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Abstract of thesis entitled:
Learning with Unlabeled Data

Submitted by XU, Zenglin
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in January 2009

We consider the problem of learning from both labeled and un-
labeled data through the analysis on the quality of the unla-
beled data. Usually, learning from both labeled and unlabeled
data is regarded as semi-supervised learning, where the unla-
beled data and the labeled data are assumed to be generated
from the same distribution. When this assumption is not satis-
fied, new learning paradigms are needed in order to effectively
explore the information underneath the unlabeled data. This
thesis consists of two parts: the first part analyzes the funda-
mental assumptions of semi-supervised learning and proposes a
few efficient semi-supervised learning models; the second part
discusses three learning frameworks in order to deal with the
case that unlabeled data do not satisfy the conditions of semi-
supervised learning.

In the first part, we deal with the unlabeled data that are in
good quality and follow the conditions of semi-supervised learn-
ing. Firstly, we present a novel method for Transductive Support
Vector Machine (TSVM) by relaxing the unknown labels to the
continuous variables and reducing the non-convex optimization
problem to a convex semi-definite programming problem. In
contrast to the previous relaxation method which involves O(n2)
free parameters in the semi-definite matrix, our method takes
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advantage of reducing the number of free parameters to O(n),
so that we can solve the optimization problem more efficiently.
In addition, the proposed approach provides a tighter convex
relaxation for the optimization problem in TSVM. Empirical
studies on benchmark data sets demonstrate that the proposed
method is more efficient than the previous semi-definite relax-
ation method and achieves promising classification results com-
paring with the state-of-the-art methods. Our second contribu-
tion is an extended level method proposed to efficiently solve
the multiple kernel learning (MKL) problems. In particular, the
level method overcomes the drawbacks of both the Semi-Infinite
Linear Programming (SILP) method and the Subgradient De-
scent (SD) method for multiple kernel learning. Our experimen-
tal results show that the level method is able to greatly reduce
the computational time of MKL over both the SD method and
the SILP method. Thirdly, we discuss the connection between
two fundamental assumptions in semi-supervised learning. More
specifically, we show that the loss on the unlabeled data used
by TSVM can be essentially viewed as an additional regularizer
for the decision boundary. We further show that this additional
regularizer induced by the TSVM is closely related to the regu-
larizer introduced by the manifold regularization. Both of them
can be viewed as a unified regularization framework for semi-
supervised learning.

In the second part, we discuss how to employ the unlabeled
data for building reliable classification systems in three scenar-
ios: (1) only poorly-related unlabeled data are available, (2)
good quality unlabeled data are mixed with irrelevant data and
there are no prior knowledge on their composition, and (3) no
unlabeled data are available but can be achieved from the In-
ternet for text categorization. We build several frameworks
to deal with the above cases. Firstly, we present a study on
how to deal with the weakly-related unlabeled data, called the
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Supervised Self-taught Learning framework, which can trans-
fer knowledge from the unlabeled data actively. The proposed
model is able to select those discriminative features or represen-
tations, which are more appropriate for classification. Secondly,
we also propose a novel framework that can learn from a mix-
ture of unlabeled data, where good quality unlabeled data are
mixed with unlabeled irrelevant samples. Moreover, we do not
need the prior knowledge on which data samples are relevant
or irrelevant. Consequently it is significantly different from the
recent framework of semi-supervised learning with universum
and the framework of Universum Support Vector Machine. As
an important contribution, we have successfully formulated this
new learning approach as a Semi-definite Programming prob-
lem, which can be solved in polynomial time. A series of exper-
iments demonstrate that this novel framework has advantages
over the semi-supervised learning on both synthetic and real
data in many facets. Finally, for third scenario, we present a
general framework for semi-supervised text categorization that
collects the unlabeled documents via Web search engines and
utilizes them to improve the accuracy of supervised text cate-
gorization. Extensive experiments have demonstrated that the
proposed semi-supervised text categorization framework can sig-
nificantly improve the classification accuracy. Specifically, the
classification error is reduced by 30% averaged on the nine data
sets when using Google as the search engine.
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在未標記的數據中的機器學習 
徐增林 

 

本論文探討如何從廣義的未標記數據中進行學習的研究。通常針對未標記數據的學習被稱為

半監督的學習(semi-supervised learning)。半監督的學習假設未標記的數據和標記的數據產生於

同一個分佈。因此，當這個假設不成立時，就需要新的學習方式來有效發覺隱含在未標記 數

據中的信息。本文從相應的兩個角度回答了上述兩種不同情形下的學習中的問題。本文由兩

部分組成：第一部分分析了半監督學習的基本假設，並提出了高效的半監督學習算法，第二

部分針對未標記數據和標記數據由不同分佈產生的具體情形提出了三個不同的學習框架。  
 

第一部分，我們考慮有大量未標記的數據具有優良品質的情形。首先，我們提出了一種新的

直推式支持向量機(Transductive Support Vector Machine, TSVM)學習方法。在這個方法中，我們

將離散變量放鬆為連續變量，從而把非凸優化問題簡化為凸的半定規劃(Semi-definite 

Programming, SDP)問題。跟之前的具有 O(n^2)個自由變量的方法相比較，本文提出的算法只

有 O(n)個變量，因而大大提高了相應優化問題的效率。另外，本文提出 的方法對直推式支持

向量機提供了一個更緊緻的解。實驗結果表明本文提出的算法比之前的放鬆式且直推式支持

向量機更高效而且取得了非常有前景的結果。本文的另 一個貢獻是一種用於解決多重核學習

(multiple kernel learning, MKL)的水平(level)方法。該方法的克服了傳統半無限線性規劃(semi-

infinite linear programming, SILP)和次梯度下降(Subgradient Descent, SD)方法用於多重核學習時的

缺陷。實驗結果表明我們提出的方法能夠極大地減少多重核學習的計算代價。再次，我們討

論了半監督學習中的兩種基本假設之間的 聯繫。具體來講，直推式支持向量機中未標記數據

上的損失函數本質上可以看作是對決策邊界的正則化。我們進一步表明直推式支持向量機中

的正則化項跟流形正則 化(manifold regularization)密切相關。二者可以看作是半監督學習中的

一個統一的正則化框架。  
 

第二部分，我們考慮在三種不同的情形下如何利用未標記數據建立可靠的分類系統：(1)只有

弱相關的數據可用，(2)品質良好的數據同不相關數據混 和在一起而且沒有先驗知識可用，(3)

沒有未標記數據可用但是可以設計查詢算法主動從 Internet 上獲取。對上述不同情形，我們分

別建立相應的學習框 架。首先，我們提出了一個關於如何從弱相關數據中學習的框架。我們

稱之為有監督的自學習框架(supervised self-taught learning),它可以主動從未標記數據中轉移知

識。我們提出的模型能夠提取那些具有判別性的更有利於分類的特徵。其次，我們提出了一

個新的可以用於 從優質數據和無關數據的混和體中進行學習的框架。而且我們不需要任何關

於哪些數據是相關哪些是無關的先驗知識。因此，本框架顯著區別於之前的使用 Universum

的半監督學習和 Universum 支持向量機。作為一個重要的貢獻，我們把該學習模型表示為半

定規劃問題，因而可以在多項式時間內求 解。在人工和實際數據上的一系列實驗表明了這個

新框架的多方面的優越性。最後，對於上述第三種情形，我們提出了一個針對半監督的文本

分類的通用框架，它可 以通過搜索引擎來從 Internet 上獲取未標記文本，從而提高有監督的

文本分類的準確率。詳細的實驗表明，本文提出的半監督文本分類框架可以極大地提高 文本

分類的準確率。具體來講，當使用 Google 作為搜索引擎時，平均能夠將準確率提高 30％。 
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Chapter 1

Introduction

Machine learning is a subfield of artificial intelligence that is con-
cerned with the design and development of algorithms and tech-
niques that allow computers to make inductions or deduction
[102]. In general, machine learning studies a variety of different
types of problems. In terms of the different settings and ways of
dealing with data, machine learning algorithms can typically be
categorized as unsupervised learning, supervised learning, semi-
supervised learning, and reinforcement learning, and others. We
give a simple description of these learning algorithms in the fol-
lowing:

• Supervised learning that generates a function that maps
inputs to desired outputs. In supervised learning, each in-
stance of the training data consists of a data vector and it
corresponding output. In terms of the output, there are two
supervised supervised learning tasks: classification where
the output is discrete and regression where the output is
continuous.

• Unsupervised learning employs only the unlabeled exam-
ples where no category information is available. One typical
unsupervised learning task is data clustering.

• Semi-supervised learning combines both labeled and un-
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CHAPTER 1. INTRODUCTION 2

labeled examples to generate an appropriate function or
classifier.

• Reinforcement learning algorithms learn a policy of how
to act given an observation of the world. Every action
has some impact in the environment, and the environment
provides feedback that guides the learning algorithm.

One of the major problems in machine learning is how to
get a large amount of labeled examples. However, data label-
ing is usually expensive due to the fact that labeling requires a
lot of human efforts. While unlabeled data could be relatively
easy to obtain. For example, it is easy to download a batch
of web pages from the internet, but it requires experts to label
the pages. Therefore, semi-supervised learning, which employs
both the labeled data and unlabeled data, has attracted a lot
of research focus in recently years. One of the important issues
in semi-supervised learning is how to efficiently and effectively
explore the information underneath the unlabeled data.

The objective of this thesis is to establish a framework that
effectively and efficiently employs the information underlying
unlabeled data, given a small amount of labeled data and a
large amount of unlabeled data, through the analysis on the
unlabeled data. Since labeled data are usually expensive to ob-
tain and unlabeled data are relatively easy to obtain, unlabeled
data has recently attracted the research focus in machine learn-
ing [28, 163, 140, 112]. One typical learning paradigm of em-
ploying the unlabeled data is semi-supervised learning [28, 163],
which assumes that the unlabeled data and the labeled data
are generated by the same distribution. Semi-supervised learn-
ing have achieved successes in many applications, such as text
categorization, image classification, and spam filtering. When
there are no high-quality unlabeled data, semi-supervised learn-
ing cannot be employed to completely explore the information
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underneath the unlabeled data. It has been shown in [112] that
weakly-related unlabeled data which may have different class
labels as the training data can also be utilized to improve the
prediction accuracy in the small-training-sample scenarios. Re-
searchers also demonstrate that irrelevant data or background
data can also be helpful for constructing good prediction func-
tions [140].

This thesis discusses how to employ the unlabeled data for
building reliable classification systems in different scenarios: (1)
good quality unlabeled data are available, (2) only poorly-related
unlabeled data are available, (3) good quality unlabeled data
are mixed with irrelevant data but with no prior knowledge on
their composition, and (4) unlabeled data are available in the
Internet for some specific application such as text categoriza-
tion. We build several frameworks to deal with the above cases.
More specifically, the resulting principled framework includes
efficient models unifying the underlying assumptions in semi-
supervised learning, models effectively exploring the information
behind weakly-related unlabeled data, models dealing with the
mixture of different kinds of unlabeled data, and models actively
searching unlabeled data from the Internet with applications to
text categorization.

In this chapter, we address the motivations of the framework
of learning from unlabeled data. We present the objectives of
this thesis and outline the contributions. Finally, we provide an
overview of the rest of this thesis.
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1.1 Efficient and Effective Models Employ-

ing Unlabeled Data for Semi-supervised

Learning

Semi-supervised learning has attracted an increasing amount of
research interest recently [29, 163]. An important semi-supervised
learning paradigm is the Transductive Support Vector Machine
(TSVM), which maximizes the margin in the presence of un-
labeled data and keeps the boundary traversing through low
density regions, while respecting labels in the input space. We
consider the problem of Support Vector Machine transduction,
which involves a combinatorial problem with exponential com-
putational complexity in the number of unlabeled examples. Al-
though several studies are devoted to Transductive SVM, they
suffer either from the high computation complexity or from the
solutions of local optimum. To address this problem, we propose
solving Transductive SVM via convex relaxation, which converts
the NP-hard problem to a semi-definite programming. Com-
pared with the other SDP relaxation for Transductive SVM, the
proposed algorithm is computationally more efficient with the
number of free parameters reduced from O(n2) to O(n), where
n is the number of examples. An empirical study with several
benchmark data sets shows the promising performance of the
proposed algorithm in comparison with other state-of-the-art
implementations of Transductive SVM.

1.2 Efficient Multiple Kernel Learning

Kernel learning [86, 109, 100] has received much attention in the
machine learning communities in recent years. This is due to the
importance of kernel methods in that kernel functions define a
generalized similarity measure among data. A generic approach
to learning a kernel function is known as multiple kernel learn-



CHAPTER 1. INTRODUCTION 5

ing (MKL) [86]: given a list of base kernel functions/matrices,
MKL searches for the linear combination of base kernel functions
which maximizes a generalized performance measure.

We consider the problem of multiple kernel learning, which
can be formulated as a convex-concave problem. In the past, two
efficient methods, i.e., Semi-Infinite Linear Programming (SILP)
and Subgradient Descent (SD), have been proposed for large-
scale multiple kernel learning. Despite their success, both meth-
ods have their own shortcomings: (a) the SD method utilizes the
gradient of only the current solution, and (b) the SILP method
does not regularize the approximate solution obtained from the
cutting plane model. In this work, we extend the level method,
which was originally designed for optimizing non-smooth objec-
tive functions, to convex-concave optimization, and apply it to
multiple kernel learning. The extended level method overcomes
the drawbacks of SILP and SD by exploiting all the gradients
computed in past iterations and by regularizing the solution
via a projection to a level set. An empirical evaluation with
eight UCI datasets shows that the extended level method can
significantly improve efficiency by saving on average 91.9% of
computational time over the SILP method and 70.3% over the
SD method.

1.3 Unified View on Assumptions of Semi-

supervised Learning

Generally, semi-supervised learning methods are derived from
two fundamental geometric assumptions: the low density as-
sumption (or cluster assumption) and the manifold assumption.

In the low density assumption, decision boundaries should
not cross high density regions, but instead lie in low density re-
gions. Semi-supervised learning methods based on this assump-
tion usually minimize the losses on both the labeled and unla-
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beled data. Typical methods include label-switching-retraining [75],
replacing the loss functions [37, 34], and convex relaxation meth-
ods [145, 148].

In the manifold assumption, data are assumed to form a
low-dimensional manifold in some input space. Many semi-
supervised methods implement such an assumption by using
the graph Laplacian of a graph-based representation to char-
acterize the manifold structure. Typical methods include semi-
supervised spectral kernel learning [165], semi-supervised learn-
ing using gaussian fields [164], the point-cloud kernel [125], learn-
ing with local and global consistency [160], manifold regulariza-
tion [10], etc.

Although these types of two approaches are based on differ-
ent motivations, they essentially share similar spirit, namely the
decision boundary should be decided by not only the labeled ex-
amples, but also the structure of the unlabeled examples. In the
framework of transductive SVM, the regularization of decision
boundary by the unlabeled data is achieved by the minimiza-
tion of the loss function for the unlabeled data. In contrast, the
manifold regularization approach regulates the choice of deci-
sion boundary by an additional term of regularizer that is con-
structed by the Laplacian of the unlabeled data. We show that
the unlabeled data used by TSVM can essentially be viewed
as an additional regularizer for the decision boundary. We fur-
ther show that this additional regularizer induced by the TSVM
is closely related to the regularizer introduced by the manifold
regularization.

1.4 Exploring Weakly-related Unlabeled Data

We consider the task of learning from weakly-related unlabeled
data which may not share the same category labels as the la-
beled data. This task is also called self-taught learning (STL)
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[112]. In contrast to Semi-supervised learning that requires un-
labeled data to share the same category labels as the labeled
data, STL can transfer knowledge from very different unlabeled
data that share only similar structural information with the la-
beled data. STL generally exploits a three-step strategy: (1)
learning high-level representations from unlabeled data only (2)
re-constructing the labeled data by such representations, and (3)
building a classifier over the re-constructed labeled data. How-
ever, the learned knowledge, i.e., the high-level representations,
exclusively determined by the unlabeled data, may be inappro-
priate or even misleading for the latter classifier learning step. In
this thesis, we propose a novel Supervised Self-taught Learning
(SSTL) framework that successfully integrates the optimization
of the three steps of STL into just one step. By integrating the
process of classifier optimization with that of choosing the high-
level representations, the proposed model focuses on selecting
those discriminant representations, which are more appropriate
for classification. One important feature of our novel framework
is that the final optimization can be iteratively solved with the
convergence guaranteed. We evaluate our novel framework on
various data sets. The experimental results show that the pro-
posed SSTL outperforms STL and the traditional supervised
learning methods.

1.5 Learning from a Mixture of Unlabeled

Data

We consider the problem of Semi-supervised Learning (SSL)
from a mixture of unlabeled data, which may contain irrele-
vant samples. Within the binary setting, our model manages
to better utilize the information from unlabeled data by formu-
lating them as a three-class (−1, +1, 0) mixture, where class 0
represents the irrelevant data. This distinguishes our work from
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the traditional SSL problem where unlabeled data are assumed
to contain relevant samples only, i.e., either +1 or −1, which are
forced to be the same as the given labeled samples. This work is
also different from another learning paradigm, i.e., learning with
universum (universum means “irrelevant” data), in that the uni-
versum need not to be specified beforehand in our work. Indeed,
one of the significant contributions of our proposed framework
is that such irrelevant samples can be automatically detected
from the available unlabeled data. This hence presents a gen-
eral SSL framework that does not force “clean” unlabeled data.
More importantly, we formulate this general learning framework
as a Semi-definite Programming problem, making it solvable in
polynomial time. A series of experiments demonstrate that the
proposed framework can outperform the traditional SSL on both
synthetic and real data.

1.6 Actively Searching Unlabeled Data

The goal of automated text categorization is to automatically
classify documents into predefined categories. This task is usu-
ally studied as a supervised problem where a statistical model
is learned from a pool of labeled documents. However, given a
small number of labeled documents, it is very challenging, if not
impossible, to build a reliable classifier that is able to achieve
high classification accuracy; this small-size sample problem is
commonly seen in Web applications due to the high costs in
manually labeling documents. To address this problem, a novel
Web-assisted text categorization framework is proposed. Impor-
tant keywords are first automatically identified from the avail-
able labeled documents to form the queries. Search engines such
as Google or Yahoo! are then utilized to retrieve from the Web a
multitude of relevant documents. A semi-supervised framework
is finally engaged to exploit both labeled samples and returned
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unlabeled documents for building a more accurate classifier. Un-
like most semi-supervised learning algorithms that assume the
unlabeled documents are available, the proposed framework ac-
tively seeks the relevant documents by “asking” the expert (i.e.,
search engines) with carefully designed queries. To our best
knowledge, this work is the first study of this kind. As a key
contribution, we elegantly formulate the query generation task
as a learning problem that aims to extract the most discrimina-
tive keywords for search from the labeled documents at hand.
An extensive experimental study shows the encouraging results
of the proposed text categorization framework: using Google as
the Web search engine, the proposed framework is able to re-
duce the classification error by 30% when compared with the
state-of-the-art supervised text categorization method.

1.7 Contributions

In this thesis, we aim to propose a general framework to effi-
ciently and effectively exploring the information behind the un-
labeled data based on the property or quality of unlabeled data.
Within this framework, the thesis consists of two parts: the first
part deals with good quality unlabeled data as often used in
semi-supervised learning literatures, and the second part deals
with general unlabeled data which may be not drawn from the
same distribution. In the first part, we firstly propose an efficient
convex relaxation model of Transductive SVM. Furthermore, we
propose an efficient multiple kernel learning approach and nat-
urally extend it to semi-supervised learning. We then discuss
the relationship between the low-density assumption and the
manifold assumption for semi-supervised learning. In the sec-
ond part, we relax the constraint of the quality of unlabeled
data. We first consider a setting that the unlabeled data are
only structurally-related and may not share the same label with
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the training data. We then consider another setting that irrele-
vant data are mixed with good quality data. Finally, we explore
the possibility to actively search for unlabeled data from the In-
ternet for semi-supervised learning with its application to text
categorization. The main contributions of this thesis are further
described as follows in detail.

• Proposing an efficient convex relaxation model for
Transductive SVM (published in NIPS2007)

¦ Unlike the semi-definite relaxation [145] that approx-
imates TSVM by dropping the rank constraint, the
proposed approach approximates TSVM by its dual
problem. As the basic result of convex analysis, the
conjugate of conjugate of any function f(x) is the con-
vex envelope of f(x), and therefore provides a tighter
convex relaxation for f(x) [57]. Hence, the proposed
approach provides a better convex relaxation than that
in [145] for the optimization problem in TSVM.

¦ Compared with the semi-definite relaxation TSVM, the
proposed algorithm involves fewer free parameters and
therefore significantly improves the efficiency by re-
ducing the worst-case computational complexity from
O(n6.5) to O(n4.5).

• Proposing an efficient method for multiple kernel
learning (published in NIPS2008)

¦ We discuss the level method, which was originally de-
signed for optimizing non-smooth objective functions,
to convex-concave optimization. We apply it to multi-
ple kernel learning. The extended level method over-
comes the drawbacks of SILP and SD by exploiting all
the gradients computed in past iterations and by reg-
ularizing the solution via a projection to a level set.
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¦ We propose an efficient semi-supervised multiple kernel
learning approach by deforming each base kernel ma-
trix with the graph laplacian. We therefore solve the
problem of finding the best parameter for selecting the
kernel for deforming in the semi-supervised setting.

• Proposing a framework that unifies two important
assumptions in semi-supervised learning

¦ We discuss the relationship between low density as-
sumption and manifold assumption by considering two
implementations of them, i.e., transductive SVM (TSVM),
which is based on low density assumption, and the ap-
proach of manifold regularization, which is based on
manifold assumption. In the framework of TSVM,
the regularization of decision boundary is achieved by
minimizing the loss on unlabeled data. On the other
hand, the manifold regularization approach regulates
the choice of decision boundary by additional regular-
izer that is constructed by graph Laplacian regulariza-
tion.

¦ We theoretically prove that the loss on unlabeled data
in TSVM can be regarded as a special graph Lapla-
cians.

¦ We formulate the manifold regularizer as a regulariza-
tion term of TSVM.

• Proposing a novel Supervised Self-taught Learning
(SSTL) model

¦ The proposed model manages to find the most appro-
priate high-level features or representations from the
unlabeled data under the supervision of the labeled
training data. We attempt to learn from unlabeled
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data with the “target” in mind rather than to achieve
it in a hit-or-miss way.

¦ The three stages (the basis learning, the coefficient op-
timization, and the classifier learning) are integrated
into a single optimization problem. The representa-
tions, the coefficients, and the classifier are optimized
simultaneously. By interacting the classifier optimiza-
tion with choosing the high-level representations, the
proposed model is able to select those discriminant fea-
tures or representations, which are most appropriate for
classification. Hence it will greatly benefit the classifi-
cation performance.

• Proposing a general framework for learning from a
mixture of unlabeled data (published in ICDM2008)

¦ We propose a framework of Semi-supervised Learning
(SSL) from a mixture of unlabeled data, which may
contain irrelevant samples. This framework avoids the
requirement of the prior knowledge on the composition
of the unlabeled data. This distinguishes our work from
the traditional SSL problem where unlabeled data are
assumed to contain relevant samples only. This work
is also different from another family of popular mod-
els, universum learning (universum means “irrelevant”
data), in the sense that the universum need not to be
specified beforehand.

¦ We formulate this general learning framework as a Semi-
definite Programming problem, making it solvable in
polynomial time.

• Proposing a general framework for semi-supervised
text categorization via active search (published in
CIKM2008)
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¦ We discuss in detail a general framework for active
semi-supervised text categorization that collects the
unlabeled documents via Web search and utilizes them
to improve the accuracy of supervised text categoriza-
tion.

¦ We present a novel learning approach, named Discrim-
inative Query Generation (DQG) method, for query
generation that improves the chance of finding the doc-
uments relevant to the target topics via Web retrieval.
Both theoretical justifications and empirical evaluations
demonstrate that the DQG approach significantly out-
performs other intuitive methods such as Term Fre-
quency (TF) [53], Term Frequency/Inverse Document
Frequency (TF/IDF) [20], and Odds-ratio [53].

¦ We engage the semi-supervised learning method to per-
form text categorization that can effectively exploit
both the labeled documents and the unlabeled Web
documents which are retrieved by Web search engines.
Extensive results show that semi-supervised learning
framework is consistently superior to the purely super-
vised method and the supervised method with auxiliary
text.

1.8 Scope

This thesis states and refers to the learning first as statistical
learning, which appears to be the current main trend of learning
approaches. We then further restrict the learning in the frame-
work of semi-supervised learning, one of the main problems in
machine learning. This thesis is also related to the machine
learning techniques dealing with the unlabeled data. The corre-
sponding discussion on different models including the conducted
analysis of the computational and statistical aspects of machine
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learning are all subject to the classification tasks with the avail-
ability of unlabeled data.

1.9 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2
We first categorize the unlabeled data into several types.
We will review different learning paradigms based on the
data types, including semi-supervised learning, transfer learn-
ing, etc, in this chapter. We will first review semi-supervised
learning from their motivations, i.e., low density assump-
tion or manifold assumption. We will then relax the re-
quirement of unlabeled data from the same distribution to a
variational distribution, and then to a totally irrelevant dis-
tribution. This leads to other techniques, such as transfer
learning and self-taught learning, of using unlabeled data.

• Chapter 3
We will develop a novel efficient relaxation model for Trans-
ductive Support Vector Machine (TSVM). We will demon-
strate how this new model provides a tighter and more ef-
ficient approximation than previous SDP relaxation. We
will then present a series of experiments to demonstrate
the advantages of this model.

• Chapter 4
We develop an extended level method which is one of the
recent advances in optimization for constructing an efficient
multiple kernel learning approach. We will show its advan-
tage theoretically and empirically.

• Chapter 5
We will discuss a unified view on the assumptions under-
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lying semi-supervised learning. We will theoretically show
how these two assumptions can be connected together by
using TSVM as an example.

• Chapter 6
We will develop a novel model which manages to find the
most appropriate high-level features or representations from
the poorly-related unlabeled data under the supervision
of the good-quality labeled training data. This model is
also called Supervised Self-taught Learning (SSTL). We will
show that the resulting model can be formulated in one
single optimization problem with guaranteed convergence.
Both illustrations on toy data sets and evaluations on real
world data sets will be provided in this chapter.

• Chapter 7
We will discuss the problem of learning from the mixture of
unlabeled data, which may contain irrelevant samples. We
will propose a general framework dealing with the mixture
of relevant labeled data and irrelevant unlabeled data. This
hence presents a general semi-supervised learning frame-
work that does not force “clean” unlabeled data. We fur-
ther conduct a series of experiments to demonstrate that
the proposed framework can outperform the traditional semi-
supervised learning on both synthetic and real data.

• Chapter 8
We discuss a general framework for self-taught text catego-
rization, which collects the unlabeled documents via Web
search engines and utilizes them to improve the accuracy of
supervised text categorization. We will first generate high
quality query terms for a search engine based on a small
number of given training documents. The downloaded doc-
uments generated by the search engine will then be used
as unlabeled data for semi-supervised learning methods or
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auxiliary methods. Empirical evaluations on several bench-
mark data sets will be presented to demonstrate the merits
of our proposed semi-supervised text categorization frame-
work by active search.

• Chapter 9
We will then summarize this thesis and conduct discussions
on future work.

In order to make each of these chapters self-contained, some
critical contents, e.g., model definitions or motivations having
appeared in previous chapters, may be briefly reiterated in some
chapters.

2 End of chapter.



Chapter 2

Background Review: Learning
with Unlabeled Data

In this chapter, we conduct a more detailed and more formal re-
view on the techniques about how to employ unlabeled data, fol-
lowing a brief review of traditional supervised statistical learning
methods. In order to clearly show the relationship among ex-
isting techniques for learning with unlabeled data, we classify
the types of unlabeled data into five categories. To better un-
derstand the properties of different types of unlabeled data, we
introduce the classification task of elephant images and rhino
images. We show the labeled images of this task in Figure 2.1
(a).

We summarize the types of unlabeled data in the following:

• Type I: the unlabeled data and the labeled data are drawn
from the same distribution. The related learning frame
work is semi-supervised learning [163, 28]. For the classifi-
cation task of elephants and rhinos, the unlabeled data can
be the images in Figure 2.1 (b).

• Type II: the unlabeled data are drawn from a variance-
drifted distribution and share the same labels with the
training data. The representative learning framework is
called learning under covariance shift or sample bias correc-

17
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tion [123, 155]. For the above task, this type of unlabeled
data can be illustrated as 2.1 (c), where the unlabeled im-
ages has a slightly different distribution as the labeled im-
ages in 2.1 (a). For example, the baby rhino has no teeth
2.1 (c), while the rhino in 2.1 (a) has.

• Type III: the unlabeled data share no common labels with
the labeled data but are weakly-related to the labeled data
only structurally. The resulting learning paradigm includes
self-taught learning [112, 41]. For the above classification
task, the unlabeled images could be pictures of scenery as
shown in Figure 2.1 (d). The images in Figure 2.1 (d) may
share similar high-level structure (such as textures) with
images in Figure 2.1 (a).

• Type IV: irrelevant data or background data. The corre-
sponding learning paradigm includes learning with univer-
sum [140]. An example of unlabeled images in this type
could be shown in Figure 2.1 (e), where the images are not
relevant to the classification task.

• Type V: mixture of two or three types of data. We call
this learning paradigm as semi-supervised learning from a
mixture [157, 63]. For the above classification task, the un-
labeled images is a mixture of elephants, rhinos, and other
irrelevant images, as shown in Figure 2.1 (f).

Each category of unlabeled data will lead to a kind of specific
learning technique. Our review on these learning techniques will
also be focused on this hierarchy structure. To make it clear,
we also draw the relationship among these different types of
unlabeled data and their derived learning approaches in Figure
2.2.
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(a) Labeled data (b) Unlabeled data of Type I

(c) Unlabeled data of Type II (d) Unlabeled data of Type III

(e) Unlabeled data of Type IV (f)Unlabeled data of Type V

Figure 2.1: The illustration of different types of unlabeled data.
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Figure 2.2: A categorization of unlabeled data and their related learning
paradigms.

2.1 Supervised Learning

Statistical learning has achieved success in both the research
and application areas [138]. Supervised statistical learning is a
machine learning technique for learning a function from train-
ing data with the supervision of category information. The
training data consist of pairs of input objects (typically vec-
tors), and desired outputs. The output of the function can be
a continuous value (called regression), or a class label of the
input pattern (called classification). There have been a lot of
classification models motivated from different perspectives to
solve the supervised classification problem. A number of sta-
tistical models have been proposed including Support Vector
Machine (SVM) [130, 119, 139, 138], Fisher Discriminant Anal-
ysis (FDA) [51, 101, 69, 151], Logistic Regression [161], Gaus-
sian Process classifiers [141], and Minimax Probability Machine
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(MPM) [87, 88, 64, 67, 149, 68], etc. We briefly review SVM
since it is currently regarded as the state-of-the-art classifica-
tion model.

Among these models, Support Vector Machine (SVM) has
attracted a lot of research focus, which improves the general-
ization ability by maximizing the margin between two different
classes while keeping a small classification error. Theoretically,
SVM is established to minimize the expected classification risk
over the joint distribution p(x,y), which is defined as follows:

R(f) =

∫

z,y
p(x,y)l(x,y, f) , (2.1)

where, l(z,y, f) is the loss function. The above loss function
describes the extent on how close the estimated class disagrees
with the real class for the training data. Various metrics can be
used for defining this loss function, among which the Hinge loss
is the most used one.

As p(x,y) is usually unknown, people seek to approximate
the above expected risk by the so-called empirical risk:

Remp(f) =
1

nl

nl∑
i=1

l(xi, yi, f) . (2.2)

Since the empirical risk considers only the training data, it is
easy to lead to the over-fitting problem. The Structure Risk
Minimization principle [24, 139] is proposed instead in order to
control the complexity of a learning function f , which is also
called VC dimension. Based on the Structure Risk Minimiza-
tion principle, in SVM, the margin between two classes is max-
imized in order to reduce the over-fitting risk. A more formal
explanation and theoretical foundation can be obtained from the
Structure Risk Minimization criterion [24, 139]. Finally, SVM
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is defined as follows:

min
w,b,ξ

1

2
‖w‖2

2 + C

nl∑

i=1

ξi (2.3)

s. t. yi(w
>xi − b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , nl.

where the decision function is defined as f(x) = w>x − b, ξi is
the margin error, and C is a pre-defined constant.

By involving a mapping function Φ : X → F , where F is the
feature space, SVM can be represented as follows in the feature
space:

min
w,b,ξ

1

2
‖w‖2

2 + C

nl∑

i=1

ξi (2.4)

s. t. yi(w
>Φ(xi)− b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , nl.

According to the Lagrange techniques [138, 22], the above prob-
lem can be solved in the dual form:

max
α

2

nl∑
i=1

αi −
nl∑

i=1

nl∑
j=1

αiαjΦ(xi)Φ(xj)yiyj (2.5)

s. t.

nl∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, 2, . . . , nl.

Using the kernel trick, one does not need to know the form of
the mapping function. We import the following definition of a
kernel. A kernel is a function κ, such that κ(x, z) = 〈Φ(x), Φ(z)〉
for all x, z ∈ X , where 〈·, ·〉 is the operator of inner product. A
kernel matrix is a square matrix K ∈ Rn×n such that Kij =
κ(xi,xj) for some x1, . . . ,xn ∈ X and some kernel function κ.

We illustrate SVM in Figure 2.3 where two classes of data are
depicted as circles and solid dots. Intuitively, there are many
decision hyperplanes, which can be adopted for separating these
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w

Margin

+1

-1

the decision plane

Figure 2.3: An illustration of Support Vector Machine

two classes of data. However, the one plotted in this figure is
selected as the favorable separating plane, because it maximizes
the margin between two classes. Therefore, in the objective
function of SVM, a regularization term representing the margin
shows up. Moreover, as seen in this figure, only those filled
points, called support vectors, mainly determine the separating
plane, while other points do not contribute to the margin at all.

2.2 Unsupervised Learning

Unsupervised learning is another type of machine learning where
the labels of input data are not used during the learning process.
It is distinguished from supervised learning where the learning
process is supervised by the category or output information of
training data. One of the most popular learning problems in
unsupervised learning is data clustering [47, 71], which catego-
rizes objects into different groups, or more precisely, partitions
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a data set into subsets (clusters), so that the data in the same
subset are closer and the data among different subsets are fur-
ther, according to some predefined distance measure. The data
clustering problem has been studied for many years and many
algorithms have been proposed. A recent survey on data clus-
tering can be found in [146].

2.3 Semi-supervised Learning

Semi-supervised learning has attracted an increasing amount of
research interest recently [29, 163]. Many semi-supervised learn-
ing models have proposed, including EM with generative mix-
ture models [106], self-training, co-training, transductive sup-
port vector machines, and graph-based methods.

Generally, semi-supervised learning methods are derived based
on two fundamental geometric assumptions: the low density as-
sumption (or cluster assumption) and the manifold assumption.
Before presenting the definitions of these two assumptions, we
first give an illustration of them in Figure 2.4. In Figure 2.4 (a),
the symbols ⊕ and ª represent labeled data for the positive class
and the negative class, respectively. The solid circles • repre-
sent unlabeled data. The dashed lines are the decision boundary
lines obtained by the traditional supervised SVM that is built
using labeled data. The solid lines are the decision boundary
lines obtained by Transductive SVM that is constructed using
both the labeled and unlabeled data. In Figure 2.4 (b), the red
diamond and the blue circle represent labeled data for the pos-
itive class and the negative class, respectively. The unlabeled
data are noted by the squares. The decision boundary curve
are obtained by Laplancian SVM with manifold regularization.
The left figure shows an example implementing low density as-
sumption. It can be observed that when the unlabeled data are
available, the decision boundary hyperplane represented by the
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solid lines are more reasonable. In the right figure, the decision
boundary of Laplacian SVM, which is a semi-supervised learn-
ing method based on manifold assumption, are plotted. The
decision boundary respects the manifold within the unlabeled
data.

In the low density assumption, decision boundaries should
not cross high density regions, but instead lie in low density re-
gions. Semi-supervised learning methods based on this assump-
tion usually minimize the losses on both the labeled and unla-
beled data. Typical methods include label-switching-retraining [75],
replacing the loss functions [37, 34], and convex relaxation meth-
ods [145, 148].

In the manifold assumption, data are assumed to form a
low-dimensional manifold in some input space. Many semi-
supervised methods implement such an assumption by using
the graph Laplacian of a graph-based representation to char-
acterize the manifold structure. Typical methods include semi-
supervised spectral kernel learning [165], semi-supervised learn-
ing using gaussian fields [164], the point-cloud kernel [125], learn-
ing with local and global consistency [160], manifold regulariza-
tion [10], etc. The relationship among them can be illustrated
in Figure 2.5.

Recently, the relation between the low density assumption
and the manifold assumption catches the attention of researchers
in semi-supervised learning. More recently, [103] shows that the
cut-size of the graph partition converges to the weighted vol-
ume of the boundary separating the two regions of the domain
for a fixed partition. This takes a step toward the connection
between graph-based partitioning to ideas surrounding low den-
sity assumption. However, current work cannot generalize the
result uniformly over all partitions, therefore there is much work
to do in order to build such a connection between graph-based
partitioning to ideas surrounding low density assumption. [84]
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Figure 2.4: The illustration of two semi-supervised learning methods based
on low density assumption and manifold assumption, respectively.
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Figure 2.5: The relationship among semi-supervised learning, low density
assumption, manifold assumption and their motivated methods.
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studies the assumptions of semi-supervised learning from the
viewpoint of minimax theory and suggests that decoupling the
manifold assumption and the low density assumption is crucial
to clarifying the problem.

2.3.1 Transductive Support Vector Machine

An important semi-supervised learning paradigm is the Trans-
ductive Support Vector Machine (TSVM), which maximizes the
margin in the presence of unlabeled data and keeps the boundary
traversing through low density regions, while respecting labels
in the input space.

Since TSVM requires solving a combinatorial optimization
problem, extensive research efforts have been devoted to effi-
ciently finding the approximate solution to TSVM. The pop-
ular version of TSVM proposed in [75] uses a label-switching-
retraining procedure to speed up the computation. In [34], the
hinge loss in TSVM is replaced by a smooth loss function, and a
gradient descent method is used to find the decision boundary in
a region of low density. Chapelle et al. [27] employ an iterative
approach for TSVM. It begins with minimizing an easy convex
object function, and then gradually approximates the objective
of TSVM with more complicated functions. The solution of the
simple function is used as the initialization for the solution to
the complicated function. Other iterative methods, such as de-
terministic annealing [124] and the concave-convex procedure
(CCCP) method [37], are also employed to solve the optimiza-
tion problem related to TSVM. The main drawback of the ap-
proximation methods listed above is that they are susceptible to
local optima, and therefore are sensitive to the initialization of
solutions. To address this problem, in [30], a branch-and-bound
search method is developed to find the exact solution. In [145],
the authors approximate TSVM by a semi-definite programming
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problem, which leads to a relaxation solution to TSVM (noted
as RTSVM), to avoid the solution of local optimum. However,
both approaches suffer from the high computational cost and
can only be applied to small sized data sets. A more recent
review on semi-supervised SVM can be found in [31].

2.3.2 Graph-based Semi-supervised Learning Models

Graph-based semi-supervised methods are another popular paradigms
in semi-supervised learning. They usually define a graph where
labeled and unlabeled examples form the nodes, and the similar-
ity of examples are used to define edges. These methods usually
assume label smoothness over the graph. Graph methods are
nonparametric, discriminative, and transductive in nature.

Many graph-based methods work by estimating a function
f over the graph, such that f satisfies two properties: (1) it
should be close to the given labels of the labeled nodes, and
(2) it should be smooth on the whole graph. This can be ex-
pressed in a regularization framework where the first term is a
loss function, and the second term is a regularizer. The typ-
ical models in this category include the mincut [17], spectral
graph transducer [76], Tikhonov regularization algorithm [121],
and the local and global consistency method [160], the manifold
regularization method [125, 10], and Gaussian Random Fields
[164].

2.3.3 Other Semi-supervised Models

In this section, we simply introduce other semi-supervised learn-
ing models, which include EM with generative mixture models,
self-training and co-training.

One example of EM with generative mixture models is pro-
posed in [106] where the EM algorithm on mixture of multino-
mial is applied in the task of text classification. They showed
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the resulting classifiers perform better than those trained only
from labeled data.

In self-training a classifier is first trained with the small amount
of labeled data. The classifier is then used to classify the unla-
beled data. Typically the most confident unlabeled points, to-
gether with their predicted labels, are added to the training set.
Self-training has been applied to several natural language pro-
cessing tasks. Yarowsky [153] uses self-training for word sense
disambiguation. Co-training [19] assumes that there are two in-
dependent sets of features, each of which is sufficient to train a
good classifier. Given the class, the two sets are conditionally in-
dependent. Initially two separate classifiers are trained with the
labeled data on each feature subset. Each classifier then classi-
fies the unlabeled data, and teaches the other classifier with the
few unlabeled examples (and the predicted labels) that they feel
most confident. Each classifier is retrained with the additional
training examples given by the other classifier, and the process
repeats. Co-training [7, 94] can be quiet effective, so that in
the extreme case only one labeled point is needed to learn the
classifier.

2.4 Learning from Variance-shifted Unlabeled

Data

Different from the above semi-supervised learning paradigm that
training data and test data are assumed to have the same dis-
tribution, another learning paradigm relaxes a little bit more
than the above assumption: there is sample selection bias for
the training sample and test sample. This problem is also called
learning under covariance shift or sample bias correction [123,
155]. Other research efforts addressing on correcting sample se-
lection bias include [49, 61]. More recently, [15] proposes a dis-
criminative method dealing with the difference between training
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and test distributions and achieves success in the spam filtering
domain.

2.5 Learning from Weakly-related Data

We describe the weakly-related data as those share structural
information with the labeled data of the target domain. The
weakly-related data therefore may not share the same labels as
data in the target domain. The resulted learning is often called
transfer learning [25]. In particular, [112] names the transfer
learning from unlabeled data as self-taught learning.

Transfer learning, or Inductive Transfer, is a research problem
in machine learning that focuses on storing knowledge gained
while solving one problem and applying it to a different but re-
lated problem. Recently, transfer learning has been recognized
as an important topic in machine learning research. Several re-
searchers have proposed new approaches to solve the problems
of transfer learning. Early transfer learning work raised some
important issues, such as learning how to learn [118], learn-
ing one more thing [135], and multi-task learning [25]. A re-
lated topic is multi-task learning whose objective is to discover
the common knowledge in multiple tasks. This common knowl-
edge belongs to almost all the tasks, and is helpful for solving a
new task. [11] provided a theoretical justification for multi-task
learning. [43, 44] have studied the domain-transfer problem in
statistical natural language processing, using a specific Gaussian
model. [42] develop a boosting algorithm of transfer classifica-
tion framework under the PAC learning model. [114] constructs
informative priors using transfer learning.

Researchers also consider the problem of learning with aux-
iliary data, where a group of labeled data are treated as the
auxiliary data. In previous work, [143] proposed an image clas-
sification algorithm using both inadequate training data and
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plenty of low quality auxiliary data. They demonstrated some
improvement by using the auxiliary data. However, they did
not give a quantitative study using different auxiliary examples.
[95] improved learning with auxiliary data using active learning.
[116] proposed a hierarchical Naive Bayes approach for trans-
fer learning using auxiliary data, and discussed when transfer
learning would improve the performance and when decrease.

When even the unlabeled same-class data are hard to ob-
tain, one can also try some structurally-related unlabeled data.
This is verified in [112], where the authors proposed a Self-
taught Learning (STL) and showed that weakly-related unla-
beled data sharing a little structural information with the cur-
rent task could also benefit the classification performance. The
problem is that those weakly-related data are only exploited for
extracting feature patterns and they are not involved in optimiz-
ing the decision boundary. An empirical evaluation shows that
self-taught learning sometimes extracts misleading patterns and
hence might hurt the performance.

2.6 Learning with Universum

Another special kind of data is called universum [140], which
does not belong to any classes of the problem at hand. [140] has
shown that the universum data could boost the classification
performance by encoding the prior knowledge of the domain.

In addition, [79] and [157] studied the case that unlabeled
data are a mixture of both relevant data, which are from the
same domain as the current task, and irrelevant data, which
are from a different task or the background. More specifically,
[157] assumed that the prior knowledge about the composition
of the mixture, i.e., the universum data and the good quality
same-domain data, is clear before learning a semi-supervised
classification model.
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2.7 Kernel Learning

Kernel methods have been playing an important role in statis-
tical machine learning [119]. Kernel learning [86, 109, 100, 136]
aims to learn a better pair-wised similarity measure and has re-
ceived a lot of attention in recent studies of machine learning. It
works by embedding the data from the input space to a Hilbert
space, and then searching for relations among the embedded
data points. The embedding implicitly defines the geometry of
the feature space and induces a notion of similarity in the input
space.

In this section, we briefly review recent work on kernel learn-
ing. First we review one of the most popular kernel learning
methods which is called multiple kernel learning. Then we dis-
cuss semi-supervised kernel learning where the unlabeled data
are utilized to assist the learning of kernel similarities.

2.7.1 Supervised Kernel Learning

A generic approach to learning a kernel function is known as
multiple kernel learning (MKL) [86]: given a list of base kernel
functions/matrices, MKL searches for the linear combination
of base kernel functions which maximizes a generalized perfor-
mance measure. Previous studies [86, 166, 154, 39, 4] have shown
that MKL is usually able to identify appropriate combination of
kernel functions, and as a result to improve the performance.
Recent studies in bioinformatics also revealed the outstanding
performance of multiple kernel learning in biological sequence
classification and genomic data fusion[85, 131].

A variety of methods have been used to create base kernels.
For instance, base kernels can be created by using different ker-
nel functions; they can also be created by using a single kernel
function but with different subsets of features. As for the per-
formance measures needed to find the optimal kernel function,
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several measures have been studied for multiple kernel learning,
including maximum margin classification errors [5, 86], exponen-
tial loss or logarithmic loss [38, 14], kernel-target alignment [39],
Fisher discriminative analysis [80, 154], and cross-validation risk
[32].

2.7.2 Semi-supervised Kernel Learning

Semi-supervised kernel learning approaches can usually be di-
vided into two groups: the group based on spectral graph the-
ory [36, 127], and the group based on multiple kernel learning
or kernel selection [86].

In the first group, several semi-supervised learning algorithms
have been proposed based on spectral graph theory, for example,
cluster kernel [33], diffusion kernels [81], Gaussian fields [164],
heat kernel [83], and the order-constrained spectral kernel [165].
Typically, a graph is constructed where the nodes are the data
instances and the edges define the “local similarity” measures
among data points. For example, the local similarity measure
can be the Euclidean distance and the edge can be constructed
by the node’s k nearest neighbors. The edge between two data
points suggests that they may share the same label. In general,
it is believed that smaller eigenvalues correspond to smoother
eigenvectors over the graph. Thus smaller eigenvalues and cor-
responding eigenvectors are used to compose the initial graph
Laplacian which is further employed to maximize the alignment
between the learned kernel matrix and the target kernel in order
to learn a new kernel matrix. In [165], the experimental results
imply that the order-constrained spectral kernel achieves bet-
ter performance than the diffusion kernel and the Gaussian field
kernel. Moreover, [59, 152] extend the spectral kernel learning
method by specifying a fast spectral decay rate [59].

Some recent theoretical work builds the connection between
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spectral graph theory and kernel learning. Smola and Condor
show some theoretical understanding between kernel and regu-
larization based on the graph theory [127]. In addition, Berkin
et al. develop a regularization framework for regularization on
graphs [9]. Recently, Zhang et al. provide a theoretical frame-
work for semi-supervised learning based on unsupervised ker-
nel design and derive a generalization error bound [159]. It is
demonstrated that a kernel with a fast decay rate is useful for
the classification task [142, 159].

In the second group, [86] firstly extends multiple kernel learn-
ing from the supervised case to the transductive case by incorpo-
rating the whole part of kernel matrix into the learning process.
Another way of learning a semi-supervised kernel function is
combining graph Laplacians [3] since the pseudo inverse of the
graph Laplacian can be regarded as a kernel. More recently,
[40] proposes a kernel selection method for semi-supervised ker-
nel machines, which can work for both the maximum-margin-
based and manifold-regularization-based semi-supervised learn-
ing methods.

2.8 Semi-supervised Text Categorization

In this section, we review the related work on text categoriza-
tion. As we discuss the situation where unlabeled data are not
available, we also review work on query generation in order to
actively download unlabeled Web pages from the Internet.

2.8.1 Related Work on Text Categorization

Text categorization is an active research topic in the communi-
ties of Web data mining, information retrieval, and statistical
machine learning.

In the past decade, statistical learning techniques have been
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widely applied to text categorization [120], e.g, Bayesian clas-
sifiers [19], Support Vector Machines (SVM) [74], Logistic re-
gression [158], and others. Empirical studies in recent years [74]
have shown that SVM is the state-of-the-art technique.

Traditional text categorization is conducted in the supervised
setting, namely learning a classification model for text catego-
rization from a pool of labeled documents. The supervised set-
ting often requires a large amount of labeled documents before
a reliable classification model can be built. Hence, an impor-
tant research question in text categorization is how to build
reliable text classifiers given a limited number of labeled docu-
ments. The key is to effectively explore unlabeled documents for
text categorization. The first approach toward semi-supervised
text categorization is multi-view learning. The main idea to
represent each document by multiple views and exploit unla-
beled documents through the correlation among different views.
This approach is especially effective for Web page and scien-
tific document classification, in which the hyper-links between
Web pages and the citation among research articles provide an
additional representation for documents besides their textual
contents [19, 122, 150]. Another example of multi-view learn-
ing is email categorization, in which the summaries of email
texts [93] can be used as a complementary representation for
emails. The co-training algorithm [19] and the EM algorithm for
semi-supervised text categorization [106] also belong to this cat-
egory. The second approach exploring unlabeled documents is
to develop semi-supervised learning techniques that learn a clas-
sification model for text categorization from a mixture of labeled
and unlabeled documents. The well-known examples within
this category include Transductive SVM for text categoriza-
tion [75, 148]. The third approach is active learning [97, 58, 59]
that aims to choose the most informative unlabeled documents
for manually labeling. Finally, in addition to semi-supervised
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learning and active learning, another approach toward text cat-
egorization with small-size samples is to transfer the knowledge
of a related text categorization task to the target text catego-
rization task, which is closely related to transfer learning [25],
domain adaptation [43], or transfer leaning from weakly-related
unlabeled documents [112, 52].

2.8.2 Related Work on Query Generation

Query generation is an important technique in information re-
trieval and natural language processing [6]. It is widely used
to generate a corpus or expand an existing corpus for a given
concept (see for example, [53, 20, 56, 23]). It is also used for
generating topic hierarchies in question answering (see for ex-
ample, [35]). Many query generation methods work by selecting
a few representative words or key words from a small collection
of documents or text segments based on certain statistical mea-
sures. The generated queries are then submitted to a Web search
engine to retrieve a large set of related documents or text seg-
ments. In [20], a system is constructed using Web search agents
to generate new queries and to extract the documents that are
closely related to the given set of documents. In [53], a textual
corpus of minority languages is constructed by querying Web
search engines with the boolean queries that are constructed by
the operator of conjunction and negation. In [77], the authors
introduced and studied the problem of query substitution whose
goal is to generate a new query that is closely related to a user’s
original search query. In [50], the authors modified the user’s
query by appending the keywords that are extracted from the
SVM model for text categorization. Another example of query
expansion can be found in [96] where the original user-input
query is appended with additional terms relevant to some spe-
cific scenarios. In [26], the authors construct query concepts by
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clustering the features extracted from documents; however, the
clustering accuracy needs to be supported by a large amount of
training documents.

A number of statistical measures are used by the previous
studies of query generation, including Odds-ratio [53], Term
Frequency (TF) [53], Term Frequency/Inverse Document Fre-
quency (TF/IDF) [20], and SVM-based measures [50, 89]. Al-
though we can directly use the existing statistical measurement
for query generation of the proposed text categorization frame-
work, in this thesis we focus on the problem of query generation
with a small number of documents. This is particularly chal-
lenging since most of the statistical measurements mentioned
above cannot be estimated reliably when the number of labeled
documents is small. Indeed, we will show in our empirical study
that several statistical measurements proposed in the previous
studies failed to identify the Web documents that are relevant
to the target topics.

In the next chapter, we will derive an efficient convex relax-
ation model for Transductive SVM followed by extensive exper-
imental evaluation.

2 End of chapter.



Chapter 3

Efficient Convex Relaxation for
TSVM

Semi-supervised learning has attracted an increasing amount of
research interest recently [29, 163]. An important semi-supervised
learning paradigm is the Transductive Support Vector Machine
(TSVM), which maximizes the margin in the presence of un-
labeled data and keeps the boundary traversing through low
density regions, while respecting labels in the input space.

Since TSVM requires solving a combinatorial optimization
problem, extensive research efforts have been devoted to effi-
ciently finding the approximate solution to TSVM. The pop-
ular version of TSVM proposed in [75] uses a label-switching-
retraining procedure to speed up the computation. In [34], the
hinge loss in TSVM is replaced by a smooth loss function, and a
gradient descent method is used to find the decision boundary in
a region of low density. Chapelle et al. [27] employ an iterative
approach for TSVM. It begins with minimizing an easy convex
object function, and then gradually approximates the objective
of TSVM with more complicated functions. The solution of the
simple function is used as the initialization for the solution to
the complicated function. Other iterative methods, such as de-
terministic annealing [124] and the concave-convex procedure
(CCCP) method [37], are also employed to solve the optimiza-

38
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tion problem related to TSVM. The main drawback of the ap-
proximation methods listed above is that they are susceptible to
local optima, and therefore are sensitive to the initialization of
solutions. To address this problem, in [30], a branch-and-bound
search method is developed to find the exact solution. In [145],
the authors approximate TSVM by a semi-definite programming
problem, which leads to a relaxation solution to TSVM (noted
as RTSVM), to avoid the solution of local optimum. However,
both approaches suffer from the high computational cost and
can only be applied to small sized data sets.

To this end, we present the convex relaxation for Transduc-
tive SVM (CTSVM). The key idea of our method is to approxi-
mate the non-convex optimization problem of TSVM by its dual
problem. The advantage of doing so is twofold:

• Unlike the semi-definite relaxation [145] that approximates
TSVM by dropping the rank constraint, the proposed ap-
proach approximates TSVM by its dual problem. As the
basic result of convex analysis, the conjugate of conjugate
of any function f(x) is the convex envelope of f(x), and
therefore provides a tighter convex relaxation for f(x) [57].
Hence, the proposed approach provides a better convex re-
laxation than that in [145] for the optimization problem in
TSVM.

• Compared to the semi-definite relaxation TSVM, the pro-
posed algorithm involves fewer free parameters and there-
fore significantly improves the efficiency by reducing the
worst-case computational complexity fromO(n6.5) toO(n4.5).

In the following section, we present the formulation of semi-
definite relaxation for TSVM. Section 3.2 presents the proposed
efficient convex relaxation approach for Transductive SVM. Sec-
tion 3.3 presents the empirical studies that verify the effective-
ness of the proposed relaxation for TSVM. Section 3.4 sets out
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the conclusion.

3.1 Convex Relaxation of TSVM

In this section, we review the key formulae for Transductive
SVM, followed by the semi-definite programming relaxation for
TSVM.

Let X = (x1, . . . ,xn) denote the entire data set, including
both the labeled examples and the unlabeled ones. We as-
sume that the first l examples within X are labeled by y` =
(y`

1, y
`
2, . . . , y

`
l ) where y`

i ∈ {−1, +1} represents the binary class
label assigned to xi. We further denote by y = (y1, y2, . . . , yn) ∈
{−1, +1}n the binary class labels predicted for all the data
points in X . The goal of TSVM is to estimate y by using both
the labeled examples and the unlabeled ones.

Following the framework of maximum margin, TSVM aims to
identify the classification model that will result in the maximum
classification margin for both labeled and unlabeled examples,
which amounts to solving the following optimization problem:

min
w,b,y∈{−1,+1}n,ε

‖w‖2
2 + C

n∑
i=1

εi

s. t. yi(w
>xi − b) ≥ 1− εi, εi ≥ 0, i = 1, 2, . . . , n

yi = y`
i , i = 1, 2, . . . , l,

where C ≥ 0 is the trade-off parameter between the complexity
of function w and the margin errors. The prediction function
can be formulated as f(x) = w>x− b.

Evidently, the above problem is a non-convex optimization
problem due to the product term yiwj in the constraint. In order
to approximate the above problem into a convex programming
problem, we first rewrite the above problem into the following
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form using the Lagrange Theorem:

min
ν,y∈{−1,+1}n,δ,λ

1

2
(e + ν − δ + λy)>D(y)K−1D(y)(e + ν − δ + λy) + Cδ>e

s. t. ν ≥ 0, δ ≥ 0, yi = y`
i , i = 1, 2, . . . , l,

where ν, δ and λ are the dual variables. e is the n-dimensional
column vector of all ones and K is the kernel matrix. D(y)
represents a diagonal matrix whose diagonal elements form the
vector y. Detailed derivation can be found in [86, 137]. Using
the Schur complement, the above formulation can be further
arranged as follows:

min
y∈{−1,+1}n,t,ν,δ,λ

t (3.1)

s. t.

(
yy> ◦K e + ν − δ + λy

(e + ν − δ + λy)> t− 2Cδ>e

)
º 0

ν ≥ 0, δ ≥ 0, yi = y`
i , i = 1, 2, . . . , l,

where the operator ◦ represents the element wise product.
To convert the above problem into a convex optimization

problem, the key idea is to replace the quadratic term yy> by
a linear variable. Based on the result that the set Sa = {M =
yy>|y ∈ {−1, +1}n} is equivalent to the set Sb = {M|Mi,i =
1, rank(M) = 1}, we can approximate the problem in (3.1) as
follows:

min
M,t,ν,δ,λ

t (3.2)

s. t.

(
M ◦K e + ν − δ

(e + ν − δ)> t− 2Cδ>e

)
º 0

ν ≥ 0, δ ≥ 0,

M º 0, Mi,i = 1, i = 1, 2, . . . , n,

where Mij = y`
iy

`
j for 1 ≤ i, j ≤ l.
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Note that the key differences between (3.1) and (3.2) are (a)
the rank constraint rank(M) = 1 is removed, and (b) the vari-
able λ is set to be zero, which is equivalent to setting b = 0. The
above approximation is often referred to as the Semi-Definite
Programming (SDP) relaxation. As revealed by the previous
studies [145, 16], the SDP programming problem resulting from
the approximation is computationally expensive. More specif-
ically, there are O(n2) parameters in the SDP cone and O(n)
linear inequality constraints, which implies a worst-case com-
putational complexity of O(n6.5). To avoid the high computa-
tional complexity, we present a different approach for relaxing
TSVM into a convex problem. Compared to the SDP relaxation
approach, it is advantageous in that (1) it produces the best
convex approximation for TSVM, and (2) it is computationally
more efficient than the previous SDP relaxation.

3.2 Efficient Convex Relaxed Transductive Sup-

port Vector Machine

In this section, we follow the work of generalized maximum mar-
gin clustering [137] by first studying the case of hard margin, and
then extending it to the case of soft margin.

3.2.1 Hard Margin TSVM

In the hard margin case, SVM does not penalize the classifica-
tion error, which corresponds to δ = 0 in (3.1). The resulting
formulism of TSVM becomes
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min
ν,y,λ

1

2
(e + ν + λy)>D(y)K−1D(y)(e + ν + λy) (3.3)

s. t. ν ≥ 0,

yi = y`
i , i = 1, 2, . . . , l,

y2
i = 1, i = l + 1, l + 2, . . . , n.

Instead of employing the SDP relaxation as in [145], we follow
the work in [137] and introduce a variable z = D(y)(e + ν) =
y ◦ (e + ν). Given that ν ≥ 0, the constraints in (3.3) can be
written as y`

izi ≥ 1 for the labeled examples, and z2
i ≥ 1 for all

the unlabeled examples. Hence, z can be used as the prediction
function, i.e., f ∗ = z. Using this new notation, the optimization
problem in (3.3) can be rewritten as follows:

min
z,λ

1

2
(z + λe)>K−1(z + λe) (3.4)

s. t. y`
izi ≥ 1, i = 1, 2, . . . , l,

z2
i ≥ 1, i = l + 1, l + 2, . . . , n.

One problem with Transductive SVMs is that it is possible
to classify all the unlabeled data to one of the classes with a
very large margin due to the high dimension and few labeled
data. This will lead to poor generalization ability. To solve this
problem, we introduce the following balance constraint to ensure
that no class takes all the unlabeled examples:

−ε ≤ 1

l

l∑
i=1

zi − 1

n− l

n∑

i=l+1

zi ≤ ε, (3.5)

where ε ≥ 0 is a constant. Through the above constraint, we
aim to ensure that the difference between the labeled data and
the unlabeled data in their class assignment is small.

To simplify the expression, we further define w = (z, λ) ∈
Rn+1 and P = (In, e) ∈ Rn×(n+1). Then, the problem in (3.4)
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becomes:

min
w

w>P>K−1Pw (3.6)

s. t. y`
iwi ≥ 1, i = 1, 2, . . . , l,

w2
i ≥ 1, i = l + 1, l + 2, . . . , n,

−ε ≤ 1

l

l∑

i=1

wi − 1

n− l

n∑

i=l+1

wi ≤ ε.

When this problem is solved, the label vector y can be directly
determined by the sign of the prediction function, i.e., sign(w).
This is because wi = (1 + ν)yi for i = l + 1, . . . , n and ν ≥ 0.

The following theorem shows that the problem in (3.6) can
be relaxed to a semi-definite programming.

Theorem 1. Given a sample X = {x1, . . . ,xn} and a partial set
of the labels y` = (y`

1, y
`
2, . . . , y

`
l ) where 1 ≤ l ≤ n, the variable

w that optimizes (3.6) can be calculated by

w =
1

2
[A−D(γ ◦ b)]−1 (γ ◦ a− (α− β)c), (3.7)

where a = (yl,0n−l, 0) ∈ Rn+1, b = (0l,1n−l, 0) ∈ Rn+1, c =
(1

l 1
l,− 1

u1
n−l, 0) ∈ Rn+1, A = P>K−1P, and γ is determined by

the following semi-definite programming:

max
γ,t,α,β

−1

4
t +

n∑

i=1

γi − ε(α + β) (3.8)

s. t.

(
A−D(γ ◦ b) γ ◦ a− (α− β)c,

(γ ◦ a− (α− β)c)> t

)
º 0

α ≥ 0, β ≥ 0, γi ≥ 0, i = 1, 2, . . . , n.

Proof Sketch. We define the Lagrangian of the minimiza-
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tion problem (3.6) as follows:

min
w

max
γ

F(w, γ) = w>P>K−1Pw +
l∑

i=1

γi(1− y`
iwi) +

n∑

i=l+1

γi(1− w2
i )

+α(c>w − ε) + β(−c>w − ε),

where γi ≥ 0 for i = 1, . . . , n. It can be derived from the duality
that minw maxγ F(w, γ) = maxγ minw F(w, γ).

At the optimum, the derivatives of F with respect to the
variable w are derived as below:

∂F
∂w

= 2 [A−D(γ ◦ b)]w − γ ◦ a

+(α− β)c = 0,

where A = P>K−1P. The inverse of A−D(γ ◦ b) can be com-
puted through adding a regularization parameter. Therefore, w
is able to be calculated by:

w =
1

2
[A−D(γ ◦ b)]−1 (γ ◦ a− (α− β)c).

Thus, the dual form of the problem becomes:

max
γ

L(γ) = −1

4
(γ ◦ a− (α− β)c)> [A−D(b ◦ γ)]−1 (γ ◦ a− (α− β)c)

+
n∑

i=1

γi − ε(α + β),

We import a variable t, so that

−1

4
(γ ◦ a− (α− β)c)>[A−D(b ◦ γ)]−1(γ ◦ a− (α− β)c) ≥ −t.

According to the Schur Complement, we obtain a semi-definite
programming cone, from which the optimization problem (3.8)
can be formulated. ¥
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Remark I. The problem in (3.8) is a convex optimization
problem, more specifically, a semi-definite programming prob-
lem, and can be efficiently solved by the interior-point method [105]
implemented in some optimization packages, such as SeDuMi [133].
Besides, our relaxation algorithm has O(n) parameters in the
SDP cone and O(n) linear equality constraints, which involves
a worst-case computational complexity of O(n4.5). However,
in the previous relaxation algorithms [16, 145], there are ap-
proximately O(n2) parameters in the SDP cone, which involves
a worst-case computational complexity in the scale of O(n6.5).
Therefore, our proposed convex relaxation algorithm is more effi-
cient. In addition, as analyzed in Section 3.1, the approximation
in [16, 145] drops the rank constraint of the matrix y>y, which
does not lead to a tight approximation. On the other hand, our
prediction function f ∗ implements the conjugate of conjugate of
the prediction function f(x), which is the convex envelope of
f(x) [57]. Thus, our proposed convex approximation method
provides a tighter approximation than the previous method.

Remark II. It is interesting to discuss the connection be-
tween the solution of the proposed algorithm and that of har-
monic functions. We consider a special case of (3.7), where λ = 0
(which implies no bias term in the primal SVM), and there is no
balance constraint. Then the solution of (3.8) can be expressed
as follows:

z =
1

2

[
K−1 −D(γ ◦ (0l,1n−l))

]−1
(γ ◦ (yl,0n−l)). (3.9)

It can be further derived as follows:

z =

(
In −

n∑

i=l+1

γiKIi
n

)−1 (
l∑

i=1

γiy
`
iK(xi, ·)

)
, (3.10)

where Ii
n is defined as an n × n matrix with all elements being

zero except the i-th diagonal element which is 1, and K(xi, ·) is
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the i-th column of K. Similar to the solution of the harmonic
function, we first propagate the class labels from the labeled ex-
amples to the unlabeled one by term

∑l
i=1 γiy

`
iK(xi, ·), and then

adjust the prediction labels by the factor
(
In −

∑n
i=l+1 γiKIi

n

)−1
.

The key difference in our solution is that (1) different weights
(i.e., γi) are assigned to the labeled examples, and (2) the adjust-
ment factor is different from that in the harmonic function [164].

3.2.2 Soft Margin TSVM

We extend TSVM to the case of soft margin by considering the
following problem:

min
ν,y,δ,λ

1

2
(e + ν − δ + λy)>D(y)K−1D(y)(e + ν − δ + λy)

+C`

l∑
i=1

δ2
i + Cu

n∑

i=l+1

δ2
i

s. t. ν ≥ 0, δ ≥ 0,

yi = y`
i , 1 ≤ i ≤ l,

y2
i = 1, l + 1 ≤ i ≤ n,

where δi is related to the margin error. Note that we distinguish
the labeled examples from the unlabeled examples by introduc-
ing different penalty constants for margin errors: C` for labeled
examples and Cu for unlabeled examples.

Similarly, we introduce the slack variable z, and then derive
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the following dual problem:

max
γ,t,α,β

−1

4
t +

n∑
i=1

γi − ε(α + β) (3.11)

s. t.

(
A−D(γ ◦ b) γ ◦ a− (α− β)c

(γ ◦ a− (α− β)c)> t

)
º 0,

0 ≤ γi ≤ C`, i = 1, 2, . . . , l,

0 ≤ γi ≤ Cu, i = l + 1, l + 2, . . . , n,

α ≥ 0, β ≥ 0,

which is also a semi-definite programming problem and can be
solved similarly.

3.3 Experiments

In this section, we report an empirical study of the proposed
method on several benchmark data sets.

3.3.1 Data Sets Description

To make evaluations comprehensive, we have collected four UCI
data sets and three text data sets as our experimental testbeds.
The UCI data sets include Iono, sonar, Banana, and Breast,
which are widely used in data classification. The WinMac data
set consists of the classes, mswindows and mac, of the News-
group20 data set. The IBM data set contains the classes, IBM
and non-IBM, of the Newsgroup20 data set. The course data set
is made of the course pages and non-course pages of the WebKb
corpus. For each text data set, we randomly sample the data
with the sample size of 60, 300 and 1000, respectively. Each
resulted sample is noted by the suffix, “-s”, “-m”, or “-l” de-
pending on whether the sample size is small, medium or large.
Table 8.1 describes the information of these data sets, where d
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represents the data dimensionality, l means the number of la-
beled data points, and n denotes the total number of examples.

Table 3.1: Data sets used in the experiments, where d represents the data
dimensionality, l means the number of labeled data points, and n denotes
the total number of examples.

Data set d l n Data set d l n

Iono 34 20 351 WinMac-m 7511 20 300

Sonar 60 20 208 IBM-m 11960 20 300

Banana 4 20 400 Course-m 1800 20 300

Breast 9 20 300 WinMac-l 7511 50 1000

IBM-s 11960 10 60 IBM-l 11960 50 1000

Course-s 1800 10 60 Course-l 1800 50 1000

3.3.2 Experimental Protocol

To evaluate the efficiency of the proposed convex relaxation for
TSVM, we compare the running time of the proposed CTSVM
with that of the original semi-definite relaxation approach (RTSVM).
Figure 3.1 shows the running time of both the semi-definite re-
laxation of TSVM in [145] and the proposed convex relaxation
for TSVM versus increasing number of unlabeled examples. The
data set used in this example is the Course data set (see the ex-
periment section), and the number of labeled examples is 20. We
clearly see that the proposed convex relaxation approach is con-
siderably more efficient than the semi-definition approach. This
is because compared to the semi-definite relaxation TSVM, the
proposed algorithm involves fewer free parameters and therefore
significantly improves the efficiency by reducing the worst-case
computational complexity from O(n6.5) to O(n4.5).

To evaluate the effectiveness of the proposed CTSVM method,
we choose the conventional SVM as our baseline method. In our
experiments, we also make comparisons with three state-of-the-
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Figure 3.1: Computation time of the proposed convex relaxation approach for
TSVM (i.e., CTSVM) and the semi-definite relaxation approach for TSVM
(i.e., RTSVM) versus the number of unlabeled examples. The Course data
set is used, and the number of labeled examples is 20.

art methods: the SVM-light algorithm [75], the Gradient Decent
TSVM (∇TSVM) algorithm [34], and the Concave Convex Pro-
cedure (CCCP) [37]. Since the SDP approximation TSVM [145]
has very high time complexity O(n6.5), which is difficult to pro-
cess data sets with hundreds of examples, it is only evaluated
on the smaller data sets, i.e., “IBM-s” and “Course-s”.

The experimental setup is described as follows. For each data
set, we conduct 10 trials. In each trial, the training set contains
each class of data, and the remaining data are then used as the
unlabeled (test) data. Moreover, the RBF kernel is used for
“Iono”, “Sonar” and “Banana”, and the linear kernel is used for
the other data sets. This is because the linear kernel performs
better than the RBF kernel on these data sets. The kernel width
of RBF kernel is chosen by 5-cross validation on the labeled data.
The margin parameter C` is tuned by using the labeled data in
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all algorithms. Due to the small number of labeled examples, for
CTSVM and CCCP, the margin parameter for unlabeled data,
Cu, is set equal to C`. Other parameters in these algorithms are
set to the default values according to the relevant literatures.

3.3.3 Experimental Results

Table 3.2: The classification performance of Transductive SVMs on bench-
mark data sets.
Data Set SVM SVM-light ∇TSVM CCCP CTSVM

Iono 78.55±4.83 78.25±0.36 81.72±4.50 82.11±3.83 80.09±2.63

Sonar 51.76±5.05 55.26±5.88 69.36±4.69 56.01±6.70 67.39±6.26

Banana 58.45±7.15 - 71.54±7.28 79.33±4.22 79.51±3.02

Breast 96.46±1.18 95.68±1.82 97.17±0.35 96.89±0.67 97.79±0.23

IBM-s 52.75±15.01 67.60±9.29 65.80±6.56 65.62±14.83 75.25±7.49

Course-s 63.52±5.82 76.82±4.78 75.80±12.87 74.20±11.50 79.75±8.45

WinMac-m 57.64±9.58 79.42±4.60 81.03±8.23 84.28±8.84 84.82±2.12

IBM-m 53.00±6.83 67.55±6.74 64.65±13.38 69.62±11.03 73.17±0.89

Course-m 80.18±1.27 93.89±1.49 90.35±3.59 88.78±2.87 92.92±2.28

WinMac-l 60.86±10.10 89.81±2.10 90.19±2.65 91.00±2.42 91.25±2.67

IBM-l 61.82±7.26 75.40±2.26 73.11±1.99 74.80±1.87 73.42±3.23

Course-l 83.56±3.10 92.35±3.02 93.58±2.68 91.32±4.08 94.62±0.97

Table 3.2 summarizes the classification accuracy and the stan-
dard deviations of the proposed algorithm, the baseline method
and the state-of-the-art methods. It can be observed that our
proposed algorithm performs significantly better than the stan-
dard SVM across all the data sets. Moreover, on the small-
size data sets, i.e., “IBM-s” and “Course-s”, the results of the
SDP-relaxation method are 68.57±22.73 and 64.03±7.65, re-
spectively, which are worse than the proposed CTSVM method.
In addition, the proposed CTSVM algorithm performs much
better than other TSVM methods over “WinMac-m” and “Course-
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l”. As shown in Table 3.2, the SVM-light algorithm achieves
the best results on “Course-m” and “IBM-l”; however, it fails
to converge on “Banana”. On the remaining data sets, com-
parable results have been obtained for our proposed algorithm.
From the above, the empirical evaluations indicate that our pro-
posed CTSVM method achieves promising classification results
comparing with the state-of-the-art methods.

3.4 Summary and Future Work

This chapter presents a novel method for Transductive SVM
by relaxing the unknown labels to the continuous variables. In
contrast to the previous relaxation method which involves O(n2)
free parameters in the semi-definite matrix, our method takes
the advantages of reducing the number of free parameters to
O(n), and can solve the optimization problem more efficiently.
In addition, the proposed approach provides a tighter convex
relaxation for the optimization problem in TSVM. Empirical
studies on benchmark data sets demonstrate that the proposed
method is more efficient than the previous semi-definite relax-
ation method and achieves promising classification results com-
paring to the state-of-the-art methods.

As the current model is only designed for a binary-classification,
we plan to develop a multi-class Transductive SVM model in the
future. Moreover, it is desirable to extend the current model to
classify the new incoming data which are not seen during the
training process.

2 End of chapter.



Chapter 4

Level Method for Efficient
Multiple Kernel Learning

The multiple kernel learning (MKL) problem was first formu-
lated as a semi-definite programming (SDP) problem by [86].
An SMO-like algorithm was proposed in [5] in order to solve
medium-scale problems. More recently, a Semi-Infinite Linear
Programming (SILP) approach was developed for MKL [132].
SILP is an iterative algorithm that alternates between the opti-
mization of kernel weights and the optimization of the SVM
classifier. In each step, given the current solution of kernel
weights, it solves a classical SVM with the combined kernel;
it then constructs a cutting plane model for the objective func-
tion and updates the kernel weights by solving a corresponding
linear programming problem. Although the SILP approach can
be employed for large scale MKL problems, it often suffers from
slow convergence [21]. One shortcoming of the SILP method is
that it updates kernel weights solely based on the cutting plane
model. Given that a cutting plane model usually differs signifi-
cantly from the original objective function when the solution is
far away from the points where the cutting plane model is con-
structed, the optimal solution to the cutting plane model could
be significantly off target. In [115], the authors addressed the
MKL problems by a simple Subgradient Descent (SD) method.

53
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However, since the SD method is memoryless, it does not utilize
the gradients computed in previous iterations, which could be
very useful in boosting the efficiency of the search.

To further improve the computational efficiency of MKL, we
extended the level method [92], which was originally designed for
optimizing non-smooth functions, to the optimization of convex-
concave problems. In particular, we regard the MKL problem
as a saddle point problem. In the present work, similar to the
SILP method, we construct in each iteration a cutting plane
model for the target objective function using the solutions to the
intermediate SVM problems. A new solution for kernel weights
is obtained by solving the cutting plane model. We furthermore
adjust the new solution via a projection to a level set. This
adjustment is critical in that it ensures on one hand the new
solution is sufficiently close to the current solution, and on the
other hand the new solution significantly reduces the objective
function. We show that the extended level method has a con-
vergence rate of O(1/ε2) for a ε-accurate solution. Although
this is similar to that of the SD method, the extended level
method is advantageous in that it utilizes all the gradients that
have been computed so far. Empirical results with eight UCI
datasets show that the extended level method is able to greatly
improve the efficiency of multiple kernel learning in comparison
with the SILP method and the SD method. Morevoer, in order
to extend the level method to semi-supervised kernel learning.
We warp each base kernel with the point cloud norm [125] of the
unlabeled data. In this way, we could select the best subset of
kernels for semi-supervised learning. Experiments on the USPS
data set indicate its promising effect.

In the remaining of this chapter, we first summarize the
framework of multiple kernel learning, then describe the details
of the extended level method for MKL, including a study of
its convergence rate. Then, we present experimental results by
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comparing both the effectiveness and the efficiency of the ex-
tended level method with the corresponding measures of SILP
and SD followed by the concluding remarks.

4.1 Multiple Kernel Learning

Let X = (x1, . . . ,xn) ∈ Rn×d denote the collection of n training
samples that are in a d-dimensional space. We further denote by
y = (y1, y2, . . . , yn) ∈ {−1, +1}n the binary class labels for the
data points in X. We employ the maximum margin classification
error, an objective used in SVM, as the generalized performance
measure. Following [86], the problem of multiple kernel learning
for classification in the primal form is defined as follows:

min
p∈P

max
α∈Q

f(p, α) = α>e− 1

2
(α ◦ y)>

(
m∑

i=1

piKi

)
(α ◦ y), (4.1)

where P = {p ∈ Rm : p>e = 1, 0 ≤ p ≤ 1} and Q = {α ∈ Rn :
α>y = 0, 0 ≤ α ≤ C} are two solid convex regions, denoting
the set of kernel weights and the set of SVM dual variables,
respectively. Here, e is a vector of all ones, C is the trade-off
parameter in SVM, {Ki}m

i=1 is a group of base kernel matrices,
and ◦ defines the element-wise product between two vectors. It
is easy to verify that f(p, α) is convex on p and concave on α.
Thus the above optimization problem is indeed a convex-concave
problem. It is important to note that the block-minimization
formulation of MKL presented in [115, 5] is equivalent to (4.1).

A straightforward approach toward solving the convex-concave
problem in (4.1) is to transform it into a Semi-definite Program-
ming (SDP) or a Quadratically Constrained Quadratic Program-
ming (QCQP) [86, 5]. However, given their computational com-
plexity, they cannot be applied to large-scale MKL problems.
Recently, Semi-infinite Linear Programming (SILP) [132] and
Subgradient Descent (SD) [115] have been applied to handle
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large-scale MKL problems. We summarize them into a unified
framework in Algorithm 1. Note that a superscript is used to
indicate the index of iteration, a convention that is used through-
out this chapter. We use [x]t to denote x to the power of t in
the case of ambiguity.

Algorithm 1 A general framework for solving MKL

1: Initialize p0 = e/m and i = 0
2: repeat
3: Solve the dual of SVM with kernel K =

∑m
j=1 pi

jKj and obtain optimal

solution αi

4: Update kernel weights by pi+1 = arg min{f i(p; α) : p ∈ P}
5: Update i = i + 1 and calculate stopping criterion ∆i

6: until ∆i ≤ ε

As indicated in Algorithm 1, both methods divide the MKL
problem into two cycles: the inner cycle solves a standard SVM
problem to update α, and the outer cycle updates the kernel
weight vector p. They differ in the 4th step in Algorithm 1: the
SILP method updates p by solving a cutting plane model, while
the SD method updates p using the subgradient of the current
solution. More specifically, ϕi(p; α) for SILP and SD are defined
as follows:

ϕi
SILP (p; α) = min

ν
{ν : ν ≥ f(p, αj), j = 0, . . . , i}, (4.2)

ϕi
SD(p; α) =

1

2
‖p− pi‖2

2 + γi(p− pi)>∇pf(pi, αi),(4.3)

where γi is the step size that needs to be decided dynamically
(e.g., by a line search). ∇pf(pi, αi) = −1

2 [(α
i ◦ y)>K1(α

i ◦
y), . . . , (αi ◦ y)>Km(αi ◦ y)]> denotes the subgradient of f(·, ·)
with respect to p at (pi, αi). Comparing the two methods, we
observe
• In SILP, the cutting plane model ϕSILP (p) utilizes all the
{αj}i

j=1 obtained in past iterations. In contrast, SD only
utilizes αi of the current solution pi.
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• SILP updates the solution for p based on the cutting plane
model ϕSILP (p). Since the cutting plane model is usually
inaccurate when p is far away from {pj}i

j=1, the updated
solution p could be significantly off target [21]. In contrast,
a regularization term ‖p − pi‖2

2/2 is introduced in SD to
prevent the new solution from being far off the current one,
pi.

The proposed level method combines the strengths of both meth-
ods. Similar to SILP, it utilizes the gradient information of all
the iterations; similar to SD, a regularization scheme is intro-
duced to prevent the updated solution from being too far from
the current solution.

4.2 Extended Level Method for MKL

We first introduce the basic steps of the level method, followed
by the extension of the level method to convex-concave problems
and its application to MKL.

4.2.1 Introduction to the Level Method

The level method [92] is from the family of bundle methods,
which have recently been employed to efficiently solve regular-
ized risk minimization problems [129]. It is an iterative approach
designed for optimizing a non-smooth objective function. Let
f(x) denote the convex objective function to be minimized over
a convex domain G. In the ith iteration, the level method first
constructs a lower bound for f(x) by a cutting plane model,
denoted by gi(x). The optimal solution, denoted by x̂i, that
minimizes the cutting plane model gi(x) is then computed. An

upper bound f
i
and a lower bound f

i
are computed for the opti-

mal value of the target optimization problem based on x̂i. Next,
a level set for the cutting plane model gi(x) is constructed, de-
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noted by Li = {x ∈ G : gi(x) ≤ λf
i
+(1−λ)f i} where λ ∈ (0, 1)

is a tradeoff constant. Finally, a new solution xi+1 is computed
by projecting xi onto the level set Li. It is important to note that
the projection step, serving a similar purpose to the regulariza-
tion term in SD, prevents the new solution xi+1 from being too
far away from the old one xi. To demonstrate this point, con-
sider a simple example minx{f(x) = [x]2 : x ∈ [−4, 4]}. Assume
x0 = −3 is the initial solution. The cutting plane model at x0 is
g0(x) = 9− 6(x + 3). The optimal solution minimizing g0(x) is
x̂1 = 4. If we directly take x̂1 as the new solution, as SILP does,
we found it is significantly worse than x0 in terms of [x]2. The
level method alleviates this problem by projecting x0 = −3 to
the level set L0 = {x : g0(x) ≤ 0.9[x0]2 +0.1g0(x̂1),−4 ≤ x ≤ 4}
where λ = 0.9. It is easy to verify that the projection of x0 to L0

is x1 = −2.3, which significantly reduces the objective function
f(x) compared with x0. This is illustrated in Figure 4.1.

4.2.2 Extension of the Level Method to MKL

We now extend the level method, which was originally designed
for optimizing non-smooth functions, to convex-concave opti-
mization. Different from the traditional level method, the ex-
tended level method solves the convex-concave optimization by
employing an alternative procedure as described in Algorithm 1.

First, since f(p, α) is convex in p and concave in α, according
to van Neuman Lemma, for any optimal solution (p∗, α∗) we
have

f(p, α∗) = max
α∈Q

f(p, α) ≥ f(p∗, α∗) ≥ f(p∗, α) = min
p∈P

f(p, α).(4.4)

This observation motivates us to design an MKL algorithm which
iteratively updates both the lower and the upper bounds for
f(p, α) in order to find the saddle point. To apply the level
method, we first construct the cutting plane model. Let {pj}i

j=1
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Figure 4.1: Illustration of the Level method. We aim to minimize f(x) over
[-4,4]. With the help of the affine lower bound function gi(x), we are able
to gradually approximate the optimal solution. ∇ denotes the lower bound
value in one iteration.

denote the solutions for p obtained in the last i iterations. Let
αj = arg maxα∈Q f(pj, α) denote the optimal solution that max-
imizes f(pj, α). We construct a cutting plane model gi(p) as
follows:

gi(p) = max
1≤j≤i

f(p, αj). (4.5)

We have the following proposition for the cutting plane model
gi(x).

Proposition 1. For any p ∈ P, we have (a) gi+1(p) ≥ gi(p),
and (b) gi(p) ≤ maxα∈Q f(p, α).

Next, we construct both the lower and the upper bounds for

the optimal value f(p∗, α∗). We define two quantities f i and f
i

as follows:

f i = min
p∈P

gi(p) and f
i
= min

1≤j≤i
f(pj, αj). (4.6)
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The following theorem shows that {f j}i
j=1 and {f j}i

j=1 provide
a series of increasingly tight bounds for f(p∗, α∗).

Theorem 1. We have the following properties for {f j}i
j=1 and

{f j}i
j=1: (a) f i ≤ f(p∗, α∗) ≤ f

i
, (b) f

1 ≥ f
2 ≥ . . . ≥ f

i
, and

(c) f 1 ≤ f 2 ≤ . . . ≤ f i.

Proof. First, since gi(p) ≤ maxα∈Q f(p, α) for any p ∈ P , we
have

f i = min
p∈P

gi(p) ≤ min
p∈P

max
α∈Q

f(p, α).

Second, since f(pj, αj) = max
α∈Q

f(pj, α), we have

f
i
= min

1≤j≤i
f(pj, αj) = min

p∈{p1,...,pi}
max
α∈Q

f(p, α) ≥ min
p∈P

max
α∈Q

f(p, α) = f(p∗, α∗).

Combining the above results, we have (a) in the theorem. It is
easy to verify (b) and (c).

We furthermore define the gap ∆i as

∆i = f
i − f i.

The following corollary indicates that the gap ∆i can be used
to measure the sub-optimality for solution pi and αi.

Corollary 2. (a) ∆j ≥ 0, j = 1, . . . , i, (b) ∆1 ≥ ∆2 ≥ . . . ≥ ∆i,
(c) |f(pj, αj)− f(p∗, α∗)| ≤ ∆i

It is easy to verify these three properties of ∆i in the above
corollary using the results of Theorem 1.

In the third step, we construct the level set Li using the

estimated bounds f
i
and f i as follows:

Li = {p ∈ P : gi(p) ≤ `i = λf
i
+ (1− λ)f i}, (4.7)

where λ ∈ (0, 1) is a predefined constant. The new solution, de-
noted by pi+1, is computed as the projection of pi onto the level
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set Li, which is equivalent to solving the following optimization
problem:

pi+1 = arg min
p

{‖p− pi‖2
2 : p ∈ P , f(p, αj) ≤ `i, j = 1, . . . , i

}
.(4.8)

Although the projection is regarded as a quadratic programming
problem, it can often be solved efficiently because its solution is
likely to be the projection onto one of the hyperplanes of poly-
hedron Li. In other words, only very few linear constraints of L
are active; most of them are inactive. This sparse nature usually
leads to significant speedup of QP, similar to the solver of SVM.
As we argue in the last subsection, by means of the projection,
we on the one hand ensure pi+1 is not very far away from pi, and
on the other hand ensure significant progress is made in terms
of gi(p) when the solution is updated from pi to pi+1. Note
that the projection step in the level method saves the effort of
searching for the optimal step size in SD, which is computation-
ally expensive as will be revealed later. We summarize the steps
of the extended level method in Algorithm 2.

Algorithm 2 The Level Method for Multiple Kernel Learning

1: Initialize p0 = e/m and i = 0
2: repeat
3: Solve the dual problem of SVM with K =

∑m
j=1 pi

jKj to obtain the

optimal solution αi

4: Construct the cutting plane model gi(p) in (4.5)

5: Calculate the lower bound f i and the upper bound f
i
in (4.6), and the

gap ∆i in (4.2.2)
6: Compute the projection of pi onto the level set Li by solving the

optimization problem in (4.8)
7: Update i = i + 1
8: until ∆i ≤ ε

Finally, we discuss the convergence behavior of the level method.
In general, convergence is guaranteed because the gap ∆i, which
bounds the absolute difference between f(p∗, α∗) and f(pi, αi),
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monotonically decreases through iterations. The following theo-
rem shows the convergence rate of the level method when applied
to multiple kernel learning.

Theorem 3. To obtain a solution p that satisfies the stopping
criterion, i.e.,

|max
α∈Q

f(p, α)− f(p∗, α∗)| ≤ ε,

the maximum number of iterations N that the level method re-
quires is bounded as follows

N ≤ 2c(λ)L2

ε2 , (4.9)

where

c(λ) =
1

(1− λ)2λ(2− λ)
and L =

1

2

√
mnC2 max

1≤i≤m
Λmax(Ki).

The operator Λmax(M) computes the maximum eigenvalue of
matrix M .

Due to space limitation, we put the proof of Theorem 3 into
Appendix A. Theorem 3 tells us that the convergence rate of
the level method is O(1/ε2). It is important to note that ac-
cording to Information Based Complexity (IBC) theory, given a
function family F(L) with a fixed Lipschitz constant L, O(1/ε2)
is almost the optimal convergence rate that can be achieved for
any optimization method based on the black box first order or-
acle. In other words, no matter which optimization method is
used, there always exists a function f(·) ∈ F(L) such that the
convergence rate is O(1/ε2) as long as the optimization method
is based on a black box first order oracle. More details can be
found in [104, 92].
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4.2.3 Semi-supervised Multiple Kernel Learning

It is natural to extend the above multiple kernel learning ap-
proach to semi-supervised learning if each base kernel matrix
incorporates the information within the unlabeled data. One
way to incorporate the information of the unlabeled data is
manifold regularization [121, 125]. Following this philosophy,
one can estimation the geometry of the underlying marginal dis-
tribution from the unlabeled data. This geometry information
can be further deformed into a new kernel matrix. The result-
ing new kernel can therefore be computed explicitly in terms of
the unlabeled data. [125] has showed that working with only
labeled data in this new RKHS, one can achieve competitive
performance over semi-supervised methods.

It can be proved that the new kernel that warps the struc-
ture of the Reproducing Kernel Hilbert Space (RKHS) can be
computed through deforming the original kernel function κ(x, z)
using the graph laplacian L:

κ̃(x, z) = κ(x, z)− kx(I + LK)−1Lkz, (4.10)

where κ̃(x, z) is the new kernel function that warps the informa-
tion of the unlabeled data. I is the identity matrix. kx denotes
the vector (κ(x1,x), . . . , κ(xn,x))T . Kij = κ(xi,xj).

According to [125], the original kernel matrix K plays an
important role to form the new kernel matrix for semi-supervised
learning. Usually, K can be constructed as an RBF kernel.
However, it is difficult to select the kernel width for the kernel
matrix K, especially in the small sample learning problems. In
order to solve this problem, we apply the multiple kernel learning
approach to select the kernel width from a possible parameter
set. Fortunately, given a set of candidate kernel widths, we
could easily apply the level method to solve the multiple kernel
learning problem for semi-supervised learning.
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4.3 Experiments

We conduct experiments to evaluate the efficiency of the pro-
posed algorithm for MKL in contrast with SILP and SD, the
two state-of-the-art algorithms for MKL.

4.3.1 Experiments on supervised MKL

Experimental Setup

We follow the settings in [115] to construct the base kernel ma-
trices, i.e.,
• Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26})

on all features and on each single feature
• Polynomial kernels of degree 1 to 3 on all features and on

each single feature.
Each base kernel matrix is normalized to unit trace. The ex-
periments are conducted on a PC with 3.2GHz CPU and 2GB
memory. According to the above scheme of constructing base
kernel matrices, we select a batch of UCI data sets, with the
cardinality and dimension allowed by the memory limit of the
PC, from the UCI repository for evaluation. We repeat all the
algorithms 20 times for each data set. In each run, 50% of the
examples are randomly selected as the training data and the
remaining data are used for testing. The training data are nor-
malized to be zero mean and unit variance, and the test data
are then normalized using the mean and variance of the training
data. The regularization parameter C in SVM is set to 100 as
our focus is to evaluate the computational time, as justified in
[115]. For a fair comparison among the MKL algorithms, we
adopt the same stopping criterion for all three algorithms under
comparison: we adopt the duality gap criterion used in [115],

i.e., max
1≤i≤m

(α ◦y)>Ki(α ◦y)− (α ◦y)>
(∑m

j=1 pjKj

)
(α ◦y), and

stop the algorithm when the criterion is less than 0.01 or the
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number of iterations larger than 500. We empirically initial-
ize the parameter λ to 0.9 and increase it to 0.99 when the
ratio ∆i/`i is less than 0.01 for all experiments, since a larger
λ accelerates the projection when the solution is close to the
optimal one 1. We use the SimpleMKL toolbox [115] to im-
plement the SILP and SD methods. The linear programming
in the SILP method and the auxiliary subproblems in the level
method are solved using a general optimization toolbox MOSEK
(http://www.mosek.com).

Experimental Results

We report the following performance measures: prediction accu-
racy, training time, and the averaged number of kernels selected.
From Table 4.1, we observe that all algorithms achieve almost
the same prediction accuracy under the same stopping criterion.
This is not surprising because all algorithms are essentially try-
ing to solve the same optimization problem. Regarding the com-
putational efficiency, we observe that the time cost of the SILP
approach is the highest among all the three MKL algorithms.
For datasets “Iono” and “Sonar”, the SILP method consumes
more than 30 times the computational cycles of the other two
methods for MKL. We also observe that the level method is the
most efficient among the three methods in comparison. To ob-
tain a better picture of the computational efficiency of the pro-
posed level method, we compute the time-saving ratio, as shown
in Table 4.2. We observe that the level method saves 91.9% of
computational time on average when compared with the SILP
method, and 70.3% of computational time when compared with
the SD method.

In order to see more details of each optimization algorithm,

1It is important to note that the convergence rate is still assured though the value
of λ is changed during optimization. This can be easily proved since the algorithm will
converge for any feasible value of λ.
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we plot the logarithm values of the MKL objective function to
base 10 against time in Figure 4.2. Due to space limitation,
we randomly choose only three datasets, “Iono”, “Breast”, and
“Pima”, as examples. It is interesting to find that the level
method converges overwhelmingly faster than the other two
methods. The efficiency of the level method arises from two
aspects: (a) the cutting plane model utilizes the computational
results of all iterations and therefore boosts the search efficiency,
and (b) the projection to the level sets ensures the stability of
the new solution. A detailed analysis of the SD method reveals
that a large number of function evaluations are consumed in
order to compute the optimal step size via a line search. Note
that in convex-concave optimization, every function evaluation
in the line search of SD requires solving an SVM problem. As an
example, we found that for dataset “Iono”, although SD and the
level method require similar numbers of iterations, SD calls the
SVM solver 1231 times on average, while the level method only
calls the solver 47 times. For the SILP method, the high com-
putational cost is mainly due to the oscillation of the solutions.
This instability leads to very slow convergence when the solu-
tion is close to the optimal one, as indicated by the long tail of
SILP in Figure 4.2. The instability of SILP is further confirmed
by the examination of kernel weights, as shown below.

To understand the evolution of kernel weights (i.e., p), we
plot the evolution curves of the five largest kernel weights for
datasets “Iono”, “Breast”, and “Pima” in Figure 4.3. We ob-
serve that the values of p computed by the SILP method are
the most unstable due to oscillation of the solutions to the cut-
ting plane models. Although the unstable-solution problem is
to some degree improved by the SD method, we still clearly
observe that p fluctuates significantly through iterations. In
contrast, for the proposed level method, the values of p change
smoothly through iterations. We believe that the stability of the
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level method is mainly due to the accurate estimation of bounds
as well as the regularization of the projection to the level sets.
This observation also sheds light on why the level method can
be more efficient than the SILP and the SD methods.
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Figure 4.2: Evolution of objective values over time (seconds) for datasets
“Iono”, “Breast”, and “Pima”. The objective values are plotted on a log-
arithm scale (base 10) for better comparison. Only parts of the evolution
curves are plotted for SILP due to their long tails.

4.3.2 Experiments on Semi-supervised MKL

We use the USPS data set for testing the semi-supervised mul-
tiple kernel learning algorithm. USPS is a widely used data
set for testing semi-supervised learning algorithms. We design
five pairwise classification tasks (1 vs 7, 2 vs 7, 3 vs 8, 4 vs
7, 2 vs 3) of varying difficulty to test the performance of the
semi-supervised kernel learning algorithm. For each task, we
randomly select 400 data points to form the whole data.

We use a similar rule to construct the base kernel matrices
for the deforming in the semi-supervised setting, i.e.,
• Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26})

on all features,
• Polynomial kernels of degree 1 to 3 on all features,
• linear kernel on each single feature.

The above setting is a little different from the supervised setting
because of the constraint of the memory and the calculation of
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Figure 4.3: The evolution curves of the five largest kernel weights for datasets
“Iono”, “Breast” and “Pima” computed by the three MKL algorithms

the deformed kernel matrix K̃.
We repeat all the algorithms 30 times for each data set. In

each run, 5% of the examples are randomly selected as the train-
ing data and the remaining data are used as the unlabeled data.
We follow the same data processing procedures as the supervised
setting. Finally, we report the results on five tasks in Table 4.3.
It is easy to verify that the extended level method is more effi-
cient than the SILP method and the subgradient method as it
is done in the supervised setting. It is also interesting to find
that the level method achieves better classification accuracy as
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well. This indicates that the level method could be an efficient
algorithm for semi-supervised multiple kernel learning.

4.4 Summary and Future Work

In this chapter, we propose an extended level method to effi-
ciently solve the multiple kernel learning problem. In particu-
lar, the level method overcomes the drawbacks of both the SILP
method and the SD method for MKL. Unlike the SD method
that only utilizes the gradient information of the current solu-
tion, the level method utilizes the gradients of all the solutions
that are obtained in past iterations; meanwhile, unlike the SILP
method that updates the solution only based on the cutting
plane model, the level method introduces a projection step to
regularize the updated solution. It is the employment of the pro-
jection step that guarantees finding an updated solution that, on
the one hand, is close to the existing one, and one the other hand,
significantly reduces the objective function. Our experimental
results have shown that the level method is able to greatly re-
duce the computational time of MKL over both the SD method
and the SILP method in both supervised and semi-supervised
settings.

For future work, we plan to find a scheme to adaptively set
the value of λ in the level method and apply the level method
to other tasks, such as one-class classification, multi-class clas-
sification, and regression.

2 End of chapter.
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Table 4.1: The performance comparison of three MKL algorithms. Here
n and m denote the size of training samples and the number of kernels,
respectively.

SD SILP Level

Iono n = 175 m = 442
Time(s) 33.5 ±11.6 1161.0 ±344.2 7.1 ±4.3
Accuracy (%) 92.1 ±2.0 92.0 ±1.9 92.1±1.9
#Kernel 26.9 ±4.0 24.4 ±3.4 25.4±3.9

Breast n = 342 m = 117
Time(s) 47.4 ±8.9 54.2 ±9.4 4.6 ±1.0
Accuracy (%) 96.6 ±0.9 96.6 ±0.8 96.6±0.8
#Kernel 13.1 ±1.7 10.6 ±1.1 13.3±1.5

Pima n = 384 m = 117
Time(s) 39.4 ±8.8 62.0 ±15.2 9.1 ±1.6
Accuracy (%) 76.9 ±1.9 76.9 ±2.1 76.9±2.1
#Kernel 16.6 ±2.2 12.0 ±1.8 17.6±2.6

Sonar n = 104 m = 793
Time(s) 60.1 ±29.6 1964.3±68.4 24.9±10.6
Accuracy (%) 79.1 ±4.5 79.3 ±4.2 79.0±4.7
#Kernel 39.8 ±3.9 34.2 ±2.6 38.6±4.1

Wpbc n = 198 m = 442
Time(s) 7.8 ±2.4 142.0 ±122.3 5.3 ±1.3
Accuracy (%) 77.0 ±2.9 76.9 ±2.8 76.9±2.9
#Kernel 19.5 ±2.8 17.2 ±2.2 20.3±2.6

Heart n = 135 m = 182
Time(s) 4.7 ±2.8 79.2 ±38.1 2.1 ±0.4
Accuracy (%) 82.2 ±2.2 82.2 ±2.0 82.2±2.1
#Kernel 17.5 ±1.8 15.2 ±1.5 18.6±1.9

Vote n = 218 m = 205
Time(s) 23.7 ±9.7 26.3 ±12.4 4.1 ±1.3
Accuracy (%) 95.7 ±1.0 95.7 ±1.0 95.7±1.0
#Kernel 14.0 ±3.6 10.6 ±2.6 13.8±2.6

Wdbc n = 285 m = 403
Time(s) 122.9±38.2 146.3 ±48.3 15.5±7.5
Accuracy (%) 96.7 ±0.8 96.5 ±0.9 96.7±0.8
#Kernel 16.6 ±3.2 12.9 ±2.3 15.6±3.0
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Table 4.2: Time-saving ratio of the level method over the SILP and the SD
method

Iono Breast Pima Sonar Wpbc Heart Vote Wdbc Average

Level/SD (%) 78.9 90.4 77.0 58.7 32.5 54.7 82.8 87.4 70.3

Level/SILP (%) 99.4 91.6 85.4 98.7 88.7 97.3 84.5 89.4 91.9

Table 4.3: The performance comparison of three MKL algorithms for semi-
supervised learning.

SD SILP Level

1 vs 7

Time(s) 13.7±10.7 511.6±698.9 2.7±1.1

Accuracy (%) 96.2±4.1 94.6±9.1 96.5 ±3.6

#Kernel 8.4±2.8 7.2±2.7 9.4±2.8

2 vs 3

Time(s) 17.0± 27.8 1362.0±611.4 2.4±1.4

Accuracy (%) 86.9±2.9 86.9±3.1 87.2±3.0

#Kernel 13.1±2.9 11.7±1.9 14.4±2.9

2 vs 7

Time(s) 16.3±10.5 1249.5±684.3 2.5±1.0

Accuracy (%) 88.3±3.9 88.1±4.0 88.6±3.8

#Kernel 12.4±2.4 10.2±1.9 13.4± 2.9

3 vs 8

Time(s) 11.6±9.8 990.0±726.1 2.4±1.3

Accuracy (%) 85.4±4.5 85.5±4.6 85.8±4.5

#Kernel 13.6±2.6 11.7±1.7 14.7±2.5

4 vs 7

Time(s) 13.6±9.2 671.8±682.2 1.7±0.7

Accuracy (%) 86.9±5.7 87.0±5.6 87.2±5.8

#Kernel 11.3±2.0 9.9±1.6 13.2±2.7



Chapter 5

Unified Framework for
Semi-supervised Learning

Semi-supervised learning methods are derived from two funda-
mental geometric assumptions: the low density assumption (or
cluster assumption) and the manifold assumption [84]. One typ-
ical semi-supervised learning model based on cluster assumption
is Transductive SVM (TSVM) [75]; while one representative of
methods based on manifold assumption is manifold regulariza-
tion (also called Laplacian SVM) [10]. We discuss the rela-
tionship between Transductive SVM and the approach of mani-
fold regularization in this chapter. Although these two types of
approaches are based on different motivations, they essentially
share similar spirit, namely the decision boundary should be de-
cided by not only the labeled examples, but also the structure
of the unlabeled examples. In the framework of transductive
SVM, the regularization of decision boundary by the unlabeled
data is achieved by the minimization of the loss function for the
unlabeled data [75, 145, 148]. In contrast, the manifold regular-
ization approach regulates the choice of decision boundary by an
additional term of regularizer that is constructed by the Lapla-
cian of the unlabeled data[125, 10]. In this chapter, we will first
show that the unlabeled data used by TSVM can essentially be
viewed as an additional regularizer for the decision boundary.

72
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We then show that this additional regularizer induced by the
TSVM is closely related to the regularizer introduced by the
manifold regularization.

5.1 TSVM: A Regularization View

In this section, we will show that the role of unlabeled data
within the framework of TSVM can also be viewed as an addi-
tional regularizer for the decision boundary.

Instead of using the original form of the TSVM, we introduce
the following form of TSVM that can be derived through the
duality

min
z,δ

1

2
z>K−1z + C

nl∑
i=1

δi (5.1)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl

z2
i ≥ 1, nl + 1 ≤ i ≤ n.

In order to control the strength of the regularization produced
by the unlabeled examples, we introduce the parameter ρ ≥ 0
and modify the above problem (5.1) as :

min
z,δ

1

2
z>K−1z + C

nl∑
i=1

δi (5.2)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl

z2
i ≥ ρ, nl + 1 ≤ i ≤ n.

Clearly, when ρ = 1, we have standard TSVM. In particular, the
larger the ρ is, the stronger the regularization of the unlabeled
data is. It is also important to note that in the above we only
consider the classification error of the labeled examples, namely
we only denote δi for each labeled example.

To facilitate the discussion, we write z = (zl; zu) where zl =
(zl

1, . . . , z
l
nl

) and zu = (zu
1 , . . . , zu

nu
) represent the prediction for
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the labeled and the unlabeled examples, respectively. According
to the inverse lemma of the block matrix, we can write K−1 as
follows:

K−1 =

(
C−1

l −K−1
l,l Kl,uC

−1
u

−C−1
u Ku,lK

−1
l,l C−1

u

)

where

Cl = Kl,l −Kl,uK
−1
u,uKu,l

Cu = Ku,u −Ku,lK
−1
l,l Kl,u

Thus, the term z>K−1z is computed as

z>K−1z = z>l C−1
l zl + z>u C−1

u zu − 2z>l K−1
l,l Kl,uC

−1
u zu

Note that when the unlabeled data are loosely related to the la-
beled data, namely most of the elements within Ku,l are small,
we will have Cu ≈ Ku. We refer to this situation as “weakly un-
supervised learning”. Using the above equalities, we can rewrite
TSVM as follows:

min
zl,zu,δ

1

2
z>l C−1

l zl + C

nl∑
i=1

δi + ω(zl, ρ) (5.3)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl,

where ω(zl, ρ) is a regularization function for zl and it is the
output of the following optimization problem

min
zu

1

2
z>u C−1

u zu − z>l K−1
l,l Kl,uC

−1
u zu (5.4)

s. t. [zu
i ]2 ≥ ρ, 1 ≤ i ≤ nu

To understand the regularization function ω(zl, ρ), we first
compute the dual of the problem (5.4) by calculating the La-
grangian function:

L =
1

2
z>u C−1

u zu − z>l K−1
l,l Kl,uC

−1
u zu −

nu∑

i=1

1

2
λi([z

u
i ]2 − ρ)

=
1

2
z>u (C−1

u −D(λ))zu − z>l K−1
l,l Kl,uC

−1
u zu + ρλ>e,
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where D(λ) = diag(λ1, . . . , λnu
). By setting the derivative to be

zero, we have

zu = (C−1
u −D(λ))−1C−1

u Ku,lK
−1
l,l zl

= (I−CuD(λ))−1Ku,lK
−1
l,l zl

The dual problem becomes

max
λ

−1

2
z>l K−1

l,l Kl,u(Cu −CuD(λ)Cu)
−1Ku,lK

−1
l,l zl

+ρλ>e (5.5)

s. t. C−1
u º D(λ), λi ≥ 0, i = 1, . . . , nu

The above formulation allows us to understand how the pa-
rameter ρ controls the strength of regularization provided by the
unlabeled data. In the following, we will show that by adjusting
the value of ρ, we derive a series of learning models.

5.1.1 Learning Model when ρ = 0

First, we consider the case of ρ = 0. We have the following
theorem to indicate the relationship between the dual problem
(5.5) and supervised SVM.

Theorem 2. When ρ = 0, the optimization problem is reduced
to a standard supervised SVM.

Proof. It is not difficult to see that the optimal solution to (5.5)
is λ = 0. As a result, ω(zl, ρ) becomes

ω(zl, ρ = 0) = −1

2
zlK

−1
l,l Kl,uC

−1
u Ku,lK

−1
l,l zl

Substituting ω(zl, ρ) in (5.3) with the formulation above, the
overall optimization problem becomes

min
zl,δ

1

2
z>l (C−1

l −K−1
l,l Kl,uC

−1
u Ku,lK

−1
l,l )zl + C

nl∑
i=1

δi

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl
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According to the matrix inverse lemma, we have C−1
l calculated

as

C−1
l = (Kl,l −Kl,uK

−1
u,uKu,l)

−1

= K−1
l,l + K−1

l,l Kl,u(Ku,u −Ku,lK
−1
l,l Kl,u)

−1Ku,lK
−1
l,l

= K−1
l,l + K−1

l,l Kl,uC
−1
u Ku,lK

−1
l,l

Hence, the final optimization problem is simplified as

min
zl,δ

1

2
z>l K−1

l,l zl + C

nl∑
i=1

δi (5.6)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl

Clearly, the above optimization is identical to the standard su-
pervised SVM. Hence, the unlabeled data is not used to regu-
larize the decision boundary when ρ = 0.

5.1.2 Learning Model when ρ is small

Second, we consider the case when ρ is small. According to
(5.5), we expect λ to be small when ρ is small. As a result, we
can approximate (Cu −CuD(λ)Cu)

−1 as follows

(Cu −CuD(λ)Cu)
−1 ≈ C−1

u + D(λ)

Consequently, we could write ω(zl, ρ) as follows:

ω(zl, ρ) = −1

2
z>l K−1

l,l Kl,uC
−1
u Ku,lK

−1
l,l zl + φ(zl, ρ) (5.7)

where φ(zl, ρ) is the output of the following optimization prob-
lem

max
λ

ρλ>e− 1

2
z>l K−1

l,l Kl,uD(λ)Ku,lK
−1
l,l zl

s. t. C−1
u º D(λ), λi ≥ 0, i = 1, . . . , nu

We can simplify the above problem by approximating C−1
u º

D(λ) as λi ≤ [σ1(Cu)]
−1, i = 1, . . . , nu, where σ1(Cu) represents
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the maximum eigenvalue of matrix Cu. The resulting simplified
problem becomes

max
λ

ρλ>e− 1

2
z>l K−1

l,l Kl,uD(λ)Ku,lK
−1
l,l zl

s. t. 0 ≤ λi ≤ [σ1(Cu)]
−1, 1 ≤ i ≤ nu

Note that the above problem is a linear programming problem,
thus the solution for λ is

λi =

{
0 [Ku,lK

−1
l,l zl]

2
i > ρ

σ(Cu)
−1 [Ku,lK

−1
l,l zl]

2
i ≤ ρ

As indicated by the above formulation, ρ is used as the thresh-
old to select the unlabeled examples. Since [Ku,lK

−1
l,l zl]i can be

viewed as the approximate prediction for the ith unlabeled ex-
ample, the above formulation can be interpreted in the way that
only the unlabeled examples with low prediction confidence will
be selected for regularizing the decision boundary. All the unla-
beled examples with high prediction confidence will be ignored.
Based on the above analysis, we see that the parameter ρ con-
trols the strength of regularization by the unlabeled examples.

5.1.3 Learning Model when ρ is large

For the general case, the quantity (Cu − CuD(λ)Cu)
−1 can be

expanded according to the matrix inverse lemma

(Cu −CuD(λ)Cu)
−1 = C−1

u + (D(λ)−1 −Cu)
−1

Thus, the function ω(zl, ρ) can be expanded as (5.7) and the φ(z)
in (5.7) is the output of the following optimization problem

max
λ

ρλ>e− 1

2
z>l K−1

l,l Kl,u(D(λ)−1 −Cu)
−1Ku,lK

−1
l,l zl

s. t. D(λ)−1 º Cu, λ º 0
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We can reparameterize the above problem by defining θi = 1/λi

and rewrite the above problem as follows:

max
θ

nu∑
i=1

ρ

θi
− 1

2
z>l K−1

l,l Kl,u(D(θ)−Cu)
−1Ku,lK

−1
l,l zl (5.8)

s. t. D(θ) º Cu, λ º 0 (5.9)

We can further simplify the above problem by approximating
D(θ) º Cu as

θi ≥
nu∑

j=1

|[Cu]i,j|

The resulting formulation becomes

max
θ

nu∑
i=1

ρ

θi
− 1

2
z>l K−1

l,l Kl,u(D(θ)−Cu)
−1Ku,lK

−1
l,l zl(5.10)

s. t. θi ≥
nu∑
j=1

|[Cu]i,j|, 1 ≤ i ≤ nu

When ρ is very large, we expect θi to be as small as possible,
and therefore θi =

∑nu

j=1 |[Cu]i,j|. Thus, D(θ) − Cu can be ap-
proximated by the combinatorial Laplacian of Cu, i.e., L(Cu).
Finally, the overall optimization problem when ρ is large be-
comes:

min
zl,δ

1

2
z>l K−1

l,l zl − 1

2
z>l K−1

l,l Kl,uL(Cu)
−1Ku,lK

−1
l,l zl

+C

nl∑

i=1

δi (5.11)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl
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5.2 Understanding Manifold Regularization

The manifold regularization SVM [10] can be formulated as:

min
zl,zu,δ

1

2
z>l K−1

l,l zl +
γ

2
(z>l , z>u )L(z>l , z>u )

+C

nl∑
i=1

δi (5.12)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl.

If we regard the Laplacian L as the pseudo inverse of the
kernel matrix K, i.e., L = K∗ and replace K∗ with I −K, we
then have the following optimization problem.

min
zl,zu,δ

1

2
z>l K−1

l,l zl +
γ

2
(z>l , z>u )(I−K)(zl; zu) + C

nl∑
i=1

δi

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl.

In the above, we assume that the kernel similarity matrix K is
normalized. The regularization term (z>l , z>u )(I − K)(zl; zu) is
expanded as:

(z>l , z>u )(I−K)(zl; zu)

= z>l (I −Kl,l)zl + z>u (I −Ku,u)zu − 2z>u Ku,lzl

By minimizing over zu, we have the above regularization term
written as

1

2
z>l (I−Kl,l)zl − 1

2
zlKl,u(I−Ku,u)

−1Kl,uzl

Using the above expression, the overall formulation becomes

min
zl,δ

1

2
z>l

(
K−1

l,l + γ(I−Kl,l)
)

zl + C

nl∑
i=1

δi

−γ

2
z>l Kl,u(I−Ku,u)

−1Ku,lzl (5.13)

s. t. yizi ≥ 1− δi, δi ≥ 0, 1 ≤ i ≤ nl.



CHAPTER 5. UNIFIED FRAMEWORK FOR SEMI-SUPERVISED LEARNING80

Comparing the optimization problem in (5.13) with the opti-
mization problem in (5.11), we see that these two problems
are similar. The key difference is that K−1

l,l in (5.11) becomes

K−1
l,l + γ(I −Kl,l), and K−1

l,l Kl,uL(Cu)
−1Ku,lK

−1
l,l is replaced by

Kl,u(I−Ku,u)
−1Kl,u. Note that Cu ≈ Ku,u when the unlabeled

examples are loosely related to the labeled examples (i.e., Ku,l

are small in most of its elements). The key difference between
TSVM and manifold regularization is that TSVM is able to se-
lect the unlabeled examples when constructing the regularizer
using the unlabeled examples, while the regularizer used by the
manifold regularization is independent from the labeled exam-
ples.

5.3 Summary

We consider the connection between two fundamental assump-
tions in semi-supervised learning. More specifically, we show
that the loss on the unlabeled data employed by TSVM can
essentially be viewed as an additional regularizer for the deci-
sion boundary. We further show that this additional regularizer
induced by the TSVM is closely related to the regularizer in-
troduced by the manifold regularization. Both of them can be
viewed as a unified regularization framework.

2 End of chapter.



Chapter 6

Learning from Weakly-related
Unlabeled Data

In this chapter, we consider the case that the unlabeled data
are in poor quality and are only structurally related to the la-
beled data in the current task. Following the first model, de-
noted as self-taught learning, dealing with such weakly-related
data [112], We name the proposed framework as Supervised Self-
taught Learning as we actively extract the high level features
from the weakly-related unlabeled data with the supervision of
the labeled of the learning task.

Self-taught Learning (STL) that is able to adequately utilize
the information from the unlabeled data receives active atten-
tions recently [112, 90]. Generally speaking, how to use the un-
labeled data for learning is also the core topic for the so-called
Semi-Supervised Learning (SSL) [163, 165, 159, 148]. However,
SSL usually requires that the unlabeled data share the same data
distribution with the labeled data. More specifically, the unla-
beled data should contain the same labels as those of the labeled
data within the SSL framework. Unfortunately, the unlabeled
data which share the same distribution with the limited labeled
data may sometimes be still difficult to obtain. Instead, a huge
amount of seemingly irrelevant unlabeled data could be avail-
able at hand or in WWW in most cases. Self-taught Learning

81
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is proposed to deal with such difficult yet interesting problem.
To better understand the above background, we consider the

automatic classification task of the images of dinosaurs and ele-
phants. In this task, the labeled training samples are limited.
Moreover, it is also quite expensive to obtain many unlabeled
images of dinosaurs and elephants. Both the supervised learn-
ing and the SSL fail to solve this problem due to the limited
amount of labeled and unlabeled dinosaur and elephant images.
In contrast, STL is shown to be able to improve the classifica-
tion performance by appropriately utilizing a huge amount of
other unlabeled image samples, e.g., other types of animals or
even natural scene pictures; these samples are seemingly irrele-
vant but can be easily obtained [112]. The motivation for STL
is that, many randomly chosen images contain basic visual pat-
terns, e.g., edges, which might be similar to those in images of
dinosaurs and elephants. Another analogy is that handwritten
digits can help to recognize the English characters, since the
digits contain the strokes that are similar to those in the En-
glish characters, although they have the different distributions
or labels. Studies in [112] have demonstrated that STL could be
promising for the task mentioned above and can indeed improve
the classification accuracy in some cases.

The learning procedure in STL can be divided into three sep-
arate stages. In the first stage, the high level representations
(or basis), e.g., the edges in the images, or the strokes in the
English characters, are learned from available unlabeled data
which are unnecessarily relevant to the concepts of the labeled
objects. In the second stage, STL represents the labeled data
in a linear combination form of the high level features or basis
obtained from the first stage. Those coefficients of the basis are
then treated as the input features for the next stage. In the
third stage, one can exploit traditional supervised learning al-
gorithms, e.g., Support Vector Machine (SVM) [139], to learn a
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(a) Patterns learned by STL (b) Patterns learned by our proposed
framework

Figure 6.1: High-level visual features extracted by STL and SSTL when
classifying digits “1” and “7” with capital letters “I”, “M”, “N” as unla-
beled samples. (a) and (b) presents the patterns learned by STL and SSTL
respectively. In (a), STL fail to extract the discriminative features, i.e., hori-
zontal stroke patterns. In (b), SSTL manages to learn many horizontal stroke
patterns.

decision function based on the coefficients. These three stages
are conducted step by step in an isolated style.

One major problem for the above Self-taught Learning frame-
work is that its first stage is somewhat conducted in a hit-or-
miss way. Concretely, the learned high-level features in this step
is only determined by the unlabeled data; these data could be
much different from the target samples, i.e., the labeled data.
The leaned patterns might be unsuitable or even misleading for
classifying the labeled data in the following two stages. To il-
lustrate this shortcoming, we consider another typical example
of classifying two digits “1” and “7”. Suppose that we have a
huge number of other unlabeled uppercase English characters
“I”, “M”, and “N”. Obviously, the vertical strokes dominates
the other strokes and no explicit horizontal stokes occur in these
three characters. Hence, the feature of the horizontal stroke may
not even appear in the final high-level features learned from the
unlabeled data. However, to classify “1” and “7”, the most dis-
criminate feature is the horizontal stroke. Figure 6.1(a) visually
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shows the 50 high-level features extracted by STL from 200 “I”,
“M”, “N” characters. Clearly observed, almost no horizontal
stroke patterns are extracted.

Aiming to solve the above problem, we propose a novel Su-
pervised Self-taught Learning (SSTL) model which manages to
find the most appropriate high-level features or representations
from the unlabeled data under the supervision of the labeled
training data. We attempt to learn from unlabel data with the
“target” in mind rather than to achieve this in a hit-or-miss
way. More specifically, the optimization is not separately per-
formed as made in the traditional self-taught learning. Instead,
three stages (the basis learning, coefficient optimization, and
the classifier learning) are integrated into a single optimization
problem. The representations, the coefficients, and the classi-
fier are optimized simultaneously. By interacting the classifier
optimization with choosing the high-level representations, the
proposed model is able to select those discriminant features or
representations, which are most appropriate for classification.
Hence this will greatly benefit the classification performance.
Figure 6.1(b) demonstrates the high-level basis obtained by our
SSTL framework in the “1” and “7” classification problem. Evi-
dently, the most discriminative patterns, the horizontal strokes,
can indeed be extracted.

To our best knowledge, this is the first study that performs
the Self-taught Learning in a supervised way. The underlying
knowledge embedded in the unlabeled data can be transferred
to the classification task actively and efficiently. In addition,
one important feature of our novel framework is that the fi-
nal optimization can be solved iteratively with the convergence
guaranteed. Moreover, we show that the proposed discrimina-
tive framework can even be formulated into a single optimization
problem for the multi-way classification tasks. With these two
merits, the proposed framework can be easily applied in practice
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for many applications.
In the following, we first present the problem as well as the

notations used throughout the chapter. We then review the
Self-taught Learning algorithm in brief. After that, we present
our novel Supervised Self-taught Learning framework. In Sec-
tion 8.2, we provide a series of experiments to verify the proposed
framework. In Section 6.5, we discuss some important issues.
Finally, we set out the conclusion with some final remarks.

6.1 Problem Formalism

Given a labeled training data set D = {(x1, y1), (x2, y2), . . . , (xl, yl)},
consisting of l labeled samples drawn i.i.d. from a certain dis-
tribution S. Here xi ∈ Rn (i = 1, 2, . . . , l) describes an input
feature vector, and yi ∈ {1, 2, . . . , q} is the category label for
xi. In addition, assume that m (m À l) unlabeled data samples
{xl+1,xl+2, . . . ,xl+m} are also available. The basic task of STL
and SSTL can be informally described as seeking a hypothesis
h : Rn → {1, 2, . . . q} that can predict the label y ∈ {1, 2, . . . q}
for the future input data sample z ∈ Rn by appropriately ex-
ploiting both the labeled data and those seemingly irrelevant
unlabeled data.

Remarks. Note that the above problem is much different
from the SSL. SSL requires that unlabeled data should be sam-
pled from the same distribution of the labeled data; however,
in the mentioned task, these unlabeled samples do not have
such constraints. In other words, these unlabeled samples might
share different labels from those of the labeled data. The prob-
lem is also much different from Transfer Learning (TL) [134, 42,
114] in that the latter framework requires these auxiliary data
are already labeled.
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6.2 Self-taught Learning by Sparse Coding

STL solves the above mentioned task in three separate stages.
We describe these three stages in the following.

6.2.1 Stage I: Learning Representations

In the first stage, high-level representations are learned from
the unlabeled data. For instance, edges could be learned from
the natural scene images in the task of classifying dinosaur and
elephants; strokes could be learned from the available English
characters even if our purpose is to classify handwritten digits.
These high-level representations can be learned by using Sparse
Coding (SC). SC is a powerful technique that receives much
interest recently. It can learn over-complete basis from data. We
refer interesting readers to [117, 107, 91, 108]. The formulation
is as follows:

min
a,b

l+m∑

i=l+1

‖xi −
p∑

j=1

a
(i)
j bj‖2

2 + β‖a(i)‖,

s. t. ‖bj‖2
2 ≤ 1, j = 1, . . . , p .

b = {b1,b2, . . . ,bp} is called a set of basis with each basis

bj as an n-dimensional vector. a
(i)
j is the activation coefficient

associated with the basis bj for the sample xi. Hence a(i) (i =
l + 1, l + 2, . . . , l + m) is a set of activation coefficients for the
unlabeled sample xi with respect to all the basis b. We denote
a as a matrix defined as (a(l+1), a(l+2), . . . , a(l+m)).

The above optimization problem tries to represent the unla-
beled data in terms of b. In more details, the first term in the
optimization function describes the reconstruction error, while
the second term using the L1-norm forces the activation vector
to be sparse. It is noted that the above optimization resem-
bles the Principal Component Analysis (PCA) [47] if the second
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term is omitted. However, SC enjoys several advantages over
PCA. First, PCA can only generate a limited number of basis
(fewer than n), while SC could generate a large number of basis
whose number might be far larger than n. Second, PCA only
results in linear feature extraction, while SC can deliver non-
linear representations as imposed by the L1-norm. Containing
such merits, SC is shown to be better than PCA in many cases
and is actively adopted to learn over-complete representations
from data [117, 107].

6.2.2 Stage II: Feature Construction from Basis

In the second stage, STL tries to represent the labeled data with
respect to the basis b. This stage is formulated as follows:

min
aL

l∑
i=1

‖xi −
p∑

j=1

aL
(i)
j bj‖2

2 + β‖a(i)
L ‖ .

In this stage, the features or the activation coefficients aL for
the labeled data are learned over the basis b, which are ob-
tained from the first stage. Similarly, the second term forces the
coefficient vector a sparse form.

6.2.3 Stage III: Learning a Classifier from Features

In the third stage, an SVM can be exploited to learn the decision
function h = w · az + c (az is the coefficient vector of the future
sample z) from the features constructed in Stage II. This is
described in the following:

min
w,c

l∑
i=1

εi + γ‖w‖2
2 ,

s. t. yk(w.a
(k)
L + c) ≥ 1− εk,

εk ≥ 0, k = 1, . . . , l .
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Clearly, the above optimization problem is the standard L2-norm
Support Vector Machine, except that the input features are the
coefficients obtained in the second stage. In real applications,
L1-norm SVM [162] can also be adopted.

Observed from the above optimization, STL extracts the high-
level representations from the unlabeled data only. However,
these high-level representations may be inappropriate or even
misleading for the latter classifier construction. The discrimi-
native information, that proves critical for classification perfor-
mance, may be discarded in this stage. In the next section,
we propose the Supervised Self-taught Learning framework that
successfully integrates the above three stages into one optimiza-
tion problem. In the new framework, the high-level representa-
tion optimization is supervised by the classifier learning. The
derived representations would be those discriminative patterns
that will greatly benefit the classification performance.

6.3 Supervised Self-taught Learning Frame-

work

In this section, we present our novel Supervised Self-taught
Learning framework. For the purpose of clarity, we first de-
scribe the framework in the binary setting. We then present
how to extend the framework to multi-way classification.
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6.3.1 Two-category Model

The binary SSTL model is formulated as the following optimiza-
tion problem:

min
l+m∑
i=1

‖xi −
p∑

j=1

a
(i)
j bj‖2

2 + β‖a(i)‖+ λ

l∑
i=1

εi + γ‖w‖2
2 ,

s. t. ‖bj‖2
2 ≤ 1, j = 1, . . . , p ,

yk(w · a(k) + c) ≥ 1− εk, εk ≥ 0, k = 1, . . . , l .

In the above, bj, j = 1 . . . , p represents p basis extracted from
the unlabeled data under the supervision of the labeled data.
a

(i)
j is the weight or the coefficient for the data point xi with

respect to the basis bj. {w, c} defines the classifier boundary1.
The optimization not only minimizes the reconstruction er-

ror among both the labeled data and unlabeled data given by∑l+m
i=1 ‖xi −∑p

j=1 a
(i)
j bj‖2

2, but also minimizes the error
∑l

i=1 εi

caused by the classifier on the labeled data. An L1-norm and
an L2-norm is respectively exploited as the regularization terms
for a and w, respectively. One can also use the L1-norm for
w in practice. The basis b (or the high-level features) and the
classifier {w, c} are optimized simultaneously. Therefore, the
extracted features will be more appropriate for classification.
This is much different from the original self-taught framework
using sparse coding, where the high-level features, determined
exclusively by the unlabeled data, might be misleading and de-
teriorate the classification.

Similar to the original sparse coding problem, the above op-
timization problem is not convex. However, it is convex in a
(while holding {b, w, c, ε} fixed) and also convex in {b,w, c, ε}
(while holding a fixed). In the following, we show how to solve
the optimization problem iteratively in two steps.

1For binary problems, we modify the class labels as {-1,+1}.
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6.3.2 Optimization Method

We propose the following iterative algorithm to conduct opti-
mization. When b,w, c, ε are fixed, it is easy to verify that the
optimization problem of finding a is reduced to the following
two sub problems.
Problem I(a):

min
a(i)

‖xi −
p∑

j=1

a
(i)
j bj‖2

2 + β‖a(i)‖, i = l + 1, . . . , l + m .

Problem I(b):

min
a(i)

‖xi −
p∑

j=1

a
(i)
j bj‖2

2 + β‖a(i)‖, i = 1, . . . , l,

s. t. yi(w · a(i) + c) ≥ 1− εi, εi ≥ 0 .

Problem I(a) describes the optimization over unlabeled data,
while I(b) presents the optimization over the labeled data points.
Problem I(a) is equivalent to a regularized least squares prob-
lem; I(b) is similar except that it has a linear constraint. Both
problems can be practically solved by many algorithms, e.g., the
feature-sign search algorithm [91], the interior point method [105],
or a generic convex programming solver (CVX)2.

Similarly, when a is fixed, the optimization problem of finding
b,w, c, ε is changed to the following two sub problems.
Problem II(a):

min
w,c,ε

γ‖w‖2
2 + λ

l∑

k=1

εk,

s. t. yk(w · a(k) + c) ≥ 1− εk, εk ≥ 0, k = 1, . . . , l .

2The matlab source codes of the CVX package can be downloaded from
http://www.stanford.edu/ boyd/cvx/.
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Problem II(b):

min
b

l+m∑
i=1

‖xi −
p∑

j=1

a
(i)
j bj‖2

2 ,

s. t. ‖bj‖2
2 ≤ 1, j = 1, 2, . . . p .

Problem II(a) and II(b) are typical quadratic programming prob-
lems. More specifically, II(a) is the standard L2-norm SVM op-
timization problem; II(b) is a Quadratic Constrained Quadratic
Programming problem (QCQP) [8, 98, 13]. They can be either
solved by the SMO algorithm [111] or the dual algorithm pro-
posed in [91].

Since the value of the optimization objective f(a,b,w, ε) will
be decreased after solving each problem, solving the above two
problems alternatively will guarantee a convergence to a fixed
point. As a summary, we present the optimization algorithm in
Algorithm 3.

6.3.3 Multi-category Model

In this section, we provide the details of how to exploit the one-
against-others strategy to extend our SSTL to multi-way tasks.

Before we present the problem definition for the multi-category
model, we define some notations in the following. Let Io be a
diagonal matrix with the element in (o, o) as 1 and all the other
diagonal elements as −1. Assume that {wo, co} be the decision
function associated with the o-th class (1 ≤ o ≤ q, i.e., there
are q categories) . We further define W = (w1,w2, . . . ,wq) and
c = (c0, . . . , cq)

T .
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The multi-category SSTL model is defined as follows:

min
l+m∑

i=1

{‖xi −
p∑

j=1

a
(i)
j bj‖2

2 + β‖a(i)‖}+ λ

l∑

i=1

q∑
o=1

εi
o

+γ

q∑
o=1

‖wo‖2
2 (6.1)

s. t. ‖bj‖2 ≤ 1, j = 1, . . . , p ,

Io(W
Ta(k) + c) ≥ e− εk,

εk ≥ 0, k = 1, . . . , l .

In the above, εk represents a q-dimensional slack vector for the
k-th labeled data sample. Each element of εk, i.e., εk

o (1 ≤ o ≤ q)
represents the hinge loss incurred by the classifier {wo, co} with
respect to xk. εk ≥ 0 means each element of εk is not less than
0. e is a vector with all the elements as one. Other variables
are similarly defined as those in the binary case.

We now interpret the above multi-category model in the fol-
lowing. First, in binary classification, each labeled sample is
used only once. However, in multi-way classification, each la-
beled sample will be used by q times, since there are q classi-
fiers. Hence the hinge loss for each labeled sample is not a scale
variable anymore. Instead, it is a q-dimensional vector. Second,
the key point of multi-way classification training using Sparse
Coding is to derive a common set of basis for all the q clas-
sifiers involved. This requires that the single optimization be
formulated for q classifiers. Our model successfully achieves this
goal. Finally, as observed from the above model, the optimiza-
tion can still be optimized in two steps. Moreover, each step is
easily verified to be convex as well. Hence it can be solved using
the similar method as presented in the previous section.
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Algorithm 3 Supervised Self-taught Learning Via Sparse Coding

Input: Labeled data {(xi, yi)}l
i=1; unlabeled data {(xi, yi)}l+m

i=l+1

Step 1. Initialize a(0); set ∆ to a small positive value; set the number of
iterations t = 1.

Step 2. Compute {w(t), c(t), ε(t),b}.
a. Calculate {w(t), c(t), ε(t)} by solving Problem II(a).

b. Calculate b(t) by solving Problem II(b).

Step 3. Compute {a(i)
(t)}l+m

i=1 .

a. Calculate {a(i)
(t)}l+m

i=l+1 by solving Problem I(a).

b. Calculate {a(i)
(t)}l

i=1 by solving Problem I(b).

Step 4. If t < TMAX and ‖f(t)(a,b,w, ε) − f(t−1)(a,b,w, ε)‖ > ∆, then t ←
t + 1; go to Step 2; otherwise stop.

Output: The classifier {w, c} ← {w(t), c(t)}

6.4 Experiments

In this section, we evaluate our proposed Supervised Self-taught
Learning algorithm on various data. We first present a toy ex-
ample in order to illustrate the proposed model clearly. We
then report the experimental results on character images and
web data.

6.4.1 Toy Example

We generate a toy example to demonstrate the merits of our
proposed SSTL framework. The task is designed to discrimi-
nate handwritten numerals “1” and “7”. Suppose we have only
4 numerals which are drawn in the top area of Figure 6.2. Fur-
thermore, we have an unlabeled data set which consists of 200
printed capital characters “I”, “M”, “N” . 20 examples for the
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Figure 6.2: Examples of labeled data and unlabeled data used in the toy
example. The top sub-figure contains 4 numerals, labeled as “1” for the first
two characters, and “7” for the last two numerals. The bottom sub-figure
provides 20 examples randomly extracted from 200 28×28 unlabeled English
characters representing “I”, “M”, and “N”. The basis number is set to 50.
λ, γ, β, are all set to 10.

unlabeled data are shown in the bottom of Figure 6.2. The test
data set contains 500 numerals “1” and “7” which are randomly
extracted from the MNIST data set 3. We perform traditional
supervised learning, i.e., the L2-norm SVM, Self-taught Learn-
ing and Supervised Self-taught Learning on this data set. The
used features are raw pixel intensity values. The results are
shown in Table 6.1.

Table 6.1: Experimental results on classifying “1” and “7” with unlabeled
characters “I”, “M”, “N”

“I”,“M”,“N” → “1” and “7”

Method SVM STL SSTL

Accuracy 83.07 78.23 85.09

From the results, we have several observations. First, al-
though there are only 4 labeled samples for “1” and “7”, the su-
pervised algorithm, SVM, still achieves the accuracy of 83.07%
partly because “1” and “7” are originally easy to be discrimi-
nated. Second, the Self-taught Learning algorithm deteriorates

3http://yann.lecun.com/exdb/mnist/
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the accuracy after it transfers the knowledge from the unlabeled
data. As analyzed before, the most prominent features to sepa-
rate “1” and “7” are the horizontal strokes; however, no explicit
horizontal stroke patterns occur in the unlabeled data. This
makes the patterns learned from STL lose some important dis-
criminative information. This phenomenon can be observed if
one looks back into Figure 6.1. Finally, our proposed Supervised
Self-taught Learning algorithm can deal with this problem ap-
propriately. It demonstrates the best performance clearly. It
improves the purely supervised learning approach over 2 per-
cent.

6.4.2 Handwritten numerals → English Characters

We also examine the performance of our proposed approach on
the English character recognition task 4. The unlabeled data are
handwritten numerals of MNIST. We evaluate whether the un-
labeled data can help to improve the classification performance
when the number of labeled data is set to 100, 500, and 1000 re-
spectively. The basis number is chosen via cross validation from
{50, 100, 150, 200}. The parameter β is chosen from {10, 20, 50,
100}. γ and λ are searched in the range {5, 10, 50, 100}. For
computational reasons, the unlabeled data are preprocessed by
applying PCA to reduce their dimensionality. We follow [113]
and set the number of principal components to keep approxi-
mately 96% of the unlabeled data variance. The final results
are the average over 5 runs.

We report the results in Table 6.2. Once again, we observe
that the proposed SSTL outperforms the STL algorithm and
the supervised classifier trained only on the labeled data. In
more details, the Self-taught Learning algorithms including STL
and SSTL deliver better performance than the supervised algo-

4http://ai.stanford.edu/∼btaskar/ocr/
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Table 6.2: Experimental results on classification of 26 English characters
with unlabeled handwritten numerals data

Handwritten numerals → English Characters

Training Size SVM STL SSTL

100 39.57 39.98 41.43

500 54.98 56.27 58.72

1000 61.26 63.49 65.76

rithm, SVM. This shows that using unlabeled data in a self-
taught way can boost the performance of traditional supervised
learning algorithms. Furthermore, SSTL focuses on using the
transferred knowledge from unlabeled data in a discriminative
way; it demonstrates further improvements over STL.

6.4.3 Web Text Categorization

In this section, we evaluate the SSTL framework on web text
categorization tasks. We adopt four subsets of text documents
for the evaluation from three benchmark text collections, namely
WebKB 5, Reuters-21578 6, and Ohsumed 7. In the selected data
sets, course vs. non-course, which is obtained from the WebKB
corpus, contains course web pages and non-course web pages
of several universities. The bacterial vs. virus data and the
male vs. female data are extracted from the Ohsumed database
that is a set of references from MEDLINE, the on-line medi-
cal information database, consisting of titles and/or abstracts
from medical journals. The grain vs. wheat data set is from the
Reuters-21578 Text Categorization Collection, which is a collec-
tion of documents that appeared on Reuters newswire in 1987.
The description of the four selected data sets can be found in
Table 8.1.

5http://www.cs.cmu.edu/∼webkb/
6http://www.daviddlewis.com/resources/testcollections/
7ftp://medir.ohsu.edu/pub/ohsumed
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Table 6.3: Descriptions for the web text documents data

Corpus Labeled Data # Documents

WebKB course vs. non-course 1051

Ohsumed bacterial vs. virus 581

male vs. female 871

Reuters grain vs. wheat 865

We conduct two sets of experiments. In the first set of exper-
iments, we randomly select 4 labeled documents from each data
set to form the training set, and use the remaining documents as
the test set. In the second set of experiments, 10 labeled docu-
ments are randomly selected to form the training set. In order to
generate the unlabeled data for self-taught learning algorithms,
we first select the keywords from the given training data and
then retrieve the Internet to get a set of unlabeled web pages
using the keywords as the query terms. Here Google is used as
the search engine and we select top 1000 returned web pages as
the unlabeled data for each data set. We then represent each
document by a vector of term frequency. We select 500 most
informative features according to their correlation to the text
categories. Note that, due to both the inaccuracy of query key-
words and the ambiguity of the searching engines, the returned
web pages contain many irrelevant documents. SSL cannot be
directly applied in this task. The parameters are similarly se-
lected as mentioned in the previous subsection. And the final
results are the average over 10 runs using the above training and
testing process.

The experimental results are listed in Table 6.4. As observed
from the results, STL indeed increases the recognition accuracies
of supervised learning in some data sets, e.g., male vs. female
when the training size is equal to 4. However, in many cases,
STL demonstrates much worse performance than the supervised
learning, e.g., in course vs. non-course and grain vs. wheat
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when the training size is equal to 4. Because web documents
are usually of both high-dimension and of high sparsity, with-
out supervision from the labeled data, it is very possible that
STL extracts non-important or even noisy basis from the unla-
beled data. This explains why STL sometimes deteriorates the
performance. In comparison, our proposed SSTL successfully
avoids this problem. SSTL attempts to detect those most dis-
criminative patterns as the basis by supervising the self-taught
learning process via the labeled data. As clearly seen in Ta-
ble 6.4, SSTL is consistently better than or as the same as STL
and SVM in all the four data sets. The difference between SSTL
and the other two algorithms is more distinct in the course vs.
non-course data set: the accuracy of SSTL is almost as twice as
that of SVM, and is also significantly higher than that of STL.
The experimental results clearly demonstrate the advantages of
our proposed new learning framework.

Table 6.4: Comparisons on web text categorization tasks. STL performs
worse than SVM usually due to the inappropriate high-level representations
learned. SSTL presents the best results consistently by incorporating the
knowledge selectively and discriminatively.

Training Size= 4 Training Size= 10

Data Set SVM STL SSTL SVM STL SSTL

course vs. non-course 39.48 34.39 78.19 45.18 87.48 91.21

bacterial vs. virus 61.82 53.42 62.49 73.14 72.79 73.14

male vs. female 52.49 64.70 65.52 63.41 53.66 68.25

grain vs. wheat 57.63 51.93 61.52 65.39 67.02 69.38

6.5 Discussion

We discuss some important issues in this section. First, the Self-
taught Learning framework is much different from many other
current learning paradigms. The core idea of STL is how to
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boost the classification performance when the labeled data is
limited by appropriately transferring the knowledge from those
seemingly irrelevant unlabeled data. This is much different from
the Semi-supervised Learning algorithms in that SSL requires
the unlabeled data follow the same distribution as the labeled
data; it is also different from the Transfer Leaning algorithms
in that TL can only transfer knowledge from labeled data. Our
proposed Supervised Self-taught Learning algorithm is still lo-
cated in the self-taught learning paradigm, but it focuses on
transferring the knowledge from unlabeled data in a supervised
or discriminative way. In other words, SSTL proposes to extract
“useful” information from unlabeled data that aims to improve
the classification performance. This is much different from the
traditional Self-taught Learning algorithm in the sense that STL
transfers knowledge from unlabeled data in a unsupervised or
even driftless way.

Second, it is not new to combine discriminative learning al-
gorithms into the so-called generative or unsupervised learning
framework [70, 72, 62, 55, 65]. Our proposed SSTL is also mo-
tivated from this idea. However, these methods are still su-
pervised learning algorithms because they perform such hybrid
learning only for the labeled data. In contrast, our proposed
algorithm tries to learn discriminative information from unla-
beled data. This is the major difference between our algorithm
and these hybrid methods. In addition, we believe the hybrid
techniques specially designed for supervised learning could also
be applied in the SSTL framework. More specifically, we no-
tice that the discriminative sparse coding algorithm proposed in
[55] might be used in order to further improve the classification
accuracy. We leave this topic as future work.

Third, we only focus on studying the Supervised Self-taught
Learning framework by applying the sparse coding algorithm.
Obviously, there are a lot of other algorithms that could be
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applied to this new learning framework. It is interesting to in-
vestigate how other existing algorithms can be adapted to the
SSTL framework.

Finally, although we have successfully integrated the three
isolated optimization problems of STL into a single optimization
task, it introduces several extra parameters in order to balance
the reconstruction errors in the unlabeled data and the opti-
mization values contributed by the classifier learning. Currently,
these parameters are tuned manually or by cross validation. It
is desirable that some more efficient algorithm can be developed
so as to speed up the parameter selection process. We leave this
task as an open problem.

6.6 Summary

In this chapter, we have presented a study on the Supervised
Self-taught Learning framework, which can transfer knowledge
from unlabeled data actively. This framework successfully in-
tegrates the three-step optimization into a single optimization
problem. By interacting the classifier optimization with choos-
ing the high-level representations, the proposed model is able
to select those discriminant features or representations, which
are more appropriate for classification. Hence this may benefit
the classification performance greatly. To our best knowledge,
this is the first work that performs Self-taught Learning in a su-
pervised way. We have demonstrated that the novel framework
boils down to solving four sub optimization problems iteratively,
each of them being convex. Moreover, the final optimization can
be iteratively solved with the convergence guaranteed. Exten-
sive evaluations on various data sets including character image
data and web text data have shown that our proposed algo-
rithm can improve the classification performance against the
traditional Self-taught Learning algorithm and the supervised
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learning algorithm when the number of the labeled data is lim-
ited.

2 End of chapter.



Chapter 7

Learning from a Mixture of
Unlabeled Data

Learning classifiers from data has been a popular and important
topic in machine learning and data mining. Given a sufficiently
large quantity of labeled instances called training data, one can
exploit the traditional Supervised Learning (SL) algorithms to
handle this task [139, 48, 66]. However, in many real world ap-
plications, the labeled data may be very few due to the expensive
cost of manual labeling. On the other hand, the number of un-
labeled instances could be very large since they are generally
much easier to obtain. Supervised learning, taking only advan-
tages of the labeled data, might not work appropriately in these
cases. In contrast, Semi-supervised Learning (SSL), making use
of both labeled data and unlabeled data, proves to be an ef-
fective solution in addressing this problem [164, 28]. Undoubt-
edly, semi-supervised learning has achieved a great success in
many domains involving machine learning and data mining. To
guarantee good performance, semi-supervised learning usually
assumes that the unlabeled data should share the same labels
as the labeled training samples. Although this assumption can
be well satisfied in some cases, it appears still strong in cer-
tain other domains. In fact, it is very common that unlabeled
data are collected by using automatical tools. This is actually

102
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frequently seen in the earlier stages of data collection. It is
usually inevitable that those collected unlabeled data contain
irrelevant samples. Feeding such “corrupted” unlabeled data
to semi-supervised learning may significantly affect the overall
performance and incur severe problems consequently.

To attack this problem, we aim to build up a general semi-
supervised learning framework capable of learning from general
unlabeled data systematically, where the unlabeled data may
contain irrelevant samples. Our model manages to better uti-
lize the information from unlabeled data by formulating them
as a three-class (−1, +1, 0) mixture.1 This hence distinguishes
our work from the traditional semi-supervised learning problem
where unlabeled data are assumed to contain the same labels as
the labeled training samples [163, 46].

The benefits of taking the irrelevant data into account can
be seen in Figure 1 and Figure 2. In both Figures, all the filled
points (•’s and ?’s) are unlabeled data, while the ◦’s and ¤’s are
the two classes of labeled training samples. Clearly, Figure 1(a)
illustrates that SSL can outperform the boundary given by the
Support Vector Machines (SVM) [24, 139], the current state-of-
the-art SL algorithm. However, SSL may encounter problems
if the unlabeled data contain the “irrelevant” data. This can
be observed in Figure 1(b): The boundary of SSL is obviously
unreasonable. A more reasonable decision plane should pull
away the “relevant” data (maximizing the margin among the
negative and positive data) while predicting the values of the
“irrelevant” data as close to zero as possible (clustering the “0”-
data around the decision line). Such a boundary (the dashed
red line) can be observed in Figure 1(b).

Exploiting the unlabeled data neither positive nor negative
can actually remedy the negative impact when both the unla-

1In this chapter, we only consider the binary cases while multi-way problems can be
easily approached via standard techniques, e.g., the one vs others technique [60].
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SL

SSL
Our proposed approach

SSL

(a) SL vs SSL (b) SSL vs GSSL

Figure 7.1: The “irrelevant” data ?’s can increase the performance of the
SSL. The filled points (•’s and ?’s) are unlabeled data, while the ◦’s and ¤’s
are the two classes of labeled training samples. The filled ?’s describe the
irrelevant unlabeled data. The decision planes of the SL and SSL are given
by the SVMs.

beled data and the labeled data are limited. Such a case can be
seen in Figure 2. Assume the ground truth boundary is given
as the dashed line in Figure 2(a). However, due to the limited
training data (including both the labeled and relevant unlabeled
data), the learned SSL boundary may be deviated from the ac-
tual one (as observed in Figure 2(a)). Sometimes, there are
perhaps some “irrelevant” instances (?’s in Figure 2(b)), being
neither positive nor negative, mixed into the unlabeled data. By
appropriately detecting and using these irrelevant data (trying
to cluster such irrelevant unlabeled data around the decision
plane), one can actually learn a more reasonable boundary as
seen in Figure 2(b).

The idea of learning with the irrelevant data is similar to the
work proposed in [126, 140], where the irrelevant data are called
universum. However, they designed their system only within
the Supervised Learning framework. In addition, these univer-
sum data need to be specified beforehand and are merely used
as the labeled third class of samples. In other words, one needs
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to know which instances are universum data in advance so as to
build a decision boundary. In comparison, we propose to exploit
such irrelevant data in the semi-supervised context. More im-
portantly, we do not need to specify which samples belong to the
universum. Instead, we can learn from general unlabeled data,
which means those relevant data or irrelevant data are mixed in
the unlabeled data. Our novel model can output a more rea-
sonable decision boundary, while simultaneously detecting the
relevant data and irrelevant data automatically after the learn-
ing is finished.

Proposed approach

(a) SSL (b) GSSL

Figure 7.2: The “irrelevant” data ?’s can increase the performance when only
a limited number of relevant unlabeled data is available. The filled points
(•’s and ?’s) are unlabeled data, while the ◦’s and ¤’s are the two classes
of labeled training samples. The filled ?’s describe the irrelevant unlabeled
data. The decision plane of the SSL is given by the SVM.

Indeed, as far as we know, this work presents a novel study on
how to perform learning from general unlabeled data consisting
of both relevant and irrelevant instances. When the irrelevant
data are known as prior knowledge by the user, this is the idea of
“SSL with universum” proposed in [157]. In contrast, our work
presents a more difficult and general SSL framework, where irrel-
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evant data are mixed with the relevant unlabeled data, without
any knowledge on which samples are relevant or irrelevant be-
forehand. As a major contribution, we successfully formulate
such a difficult problem as a Semi-definite Programming (SDP)
problem [86, 45, 133], making the framework solvable in polyno-
mial time. Both theoretical analysis and empirical investigations
demonstrate that the proposed framework outperforms the tra-
ditional semi-supervised learning in many cases.

We detail the proposed framework including the model defi-
nition, the theoretical analysis, and the practical solving method
in Section 7.1. In this section, we will demonstrate how the pro-
posed model can be formulated in a Mixed Integer Programming
(MIP) problem [99] and finally relaxed to be an SDP problem.
In Section 7.2, we conduct a series of experiments to validate
our novel approach. Finally, we set out the conclusion with
final remarks.

7.1 Model

In this section, we first present the problem definition and the
notation used in the chapter. We then introduce the model defi-
nition, the theoretical analysis and the practical solving method
in turn.

7.1.1 Problem Formalism

Given a training data set D ∈ Rl×n, denoted by

{(x1, y1), (x2, y2), . . . , (xl, yl)},
drawn i.i.d. from a certain distribution S. Here xi ∈ Rn (i =
1, 2, . . . , l) describes an input feature vector, and yi ∈ {−1, +1}
is the category label for xi. In addition, assume that m (m À l)
unlabeled data samples {xl+1,xl+2, . . . ,xl+m} are also available
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(for brevity, we denote n = l + m). The unlabeled data contain
both the relevant data sharing the same labels i.e., {−1, +1}
as the labeled data, and the irrelevant data which are different
from the labeled data. Moreover, there are no prior knowledge
on which instances are relevant or irrelevant.

The basic task here can be informally described as seeking
a hypothesis h : Rn → {−1, +1} that can predict the label
y ∈ {−1, +1} for the future input data sample z ∈ Rn sampled
from S by appropriately exploiting both the labeled data and
the general unlabeled data. The hypothesis usually takes the
linear form of h = sign(f(z)), where f(z) = w>z + b (w ∈ Rn,
b ∈ R). Note that the linear form can be easily extended to the
non-linear form based on the standard kernelization trick [119].

7.1.2 Framework

The novel framework is introduced in the following. We first
present the model definition followed by the theoretical analysis
showing the inner justifications of our model. Finally, we show
how to transform the problem to an SDP problem.

Model Definition

The novel model is formulated as the following Problem I:
Problem I:

min
w,b,ξ,η,yl+1:n

1

2
||w||2 + CL

l∑
i=1

ξi + CU

n∑

j=l+1

min(ηj, ξj)

s.t. yi(wi · xi + b) ≥ 1− ξi, i = 1, . . . , l, (7.1)

yj(wj · xj + b) ≥ 1− ξj, (7.2)

|wj · xj + b| ≤ ε + ηj, (7.3)

ηj ≥ 0, j = l + 1, . . . , n,

ξk ≥ 0, k = 1, . . . , n,
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where xi, i = 1, . . . , l are the labeled training samples. Namely,
yi ∈ {−1, +1} i = 1, . . . , l is known beforehand. xj, j = l +
1, . . . , n are the unlabeled data, where the associated labels are
unknown, but restricted in the set of {−1, 0, +1}. CL and CU

are two positive penalty parameters used to trade-off the margin
and the training loss. ε is a small positive parameter describing
the insensitiveness level.

Constraint (7.1) describes the loss for the labeled data. Con-
straint (7.2) provides the loss if xj is judged as the ±1 (i.e., the
relevant data), while (7.3) presents the loss if xj is judged as
the class of 0 (i.e., the irrelevant class). The loss incurred by
the unlabeled sample xj is finally given by the minimum loss
that it is judged as the class of ±1 or 0. This can be seen in
the objective function of Problem I. Intuitively, the above model
attempts to maximize the margin among the positive relevant
data and negative relevant data, while predicting the values of
the irrelevant data as close to zero as possible simultaneously.
In addition, our model can automatically detect or assign the
unlabeled samples to either ±1 (relevant classes) or 0 (irrelevant
class) by choosing the smaller cost associated with the assigned
label.

Note that two types of loss functions are adopted in Prob-
lem I. The loss function for the relevant data is the hinge loss
H−ε = max{0, t− ε} as seen in (7.2), where t = 1. On the other
hand, the loss function of the irrelevant data is defined as the
ε-insensitive loss U [t] = H−ε[t] + Hε[t]. Both loss functions are
plotted in Figure 7.3. When a data point is judged as a relevant
instance, we should push it as faraway as possible from the mar-
gin f(z) = ±1. Hence a hinge loss is more appropriate for such
a setting. When the data point belongs to the irrelevant class, it
should be around the decision plane f(z) = 0. In this sense, an
ε-insensitive loss function is more suitable. An analogy can also
be seen in choosing the loss functions for SVM (using hinge loss)
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and Support Vector Regression (using ε-insensitive loss) [128].
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Figure 7.3: Hinge loss and ε-insensitive loss

It is not easy to directly optimize Problem I because of the
operator of min. However, by introducing an integer variables

dj =

{
0 if yj = ±1

1 if yj = 0
, ∀j, l + 1 ≤ j ≤ n , we can transform

Problem I to the following problem:
Problem II:

min
w,b,ξ,η,yl+1:n,d

1

2
||w||2 + CL

l∑
i=1

ξi + CU

n∑

j=l+1

(ηj + ξj), (7.4)

s.t. yi(wi · xi + b) ≥ 1− ξi, i = 1, . . . , l (7.5)

yj(wj · xj + b) + ξj + M(1− dj) ≥ 1, (7.6)

|wj · xj + b| ≤ ε + ηj + Mdj, (7.7)

dj = {0, 1} j = l + 1, . . . , n,

ηj ≥ 0, j = l + 1, . . . , n,

ξk ≥ 0, k = 1, . . . , n.

In the above, M is a large positive constant. When dj is equal
to 0, M(1 − dj) = M is a big value. Hence (7.6) will naturally
be satisfied, leading ξi = 0 and further min(ξj, ηj) = ξj + ηj. A
similar analysis can be obtained when dj = 1. Therefore, we
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can know that Problem II is strictly equivalent to Problem I,
provided that M is set to a sufficiently large value. Problem II
is a Mixed Integer Programming problem [12, 99].

In the literature, there are a lot of proposals which can solve
the MIP problem. In the following, we will first derive a the-
orem showing the justification of our proposed algorithm. We
then revisit the optimization and propose our practical solving
method.

Analysis

In this section, we conduct some analysis showing that the uti-
lization of irrelevant data has a nice theoretical justification. For
clarity, we slightly modify Problem II to the following optimiza-
tion problem. Based on the modified problem, we then derive
the analysis. Problem II is changed as follows:

min
w,b,ξ,η,yl+1:n,d

1

2
||w||2 + CL

l∑
i=1

ξi

+CrU

n∑

j=l+1

ξj + CiU

n∑

j=l+1

ηj (7.8)

s.t. yi(wi · xi + b) ≥ 1− ξi, i = 1, . . . , l

yj(wj · xj + b) + ξj + M(1− dj) ≥ 1,

|wj · xj + b| ≤ ε + ηj + Mdj,

dj = {0, 1} j = l + 1, . . . , n.

ηj ≥ 0, j = l + 1, . . . , n,

ξk ≥ 0, k = 1, . . . , n.

CrU represents the penalty parameter for the relevant samples,
while CiU describes the penalty imposed on the irrelevant data
points. We first present the following theory.

Theorem 3. The above learning machine with CiU = ∞ and
ε = 0 is equivalent to training a standard Transductive SVM [37]
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with the training points projected onto the orthogonal comple-
ment of span {zj−z0, zj ∈ U}, where z0 is an arbitrary element
of the space spanned by the irrelevant samples denoted by U .

Sketch of Proof : CiU = ∞ and ε = 0 implies that any w
yielding the optimal solution of (7.8) satisfies w·z+b = 0 for any
z judged as irrelevant samples. Hence, we have w · (z− z0) = 0,
implying w is orthogonal to the subspace spanned by all the
irrelevant samples. Hence the optimization of (7.8) intends to
find a traditional transductive SVM in a subspace which con-
tains only the relevant samples, while the irrelevant samples are
suppressed. In addition, from the previous argument, the space
U spanned by the irrelevant samples can also benefit the clas-
sification, since it is U that decides the optimization subspace.
2

Theorem 1 shows that the optimization of our proposed algo-
rithm actually tries to find the most suitable subspace in which
the margin can be maximized while the overall error can be
minimized. The irrelevant data do not contribute to the final
accuracy directly. However, it determines the subspace where
the resultant decision boundary is derived and will consequently
affect the final performance. Theorem 1 clearly shows how the
irrelevant data can affect and eventually improve the overall
performance.

Practical Solving Method

We now revisit the optimization of Problem II. Although there
are softwares that are able to deal with MIP involved in Prob-
lem II, the computational complexity is usually high. It is even
difficult to perform optimization with more than 50 {0, 1} inte-
ger variables. Hence we would like to relax the problem to other
solvable optimization forms. To achieve this purpose, we first
reformulate Problem II to its dual form.
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Problem III:

max
λ,z+,z−

min
yl+1:n,d

−β>Kβ + 2
n∑

i=1

λi − 2M
n∑

j=l+1

(1− dj)λj

−2M
n∑

j=l+1

dj(z
−
j + z+

j )

s.t. 0 ≤ λi ≤ CL, i = 1, . . . , l (7.9)

0 ≤ λj ≤ CU , (7.10)

z−j + z+
j ≤ CU , (7.11)

z−j , z+
j ≥ 0, (7.12)

dj = {0, 1}, j = 1 + 1, . . . , n (7.13)

In the above, βj is defined as βj =

{
λjyj j ≤ l

λjyj + (z−j − z+
j ) l + 1 ≤ j ≤ n

.

λj is the Lagrangian multiplier for (7.5) and (7.6) associated
with xj, and z−j and z−j correspond the Lagrangian multipliers
for (7.7) when the abs operator is expanded. And K is the kernel
matrix defined as Ki,j = xi · xj.

Before proceeding to re-organized Problem III, we present
some notation first. We denote a new vector α = (λ; z−; z+).
We further define P1 = (XDiag(y), Xl+1:n,−Xl+1:n)>, where
X represents the matrix (x1,x2, . . . ,xn), Xk1:k2

represents the
matrix consisting of the columns of X from k1 to k2, and X ◦
Diag(y) represents the element-wise matrix multiplication of X

and Diag(y). We further define a = (1l;1m−M(1−d);−Md;−Md),
where 1k represents a k-dimension column vector with all the

elements as 1. We denote the matrix B =

(
In×n, 0n×2m

0m×n, Qm×2m

)
,

Qm×2m = (Im×m, Im×m), C = (CLl;CU2m). Here In×n is an n×n

unit matrix, 0k1×k2
describes a k1 × k2 matrix with all the ele-

ments as 0, and CLl defines an l-dimensional column vector with
all the elements as CL. Other symbols are similarly defined.
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We can re-organized Problem III to the following problem by
using the above notation.

max
α

min
yl+1:n,d

−α>P1P1>α + 2a>α

s.t. α ≥ 0,

Bα ≤ C,

dj ∈ {0, 1}, ∀j, l + 1 ≤ j ≤ n.

Once again, the dual form of the above optimization objective
can be written to the following problem:

max
α

min
d,ν,δ,yl+1:n

−α>P1P1>α + 2α>(a + ν) + 2δ>(C−Bα)(7.14)

where ν, δ ≥ 0 are the Lagrangian multipliers.
We can easily obtain the optimal α = (P1P1>)−1(a + ν −

B>δ). Substituting the optimum value of α into (7.14), we
further get the optimization problem as follows:

max
α

min
yl+1:n,d,ν,δ

(a + ν −B>δ)>(P1P1>)−1(a + ν −B>δ) + 2δ>C

s.t. ν ≥ 0, δ ≥ 0,

dj ∈ {0, 1},∀j, l + 1 ≤ j ≤ n.

Finally, the above optimization problem can equivalently be
transformed to a form similar to the Semi-definite Problem (SDP)
by using Schur Complement Lemma [82, 86].
Problem IV:

min
yl+1:n,d,ν,δ,t

t

s. t.

(
P a + ν −B>δ

(a + ν −B>δ)> t− 2δ>C

)
º 0,

dj ∈ {0, 1},
yj ∈ {−1, +1}, ∀j, l + 1 ≤ j ≤ n.
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Here P is defined as



K ◦ (yy>) Diag(y)K1:n,l:n −Diag(y)K1:n,l:n

K1:n,l:n>Diag(y) Kl+1:n,l+1:n −Kl+1:n,l+1:n

−K1:n,l:n>Diag(y) −Kl+1:n,l+1:n Kl+1:n,l+1:n




and a matrix A º 0 means that A is a Semi-definite matrix.
Similar to the work presented in [86], we relax (yy>) as rank-

one matrix M. We further relax dj ∈ {0, 1} to 0 ≤ dj ≤ 1. We
can finally write the optimization problem as Problem V:

Problem V:

min
M,d,ν,δ,t

t

s. t.

(
P a + ν −B>δ

(a + ν −B>δ)> t− 2δ>C

)
º 0,

0 ≤ dj ≤ 1,

rank(M) = 1,M1:l,1:l = y1:ly1:l>.

Following most optimization methods in SSL [144, 148, 37,
137], we further remove the rank-one constraint, the above prob-
lem is exactly an SDP problem. Note that Diag(y) appear-
ing in the matrix P can be represented by the elements of M.
For example, assume y1 = 1, then Diag(y) can be written as
Diag(M11,M12, ..., M1n). This SDP problem can be solved in
polynomial time by some packages such as Sedumi[133].

7.2 Experiment

In this section, we evaluate our proposed framework on both
synthetic and real data. A synthetic example will be firstly pre-
sented in order to illustrate the model clearly. We then compare
our model with the traditional SSL and the Universum Support
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Vector Machine (USVM) [140] on benchmark data sets, USPS 2

and MNIST data3. For brevity, we name our model as Uni-
versum Semi-supervised Learning, in short, USSL from now on.
However, we should keep in mind that it is significantly different
from the work presented in [157] in that the universum must be
known beforehand in their work, while we do not have such re-
quirement. Hence our proposed model presents a more general
SSL framework. We implement our model by using a generic
convex programming solver CVX.4 The traditional SSL and the
universum SVM are solved based on the package UniverSVM.5

7.2.1 Evaluation on Synthetic Data
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Figure 7.4: Comparison of SSL and the proposed USSL on the synthetic data

2The USPS data set can be downloaded from the web site http://www-stat-
class.standford.edu / tibs/ElemStatLearn/data.html.

3The MNIST data set is available at http://yann.lecun.com/exdb/mnist.
4The matlab source codes of the CVX package can be downloaded from

http://www.stanford.edu/ boyd/cvx/.
5The package of UniverSVM can be obtained from

http://www.kyb.tuebingen.mpg.de/bs/people/fabee/universvm.html.
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Figure 7.5: Comparison of SSL and the proposed model USSL on synthetic
data. (a)-(c) plot the training data for the three data sets respectively. (d)-
(f) plot the decision boundary given by SSL as well as the class label of the
unlabeled data assigned by SSL. (g)-(i) plot the decision boundary given by
USSL as well as the class label of the unlabeled data assigned by USSL.
(j)-(l) show the results on test data. The proposed USSL generates more
reasonable decision boundaries and outperforms the traditional SSL.
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We generate three synthetic data sets to validate our pro-
posed algorithm. In more details, we obtain the training data
for all the three data sets from three two-dimensional Gaussian
distributions, which are centered at −0.3, 0, and +0.3 respec-
tively. The two types of relevant data are centered at ±0.3 both
with the standard deviations as 0.13 for each data set, while the
irrelevant data are located around 0, but with standard devia-
tions as 0.1, 0.2, and 0.3 respectively for three data sets. The
number of training samples for the labeled data and the rele-
vant unlabeled data is respectively set to 5 and 30 for each class
in all the three sets. The number of irrelevant unlabeled data
samples for all the three cases is also set to 30. The test data
consists of 500 samples for each class, generated from the same
distributions as the labeled data. We train our proposed model
USSL in comparison with SSL on the training data consisting
of both irrelevant and relevant data samples, and evaluate its
performance on the test data sets. In both SSL and USSL, CU

and CL are set to 100. ε is set to 0.2. Note that again, we
do not know which data samples are relevant or not beforehand.
They are merely input as the unlabeled data for training in both
USSL and SSL. The above process is repeated for 20 times and
the average accuracy is reported in Figure 7.4.

It is obvious that the proposed general framework USSL demon-
strates much better performance than SSL. The mean error rates
of USSL are significantly lower than SSL in all the three cases.
On the other hand, when the standard deviation increases, USSL
tends to approximate the SSL in terms of the error rate, since
it is difficult to detect irrelevant data in such cases.

In order to have a closer examination on the proposed USSL,
we also draw the training set including the labeled and unla-
beled data, the test data, and the decision boundaries for one
of 20 evaluations in Figure 7.5. Figure 7.5(a), (b), and (c) show
the training samples for the three sets, where the labeled sam-
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ples are plotted as ◦’s and ¤’s for +1 and −1 class respectively,
while ¦’s depict the unlabeled instances consisting of both rele-
vant and irrelevant samples. Figure 7.5(d), (e), and (f) show the
final class labels for the unlabeled data and the decision bound-
ary given by the traditional SSL. The filled points represent the
unlabeled data, but their shapes imply their class, i.e., the filled
¤’s are judged as −1 class, while the filled ◦’s are classified as +1
class. Similarly, we show the decision boundary given by USSL
and the associated final class labels of the unlabeled samples for
the three cases in Figure 7.5(g), (h), and (i) respectively. We use
the similar symbols to describe different points. The difference
is that our proposed USSL is able to indicate which samples are
irrelevant. Such irrelevant samples are finally marked as N. It
is interesting that almost all the irrelevant samples can be cor-
rectly detected by our proposed USSL as observed in these three
sub figures. Moreover, the decision boundaries given by USSL
are actually more reasonable than the ones derived by the tradi-
tional SSL. This can be also observed in Figure 7.5(j), (k), and
(l), which show the test results for the three cases respectively.

7.2.2 Evaluation on Real Data

In this section, we evaluate the proposed novel model in com-
parison with the traditional SSL and the USVM [140] on real
data, the USPS and the MNIST data. We follow [140, 126] and
exploit the digits of 5 and 8 as the labeled data and use the re-
maining digits as the irrelevant data. Hence we have 8 data sets,
depending on which category of digits is used as the irrelevant
data. We randomly extract 20 labeled samples and 30 random
data points as relevant unlabeled samples from 5 and 8 respec-
tively. We further obtain 30 samples randomly extracted from
a certain category of digits other than 5 and 8. The test data
set contains 400 digits randomly extracted from the 5 and 8 dig-
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its. The parameters involved in SSL and USSL are searched via
cross validation. More specifically, CL and CU are searched in
{1, 10, 100, 1000}, while ε is searched in {0.1, 0.2, 0.3, 0.4}. The
final test accuracy is given as the result averaged on the 10 ran-
dom evaluations for both USPS and MNIST. In addition, as ver-
ified by many researches in Optical Character Recognition, espe-
cially in handwritten numeral recognition, kernel based methods
are just slightly better than the linear classifier, but with signifi-
cantly heavier computational cost.6 Hence, we only conduct the
comparisons based on the linear version of USVM, USSL and
SSL in the following.

The evaluation results are reported in Table 7.1 and Table 7.2
for USPS and MNIST respectively. Once again, our proposed
USSL outperforms the traditional SSL and the USVM. More
specifically, the proposed USSL demonstrates significantly bet-
ter performance than SSL and USVM in the 0, 1, 2, 3, 6, and
7 data sets of USPS according to a t-test at the 5% significance
level. Similarly, a t-test indicates that the result of USSL is also
significantly different from those of SSL and USVM in the 0,
1, 3, 4, 6, 7, and 9 data sets of MNIST at the significant level
of 5%. SSL simply regards all the unlabeled data as relevant
data, while USVM considers all the unlabeled data as univer-
sum. Hence it is inappropriate for them to deal with the general
unlabeled data containing both relevant and irrelevant data. In
comparison, our proposed approach can automatically model
the impact caused by the relevant and irrelevant data into the
final decision boundary. It demonstrates superior performance
and is more appropriate in handling Semi-supervising Learning
from general data.

6The performance of various methods on MNIST can be seen in the web site
http://yann.lecun.com/exdb/mnist/.
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Table 7.1: Experimental results on USPS data

Data set USVM SSL USSL

0 67.05± 2.31 85.05± 1.94 89.85± 1.47

1 71.45± 1.59 83.61± 2.52 89.23± 1.89

2 69.50± 4.29 84.44± 2.08 89.81± 2.34

3 70.43± 1.68 84.75± 1.86 89.65± 2.24

4 65.80± 3.04 85.12± 3.91 86.69± 2.01

6 64.80± 2.36 78.45± 2.21 83.70± 1.90

7 66.93± 3.75 87.37± 2.51 90.42± 1.75

9 72.37± 3.42 82.86± 2.39 85.13± 2.31

Table 7.2: Experimental results on MNIST data

Data Set USVM SSL USSL

0 45.25± 2.19 53.25± 2.84 58.25± 2.11

1 52.77± 1.42 54.10± 2.78 60.25± 2.75

2 54.58± 2.67 56.92± 3.12 57.67± 2.97

3 55.14± 1.90 52.09± 2.30 57.25± 1.32

4 56.65± 1.22 57.12± 2.49 59.25± 2.10

6 52.75± 2.80 54.50± 2.12 57.67± 1.27

7 60.51± 2.12 58.09± 3.01 68.50± 2.26

9 59.25± 1.15 48.25± 2.64 63.00± 1.50

7.3 Summary

We have proposed a novel framework that can learn from general
unlabeled data. In contrast to the traditional Semi-supervised
Learning that requires unlabeled data to share the same cate-
gory labels as the labeled data, the proposed framework is able
to learn from unlabeled data with irrelevant samples. Moreover,
we do not need the prior knowledge on which data samples are
relevant or irrelevant. Consequently it is significantly differ-
ent from the recent Semi-supervised Learning with universum
or the Universum Support Vector Machines. As an important
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contribution, we have successfully formulated this new learn-
ing approach as a Semi-definite Programming problem, making
it solvable in polynomial time. We have also presented theo-
retical analysis to justify our model. A series of experiments
demonstrate that this novel framework has advantages over the
Semi-supervised Learning on both synthetic and real data in
many facets.

2 End of chapter.



Chapter 8

Semi-supervised Learning by
Active Search

We consider the application of semi-supervised learning in the
text categorization area. Automated text categorization, which
is a fundamental step toward text and web mining applications,
has become an important subject in both the research and ap-
plication communities. The goal of automated text categoriza-
tion is to automatically classify documents into predefined cat-
egories. It is regarded as a supervised learning problem where a
statistical classification model is learned from a pool of labeled
documents. Since the performance of statistical classifiers of-
ten depends on the availability of labeled examples, one of the
major bottlenecks toward automated text categorization is to
collect sufficient numbers of labeled documents because of the
high cost in manually labeling documents. For example, there
are often only a few blog documents in a blog website that have
been manually categorized according to their blog types or top-
ics (e.g., nursing, nutrition and etc). Given a small number of
labeled documents, it is very challenging, if not impossible, to
build a reliable classifier that is able to achieve high classification
accuracy.

One way to address the problem of small-size sample is to
exploit the unlabeled documents by so-called semi-supervised

122
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learning methods. There are two major groups of approaches
toward semi-supervised learning. The first group of approaches
is based on the clustering assumption which assumes that most
documents, including both the labeled ones and the unlabeled
ones, should be far away from the decision boundary of the
target classes. The typical approaches in this category include
Tranductive SVM (TSVM) [75, 145, 148] and Semi-supervised
SVM (Semi-SVM) [34, 37]. The second group of approaches
is based on the manifold assumption which assumes that most
documents lie on a low-dimensional manifold in the input space.
The well-known algorithms in this category include Label Prop-
agation [160], Markov random field [164, 46], Graph Cuts [18],
and Spectral Graph Transducer [76]. A comprehensive study of
semi-supervised learning techniques can be found in [163, 28]. In
order to exploit the semi-supervised learning techniques, one of
the major issues is to obtain a multitude of unlabeled documents
that are relevant to the target categories.

One way to collect the unlabeled documents is through the
Web search engines. In order to retrieve Web documents that
are relevant to the target topics, we will first identify the key-
words from a few labeled documents that are closely related
to the target topics. Web documents will then be retrieved by
the Web search engine using the textual queries that are con-
structed based on the identified keywords. Finally, the retrieved
Web documents will be combined with the labeled documents to
construct a text classification model using the semi-supervised
learning techniques. We refer to this framework as “Semi-
supervised Text Categorization by Active Search”, whose
goal is to enhance a text classification model by actively exploit-
ing the unlabeled Web documents via the Web search engines.
Figure 8.1 illustrates the key features of this framework, i.e.

1. Query generation that generates the textual queries for doc-
ument retrieval by analyzing the content of labeled docu-
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Figure 8.1: The framework of semi-supervised text categorization by active
search.

ments,

2. Document retrieval that retrieves the Web documents through
the Web search engine by using the generated queries, and

3. Semi-supervised text categorization that constructs text clas-
sification models by utilizing both the labeled documents
and the unlabeled Web documents which are retrieved by
the Web search engine.

Our approach is motivated by the observation that people
usually utilize Web search engines such as Google and Yahoo!
to search useful documents when they are unclear about certain
topics/concepts. The Web pages or documents returned by Web
search engines usually help users better understand the target
concepts if the query terms are carefully chosen. This fact mo-
tivates us to collect unlabeled documents that are relevant to
the target categories via the Web search engines. The retrieved
Web documents will be combined with a few labeled documents
to build more reliable text classification models. This situa-
tion is also analogous to a user-expert model that the user can
strengthen his knowledge by asking experts appropriate ques-
tions. The Web comprises of a huge number of Web pages and
documents that cover a wide range of topics. It can be viewed
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as an expert of almost any field. Ideally, if we can properly de-
sign questions and understand the answers retrieved from the
Web, we should be able to correctly classify the topics of new
documents even with a few labeled examples. Since the pro-
cess of asking questions and getting the answer is automati-
cally conducted without user interactions, we refer to this novel
Web-assisted classification scheme as “Semi-supervised Text
Categorization by Active Search.”

We discuss the details of the semi-supervised learning frame-
work proposed in [147]. Our work present a novel framework of
actively retrieving related documents from the Web as a comple-
mentary information source for supervised text categorization.
It should be noted that the Web is also used as the comple-
mentary information for other tasks such as author resolution
identity [78, 110]. A similar idea also appears in the empir-
ical study of [54, 156], where the preliminary results indicate
the usefulness of the information from the Web. Our work is
also distinguished from search engine based methods [1] where
the search engines are used as the feature selection tools and
a large corpus of same-category documents are available. It is
also interesting to note the relationship and the difference among
the proposed framework, active learning and transfer learning.
Both the proposed framework and active learning [97, 58] aim
to actively select unlabeled examples to improve the results of
supervised learning. However, they differ in that the examples
selected by active learning will be manually labeled and used
to augment the pool of training examples. In contrast, the un-
labeled document collected by the proposed framework will re-
main unlabeled. Moreover, the proposed framework is similar to
transfer learning or domain adaption [25, 2, 43, 73, 52, 112] in
that both of them aim to transfer knowledge from some domain
to the classification models of the target concepts. However,
the key difference between the proposed framework and trans-
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fer learning is that transfer learning assumes the availability of
the examples (both labeled and unlabeled) from different but
related topics/domains while the proposed framework does not.
Indeed, one of the key components within the framework is how
to collect relevant unlabeled documents from the Web via the
Web search engines.

As a key contribution, we present a novel learning approach,
named Discriminative Query Generation (DQG), for query gen-
eration that improves the chance of finding the documents rele-
vant to the target topics via Web retrieval. Both theoretical
justifications and empirical evaluations demonstrate that the
DQG approach significantly outperforms other intuitive meth-
ods such as Term Frequency (TF) [53], Term Frequency/Inverse
Document Frequency (TF/IDF) [20], and Odds-ratio [53]. Fur-
thermore, we engage the semi-supervised learning method to
perform text categorization that can effectively exploit both the
labeled documents and the unlabeled Web documents which are
retrieved by Web search engines. Extensive results show that
semi-supervised learning framework is consistently superior to
the purely supervised text categorization method.

The remaining of this chapter is organized as follows. In sec-
tion 8.1, we describe the framework of semi-supervised text cate-
gorization by active search, and algorithms for query generation
and semi-supervised text categorization. Section 8.2 presents
the empirical study of the proposed text categorization frame-
work. We draw conclusions of this study in Section 8.3.

8.1 Semi-supervised Text Categorization by

Active Search

In this section, we will first present the problem of semi-supervised
text categorization by active search, followed by the description
of the novel algorithms for the two key components of our pro-
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posed text categorization framework, i.e., query generation and
semi-supervised text categorization methods.

8.1.1 Problem Definition

Let D = {(xi, yi), i = 1, . . . , nl} denote the collection of labeled
documents where xi ∈ Rd is a vector of d dimension that rep-
resents the content of the ith document and yi ∈ {−1, +1} is
a binary class label assigned to the ith document. In addition
to the collection of labeled documents D, we assume that there
is another much larger collection of documents, denoted by U ,
that can only be accessed through the search engine A. This
large collection U can either be a collection of Web pages that
are accessible via the Web search engine, or a collection of bio-
logical research articles that are accessible via the PubMed. We
abstract the search engine A as a ranking function that takes
a textual query1 q ∈ {0, 1}d as an input and outputs a ranking
list of documents in U . To make the problem more practical,
we assume that only the first s documents in the ranking list
are accessible. The goal of the proposed semi-supervised text
categorization framework is to learn a text classification model
that exploits both the labeled documents D and the unlabeled
documents in U via the search engine A.

As already shown in the introduction section, we divide the
procedure of the proposed text categorization framework into
three steps, namely (1) query generation, (2) document retrieval,
and (3) semi-supervised text categorization. In the following
subsections, we will focus on the discussion of query generation
and semi-supervised text categorization since the step of doc-
ument retrieval is naturally taken care of by the given search
engine A.

1Note that each query vector is a binary vector.
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8.1.2 Discriminative Query Generation (DQG)

Given the collection of labeled documents D, the goal of query
generation is to construct a set of queries Q = {q1, . . . ,qt} that
are likely to retrieve documents relevant to the target concepts.
Since each query q ∈ {0, 1}d is a binary vector, query genera-
tion essentially is to decide which words will be included into
the query. Thus, we can view the problem of query generation
as a feature selection problem, i.e., selecting the subset of word
features that are most representative for the given classification
task. A straightforward approach to employ the common sta-
tistical measurements, such as TF, TF/IDF, information gain,
and χ2 statistic, to select the most informative word features.
However, given the limited number of training documents, it is
unlikely to obtain reliable estimates for any statistical measure-
ments. As a result, the selected word features may not necessar-
ily be the most representative for the target classification task.
We refer to this problem as the “sparse data” problem for
query generation. Another drawback with the feature selection
approaches is that even if the selected word features are repre-
sentative for the given task of text categorization, they may be
completely unrelated since they may be extracted from differ-
ent documents. As a result, by having a query that consists of
multiple unrelated words, the search engine A is likely to return
a few even none documents. We refer to this problem as the
“unrelated query words” problem for query generation.

To address the problem of unrelated query words, we pro-
pose to generate a query for every labeled document. Let qi

be a query that we will generate from the document xi. For
the convenience of discussion, we assume that xi is a positively
labeled document, i.e., yi = +1. Let Vi denote the vocabulary
used by document xi, i.e., Vi = {k|xi,k > 0}. We first restrict
the words used by query qi to vocabulary Vi, i.e., qi,k = 0 if
k /∈ Vi. To measure the informativeness of words, we introduce
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a non-negative weight wi ≥ 0 for each word. The more infor-
mative a word is, the larger the weight will be. We follow the
framework of Support Vector Machine (SVM) and determine
the word weights by the following optimization problem:

min
w,ξ

∑

j∈Vi

wj + C

nl∑

k=1

ξk (8.1)

s. t. yk


∑

j∈Vi

wjxk,j + b


 ≥ 1− ξk, ξk ≥ 0, k = 1, . . . , nl ,

wj ≥ 0, ∀j ,

wj = 0, ∀j /∈ Vi.

where C is the parameter that weights between the classification
error

∑nl

k=1 ξk and the regularization term
∑

j∈Vi
wj, and b is the

bias. The word features with the largest weights will be selected
to form a query. Note that according to the statistical learning
theory [138], by introducing the regularization term, we should
be able to reduce the mistakes in identifying informative word
features that may be caused by the sparse data problem.

In order to see which words will be assigned with large weights,
we rewrite the objective function as2

L =
∑

j∈Vi

wj + C

nl∑

k=1

max


0, 1− yk


∑

j∈Vi

wjxk,j − b





 .

The subgradient [22]3 of L is then written as

∂L
∂wj

=





0 j /∈ Vi

1 +
∑nl

k=1 ηk j ∈ Vi

,

2Here, we simplify the discussion by ignoring the constraint wj ≥ 0, ∀j
3Note that here we can only define the subgradient for L because of the non-smooth

function max in L
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where ηk is the sub-derivative of max(0, 1−yk(
∑

j∈Vi
wjxk,j−b))

and is expressed as follows:

ηk =





0 yk(
∑

j∈Vi
wjxk,j − b) > 1

−ykxk,j yk(
∑

j∈Vi
wjxk,j − b) < 1

(0,−ykxk,j) yk(
∑

j∈Vi
wjxk,j − b) = 1

.

Since the large weights wj tend to be assigned to the word fea-
tures that have the most negative sub-derivatives ∂L/∂wj, we
expect the words to have large weights if they are mainly used
by the positively labeled documents, i.e., ykxk,j > 0 if yk = +1
and ykxk,j = 0 if yk = −1. This is clearly consistent with our
intuition.

For a negatively labeled document xi, we will have a similar
optimization problem:

min
w,ξ

∑

j∈Vi

wj + C

nl∑

k=1

ξk

s. t. −yk


∑

j∈Vi

wjxk,j − b


 ≥ 1− ξk, ξk ≥ 0, k = 1, . . . , nl,

wj ≥ 0, ∀j,
wj = 0, ∀j /∈ Vi.

Finally, for the document xi, the query qi will be composed
by the top k words with largest values of w. It is important to
note that although we discuss the query generation problem for
the binary data, it is easy to generalize to the problem of gen-
erating query words for multi-class documents using approaches
such as one-against-others. In order to differentiate from the ex-
isting approaches for query generation, we refer to the proposed
method as the “discriminative query generation” method,
or DQG for short.
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8.1.3 Text Categorization Methods

Given the labeled documents D and the collection of unlabeled
Web documents U returned by the search engine A, the next
question is how to construct a binary classification model h(x) :
X → {−1, +1} for text categorization that exploits both the
labeled and the unlabeled documents. In this subsection, we
will examine several learning techniques for semi-supervised text
categorization.

Given a query qi that is generated from the labeled docu-
ment (xi, yi), we denote by U (i) = (x

(i)
1 , . . . ,x

(i)
ni ) the collection

of documents retrieved by the search engine A, where ni is the
number of retrieved documents. Since the retrieved documents
are closely related to the query qi, we would expect that the
class labels assigned to the documents in U (i) should also be
closely related to yi, i.e., the class label assigned to xi. Based
on whether or not this assumption holds, we present two dif-
ferent approaches for text categorization that combine both the
labeled documents and the unlabeled retrieved documents:

• The auxiliary approach that assumes all the retrieved doc-
uments in U (i) belong to the category yi.

• The semi-supervised learning approach that does not as-
sume any relationship between the class labels assigned to
U (i) and the class label yi.

The following subsections provide detailed description for these
two approaches.

Auxiliary Approach

Most learning algorithms can be regarded as finding a classifica-
tion model h(x) that minimizes a certain loss function L(h(x), y)
defined on the predicted category h(x) and the labeled category
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y. Similar to Section 8.1.2, we assume y to be a binary cat-
egory, i.e., either −1 or +1. In addition to the empirical loss
function L(h(x), y), to avoid the overfitting problem, a regular-
ization term, denoted by F (h), is often introduced to control the
complexity of the classification model h(x). Combining these
two terms, we have the following objective function for learning
classification model h(x).

J(h) =
∑

i

L(h(xi), yi) + λF (h) ,

where λ is a tradeoff parameter that balance the empirical loss
function against the regularization term.

In the auxiliary approach, we assume that the documents
retrieved by query qi share the same class labels as yi, i.e., the
class assigned to document xi. This assumption allows us to
label the retrieved Web documents that are originally unlabeled,
which we refer to as “auxiliary labeled documents”. We will
train a classification model using both the labeled documents
and the auxiliary labeled documents. This general idea leads to
the following objective function:

Ja(h) =
∑

xi∈D
L(h(xi), yi) + γ

∑

xj∈U
L(h(xj), y

∗
j ) + λF (h) .

In the above, we introduce U to represent the collection of the
auxiliary labeled documents, and y∗j represents the class label of
the retrieved Web document xj that is predicted by the method
mentioned above. Parameter 0 ≤ γ ≤ 1 is introduced to weight
the classification errors related to the auxiliary labeled docu-
ments. By setting γ to be less than 1, the objective function is
more tolerable with the classification mistakes of the auxiliary
labeled documents than with the labeled documents.

To further simplify our computation, we assume h(x) to be
a linear function4, i.e., h(x) = w>x + b. Following the frame-

4Previous studies have shown that linear classifiers are usually more effective than
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work of Support Vector Machines (SVM), we define F (h) as the
L2-norm ‖w‖2

2, and a hinge loss function for L(h(xi), yi), i.e.,
L(h(xi), yi) = max(0, 1 − h(xi)yi). We thus have the follow-
ing concrete optimization problem for text categorization that
learns from both the labeled documents and the auxiliary la-
beled documents:

arg min
w,b

λ‖w‖2
2 +

∑

xi∈D
ξi + γ

∑

xj∈U
ξj (8.2)

s. t. yi(w
>xi + b) ≥ 1− ξi, ∀i xi ∈ D ,

y∗j (w
>xj + b) ≥ 1− ξj, ∀j xj ∈ U .

The above optimization problem can be efficiently solved by the
standard quadratic programming packages.

The main shortcoming with the proposed auxiliary approach
is the assumption that the Web retrieved documents are com-
pletely relevant to the generated query, and therefore share the
same category as that of the labeled document used to gen-
erate the query. Due to the inaccuracy of the query genera-
tion method and the mistakes made by the search engines, it
is likely that some of the retrieved Web documents are irrele-
vant to the generated queries and therefore are unrelated to the
target text categories. To address this problem, we present a
semi-supervised learning framework that combines the labeled
documents and the unlabeled documents retrieved from the Web
when constructing text categorization models.

Semi-supervised Approach

In the semi-supervised approach to text categorization, we do
not assume that the retrieved documents are completely relevant
to the generated queries, and therefore no assumption is made
for the class labels of the documents retrieved from the Web.

nonlinear classifiers for text categorization
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In this approach, the semi-supervised SVM is used to exploit
both labeled documents and the Web retrieved documents for
building text categorization models. Semi-supervised SVM tries
to maximize the margin in the presence of unlabeled data and
learns a decision boundary that traverses through low density
regions while respecting the labels in the input space [34]. Dif-
ferent from the auxiliary approach, the semi-supervised learn-
ing approach optimizes not only the classification function h(x),
but also the class label assigned to the unlabeled data y∗. The
overall objective function used by semi-supervised SVM is for-
mulated as follows:

Js(h,y∗) =
∑

xi∈D
L(h(xi), yi) + γ

∑

xj∈U
L(h(xj), y

∗
j ) + λF (h) ,

where γ and λ are similar to the ones defined as in the auxiliary
approach. Note the key difference between Js and Ja is that both
class labels y∗ and classification model h(x) are optimization
variables in Js while only h(x) is unknown variable in Ja. The
related optimization problem is formulated as follows:

arg min
w,b,y∗

λ‖w‖2
2 +

∑

xi∈D
ξi + γ

∑

xj∈U
ξj , (8.3)

s. t. yi(w
>xi + b) ≥ 1− ξi, ∀i xi ∈ D ,

y∗j (w
>xj + b) ≥ 1− ξj, ∀j xj ∈ U .

Similar to the auxiliary approach, we use ‖w‖2
2 for F (h) and

L(h(xi), yi) = max(0, 1−h(xi)yi), the objective function is sim-
plified as follows:

Js(h) = λ‖w‖2
2 +

∑

xi∈D
+ max(0, 1− h(xi)yi)

+γ
∑

xj∈U
max(0, 1− |h(xj)|) .
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Note that variables y∗i is removed because

min
y∗j∈{−1,+1}

max(0, 1− h(xj)y
∗
j ) = max(0, 1− |h(xj)|) .

The above formulation is not convex because the function
max(0, 1 − |h(xj)|) is neither convex nor concave. Several ap-
proaches have been proposed to address this computational prob-
lem (see [28] for reference.) A recently proposed semi-supervised
learning technique is the Concave-Convex Procedure (CCCP) [37]
which efficiently solves the semi-supervised SVM and can be
used for large scale semi-supervised learning problems. The key
idea is to rewrite the loss function of unlabeled data into the
difference of two convex functions. In particular, in the CCCP
solution to semi-supervised SVM, a so-called Ramp loss Ls is in-
troduced such that the loss function for an unlabeled data point
xj ∈ U is written as a sum of a convex function and a concave
function. This is indeed equivalent to replacing the symmetric
Hinge loss L1(|h(xj)|) with the Ramp loss and in the mean-
time, duplicating each unlabeled example into two copies with
one assigned to the positive class and the other assigned to the
negative class. It amounts to the following objective function:

Js(h) = λ‖w‖2
2 +

∑

xi∈D
+ max(0, 1− h(xi)yi)

+γ
∑

xj∈U
(Ls(h(xj), +1) + Ls(h(xj),−1)) .

A CCCP procedure can be directly applied to optimize the above
problem.

8.2 Experiment

In this section, we evaluate our proposed semi-supervised text
categorization framework. We first describe the data sets that
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are used for evaluation, followed by the setup of the experiments.
We then present evaluation results for the key components of the
text categorization framework, i.e., the query generation method
and text categorization methods, in details.

8.2.1 Data Set

Nine subsets of text documents are selected from three bench-
mark text collections, including 20 Newsgroups, Reuters-21578,
and Ohsumed.The 20 Newsgroups data set is a collection of ap-
proximately 20, 000 newsgroup documents, partitioned (nearly)
evenly across 20 different newsgroups. This collection has be-
come a popular data set for experiments in text applications
of machine learning techniques, such as text classification and
text clustering. The Reuters-21578 corpus is a collection of
documents that appeared on Reuters newswire in 1987. The
Ohsumed database is a on-line medical information database,
consisting of titles and/or abstracts from medical journals. The
description of the selected nine subsets can be found in Table 8.1,
where fourDiseases is composed by the 7th to 10th categories of
Ohsumed, and sci is composed by four news groups under the
sci domain. The binary data sets are named according to their
class labels. We select the data sets based on their semantic
connections among the category labels in order to make them
difficult to classify.

As shown in Figure 8.1, the proposed text categorization
framework is composed of three major steps, namely (1) query
generation, (2) document retrieval, and (3) text categorization.
In the following subsections, we will focus on evaluating the
query generation methods and text categorization methods that
exploit both labeled documents and the unlabeled ones retrieved
by search engines. In addition, we also briefly evaluate the clas-
sification accuracy of our proposed framework given different
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Table 8.1: Data sets for evaluation.
Corpus Data set # Docs # Classes

Newsgroup auto vs. motor 2000 2

sci 4000 4

Ohsumed musculo vs. digestive 772 2

bacterial vs. virus 581 2

male vs. female 871 2

fourDiseases 1319 4

Reuters corn vs. wheat 520 2

ship vs. trade 772 2

money vs. trade 1203 2

search engines.

8.2.2 Evaluation (I): Query Generation

To evaluate queries generated from a limited number of labeled
documents, we try several query generation methods, including
Term-frequency (TF), Term Frequency/Inverted Document Fre-
quency (TF/IDF), SVM with largest weights (shorted as SVM-
LW), Odds Ratio (OR), and our Discriminative Query Genera-
tion (DQG) method. Different from the other methods in com-
parison, DQG generates a batch of queries with one query for
each labeled document.

Unfortunately, there is no existing data set which is available
for evaluating the query generation methods. Since our goal is
to improve the performance of text categorization by retrieving
relevant documents from the Web, we can evaluate the query
generation methods indirectly by measuring the classification
accuracy of text categorization using the Web documents that
are retrieved by different query generation methods. The draw-
back of this method is that the evaluation is indirect and the
classification accuracy is influenced by both query generation
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methods and text categorization methods. In order to directly
evaluate the query generation methods, we will examine the fol-
lowing two different aspects of query generation methods:

• Relevance, i.e., whether or not the query generation method
is able to identify the keywords that are representative to
the target categories, and

• Discriminativeness, i.e., whether or not the generated query
is able to differentiate documents from different categories.

To examine these two properties, we manually check the
queries generated by different query generation methods. For
the limit of space, we take two text categorization tasks (bac-
terial vs. virus and money vs. trade) as an example. For each
task, the query terms are generated from 10 randomly chosen
documents and the remaining documents with the query terms
as the feature set are used as the test data. In Table 8.2 and
Table 8.3, we list the first three query words that are chosen
by five query generation methods for these two tasks. We also
list the classification accuracy of SVM on the test data for each
task. Note that since our proposed method generates a batch of
queries, in order to compare with other query generation meth-
ods that generate only one query for the training documents, we
extract the most frequent three query words from all the queries
generated by the proposed method.

Since the bacterial vs. virus data set consists of paper ab-
stracts about the bacterial disease and the virus disease, the
query words should represent documents in these two categories
and also distinguish the bacterial disease from the virus disease.
We observed that the TF method only finds the frequent terms,
but cannot find terms that can differentiate documents of the
two diseases. For example, the term “patient” is selected by
the TF method for both categories, and is therefore not able to
tell documents of two diseases apart. Other methods, such as
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TF/IDF and OR, are prone to finding the terms that may be
irrelevant to the target categories. Examples of irrelevant terms
are “percentage”, “role”, and “clear”. The failure of TF/IDF
and OR can be explained by the small number of documents
that are used for selecting query words. Although both TF/IDF
and OR have taken into account the factor of discriminative-
ness when selecting query words, due to the limited number of
samples, these statistics cannot be measured accurately. As a
result, inappropriate query words are chosen by these two meth-
ods. In contrast, the proposed DQG method is able to select
query words that are not only relevant to the target categories
and but also discriminative enough to distinguish different text
categories. For example, “antibody” is directly related to the
virus disease while “pneumonia” and “organism” are highly re-
lated to the bacterial disease. A similar analysis is applied to
the money vs. trade data set. It is interesting to note that al-
though the terms “said” and “quarter” seem to be irrelevant to
the document categories of money and trade, they are indeed
very useful to locate specific documents from the Web. Because
“said” and “quarter” are commonly used by news documents,
they are effective in retrieving news pages since the data set
money vs. trade is a part of the Reuters news collection. In ad-
dition, in both cases, the prediction accuracy on the test data
sets shows that the proposed DQG works consistently better
than other query generation methods. Therefore, our proposed
DQG method appears to be more effective in identifying query
words that are both representative and discriminative for the
target categories.

In order to quantitatively evaluate the query generation meth-
ods, we employ the information retrieval task and evaluate the
quality of the generated queries by measuring the percentage of
the retrieved documents that share the same category as the doc-
uments used to generate queries. To this end, we first construct
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a test database using the existing text corpus. The Indri search
engine from the Lemur project (www.lemurproject.org/) is
employed to build indices for the database.

In order to compare with other query generation methods,
we merge the multiple queries generated by the proposed DQG
method into single one by extracting the top N popular terms
from the multiple generated queries. For each data set (i.e.,
musculo vs. digestive and coin vs. wheat), we randomly select
10 labeled documents with 5 documents for each category, and
generate the queries based on the selected documents. We also
vary the length of generated queries from 3 to 5 in order to obtain
a full spectrum of performance evaluation. For each generated
query, we compute the precision (i.e., percentage) of the top
100 retrieved documents that share the same category as the
documents used to generate query. To avoid the effect from
variance, each experiment is repeated independently five times.
The results are shown in Table 8.4. It can be observed that our
proposed DQG method demonstrates overall better performance
than the other methods. For the musculo vs. digestive data
set, DQG consistently outperforms the other methods; for the
coin vs. wheat data set, DQG ranks the first when the query
size is set to be 3, and ranks both the second when the number
of query words is increased to 4 and 5. We thus conclude that
DQG is overall a better approach for query generation. In the
following study, we will always use DQG for query generation.
Since DQG tends to produce its best performance on average
when the query size is 3, in the following experiments, we always
set the query size to be 3 for each labeled document, which is
also supported by the empirical study in [156].
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8.2.3 Evaluation (II): Text Categorization Methods

In this subsection, we describe the experimental settings, fol-
lowed by the presentation of experimental results.

Experimental Setup

We employ SVM, which is regarded as the state-of-the-art clas-
sification technique, as our baseline algorithm. The SVM-light
(http://svmlight.joachims.org/) implementation is utilized.
Two learning algorithms are implemented for text categoriza-
tion, including the auxiliary SVM (abbreviated as Auxi-SVM)
and semi-supervised SVM (abbreviated as Semi-SVM). As de-
scribed before, both algorithms are able to utilize the unlabeled
documents retrieved from the Web for text categorization. For
semi-SVM, the concave-convex procedure is implemented for ef-
ficient optimization.

We conduct two sets of experiments. In the first set of ex-
periments, we randomly select 2 labeled documents per class
of data to form the training set for each data set, and use the
remaining documents as the test set. In the second set of exper-
iments, 5 labeled documents5 per class are randomly selected to
form the training set. For each document, one query of three
terms is generated to retrieve similar documents from the Web.
We download the first 100 documents returned by each query
based on the assumption that most search engines rank relevant
documents before the irrelevant ones. Thus, for a binary data
set, given a training set that contains 10 labeled documents, a
total of 1, 000 unlabeled documents will be downloaded. In both
sets of experiments, Google is used as the Web search engine for
retrieving Web documents.

We represent each document by a vector of term frequency.

5For the sake of consistence, the 10 labeled documents include the documents selected
by the first set of experiments.
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For all the data sets used for experiments, the term frequency
vectors of documents are normalized to be one. We then select
600 most informative features according to their correlation to
the text categories. Given the limited number of labeled doc-
uments, it is often difficult to tune parameters γ and λ. The
parameter λ is set to 0.01 for all the data sets. γ is also set to
0.01 in order to emphasize the importance of the margin error
on the labeled data.

Experimental Results

Table 8.5 summarizes the classification accuracy of the super-
vised classification method (SVM) and the two methods (i.e.,
Auxi-SVM, and Semi-SVM) which utilize the retrieved data for
the first and second sets of experiments. For an easy compar-
ison, we also list the average accuracy of each method at the
end of the table. When the training size per class is equal to
2, both the categorization methods using the retrieved docu-
ments achieve significantly higher accuracy than the supervised
method for almost all data sets. On average, SVM achieves an
accuracy of 53.1%, while the classification accuracy is 61.4% for
Auxi-SVM and 66.3% for Semi-SVM. The overall reduction in
classification error for Auxi-SVM is 17.6% and 28.0% for Semi-
SVM. A similar observation is found when the training size per
class is increased to 5: the average classification accuracy is
increased from 61.1% to 71.3% and 74.3% when using the doc-
uments retrieved from the Internet. The overall error reduction
in this case is 26.3% for Auxi-SVM and 34.0% for Semi-SVM. In
conclusion, for both cases, using the documents retrieved from
the Internet can greatly improve the classification accuracy. The
advantage is more manifest when the semi-supervised SVM is
adopted for text categorization.



CHAPTER 8. SEMI-SUPERVISED LEARNING BY ACTIVE SEARCH143

8.2.4 Evaluation (III): Impact of Search Engines
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Figure 8.2: The classification accuracy of text categorization methods (i.e.,
Auxi-SVM and Semi-SVM) using different search engines (i.e., Google, Ya-
hoo!, and Alltheweb) on three data sets of Ohmued

In this experiment, we aim to evaluate the impact of search
engines on the classification accuracy of text categorization.
Three Web search engines are used in this study, including
Google, Yahoo!, and Alltheweb. Due to the space limitation,
we only present the experimental results with three data sets
from the Ohsumed medical corpus. Similar to the experiments
described in the previous subsection, 10 labeled documents are
randomly selected to form the training set, and the top 100 doc-
uments retrieved by the Web search engines are downloaded to
form the set of unlabeled documents.

Figure 8.2 shows the classification accuracy by SVM and the
two text categorization methods (Auxi-SVM and Semi-SVM)
using different search engines for the three data sets. For almost
all the cases, the text categorization methods using the data
retrieved from the Internet are able to improve the classification
accuracy of the supervised learning method regardless of the
difference among Web search engines.The only exception is when
we apply Auxi-SVM to the dataset bacterial vs. virus using the
Web documents retrieved by Alltheweb. This may be attributed
to the fact that the Web documents returned by Alltheweb are
irrelevant from the topic of musculo and digestive diseases.
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Second, among the three Web search engines, Alltheweb leads
to the poorest classification accuracy for all the data sets. The
most noticeable one is the data set of bacterial vs. virus. When
applying the auxiliary approach, we find that both Google and
Yahoo! are able to improve the classification accuracy of SVM
noticeably while the classification accuracy is reduced to around
45% when using Alltheweb. Third, for all the data sets, both
text categorization methods achieve similar results when Google
or Yahoo! is used as the search engine. Based on the above re-
sults, we thus conclude that different search engines can have sig-
nificant impact on the classification accuracy of semi-supervised
text categorization.

8.3 Summary and Future Work

In this chapter, we presented a general framework for semi-
supervised text categorization that collects the unlabeled doc-
uments via Web search engines and utilizes them to improve
the accuracy of supervised text categorization. We proposed
a novel discriminative query generation method that is able to
identify query words that are both representative and discrimi-
native. We successfully integrated the semi-supervised learning
approach with the Web search engines that proves to outper-
form the other counterpart text categorization methods. Ex-
tensive experiments have demonstrated that the proposed semi-
supervised text categorization framework can significantly im-
prove the classification accuracy. Specifically, the classification
error is reduced by 30% averaged on the nine data sets when
using Google as the search engine.

Two important issues deserve our attentions in the future.
First, it is interesting to investigate the performance when a
meta search engine is used. Second, since search engines would
inevitably output some irrelevant documents, it remains as a
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research question whether further filtering on the returned doc-
uments is needed to lift up the performance.

2 End of chapter.
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Table 8.2: The query terms selected by different query generation methods
for the data set bacterial vs. virus. The query size is set to be three for all
methods.

QG Class Query Terms Acc(%)

SVM virus syndrome manifestation oral 29.5

bacterial pneumonia mycology presentation

TF virus patient cmv syndrome 37.6

bacterial patient pylori graft

TF/IDF virus cmv patient role 70.9

bacterial pylori graft percent

OR virus assess test syndrome 39.2

bacterial associate chemotherapy clear

DQG virus assess antibody cryptococcus 69.5

bacterial pneumonia abscess organism

Table 8.3: The query terms selected by different query generation methods
for the data set money vs. trade. The query size is set to be three for all
methods.

QG Class Query Terms Acc(%)

SVM-LW trade trade billion quarter 82.7

money market reserve early

TF trade said trade billion 73.8

money said bank stg

TF/IDF trade figure poehl germany 56.4

money stg rate mln

OR trade year export washington 82.9

money trade billion market

DQG trade billion trade said 82.0

money bank quarter reserve
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Table 8.4: The retrieval precision of different query generation methods with
varied query sizes.

Data set musculo vs. digestive grain vs. wheat

Query Size 3 4 5 3 4 5

SVM-LW 50.8 62.6 65.0 37.0 36.5 39.6

TF 49.1 58.3 64.0 43.2 48.1 51.8

TF/IDF 49.1 57.2 60.6 39.5 40.3 42.8

OR 43.3 44.2 51.7 37.9 42.8 47.5

DQG 60.9 64.9 65.3 53.2 47.0 45.3

Table 8.5: The classification accuracy (%) semi-supervised text categoriza-
tion methods

2 Training Examples per Class 5 Training Examples per Class

Data set SVM Auxi-SVM Semi-SVM SVM Auxi-SVM Semi-SVM

male vs. female 56.5 65.6 59.4 47.6 76.1 73.1

bacterial vs. virus 72.6 43.7 72.8 61.8 77.6 78.3

musculo vs. digestive 66.8 69.7 67.6 69.9 71.3 77.0

fourDisease 10.3 22.3 51.4 31.6 38.4 58.0

ship vs. trade 75.1 91.5 95.1 94.1 95.5 95.9

corn vs. wheat 56.6 65.3 63.0 69.2 69.0 71.6

money vs. trade 49.0 71.0 59.5 80.6 88.8 88.9

auto vs. motor 62.1 74.4 77.5 59.4 69.1 69.2

sci 29.2 49.1 50.2 35.5 56.1 56.8

average 53.1 61.4 66.3 61.1 71.3 74.3



Chapter 9

Conclusion and Future Work

In this chapter, we provide a summary of the thesis. The the-
sis consists of two parts: the first part deals with good quality
unlabeled data which are used in semi-supervised learning liter-
atures, and the second part deals with general unlabeled data
which may not be drawn from the same distribution as the la-
beled data. In the first part, we first conduct an analysis of the
fundamental assumptions of semi-supervised learning following
the proposed efficient convex relaxation model of TSVM. We
then propose an efficient multiple kernel learning approach and
naturally extends it to semi-supervised learning. In the second
part, we relax the constraint of the quality of unlabeled data.
We first consider a setting that the unlabeled data are only
structurally-related and may not share the same labels with the
training data. We then consider another setting that totally
irrelevant data are mixed with good quality data. Finally, we
explore the possibility to actively search for unlabeled data from
the Internet for semi-supervised learning with its application to
text categorization.

Finally, we present future research perspectives for the pro-
posed models.

148
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9.1 Review of the Journey

Learning from unlabeled data has been an important topic in
machine learning. One important technique is semi-supervised
learning where there are a huge amount of unlabeled data avail-
able drawn from the same distribution as the training data.

Current semi-supervised learning methods are either moti-
vated from the manifold assumption or from the low density
assumption. In this thesis, we have conducted a theoretical
analysis on the unified view of these two assumptions by using
Transductive Support Vector Machine (TSVM) as an example.
Our results indicate that both of these assumptions are equiva-
lent in their function: both of them can be regarded as a kind
of regularization on the unlabeled data. We further develop an
efficient convex relaxation for TSVM by deriving the dual of
the SDP relaxation of TSVM. Compared with traditional SDP
relaxation of TSVM, the prosed relaxation method provides a
tighter approximation and incorporates less parameters in the
SDP cone. Empirical studies on benchmark data sets demon-
strate that the proposed method is more efficient than the previ-
ous semi-definite relaxation method and achieves promising clas-
sification results comparing with the state-of-the-art methods.
We further extend an efficient multiple kernel learning approach
to the semi-supervised setting in order to facilitate the learn-
ing machine for automatic identification of the best pair-wised
similarity among data points.

As semi-supervised learning requires that there are a large
amount of unlabeled data drawn from the same distribution as
the training data, it is sometimes difficult to be applied to cases
where such unlabeled data are expensive to obtain. However,
it is possible to utilize data from other tasks, if these data may
contain structural information that is helpful to identify the fea-
tures of the current task. We then develop a novel Supervised
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Self-taught Learning (SSTL) model which manages to find the
most appropriate high-level features or representations from the
poorly-related unlabeled data under the supervision of the la-
beled training data. Extensive evaluations on various data sets
including character image data and Web text data have shown
that our proposed algorithm can improve the classification per-
formance against the traditional Self-taught Learning algorithm
and the supervised learning algorithm when the number of the
labeled data is limited.

We further consider a more complicated case: the unlabeled
data are a mixture of good quality data, and irrelevant data
and we do not have the prior knowledge on which data sam-
ples are relevant or not. We propose a learning framework
that is able to deal with such a case. In contrast to the tra-
ditional semi-supervised learning that requires unlabeled data
to share the same category labels as the labeled data, our work
is significantly different from the recent semi-supervised learning
with universum or the Universum Support Vector Machines. As
an important contribution, we have successfully formulated this
new learning approach as a Semi-definite Programming problem,
making it solvable in polynomial time. We have also presented
theoretical analysis to justify our model. A series of experi-
ments demonstrate that this novel framework has advantages
over semi-supervised learning approaches on both synthetic and
real data in many facets.

It is difficult to know how much knowledge we can transfer
from the unlabeled data from other relevant tasks. Can we ac-
tively find relevant data from the Internet since the Internet can
be seen as a huge database for almost any field? Another contri-
bution of this thesis answers the question for text categorization:
firstly, we develop a query generation method which can auto-
matically generate queries from a few labeled documents; then,
we retrieve the Web using the query words to get a batch of
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more relevant documents; finally, the retrieved documents can
then be used as the unlabeled data for semi-supervised learning
techniques. Extensive experiments have demonstrated that the
proposed semi-supervised text categorization framework can sig-
nificantly improve the classification accuracy. Specifically, the
classification error is reduced by 30% averaged on several data
sets when using Google as the search engine.

9.2 Future Work

This thesis tries to plot a whole picture of research work on
learning from general unlabeled data. Following this framework,
there is a lot of immediate directions inside the proposed models
in this thesis.

Firstly, it is still valuable to mine deeply into the nature of
learning from unlabeled data in the semi-supervised learning
setting. Although we have shown in the thesis an unified view of
the fundamental assumptions as a framework of regularization,
we do not answer the question of how much regularization do we
need to obtain from the unlabeled data. Or alternatively, can we
adapt the regularization with the data? This interesting topic
deserves more attentions and remains to be an open problem.

Secondly, although we have proposed an efficient convex re-
laxation approach for TSVM, it is still difficult to apply in large
scale data sets due to its SDP nature. How to efficiently and ac-
curately solve the nonlinear optimization problem incorporated
in TSVM is still an open problem which devotes a lot of research
effort.

Thirdly, for the work of actively retrieving unlabeled data
from the Web, two important issues deserve our attentions in
the future. One issue is to investigate the performance when
a meta search engine is used. The other is to explore whether
further filtering on the returned documents is needed to lift up
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the performance since search engines would inevitably output
some irrelevant documents.

Finally, it is still an open problem regarding how to uti-
lize the weakly-related unlabeled data. The framework of self-
taught learning provides a possible solution to empirically use
the weakly-related unlabeled data. It is desirable to theoreti-
cally understand how much we can obtain from the analysis of
the quality of these unlabeled data.



Appendix A

Proof of Theorem 1, Chapter 4

Proof. We prove the convergence rate of the extended level method
for MKL following the work of [92].

We denote the diameter of the set P by D(P) and denote the
Lipschitz constant of f(p, α) with respect to p by Lp(f).

To show the convergence of ∆i, we will show the number of
steps needed to reduce ∆i by a factor 1−λ is bounded. Without
loss of generality, we consider the decreasing series (∆1, . . . , ∆N)
where N is the largest index such that ∆N ≥ ∆1(1 − λ) and
∆N+1 < ∆1(1− λ).

First, we show that p̃N ∈ Gi, i = 1, . . . , N . This is equivalent
to show that gi(p̃N) ≤ `i, which can be proved by applying

gi(p̃
N) ≤ fN and fN ≤ f

N − (1− λ)∆1. Then, based on pi+1 =
πLi(pi), i.e., the projection of p̃i to the level set Li, we have

‖pi+1 − p̃N‖2
2 ≤ ‖pi − p̃N‖2

2 − ‖pi+1 − pi‖2
2 (A.1)

The following inequations

‖p1 − p̃N‖2
2 ≥ ‖p1 − p2‖2

2 + ‖p2 − p̃N‖2
2 (A.2)

≥
N∑

i=1

‖pi − pi+1‖2
2 + ‖pN − p̃N‖2

2 (A.3)

then follow. We have
∑N−1

i=1 ‖pi − pi+1‖2
2 ≤ D2(P), which indi-

cates that the sum of distance square during the first N steps is
bounded by the diameter of region P .
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Below, we will show the lower bound for
∑N−1

i=1 ‖pi − pi+1‖2
2

using λ and ∆1. Based on gi(pi) = f(pi, αi) and gi(pi+1) ≤ `i,
we have

gi(pi)− gi(pi+1) ≥ f(pi, αi)− `i ≥ f
i − (1− λ)f i − λf

i

≥ (1− λ)∆i.

We further have gi(pi)− gi(pi+1) ≥ (1− λ)∆N . Hence, we have

(1− λ)2∆N ≤ |gi(pi)− gi(pi+1)|2 ≤ L2
p(f)‖pi − pi+1‖2

2.

Therefore, to each ∆N+1 ≤ ∆1(1− λ), we need at most

N1 ≤
D(P)2L2

p(f)

(1− λ)2[∆N ]2
≤ D(P)2L2

p(f)

(1− λ)4[∆1]2
.

Clearly, in order to reduce ∆i from (1− λ)s−1∆1 to (1− λ)s∆1

where 1 ≤ s ≤ N , we need at most

Ns ≤
D2(P)L2

p(f)

(1− λ)2(1− λ)2s[∆1]2
.

So, the number of steps needed to reduce ∆i from ∆1 to ∆1(1−
λ)s is bounded by N =

∑s
i=1 Ni and can be further bounded by

D2(P)L2
p(f)

(1− λ)2(1− λ)2s[∆1]2
1

1− (1− λ)2 .

To reach the error ε, we have

(1− λ)s[∆1]2 ≤ ε ≤ (1− λ)(s−1)[∆1]2.

Thus, we have

N ≤ c(λ)D2(P)L2
p(f)

1

ε2 ,

where c(λ) = 1
(1−λ)4λ(2−λ)
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We now calculate the D(P) and Lp(f) for the MKL problem.
Since P = {p ∈ Rm : p>e = 1, 0 ≤ p ≤ 1}, we can prove that
the diameter of the set P is equal to

D(P) = max
p,p′∈P

‖p− p′‖2 =
√

2.

According to the definition of Lp(f), we have

Lp(f) = max
p∈P,α∈Q

‖∇fp(p, α)‖2

=
1

2
‖[(α ◦ y)>K1(α ◦ y), . . . , (α ◦ y)>Km(α ◦ y)]>‖2

≤ 1

2
nC2√m max

1≤i≤m
Λmax(Ki).

The operator Λmax(M) computes the maximum eigenvalue of
matrix M .

This ends the proof.
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Conference papers:

1. Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. An
Extended Level Method for Multiple Kernel Learning. In
Advances in Neural Information Processing Systems (NIPS
22), accepted, 2008.

2. Zenglin Xu, Rong Jin, Kaizhu Huang, Irwin King, and
Michael R. Lyu. Semi-supervised text categorization by ac-
tive search. Appearing in Proceedings of ACM 17th Confer-
ence on Information and Knowledge Management (CIKM
2008), accepted, 2008.

3. Kaizhu Huang, Zenglin Xu, Irwin King, and Michael R.
Lyu. Semi-supervised Learning from General Unlabeled
Data. Appearing in Proceedings of the 8th IEEE Interna-
tional Conference on Data Mining, 2008.

4. Jianke Zhu, Steven Hoi, Zenglin Xu and Michael R. Lyu.
An Effective Approach to 3D Deformable Surface Tracking.
Appearing in Proceedings of the 10th European Conference
on Computer Vision (ECCV 2008), accepted, 2008.
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R. Lyu. Efficient convex relaxation for transductive sup-
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port vector machine. In Advances in Neural Information
Processing Systems (NIPS 21), 2007.
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7. Zenglin Xu, Jianke Zhu, Irwin King, and Michael R. Lyu.
Maximum margin based semi-supervised spectral kernel learn-
ing. In Proceedings of 20th International Joint Conference
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[110] M. Paşca. Weakly-supervised discovery of named entities
using web search queries. In CIKM ’07: Proceedings of the
sixteenth ACM conference on Conference on information
and knowledge management, pages 683–690, New York,
NY, USA, 2007. ACM.

[111] J. Platt. Sequential minimal optimization: A fast algo-
rithm for training support vector machines. Technical Re-
port MSR-TR-98-14, 1998.

[112] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-
taught learning: transfer learning from unlabeled data. In
ICML ’07: Proceedings of the 24th international confer-
ence on Machine learning, pages 759–766, New York, NY,
USA, 2007. ACM Press.

[113] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-
taught learning: Transfer learning from unlabeled data.
In Proceedings of International Conference on Machine
Learning (ICML-2007), 2007.

[114] R. Raina, A. Y. Ng, and D. Koller. Constructing infor-
mative priors using transfer learning. In ICML ’06: Pro-
ceedings of the 23rd international conference on Machine
learning, pages 713–720, New York, NY, USA, 2006. ACM
Press.

[115] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grand-
valet. SimpleMKL. Journal of Machine Learning Research,
9:1179–1225, 2008.

[116] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G.
Dietterich. To transfer or not to transfer. In Proceedings



BIBLIOGRAPHY 173

of NIPS 2005 Workshop on Inductive Transfer: 10 Years
Later, 2005.

[117] S. T. Roweis and L. K. Saul. Nonlinear dimensional-ity
reduction by locally linear embedding. Science, (290):123–
137, 2000.

[118] J. Schmidhuber. On learning how to learn learning strate-
gies. Technical report, Technical Report FKI-198-94,
Fakultat fur Informatik., 1994.

[119] B. Scholkopf and A. Smola. Learning with Kernels. MIT
Press, Cambridge, MA, 2002.

[120] F. Sebastiani. Machine learning in automated text cate-
gorization. ACM Comput. Surv., 34(1):1–47, 2002.

[121] J. Shawe-Taylor and Y. Singer, editors. Regularization and
Semi-supervised Learning on Large Graphs, volume 3120
of Lecture Notes in Computer Science. Springer, 2004.

[122] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. A comparison
of implicit and explicit links for web page classification. In
Proceedings of the 15th international conference on World
Wide Web (WWW 2006), pages 643–650, New York, NY,
USA, 2006. ACM Press.

[123] H. Shimodaira. Improving predictive inference under
covariate shift by weighting the log-likelihood function.
Journal of Statistical Planning and Inference, 90:227–244,
2000.

[124] V. Sindhwani, S. S. Keerthi, and O. Chapelle. Determin-
istic annealing for semi-supervised kernel machines. In
ICML ’06: Proceedings of the 23rd international confer-
ence on Machine learning, pages 841–848, New York, NY,
USA, 2006. ACM Press.



BIBLIOGRAPHY 174

[125] V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point
cloud: from transductive to semi-supervised learning. In
ICML, pages 824–831, New York, NY, USA, 2005. ACM
Press.

[126] F. H. Sinz, O. Chapelle, A. Agarwal, and B. Scholkopf.
An analysis of inference with the universum. In Advances
in Neural Information Processing Systems (NIPS-07).

[127] A. Smola and R. Kondor. Kernels and regularization on
graphs, 2003.

[128] A. Smola and B. Schölkopf. A tutorial on support vector
regression. Technical Report NC2-TR-1998-030, Neuro-
COLT2, 1998.

[129] A. Smola, S. V. N. Vishwanathan, and Q. Le. Bundle
methods for machine learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural In-
formation Processing Systems 20, pages 1377–1384. MIT
Press, Cambridge, MA, 2008.

[130] A. J. Smola, P. L. Bartlett, B. Scholkopf, and D. Schu-
urmans. Advances in Large Margin Classifiers. The MIT
Press, 2000.
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