimen-

tal results on real-world datasets show that although our

method is less efficient computationally, it outperforms

classic methods in terms of accuracy.

2. The PageSim algorithm

We propose the PageSim algorithm, which is based on the

strategy of feature propagating of objects (such as web

pages). In a graph, each object has certain amount of

unique feature which is represented by its PageRank score.

At the beginning, each object distributes its feature to its

neighbors and neighbors’ neighbors through links. After

that, PageSim scores are computed by comparing two ob-

jects’ feature lists (called the feature vectors). By this way,

PageSim takes the impacts of distant neighbors as well as

the importance of objects into consideration. A simple

pruning technique is suggested to improve its efficiency.
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Experiments on real-world datasets show that PageSim

outperforms others in terms of accuracy.

3. The Extended Neighborhood Structure Model

We propose the ENS model, which defines a bi-directional

(in-link and out-link) and multi-hop neighborhood struc-

ture. Based on the ENS model, several existing similarity

measures are extended, including PageSim, SimRank, Co-

citation, and Bibliographic coupling. Moreover, theoreti-

cal analyses show that the extended PageSim is an online,

incremental, scalable and stable algorithm; therefore it is

especially suitable for web pages. Experimental results

show that the extended algorithms outperform their orig-

inal versions significantly in accuracy.

4. The GCP (Generalized Conditional Probability)

recommendation algorithm

We first present the item-graph model, which is constructed

directly from the user-item transaction database and used

for tracking and reflecting the relationships between items.

Second, we propose an item-based top-N recommendation

algorithm called GCP(Generalized Conditional Probabil-

ity) algorithm. It is a natural generalization of the tradi-

tional CP(Conditional Probability) method and works on

the item-graph model directly. Preliminary experimental

results on the MovieLens dataset show that GCP outper-
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forms traditional CP and COS algorithms significantly in

terms of accuracy.

1.5 Organization

The rest of the thesis is organized as follows

1. Chapter 2

In this chapter, we give a brief review of the similarity

measurement problem and the recommendation problem,

including the literature background, the related concepts

and techniques. We first present the concept of “similar-

ity”, including its abstract definition, basic intuitions, and

common properties. Second, we give a survey of represen-

tative similarity measures which are classified according to

the representation of objects. Third, we give a brief intro-

duction to the Web mining and link analysis techniques.

Last, we present a short review of the recommendation

problem.

2. Chapter 3

In this chapter, we propose a novel neighbor-based sim-

ilarity measures called MatchSim, which extends tradi-

tional neighbor-counting methods by taking the similar-

ity between neighbors into account. We first demonstrate

its advantages over classical neighbor-based methods with

examples. Next, we present its mathematical definition,
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process of iterative computation, and time/space complex-

ities. After that, approximation techniques are suggested

to improve the efficiency of MatchSim. Extensive experi-

mental results on real-world datasets are presented in the

last part to show the effectiveness of MatchSim and that

of the approximation techniques.

3. Chapter 4

In this chapter, we propose the PageSim algorithm which

is based on feature propagation of objects. PageSim ex-

tends traditional neighbor-countingmethods by taking both

direct and indirect neighbors into consideration. There are

two phases in PageSim: the feature propagation phase and

the feature vector comparison phase. We first present the

key ideas of PageSim with examples. Next, we give its

formal mathematical definitions. Finally, experiments on

real-world datasets are conducted to evaluate the perfor-

mance of PageSim.

4. Chapter 5

In this chapter, we study how to improve accuracy of

neighbor-based similarity measures by making full use of

link structure. We first propose the ENS (Extended Neigh-

borhood Structure) model, which defines a bi-directional

(in-link and out-link) and multi-hop neighborhood struc-

ture. Next, several neighbor-based similarity measures are
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extended based on this model. Finally, the extended al-

gorithms are tested against their original versions experi-

mentally to evaluate the effectiveness of our strategy.

5. Chapter 6

In this chapter, we focus on the top-N recommendation

problem. We first present a statistical graph model called

the item-graph model, which can be built efficiently and

incrementally from the user preferences database. Sec-

ond, we propose an item-based top-N recommendation

algorithm called GCP (Generalized Conditional Probabil-

ity), which performs recommendation task by analyzing

relationships among items. Finally, we test the proposed

method against traditional methods on the MovieLens dataset.

6. Chapter 7

The last chapter concludes this thesis and addresses sev-

eral research directions that we are going to further explore

in the future.

In order to make each of these chapters self-contained,

some critical contents, e.g., definitions or motivations having

appeared in previous chapters may be briefly repeated in some

following chapters.

2 End of chapter.



Chapter 2

Literature Review

In this chapter, we give a brief review of the similarity

measurement problem and the recommendation problem, in-

cluding the literature background, the related concepts and

techniques. We first present the concept of “similarity”, in-

cluding its abstract definition, basic intuitions, and common

properties. Second, we give a survey of representative similar-

ity measures which are classified according to the representa-

tion of objects. Third, we give a brief introduction to the Web

mining and link analysis techniques. Last, we present a short

review of the recommendation problem.

2.1 Basic Concept of Similarity

The concept of similarity is central to many applications in

almost every scientific field, except that the concrete definition

of similarity vary among different applications. For example,

in mathematics, two objects are called geometrical similar if

16
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Figure 2.1: Relationship between object and property

they both have the same shape. In computer science, assessing

textual similarity between two text strings is one of the most

important text mining tasks. In linguistics, semantic similarity

is a concept whereby a set of documents or terms are assigned

a metric based on the likeness of their semantic content, and

lexical similarity is a measure of similarity between the word

sets of two given languages.

In philosophy, similarity is regarded as the relation of shar-

ing properties between two objects. Property is any physical

or intangible entity that is owned by an object or jointly by

a group of objects. According to bundle theory [26], an ob-

ject consists of its properties and nothing more. For example,

thinking of an apple compels one also to think of its color, its

shape, its cells, its taste, or at least one of its properties. Thus,

the theory asserts that the apple is no more than the collec-

tion of its properties. Therefore, the similarity between objects

is essentially the similarity between collections of their proper-

ties. In this thesis, we use the terms “property” and “feature”

interchangeably.

Similarity is an intuitive concept. As presented in [82], the

intuitions behind similarity are three-fold: For two objects a
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and b

S1. The more commonality they share, the more similar they

are;

S2. The more differences they have, the less similar they are;

S3. The maximum similarity between objects a and b is reached

when objects a and b are identical, no matter how much

commonality they share.

Similarity is a numerical measure of how close objects are.

Generally, the value of similarity usually vary from 0 to 1, with

greater value referring to closer two objects are. For any objects

a and b, most of similarity measures share the following basic

common properties:

1. positive defined: sim(a, b) ≥ 0,

2. auto-similarity: sim(a, b) ≤ sim(a, a) and sim(a, a) =

sim(a, b)⇔ a = b,

3. symmetry or reflectivity: sim(a, b) = sim(b, a),

4. finiteness: sim(a, b) < ∞, The upper value is often set

at 1.

In some literatures, the terms similarity and distance are

used interchangeably; distance simply refer to “dissimilarity”

and usually be defined with 1 - similarity. However, strictly

speaking, they are not exactly the same. The major difference
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is that many of the similarity measures do not obey the tri-

angle inequality axiom of distance: for all objects a, b, c,

inequality dist(a, b) ≤ dist(a, c) + dist(c, b) holds. Moreover,

the triangle inequality implies that if objects a and b are close

and objects b and c are close, then objects a and c must also

be close. Such conclusion does not always hold for similarity.

For example, William James [59] described an apparent coun-

terexample more than a century ago: a flame is similar to the

moon because they are both luminous, and the moon is similar

to a ball because they are both round, but apparently a flame

is not similar to a ball.

2.2 Similarity Measures

Similarity measures (or similarity functions, similarity mod-

els) are scoring functions that assign a numeric value (namely

similarity score) to a pair of objects, with the idea that a larger

value indicates greater similarity. The scores are usually be-

tween 0 and 1, with 0 meaning two objects are dissimilar and

1 meaning they are identical.

Similarity measures are central to many important appli-

cations such as searching, clustering, classification, and recom-

mendation. Many of them have been developed for different

kinds of data sources including text [23, 78, 140, 141], image

[42, 44], video [21, 22], audio [43, 107], time series [79, 97, 108],

geographic data [36, 51], and web pages [18, 31, 60, 83, 85,
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121, 127, 135], etc. In [29], the similarity strategies are or-

ganized into the following four categories: (1) direct mecha-

nisms, (2) transformation-based mechanisms, (3) information-

theoretic measures, and (4) emergent measures arising from an

in-depth analysis of the data.

Typically, similarity measures can be classified according

to the representation of underlying data sources. For example,

vector, set, and graph are three commonly used structures for

data representation. Accordingly, similarity measures can be

classified into the vector -based, the set-based, and the graph-

based (also known as the link -based). In this section, we give a

short survey on these similarity measures. Especially, we focus

on the link -based methods and divided them further into the

path-based and the neighbor -based.

2.2.1 Vector-based Methods

Many of the vector-based similarity measures are the dis-

tance measures originated from mathematics and computer sci-

ence in which vectors represent points of multi-dimensional

spaces (such as the Euclidean space in geometry or the fea-

ture space in pattern recognition). An object can be repre-

sented with a vector if its properties are ordered and the size

of vectors is a constant. The followings are the commonly used

metrics for assessing distance or similarity between two vectors

a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) ∈ Rn.
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1. The Minkowski distance is a metric on Euclidean space:

dist(a, b) = (

n∑

i=1

|ai − bi|p)1/p, p ∈ R. (2.1)

Minkowski distance is typically used with p being 1 or 2.

The latter is the Euclidean distance, while the former is

sometimes known as theManhattan distance or the taxicab

distance. In the limiting case of p reaching infinity we

obtain the Chebyshev distance:

dist(a, b) = limp→∞(
n∑

i=1

|ai − bi|p)1/p = maxn
i=1|ai − bi|.

(2.2)

2. The Cosine similarity [113] measures the angle between

two vectors. It can be extended such that it yields the

Jaccard coefficient (see Section 2.2.2) in the case of binary

attributes. Given two vectors a and b, the cosine similarity

is represented using a dot product and magnitude as

cos(a, b) =
a · b
‖a‖‖b‖. (2.3)

3. The Cosine TFIDF is a combination of the cosine simi-

larity and the TFIDF weighting scheme [114, 122], which

is often used in text mining and information retrieval to

evaluate similarity between documents. A TFIDF weight

is a statistical measure used to evaluate the importance of

a term (or word) to a document in a collection of corpus.

Given a corpus of documents D = {d1, · · · , dN}, we can
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extract a collection of atomic terms T = {t1, · · · , tn} from
the documents. A TFIDF weight is a product of TF (term

frequency) and IDF (inverse document frequency). TFi,j

describes how well that term ti describes document dj and

IDFi describes the general importance of term ti. They

are defined as follows.

TFi,j =
ni,j∑
k nk,j

, (2.4)

where ni,j denotes the number of times that term ti occurs

in document dj (the raw term frequency) and the denom-

inator is the sum of raw term frequency of all terms in

document dj.

IDFi = log
N

Ni
, (2.5)

where N is the total number of documents in the corpus,

and Ni is the number of documents containing term ti.

The TFIDF weight of term ti within document dj is given

by

TFIDFi,j = TFi,j × IDFi, (2.6)

Each document dj can be represented with a TFIDF vector

vj = (TFIDF1,j, · · · , TFIDFn,j),

j = 1, · · · , N . That is, dj is an object and TFIDFi,j

(i = 1, · · · , n) are its features or properties. The similarity

between two documents di and dj can be calculated by
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Figure 2.2: Relationship between feature sets of objects a and b

applying cosine similarity metric to the TFIDF vectors.

cosTFIDF (di, dj) =
vi · vj
‖vi‖‖vj‖

. (2.7)

2.2.2 Set-based Methods

Perhaps the most intuitive way to represent an object is

by a set of its own properties. In mathematics, a set is a

collection of distinct (or may not be distinct in more general

cases) objects. It is one of the most fundamental concepts in

mathematics. To evaluate the similarity between two sets, set-

based methods usually compare the common and/or different

features that two objects have.

In Tversky’s theory [136, 137], similarity is a function of

common features and distinctive features. Let A and B are the

sets of features representing objects a and b, then

sim(a, b) = θf(A ∩B)− αf(A−B)− βf(B − A), (2.8)

where θ, α, β ≥ 0. When α 6= β, Eq. (2.8) defines an asym-

metric form of similarity function, in which the similarity of

a to b is described as a linear combination of the measures of

their common and distinctive features. Apparently, similarity
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increases with the measure the common features and decreases

with the measure of the distinctive feature. Tversky further

formalizes Eq. (2.8) in a ratio model [136]:

sim(a, b) =
f(A ∩B)

f(A ∩ B) + αf(A−B) + βf(B − A)
, (2.9)

where α, β ≥ 0. Generally, many of the set-based similarity

measures fall into one of the above forms.

1. The Tversky index is an asymmetric similarity measure

[136]. The Tversky index is a number between 0 and 1

given by

sim(a, b) =
|A ∩B|

|A ∩B|+ α|A− B|+ β|B − A| , (2.10)

where α, β ≥ 0 are parameters. Setting α = β = 1 pro-

duces the Tanimono coefficient [112]; setting α = β = 0.5

produces Dice’s coefficient [139].

2. The Jaccard coefficient [119, 131], also known as the Jac-

card measure or the Jaccard index, is a statistic used for

comparing the similarity and diversity of sample sets. It

is developed by Paul Jaccard in 1901. The Jaccard coef-

ficient is defined as the size of the intersection divided by

the size of the union of the sample sets:

sim(a, b) =
|A ∩B|
|A ∪B| . (2.11)

3. The Overlap coefficient is a similarity measure related to

the Jaccard index that computes the overlap between two
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sets which is defined as follows:

sim(a, b) =
|A ∩B|

min(|A|, |B|). (2.12)

If set X is a subset of Y or the converse then the overlap

coefficient is equal to one.

2.2.3 Link-based Methods

In mathematics, a graph is an abstract representation of a

set of objects where some pairs of the objects are connected by

links. Typically, a directed graph is represented by G = (V, E),

with vertices or nodes V representing objects vi(i = 1, 2, · · · , n)
and directed edges E = {(vi, vj)|vi, vj ∈ V } representing links

or connections between the objects. From the perspective of ob-

ject representation, a node represents an object, and its neigh-

bors (with which the node is connected) can be considered as

its features or properties.

Graphs are widely used to represent various data resources

containing relationship structures. One example is the Web

graph, with vertices representing web pages and directed edges

representing hyperlinks. Another example is the citation graph,

in which vertices represent academical articles and links repre-

sent references of one article to others. Throughout the thesis,

we use these two kinds of graphs as examples to illustrate and

evaluate algorithms.

Link structure has been proven to be a useful source of

data for extracting knowledge in the areas including Web min-
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ing, citation analysis, and social network analysis, etc. Many

link-based similarity measures have been developed, which can

be further classified into path-based and neighbor -based. In the

following descriptions, we use symbols I(v) and O(v) to repre-

sent the in-link and out-link neighbors of vertex v, respectively.

Path-based Methods

To measure similarity between nodes in a graph, the path-

based similarity measures “refine the notion of shortest-path

distance by implicitly considering the ensemble of all paths be-

tween two pages (nodes) [80].” Many of them originated from

graph theory in mathematics, which usually measure the length

of paths (either the shortest length or the sum of lengths of all

possible paths) between two objects. Some others are from

stochastic processes, which perform random walks on graphs.

1. The Katz [63] defines a measure that directly sums over

the collection of paths between objects a and b, exponen-

tially damped by length to count short paths more heavily.

That is,

sim(a, b) =

∞∑

l=1

βl · |pathl(a, b)|, (2.13)

where pathl(a, b)| is the set of all length-l paths from a to

b, and β is a decay factor.

2. The Minimum Cut/Maximum Flow metric was proposed

in [90] to measure similarity between two academic pa-
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pers. The key idea is to count the number of different

paths between two nodes (papers) in the citation graph.

The number of paths between two nodes is related to the

minimum cut, the minimum number of edges needed to

be cut to disconnect on node from the other [90]. The

problem of finding all possible paths between two nodes

a and b is transformed to measuring the maximum flow

from source a to sink b for the purpose of computational

efficiency. In this metric, the direction of each edge is not

considered.

3. The Hitting Time [80] defines

sim(a, b) = H(a, b) +H(b, a), (2.14)

where H(a, b) is the expected number of steps required for

a random walk on a graph starting at a to reach b. In

each step, a neighbor of current node is chosen uniformly

at random.

One problem in Eq. (2.14) is that sim(a, b) is quite small

when b is a node with a large stationary probability πb, re-

gardless of the identity of a. To counterbalance this phe-

nomenon, the hitting time can be normalized by defining

sim(a, b) = −H(a, b) · πb −H(b, a) · πa. (2.15)

Another problem is that the random walks may be trapped

into loops or parts of the graph far away from a and b.
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One way to overcome this is to allow the random walks to

periodically “reset”, i.e., returning to starting object with

a fixed probability p at each step. Actually, this technique

is being used by PageRank algorithm.

4. The Companion was proposed by Dean and Henzinger [31]

in 1999. Given a web page q, the method find a set of pages

related to q by examining its link structure and output

similarity scores between q and the pages returned. There

are two main steps in Companion algorithm: (1) build a

vicinity graph of q that contains nearby neighbors of q and

the links among them, and (2) compute the similarities by

applying HITS algorithm to the vicinity graph. Either the

degree of authority or hub or a combination of both can be

used as a measure of similarity between q and each page

in the vicinity graph.

More recently, novel path-based similarity measures have

been proposed. In [93], a link-based covariance measure be-

tween nodes is introduced for weighted directed graphs. The

sum-over-paths (SoP) covariance measure is defined accord-

ing to a probability distribution: two nodes are considered as

highly correlated if they often co-occur together on the same

“preferably short” paths. In [144], a family of dissimilarity

measures, called the randomized shortest-path (RSP), was pro-

posed. It generalizes both the shortest-path and the commute-

time (or resistance distance) [19, 104]. By introducing a param-
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eter θ, the method can bias gradually the simple random walk

on the graph towards the shortest path strategy. In [37], a sim-

ilarity measure for nodes of a weighted and undirected graph

was proposed. It is based on a Markov-chain model of random

walk on the graph, computing the average commute time (or

the pseudoinverse of the Laplacian matrix of the graph). It has

the nice property of increasing when the number of paths con-

necting those elements increases and when the length of paths

decreases.

Neighbor-based Methods

The neighbor -based methods share a simple intuition that

“the more common and/or less different neighbors two objects

have, the more similar they are.” They focus on local neigh-

borhood comparison between objects. Many of them origi-

nated from traditional domains such as IR, set theory, and ci-

tation analysis. Early methods are usually called the neighbor-

counting measures because they simply count the common and/or

different neighbors between two objects. Many set-based simi-

larity measures, such as Jaccard measure, can be easily trans-

formed to neighbor-counting methods. Some others, like Sim-

Rank, extend the direct strategy with more complicated tech-

niques. Recently, neighbor-counting methods were applied to

multivariate data sources [141, 142]. The representative neighbor-

based similarity measures are summarized as follows.



CHAPTER 2. LITERATURE REVIEW 30

1. The Co-Citation [123] was first introduced by Small in the

fields of citation analysis and bibliometrics as a fundamen-

tal metric to characterize the similarity between scientific

papers. Two papers a and b are co-cited if they are cited

by a third paper c. In this case, a and b may be said to

be related to one another, even though they don’t directly

reference each other. The more papers they are cited by,

the stronger their relationship is. For papers a and b, the

co-citation similarity is defined in Eq. (2.16).

sim(a, b) = |I(a) ∩ I(b)|. (2.16)

2. The Bibliographic Coupling [64] was proposed by Kessler

to measure paper similarities. Two papers have an unit

of bibliographic coupling if both cite a same paper. The

idea is based on the observation that paper authors work

on the same subject tend to cite the same papers. The

definition is very much like that of co-citation:

sim(a, b) = |O(a) ∩O(b)|. (2.17)

3. The Amsler [3] combines both Co-citation and Biblio-

graphic coupling. According to Amsler, two papers a and

b are similar if (1) they are cited by the same paper, (2)

they cite the same paper, or (3) a cites a third paper c that

cites b. Let Γ(x) = I(a) ∪ O(a), the definition of Amsler

similarity is

sim(a, b) =
|Γ(a) ∩ Γ(b)|
|Γ(a)) ∪ Γ(b)|. (2.18)
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4. The Adamic/Adar [1] refines the simple counting of com-

mon features by weighting rarer features more heavily.

This suggests the measure

sim(a, b) =
∑

z∈|Γ(a)∩Γ(b)|

1

log|Γ(z)| . (2.19)

5. The Preferential Attachment [99] has received considerable

attention as a model of the growth of networks. The basic

premise is that the probability that a new node links to

node x is proportional to I(x).

sim(a, b) = |I(a)| · |I(b)|. (2.20)

6. SimRank is a fixed point of the recursive definition: two

pages are similar if they are referenced by similar pages.

Numerically, for any web page u and v, this is specified by

defining Sim(u, u) = 1 and

sim(u, v) = γ ·
∑

a∈I(u)
∑

b∈I(v) sim(a, b)

|I(u)||I(v)| (2.21)

for u 6= v and γ ∈ (0, 1). If I(u) or I(v) is empty, then

sim(u, v) is zero by definition. The SimRank iteration

starts with sim0(u, v) = 1 for u = v and sim0(u, v) = 0

for u 6= v. The SimRank score between u and v is defined

as limk→∞simk(u, v).

The neighbor-countingmethods ignore similarities between

neighbors. It may reduce their performance. The situation is
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Table 2.1: Classical neighbor-based similarity measures

Bibliographic Coupling |O(a) ∩ O(b)|
Co-citation |I(a) ∩ I(b)|

Jaccard Measure |Γ(a)∩Γ(b)|
|Γ(a)∪Γ(b)|

SimRank γ ·Σu∈I(a)Σv∈I(b)sim(u,v)

|I(a)||I(b)| , γ ∈ (0, 1)

even worse for the Web, which is extremely huge and sparse.

The Web contains billions of web pages, most of which have

only tens of (inlink and outlink) neighbors. Therefore, the

chance that two web pages happen to share common neigh-

bors is very slim. Thus, how to make good use of the rela-

tively tiny-sized neighborhoods is one of the challenges for the

neighbor-based methods.

We summarize four classical neighbor-based similaritymea-

sures in Table 2.1, which are used in the examples and exper-

iments of this thesis to compete with our proposed methods.

Interested readers are refereed to [80] which contains an ex-

haustive list of link-based similarity measures.

2.3 Web Mining and Link Analysis

The hyperlink structure of the Web has been exploited by

many link-based Web mining techniques to extract knowledge.

In this section, we fist present a brief overview of the Web

mining and Web link mining (also known as Web link analy-

sis). Then we present two representative link-based algorithms:

PageRank and HITS.
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2.3.1 Web Mining

Being overwhelmed by various kinds of data, we are now

in the “era of information explosion” rather than the “era of

information”. It is especially true for the Web. After 20 years’

explosive evolution, the Web has become a unique source of

information which is extremely huge and highly dynamic.

Web mining is a subfield of data mining. Typically, Web

mining research can be divided into three categories: Web Con-

tent Mining, Web Structure Mining, and Web Usage Mining

[69]. Web content mining is the process of extracting knowl-

edge from the content (text, audio, video, etc) of web pages.

Web structure mining is the process of inferring knowledge from

the relationships (usually indicated by the hyperlinks) between

web pages. Web usage mining, also known as Web log mining,

is the process of extracting interesting patterns in web access

logs [126]. Since this thesis is about link-based techniques, we

focus on the Web structure mining, which is also known as

“Web link analysis”. An exhaustive survey on Web mining can

be found in [88].

2.3.2 Web Link Analysis: PageRank and HITS

Web link analysis has been largely influenced by research

in the fields of social network and citation graph. In recent

years, Web link structure has been widely used to exploit im-

portant information inherent in the Web. One successful link-
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based algorithm is PageRank [103], which is the “heart” of

Google search engine. PageRank assigns a global “importance”

or “authority” score to each web page solely based on the struc-

tural information of the Web. As reported in [95], web spam-

ming seems to be the driving force behind the evolution of

search engines in their effort to provide quality results. The

success of PageRank is mainly based on the more sophisticated

anti-spamming solution it provided [95]. We give a brief intro-

duction about PageRank as follows.

PageRank is a well known ranking algorithm which uses

only link information to assign global importance scores to all

pages on the Web. The intuition behind the algorithm is “a

page has high rank if the sum of the ranks of its backlinks (in-

links) is high.” [103]

It assumes that the number of in-links of a page is related

to that page’s popularity among average web users (people

would point to pages that they find important). Correspond-

ingly, PageRank is based on a mutual reinforcement between

pages. From the viewpoint of random walk, the PageRank score

of a web page can be considered as the possibility that this web

page is being visited by a random web surfer at a certain time.

The PageRank score of web pages can be computed using

the following recursive algorithm:

X(t+ 1) = dWX(t) + (1− d)In, (2.22)
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where X ∈ Rn is an n-dimensional vector denoting the PageR-

ank of web pages. X(t) denotes the PageRank vector at the

t-th iteration. W = (wij)n×n is the transition matrix :

wij =





1
|O(vj)| (vj, vi) ∈ V,

0 otherwise.

In is an n-dimensional vector with all elements equal to 1, and

d is a damping factor. The PageRank of total n web pages is

given by the steady state solution of Eq. (2.22).

HITS (Hyperlink-Induced Topic Search) [67] is another

well-known link-based algorithm. Unlike PageRank, it com-

putes two different scores for each web page: hub score and

authority score. A page with a high authority score is one

linked to by many good hubs, and a page with a high hub score

is one that links to many good authorities. The authority and

hub scores are mutually reinforced, and they can be computed

recursively.

At the begining of the HITS algorithm, the initial values

of the authority score and the hub score of web pages are set

to be 1. Then, the authority score are updated iteratively by

the following equations:

A(i) =
∑

vj∈I(vi)
H(j), (2.23)

H(i) =
∑

vj∈O(vi)

A(j). (2.24)
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Following the success of PageRank and HITS, a family

of variations have also been proposed in the past decade, such

as SALSA [76], pSALSA [12], and PHITS (Probabilistic HITS)

[27], BrowseRank [89], topic-sensitive PageRank [50], TrustRank

[49], EigenTrust [62], PopRank [101]. Interested readers are re-

ferred to [52, 134], which give extensive surveys on Web link

analysis techniques.

2.4 Top-N Recommendation Problem

In the literature, recommender systems are usually defined

as a specific type of information filtering system technique that

attempts to recommend information items (web pages, movies,

TV program/show/episode, video on demand, music, books,

news, images, scientific literature such as research papers etc.)

or social elements (e.g. people, events or groups) that are likely

to be of interest to a particular user (called the active user) 1.

There are two main recommendation problems: 1) predicting

whether the active user will like a particular item (prediction

problem) and 2) identifying a set of N items that will be of

interest to the active user (top-N recommendation problem)

[33].

In this thesis, we focus on the top-N recommendation

problem and follow the item-based collaborative filtering (CF)

approach. In this section, we briefly review some related back-

1http://en.wikipedia.org/wiki/Recommender system
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Figure 2.3: The top-N recommendation problem

grounds, including the definition of the top-N recommendation

problem and the classical approaches for this problem, espe-

cially, the item-based collaborative filtering approach.

2.4.1 Problem Definition

In [33], the top-N recommendation problem is formally

defined as: Given a user-item matrix R and a set of items I

(called the basket) that have been purchased by a user (called

the active user), identify an ordered set of items X such that

|X| ≤ N and X ∩ I = ∅. (see Fig. 2.3)

We denote the user set and item set by Un and Im, respec-

tively, and the basket of the active user by B - which is a subset

of item set I. The user-item matrix R represents the historical

preference information of users. It is an n × m matrix, with

entry Ri,j indicating whether user Ui has bought (or voted, or

watched) item Ij. In many situations, items may have content

information which can be used by content-based methods for

recommendation tasks. In this thesis, we do not consider the

content information of items.



CHAPTER 2. LITERATURE REVIEW 38

2.4.2 Content-based and CF Approaches

In the past few years, various approaches for building rec-

ommender systems have been proposed or developed that uti-

lize either content, historical information, or demographic [6, 7,

56, 68, 120, 133]. Among them, the content-based recommen-

dation and collaborative filtering are two major approaches. In

the content-based recommendation, a user will be recommended

items similar to the ones he preferred in the past, by measur-

ing similarity between items and his preferences based on their

content. Usually, the content of item is represented by textual

information. For example, a content-based component of the

Fab system [6], which recommends web pages to users, repre-

sents web page content with the 100 most important words.

Similarly, the Syskill & Webert system [105] represents docu-

ments with the 128 most informative words.

Collaborative filtering (CF), which relies on historical in-

formation, is probably the most successful and widely used

technique nowadays [68, 109]. In CF recommendation, a user

will be recommended items by collecting taste information from

other users (collaborating). The term collaborative filtering

was first introduced in [40], where it was used to describe an

email filtering system called Tapestry, which was designed to

filter emails received from mailing lists and newsgroup postings.

The underlying assumption of CF approach is that those who

agreed in the past tend to agree again in the future. In [13],
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Figure 2.4: Top-N recommendation algorithms

CF recommendation algorithms are classified as the memory-

based and the model-based. The memory-based algorithms [13,

32, 98, 109, 120] make recommendations based on the entire

collection of references of the users. While the model-based al-

gorithms [13, 41, 94] use the collection of user preferences to

learn a model, which is then used to make recommendations.

The CF recommendation algorithms can be also classified

into the user-based and the item-based approaches. The user-

based methods recommend items to the active user based on the

interests of his/her similar users, and the item-based methods

do the recommendation based on the similarity between items

and the items that the active user likes. Fig.2.4 illustrates the

relationship of the top-N recommendation algorithms.
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2.4.3 User-based and Item-based CF Recommenda-

tion

User-based collaborative filtering is the most successful

technology for building recommender systems to date and is

widely used in many commercial recommender systems [116,

120, 147]. In general, user-based recommender systems com-

pute the top-N recommended items for the active user by fol-

lowing a three-step approach [68, 116, 120]:

1. look for k users who share the similar preferences with the

active user (the user whom the recommendation is for);

2. compute the union of the items purchased by the similar

users and associate a weight with each item based on its

importance in the set;

3. from this union recommend the top-N items that have the

highest weight and have not already been purchased by the

active user.

The similarity between users is usually computed by treat-

ing them as vectors in the item-space and measuring their sim-

ilarity by using the cosine or correlation coefficient functions

[13, 116]. The importance of each item is determined by the

frequency of it being purchased by the k most similar users.

A detailed survey of different user-based recommendation al-

gorithms and a comparison of their performance can be found

in [2, 13, 55, 106, 116].
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The user-based recommender systems have some limita-

tions related to scalability and real-time performance. First,

the computational complexity of these algorithms grows lin-

early with the number of users, which in typical commercial

applications can grow to be several millions. Second, the user-

user similarity matrix can be quite dense, even though the

user-item matrix is very sparse. This is because even a few fre-

quently purchased items can cause dense user-user similarities.

Third, real-time top-N recommendations based on the current

basket of items, utilized by many e-commerce sites, cannot take

advantage of pre-computed user-user similarities. One way of

improving the computational efficiency the user-based meth-

ods is to cluster the users and then to either limit the similar-

user search among the users that belong to the cluster, or use

the cluster centroids to derive the recommendations [96, 138].

These approaches can significantly improve the recommenda-

tion efficiency, but tend to decrease the recommendation qual-

ity. In recent years, new studies on improving performance of

collaborative filtering based on clustering have been proposed

[65, 125, 148]

The item-based collaborative filtering algorithms are pop-

ularized by Amazon.com [87] (users who bought x also bought

y). Typically, they following a two-step approach:

1. build an item-item similarity matrix indicating similarities

between items;
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2. based on the item-item similarity matrix and the known

tastes of the active user, infer his unknown tastes.

In the past few years, many different model-based ap-

proaches have been developed that use item-item similarities

as well as association rules. In [120], the authors proposed

an item-based prediction algorithm within the context of the

Ringo music recommendation system. The algorithm was de-

signed to determine whether a user will like a particular artist

or not by comparing the similarity between their tastes (the

songs that they has liked/disliked in the past). The similar-

ity between items was computed by using the Pearson corre-

lation function [109]. In [115], the authors further studied this

paradigm for computing predictions. They evaluated various

methods for computing the similarity as well as approaches to

limit the set of item-item similarities that need to be consid-

ered. Considerable improvements were reported in performance

over the user-based algorithm. [96] an algorithm was proposed

for recommending web pages to be visited by a user based on

association rules. In this algorithm, the historical information

about the web-access patterns of the users were mined by using

a frequent item-set discovery algorithm and a set of high confi-

dence association rules were generated. The recommendations

were made based on the union of the consequent of the rules

that were supported by the pages visited by the user. In [81],

the authors used a similar approach but they proposed an al-
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gorithm that is guaranteed to find association rules for all the

items in the database. In [115], the authors analyzed differ-

ent item-based recommendation algorithms. They compared

different techniques for computing item-item similarities (e.g.,

item-item correlation vs. cosine similarities between item vec-

tors) and different techniques for obtaining recommendations

from them (e.g., weighted sum vs. regression model). Experi-

mental results showed that item-based algorithms significantly

outperformed user-based algorithms, while at the same time

providing better quality than the best available user-based al-

gorithms.

In [33], the authors presented a class of model-based rec-

ommendation algorithms for the top-N recommendation prob-

lem. They first compute the similarities between items, and

then make recommendations based on the similarities. Two

classical similarity measures, the cosine-based and the condi-

tional probability-based, were employed to compute the item-

item similarities. The intuition behind is that the items which

are most similar to the items in a user’s basket should be rec-

ommended to the user. Naturally, the similarity between a

particular item and the user’s basket is defined by the sum

of similarities between this item and each of the items in the

basket. We refer the interested readers to [33] for a detailed

description on the item-based top-N recommendation problem

and algorithms.
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2.4.4 Item-based Similarity Measures for Top-N Rec-

ommendation Problem

For the item-based top-N recommendation problem, Co-

sine similarity (COS) and Conditional-probability similarity

(CP) are two commonly-used similaritymeasurement algorithms

for computing similarity between items. Given a user-item ma-

trix R = (Ri,j)N ×M , where Ri,j = 1 indicates that user i has

purchased item j, 0 otherwise. Row vector Ri, ∗ represents the
preference information of user i (what items this user has pur-

chased) and column vector R∗, j represents the purchase status
of item j (what users have purchased this item). The COS and

CP measures are defined as follows.

Conditional Probability Similarity (CP): The CP

similarity measure defines sim(vi, vj) by the conditional prob-

ability of customers purchasing vi given that vj has been pur-

chased:

sim(vi, vj) = p(vi|vj) =
p({vi, vj})

p(vj)
≈ freq({vi, vj})

freq(vj)
, (2.25)

where p(I) is the possibility of purchasing items I, and freq(I)

is the times of purchasing items I in all transaction. Note that

CP is an asymmetric measure since p(vi|vj) 6= p(vj|vi) in many

cases.

Cosine Similarity (COS): An alternate way of comput-

ing the item-item similarity is to treat each item as a vector in

the space of customers and use the cosine between these vectors

as a measure of similarity. Formally, for the user-item matrix
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Rn×m, the similarity between two items vi and vj is defined as

the cosine of the n dimensional vectors corresponding to the ith

and jth column of matrix R. Thus, the cosine between these

vectors is given by

sim(vi, vj) = cos(R∗,i, R∗,j) =
R∗,i · R∗,j

‖R∗,i‖2‖R∗,j‖2
, (2.26)

where “·” denotes the vector dot-product operation.

In this thesis, we focus on a class of CF-based top-N rec-

ommendation algorithms that build the recommendationmodel

by analyzing the similarities between items and then use these

similar items to identify the set of items to be recommended.

These algorithms, referred to in this thesis as item-based top-N

recommendation algorithms, have been used in various forms

since the early days of CF-based recommender systems [66,

120] and were shown to be computationally scalable (both in

terms of model construction and model application) but tended

to produce lower-quality recommendations when compared to

user-based schemes.

2 End of chapter.



Chapter 3

MatchSim: Neighborhood

Max-Matching

In this chapter, we propose a novel neighbor-based sim-

ilarity measures called MatchSim, which extends traditional

neighbor-counting methods by taking the similarity between

neighbors into account. Moreover, it can avoid the counter-

intuitive loophole in another similar method called SimRank.

We first give examples to illustrate the advantages of Match-

Sim. Next, we present its mathematical definition and process

of iterative computation, and prove that the iteration process

converge under certain conditions. Approximation techniques

are also suggested to improve the efficiency of MatchSim. Fi-

nally, we conduct extensive experiments on real-world datasets

to evaluate the performance of MatchSim as well as that of the

approximation techniques.

46
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3.1 Introduction

Traditional neighbor-counting methods measure overlaps

and/or differences between objects’ neighbor sets. For exam-

ple, Co-citation and Bibliographic coupling work by counting

the numbers of common inlink and outlink neighbors, respec-

tively. Jaccard Measure defines similarity between objects by

the size of the intersection divided by the size of the union

of their neighbor sets. These methods run fast and are easy to

implement. But they lack flexibility because of ignoring similar-

ity between neighbors. SimRank makes an extension by taking

neighbors’ similarity into account. However, it has a counter-

intuitive contradiction [35] which may influence its accuracy as

a result. We give examples in Section 3.2.1 to demonstrate the

problems of these methods.

We consequently propose a novel similarity measure called

MatchSim in this chapter, which overcomes the above prob-

lems of classic neighbor-based methods by (1) taking similarity

between neighbors into account, and (2) conforming to the ba-

sic intuition of similarity. Therefore, potentially our method

can produce better results. MatchSim recursively defines the

similarity between two objects by the average similarity of the

maximum-matched similar neighbor pairs between them. More

precisely, to calculate the similarity score sim(a, b) between two

objects a and b, MatchSim first finds out a maximum matching

between their similar neighbors. (If the numbers of two pages’
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neighbors are not the same, we simply add dummy neighbors

that are similar to none of the others to make up the missing

part.) Next, sim(a, b) is replaced with the average similar-

ity of the maximum-matched neighbor pairs. The process of

MatchSim score computation is iterative and can be proved to

converge under certain conditions.

Finally, we summarize the contributions of this chapter as

follows.

1. Proposing MatchSim, which measures similarity between

any networked objects based on maximum neighborhood

matching.

2. Suggesting accelerating techniques to improve efficiency

of MatchSim, including a pruning strategy and an approx-

imation algorithm.

3. Conducting extensive experiments on real-world datasets

to evaluate the performance of MatchSim, as well as the

accelerating techniques.

The rest of the chapter is organized as follows. Section

3.2 presents the MatchSim algorithm, including its key ideas,

mathematical definition, iterative computing process, complex-

ity analysis, and suggested accelerating techniques. Section 3.3

reports the experimental results and discussions. Section 3.4

presents the summary. Other related materials are given in the

appendixes. Appendix A presents the proof of MatchSim score
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Figure 3.1: Objects a and b have similar neighbors

computation convergence, Appendix B gives a brief description

on the maximum matching problem, and Appendix C presents

some basic statistics on the link structure of the datasets.

3.2 MatchSim Algorithm

3.2.1 What Inspired MatchSim?

MatchSim is inspired by two major drawbacks of classic

neighbor-based similarity measures. One is that the neighbor-

counting methods ignore similarities between neighbors. The

other is that the SimRank method violates intuition (S1) of

similarity in some cases. By overcoming these drawbacks, po-

tentially our method can produce more accurate results. In

the following examples, we illustrate the problems and intro-

duce the basic idea of MatchSim. In next subsection, we give

MatchSim’s formal definition, and in Section 3.2.2, we explain

its advantages by showing how it solves the problems.

Example 1: Figure 3.1 presents a snippet of citation

graph in which a1 and b1 are scientific papers about SVM (Sup-
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Figure 3.2: Objects a and b have n common neighbors

port Vector Machine), and a2 and b2 are about DB (Database).

Assume it is known that sim(a1, b1) = 0.7, sim(a2, b2) = 0.5,

and sim(a1, b2) = sim(a2, b1) = 0.1

Neighbor-counting methods will conclude that a and b are

not similar at all (i.e., sim(a, b) = 0) because they have no

common neighbors, which is clearly inaccurate. SimRank takes

the similarities between neighbors into account. It computes

sim(a, b) = γ ·
∑

i=1,2

∑

j=1,2

sim(ai, bj)/4 = 0.3γ > 0,

which makes more sense. But if we remove the most similar

neighbor pairs (a1, b1), sim(a, b) will increase to γ×sim(a2, b2)/1

= 0.5γ, which is evidently counterintuitive.

Example 2: Here, we reveal the drawback of SimRank

with an extreme case. It has been criticized in [35] that when

objects a and b have exactly n(n > 0) common neighbors, and

the SimRank score between any distinct neighbors is 0, then

sim(a, b) approaches to 0 as n increases (see Fig. 3.2). This

means that in this case, the more common neighbors that a
1The assumption is reasonable since papers with the same topic should be more similar

as they are prone to citing more common references.
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and b have, the less similar they are. Clearly, in this case,

SimRank violates intuition (S1) of similarity (see Section 2.1).

The problem of SimRank is caused by its strategy of “con-

sidering the overall sum of similarities between neighbors.” In-

tuitively, in Example 1, we say that a and b are similar simply

based on the fact that they have pairwise similar neighbors

(a1, b1) and (a2, b2). Therefore, we can use the average simi-

larity of the pairwise similar neighbors as the measurement of

sim(a, b). This is the key idea of MatchSim.

3.2.2 MatchSim Definition

Given two distinct objects a and b in a graph of size n,

we obtain a weighted bipartite graph Ga,b = (I(a), I(b), E, w),

where E = {(u, v)|u ∈ I(a), v ∈ I(b)} and w(u, v) = sim(u, v).

The MatchSim score is defined by

sim(a, b) =
Ŵ (a, b)

max(|I(a)|, |I(b)|). (3.1)

In the cases that |I(a)| = 0 or |I(b)| = 0, since there is no way

to infer any similarity, we define sim(a, b) = 0. When a = b,

we define sim(a, b) = 1.

In Eq. (3.1), Ŵ (a, b) denotes the weight of a maximum

matching between I(a) and I(b), i.e.,

Ŵ (a, b) = W (m∗ab) =
∑

(u,v)∈m∗
ab

sim(u, v), (3.2)

where m∗ab is a maximum matching between I(a) and I(b). Be-

cause we always convert I(a) and I(b) to be “equally sized” be-
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fore computingm∗ab, we just define lab = |m∗ab| = max(I(a), I(b)).

Since any matching between I(a) and I(b) is of size lab, the fac-

tor Ŵ (a,b)
max(I(a),I(b))

in Eq. (3.1) is actually the average similarity of

the maximum matching between a’s and b’s neighbors.

Each (ordered) pair of pages a and b corresponds to one

equation of the form in Eq. (3.1), resulting in a set of n2 Match-

Sim equations. The n2 MatchSim scores are defined by the (n2-

dimensional) fixed point of the equations, which can be reached

by iterative computation. The details of MatchSim iteration

will be given in Section 3.2.3.

Finding the maximum-matched similar neighbor pairs is

actually the well-knownmaximum matching or assignment prob-

lem [16], and can be solved by K-M (Kuhn-Munkres) algorithm

[70] in polynomial time. We give a brief introduction on the

assignment problem in Appendix B. Interested readers are re-

ferred to [46] for a comprehensive overview on this topic.

Discussions on MatchSim

First, recall the examples in Section 3.2.1, we now show

that MatchSim can successfully overcome the drawbacks of the

classic methods. (Note that we use outlink neighbors as in-

put in the examples.) (1) Compared to the neighbor-counting

methods, MatchSim takes the similarities between neighbors

into account. Therefore, it can measure in Example 1, at least

sim(a, b) is nonzero. (2) In Example 1, (a1, b1) and (a2, b2) are

the maximum matching between O(a) and O(b), thus Match-
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Sim calculates sim(a, b) = (sim(a1, b1) + sim(a2, b2))/2 = 0.6.

If we remove (a1, b1), sim(a, b) = sim(a2, b2)/1 drops to 0.5,

which makes more sense than SimRank. In Example 2, obvi-

ously (pi, pi)(i = 1, · · · , n) are the maximum matching. There-

fore, we have sim(a, b) =
∑

i=1,n sim(pi, pi)/n = n/n = 1.

Particularly, MatchSim confirms to the intuition of simi-

larity. In Example 2, MatchSim outputs that

sim(a, b) =
n

n
= 1 = maxa,b∈V sim(a, b),

which means MatchSim conforms to intuition (S3) of similarity.

It is easy to see that MatchSim also conforms to intuitions (S1)

and (S2). By this way, we can ensure that MatchSim will not

produce “unreasonable” results.

Second, by considering similarities between neighbors, Match-

Sim can be viewed as an extension of Jaccard Measure. In

Eq. (3.1), Ŵ (a, b) is the “overlap” of similarity between the

maximum-matched neighbors, and max(I(a), I(b)) is the vol-

ume of union between the maximum-matched neighbors.

Third, either inlink or outlink neighbors can be used in

MatchSim, but may result in very different accuracy. Actu-

ally, choosing the “right” type of neighbors as input is very

important to any neighbor-based similarity measures. Gener-

ally speaking, the more neighbors two objects have, the more

accurately can we measure their similarity. This conjecture is

supported by the experimental results in Section 3.3 where we

will give more discussions on this issue.
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Last, we list some other properties of MatchSim as follows,

which are easy to deduce from its definition.

1. It is symmetric: sim(a, b) = sim(b, a);

2. It is bounded : sim(a, b) ∈ [0, 1];

3. It reaches a maximum value of 1, if and only if a and b

are identical, i.e., sim(a, b) = 1 ⇔ a = b or, a 6= b and

I(a) = I(b) 6= ∅.

3.2.3 MatchSim Computation

For a graph G of size n, we compute the n2 MatchSim

scores iteratively. For each iteration k, we can keep the n2

scores simk(∗, ∗), where simk(a, b) is the score between a and

b in iteration k. We successively compute simk+1(∗, ∗) based

on simk(∗, ∗). That is, on each iteration k + 1, we update

the simk+1(a, b) using the similarity scores from the precious

iteration k. Formally speaking, we compute simk+1(a, b) from

simk(∗, ∗) as follows:

simk+1(a, b) =
Ŵk(a, b)

max(|I(a)|, |I(b)|), (3.3)

where Ŵk(a, b) is computed based on the scores simk(∗, ∗).
The MatchSim computation starts with sim0(a, b) = 1 for

a = b and sim0(a, b) = 0 for a 6= b. The MatchSim score be-

tween a and b is defined as limk→∞simk(a, b). We proved that

with the given initial values, the limiting values exist and are
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unique, i.e., the MatchSim iteration converges. The detailed

proof of convergence is given in Appendix A. In all of our ex-

periments, MatchSim converges after about 15 iterations, so we

may choose to fix a number K = 15 of iterations to perform.

3.2.4 Complexity Analysis

Time Complexity. For any two objects a and b in a

graph G = (V, E) of size n, we adopt K-M algorithm to com-

pute Ŵ (a, b) in Eq. (3.1), so the corresponding time complexity

is l3ab, where lab = |m∗ab| = max(|I(a)|, |I(b)|). In each iteration,

MatchSim invokes K-M algorithm n2 times. Suppose there are

K iterations and let L = maxa,b∈V (lab), the time complexity of

MatchSim is thus O(Kn2L3).

Space Complexity. MatchSim has to store n2 Match-

Sim scores. Moreover, the K-M algorithm invoked needs to

store the similarity matrix of two objects, the size of which

is O(L2). Therefore, the space complexity of MatchSim is

O(n2) + O(L2) = O(n2 + L2).

The impact of L on the space complexity of MatchSim is

rather limited, since usually n ≫ L. The impact on the time

complexity, however, can be very large due to the factor L3.

Thus, to accelerate MatchSim computation, we need to reduce

the factor L3.
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3.2.5 Accelerating Techniques

From complexity analysis, we can see that the speed of

MatchSim heavily depends on that of K-M algorithm, which is

O(L3) where L = maxa,b∈V (lab). We suggest two accelerating

techniques for MatchSim. First, an approximation algorithm

of complexity O(L2) is introduced to replace K-M algorithm.

Second, for each object, we sort the importance of its neigh-

bors by their PageRank scores and compute MatchSim scores

between objects using the top F (≪ L) important neighbors of

them only. This may significantly reduce L and accelerate the

K-M algorithm as a result. Three approximation algorithms

for MatchSim are proposed based on these two techniques and

their combination. They are MatchSimA, MatchSimF , and

MatchSimAF , respectively.

Approximate Maximum Matching Algorithm

In [34], the authors proposed an approximation algorithm,

known as the Path Growing Algorithm (PGA), for finding a

maximum weight matching in an arbitrary graph. The authors

proved that the performance ratio of GPA is 1/2. Technically,

we say that an approximation algorithm has a performance

ratio of c, if for all graphs it finds a matching with a weight

of at least c times the weight of an optimal solution. The

computation time of GPA is O(|E|) = O(n2) for a bipartite

graph of size n. Therefore, in MatchSim, the time required
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to compute a maximum matching between two objects a and

b using GPA drops to O(l2ab). The complexity of the resulting

“approximate” MatchSim, calledMatchSimA, is consequently

reduced to O(Kn2L2).

Pruning Unimportant Neighbors

Because objects in a graph are not equally important (such

as web pages), we suggest pruning unimportant neighbors to re-

duce the value of L. It is based on an intuitive assumption that

unimportant neighbors contribute less to the measurement of

similarity. In this chapter, the importance of objects is mea-

sured by PageRank (PR) scores. Therefore, we suggest another

approximate version of MatchSim, named MatchSimF , which

uses only the top F important neighbors of objects.

The pruning strategy accelerates MatchSim by reducing

the value of L. We will show in Section 3.3 that it reduces more

than 90% runtime of MatchSim algorithm in the experiments.

In this chapter, we always assume that PR scores are available;

otherwise, we may need to choose other pruning strategies since

computing PR scores is also a time-consuming task.

3.2.6 A Toy Example

We conclude this section with a toy example, which illus-

trates the basic process of MatchSim computation. Figure 3.3

presents a more complete version of the graphG in Fig. 3.1. For
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Figure 3.3: A toy example

simplicity, we suppose objects pi(i = 1, · · · , 5) have no outlink

neighbors. We can easily know that sim(pi, v) = 0 (∀v ∈ G

and v 6= pi, i = 1, · · · , 5).
At the beginning, MatchSim assigns initial values to Match-

Sim scores, with sim(x, y) = 0 if x 6= y or sim(x, y) = 1 if

x = y, for any x, y ∈ G. Next, the MS scores are updated

iteratively by applying Eq. (3.1) until convergence.

In the first iteration, suppose we first update sim(a, b).

Because the initial values of sim(ai, bj) (i, j = 1, 2) are zeros,

we get sim(a, b) = 0. Next, by applying Eq. (3.1), we compute

sim(a1, b1) = (sim(p1, p1) + sim(p2, p2) + sim(p3, θ))/3 = 2/3

and sim(a2, b2) = (sim(p4, ϕ) + sim(p5, p5))/2 = 1/2, where

θ and ϕ are dummy objects. We omit the similar process of

updating other MS scores, which are evidently zeros.

In the second iteration, because sim(a1, b1) = 2/3, sim(a2, b2)

= 1/2, and sim(a1, b2) = sim(a2, b1) = 0, we can find out that

{(a1, b1), (a2, b2)} is the maximum matching between O(a) and

O(b). Therefore, we have sim(a, b) = (sim(a1, b1)+sim(a2, b2))/2
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= 7/12. In the third iteration, MatchSim will end because the

MS scores remain the same.

3.3 Experimental Results

First, we evaluate the effectiveness of the accelerating tech-

niques on MatchSim and estimate the optimal pruning pa-

rameter F . Second, we test MatchSim against other classical

neighbor-based methods including Co-citation, Bibliographic

coupling, Jaccard Measure, and SimRank (see Table 2.1). In

the experiments, we focus on the top N = 20 similar objects

returned by the algorithms and fix the iteration numbers of

MatchSim and SimRank to be K = 15. The hardware environ-

ment is Celeron 2.8 G CPU, 4 G memory, and 80 G hard disk.

The programs are written in C and the OS is Windows XP Pro

SP2.

3.3.1 Datasets

We have four real-world datasets. The CW and GS datasets

are crawled by ourselves from the Web using BFS (Breadth-

First Search) algorithm. The CiteSeer and Cora datasets are

two commonly used datasets containing pre-classified academic

papers [118]. Brief descriptions on the datasets are as follows.

1. The CSE Web (CW) dataset is a set of web pages

crawled from the website of our department. 2 It con-
2http://www.cse.cuhk.edu.hk
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tains 22,615 textual web pages (html or text pages) and

120,947 hyperlinks connecting them together. The average

inlink/outlink number is about 5.3.

2. The Google Scholar (GS) dataset is a set of academic

papers crawled from Google Scholar. 3 It contains 20,000

papers (without fulltext) and 87,717 citations linking them

together. To obtain the papers, we first submitted the

keyword “web mining” to Google Scholar and employed

the top 50 returned papers as seeds to crawl the remain-

ing papers by following the “Cited By” hyperlinks of the

returned papers. The average inlink/outlink number is

about 4.4.

3. The CiteSeer and Cora datasets are two smaller datasets

containing computer science papers and can be downloaded

freely on the Web. 4 The papers in both datasets have been

classified into classes according to their topics. Because

the citation graphs extracted from the datasets are not

fully connected, we use their maximum graph components

instead of the original graphs in the remaining of the pa-

per. The new CiteSeer and Cora graphs contain 2,110 and

2,485 papers, respectively. Their average inlink/outlink

numbers are 1.8 and 2.1, respectively.

3http://scholar.google.com
4http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
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One major problem of the above datasets is incomplete-

ness, which results in large amounts of dangling nodes. In GS

dataset, due to the crawling strategy, about 57.7% of the pa-

pers have no inlinks (we call them the inlink dangling nodes),

but only about 0.06% have no outlinks (we call them the out-

link dangling nodes). Similar situation happens to the CW,

CiteSeer, and Cora datasets (see the last two rows in Table

3.1).

Many link-based methods can use both inlinks and out-

links as input, depending on the properties of the datasets. In

our experiments, large amounts of dangling nodes can signifi-

cantly reduce the accuracy of similarity measures. Therefore,

choosing suitable kind of links is a very important issue. Ac-

tually, in [84], we have reported that by combining both kinds

of links, the accuracy of link-based similarity measures can be

improved. In the experiments of this chapter, we choose inlinks

for CW dataset and outlinks for other three datasets as default

input of the algorithms.

There are some differences between the web graph and ci-

tation graph extracted from the datasets. First, the web graph

of CW dataset is relatively complete, while apparently the ci-

tation graphs are not so, since typically a computer science

paper has more than 10 references. Second, the citation graphs

are almost directed acyclic graphs since citations rarely form

cycles, while the web graph is more complex. The above differ-

ences may also influence the practical performance of link-based
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methods.

We summarize the basic properties of the datasets in Table

3.1. The distributions of the papers over classes in CiteSeer and

Cora datasets are listed in Table 3.2. Histograms of links in the

datasets are given in Appendix C.

Table 3.1: Properties of the datasets

CW GS CiteSeer Cora

Type of Objects web page paper paper paper

Type of Links hyperlink citation citation citation

# of Objects 22,615 20,000 2,110 2,485

# of Links 120,947 87,717 3,757 5,209

Inlinks/Outlinks per Object 5.3 4.4 1.8 2.1

inlink dangling nodes (%) 0% 57.7% 39.4% 42.3%

outlink dangling nodes (%) 14.7% 0.06% 24.7% 16.4%

Table 3.2: Distribution of papers over classes

CiteSeer # of papers Cora # of papers

Agents 463 Case Based 285

AI 115 Genetic Algorithms 406

DB 388 Neural Networks 726

IR 304 Probabilistic Methods 379

ML 532 Reinforcement Learning 214

HCI 308 Rule Learning 131

Rule Theory 344

Total 2,110 Total 2,485
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3.3.2 Ground Truth

A good evaluation of similarity measure is difficult without

performing extensive user studies or having a reliable ground

truth. In this chapter, we choose different metrics to serve as

ground truth of similarity for different datasets.

1. For the CW dataset, we use the textual similarity between

CW web pages as ground truth and choose the cosine

TFIDF which is a widely used text-based similarity metric

in IR.

2. For the GS dataset, we use the “Related Articles” pro-

vided by Google Scholar as a rough ground truth. Based

on our observation, the “Related Articles” are generally

reasonable. To achieve this, Google Scholar must have

used various kinds of article properties, such as textual in-

formation (title, keywords, abstract, or maybe full text),

authors, or references.

3. For the CiteSeer and Cora datasets, since all of the papers

have been classified, we use the classifications as ground

truth and adopt the classical precision, recall, and F -measure.

About the Cosine TFIDF Metric

It has been reported that TFIDF performs poorly in terms

of accuracy when applied to the Web [92]. We believe that it is

mainly because generally web pages are (1) extremely diverse:
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topics of web pages cover almost every field in the world, and

(2) unreliable and untrustworthy : large amounts of web pages

with low-quality or even malicious textual content exist on the

Web [47]. All of these may influence the accuracy of text-based

similarity measures.

The cosine TFIDF weighting scheme is widely used in IR

to determine the similarity between two documents [5, 113,

114]. However, its precision is not very high [128, 129]. In this

chapter, we use it as a rough metric of similarity for the web

pages in CW dataset.

Cosine TFIDF is suitable for the CW dataset because the

CW web pages contain high-quality textual contents. First, the

topics of CW web pages’ contents are more focused and lim-

ited. Most of them are about several specific research topics in

computer science and/or mathematics. Second, the quality of

CW pages are relatively high and can be guaranteed, since they

are created and edited by researchers or web administrators. In

other words, the CW web pages are more like a traditional well-

written and well-organized corpus of academic articles than the

unreliable and untrustworthy general Web pages.

3.3.3 Evaluation Methods

Let topA,N(v) denote the set of topN similar objects to ob-

ject v retrieved by algorithmA. We denote the “overall quality”

of topA,N(v) by value scoreA,N (v). Here, “overall quality” may
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refer to score of textual similarity or precision, etc, depending

on the context. The average of scoreA,N (v) over v ∈ V , denote

by ∆(A,N), is adopted to measure the quality of the top N

results retrieved by algorithms A. That is,

∆(A,N) =

∑
v∈V scoreA,N (v)

‖V ‖ .

Basic Metrics for the Datasets

(1) CW dataset: The cosine TFIDF similarity score of

two web pages u and v is just the cosine of the angle between

TFIDF vectors of the pages [5], which is defined by

cosTFIDF (u, v) =

∑
t∈u∩v Wtu ·Wtv

‖u‖ · ‖v‖ ,

whereWtu andWtv are TFIDF weights of term t for web pages u

and v, respectively, ‖u‖ =
√∑

t∈uW
2
tu and ‖v‖ =

√∑
t∈v W

2
tv.

For the CW dataset, we define

scoreA,N (v) =
∑

u∈topA,N(v)

cosTFIDF (u, v),

and ∆T (A,N) = ∆(A,N) which measures the average cosine

TFIDF score of the top N similar web pages returned by algo-

rithm A.

Before applying cosine TFIDF, we pre-process CW dataset

with common data cleaning techniques including stemming and

removing stop words.

(2) GS dataset: For an article v in citation graph G,

the list of its “Related Articles” returned by Google Scholar is
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denoted by RA(v). We define

relatedN (v) = {top N related articles vi|vi ∈ RA(v)∩V }.

The precision of similarity measure A over top N results

is:

GSprecA,N (v) =
|topA,N (v) ∩ relatedN(v)|

|topA,N(v)|
.

Therefore, for the GS dataset, we simply define

scoreA,N (v) = GSprecA,N (v),

and ∆P (A,N) = ∆(A,N) which measures the average preci-

sion of algorithm A over top N results.

(3) CiteSeer and Cora datasets: In these datasets, two

objects are similar if they are classified into the same class. Let

similar(v) denote the set of papers whose class labels are the

same as that of v. We use the precision, recall, and F-measure

to evaluate the performance of algorithm A. Therefore, we

define

precisionA,N(v) =
∑

v∈V

|topA,N (v) ∩ similar(v)|
|topA,N (v)|

,

recallA,N(v) =
∑

v∈V

|topA,N (v) ∩ similar(v)|
N

,

FscoreA,N(v) =
∑

v∈V
(2 · precisionA,N (v) · recallA,N(v)

precisionA,N (v) + recallA,N(v)
).

Similarly, let ∆precision(A,N), ∆recall(A,N), and ∆Fscore(A,N)

denote the metrics of “overall quality” of A over the top N re-

sults.
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Other Metrics

We also designed additional measures to help us look more

insights into the accuracy and efficiency of the algorithms. They

are described as follows.

(3) Overall Accuracy (OA) and Distance of Accu-

racy(DA) metrics: Given top N similar objects, respectively,

we define the OA and DA metrics by

OA(A,N) =
1

N

N∑

i=1

∆(A, i),

DA(A,B,N) =
1

N

N∑

i=1

|∆(A, i)−∆(B, i)|
∆(B, i)

.

For an algorithm A, we can plot a 2-dimensional accuracy

curve, with the x-axis representing N and the y-axis represent-

ing ∆(A,N). We use OA(A,N) to reflect the “overall accu-

racy” of A over the top N rankings, and DA(A,B,N) reflect

the “distance” between accuracy curves of algorithms A and

B.

(4) Ratio of OA (ROA) and Ratio of Runtime (RRT)

metrics: ROA and RRT are designed for computing the ra-

tio of two algorithms’ performance over the top N results in

terms of accuracy and running time, respectively. We define

the runtime of similarity measure A as the time it needs for

computing all of the similarity scores. It does not include the

time for loading or saving data from or into storage. We denote
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the average runtime of A by RT (A).

ROA(A,B,N) =
OA(A,N)

OA(B,N)
, RRT (A,B) =

RT (A)

RT (B)
.

3.3.4 Evaluations on the Accelerating Techniques

We first evaluate the effectiveness of the accelerating tech-

niques on MatchSim (MS). In CW dataset, inlinks are used

by Matchsim as input, and in GS dataset, outlinks are used as

input. The accelerating techniques include:

T1 : the GPA algorithm for calculating maximum matchings,

and

T2 : the pruning strategy based on PR scores.

Besides, we need to estimate the optimal pruning parameter F

for MSAF .

We set the F to be 10, 20, 30, 40 and ∞, where ∞ means

“no pruning” on neighbors. For each F , we run MSF and

MSAF on the datasets. Note thatMS∞ andMSA∞ are actually

MS and MSA, respectively.

Results on GS dataset

Tables 3.3 and 3.4 show the results on CW and GS datasets.

For an algorithm A (which is MSF or MSAF ), we define DA =

DA(A,MS∞, N), ROA = ROA(A,MS∞, N), and RRT =

RRT (A,MS∞) in the tables. That is, we use the results of
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Table 3.3: MatchSim: accelerating techniques on GS

F 10 20 30 40 ∞
P (%) 7.65 4.07 2.73 1.94 0.00

DA(10−2) 12.44 6.06 3.34 1.42 0.00

MSF ROA(%) 87.64 94.09 96.78 98.82 100

RRT (%) 4.81 8.24 11.88 15.86 100

DA(10−2) 11.88 6.00 2.89 1.21 0.94

MSAF ROA(%) 88.10 94.06 97.16 98.90 99.54

RRT (%) 1.81 2.35 2.76 3.13 6.50

MS as the benchmark to assess the performance of algorithm

A.

More precisely, DA(≥ 0) measures the closeness between

the result of A and that of MS, where smallerDA means closer

results. ROA(≥ 0) measures the ratio of “overall accuracy” of

A to that of MS, where greater ROA means A achieves better

results. RRT (≥ 0) measures the “relative speed” of A to MS,

where smaller RRT means A is faster. When the results of A

and MS are the same, the values of the metrics are 0, 100%,

and 100%, respectively.

Additionally, to reveal the number of nodes affected by

parameter F , we denote by P the percentage of the nodes whose

neighbors are pruned given a certain F . From Table 3.3, we can

see that:

1. For MSF , its accuracy increases and approaches that of

MS as F increases (i.e., F →∞⇒ROA→ 100%, DA→
0). On the other hand, its runtime also increases with
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Figure 3.4: Accuracy of accelerating techniques on GS dataset

F , but is much smaller than that of MS when F ≤ 40.

These results show that the pruning technique (T2) really

works. That is, T2 accelerates MatchSim significantly with

relatively small loss of accuracy.

2. For MSAF , it always runs much faster than MSF for a

given F (F = 10, · · · , 40,∞) with almost the same accu-

racy. In the special case, when F = ∞ (i.e., only T1 is

used), the accuracy of MSA is very close to that of MS

(DA = 0.94 × 10−2 and ROA = 99.54%), while the run-

time is much less (RRT = 6.50%). This shows that the T1

technique also works.



CHAPTER 3. MATCHSIM: NEIGHBORHOOD MAX-MATCHING 71

We also plot some of the accuracy curves of the algorithms

in Fig. 3.4 (We exclude the curve of MS40, which are very close

to those of MS, MSA and MSA40, from Fig. 3.4 and the fol-

lowing Fig. 3.5 to make the figures clearer.) Based on these

results, we conclude that the best version of MatchSim for the

GS dataset is MSA40.

Results on CW dataset

We also conduct experiments on the CW dataset and show

the results in Table 3.4 and Fig. 3.5. It is easy to see that a

similar conclusion can be drawn from the results. We there-

fore suggest MSA40 to be the best version of the approximate

MatchSim for CW dataset, too.

Table 3.4: MatchSim: accelerating techniques on CW

F 10 20 30 40 ∞
P (%) 6.42 2.77 1.46 0.84 0.00

DA(10−2) 22 11.85 6.40 1.82 0.00

MSF ROA(%) 78.08 88.20 94.58 98.81 100

RRT (%) 3.91 5.51 8.02 9.73 100

DA(10−2) 23.62 14.17 7.31 2.76 1.08

MSAF ROA(%) 76.45 85.87 93.12 97.22 98.99

RRT (%) 0.52 1.06 1.63 2.25 2.89

3.3.5 Testing MatchSim on CW and GS Datasets

In this section, we compare the performance of MS and

MSA40 with other neighbor-based similarity measures, includ-
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Figure 3.5: Accuracy of accelerating techniques on CW dataset

ing Bibliographic coupling (BC ), Co-citation (CC ), Jaccard

Measure (JM ), and SimRank (SR). The formal definitions of

these algorithms have been given in Table 2.1 of Chapter 2.

For SimRank, we set γ = 0.8. Because of the reason explained

in Sction 3.3.1, when applied to the CW dataset, MatchSim,

SimRank, and Jaccard Measure use inlinks as input and use

outlinks when applied to other datasets.

The Accuracy

We plot in Fig. 3.6 the ∆P (A,N) curves on GS dataset and

in Fig. 3.7 the ∆T (A,N) curves on CW dataset. We also report



CHAPTER 3. MATCHSIM: NEIGHBORHOOD MAX-MATCHING 73

0 2 4 6 8 10 12 14 16 18 20
10

12

14

16

18

20

22

24

Top N

pr
ec

is
io

n(
%

)

MatchSim
MatchSim

A40

SimRank
Jaccard Measure
Co−citation
Bibliographic Coupling

Figure 3.6: Performance results on GS dataset

in Table 3.5 the ROA(∗,MS, 20) values of the algorithms to

compare the overall accuracy of the algorithms. The observed

results (in italic) and the corresponding discussions are listed

as follows.

1. The two versions of MatchSim, MS and MSA40, outper-

form all of the other methods in almost all cases. This

demonstrates the effectiveness of the proposed MatchSim

method and the accelerating techniques.

2. Jaccard Measure also performs very well. Considering that

it needs much less runtime than MatchSim and SimRank,
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Figure 3.7: Performance results on CW dataset

this method would be a good tradeoff between accuracy

and efficiency.

3. MatchSim and Jaccard Measure perform much better on

the top results (e.g., top 5) than other methods. This shows

that these methods are particularly suitable for the scenar-

ios where top results are very important.

4. Co-citation performs very poorly on the GS dataset. This

is because Co-citation algorithm uses inlinks in GS dataset,

more than half of which are dangling nodes. Actually,

other methods includingMatchSim and SimRank also have
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Table 3.5: ROA of the algorithms on GS and CW datasets

BC CC JM SR MSA40 MS

GS 0.55 0.76 0.89 0.73 1.00 1.00

CW 0.89 0.85 0.94 0.85 0.97 1.00

the same problem. This indicates that choosing the “right”

type of neighbors as input is very important to the neighbor-

based algorithms.

The Runtime

In the experiments on CW and GS datasets, we observed

that the runtime of MSA40 and SR are more than 30 and 20

min, respectively, while the neighbor-counting algorithms need

only a few seconds. This is because MatchSim and SimRank are

iterative algorithms; thus the cost of computing each similarity

score is very high (both are O(KL2), where L is the average

number of neighbors and K is the number of iterations). The

complexity of direct algorithms are O(L). Theoretically, the

runtime of MatchSim is O(KL) times longer than that of di-

rect algorithms, and typically K = 15 and L is around 5 in the

experiments. Designing specific techniques to significantly im-

prove the efficiency of MatchSim is one of the most important

and challenging problems.
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A Qualitative Example

Now let’s see a simple example to get more insights into

the algorithms. Given web page KING, 5 which has 10 inlinks

and 2 outlinks, we list the most similar web pages returned

by the algorithms in Table 3.6. Since no web page shares any

common outlink with KING, Bibliographic Coupling method

cannot find any similar web pages. We thus omit it from the

table.

We can see that MatchSim returns CHAN, 6 which has 10

inlinks and shares 5 common inlinks with KING. Jaccard and

Co-citation return LYU, 7 which has 15 inlinks and shares 7

common inlinks with KING. All of these results seem reason-

able, and it is hard to tell which one is the best.

The MEMPM 8 returned by SimRank is obviously not

good. The only inlink of MEMPM is from the homepage of

mempm toolbox, which also links to KING. The reason why

SimRank choose MEMPM to be the most similar web page to

KING is caused by the counterintuitive loophole criticized in

Section 3.2.1.
5Prof. King’s homepage http://www.cse.cuhk.edu.hk/˜king
6Prof. Chan’s homepage http://www.cse.cuhk.edu.hk/˜lwchan/
7Prof. Lyu’s homepage http://www.cse.cuhk.edu.hk/˜lyu
8The register web page of mempm toolbox
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Table 3.6: The most similar page to KING

Most similar page # of inlinks # of common inlinks

MatchSim CHAN 10 5

Jaccard LYU 15 7

Co-citation LYU 15 7

SimRank MEMPM 1 1

3.3.6 Testing MatchSim on CiteSeer and Cora Datasets

In this section, we test MatchSim against other methods

on two smaller datasets: the CiteSeer and Cora datasets. The

papers in both datasets have been pre-classified into classes

according to topics. On our observation, the algorithms using

outlinks as input perform much better than those using inlinks.

Therefore, we use outlinks as input for MatchSim, SimRank,

and Jaccard Measure. Because Co-citation, which uses inlinks,

performs very poorly in terms of precision, we exclude its curves

to make the figures clearer.

Experimental Results

The results are presented in Figs. 3.8 and 3.9, respectively.

In the figures, the average scores are taken over the results re-

turned by the algorithms to all the objects that have outlinks.

We omit the objects that have no outlinks to emphasize the

difference of the competing algorithms, since all of the algo-

rithms return no similar objects in these cases. The runtime is

given in Table 3.7. We summarize the basic observations and
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corresponding interpretations as follows. More discussions are

given in Section 3.3.6.

1. Precision: MatchSim performs the best on CiteSeer, but

not very well on Cora. SimRank achieves the worst pre-

cision on both datasets, which is actually caused by its

counterintuitive loophole.

2. Recall: MatchSim and SimRank achieve much higher re-

call than the neighbor-counting algorithms. This is be-

cause both algorithms take similarities between neighbors

into account. Therefore, they can retrieve more objects,

usually resulting in higher recall.

3. F score: The overall performance of MatchSim is the best

on both datasets. BC and JM are the worst due to their

low recall scores.

4. Runtime: From Table 3.7, we can see that the efficiency is

the major bottleneck of MatchSim. The problem becomes

worse as the size of graph increases.

Table 3.7: Runtime (in second) of the algorithms on CiteSeer and Cora

datasets
BC CC JM SR MS

CiteSeer 171 132 174 1,632 1,680

Cora 99 97 99 1,515 1,275
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Figure 3.8: Average precision, recall, and F scores on CiteSeer dataset
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Figure 3.9: Average precision, recall, and F scores on Cora dataset
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Table 3.8: Comparison of top 5 results for article 36

SimRank(79) MatchSim(79) Jaccard(30)

114 Agents {329} 63 AI {5, 97, 274, 329, 661, 916} 63 AI {see left}
203 Agents {274, 661} 97 AI {5, 329, 661} 97 AI {see left}
735 Agents {274, 661} 813 ML {77, 339, 735, 916} 5 AI {97, 916}
948 AI {329, 661} 617 ML {126, 243, 328, 661, 916} 203 Agents {274, 661}
97 AI {5, 329, 661} 949 AI {5, 63, 97} 603 Agents {5, 661}

A Qualitative Example

Let’s look further into the results by examining an exam-

ple. The object is article 36 from CiteSeer dataset, which has

the label “AI” and cites six other articles {5, 97, 274, 329, 661,
916}. Table 3.8 lists the top 5 results (from the top down) re-

turned by each algorithm, the format of which is article’s id

followed by its label and references. The numbers in the first

row indicate the total numbers of articles retrieved by the algo-

rithms. Here, we omit BC whose results are the same as those

of JM. From the results, we can see that

(1) MS and SR find more results. It can certainly lead to

higher possibility of finding the “real similar articles”, i.e.,

those having the same labels as those of the object article.

(2) The precision of SR is the worst. This is because of its

loophole criticized before. For example, although both

reference lists of articles 114 and 97 are subsets of article

36’s references, intuitively article 97, which has has more

references, should be ranked higher. Obviously, SimRank
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made a mistake here.

(3) The rankings produced by MS and JM are more reason-

able. The precision of JM is even better than that of MS in

this example. However, JM finds out less articles (lower re-

call), which influences its overall performance. SimRank,

on the other hand, can find much more articles (much

higher recall), which may lead to higher F scores.

To summarize, from this example, we can see that Match-

sim can find out more results than the neighbor-counting meth-

ods and at the same time ensure that the results are reasonable

by conforming to the intuitions of similarity. Therefore, it can

achieve the best overall performance (the highest F scores) in

the experiments. Certainly, the major problem of MatchSim is

its computational efficiency, which is our future work.

3.4 Summary

In this chapter, we propose a novel neighbor-based simi-

larity measure called MatchSim, which recursively defines the

similarity between two objects by the average similarity of the

maximum-matched similar neighbors between them. Match-

Sim conforms to the basic intuition of similarity; therefore, it

can overcome the counterintuitive contradiction in SimRank.

Approximation techniques are suggested to accelerate the Match-

Sim computation. Experimental results on real-world datasets
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show that although our method is less efficient computationally,

it outperforms classic methods in terms of effectiveness.

2 End of chapter.



Chapter 4

PageSim: Object’s Feature

Propagation

In this chapter, we propose the PageSim algorithm, which

is based on feature propagation of objects. PageSim extends

traditional neighbor-counting methods by taking both direct

and indirect neighbors into consideration. There are two phases

in PageSim: the feature propagation phase and the feature vec-

tor comparison phase. We first present the key ideas of Pa-

geSim with examples. Next, we give its formal mathematical

definitions. Finally, experiments on real-world datasets are con-

ducted to evaluate the performance of PageSim.

84
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4.1 Introduction

Efficient and effective techniques of similarity measure-

ment for web pages are required by many popular applications

on the Web, such as search engines and web directories. Due

to the specific characteristics of web pages, which are giant

in volume, fast growing, high dynamic, and untrustworthy, a

practical and successful similarity measure must be efficient,

scalable, stable, and robust against malicious manipulations. In

this chapter, we propose a neighbor-based similarity measure

called PageSim which uses the hyperlinks among web pages

only.

The idea of PageSim is simple. In a graph, each object

(web page) has certain amount of unique feature which is rep-

resented by its PageRank score. At the beginning, each object

distributes its feature to its neighbors and neighbors’ neigh-

bors through links. After that, PageSim scores are computed

by comparing two objects’ feature lists (called the feature vec-

tors). By this way, PageSim takes the impacts of distant neigh-

bors as well as the importance of objects into consideration. A

simple pruning technique is suggested to improve the efficiency

of PageSim algorithm. Experiments on real-world datasets are

conducted to evaluate the effectiveness and efficiency of the

proposed method.
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4.2 Background and Motivation

The past decades have witnessed the exponential growth of

the World Wide Web. It provides us increasingly huge volume

of information, making mining tasks more and more difficult at

the same time. There are several specific characteristics which

distinguish the Web from traditional data sources.

1. Huge: With billions of web pages published by millions of

web page authors, the Web has because a tremendously

rich information warehouse. Several studies have esti-

mated that the number of indexable web pages exceeded

two billion at the end of last century [10, 74]. In [45], the

authors estimated the size of the indexable Web to at least

11.5 billion pages as of the end of January 2005.

2. Rapidly Growing : Many studies show that the Web grows

at an exponential rate [74, 111], which has been estimated

to be roughly one million pages per day [74].

3. High Dynamic: Unlike books or articles in a traditional

library, web pages continue to change even after they are

initially created and indexed by search engines [14]. Ac-

cording to [111], basically there are two dimensions of web

dynamics: growth dynamic and update dynamic. The for-

mer indicates that the Web grows in size, the latter indi-

cates that both the content and the link structure of the

Web are constantly updated.
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4. Untrustworthy : It is well known that the Web is an un-

trustworthy world due to the fact that its contents, includ-

ing textual content of web pages and hyperlinks between

web pages, are prone to be manipulated, or spammed.

Spammers on the Web use various techniques to “mislead

search engines and give some pages higher ranking than

they deserve” [47], this action is called web spamming [47].

Experts consider web spamming the single most difficult

challenge web searching is facing today [53].

Due to the above characteristics of the Web, naturally a

practical and successful web mining algorithm has to meet the

following requirements.

1. Efficiency : Evidently, only algorithms with low time and

space complexity are applicable to the huge Web.

2. Scalability : The dramatic growth rate of the Web poses

a serious challenge of scalability for web applications that

aspire to cover a large part of the Web [111]. Therefore,

algorithms for the Web must be scalable.

3. Stability : An algorithm should be stable to perturbations

of the Web, including link structure and content of web

pages.

4. Robustness : We use the term “robust” to indicate that an

algorithm is resistent to commonly used web spamming

techniques.
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Figure 4.1: A simple example

Our work is motivated by the above requirements. In this

chapter, we propose a novel similarity measure called PageSim.

Based on the strategy of PageRank score propagation, PageSim

is efficient, scalable, stable, and “fairly” robust, and therefore

is a good choice for the Web. Certainly the algorithm is also

suitable for any data sources containing link structures.

4.3 PageSim Algorithm

4.3.1 The Basic Ideas

Traditional neighbor-counting methods consider only the

overlapping and/or difference between direct neighbors. For

example, in Fig. 4.1, Co-citation method can measure that ob-

jects a and b are similar (i.e., sim(a, b) > 0) since both objects

are cited (linked) by a common neighbor s. But it can not mea-

sure the similarity between a and c, therefore simply conclude

that they are not similar (i.e., sim(a, c) = 0.) In fact, object c

is probably similar to object a too, because it is indirectly cited

by s (i.e., s cites b, and b cites c.)

We solve this problem by taking the impacts of indirect
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citations into account. Generally speaking, a link (or citation)

from one object to another can be regarded as a recommenda-

tion [4], and the strength of recommendation propagates along

links at a certain decay rate. From this point of view, an object

can be represented by a collection of recommendations from its

direct and indirect inlink neighbors 1. This is a natural relax-

ation on the neighbor-counting approach. As a result, the sim-

ilarity between objects can be deduced by measuring the over-

lapping and/or difference between the recommendations they

received from others. In this way, we can measure that a and

c are similar because both of them are recommended by s (see

Fig. 4.1).

We model the above ideas by a process consisting of two

phases: feature propagation and feature comparison. In this

model, each object has unique feature of its own. Citations

(links, or recommendations) from one object to others are con-

sidered as the object propagating its feature to others. More-

over, to emphasize the impact of authoritative objects, we

adopt PageRank (PR) scores to quantify the features. It is

based on a common sense that authoritative objects are gener-

ally more important and trustworthy than usual objects. De-

scriptions on PageSim algorithm are presented as follows.

1. Phase 1: feature propagation. Every object propa-

1In this chapter, we always assume recommendations are from one object to its outlink

neighbors. Undoubtable, recommendations can also be considered to inlink neighbors if

necessary.
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gates its unique feature (i.e., object id plus PR score) to its

neighborhood. The features spread out averagely through

links and decay at a certain rate d (which is called the

decay factor). Same kind features can be accumulated by

receiving objects. By the end of this phase, every object

contains a list of features (which is called the feature vec-

tor) that it receives from others.

2. Phase 2: feature comparison. A “fuzzy” version of

Jaccard Measure (or other neighbor-counting method) can

be applied to compute the similarity between objects by

comparing the corresponding feature vectors.

The model described above is called the basic version of

PageSim algorithm and is denoted by PageSimB . We can see

that it is essentially a “multi-hop” and “fuzzy” version of Jac-

card Measure, so it inherits a major flaw. For example, for

object s, its direct neighbors a and b, and even indirect neigh-

bor c, are probably its similar objects. But PageSimB can not

deduce the similarities. To solve this problem, we simply let

each object stores its own feature in its feature vector. This is

the final PageSim algorithm, denoted by PageSim.

Back to Fig. 4.1, given the tiny graph G, we can calculate

PR(s) = 0.144, PR(a) = PR(b) = 0.185, PR(c) = 0.22, and

PR(d) = 0.26. Let decay factor d = 1.0 and let PG(u, v)

denote the feature score propagated from u to v. First, in

the propagation phase, for example, s distributes its feature



CHAPTER 4. PAGESIM: OBJECT’S FEATURE PROPAGATION 91

score averagely to its neighbors, therefore we have PG(s, a) =

PG(s, b) = PG(s, d) = 0.144/3 = 0.048. Then b continues to

propagate score PG(s, b) to its neighbors d and c, so we have

PG(s, d) = 0.144/3 + d × 0.144/3/2 = 0.072 and PG(s, c) =

d× 0.144/3/2 = 0.024. Similarly, other objects distribute their

own features too, and finally we get the final feature vectors

which are presented in Table 4.1.

Second, in the comparison phase, we define sim(u, v) =
|FV (u)∩FV (v)|
|FV (u)∪FV (v)| , where FV (u) and FV (v) denote the feature vec-

tors of u and v respectively, and

|FV (u) ∩ FV (v)| =
∑

w∈G
min(PG(w, u), PG(w, v)),

|FV (u) ∪ FV (v)| =
∑

w∈G
max(PG(w, u), PG(w, v)).

For example, we can calculate

sim(a, c) =

∑
w∈G min(PG(w, a), PG(w, c)∑
w∈G max(PG(w, a), PG(w, c)

=
0.024

0.048 + 0.185 + 0.092 + 0.220
= 0.044.

The PageSim similarity scores are presented in Table 4.2.

Spamming-resistance Ability of PageRank

Research has reported that web spamming seems to be

the driving force behind the evolution of search engines in their

effort to provide quality results [95]. The success of PageRank is

mainly based on the more sophisticated anti-spamming solution
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Table 4.1: PageSim feature vectors
P
P
P
P
P
P
P
P
P
P
PP

object

feature
s a b c d

s 0.144 0 0 0 0

a 0.048 0.185 0 0 0

b 0.048 0 0.185 0 0

c 0.024 0 0.092 0.220 0

d 0.072 0 0.092 0 0.260

Table 4.2: PageSim similarity scores
P
P
P
P
P
P
P
P
P
P
PP

object

object
s a b c d

s 1 0.146 0.146 0.052 0.144

a 0.146 1 0.115 0.044 0.078

b 0.146 0.115 1 0.256 0.270

c 0.052 0.044 0.256 1 0.179

d 0.144 0.078 0.270 0.179 1
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it provided [95]. In [25], the authors points out that the cost of

acquiring a PageRank r is r·c(P ), where c(P ) is the total money

spent by all web sites on domain names and IP addresses. This

means that, although PageRank can clearly be manipulated, the

cost is expensive. This helps put top search placements out

of reach of spammers. By now, Google, which is based on

PageRank algorithm, is the most popular search engine in the

world for its relatively strong spamming-resistance.

4.3.2 The Graph Model

Given a directed graphG = (V, E) with V representing ob-

jects vi(i = 1, 2, · · · , n) and directed edges E representing links

between the objects. Let I(v) denotes the set of in-link neigh-

bors of object v and O(v) denotes the set of out-link neighbors

of object v.

Definition 1 Let path(u1, us) denotes a sequence of vertices

u1, u2, . . . , us such that (ui, ui+1) ∈ E (i = 1, · · · , s− 1) and ui

are distinct. It is called a path from u1 to us.

Definition 2 Let length(p) denotes the length of path p, and

define

length(p) = |p| − 1.

Definition 3 Let PATH(u, v) denotes the set of all possible

paths from u to v.
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4.3.3 Mathematical Definitions

Followings are the mathematical definitions for PageSim

algorithm. Note that in Definition 4, if we set PG(u, v) = 0 for

v = u, we get the basic version of PageSim which is denoted

by PageSimB .

Definition 4 Let PR(v) denotes the PR score of object v. Let

PG(u, v) denotes the PR score of u that propagated to v through

PATH(u, v). We define

PG(u, v) =





∑
p∈PATH(u,v)

d·PR(u)∏
w∈p,w 6=v |O(w)| , v 6= u,

PR(u) v = u,

(4.1)

where d ∈ (0, 1] is a decay factor and u, v ∈ V .

Definition 5 Let
−−→
FV (v) denotes the Feature Vector of v,

we have
−−→
FV (v) = (PG(vi, v))

T , i = 1, · · · , n,

where v, vi ∈ V .

Definition 6 Let PS(u, v) denotes the PageSim score be-

tween page u and page v. We define

PS(u, v) =

n∑

i=1

min(PG(vi, u), PG(vi, v))

max(PG(vi, u), PG(vi, v))
, (4.2)

where u, v ∈ V .
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Figure 4.2: Process of feature propagation

4.3.4 Algorithmic Description

We implement the two phases of PageSim, which are (1)

the feature propagation phase and (2) the feature comparison

phase, by procedures PS prop and PS comp respectively. In

this part, we give a brief description on PageSim algorithm with

an example, followed by the pseudo codes of implementation.

We assume the input is a directed graph G(V, E) of size n, and

feature propagation is along outlinks.

The feature propagation phase. In PageSim, the pro-

cess of propagating one object’s feature to other objects is sim-

ilar to the depth-first traversal (DFT ) process, except that an

object can be visited multiple times rather than only once.

Besides, feature of same kind (issued from same object) prop-

agated to the same destination object accumulates there. We

demonstrate the process of propagation with a simple example.

In Fig. 4.2, we set d = 0.8 and calculated PR(a) = 0.4.

The process of propagating object a’s PR score is as follows.

path1 : a → b → c. Object a propagates its feature score d ×
0.4/2 = 0.16 to b, then b propagates d× 0.16/1 = 0.124 to
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c. But c will not propagate the PR score to a, because a

is already in this path. Therefore, the propagation along

this path ends;

path2 : a → c. a propagates 0.16 to c. Same reason as in

“path1”, the propagation along this path ends at c.

Therefore, we get PG(a, a) = 0.4, PG(a, b) = 0.16, and

PG(a, c) = 0.124+0.16 = 0.284. Although the whole propaga-

tion phase is not finished, the above results imply that c seems

more similar to a since the features in their feature vectors are

more close.

The feature comparison phase. According to Eq. (4.2),

the time complexity of computing PS score between two objects

is O(n). In practice, since the number of nonzero features in

feature vectors are generally far less than n, we can use a dy-

namic 2-dimensional vector F̃ V (v) = ((idu, PG(u, v))T where

u, v ∈ V , PG(u, v) > 0 and idu is the ID number of u. By

ordering the elements in F̃ V by IDs, the complexity can be

reduced to O(t), where t = F̃ V (v)/n is the average size of the

new feature vectors.

The pseudo code of PageSim algorithm is given as follows.

The PR score propagation process of an object is encapsulated

in procedure PS prop, and the calculation of PageSim score be-

tween two objects is implemented by procedure PS comp. Since

PS calc is simply a DFT-like procedure, we omit its pseudo

code to make the chapter tidy.
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Algorithm 1 PageSim Algorithm

1: Input: graph G(V,E) and PR scores.

2: Output: PageSim matrix (PS(vi, vj))n×n, i, j = 1, · · · , n.
3: procedure PageSim(G)

4: % Phase 1: Feature score propagation

5: for i← 1, n do

6: call PS prop(G,vi) ⊲ propagate vi’s feature

7: end for

8: % Phase 2: Feature vector comparison

9: for i← 1, n do

10: for j ← 1, n do

11: call PS comp(vi,vj) ⊲ calculate PS(vi,vj)

12: end for

13: end for

14: return PSn×n ⊲ return PageSim matrix

15: end procedure

4.3.5 Pruning Technique

In the worst case, the time complexity of procedure PS prop

is O(kn), where k is the average number of outlinks (or inlinks),

i.e., k = 1
n

∑
v∈V |O(v)|. This is unacceptable in practice. We

suggest that by limiting the maximum length of propagation

path, the complexity can be reduced significantly. Because

from Eq. (4.1) we can see that feature scores decrease very

quickly at a speed of (dk)
r along propagation paths, where r is

the hops of propagation. On the other hand, feature scores

propagated to distant objects become so tiny that ignoring

them should cause little influence on the final results. There-
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fore, we can simple limit the maximum length of propagation,

which is named the radius of propagation, by a constant num-

ber r. By this way, the complexity of PS prop can be reduced

from O(kn) to O(kr).

4.3.6 Complexity Analysis

In previous subsection, we know that by pruning radius of

feature propagation, the time complexity of procedure PS prop

becomes O(kr), where k = (
∑

v∈V |O(v)|)/n and r is the ra-

dius. Besides, the average size of feature vectors also reduces

to O(kr). Therefore, both space complexity and time com-

plexity of the propagation phase are O(nkr) = O(Cn), where

C = kr is a constant number.

In Section 4.3.4, we have discussed that the time complex-

ity of procedure PS comp is O(kr) = O(C). So the complexity

of the second phase is O(Cn2). In conclusion, the overall time

complexity of PageSim is thus O(Cn2), and the overall space

complexity is O(Cn).

4.3.7 Discussions on PageSim

Based on the previous analysis and discussions, we can

deduce the inherent characteristics of PageSim, which make it

an applicable similarity measure for web pages.

Efficiency. Apparently, the key factor of the complexities

of PageSim is the propagation radius r, because large r may



CHAPTER 4. PAGESIM: OBJECT’S FEATURE PROPAGATION 99

result in huge C which may dramatically increase the complex-

ities of PageSim. Therefore, finding a smallest r while pre-

serving the precision of PageSim is an important task. The

experiments conducted in section 4.4.1 show that r = 3 is such

an empirical propagation radius. Since averagely each web page

has less than 10 links, accordingly C < 103. This indicates that

our algorithm is efficient in both time and storage.

Scalability. PageSim inherits parallelism property, be-

cause each web page propagates feature information indepen-

dently. This property is very important since PageSim can be

implemented to utilize the computing power and storage capac-

ity of tens to thousands of computers interconnected with a fast

local network. Considering its low complexities and parallelism

property, the scalability of PageSim is fairly well.

Stability. The stability of PageSim is based on two as-

pects: the stability of PageRank and the “localism” of Pa-

geSim. First, in [100], the authors proved that the perturbed

PR scores will not be far from the original so long as the per-

turbed web pages did not have high overall PR scores. This

means that PageRank scores are fairly stable since web pages

which have high PR scores are only a small part of the Web.

Secondly, due to the pruning technique, web pages only propa-

gate PR scores to their nearby neighbors, which means a small

change of the Web only influences on the feature vectors of

nearby web pages. Therefore we can conclude that it is propa-

gating stable PR scores locally that makes PageSim stable.



CHAPTER 4. PAGESIM: OBJECT’S FEATURE PROPAGATION 100

Robustness. Obviously, PageSim is robust against text

spamming since it is a pure link-based algorithm. Next, we

illustrate the robustness of PageSim by showing that PageSim is

resistant to link farm, which is a commonly used link spamming

technique. A link farm is a network of web pages which are

densely connected with each other [143]. It aims to boost the

ranking of target web pages.

It is true that setting up sophisticated link structures within

a link farm does not improve the total PageRank of the link

farm [47], which is denoted by PRLF. As we know, the Pa-

geSim score between two web pages is less than the sum of

common PR scores which originally propagated from common

web pages (refer to Eq. (4.2)). Therefore, if a link farm links to

two web pages (i.e., all the web pages in the link farm link to

the two pages), its total effects on the PageSim score of these

two pages is less than PRLF, which implies PageSim is robust

against link farm. From the above analysis, we can see that by

adopting the PR scores, PageSim indeed inherits a relatively

strong ability of spamming resistance.

We list some other properties of PageSim below, which can

be easily deduced from the definitions in Section 4.3.3. For any

web page u and v,

1. The PageSim scores are symmetric, i.e.,

PS(u, v) = PS(v, u);

2. Each page is most similar to itself, i.e.,
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PS(u, u) = maxv∈V PS(u, v);

3. PS(u, v) ∈ [0, 1].

4.4 Experimental Results

First, we evaluate the impact of the parameters, includ-

ing decay factor d and propagation radius r, on PageSim and

estimate the optimal parameter settings. Second, we test Pa-

geSim against other classical neighbor-based methods including

Co-citation, Bibliographic coupling, Jaccard Measure, and Sim-

Rank (see Table 2.1 of Chapter 2). In the experiments, we focus

on the top N = 20 similar objects returned by the algorithms

and fix the iteration numbers of MatchSim and SimRank to

be K = 15. The testing datasets and evaluation metrics are

adopted from Chapter 3 (see Section 3.3 in Chapter 3). The

hardware environment is Celeron 2.8 G CPU, 4 G memory,

and 80 G hard disk. The programs are written in C and the

OS is Windows XP Pro SP2.

4.4.1 Impact of Parameters

We first test the impact of the parameters, including the

decay factor d and the radius of propagation r, on the perfor-

mance of PageSim. Besides, we want to find out the optimal

settings for the parameters. The following experiments are con-

ducted on the CiteSeer and Cora datasets.
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Figure 4.3: Impact of decay factor d on PageSim

Decay Factor d

PageSim uses a decay factor d to model the common sense

that the amount of feature (the strength of recommendation,

or the influence of recommender) decreases along propagation

path. The decay rate of feature is defined by d, where d ∈ (0, 1].

Moreover, PageSim adopts PageRank scores to quantify the

importance of one object’s feature.

In the experiments, we fix propagation radius r = n −
1 (i.e., no limitations on r.) Figs. 4.3(a) and 4.3(b) plot the

average precision, recall, and F scores of the top 10 rankings

returned by PageSim, given different d ranging from 0.1, 0.2,

..., to 1. From the results, we can see that (1) the impact of

decay factor is not very significant, and (2) relatively speaking,

d = 0.5 is the optimal setting for d on both datasets.
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Figure 4.4: Impact of propagation radius r on the effectiveness of PageSim

Propagation Radius r

The purpose of the following experiments is to test impact

of r on the efficiency as well as the effectiveness of PageSim. We

fix d = 1.0 in the experiments. Observations and discussions of

the experimental results are presented as follows.

Impact on Efficiency. Figures. 4.4(a) and 4.4(b) plot

the average precision, recall, and F scores of the top 10 rankings

returned by PageSim, given different r ranging from 1, 2, ..., to

5. From the results, clearly we can see that

1. The average recall ave rec increases when r increases from

1 to 3. This means that indirect neighbors, especially short

distant (≤ 3 hops) neighbors, can indeed help PageSim

retrieve more similar objects.
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Figure 4.5: Impact of propagation radius r on the efficiency of PageSim

2. ave prec decreases as r raise from 1 to 3. This means

indirect neighbors may reduce PageSim’s precision.

3. ave prec and ave rec stays the same when r ≥ 4. This

means long distant (≥ 4 hops) neighbors can be ignored

since they have no help to PageSim’s precision and recall.

Impact on Efficiency. Figure 4.5(a) plots the aver-

age times of propagation prop times performed in propagation

phase of PageSim. The prop times is the total times of propa-

gating features from objects to direct neighbors. It reflects the

relative running time taken by the propagation phase. Figure

4.5(b) plots the average size of feature vectors which is pro-

portional to the running time taken by the feature comparison

phase. From the figures, we can see that in PageSim, larger r

generally results in longer running time.
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To summarize, the experimental results verified our as-

sumptions that

1. Indirect neighbors can help link-based method find more

relevant results and

2. The PageRank scores propagated to the web pages more

than 3 hops long can be be ignored without cause much

influences.

As a result, empirically we can choose r = 3 to improve the

efficiency of PageSim.

4.4.2 Results on CiteSeer & Cora Datasets

In this section, we test PageSim against other methods

on two smaller datasets: the CiteSeer and Cora datasets. The

papers in both datasets have been pre-classified into classes

according to topics. We use outlinks as default input for the

methods. Because Co-citation, which uses inlinks, performs

very poorly in terms of precision, we exclude its curves to make

the figures clearer.

Because in both datasets, the probability of one article

citing other article of same class is very high (74% for CiteSeer

and 80% for Cora), and PageSim can benefit a lot from these

relationships. To make the competition more fair, we therefore

involve PageSimB algorithm too.

The results are presented in Figs. 4.6 and 4.7, respectively.
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Table 4.3: Runtime (in second) on CiteSeer and Cora datasets

BC CC JM SR MS PS PSB

CiteSeer 171 132 174 1,632 1,680 185 182

Cora 99 97 99 1,515 1,275 116 113

The runtime is given in Table 4.3. We summarize the basic

observations and interpretations as follows.

1. Precision: PageSim performs the best on both datasets.

Except PageSim, PageSimB performs the best on Cora,

but poorer than MatchSim on CiteSeer.

2. Recall: Both PageSim and PageSimB achieve higher re-

call than other algorithms. This is because they can search

more local neighbors, resulting higher chance of finding

more real similar objects.

3. F score: The overall performance of PageSim and PageSimB

is the best on both datasets.

4. Runtime: From Table 4.3, we can see that PageSim is

rather efficient.

The experimental results show that PageSim is an effective

and efficient similarity measure. It can achieve high precision

and recall scores. Its time complexity is low and its practical

performance in efficiency is satisfying. Besides, it has special

characteristics presented in Section 4.3.7. Therefore, PageSim

is a suitable choice of similarity measurement for web pages.
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Figure 4.6: Average precision, recall, and F scores on CiteSeer dataset
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Figure 4.7: Average precision, recall, and F scores on Cora dataset
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Figure 4.8: Performance results on CW dataset

4.4.3 Results on CW dataset

In this section, we compare the performance of PageSim

(PS ) with other neighbor-based similarity measures, includ-

ing MatchSim (MS ), Bibliographic coupling (BC ), Co-citation

(CC ), Jaccard Measure (JM ), and SimRank (SR). For Sim-

Rank, we set γ = 0.8. In the experiments, MatchSim, Sim-

Rank, and Jaccard Measure use inlinks as input.

From the results presented in Fig. 4.8, we can see that

PageSim outperforms others significantly when N ≥ 10. The

running time of PageSim is about 20 times longer than that of

neighbor-counting methods (about several seconds).
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4.5 Summary

This chapter introduces PageSim, a novel neighbor-based

similarity measure which is based on the strategy of PageRank

score propagation. We present its formal definitions and ana-

lyze its theoretical properties. Experimental results show that

PageSim is a promising similarity measure for web pages, as

well as any other data sources with graph structure.

2 End of chapter.



Chapter 5

Extended Neighborhood

Structure

In this chapter, we concentrate on improving the accu-

racy of link-based similarity measures. We first propose a

simple but important model called ENS (Extended Neighbor-

hood Structure) model, which defines a bi-directional (inlink

and outlink) and multi-hop neighborhood structure. Based on

the ENS model, several existing similarity measures are ex-

tended, including PageSim, SimRank, Co-citation, and Biblio-

graphic coupling. Moreover, theoretical analysis show that the

extended PageSim is an online, incremental, scalable and stable

algorithm, which is especially suitable for the Web. We tested

the algorithms on two datasets: a web graph crawled from the

website of our department and a citation graph crawled from

Google Scholar. Experimental results show that the perfor-

mance of the extended algorithms are significantly improved

and the extended PageSim performs the best.

111
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5.1 Introduction

One of the major problems for the link-based algorithms

is that they usually do not make full use of the structural in-

formation of graph. For example, Co-citation only considers

direct neighbors. SimRank is a multi-hop algorithm, but it

considers only one direction. We believe that a well-designed

algorithm should take into account as much link information

as possible to produce high quality results. To develop effi-

cient and flexible similarity measures which make full use of

the structural information of graph (such as the Web graph) to

produce high quality results motivates our research work. The

main contributions of this chapter are summarized as follows.

1. We propose a simple but important model called ENS

(Extended Neighborhood Structure), which defines a bi-

directional (inlink and outlink) and multi-hop neighbor-

hood structure. This model is designed for helping link-

based algorithms make full use of the link information of

graph.

2. We extend several link-based similarity measures based

on this model, and conduct experiments on real-world

datasets, which show that the extended algorithms achieve

much better results than their original versions.
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5.2 Extending Similarity Measures

We believe that, to produce high quality results, a well-

designed link-based algorithm should make full use of the struc-

tural information of the web graph. However, almost all ex-

isting similarity measures are either single-directional or just

1-hop, which limits their performance.

In this section, we first propose the Extended Neighbor-

hood Structure (ENS) model which defines a generalized neigh-

borhood structure on graph. Based this model, several exist-

ing similarity measures are extended. Experimental results in

Section 5.4 show that the extended algorithms outperform the

original ones, which serve to illustrate the effectiveness of this

model. Moreover, the extended PageSim algorithm introduced

later is designed according to the intuition in section 5.2.1, and

it performs best among all the algorithms tested in this chapter.

5.2.1 Extended Neighborhood Structure

Recent research have suggested that there are large amounts

of valuable information hidden in the vast link structure of the

Web. For example, a web page linking to another page usually

implies some kind of relationship between them. This is be-

cause the fact that generally authors of web pages would like

to link their pages to those pages which they think are related

to theirs.

Consider the graph in Fig. 5.1, why does page a link to
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Figure 5.1: Interpretation of the ENS model

page b? Maybe the reason is “a is interested in b”, or “a is

familiar with b”, or other else. No matter what the reason is,

the basic fact is that at least a knows b. Of course, b may not

know a since there’s no hyperlink from b to a. It is very much

like the relationship between people. Therefore, a web page

may have two kinds of neighbors: inlink neighbors (those who

know him) and outlink neighbors (whom he knows). In Fig. 5.1,

a is b’s inlink neighbor and b is a’s outlink neighbor. Now, we

can come up with a simple and straightforward intuition on

web page similarity: similar web pages have similar neighbors.

Or in another words, to know a web page, know its neighbors!

On the other hand, page c is a 2-hop indirect outlink neigh-

bor of a, which implies page a may not be so familiar with c

as with b. This assumption is reasonable and can be thought

of the familiarity decreasing along links (both inlinks and out-

links).

Therefore, the concept of neighborhood is now extended

in two aspects: bi-direction and multi-hop. Although the intu-

ition of similarity is still “similar web pages have similar neigh-

bors”, its meaning is generalized, since the “neighbors” here

refers to the bi-directional and multi-hop neighbors instead of

single-direction or direct neighbors. This model is based on
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the natural hypothesis that a link-based algorithm likely im-

proves its accuracy by considering more structural information

of graph.

5.2.2 Web Graph Model

We model the Web as a directed graph G = (V, E) with

vertices V representing web pages vi(i = 1, 2, · · · , n) and di-

rected edges E representing hyperlinks among web pages. I(v)

denotes the set of inlink neighbors of page v and O(v) denotes

the set of outlink neighbors of page v.

Definition 7 Let path(u1, us) denote a sequence of vertices

u1, u2, . . . , us such that (ui, ui+1) ∈ E (i = 1, · · · , s− 1) and ui

are distinct. It is called a path from u1 to us.

Definition 8 Let length(p) denote the length of path p, and

define length(p) = |p| − 1, where |p| is the number of vertices

in path p.

Definition 9 Let PATH(u, v) denote the set of all possible

paths from page u to v.

5.2.3 Extended Co-citation and Bibliographic Cou-

pling

Co-citation and bibliographic coupling are two 1-hop and

single-directional algorithms. Their intuitions and definitions

are as follows.
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1. Co-citation: the more common inlink neighbors two pages

have, the more similar they are. Therefore, sim(a, b) =

|I(a) ∩ I(b)|.

2. Bibliographic coupling: the more common outlink neigh-

bors two pages have, the more similar they are. Therefore,

sim(a, b) = |O(a) ∩O(b)|.

We can easily construct a bi-directional algorithm called

Extended Co-citation and Bibliographic Coupling (ECBC) as

follows.

3 ECBC: the more common neighbors two pages have, the

more similar they are. Therefore,

sim(a, b) = α|I(a) ∩ I(b)|+ (1− α)|O(a) ∩O(b)|,

where α ∈ [0, 1] is a user-defined constant.

5.2.4 Extended SimRank

SimRank is a fixed point of the recursive definition: two

pages are similar if they are referenced by similar pages. Nu-

merically, for any web page u and v, this is specified by defining

sim(u, u) = 1 and

sim(u, v) = γ ·
∑

a∈I(u)
∑

b∈I(v) sim(a, b)

|I(u)||I(v)|
for u 6= v and γ ∈ (0, 1). If I(u) or I(v) is empty, then

sim(u, v) is zero by definition. The SimRank iteration starts
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with sim0(u, v) = 1 for u = v and sim0(u, v) = 0 for u 6= v.

The SimRank score between u and v is defined as limk→∞simk(u, v).

SimRank is a multi-hop algorithm, but it’s not bi-directional.

We extend the intuition of SimRank to be “two pages are sim-

ilar if they have similar neighbors”. Accordingly, SimRank can

be extended to

sim(u, v) = γ · (
∑

a∈I(u)

∑

b∈I(v)
sim(a, b) +

∑

a∈O(u)

∑

b∈O(v)

sim(a, b))

×(|I(u)||I(v)|+ |O(u)||O(v)|)−1.

5.2.5 Extended PageSim

The detailed description and formal definitions of PageSim

are given in Chapter 4. Briefly speaking, PageSim can be re-

garded as a “weighted multi-hop” version of Co-citation algo-

rithm. First, it takes the common inlink information of 1-hop as

well as multi-hop neighbors into account to improve the quality

of the result. Moreover, since not all pages are equally impor-

tant on theWeb, it is possible that a citation of an authoritative

web page may be more important than that of several obscure

pages. Therefore, PageSim also considers the importance of

web pages.

Extended PageSim (EPS): In PageSim, the “feature

information” of web pages propagate along only one direction

(usually along outlinks), and the consequent PS scores are ac-

tually “outlink” PS scores. In EPS, we also propagate along
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(1) (2) (3) (4)

Figure 5.2: Case study

inlinks (with decay factor 1− d) and produce the “inlink” PS

scores. This is because we consider the inlinks complement

to outlinks. Considering the inlink propagation may help in-

crease the quality of searching results. The EPS score of two

pages is hence defined by the sum of “inlink” and “outlink”

PS scores of them. We denote the EPS score of page u and

v by EPS(u, v). Certainly, the storage requirement of EPS is

doubled since we also need to store the “feature information”

propagated through inlinks.

5.2.6 Case Study and Summary

We have extended several link-based similarity measures

based on the ENS model. In this part, we give some simple

cases to illustrate a major limitation of the original algorithms.

That is, they may produce incorrect result on web page similar-

ity in some common situations. We summary these algorithms

as well as their extended versions at the end of this part.

In Fig. 5.2, we list four kinds of common relationship be-

tween pages. In each of them, we know that a and b are related
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pages, therefore sim(a, b) 6= 0. However, some algorithms in-

correctly produce that sim(a, b) = 0 which means a and b are

unrelated. We list the results on the relationship between a

and b produced by the algorithms in Table 5.1, with “+” rep-

resenting a is related to b and “-” otherwise. The properties

of each algorithm are listed in Table 5.2, with “-” representing

“NO” and “+” representing “YES”. The algorithms include

Co-citation (CC ), Bibliographic coupling (BC ), Extended Co-

citation and Bibliographic Coupling (ECBC ), SimRank (SR),

Extended SimRank (ESR), PageSim (PS ), and Extended Pa-

geSim (EPS ).

Table 5.1 shows that: (a) the extended algorithms can

measure more cases than the original ones; (b) only EPS can

measure sim(a, b) correctly in all cases, since it takes both bi-

direction and multi-hop structural information into account, as

shown in Table 5.2.

In Table 5.2, ESR is also a multi-hop and bi-directional

algorithm. However, it decide how similar two pages are by

their “common similar neighbors” only. That is, to be similar

pages, two pages have to have similar neighbors, or they have

to be introduced to each other by intermediate pages. If they

don’t, they are not similar even they know each other (linking

to each other as shown in Fig. 5.2(2). While in EPS, the intro-

ducers are not necessary since each page can introduce itself by

propagating its “feature information”.
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Table 5.1: Simple case study

Case CC BC ECBC SR ESR PS EPS

1 - - - - - + +

2 - - - - - + +

3 + - + + + + +

4 - + + - + - +

Table 5.2: Properties of algorithms

Properties CC BC ECBC SR ESR PS EPS

bi-direction - - + - + - +

multi-hop - - - + + + +

5.3 Analysis of Extended PageSim

Although, from the definitions in Section 5.2.5 we can see

that the major different between Extended PageSim (EPS) and

PageSim is that EPS is bi-directional whereas PageSim is not,

their performance are even more different. Experimental results

show that EPS outperforms PageSim significantly. Actually,

the performance of extended algorithms are all better than that

of original ones in our experiments. All of these results serve to

show that the Extended Neighborhood Structure model really

works.

In this section, we look more insight into the EPS. We

first review the pruning technique that we used in [83]. Af-

ter complexity analysis, we’ll show that the EPS is an online,

incremental, scalable, and stable algorithm.
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5.3.1 The Pruning Technique

The pruning technique is based on the observation that

the volume of information propagated to distance usually drops

quickly. Therefore, by pruning the radius of propagation, we

may improve the efficiency of algorithm without reducing its

precision significantly. It is actually a tradeoff between ef-

ficiency and precision. This technique can be used in most

multi-hop algorithms, such as SimRank and PageSim.

5.3.2 Complexity Analysis

The EPS adopts pruning technique too. Suppose the aver-

age number of one web page’s neighbors is k = (
∑n

i=1 |I(vi)|+
|O(vi)|)/n and the radius of propagation is r ∈ N . The time

complexity of PS prop is hence O(C), where C = kr is constant

with respect to n.

The space complexity benefits from pruning technique too.

Although the two feature vectors of a web page is designed to

store PR scores of all web pages, the size of them should be far

less than n. Because on the huge Web, it is unlikely that a web

page receives PR scores of all the pages, especially when the

radius of propagation is “pruned”. It is easy to conclude that

the expectation of one feature vector’s size is also O(C). As a

result, the time complexity of PS calc function is O(C) too.

Therefore, by adopting the pruning technique, the space

complexity of EPS, the time complexity of propagating all of n
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web pages’s PR scores, and the time complexity of computing

all of the EPS scores related to a query page are all O(Cn).

Apparently, the key factor of the complexities of EPS is

the propagation radius r, since large r results in huge C which

may dramatically increase the running time of the algorithm.

Therefore, finding a smallest r while preserving the precision is

an important task. The experiments conducted in section 5.4

show that r = 3 is such an empirical propagation radius. On

the other hand, the average number of inlinks per web page was

measured at about 8 [72], and the average number of outlinks

per web page was measured at about 7.2 [71]. Therefore, we

have C = kr ≈ 163 = 4096. Considering the huge n, C ≈ 4096

indeed indicates that EPS is efficient in both time and storage.

5.4 Experimental Results

We have proposed the ENS model and extended several

link-based similaritymeasure, including Co-citation, bibliographic

coupling, SimRank, and PageSim, based on this model. In this

section, we report some preliminary experimental results. The

primary purpose is to show that the ENS model can help link-

based similarity measures improve accuracy. Moreover, since

the Extended PageSim (EPS) is one of the focus in this chapter,

we conducted more tests on it. The tests include estimating the

empirical value of propagation radius r and testing the effect

of the decay factor d on the result of EPS.
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5.4.1 Datasets

We test the algorithms on two types of graphs: one is a

web graph crawled from our department, the other is a citation

graph crawled from Google Scholar. All text in our datasets

are in English.

1. CSE Web (CW) dataset is a set of web pages crawled

from the web site of CSE department at CUHK, 1 which

contains about 22,000 web pages and 180,000 hyperlinks.

The average numbers of inlinks and outlinks are 8.6 and

7.7 respectively.

2. Google Scholar (GS) dataset contains a citation graph

of 20,000 articles which were crawled through public inter-

face of Google Scholar search engine, with vertices repre-

senting articles and directed edges representing citations

between articles (directed edge (u, v) exists iff. article u

cites v). To obtain this dataset, we first submitted key-

word “web mining” to the Google Scholar which returned

50 related articles as a result. And then we crawled the

remaining articles by following the “Cited By” hyperlinks

of the search results using Breadth-First Search algorithm.

1http://www.cse.cuhk.edu.hk
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5.4.2 Ground Truth and Evaluation Methods

For any vertex v in graph G, a similarity measure A would

produce a list of top N vertices most similar to v (exclud-

ing v itself), which is denoted by topA,N (v). Let the number

scoreA,N (v) denotes the average score to v of the topA,N (v).

Thereby, we consider the average number of scoreA,N (v) for all

v ∈ V as the quality of the top N results produced by algo-

rithm A, which is denoted by ∆(A,N). That is, ∆(A,N) =

(
∑

v∈V scoreA,N (v))/n.

A good evaluation of the similarity measures is difficult

without performing extensive user studies or having a reliable

ground truth. In this chapter, we use two different evaluation

methods. For the CW dataset, we use the cosine TFIDF, a

traditional text-based similarity function, as rough metrics of

similarity. For the GS dataset, we use the “Related Articles”

provided by Google Scholar as ground truth.

(1) Cosine TFIDF Similarity: The cosine TFIDF sim-

ilarity score of two web pages u and v is just the cosine of angle

between TFIDF vectors of the pages [61], which is defined by

TFIDF (u, v) =

∑
t∈u∩v Wtu ·Wtv

‖u‖ · ‖v‖ ,

where Wtu and Wtu are TFIDF weights of term t for web page

u and v respectively. ‖v‖ denotes the length of page v, which

is defined by ‖v‖ =
√∑

t∈v W
2
tv.
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Therefore, for the CW dataset, we define

scoreA,N (v) =
1

N

∑

u∈topA,N(v)

TFIDF (u, v),

and ∆T (A,N) = ∆(A,N) which measures the average cosine

TFIDF score of top N similar web pages returned by algorithm

A.

(2) Related Articles: For an article v in citation graph

G, the list of its “Related Articles” returned by Google Scholar

is denoted by RA(v). We define

relatedN (v) = {top N related articles vi|vi ∈ RA(v)∩V }.

The precision of similarity measure A at rank N is:

precisionA,N (v) =
|topA,N (v) ∩ relatedN (v)|

|relatedN(v)|
.

Therefore, for the GS dataset, we simply define

scoreA,N (v) = precisionA,N (v),

and ∆P (A,N) = ∆(A,N) which measures the average preci-

sion of algorithm A at top N .

5.4.3 Results on the Decay Factor of EPS

First, we test the impact of the decay factor d on EPS

algorithm. The results of CW and GS datasets are shown in

Figs. 5.3 and 5.4, respectively.



CHAPTER 5. EXTENDED NEIGHBORHOOD STRUCTURE 126

0 5 10 15 20

0.4

0.45

0.5

Top N

co
si

ne
 T

FI
D

F 
sc

or
e

Impact of decay factor on Top N results

d=0.0
d=0.4
d=0.7
d=1.0

(a)

0 0.2 0.4 0.6 0.8 1

0.415

0.42

0.425

0.43

Top N

co
si

ne
 T

FI
D

F 
sc

or
e

average cosine TFIDF score of Top N results

(b)

Figure 5.3: Estimating optimal decay factor d for CW dataset
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Figure 5.4: Estimating optimal decay factor d for GS dataset



CHAPTER 5. EXTENDED NEIGHBORHOOD STRUCTURE 128

Figure 5.3(a) plots the curves of ∆T (A,N) for different

d. Figure 5.3(b) plots the the average values of the curves

in Fig. 5.3(a) for different d. Figure 5.4(a) plots the curves of

∆P (A,N) for different d. Figure 5.4(b) plots the average values

of the curves in Fig. 5.4(a).

From the results, we can see that: (a) both figures showed

the optimal value of d is around 0.7; (b) since d = 1.0 corre-

sponds to the original PageSim, the results of EPS outperform

that of the original PageSim.

5.4.4 Results on the Propagation Radius of EPS

We also test the impact of the propagation radius r on

EPS algorithm and get an empirical radius. The results of CW

and GS datasets are shown in Figs. 5.5 and 5.6, respectively.

In these Figures, “r = n” means no radius pruning applied to

EPS.

Figure 5.5 plots the curves of ∆T (A,N) for different r.

First, it shows that the quality of the results increases with r.

Second, the curve of r = 3 is very close to the “r = n−1” curve
of EPS. Therefore, we can choose r = 3 to be the propagation

radius in practice.

Figure 5.6 plots the curves of ∆P (A,N) for different r.

What it agrees with Fig. 5.5 is that r = 3 is a good approxi-

mation. But what’s more interesting is that the quality of the

results decreases with r. The possible reasons may include:
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Figure 5.5: Empirical radius r for CW dataset

1. The citation graph of GS dataset is incomplete. First,

we crawled the articles along “inverse” citation direction.

This means, for any article, we only know who cites it (its

inlinks), but we don’t know all of its references (outlinks).

It is different from the Web, in which we usually only know

the outlinks of web pages. Second, the downloaded articles

are only 1/4 to 1/3 of the articles found by crawler, which

is similar to the Web.

2. The Google Scholar search engine likely takes direct ci-

tation more important. This is the most possible reason

since the result of r = 1 is much better than others. We
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Figure 5.6: Empirical radius r for GS dataset

don’t think Google Scholar is perfect. Anyway, it is a use-

ful tool to measure the relative performance of similarity

functions.

5.4.5 Performance Evaluation of Algorithms

In this part, we evaluate the algorithms mentioned in this

chapter on the CW dataset. These algorithms include Co-

citation (CC ), Bibliographic coupling (BC ), Extended Co-citation

and Bibliographic Coupling (ECBC ), SimRank (SR), Extended

SimRank (ESR), PageSim (PS ), and Extended PageSim (EPS ).

The parameter settings of the algorithms are listed in Table 5.3.
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Figure 5.7: Performance of the algorithms on CW dataset
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Table 5.3: Parameter settings

ECBC SR ESR PS EPS

α = 0.5 γ = 0.8 γ = 0.8 r = 3, d = 0.5 r = 3, d = 0.7

Figure 5.7(a) plots the curves of ∆T (A,N) for different

algorithm on the CW datasets. Figure 5.7(b) shows the the

average values of the curves in Fig. 5.7(a).

From the results, we can see that:

1. The performance of the extended algorithms are signifi-

cantly improved in almost all testing cases. This indicates

that the ENS model works well on these algorithms.

2. The EPS algorithm outperforms all the others in all test

cases. It is because the EPS uses more structural informa-

tion than others. It also confirms the effectiveness of the

ENS model.

5.5 Summary

In this chapter, we propose the ENS (Extended Neighbor-

hood Structure) model, which is designed to help link-based al-

gorithms make full use of the link information of graph. Based

on this model, several link-based similarity measures are re-

fined. Experimental results show that the extended similarity

measures performs much better than the original ones.

2 End of chapter.



Chapter 6

Item-based Top-N

Recommendation

In this chapter, we focus on the top-N recommendation

problem, which is described briefly as “given the preference in-

formation of users, recommend a set of N items to a certain

user (the active user) that he might be interested in, based

on the items he is interested”. First, we propose the item-

graph model, which is constructed directly from the user-item

transaction database, and is used for tracking the relationships

among items. Second, we propose an item-based top-N rec-

ommendation algorithm called GCP (Generalized Conditional

Probability). It is a natural generalization of the traditional

CP(Conditional Probability)-based algorithm, and works on

the item-graph model directly. Preliminary experimental re-

sults on the MovieLens dataset show that GCP outperforms

traditional CP -based and COS (cosine)-based algorithms sig-

nificantly in terms of accuracy.

133
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6.1 Introduction

The fast growing of E-commerce has led to the develop-

ment of recommender systems [110]. In recent years, recom-

mender systems have been used in a number of different appli-

cations such as recommending products a customer will most

likely buy, finding movies a user will enjoy, and identifying web

pages that will be of interest to a web surfer. Online compa-

nies such as Amazon.com, Netflix.com, Half.com, and CDNOW

have successfully deployed commercial recommender systems to

improve customer online shopping experience. We refer to the

[117] and [110], which contains an excellent survey of various

recommender systems for different applications.

We focus on the top-N recommendation problem. Espe-

cially, we are interested in performing recommendation task by

analyzing the relationships among items, i.e., the item-based

approach. Two item-based top-N recommendation algorithms

have been proposed in [33]. One is the CP(conditional prob-

ability)-based algorithm which defines the similarity between

items by “1-item”-based conditional probability. Technically,

this method first computes the probabilities that the active

user buys a particular item ir if he has bought item ib based on

the transaction database. The final recommendation strength

(or score) for item ir is the sum of all such probabilities, i.e.

RS(ir, B) =
∑

ib∈B P (ir|ib), where B is called the active user’s

basket. CP algorithm assumes that the items are purchased
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independently, which is usually unrealistic in many practical

scenarios. In this chapter, we generalize the idea by taking

into account the “multi-item”-based conditional probabilities,

hoping to improve the recommendation in terms of accuracy.

To summarize, in this chapter, we first present a statis-

tical graph model called the item-graph model (IGM ) which

can be built efficiently and incrementally from the user prefer-

ences database. Based on this model, graph-based algorithms

are possibly adopted to perform recommendation. Second, we

develop an item-based top-N recommendation algorithm called

GCP(Generalized Conditional Probability) which performs rec-

ommendation task by analyzing relationships among items. Fi-

nally, we compare the proposed method with traditional meth-

ods experimentally to evaluate its performance.

6.2 Notations and Definitions

In this chapter, we assume the underlying application do-

main is a commercial retailing system and use the terms cus-

tomer and product as synonyms to user and item, respectively.

The term transaction dataset or simply dataset denotes the set

of transactions about the items that have been purchased by

users. We assume one customer corresponds to one transaction.

Let n and m denote the numbers of users and items, respec-

tively. A transaction dataset is represented by a binary matrix

Rn×m, which is referred as the user-item matrix, where Ri,j is
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Figure 6.1: The top-N recommendation problem

one if the ith customer has purchased the jth item, and zero

otherwise. Hence each row vector Ri,∗ in the matrix represents

a transaction (or a user). We refer to the user for whom we

recommend items as the active user, and the set of items he

has already purchased as the items in his basket. Finally, we

present the top-N recommendation problem which is defined

in [33] as follows. A simple illustration is given in Fig. 6.1.

Definition 10 (top-N Recommendation Problem) Given

a user-item matrix R and a set of items I that have been pur-

chased by a user, identify an ordered set of items X such that

|X| ≤ N and X ∩ I = ∅.

The focus of this chapter is on the item-based top-N rec-

ommendation algorithms which provide recommendations by

analyzing relationships between items. Traditional methods

usually need a similarity measure for the items. Throughout

the chapter, we denote the similarity between items a and b

by symbol sim(a, b). The value of sim(a, b) depends on the

similarity measure used in the context.
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6.3 Item-based Top-N Recommendation Al-

gorithms

In [33], the authors presented a two-step scheme to com-

pute recommendations for the item-based top-N recommenda-

tion algorithms. The first step is to build a model (i.e. the item-

item similarity matrix) that captures the relations between the

different items. The second step is to apply this pre-computed

model to derive the top-N recommendations for an active user.

In this chapter, we adopt this scheme. We first give a brief

description of these steps in this section.

6.3.1 Building the Model

The model used by the item-based top-N recommendation

algorithm is constructed by using the algorithm shown in Al-

gorithm 2. The input to this algorithm is the user-item matrix

Rn×m and a parameter k that specifies the number of item-item

similarities that will be stored for each item. The output is the

pre-computed model that is represented by an matrix Mm×m

such that the jth column stores the k most similar items to

item j. In particular, entry of Mi,j stores the score of similarity

between items i and j.



CHAPTER 6. ITEM-BASED TOP-N RECOMMENDATION 138

Algorithm 2 Build Model

1: Input: user-item matrix Rn×m and parameter k

2: Output: the item-item similarity matrix Mm×m

3: procedure BuildModel(R, k)

4: for j ← 1, m do

5: for i← 1, m do

6: if i 6= j then

7: Mi,j ← sim(R∗,j , R∗,i)

8: else

9: Mi,j ← 0

10: end if

11: end for

12: for i← 1, m do

13: if Mi,j is not among the k largest values in M∗,j then

14: Mi,j ← 0

15: end if

16: end for

17: end for

18: end procedure

6.3.2 Applying the Model

The algorithm for applying the item-based model is shown

in Algorithm 3. The input is the model Mm×m that is built by

using Algorithm 2, an m × 1 vector U that stores the items

that have already been purchased by the active user, and the

number of items to be recommended (N). Vector U is also

called the active user.s basket, with Ui = 1 indicating the

user has purchased the ith item and zero otherwise. The output

of the algorithm is an m × 1 vector x whose non-zero entries



CHAPTER 6. ITEM-BASED TOP-N RECOMMENDATION 139

correspond to the top-N items that were recommended. The

values of these non-zero entries of x represent a measure of the

recommendation strength.

Algorithm 3 Apply Model

1: Input: the item-item similarity matrix Mm×m, the basket Um×1 of ac-

tive user, and N

2: Output: x: top-N recommended items

3: procedure ApplyModel(M,U,N)

4: x← M × U

5: for j ← 1, m do

6: if Ui 6= 0 then

7: xi ← 0

8: end if

9: end for

10: for j ← 1, m do

11: if xi is not among the N largest values in x then

12: xi ← 0

13: end if

14: end for

15: return x

16: end procedure

6.4 The Item-Graph Model

Intuitively, the similarity between two items is positively

related to the times of co-purchase of them, i.e., the similarity

between two items a and b is high if many customers have pur-

chased both of them, or low otherwise. Moreover, the similarity

between items is transmittable: if items a and b are similar, and
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Figure 6.2: Transforming transaction dataset to item-graph

items b and c are similar, can we infer that items a and c are

also similar but not so similar as a and b are? Intuitively, in

most time the answer should be “yes”. To reflect the rela-

tionship between distinct items in a dataset, we propose the

Item-Graph Model, which is defined as follows.

Definition 11 (Item-Graph Model) The item-graph of a

transaction dataset Rn×m is denoted by a weighted and undirect

graph G(V, E,W, Z), where V = {vi|i = 1, 2, · · · , m} represents
the set of items, and an edge (vi, vj) ∈ E if and only if items

vi and vj have been co-purchased in the dataset. W = {wi,j|i =
1, 2, · · · , n, j = 1, 2, · · · , m} denotes the set of weights between

edges. The weight wi,j of edge (vi, vj) is defined by the times of

co-purchase of items vi and vj. Z{zi|i = 1, 2, · · · , m} is the set

of weights of items, where zi is the times of purchase of item

vi.

Building the item-graph for a given transaction dataset

is easy. For each transaction T , we just need to operate |T |2

edges. That is, we either add edges E(T ) = {(va, vb)|va, vb ∈



CHAPTER 6. ITEM-BASED TOP-N RECOMMENDATION 141

T, (va, vb) /∈ E} to the graph, or increase the weight of edges

E(T ) = {(va, vb)|va, vb ∈ T, (va, vb) ∈ E} by 1. The process

of building item-graph is incremental. Since generally (|T |) is
very small (people usually buy much less products than the

whole products), updating an item-graph is fast.

Def. 11 only presents the most basic definition. There are

certainly many variants. Nevertheless, the primary purpose

of the item-graph model is to capture the relationships among

items and provide data mining algorithms, especially the graph-

based methods, a well-organized data structure to perform op-

erations such as measuring item-item similarities for clustering,

classification, or recommendation tasks.

6.5 The CP-based and COS-based Top-N

Recommendation

As described in [33], the effectiveness of the traditional

item-based top-N recommendation algorithm depends on the

method for computing similarity between items. After com-

puting the similarity scores between items, i.e., sim(vi, vj), i =

1, 2, · · · , n, j = 1, 2, · · · , m, the Recommendation Strength (RS)

for item vr given the active user’s basket B is simply defined as

RS(vr, B) =
∑

vb∈B
sim(vr, vb). (6.1)

To speed up computation, practically only the similarity scores

between vr and the top-k most similar items in the basket are
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used in Eq. 6.1. In the following experiments, we always set

k = 20. Next, we will introduce two commonly-used similarity

measures.

Conditional Probability Similarity (CP): The CP

similarity measure defines sim(vi, vj) by the conditional prob-

ability of customers purchasing vi given that vj has been pur-

chased:

sim(vi, vj) = p(vi|vj) =
p({vi, vj})

p(vj)
≈ freq({vi, vj})

freq(vj)
, (6.2)

where p(I) is the possibility of purchasing items I, and freq(I)

is the times of purchasing items I in all transaction. Note that

CP is an asymmetric measure since possibly p(vi|vj) 6= p(vj|vi).
Cosine Similarity (COS): An alternate way of comput-

ing the item-item similarity is to treat each item as a vector in

the space of customers and use the cosine between these vectors

as a measure of similarity. Formally, for the user-item matrix

Rn×m, the similarity between two items vi and vj is defined as

the cosine of the n dimensional vectors corresponding to the ith

and jth column of matrix R. Thus, the cosine between these

vectors is given by

sim(vi, vj) = cos(R∗,i, R∗,j) =
R∗,i · R∗,j

‖R∗,i‖2‖R∗,j‖2
, (6.3)

where “·” denotes the vector dot-product operation.
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6.6 The GCP-based Top-N Recommendation

6.6.1 Intuition and Definition

The top-N recommendation problem is essentially a condi-

tional probability computation problem: “given the history of

transactions, compute the probability that an active user buys

item x if he has bought a basket B of items”. Mathematically,

the conditional probability is

p(x|B) =
p({x,B})

p(B)
≈ freq({x,B})

freq(B)
. (6.4)

The CP -based recommendation algorithm in Section 6.5

considers only “1-item”-based conditional probabilities. The

basic assumption behind is that the items in basket are pur-

chased independently, which is obviously untrue in many real-

life cases. Intuitively, the “multi-item”-based conditional prob-

abilities can also contribute to the recommendation. For ex-

ample, suppose the CP -based recommendation algorithm pro-

duced thatRS(x,B) = RS(y, B); if we also know that p(x|A) >
p(y|A) where A ⊆ B, it is more reasonable that we recommend

x ahead of y.

In many cases, p(x|B) may not exists since freq(B) or

freq({x,B}) may be 0. Even when freq(B) or freq({x,B}) is
nonzero, the values of them might be too small to make much

of sense. In our proposed method, we take all of the “multi-

item”-based conditional probabilities into account. Formally,

given the basket B of an active user, the GCP recommendation
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strength for a particular item x is defined by

GCP (x,B) =
∑

S⊆B
p(x|S). (6.5)

The number of subsets S is 2|B|, which is usually too large

in practice. Consequently, computing GCP is time-consuming.

Being a trade-off, the following GCPd is used as an approxima-

tion. It is defined by

GCPd(x,B) =
∑

S⊆B,|S|≤d
P (x|S). (6.6)

In the following experiments, we always set d = 2 by default.

6.6.2 Computing freq(A) using Item-Graph

Given an item set A, measuring the exact value of freq(A)

is time-consuming. Therefore, we extract approximate freq(A)

from the Item-Graph instead. The problem can be modelled by

the classical “clique searching” problem: find in the Item-Graph

constructed from transaction dataset the clique containing all

of the items in the basket. That is, we first find the clique

containing A from the Item-Graph. The weight of the clique

(the minimum weight of the edges in the clique) is then used

as the approximation of freq(A).

6.6.3 Computing CP and COS using Item-Graph

Suppose we have built the item-graph based on historical

transactions, computing CP and COS scores are very easy and
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fast. Given two items vi and vj, we have

CP (vi, vj) =
freq({vi, vj})

freq(vj)
=

wi,j

zj
, (6.7)

COS(vi, vj) =
freq({vi, vj})√

freq(vi)×
√

freq(vj)
=

wi,j√
zj ×√zj

. (6.8)

6.7 Experimental Results

In this section, we compared the accuracy of GCP rec-

ommendation algorithm with those of the (CP )-based and the

(COS)-based recommendation algorithms. Experimental re-

sults are given to illustrate the effectiveness of the method.

6.7.1 The Dataset

We evaluated the performance of top-N recommendation

algorithms on the MovieLens dataset. 1 Although the dataset

contains multi-value ratings indicating how much a user likes a

movie, we ignored the values of these ratings and treated them

as an indication that whether the user has seen the movies. By

performing this conversion, we focus on the problem of recom-

mending an active user the top-N movies he might be inter-

ested. The characteristics of the dataset is given in Table 6.1.

Note that the “Density” is the percentage of nonzero entries in

the user-item matrix.
1Available at http://www.grouplens.org/data
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Table 6.1: The characteristics of the MovieLens dataset
# of Users # of Items Density Average Basket Size

943 1682 6.31% 106.04

6.7.2 Evaluation Strategy

We split the MovieLens dataset into a training set and a

testing set by randomly selecting one of the nonzero entries of

each row to be part of the testing set, and used the remaining

entries for training. For each user, we use the items he pur-

chased in the training set as his basket, and recommend top-N

items to him based on the basket.

For each of the experiments we performed ten different

runs, each time using a different random partitioning into train-

ing and testing sets. The results reported in the rest of this

section are the averages over these ten trials. Finally, in all

of experiments we set d = 2 for the GCP recommendation

algorithm and k = 20 for the CP -based and COS-based algo-

rithms.

6.7.3 Evaluation Metrics

We use the two evaluation metrics presented in [33]. The

quality was measured by looking at the number of hits and

their position within the top-N items that were recommended

by a particular algorithm. The number of hits is the number

of items in the testing set that were also present in the top-N

recommended items returned for each user. We computed two
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quality measures which we will refer to them as the Hit-Rate

(HR) and the Average Reciprocal Hit-Rank (ARHR) that are

defined as follows. If n is the total number of users, the HR of

the recommendation algorithm is:

HR =
number of hits

n
. (6.9)

One limitation of the HR measure is that it treats all hits

equally regardless of where they appear in the list of the top-

N recommended items. This limitation is addressed by the

Average Reciprocal Hit-Rank (ARHR) measure that rewards

each hit based on where it occurred in the top-N list. If h

is the number of hits that occurred at positions p1, p2, · · · , ph
within the top-N lists (i.e., 1 ≤ pi ≤ N), then the ARHR is

defined by

ARHR =
1

n

h∑

i=1

1

pi
. (6.10)

The ARHR metric weights hits that occur earlier in the top-N

lists higher than hits that occur later in the list.

6.7.4 Performance of Algorithms

In the experiments, we computed the HR (%) and ARHR

(%) scores for each algorithm with parameter N varying from

10, 20, · · ·, to 100. The results are plotted in Figs. 6.3 and 6.4,

respectively. We omit the “d-item”-based (d > 2) conditional

probabilities due to high computational complexity.
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From these curves, we can see that theGCP algorithm per-

formed better than the CP -based and COS -based algorithms

under both HR and ARHR metrics. The experimental results

show that the accuracy of the GCP recommendation algorithm

is improved by taking into account the “2-item”-based condi-

tional probabilities.

6.8 Summary

The focus of this chapter is on the top-N recommenda-

tion problem. We first present the Item-Graph model. Sec-

ond, we develop a Generalized Conditional Probability(GCP)

top-N recommendation algorithm by generalizing the tradi-

tional Conditional Probability(CP)-based method. In the ex-

periments, we compared the performance of theGCP algorithm

with two other item-based top-N recommendation algorithms.

Experimental results illustrate the effectiveness of the proposed

method.

We have tested GCP on EachMovie and Books datasets,

but its performance is not satisfying. We think the major rea-

son is perhaps the way we use the “multi-item” conditional

probabilities. That is, simply summarizing these values may

not be the best way to use them. We will continue to follow

this direction and do further research in future.

2 End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The problem of measuring similarity between objects arises

in many important applications such as Web search engines and

social network analysis. The first work of this thesis is about

the link-based approach which extracts similarity solely form

the graphs constructed from the relationships among objects.

Particularly, we focus on the so-called neighbor-based simi-

larity measures which share the simple intuition that “simi-

lar pages have similar neighbors.” Based on common neighbor

counting, traditional direct measurement techniques are effi-

cient and easy to implement. But for actually similar objects

who do not share any common neighbors, these methods al-

ways produce 0 meaning those objects are dissimilar, which is

obviously incorrect.

Obviously, for link-based similaritymeasurement techniques,

how to make full use of the graph structure of objects is key

150
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to achieve high performance (both accuracy and recall rate).

Therefore, in this thesis, we propose three link-based techniques

which attempt to use the neighborhood structure of objects

more effectively in different ways. We first propose two novel

neighbor-based similarity measures called MatchSim and Pa-

geSim, respectively. MatchSim takes the similarity between

neighbors into account by defining recursively the similarity

between objects by the average similarity of their maximum-

matched similar neighbors. PageSim measures the influences

of indirect neighbors by adopting feature propagation strategy.

We also propose the Extended Neighborhood Structure (ENS)

model which defines a bi-directional and multi-hop model, to

help neighbor-based methods achieve higher accuracy. Experi-

ments are conducted on several real-world datasets, which show

that the techniques proposed produce better results.

The second work in this thesis is about the top-N rec-

ommendation problem. We focus on the item-based collabora-

tive filtering approach. An item-based top-N recommendation

algorithm is proposed, which is called the GCP(Generalized

Conditional Probability) algorithm. Unlike the traditional CP

(Conditional Probability) algorithm which considers only the

1-item-based probabilities, GCP also takes multi-item-based

probabilities into account. Preliminary experimental results

show that GCP achieves better results than the traditional CP

and COS methods.
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7.2 Future Work

There are several avenues for our future work. First, we

have to improve the efficiency of MatchSim algorithm in or-

der to make it practical. Second, in MatchSim and PageSim,

we prune unimportant neighbors according to the PageRank

scores. There are other possible ranking methods, such as

IDF-like weighting scheme, which may help the methods pro-

duce better results. Third, many kinds of properties of objects

can be exploited to measure similarity, so how to integrate the

link-based methods or similarity results with others is always

a practical issue for us.

For the item-based top-N recommendation problem, there

are several future directions. First, we need to improve the

performance of the GCP method, as well as its efficiency to

make the algorithm practical. Secondly, the item-graph con-

structed from user-item matrix might be used by link-based

similarity measures to measure similarity between items. We

believe this direction is promising and will continue to do more

work. Thirdly, since users and items form a bipartite graph,

applying link-based similarity measure directly to the bipartite

graph would also be another feasible research direction.

2 End of chapter.



Appendix A

Convergence Proof of

MatchSim, in Chapter 3

We now prove the existence and uniqueness of the n2-

dimensional fixed point sim(∗, ∗) of the n2 MatchSim equations

(3.3). First, we give a simple fact that, for any a and b, the se-

quence simk(a, b) (k = 1, 2, · · ·) is bounded and nondecreasing.

Fact. 0 ≤ simk(a, b) ≤ simk+1(a, b) ≤ 1, ∀a, b ∈ V ,

k ≥ 0.

By using mathematical induction, the proof is easy and

thereby is omitted here. By the Completeness Axiom of cal-

culus, each sequence simk(a, b) converges to a limit sim(a, b)

∈ [0, 1]. Therefore, the fixed point sim(∗, ∗) of the MatchSim

equations exists.

Next, we prove the uniqueness of fixed point sim(∗, ∗).
Suppose sim(∗, ∗) and sim′(∗, ∗) are two fixed points of the n2

MatchSim equations. For all a, b ∈ V , let δ(a, b) = |sim(a, b)−
sim′(a, b)| be their difference. LetD = δ(x, y) = maxa,b∈V δ(a, b),
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where x, y ∈ V , be the maximum value of any difference. We

need to prove that D = 0. Certainly D = 0 if x = y, in which

case sim(x, y) = sim′(x, y) = 1, or if x or y has no neighbors,

in which case sim(x, y) = sim′(x, y) = 0.

In other cases (x 6= y and |I(x)||I(y)| 6= 0), we suppose

sim(x, y) > sim′(x, y). From Eq. (3.1),

D = δ(x, y) = sim(x, y)− sim′(x, y)

=
Ŵ (x, y)

max(I(x), I(y))
− Ŵ ′(x, y)

max(I(x), I(y))

=
1

max(I(x), I(y))
· [W (mxy)−W ′(m′xy)],

wheremxy (m
′
xy) is a maximummatching between I(a) and I(b)

computed using sim(∗, ∗) (sim′(∗, ∗)), and W (mxy) (W
′(m′xy))

is the corresponding maximum weight.

Let Mxy be the set of matchings between I(x) and I(y),

then we have mxy, m
′
xy ∈Mxy, and

W ′(m′xy) = maxm∈Mxy
W ′(m)⇒ W ′(m′xy) ≥W ′(mxy).

Thus,

W (mxy)−W ′(m′xy) ≤W (mxy)−W ′(mxy)

=
∑

(u,v)∈mxy

sim(u, v)−
∑

(u,v)∈mxy

sim′(u, v)

=
∑

(u,v)∈mxy

[sim(u, v)− sim′(u, v)]

≤
∑

(u,v)∈mxy

|sim(u, v)− sim′(u, v)| (A.1)
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≤
∑

(u,v)∈mxy

D. (A.2)

Therefore,

D =
1

max(I(x), I(y))
· [W (mxy)−W ′(m′xy)]

≤ 1

max(I(x), I(y))
· [W (mxy)−W ′(mxy)]

≤ 1

max(I(x), I(y))
·max(I(x), I(y)) ·D = D.

Here, we come to D ≤ D. Next, we continue the proof

under two complementary conditions.

Condition (1): the “=” relationships in the above inequal-

ities always hold for any (x, y) ∈ S, where

S = {(x, y)|sim(x, y)− sim′(x, y) = D}.

From inequalities (A.1) and (A.2), it must follow that

∀(x, y) ∈ S ⇒ mxy ⊂ S. On the other hand, we also have

sim(x, y) =

∑
(u,v)∈mxy

sim(u, v)

max(I(x), I(y))
.

Thus, we get fact(1): for any (x, y) ∈ S, the value of

sim(x, y) only depends on those of sim(u, v), where (u, v) ∈
mxy ⊂ S. (That is, the computation of sim(x, y) is closed on

set S.)

We also know fact(2): since x 6= y for any (x, y) ∈ S, the

initial value of sim(x, y), (x, y) ∈ S, is zero. (see Section 3.2.3

of Chapter 3)
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From facts (1) and (2), it follows that sim(x, y) = 0, for

any (x, y) ∈ S. Since sim(x, y) − sim′(x, y) = D ≥ 0 and

sim′(x, y) ≥ 0, it follows D = 0.

Condition (2): the “=” relationships in the above inequal-

ities do not always hold for any (x, y) ∈ S.

Evidently, we can always choose a (x, y) ∈ S so that at

least one of the “=” relationships in the inequalities does not

hold. By restarting the proof process with this (x, y), we will

come to D < D, which does not hold for any D.

From the proofs under Conditions (1) and (2), it follows

that D = 0.

2 End of chapter.



Appendix B

The Assignment Problem, in

Chapter 3

The Assignment Problem consists of finding a maxi-

mum (weight) matching in a weighted bipartite graph. Given

two sets, A and B, of equal size n, together with a weight func-

tion w : A × B → ℜ+, we obtain a weighted bipartite graph

G = (A+B,E, w), where E = {(a, b)|a ∈ A, b ∈ B}. A match-

ing in G is a set of pairwise non-adjacent edges, i.e., no two

edges share a common vertex. In other words, a matching in

G is a bijection m : A ↔ B. Let M denote the set of match-

ings between A and B, and W (m) =
∑

(a,b)∈m w(a, b) denote

the weight of matching m. The objective of the assignment

problem is to find a maximum matching, denoted by m∗, such

that:

W (m∗) = maxm∈MW (m).

Evidently, m∗ may not be unique.

If the graph is not completely bipartite (A and B are not
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of equal size), dummy vertices and zero-weighted edges are in-

serted to make up the missing part. The problem can then be

solved in the usual way and still give the best solution to the

problem. Therefore, in the paper, we always convert A and

B to be “equally sized” before computing the m∗. Thus, we

always consider A and B to be of size max(|A|, |B|).

2 End of chapter.



Appendix C

Histograms of Links, in

Chapters 3 and 4

Figure C.1: Histograms of links in CW dataset (Inlinks/Outlinks ≤ 20)

Figure C.2: Histograms of links in GS dataset (Inlinks/Outlinks ≤ 20)
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Figure C.3: Histograms of links in CiteSeer dataset

Figure C.4: Histograms of links in Cora dataset

2 End of chapter.
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