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Distance learning, also called distance metric learning is an
effective similarity learning tool to learn a distance function from
examples to enhance the performance of machine learning mod-
els in applications of classification, regression, and ranking and
so on. Most distance learning algorithms involve a positive semi-
definite matrix as critical parameters that scales quadratically
with the number of dimensions of input data. This situation
brings tremendous computational cost in the learning procedure
and makes all proposed algorithms infeasible for extremely high-
dimensional data even with the low-rank approximation. In this
thesis, we consistently explore the computational complexity of
distance learning algorithms from multiple perspectives. Our
exploration ranges from the linear to non-linear models, from
the shallow to deep models, and from the deterministic to
probabilistic models. Specifically, we propose several distributed
algorithms to enhance the distance learning algorithms perfor-
mance in terms of computational speed and learning accuracy.

Firstly, we focus on linear distance learning algorithms.
To parallel the popular Information-Theoretic Metric Learning
(ITML) with tolerated errors, we utilize the property that
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each positive semi-definite matrix can be decomposed into a
combination of rank-one and trace-one matrices and convert
the original sequential training procedure into a parallel one.
In most cases, the communication demands of the proposed
method are also reduced from O(d2) to O(cd), where d is
the number of dimensions of the data and c is the number of
constraints in linear distance learning and can be smaller than
d by appropriate selection. Moreover importantly, we present
a rigorous theoretical analysis to upper bound the Bregman
divergence between the sequential algorithm and the parallel
algorithm, which guarantees the correctness and performance of
the proposed algorithm.

Secondly, we continue to explore non-linear distance learning
algorithms. To capture the local structures in non-linear metric
space, we propose a novel parallel Riemannian metric learning
algorithm. Then we successfully apply the proposed algorithms
on the classical learning-to-rank problem to achieve the state-
of-the-art in learning-to-rank community.

Thirdly, we explore the distance learning algorithms from
the shallow models to deep distance learning models, which
is widely used in extreme classification and image retrieval
because of its powerful ability to learn the semantic low-
dimensional embedding of high-dimensional data. However, the
high computational cost of evaluating mini-batch and updating
models frequently in existing deep distance learning approaches
becomes a barrier to apply such methods to a large-scale real-
world context in a distributed environment. In this thesis, we
introduce a novel distributed framework to speed up the training
process of deep distance learning using multiple machines.
Specifically, we design a hybrid communication pattern and
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implement a decentralized data-parallel framework to reduce
the communication time while the quality of the trained deep
distance models is preserved.

Finally, we explore the distance learning algorithm in the
probabilistic domain. In probability theory, Wasserstein dis-
tance is used to estimate the similarity between two distribu-
tions. However, the existing formulations with approximated
Wasserstein loss converge slowly due to substantial computation
cost and usually generate unstable results as well. In this thesis,
we attempt to solve the computation cost problem by speeding
up the computation of Wasserstein distance from a well-designed
communication efficient parallel architecture. Then, we also
employ a new formulation and the corresponding optimization
method to improve the stability with a more accurate Wasser-
stein distance estimation. Compared to conventional parallel
architecture for deep neural networks, our proposed framework
enjoys a higher scalability performance.
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摘要 ：

距离學習，又稱距離度量學習，是一種有效的相似性學習工

具。它從數據中學習更有效的距離函數，用於提升分類、回

歸、排序等機器學習模型的性能。傳統的距離學習方法會涉及

計算複雜度極高的半正定矩陣計算，這無疑給機器學習過程帶

來巨大的計算負擔，且難以應用於高維數據中。在本論文中，

我們從多個層面探索距離學習的計算複雜度問題，包拓線性模

型、非線性模型、深度學習模型、概率距離模型。基於複雜度

分析，我們提出一系列分布式方法用於提升距離學習模型的計

算速度與精度。

第一部分，關於線性距離學習算法，我們利用半正定矩陣可以

被分解單秩單跡矩陣的組合這一特性，將流行的信息論度量學

習算法由串行算法改造為並行算法，並同時降低此並行算法的

通信複雜度。最後我們通過嚴密的理論分析，給出了原始的串

行算法與提出的並行算法的誤差上限。

第二部分，我們繼續探索非線性距離學習。通過挖掘非線性距

離度量空間中的局部結構，我們提出了一種有效的並行黎曼度

量學習方法，並成功應用於排序問題。

第三部分，我們探索深度度量學習模型。由於此模型可以從高

維數據中學習具有語義含義的低維表示，因而它泛應用於圖像
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分類與圖像檢索任務。然而傳統深度度量學習的高計算複雜度

問題使得此類方法無法以分布式的方式處理真實世界中大規模

數據問題。在本論文中，我們介紹了一種新穎的分布式計算方

法，可以有效解決此難題。與此同時，我們通過設計一種混合

的去中心化的通信機制，在保證學習精度的情況下可以顯著降

低通信時間。

最後，我們試圖探索將分布式計算方法應用於概率分布距離的

計算當中。在概率論中，Wasserstein距離是有效的估計概率分
布距離的方法。然而，已有的方法大多基於近似計算，不僅收

斂速度較慢，還會產生不穩定的計算結果。在此論文中，我們

提出一種新型的Wasserstein距離的計算形式和與此對應的優化
方法，並設計了一種高效的分布式計算策略，可以顯著提升計

算精度與計算穩定性。
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Chapter 1

Introduction

1.1 Overview

Similarity and the associated distance measurements are the
fundamental components in machine learning and data mining
techniques. For instance, in classification, the k-Nearest Neigh-
bor classifier employs a distance measurement to find similar
pairs and dissimilar pairs of samples to identify the nearest
neighbors. Many clustering algorithms, such as the prominent
k-means, rely on distance measurements between data points.
This kind of algorithms has usually used a general-purpose
distance to measure the data similarity. The performance of
these methods depends on the quality of the similarity metrics.
We hope that the similar pairs identified by the distance
measurements should be semantically close. Meanwhile, the
dissimilar pairs should be semantically different. Therefore,
the construction of distance learning algorithms should rely on
categorical information. Currently, the widely used distances
include the Euclidean distance, the cosine similarity for feature
vectors, and the Levenshtein distance for strings. However,
a standard distance may ignore some task-specific properties
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CHAPTER 1. INTRODUCTION 2

available in the training dataset and often fail to capture the
unique characteristics of the data, so that the learning results
could be sub-optimal or even lead to the wrong direction.
Therefore, a fundamental question that we need to consider is
how to assess the similarity or distance between the pairs of
data samples precisely. In data mining problems, the definition
of similarity is often task-specific. The success of distance
learning hinges on aligning its learning objectives with the
task. Therefore, when the distance function is designed for a
specifical task, the results of data mining algorithms should be
improved. Unfortunately, for specific problems, it is difficult to
find a unique and appropriate way to measure the distance or
similarity between data, which is ubiquitous in machine learning,
pattern recognition, and data mining. To handle multiple
similarity or distance functions, we should determine by hand
an appropriate choice of features and the combination of those
features. This motivates the emergence of distance learning,
which aims at automatically learning a distance from data and
has attracted considerable interest in machine learning and data
mining community for the past two decades.
Distance learning algorithms attempt to automate the process
of feature selection and learn task-specific distance functions
based on the data in a supervised manner. These algorithms
have been shown to be useful when used in conjunction with
nearest-neighbor methods and other techniques like regression,
and ranking that rely on distances or similarities.
There is another popular technique called dimensionality reduc-
tion, which is similar to distance learning. However, they differ
in the following perspectives: (a), for supervised dimensionality
reduction, it aims at finding a low dimensional representation
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that maximizes the separation of labeled data and in this
respect has connections with distance learning, although the
primary objective is quite different. (b), for unsupervised
dimensionality reduction, it usually assumes that the input data
lie on the surface of low-dimensional manifold within the higher-
dimensional space. These methods are designed to capture
or preserve some properties of the original data (such as the
variance or local distance measurements) in the low-dimensional
representation. For high-dimensional data, distance learning is
sometimes formulated as finding a projection of the data into
a new feature space, which preserves the useful geometrical
information of the samples.
In distance learning framework, we assume the accurate target
distance between pairs of instances is intangible. The general
supervision comes from two perspectives: a), pair-wise con-
straints: the pair of data xi and xj is similar, the pair of data xp
and xq is dissimilar. b), triplet-wise constrants: the data xi is
more similar to xj than to xk. Compared to conventional pair-
wise distance learning framework, triplet-wise distance learning
allows circumventing the use of highly sensitive parameters such
as distance thresholds and margins.
The distance functions can be parameterized in various ways.
Global distance learning methods aim to learn a single mapping
f to be applied to all the data. The widely used principal com-
ponents analysis (PCA) method is considered as seeking a linear
map in an unsupervised manner to be applied globally to all the
data. Conventional distance learning methods usually employ
the Mahalanobis distance or kernel-based distance function to
formulate this linear or non-linear mapping.
Typically, most popular distance learning methods usually
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learn a linear mapping to project samples into a new feature
space. When the non-linear relationship of data points is
considered, the kernel method is adopted to address this non-
linearity problem. While this type of method suffers from the
scalability problem because the kernel-based method has two
major disadvantages: a), choosing a kernel is typically tricky and
entirely empirical. b), the expression power of kernel functions
is often not flexible enough to capture the non-linearity in the
data.
A single global distance function is often unable to describe the
complex non-linear space in the specific task. Investigations
on local distance learning have considered locality specific
approaches, and consequently multiple distance functions are
learned. Specially, multiple distance function learning tech-
niques learn local metric tensors in different parts of feature
space. Armed with multiple distance functions, even simple
classifiers can be competitive with the state-of-the-art because
each distance function locally formulates the structure of the
data. However, the learned combination of multiple distance
functions is, non-metric in mathematical, which has prevented
multi-distance learning from generalizing to tasks such as di-
mensionality reduction and regression in an elegant way.
Moreover, from the perspective of manifold learning, all local
distance learning can be regarded as approximations of the
geodesic distance defined by a metric tensor at the appropriate
points. This idea ushers us to rethink the distance learning
algorithms with the help of deep learning framework in a more
elegant way.
Mathematically, a manifold can be effectively used to model the
non-linearity of samples in the training set, and deep learning
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has demonstrated the superb capability to model the non-
linearity of samples. Deep neural network can be considered
to directly learn the hierarchical non-linear mapping function
from the input data to a lower- dimensional embedding given
the input label annotations. The advantage is that the training
process can jointly learn the distance learning function and
semantically meaningful embedding, which are robust against
intra-class variations [106].
In the semantic embedding framework, similar examples are
mapped close to each other, and dissimilar examples are mapped
farther apart. A contrastive loss over the distance function
induced by the semantic representation is employed to train
the network to distinguish between similar and dissimilar pairs
of examples. Theoretically, the embedded space should be
described by a positive semi-definite matrix. However, the
back propagation algorithm in traditional deep learning can not
preserve such form of constraints [50].
Different from traditional distance learning framework, we em-
ploy deep neural networks with distance learning based loss
function to learn discriminative embedding instead of directly
modeling distance function. The contrastive loss is designed to
bring the embedding of samples from the same category closers,
to separate the embedding of samples from different classes with
a reasonable margin. When the embedding space is appropri-
ately obtained, the Euclidean distance in this embedding space
should reflect the actual semantic distance between data points.
Previous distance learning algorithms focus on the similarity
measurement of the deterministic feature of data samples.
However, the world is full of randomness. We should solve the
complex challenge brought by any random issue and develop
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reliable similarity measurement between probability distribu-
tions. In mathematical theory, distance measurements between
probability distributions can be introduced in the framework of
optimal transport. For deterministic distance learning frame-
work, algorithms will perform a point-wise comparison between
two distributions. In optimal transport, the distance between
two distributions is the minimal effort for moving the probability
mass of one distribution to the other. While the transport plan
to move the mass is optimized according to a given ground
metric space. When the ground metric space is p-norm, this
distance is also called as Wasserstein-p distance. Typically,
the Wasserstein distance is regarded as a loss function for
unsupervised learning. The algorithmic performance mainly
depends on the choice of the ground metric on the input data
space.
Distance learning is applicable to a wide range of different
machine learning tasks such as information retrieval [77, 91],
computer vision [110], recommendation system [17, 83], senti-
ment analysis [130]. For example, nearest neighbor retrieval
is the most important application area of distance learning.
The objective of many information retrieval systems, such as
search engines, is to provide the user with the most relevant
documents according to his/her query. Specifically, documents
are ranked according to their relevance to a given query based
on similarity scores [55, 76, 84]. This ranking is often achieved
by using a distance learning between two documents or between
a document and a query.
In computer vision, there is a great need of well-designed
distance functions, not only to compare images or videos in
semantic representations such as bags-of-visual-words but also
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in the pre-processing step targeting to build this semantic repre-
sentation. For this reason, there exists a large body of distance
learning literature designed specifically to solve computer vision
problems (e.g. image classification [85], object recognition [115],
vision tracking [60]).
Since the amount of available data growing fast, the problem
of scalability arises in all areas of machine learning. Among
different kinds of machine learning algorithms, the barrier
of scalability in distance learning is urgently necessary to
overcome. First, in terms of big data, it is desirable for a
distance learning algorithm to scale well with the number of
training examples n or semi-supervised constraints. Under this
situation, learning the distance function in an online way is
one of the solutions. Second, and more importantly, distance
learning methods should also scale reasonably well with the
dimensionality d of the data, which is also classified into the big
model problem. However, since conventional distance learning is
often formulated as learning a d×d matrix, designing algorithms
that scale reasonably well with this quantity is a huge challenge.
For specific algorithms, The first one is to main M ∈ Sd+ in an
efficient way during the optimization process. In optimization
thoery, a straightforward way to conduct this task is to employ
the projected gradient method which consists in alternating
between a gradient step and a projection step onto the PSD
cone by setting the negative eigenvalues to zero [92]. However,
the projection operation is prohibitively expensive for high-
dimensional problems because eigenvalue decomposition scales
in O(d3). Another challenge is to learn a low-rank matrix which
implies a low-dimensional projection space instead of a costly
full-rank matrix. Unfortunately, the optimization subject to a
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rank constraint or regularization about M is NP-hard and thus
cannot be computed out efficiently.
Compared with the classification task, deep distance learning
methods process much more training samples since all possible
combinations of data need to be considered. Although we can
construct a large number of data pairs for deep distance learning,
a significant fraction of non-informative pairs will contribute
zero to the loss function and gradient once the model reaches a
reasonable performance. In this situation, deep distance learn-
ing is known to suffer from slow convergence. Thus it is intuitive
to find more informative pairs during training to achieve faster
convergence and better performance. For large scale probability
problems, the accurate computation of Wasserstein distance
involves solving a linear program whose cost quickly becomes
prohibitive while the data dimension increases.

1.2 Thesis Contributions

In this thesis, we mainly focus on employing parallel or dis-
tributed computation techniques to solve the above big data
challenges in the distance learning framework. Specifically,
we resolve this problem and make contributions from multiple
perspectives including global distance learning with linear trans-
formation, non-linear distance learning with local combinations,
highly non-linear distance learning with deep neural networks
and probabilistic distance learning with uncertainty.

• For global distance learning framework, we first propose
a parallel approach to learn distance functions from high-
dimensional data without restricting low-rank assumption
and achieve a balance between accuracy and execution
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time. Then, we compare the proposed method with the
popular ITML method from a theoretical perspective and
give an upper error bound brought by our parallel update.
Finally, we conduct rigorous experiments on the data
with different scales demonstrate the correctness and the
scalability of our proposed method.

• For local distance learning, we are the first to extend
the geometric mean metric learning algorithm to a lo-
cal distance learning approach in order to capture the
local structures for the learning-to-rank problem. We
propose a novel ideal candidate document concept to trans-
form distance-learning-to-rank framework from query de-
pendent model to query independent model, which brings
broader applications for distance learning and also im-
proves the accuracy of classical learning-to-rank task. Fi-
nally, we conduct extensive experiments to demonstrate
that our method outperforms the state-of-the-art query-
dependent distance-learning-to-rank algorithms and query-
independent learning-to-rank methods both in the accuracy
and the computational complexity.

• For deep distance learning framework, we are the first to
propose a distance learning-oriented distributed framework
to speed up the training of deep distance learning among
multiple machines. We have verified the decentralized dis-
tributed computation with mixed communication topology
is reasonable in the context of the deep distance learning
framework. Finally, we also demonstrate the proposed
framework is appropriately coupled with several state-of-
the-art deep distance learning algorithms on CUB200-2011,
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CARS196, and Stanford Online Products and achieves
a remarkable improvement with four machines regarding
accuracy and runtime speedup.

• For the distance learning with probability distributions,
we are the first to propose a parallel architecture for
Wasserstein GANs framework to speed up the training
of GANs from the computational perspective. Different
from common Wasserstein GANs, we develop an efficient
stochastic algorithm to approximate the Wasserstein dis-
tance with higher accuracy for the newly proposed parallel
framework. In experiments, we show that the proposed
parallel architecture enjoys the superior convergence speed
and comparable stability.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2
In this chapter, we provide a systematic review of the back-
ground of distance learning algorithms, including global
distance learning, local distance learning, deep distance
learning, and learning distances between probability dis-
tributions.

• Chapter 3
In this chapter, we introduce a semi-synchronous dis-
tributed methodology for global distance learning algo-
rithms. More specifically, in section 3.3, we present a rig-
orous theoretical analysis to upper bound the Bregman di-
vergence between the sequential algorithm and the parallel
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algorithm. In section 3.4, we demonstrate the competitive
scalability and the performance compared with the original
ITML algorithm on datasets with O(105) features.

• Chapter 4
In this chapter, we propose a novel Riemannian metric
learning algorithm to capture the local structures and
develop a robust learning-to-rank algorithm. In section
4.3, we demonstrate that our proposed L-GMML algorithm
outperforms the state-of-the-art distance learning to rank
methods and the stylish query-independent learning-to-
rank algorithms regarding the accuracy and computational
efficiency.

• Chapter 5
In this chapter, we introduce a novel distributed framework
to speed up the training process of the deep distance
learning using multiple machines. In section 5.3, we show
excellent performance gain compared to a full spectrum of
state-of-the-art deep distance learning models on multiple
datasets in terms of image clustering and image retrieval
tasks.

• Chapter 6
In this chapter, we introduce a well-designed communica-
tion efficient parallel architecture to solve the computation
cost problem by speeding up the Wasserstein GANs. In
section 6.3, we demonstrate rigorous experiments to re-
veal that our proposed framework achieves a significant
improvement regarding convergence speed with comparable
stability on generating images, compared to the state-of-
the-art of Wasserstein GANs algorithms.
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• Chapter 7
The last chapter summarizes this thesis and discusses some
potential future research directions about distance learning
algorithms.

2 End of chapter.



Chapter 2

Background Review

2.1 Distance Learning Algorithms

In mathematics, distance function denoted as f : Rd×Rd → R
should satisfy the following basic rules:

• non-negativity: f(x, y) ≥ 0

• identity: f(x, y) = 0⇐⇒ x = y

• symmetry: f(x, y) = f(y, x)

• triangle inequality: f(x, z) ≤ f(x, y) + f(y, z)

A plenty of non-parameter distance functions satisfy the above
rules, e.g. Euclidean distance f(x, y) =

√
(x− y)T (x− y),

Cosine distance f(x, y) = 1 − xT y
|x||y| . Another popular distance

functions may not satisfy all these rules, e.g. Kullback-Leibler
(KL) divergence f (x, y) = ∑

i xi log xi
yi
.

The above distance functions are general for all machine learning
tasks. Difference with these non-parametric distance function,
the goal of distance learning is to adapt some pairwise real-
valued distance function, like the Mahalanobis distance in

13
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Eq. (2.1), to the problem of interest using the information
brought by training examples.

fM(x,x′) =
√

(x− x′)TM(x− x′) (2.1)

Specifically, given n instances {x1,x2, · · · ,xn} in Rd, we aims
at learning the matrix M which is involved in the Mahalanobis
distance function.
In the literature, most classical methods learn the distance
function with the positive semi-definite matrix M in fM in a
weakly-supervised way from pair-wise or triplet-wise constraints
of the following forms:

• Positive / negative pairs (Must-link / cannot-link con-
straints)

S = {(xi, xj) : xi and xj should be similar} (2.2)
D = {(xi, xj) : xi and xj should be dissimilar}(2.3)

• Relative constraints (training triplets)

R = (2.4)
{(xi, xj, xk) : xi should be more similar to xj then to xk}

Suppose that we have the similar and dissimilar pairs of in-
stances (xi,xj) in the set S and D respectively. We would like
to keep the distance of the similar pairs small, i.e. dA(xi,xj) ≤ u

when (xi,xj) ∈ S, while separate the dissimilar pairs as possible,
i.e. dA(xi,xj) ≥ l when (xi,xj) ∈ D, where u and l are constant.

S = {(xi,xj) : dA(xi, xj) ≤ u} (2.5)
D = {(xi, xj) : dA(xi, xj) ≥ l} (2.6)
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For triplet-based constraints, we hope that the distance between
dissimilar pairs should be greater than the distance between
similar pairs with a fixed constant margin α.

R = {(xi, xj, xk) : fM (xi, xk)− fM (xi, xj) ≥ α} (2.7)

A distance learning algorithm aims at finding the parameters
of the distance function such that is best agrees with these
constraints, in an effort to approximate the underlying semantic
metric. This is typically formulated as an optimization prob-
lem [6] that has the following general form.

min
M

L(M,S,D,R) + λR(M) (2.8)

where L(M,S,D,R) is a loss function that incurs a penalty
when training constraints are involved. R(M) is some regular-
izer on the parameters M of the learned distance function and
λ ≥ 0 is the regularization parameter.
The state-of-art distance learning algorithms share the same
framework but formulate different formulas by their choice of
metric, constraints, loss function, and regularizer.
After the distance learning phase, the resulting function is
employed to improve the performance of a distance-based al-
gorithm, which is most often k-Nearest Neighbors (k-NN), but
may also be a clustering algorithm such as K-Means, a ranking
algorithm. Recent years, distance learning is also able of
boosting the performance of deep learning.
The form of a metric is the crucial property of distance learning
algorithms. It usually has categories into three classes:
Global distance function: A single linear or non-linear dis-

tance function, such as the Mahalanobis distance and the
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X 2 histogram distance respectively. For linear distance
function, their expression power is limited, but they are
easier to optimize and less prone to over-fitting. Linear
distance function usually lead to convex formulations, and
thus global optimality of the solution is reachable. For non-
linear distance function, they often give rise to non-convex
formulations and may overfit, but they can capture non-
linear variations in the data, which is common in big data.

Local distance function: Local distance metrics, where mul-
tiple (linear or non-linear) local metrics are learned to
formulate complex problems, such as heterogeneous data
with local structures. They are however easier to be over-
fitting than global methods since the number of parameters
they learn can be very large.

Deep distance function: distance learning functions are for-
mulated as deep Siamese networks to learn a semantic
representation of the input data by distance comparisons.
Like deep learning framework, deep distance learning is
difficult to train with conventional optimization techniques
due to the non-convexity of the problems.

Distance learning has been a hot topic of research in the machine
learning community for two decades and now achieves a consid-
erable level of maturity in terms of theoretical formulation and
practical issues. Except for a few early methods, most distance
learning algorithms are competitive to achieve state-of-the-art
performance on several problems like information retrieval and
ranking. However, each algorithm has its intrinsic properties
(e.g., type of metric, ability to leverage unsupervised data,
good scalability with dimensionality, generalization guarantees)
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and emphasis should be placed on those when deciding which
method to apply to a given problem.
The (squared) Mahalanobis distance, an extension of Euclidean
distance, measures the distance between two points lie on the
special linear space. It is defined as

dM (p1, p2) = (p1 − p2)T M (p1 − p2) , (2.9)

where p1, p2 ∈ Rd are input examples, M is a symmetric
and positive semi-definite d × d matrix. When M = I, the
Mahalanobis distance is equivalent to the Euclidean distance.
Since Xing et al, [128] formulate the distance function learning
problem as an optimization problem and solve it by semi-
definite programming, there are many distance learning al-
gorithms in the literature, which are developed for different
objectives, such as learning global distance function [102],
local distance function [36] or any special structured distance
function [77]. Completed surveys from different perspectives
can be found in [7, 64]. Some algorithms focus on pairs-
wise constraints [129], some solves the optimization problem
with relative constraints [124]. Due to the high complexity
of computation, the majority of DML algorithms target low-
dimensional or intermediate dimensional data up to hundreds of
dimensions.
Several algorithms [90, 93] attempt to meet the challenge of
high-dimensional distance learning. [127] assumes the Maha-
lanobis matrix as low-rank matrix and represented as RRT .
Meanwhile, [90] takes another form of low-rank assumption
that the Mahalanobis matrix is sparse. [132] reduces the
computational complexity during the eigen-decomposition by
picking up the largest eigenvalue and the corresponding eigen-
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vector in a variant Frank-Wolfe algorithm [37]. [23] targets to
the similar objective by taking the top-k eigenvalues and those
corresponding eigen-vectors. [93] simplifies the high-dimensional
distance learning with multiple stages. [81] reformulates the
high-dimensional Mahalanobis matrix as a combination of low-
rank matrices, which are computed from gradient boosting as
weak learners. In this chapter, we also employ the similar
formulation but with different approach to update the low-rank
matrices.
There are plenty of algorithms aiming at learning such distance
function by solving a semi-definite or a quadratic program [124,
128, 102]. Almost all the distance learning algorithms try to
constrain similar data points and to scatter those dissimilar
data points. Early work like [128] formulates this problem as an
optimization problem on the second-order cone, which is costly
solvable. Davis et al. [29], Weinberger et al. [124] and Shen
et al. [102] formulate different kinds of optimization problems,
namely ITML, LMNN, BoostMetric respectively. However,
the common issue that their solutions are computationally
expensive. Very recently, Zadeh et al. [135] propose a new
objective function and give the closed-form solution from the
geometric domain. It is the most promising global distance
learning method because of the computational speed several
orders of magnitude faster than the widely used ITML and
LMNN methods.

2.2 Deep Distance Learning Framework

Siamese neural networks [11, 62] employ pair or triplet neural
network with shared parameters to learn a non-linear function
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Figure 2.1: Siamese network. In triplet framework, the Siamese network
generates the embedding data f(xa), f(x+), f(x−) for the anchor xa, the
positive x+ and the negative x− respectively.

embedding raw high-dimensional data into low-dimensional met-
ric, in which a contrastive loss is trained to distinguish between
similar and dissimilar pairs of data.
Let x ∈ X be an input data and y ∈ {1, . . . , L} is the cor-
responding output label. In the pair-wise framework, Siamese
network is trained with contrastive loss calculated with pairs
of examples (xi, xj) which are either similar or dissimilar. The
objective of learning is that the distances between embedding
vectors of similar examples with some fixed margin should be
smaller than the distances between that of dissimilar examples.
More precisely, it minimizes the following loss:

` (X , Y ) = 1
|P|

∑
(xi,xj)∈P

yi,jg (xi, xj)

+ (1− yi,j) [α− g (xi, xj)]+ , (2.10)

where g (·, ·) represents the output of Siamese network for a
given pair of input. The label yi,j ∈ {0, 1} indicates whether a
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pair (xi, xj) comes from the same class or not. The operation [·]+
denotes the hinge function which takes the positive component.
α denotes a fixed margin. Usually, g is defined as a Euclidean
distance between two embedding data points:

g (xi, xj) = ‖f (xi)− f (xj)‖2 , (2.11)

where f(x) generates the representing features of the given input
x in deep neural network.
The main idea is to construct a Euclidean space to make sure
that positive pairs are close to each other while negative pairs
are pushed away. Although the training process only requires
a weaker form of supervision, the contrastive loss is focused on
absolute distances, where the relative distance is more critical
in many situations.
Similarly, in triplet-wise framework [124], the model is trained
with triplets of examples (xa, x+, x−). The positive and negative
data of a given anchor point xa is denoted as x+ and x−
respectively. It means that xa and x+ comes from the same class
while x− is from different class to xa. The objective of learning
is that the distance between embedding vectors of similar pair
(xa, x+) is less than that of dissimilar pair (xa, x−). Within
the triplet-wise framework, [99] constructs triplets by finding a
semi-hard negative data, which has the smallest distance to the
anchor point xa among all negative data points {x−}.
The triplet loss is defined as the following:

` (X , Y ) = 1
|T |

∑
(xa,x+,x−)∈T

[g (xa,x+) + α− g (xa, x−)]+ , (2.12)

where T is the set of triplets.
However, the performance of deep distance learning algorithms
relies on the quality of positive and negative data pairs. Usually,
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carefully-designed negative data mining is expensive for deep
network because there is no informative negative supervision
during the early stage of the training process.
[104] propose several valuable N -pair batch construction within
less computational burden:

• (N + 1)-tuplet loss from N negative samples:

L
({
xi, x

+
i

}N
i=1 ; f

)
= (2.13)

log
1 +

N∑
i=1

exp
(
f>f+

i − f>f+
i

) (2.14)

• Multi-class N -pair loss:

LN−pair−mc
({
xi, x

+
i

}N
i=1 ; f

)
= (2.15)

1
N

N∑
i=1

log
1 +

∑
j 6=i

exp
(
f>i f

+
j − f>i f+

i

) (2.16)

• One-vs-one N -pair loss:

LN−pair−ovo
({
xi, x

+
i

}N
i=1 ; f

)
= (2.17)

1
N

N∑
i=1

∑
j 6=i

log
(
1 + exp

(
f>i f

+
j − f>i f+

i

))
(2.18)

[106] considers all the positive and negative pairs, they follow
[99] to randomly sample several positive pairs, then select their
semi-hard negative pairs to the training mini-batch.
Finally, they optimize a structured prediction objective on the
lifted problem by converting the vector of pair-wise distances in
the mini-batch to the matrix of pair-wise distance. [103] finds
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an aggressive mining method to improves the discrimination
of model by combing both positive and negative pairs during
the training. [105] finds that minimizing the distance loss for
mini-batches does not necessarily lead to a more discriminative
distance function and propose to consider the global structure
of the distance function during the training.
The following two ideas closely relate to deep distance learning,
but it is difficult to extend these methods into a distributed set-
ting. [68] proposes an effective deep distance learning approach
by carefully partitioning the training dataset. [114] estimates
the distribution of positive and negative data pairs and takes
advantages of a distribution loss for deep distance learning.
Although there is no existing distributed framework designed
for the deep distance learning algorithm, we can easily employ
conventional distributed deep learning frameworks [86, 137] to
boost deep distance learning algorithms. Parameter server
[72] is a widely adopted solution in distributed deep learning
platforms [1, 24] The challenge is how to allocate resources
between workers and parameter servers to fully utilize CPU
and reduce the communication workload around the parameter
servers. [122, 75] explore to reduce the communication demand
in deep learning framework by decentralizing the process of the
gradient aggregation. However, for many deep distance learning
algorithms, a straightforward adoption from a single machine
to distributed environment cannot achieve a remarkable perfor-
mance gain. We will discuss the reasons with more details in
chapter 5.
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2.3 Distance Learning between Probability
Distributions

In optimal transport theory, we employ probability simplex
defined in Eq. (eq:distribution-probability-simplex) to represent
arbitrary probability distributions.

Σn =
p ∈ Rn

+ :
n∑
i=1

pi = 1
 (2.19)

A discrete empirical distribution with weight p and locations
{x1, . . . , xn} is defined as:

µ =
n∑
i=1

piδxi (2.20)

When we consider two empirical distribution µa and µb, the
transport map from µa to µb is defined as:

Π (µa, µb) =
{
π ∈ Rna×nb

+ | π1nb = µa, π
T1na = µb

}
(2.21)

where δxi is the Dirac function at location xi ∈ Rd. pa and pb

are probability simplex.
In the constraint in Eq. (2.21), the π is a sparse matrix with at
most na + nb − 1 non-zero elements, equating the rank of the
constraint matrices.
Derived from the optimal transport problem, the p-Wasserstein
distance between µ and ν is defined as

Wp (µ, ν) =
(

inf
γ∈Π(µ,ν)

∫ ∫
X×X

d (x, y)p dγ (x, y)
)1/p

(2.22)
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where Π (µ, v) is the set of all joint distributions. γ (x, y) relates
how much “mass” must be transported from x to y in order to
transform the distribution µ to the distribution ν. The infimum
in Eq. (2.22) is highly intractable.
When p = 1, W1 is also known as Earth Mover’s distance or
Monge-Kantorovich distance.

W (µ, ν) = inf
P∈Π(µ,ν)

E(x,y)∼P [‖x− y‖] (2.23)

Kantorovich-Rubinstein duality in Eq. (2.24) is employed to
solve this problem.

W (µ, v) = sup
‖f‖L≤1

Ex∼µ [f (x)]− Ex∼v [f (x)] (2.24)

where the supremum is over all the 1-Lipschitz functions.
The Kantorovich-Rubinstein duality with discrete distributions
is defined as:

W p
p (µ, ν) = max

α ∈ Rn, β ∈ Rm

αi + βj ≤ d (xi, yj)p

αTa+ βT b (2.25)

When the points are fixed, the natural choice for the weights is
pai = µa (Vi) and pbj = µb (Wj). Where Vi and Wj represent the
Voronoi cells of the point xai and ybj respectively.
Given a finite family of distinct points (xi)i ⊂ Rd, the Voronoi
cells are defined as follows:

Vi = {x ∈ Rd : |x− xi| ≤ |x− xj| ∀j} (2.26)
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The most promising application about Wasserstein distance
between probability distributions is Generative Adversarial Net-
works (GAN). The GAN defines two competing networks: The
generator network G produces a data x from a source of noise
z ∼ Pz. The discriminator network D is trained to distinguish
between the generated fake sample and a real sample. Formally,
the GAN defines the following minimax objective:

min
G

max
D

Exr∼Pr [log (D (xr))] + Exg∼Pg [log (1−D (xg))] ,(2.27)

where Pr and Pg denote the real distribution and the generated
distribution respectively. Practically, the expectations are em-
pirically evaluated using samples. Unfortunately, well-learned
discriminators may suppress the training of generators. We need
to well tune the rounds of discriminator updates after every
generator update to ease this training instability.
To enhance the training stability, [4] introduces Wasserstein-1
distance to GAN framework. The Wasserstein distance is made
known as a more geometric-aware cost function for learning
the distributions supported by the low-dimensional manifold,
which is a widely adopted assumption in the feed-forward neural
network.
Wasserstein GAN (WGAN) employs Kantorovich-Rubinstein
duality of Wasserstein-1 distance, which relies on 1-Lipschitz
continuity of the discriminator:

W1 (Pr,Pg) = sup
‖Dθ‖L≤1

Exr∼Pr [Dθ (xr)]− Exg∼Pg [Dθ (xg)] , (2.28)

where Pg ∼ Gϑ (Pz). To approximate the supremum in
Eq. (2.28), [4] proposes to clip the parameters θ to enforce the
discriminator Dθ to be 1-Lipschitz.
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Currently, the Wasserstein GAN approach is considered as the
state-of-the-art method due to the theoretical contributions
and competitive performance. However, to approximate the
1-Lipschitz constraint is very challenging in the Kantorovich-
Rubinstein dual form of the Wasserstein-1 distance function.
[48] introduces a soft penalty for the violation of 1-Lipschitzness
(WGAN-GP). The gradient is evaluated as a linear interpolation
between the training data and generated samples as a proxy to
the optimal coupling. The gradient penalty only takes effect on
the observed data {x}, the other support domain is not covered.
[123] follows WGAN-GP to enforces the Lipschitz continuity
over all the data manifold and its surrounding regions.
An alternative way to solve the problem in Eq. (2.22) is
to minimize the primal of optimal transport. The primal
formulation is numerically stable because it does not involve
differentiating the dual solution. [8] proposes to minimize
a regularized primal form of optimal transport problem. [89]
explores the theoretical properties of such regularization under
Wasserstein GANs framework. [33] employs random projection
to approximate the Wasserstein distance directly. The dis-
criminator is not mandatory in their approach. [44] proposes
a divergence measurement based on the Sinkhorn algorithm,
which is originally designed for discrete optimal transport with
entropic regularization.
To tackle with parallel computation, [20] proposes an ensemble
method of pairs of the generator and discriminator, which can
be trained in parallel naturally. However, the communication
demand is severe, because the “messenger” discriminators and
generators with a massive number of parameters need to be
synchronized among workers.



Chapter 3

Semi-synchronous Algorithm
for Global Distance Learning

Distance learning is an effective similarity learning tool to
learn a distance function from examples to enhance the model
performance in applications of classification, regression, and
ranking and so on. Most distance learning algorithms need
to learn a Mahalanobis matrix, a positive semi-definite matrix
that scales quadratically with the number of dimensions of
input data. This brings the huge computational cost in the
learning procedure, and makes all proposed algorithms infeasible
for extremely high-dimensional data even with the low-rank
approximation. Differently, in this thesis, we first present the
primitive knowledge of distance learning and then demonstrate a
distributed solution of a viral distance learning algorithm called
Information-Theoretic Metric Learning (ITML). More specifi-
cally, we utilize the property that each positive semi-definite
matrix can be decomposed into a combination of rank-one and
trace-one matrices and convert the original sequential training
procedure into a parallel one. In most cases, the communication
demands of the proposed method are also reduced from O(d2)
to O(cd), where d is the number of dimensions of the data

27
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and c is the number of constraints in distance learning and
can be smaller than d by appropriate selection. Moreover
importantly, we present a rigorous theoretical analysis to upper
bound the Bregman divergence between the sequential algorithm
and the parallel algorithm, which guarantees the correctness and
performance of the proposed algorithm.

3.1 Problem and Motivation

Learning an appropriate distance function is an important topic
in both machine learning and data mining. Distance learning
has been widely applied in many problems, such as image
retrieval [65], face recognition [65], bioinformatics analysis [61],
software error detection [29, 64]. Earlier publications formulate
the learning problem as a convex optimization problem by maxi-
mizing the sum of the difference between the dissimilar instances
while restricting the distance between the similar instances to
be small [128]. However, solving such problem by semi-definite
programming (SDP) solver or eigenvalue decomposition is time-
consuming and poorly scalable to medium and high dimensional
data. Recent developments such as Large Margin Nearest Neigh-
bors (LMNN) [32, 124], BoostMetric [102] and Information-
Theoretic Metric Learning (ITML) [29] try to speedup distance
learning by the special structure of Mahalanobis matrix, partial
eigenvalue decomposition or low-rank approximation.
However, Most of the existing algorithms are incapable of
handling high-dimensional data. LMNN is very easy to overfit
for high-dimensional data. BoostMetric employing the max
eigenvalue decomposition needs a huge number of iterations
to converge for high-dimensional data. ITML conducts heavy



CHAPTER 3. SEMI-SYNCHRONOUS ALGORITHM FOR GDL 29

matrix multiplication which is very time-consuming for high-
dimensional data.
For other earlier work, is a popular solution for distance
learning problem but it is very easy to overfit especially for
high-dimensional data. [100] relies on the special structure
of Mahalanobis matrix. [102] is an efficient distance learning
solution only related with the max eigenvalue decomposition,
however, it needs a huge number of iterations to converge for
high-dimensional data.
In the high dimensional setting, most existing work mainly
exploit the low-rank structure of the learned matrix or the
sparsity of the covariance matrix. Instead of learning the full
rank matrix A, [28] factorizes the matrix A as RRT and learned
a low-rank approximation of the Mahalanobis matrix. [90]
imposes a different prior on learning the Mahalanobis distance
based on the sparsity of sample concentration matrix Σ−1,
where Σ is the covariance matrix of samples. [45] proposed
the low dimensional projection to extract a compact feature
representation for originally high dimensional data. However,
all the above properties may not hold for highly complex data
in real-life applications. Although each of these algorithms
was shown to yield excellent performance in classification and
clustering tasks, they do not generalize learning an arbitrary
metric, parameterized by an arbitrary matrix. To the best of
our knowledge, it is still nontrivial to learn the approximated
distance between two instances with high dimensionality if the
low-rank property is not satisfied. Hence, how to learn the dis-
tance without highly depending on the low-rank assumption still
requires sophisticated designs and experimental explorations.
Meanwhile, with large volumes of data available in many real life
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applications, the problem of scalability becomes the key concern
in designing many machine learning algorithms. Most of the
existing work in scalable machine learning relies on approxima-
tion methods and parallel computing schemes. Specifically, in
term of the algorithm aspect, most existing work mainly focus
on stochastic gradient descent method for convex optimization
problem [2, 113, 141] or proximal descent method for non-
convex problem [22, 73, 107]. Few efforts have been made on
solving the semi-definite programming problem for matrices in
a distributed cluster, especially for distance learning problem.
Very recently, [71] proposed a distributed approach to speedup
the computation of distance learning problem. Unfortunately,
both of its methodology and proofs heavily rely on the low-rank
property of Mahalanobis matrix. Forcing low-rank assumption
without understanding the data may destroy the completeness
of the data and yield sub-optimal performance.
To address the above two challenges, taking advantage of
powerful multi-thread cluster, we will explore to design a general
parallel approach to solve distance learning problem for high-
dimensional data without low-rank assumption about the Maha-
lanobis matrix. In this chapter, we will design a scalable solution
to speedup the training of ITML, which repeats Bregman
projection [10]. By decomposing the Mahalanobis matrix into a
linear combination of rank-one matrices, and dispatching them
into different machines like a divide-and-conquer scheme, our
implementation performs Bregman projection on these rank-one
matrices without low-rank assumption about the Mahalanobis
matrix. Finally, after iterations, the Mahalanobis matrix can
be reconstructed from these rank-one matrices to calculate the
pair-wise distances.
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In summary, the proposed work contributes on the following
aspects:
• By making a trade-off between accuracy and running time,
we first propose a scalable approach to learn distance
functions from high-dimensional data without low-rank
assumption.

• We compare the proposed method with the original ITML
method from a theoretical perspective and give an upper
error bound brought by our parallel update.

• The experiments conducted on the data with different
scales demonstrate the correctness and the scalability of
our method.

3.2 Methodology

3.2.1 Information-Theoretic Metric Learning

We use the same formulation introduced in section 2.1 of
Chapter 1.
ITML is one of the start-of-art algorithm for distance learning.
It brings an assumption that the data come from multivariate
Gaussian distribution, which is very common in most applica-
tions. Under this assumption, the Mahalanobis distance matrix
A can be expressed as the inverse of the covariance matrix of
the multivariate Gaussian distribution. Because the probability
density function of multivariate Gaussian can be reformulated as
p(x;A) = 1

Z exp(−1
2dA(x, µ)). Hence, the original DML problem

is expressed as finding a proper multivariate Gaussian by min-
imizing difference relative entropy with the initial Mahalanobis
distance function. The objective function is reformulated as:
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min KL(p(x;A0)||p(x;A)
s.t. dA(xi, xj) ≤ u (i, j) ∈ S

dA(xi, xj) ≥ l (i, j) ∈ D
where,

KL(p(x|µ0, A0)||p(x|µ,A)

=
∫
p(x|µ0, A0) log p(x|µ0, A0)

p(x|µ,A) dx (3.1)

A0 is usually assigned to the identity matrix.
More specifically, the KL divergence in Eq. (3.1) can be ex-
pressed as a convex combination between a Mahalanobis dis-
tance between means and the Bregman divergence with respect
to function φ(A) = − log det(A) between covariance matrices
[34]:

KL(p(x|µ0, A0)||p(x|µ,A) = 1
2Dφ(A,A0) + 1

2dΣ−1(µ0, µ) (3.2)

where the Bregman divergence is defined as:

Dφ(A,A0) = φ(A)− φ(A0)− tr
(
∇φ(A0)T (A− A0)

)
(3.3)

With the assumption that the mean vectors of two Gaussian
distribution are the same, ITML formulates the DML problem
as:

min Dφ(A,A0)
s.t. tr(A(xi − xj)(xi − xj)T ) ≤ u, (xi,xj) ∈ S

tr(A(xi − xj)(xi − xj)T ) ≥ l, (xi,xj) ∈ D
(3.4)
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This problem is then cast into a particular Bregman Matrix
Divergence problem [66], which contains global optimal solution
and can be solved efficiently by Eq. (3.5) without eigenvalue
computations or semi-definite programming.

At+1 = At + βAt(xi − xj)(xi − xj)TAt (3.5)

where β is a scalar for the learning rate. The actual distance
between a pair of data sample (xi, xj) in each iteration is
computed from:

p(t) = (xi − xj)TAt(xi − xj) (3.6)

3.2.2 Distributed Distance Learning

The algorithm (see details in [29]) repeats the Bregman projec-
tion in Eq. (3.5) with different constraints sequentially. For each
projection, it involves the computation on At ∈ Rd×d, where
d is the number of dimensions of the input data. When d is
large enough, the running time of the Bregman projection in
a single PC is not acceptable. That why the previous work
with sequential update is only capable of handling the data with
O(102)-dimension.
In this chapter, we try to conduct the Bregman projection
with the power of parallel computation. The key step in
Eq. (3.5) is to update the Mahalanobis matrix which is a d× d
positive semi-definite matrix. Typically, there are two roads
to parallel this update: 1) compute the matrix multiplication
in Eq. (3.5) directly in a distributed way. For example, the
matrix is decomposed into blocks which are dispatched into
different machines. When the local computation with respect
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to blocks finishes, the intermediate results are collected to
form a complete matrix update. The drawback of this kind
of approaches is obvious that there is heavy communications
demand for carrying out the data in blocks; 2) design a Hogwild!
[95]-like approach to update the Mahalanobis matrix based on
partial information simultaneously. Unfortunately, the positive
semi-definite property of Mahalanobis matrix is difficult to hold
from multiple partial updates.
In order to hold the positive semi-definite property, we borrow
the idea from [102] that any positive semi-definite matrix can
be decomposed into a linear combination of rank-one matrices.
Therefore, we have proposed a novel parallel solution for DML
problem by reformulating the Mahalanobis matrix A as A = I+∑
i αiziz

T
i where zi ∈ Rd. By observing the update in Eq. (3.5),

it is easy to find that At(xi − xj) is a vector with d dimension
and At(xi − xj)(xi − xj)TAT is a rank-one matrix. Hence, we
can concrete the formula of A by summing over the Bregman
projection through all pairs of constraints in Eq. (3.7)

At+1 = I +
C∑
i=1

βi(t)zi(t)zTi (t) (3.7)

where, I is the unit matrix with the size of d×d, C is the number
of pairs of constraints, β is the step from Bregman projection
in Eq. (3.5) and zi(t) = Atci. ci = xj − xk for the i-th pair
of constraint (xj, xk). Actually, in the proposed framework, we
only store z rather than At because At is a huge matrix when
d becomes large. Consequently, the update of z is changed to
Eq. (3.8)
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zk(t+ 1) = At+1ck

=
I +

C∑
i=1

βi(t)zi(t)zTi (t)
 ck (3.8)

Based on the original algorithm in [29], βi(t) is a function of pi(t)
in Eq. (3.6) and the upper bound or lower bound of constraints
(see the details in Algorithm 1). The key step of updating
βk(t) is to compute the actual distance pk(t). Combined with
Eq. (3.7), the actual distance for the k-th constraint ck can be
expressed in Eq. (3.9)

pk(t) = cTkAtck

= cTk

I +
C∑
i=1

βi(t)zi(t)zTi (t)
 ck

= cTk ck +
C∑
i=1

βi(t)cTk zi(t)zTi (t)ck (3.9)

Due to the separable property of the Mahalanobis matrix A in
Eq. (3.7), we can dispatch the tasks for updating z in Eq. (3.8)
and p in Eq. (3.9) into C workers which is an abstract concept
representing the parallel executors, such as process in a single
machine or different machines.
In our framework, worker k needs to receive all the update of z
from other workers at the previous iteration first, then computes
the update for the next iteration.
Overall, each work sends only one vector z rather than the
matrix βA(xi−xj)(xi−xj)TA and receive (C−1) times z rather
than the whole Mahalanobis matrix in the original sequential
algorithm. Hence, the communications demand for each work
reduces from O(d2) to O(cd). When the number of dimensions
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exceeds the number of constraints, which is a very commonly
happened situation for high-dimensional distance learning tasks,
the demand of communications reduces significantly compared
with the original ITML algorithm.
Furthermore, when the number of constraints keeps relative
small, our work is equivalent to an ITML-based method with
low-rank assumption about the Mahalanobis matrix. If the
number of constraints becomes large, even larger than the num-
ber of dimensions, our method still works although the cost for
communications will increase inevitably. Therefore, our method
is a general parallel approach no matter the Mahalanobis matrix
is low-rank or not.

3.2.3 Implementation

We implement our method on Apache Spark [136], which is
a general propose, high-efficient, distributed in-memory com-
puting platform. It provides a flexible data structure called
Resilient Distributed Dataset (RDD) to support parallel com-
puting on RDDs. The data or parameters in RDDs are
cached in memory instead of loading from disk at each iteration
like Hadoop 1. Usually, the content of RDD is distributed
in different machines and will be re-dispatched automatically
without manual operation. Therefore, Spark is suitable for
developers who only need to provide high-level logic to parallel
the algorithm instead of caring about many details in a cluster.
In our implementation, the list of z and the corresponding β are
stored in an RDD. For each element of this RDD, we assign a
“mapper” function to compute the update of z in Eq. (3.8) and
the partial distance in Eq. (3.9) . All these “mapper” functions

1https://hadoop.apache.org/
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Figure 3.1: Framework of parallel distance learning on Apache Spark

will generate a new RDD to store the new z for next iteration.
We also declare a constant “Broadcast” variable which is shared
for all workers to store constraints c, because the computation
of new z in each worker needs its corresponding c and the
computation of partial distance iterates all constraints. In most
cases, the “Broadcast” variable is cached in memory and can
be fetched efficiently. Finally, another special component in
Spark, called “Accumulator” will be created to collect the partial
distance from each worker.
With the help of the global “Broadcast” and “Accumulator”, the
whole distributed algorithm is conducted in bulk synchronous
parallel (BSP) [9], which guarantees that all parameters will
be updated within the same iteration. More specifically, the
employment of “Broadcast” and “Accumulator” in our im-
plementation illustrated in Fig. 3.1 significantly reduce the
redundant computation of the distance between each pair of data
sample under the learned metric space. Because the procedure
of computing distance is divided into blocks which are shared
among all workers.
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3.3 Theoretical Analysis

In this section, we will analyze the difference and give the upper
bound of the proposed algorithm compared with the sequential
algorithm in [29]. Because the result of the parallel computation
of z in our algorithm may be different with the sequential version
of the original algorithm.
First, we will compare the difference between the sequential
version and the parallel version. In sequential order, the
algorithm conducts C times Bregman projection to cover all
pairs of constraints. After C iterations since iteration t, the
Mahalanobis matrix At+C can be expressed as:

At+C = At +
C∑
i=1

βiAt+i−1cic
T
i A

T
t+i−1 (3.10)

For parallel version algorithm, if we rearrange the order of
computation like a series of sequential updates, one iteration
in the parallel version algorithm is equal to C iterations in a
sequential algorithm but with the same At rather than At+i−1.
The formula of parallel algorithm is expressed in Eq. (3.11)

Ât+C = At +
C∑
i=1

βiAtcic
T
i A

T
t (3.11)

By observing the difference between Eq. (3.10) and Eq. (3.11),
we can find that the Bregman projection related with the i-th
constraint in parallel algorithm is applied on a i-delayed Maha-
lanobis matrix. Figure 3.2 illustrates the difference between the
normal update and the delayed update.
For convenience, we use the sequential version with delayed
update to represent the parallel algorithm.

Theorem 1 Delayed Update under Bregman Divergence
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Figure 3.2: Delayed vs. normal versions of projection

Assume the difference of matrices is measured by the Breg-
man divergence with respect to LogDet divergence φ(X) =
− log det(X). The minimizer of Dφ(A0, A) after T iterations
is A∗. The length of convergence path is denoted as Ω. The
upper error bound of Algorithm 1 is

R[A] :=
T∑
t=1

Dφ(At, A
∗) ≤ 1

βmin
Dφ(A∗, I) + 1

2LΩ (3.12)

Proof: From the definition of Bregman divergence and the
convexity of function φ(A) we know:
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R[A] =
T∑
t=1

Dφ(At, A
∗)

=
T∑
t=1

φ(At)− φ(A∗)− tr(∇φ(A∗)T (At − A∗)

≤
T∑
t=1

φ(At)− φ(A∗)

≤
T∑
t=1

tr
(
∇φ(At)T (At − A∗)

)

=
T+τ∑
t=τ

tr
(
λTt−τ(At − A∗)

)

From Lemma 10 in [67], we have easily derived the matrix
version as:

tr
(
λTt−τ (At − A∗)

)
≤ 1
βt−τ

(Dφ(A∗, At)−Dφ(A∗, At+1))

+ βt−τ
||λt−τ ||2?

2
≤ 1
βmin

(Dφ(A∗, At)−Dφ(A∗, At+1))

+ βt−τ
||λt−τ ||2?

2 (3.13)

where || · ||? is the Fenchel-Legendre dual norm [101].
Sum up these inequality in Eq. (3.13) as :
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T+τ∑
t=τ

tr
(
λTt−τA− A∗

)

≤ 1
βmin

T+τ∑
t=τ

(Dφ(A∗, At)−Dφ(A∗, At+1))

+
T+τ∑
t=τ

βt−τ
||λt−τ ||2?

2

= 1
βmin

(Dφ(A∗, At)−Dφ(A∗, AT )) +
T+τ∑
t=τ

βt−τ
||λt−τ ||2?

2

≤ 1
βmin

Dφ(A∗, I) + 1
2

T∑
t=0

βt||λt||2?

≤ 1
βmin

Dφ(A∗, I) + L

2
T∑
t=0

βt||λt||?

≤ 1
βmin

Dφ(A∗, I) + 1
2LΩ

When t ≤ τ , At = A0 = I and L = ∑T
t=0 βt||λt||? is the length

of the path of the Bregman projection in the original algorithm
without any delayed update. Typically, L has a upper bound Ω
as long as the original algorithm converges in the convex set.

3.4 Evaluations

In this section, we first demonstrate the scalability of our
proposed DITML algorithm on Apache Spark by comparing it
with 1) the original ITML algorithm and 2) its implemented in
conventional distributed scheme on high-dimensional data from
four synthetic datasets and the ImageNet dataset. The k-NN
classifiers (k = 1 and k = 5) are employed to evaluate the
accuracy of the learned distance metric space.
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3.4.1 Experimental Settings

All implementations are written in Scala 2.10 and run on Apache
Spark 1.6.0 with YARN as the cluster controller on 32 physical
machines with 4TB memory and 668 executors in total. All 32
physical machines are inter-connected with 10 Gbps network
switch. To make a fair comparison, we also implement the
original ITML with the help of distributed matrix Scala classes
in Spark 1.6.0.

3.4.2 Synthetic Datasets

We generate four sets of synthetic datasets on binary classifi-
cation with dimensions in 10[2:1:5] to test the scalability of our
proposed framework with respect to the number of dimensions.
More specifically, we employ the Scala object “KMeansData-
Generator” of “MLLib” package in Apache Spark to evenly
generate the synthetic data following the normal distribution.
The number of generated data for each dataset is one-tenth of
the corresponding dimension. That is, the sizes of the datasets
are 10, 100, 1000, 10000, respectively.
For each dataset, we randomly sample pairs of data points from
the same class to generate similarity constraints, where the
upper bound u is assigned to the Euclidean distance between
the pairs. The dissimilarity constraints are sampled from pairs
of data points belonging to different classes, where the lower
bound l is assigned to the Euclidean distance between the
dissimilar pairs. Noted that, the number of similarity con-
straints is the same as the number of dissimilarity constraints,
which is a common setup for distance learning. Hence, we
collect 10, 100, 1000, 10000 constraints, respectively, for these



CHAPTER 3. SEMI-SYNCHRONOUS ALGORITHM FOR GDL 43

four synthetic datasets.

3.4.3 ImageNet Dataset

For the ImageNet dataset, we randomly choose 50 pictures
from two randomly selected classes, where each of them has 25
pictures as training data. DeCAF features [35], which capture
most of the images information, are employed to represent the
images in the experiment. The DeCAF features are extracted
from a deep convolutional network following the procedure
in [93]. We then obtain 51,456 DeCAF features for each image
in the test.
To determine the upper bound u and the lower bound l, we use
the median value of Euclidean distance as a threshold for all
pairs of data following the standard setup in [7]. For the pair
of data belong to the same class, if the Euclidean distance is
greater than the median value, then we assign the Euclidean
distance as the upper bound of the similar pair, else assign
the median value as the upper bound of the similar pair. For
the pair of data belong to different classes, the rule is similar
to that for similar pairs. If the Euclidean distance is greater
than the median value, then we assign the median value as the
lower bound of the dissimilar pair, else we assign the Euclidean
distance as the lower bound of the dissimilar pair. Overall, we
have generated 1225 pair of constraints to train the Mahalanobis
matrix in DML problem.

3.4.4 Scalability of Our Framework

Figure 3.4 shows the running time of our method with respect to
the original ITML execution on the Spark cluster. We have the
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following observations: 1) When the number of workers is less
than 400, the total running time decreases significantly when the
number of workers increases. 2) When the number of workers
exceeds 400, the communication dominates the whole process
and the speedup is not obvious when new workers come.
In order to display the advantage of the proposed DITML
algorithm on the scalability issue compared with the original
ITML, we implement the original ITML in Spark and transform
the sequential execution of ITML to a distributed way by
involving a distributed matrix class called “BlockMatrix”, which
is a primitive data type in “MLLib” package in Apache Spark.
Figure 3.3 displays direct comparisons of two kinds of ITML and
the advantage of the proposed DITML algorithm compared with
the original ITML on the execution time is significant. Overall
fig. 3.3 and fig. 3.4 illustrate a good scalability of our method.

3.4.5 Performance of The Learned Metric Space

For the performance issue, Table 3.1 shows the accuracy of k-
NN classification on the 4 synthetic datasets and the ImageNet.
We use the Mahalanobis matrix learned from our method to
measure the distance between two samples, which is used in k-
NN classification. Compared with the standard k-NN method
without changing the metric, the proposed method enhances the
accuracy of k-NN classification from 0.682 to 0.83 on ImageNet
dataset.
The comparison between ITML and the proposed method
displayed in Fig. 3.5 shows both of the algorithms will converge
with the similar number of iterations. In these experiments, the
slack variable γ is assigned to 100. Table 3.1 also demonstrates
the proposed method is able to improve the performance of k-NN
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algorithms iterate over all the constraints.

classification and the accuracy gap between these two algorithms
is relatively small.

3.5 Summary

In this chapter, based on the observation that the positive
semi-definite Mahalanobis matrix can be decomposed into a
series of rank-one matrices, we have developed a parallel dis-
tance learning algorithm called DITML in order to learn the
proper distance function from high-dimensional data without
low-rank approximation, which is infeasible for previous DML
algorithms. Furthermore, the performance gap between the
proposed method and the original ITML method is bounded
from the theoretical perspective and can be ignored in actual
experiments.

2 End of chapter.
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ALGORITHM 1: Parallel Distance Learning
Input: S : set of similar pairs; D: set of dissimilar pairs; u, l :

distance thresholds; γ : slack parameter
Output: A : Mahalanobis matrix
A = I, C = |S|+ |D|
for constraint (xp, xq)k, k ∈ {1, 2, . . . , C} do

λk ← 0
dk ← u for (xp, xq)k ∈ S;
otherwise dk ← l

ck ← (xp − xq)k, zk ← ck
end
while β does not converge do

forall worker k ∈ {1, 2, . . . , C} do
zk = ck +∑C

i=1 βiziz
T
i ck

p← cTk zk
if (xp, xq)k ∈ S then

α← min
(
λk,

1
2

(
1
p
− γ

dk

))
β ← α

1−αp
dk ← γdk

γ+αdk

else
α← min

(
λk,

1
2

(
γ
dk
− 1

p

))
β ← −α

1+αp
dk ← γdk

γ−αdk

end
λk ← λk − α
zk ←

(
I +∑C

i=1 βiziz
T
i

)
ck

send zk to other workers.
end

end
A = I +∑C

i=1 βiziz
T
i
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k-NN ITML + k-NN Proposed DITML + k-NN
Synthetic-102 0.900 0.930 0.920
Synthetic-103 0.940 0.962 0.957
Synthetic-104 0.933 0.938 0.938
Synthetic-105 0.812 0.923 0.900
ImageNet 0.682 0.835 0.830

Table 3.1: Accuracy of k-NN classification when k = 4



Chapter 4

Local Geometric Distance
Learning for Information
Retrieval

Conventional learning-to-rank (LtR) algorithms focus on query
independent model, in which query and document do not lie
in the same feature space, and the rankers rely on the feature
ensemble about query-document pair instead of the similarity
between query instance and documents. However, existing
algorithms do not consider local structures in query-document
feature space, and are fragile to irrelevant noise features. In
this chapter, we propose a novel Riemannian metric learning
algorithm to capture the local structures and develop a robust
LtR algorithm. First, we design a concept called ideal candidate
document to introduce distance learning algorithm to query-
independent model. Previous distance learning algorithms
aiming to find an optimal metric space are only suitable for
query-dependent model, in which query instance and documents
belong to the same feature space and the similarity is directly
computed from the metric space. Then we extend the new
and extremely fast global Geometric Mean Metric Learning

50
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(GMML) algorithm to develop a localized GMML, namely L-
GMML. Based on the combination of local learned distance
functions, we employ the popular Normalized Discounted Cu-
mulative Gain (NDCG) scorer and Weighted Approximate Rank
Pairwise (WARP) loss to optimize the ideal candidate document
for each query candidate set. Finally, we can quickly evaluate
all candidates via the similarity between the ideal candidate
document and other candidates. By leveraging the ability of
distance learning algorithms to describe the complex structural
information, our approach gives us a principled and efficient way
to perform LtR tasks. The experiments on real-world datasets
demonstrate that our proposed L-GMML algorithm outperforms
the state-of-the-art distance learning to rank methods and the
stylish query-independent LtR algorithms regarding accuracy
and computational efficiency.

4.1 Problem and Motivation

In many information retrieval systems, especially Web search,
users expect to obtain the most relevant documents according
to users’ query phrase or document. This task is technically
formulated as a ranking problem. Most of the Web search en-
gines exploit this ranking task based on learning-to-rank (LtR)
techniques [79]. In the LtR framework, a machine learning
algorithm is typically employed to derive a ranking model
about document collection from a training subset of documents
with labels or partial order. After the supervised or semi-
supervised learning procedures, the ranking model is expected to
retrieval top-k (ordered) relevant documents from the candidate
collection when a query is given.



CHAPTER 4. LOCAL DISTANCE LEARNING FOR IR 52

In practice, search engines develop the LtR model in two stages:
(i) candidate retrieval and (ii) candidate re-ranking [80]. In the
first stage, search engine retrieves from the inverted document
repository a sufficiently large set of relevant candidate docu-
ments Dq matching a user’s query. It is used to avoid applying
the ranking model to all documents possibly matching a user’s
query. This stage usually requires that the size of candidate
set is much larger than the number of the relevant URLs to
be included in the returned page. Based on the candidate
document set Dq obtained in the first stage, Web search engines
reformulate the documents with features extracted from the
query-document pair and hide query features, then employ the
LtR model without the dependency of query instance to score
and re-rank the document collection Dq. Finally, search engines
return the top-k documents to the user.
In Web search engine, the time-budget of this two-stage frame-
work is usually limited. Therefore, strongly motivated by the
time budget consideration, the current two most efficient and
the state-of-the-art methods are based on the additive ensemble
of regression trees, namely Gradient-Boosted Regression Tree
(GBRT) [40] and λ-MART [16]. These two kinds of methods
are capable of meeting the time requirement with acceptable
accuracy even when thousands of regression tree are evaluated
for each document. However, one of the drawbacks of this
line of methods is that when the input samples contain an
enormous amount of non-informative features, many methods
fail to identify the most relevant features. Therefore, researchers
are still trying to devise techniques and strategies to find a bet-
ter way of combining features extracted from query-document
pairs through discriminative training to accelerate the training
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process for document ranking without losing in quality [41, 131].
Another perspective of the ranking problem is to seek the best
similarity measurement and develop the corresponding efficient
algorithm. These approach aims to optimize the accuracy in the
first stage to find candidate documents or even directly return
the top-k documents with an order. Concerning accuracy, the
similarity-based models for a ranking problem can be classified
into three categories from the formulation of the loss function:
point-wise, pairwise and list-wise loss functions [15]. Practically,
the pairwise loss function tends to be more efficient for training
and have been widely adopted by large Web search engines [15].
The pairwise similarity motivates that how to apply the classical
distance learning or similar learning methods to the ranking
problem [21]. The distance learning algorithms aim to find a
better distance function than Euclidean distance to measure the
pairwise similarity. The advantage of such distance-learning-to-
rank [84] framework has two folds: (1) the distance functions
often preserves the nearest neighborhood information, which is
the perfect structure to conduct ranking; (2) a proper distance
function containing the structural information of the document
collections in the document space is useful for reducing the
over-fitting and improving the robustness to noise features [64].
Therefore, the distance-learning-to-rank methods [76, 77, 84]
typically enjoy higher accuracy. Nevertheless, unfortunately,
the disadvantage of distance-learning-to-rank also has two folds:
(1) many distance learning algorithms [29, 124] are degraded
by its extremely high computational expense; (2) the similarity
measurement is not suitable for LtR because we can not estimate
the similarity between query and documents with features
extracted from other domain knowledge.
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In this chapter, we focus on improving the ranking accuracy at
the second stage in the search engine and attempt to provide a
new query-independent model for LtR task. Different from the
existing research on how to combine features extracted from
other domains, we try to learn an optimal representation of
these features via distance learning algorithm. To adopt query-
dependent distance learning framework to a query-independent
model, we propose a concept called ideal candidate document,
which represents a perfect match for a given query. With the
help of this concept, we can quickly evaluate all candidate doc-
uments and sort them by calculating the distance based on the
optimal distance function between the ideal candidate document
and other documents. Same with the query-dependent model,
the shorter distance leads to a higher relevance to the query.
Since features from different domains generate local structure
on the whole feature space, in order to preserve more local
information and avoid over-fitting, we develop a novel local
distance learning framework for ranking with high efficiency and
accuracy. Our localized distance learning algorithm extends
from the state-of-the-art global distance learning algorithm
called Geometric Mean Metric Learning (GMML) [135], and we
apply Weighted Approximate Rank Pairwise (WARP) loss to
optimize the distance function around the ideal document from
the combination of several anchor documents.
We summarize our main contributions as follows:

• To the best of our knowledge, we are the first to extend ge-
ometric mean metric learning algorithm to a local distance
learning approach in order to capture the local structures
for LtR problem.
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• We propose a novel ideal candidate document concept to
transform distance-learning-to-rank framework from query
dependent model to query independent model, which brings
wider applications for distance learning and also improves
the accuracy of classical LtR task.

• We conduct extensive experiments to demonstrate that our
method outperforms the state-of-the-art query-dependent
distance-learning-to-rank algorithms and query-independent
LtR methods both in the accuracy and the computational
complexity.

4.2 Methodology

In the information retrieval setting, a search engine maintains a
collection of candidate examples D. Given a query q, the search
engine returns the top ranked subset of documents

{
p ∈ Rd

}
⊂

Dq ⊂ D from the collection with order, ranked by a specific
ranking model fq(p).
According to the formulation of the loss function, the LtR meth-
ods are categories into three folds: (1) pointwise loss approach,
(2) pairwise loss approach and (3) listwise loss approach.
For pointwise loss function, Li et al. [74] cast the ranking
problem to a multi-class classification problem. The training
process relies on enough labeled information, which is not always
easy to satisfy. Pairwise loss approach such as RankNet [14],
RankBoost [38] focus on the relative order, which is capable
of being adapted to classification problem. In the listwise loss
approach, a relevance label l related with the query for ground
truth is usually bound to the document p. Cao et al. [18] first
propose to find the optimal permutation to minimize the listwise
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loss function. McFee [84] proposes a similar objective, but the
different solution from the distance learning methods.
The majority of LtR methods follows listwise loss function.
Currently, the most popular methods [16, 30, 40] come from
the combination of an ensemble of trees like random forest and
the boosting-like methods [38]. Based on multiple decision trees,
this kind of methods gains an accepted level of accuracy.
There are two different roadmaps to conduct the LtR tasks from
the distance learning perspective: (1), McFee [84] and Lim et
al. [76, 77] learn global distance function with Positive Semi-
Definite (PSD) constraint on the metric parameter. They belong
to the application of the standard distance learning algorithm.
(2), Chechik et al. [21] and Liu et al. [78] remove PSD constraint
and employ the bilinear model to measure the similarity between
two data points. Usually, without PSD constraints, the bilinear
model easily leads to over-fitting. However, PSD constraint
brings a tremendous amount of computation.
In most cases, global distance learning relies on a learned
PSD matrix, which is not only computational expensive in
high-dimensional case but not reasonable for retrieval ranking
problem. In the LtR framework, the local similarity is far
more important than the dissimilar information because we
aim at ranking the relevant documents around a user’s query.
Therefore, several important local distance learning approaches
are related to our work. Wang et al. [118] parameterizes the
weight function of each data point. The approach enhances the
model complexity but brings extra computation. Hauberg et
al. [51] provide the theoretical analysis about the optimal weight
function. However, the calculation of the geodesics is extremely
expensive.
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Figure 4.1: General framework of proposed L-GMML for ranking. Different
gray levels in query test represent the relevant level of the document

In the LtR problem, a ranked list of the relevant documents is
returned for a specific user’s query. In this situation, we can
assume without losing generality that all relevant documents
should be closer to an unreal document than other irrelevant
documents. This unreal document should be related to the
query. Therefore, although the query instance is not accessible
in the document feature space, we can still construct this unreal
candidate document to represent the query in the feature space
of the document. In our paper, this unreal but perfect-matching
document is named as the ideal candidate document.
Usually, the indexed documents are assumed to be static, and
the set of queries considered as input testing data is dynamic.
This assumption allows us to transform the training documents
to an another static representation, and model ideal candidate
documents for each query to a dynamic combination of static
documents.
In this thesis, we assume the documents including candidate
documents and ideal documents lie on the surface of a Rie-
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mannian manifold. Then, we attempt to build the similarity
measurement between documents on the geodesic lines in the
Riemannian manifold. Very often, a single linear distance
function M can not describe the whole surface of Riemannian
manifold adequately. It reveals the inability of a single dis-
tance function to model the complexity of the LtR problem.
Furthermore, the discriminative features vary between different
neighborhoods on the surface of the manifold. To address this
limitation, researchers try to learn a set of local distance function
representing the various regions of the surface. In most cases,
local distance learning algorithms will generate a local distance
for each learning example [87]. The whole parameters of these
kinds of the algorithm are prohibitively huge when the number
of examples becomes large.
In our approach, we follow [118] to learn a local distance function
for a part of the feature space of documents, in which case
the number of learned distance function m can be considerably
smaller than n, the size of the examples collection.
Suppose we have learnedm local distance function {M1, . . . ,Mm}
and the associated anchor points {p1, . . . pr, . . . pm}. The choice
of anchor points and the computation of local distance function
are described in Subsection 4.2.1. Then the similarity model
f(q, p) between two documents pi and pj is extended from
Eq. (2.9) as follows:

f(pi, pj) = dM(pi)(pi, pj) (4.1)

M(pi) =
m∑
r=1

wr(pi)Mr, (4.2)

where wr(pi) ≥ 0 is the weight of document pi for local distance
function Mr. The PSD constraints of M(p) is automatically
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satisfied if all local distance function Mr are PSD matrices.
These formulation includes m anchor documents and pi should
be close to these anchor documents [94]. It is clear that the
ideal candidate document should be close to several high relevant
documents. Therefore, we can employ these high relevant
documents as anchor documents to construct the local metric
space around the ideal candidate document.
With the above assumption and observation, the task of infor-
mation retrieval precedes in the following steps:

1. Given a candidate collection Dq for query q , we employ
high/low relevant documents to compute a M and find a
anchor point pr to maximize the ranking scorer under the
metric M by computing (pi − pr) M (pi − pr)>.

2. After sampling m candidate collection to find m anchor
documents and m associated distance functions, we can
construct the ideal candidate document based on a combi-
nation of m anchor documents.

3. We can build an evaluation function to measure the sim-
ilarity between candidate document and ideal candidate
document, then, sort these documents via the similarity to
ideal candidate document.

4.2.1 Computation of Basis Metrics

Before constructing the local distance function in Eq. (4.2), we
need to learn m local metrics. With the assumption that each
local metric Mr represents a part of feature space, we can employ
the classical single distance learning algorithm associated with
a subset of the triplets from a part of examples space.
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In this chapter, we extend the state-of-the-art global distance
learning algorithm GMML [135] into local distance learning
forms. The extension consists of two parts:

1. The local basis metric associated with the triplets set Dr is
computed by the original GMML.

2. The smooth weighting function wr(p) is computed from
Eq. (4.10).

Given a subset of the triplets Tr = (pi, pj, pk) such that pi is
more similar to pj than to pk, we can extract the similarity set
Sr and the dissimilarity set Dr by following the instruction in
Section 4.2.4. Then we construct two corresponding matrices:

Sr =
∑

(pi,pj)∈Sr
(pi − pj) (pi − pj)> (4.3)

Dr =
∑

(pi,pk)∈Dr

(pi − pk) (pi − pk)> (4.4)

Then, the basic optimization formulation of local metric Mr is
defined as follows:

min
Mr�0

h(Mr) := tr (MrSr) + tr
(
M−1

r Dr

)
(4.5)

Equation (4.5) implies that GMML will return a single local
metric Mr that minimize the sum of distances over all the similar
pairs Sr and maximize the distance over all the dissimilar pairs
Dr.
The closed-form solution of Eq. (4.5) is obtained by

∇h(Mr) = Sr −M−1
r DrM−1

r (4.6)

Taking ∇h(Mr) = 0, we obtain:
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MrSrMr = Dr (4.7)

Equation (4.7) is a Riccati equation whose unique solution
is [135]

Mr = S−1/2
r

(
S1/2
r DrS1/2

r

)1/2 S−1/2
r (4.8)

In experiments, Mr is efficiently computed from Cholesky-Schur
method [57].

4.2.2 Smoothing Weight Functions

Lots of researchers try to provide the insights of their local
distance learning approaches [51, 118] by modeling their meth-
ods from the perspective of Riemannian metric. An important
property about the Riemannian metric is that a Riemannian
metric M(p) on a manifold M is a smoothly varying inner
product 〈xi, xj〉p = xTi M(p)xj in the tangent space TpM of
each point p ∈ M. From Lemma 1 in [51], when the weight
function wr(p) is smooth with p, Eq. (4.2) will be a well-studied
Riemannian metric. Therefore, any well-designed local distance
learning methods should provide a smooth weight function.
Another important issue is that the weight function wr(p) should
reflect the fitness of the local metric Mr. Suppose (p, pr) ∈ Sr, it
indicates that Mr is the best local distance function to measure
the similarity between pr and other examples, which means that
Eq. (4.7) should be robust against the additive similar pair
(p, pr). Therefore, the weight function wr(p) should be in the
opposite to Mr(p− pr)(p− pr)TMr.
Take the limit as an example, if Mr(p − pr)(p − pr)TMr = 0,
then,
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Mr (Sr + (p− pr)) (Sr + (p− pr))T Mr = Dr (4.9)
The solution of Eq. (4.9) is the same with Eq. (4.8), which
indicates that Mr(p− pr)(p− pr)TMr is a proper measurement
whether the Mr is the optimal local distance function for the
document p.
By taking consideration about the above observation, we pro-
pose the smoothing weight functions [12] as:

wr(p) = exp
(
−ρ2 ‖p− pr‖Mr

)
, (4.10)

where, ‖·‖2
Mr

is the L2 norm with the metric Mr.

‖p− pr‖2
Mr

= tr
(
Mr(p− pr)(p− pr)TMr

)
(4.11)

From Eq. (4.11) and Eq. (4.9), we can easily know ‖p− pr‖Mr

is a proper measurement about the similarity between query p
and the anchor point pr associated with the local metric Mr.
Therefore, our evaluation function is formulated as:

fq(p,Φq) = −
m∑
r=1

Φ(r)
q · exp

(
−‖p− pr‖Mr

)
· ‖p− pr‖Mr

, (4.12)

where, Φq ∈ Rm, Φ(r)
q = exp

(
ρ(r)
q /2

)
is the key parameter we

need to learn in order to find a better manifold structure. Higher
fq(p,Φq) means that p is closer to the ideal candidate document.
In the next subsection, we will introduce our exploration to
optimize Φ for a specific ranking problem.

4.2.3 Update of Φ

In the above subsection, we formulate a general local distance
learning framework in Eq. (4.12) to represent the manifold
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structure. From the theoretical analysis in [94], the whole space
of Φ keeps the learned manifold smooth. Therefore, we define
our loss function under the popular Weighted Approximate
Rank Pairwise (WARP) framework [125] and optimize the
associated objective function to obtain an optimal solution for
ranking task.
The WARP loss for a given set of candidate document Dq with
query ID q is defined as:

L (q) = 1∣∣∣D+
q

∣∣∣
∑
p∈D+

q

L
(
vq
(
p+)) , (4.13)

where vq(p+) is the number of violators in Dq for positive p+,
defined as:

vq(p+) =
∑

p−∈D−q
I
[
fq
(
p−,Φq

)
− fq

(
p+,Φq

)]
(4.14)

To obtain better NDCG score, L (·) is defined as:

L(k) =
k∑
i=1

1
log2 (i+ 1) (4.15)

In order to optimize Φq, we follows the methods in [125, 76] to
approximate L (vq(p+)) by a continuous formulation with hinge
loss:

∑
p−∈Vq,p+

L (|Vq,p+|)
[ζ − fq (p+,Φq) + fq (p−,Φq)]+

|Vq,p+|
, (4.16)

where for a given q, p+, ζ is the hinge loss margin. Vq,p+ is the
set of violators with hinge loss:

Vq,p+ =
{
p− ∈ X−q | fq(p+,Φq)

}
(4.17)
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In order to obtain an unbiased estimation of the loss function
in Eq. (4.16), we can randomly sample q, p+ ∈ Dq and find
an violator p− such that ζ + fq (p−,Φq) > fq (p+,Φq). In this
situation, the tuple of (q, p+, p−) has the following contribution
to Eq. (4.16):

l
(
q, p+, p−

)
= L (|Vq,p+|)

(
ζ − fq

(
p+,Φq

)
+ fq

(
p−,Φq

))
(4.18)

From the WARP framework, |Vq,p+| can be approximated by⌊∣∣∣D−q ∣∣∣ /Nq

⌋
, where Nq is the number of less relevant documents

p− drawn with replacement from D−q until a violator is found.
Finally, the stochastic gradient descent for the parameter Φ can
be easily conducted at iteration t as:

Φq(t+ 1)

=Φq(t)− µ
∂l (q, p+, p−)
∂Φq(t)

, (4.19)

=Φq(t)− µL


∣∣∣D−q ∣∣∣
Nq

 ·
∂fq(p−,Φq(t))

∂Φq(t)
− ∂fq (p+,Φq(t))

∂Φq(t)

 ,
(4.20)

where ∂fq(p,Φq)
∂Φq =

[
∂fq(p,Φ(r)

q )
∂Φ(r)

q

]
r=1...m

. To avoid over-fitting, we

project Φ(r)
q to zero when Eq. (4.20) leads to negative value. We

take derivation from Eq. (4.12) to obtain:

∂fq
(
p,Φ(r)

q

)
∂Φ(r)

q

= exp
(
−‖p− pr‖Mr

)
· ‖p− pr‖Mr

(4.21)

Overall, our proposed algorithm is illustrated in Figure 4.1 and
summarized in Algorithm 3.
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4.2.4 Sampling Strategy

Our approach will not iterate all triplets for D introduced in
Section 4.2.1, because learning the global ranking model from
all triplets is an NP-hard problem [83]. Hence, we choose
to stochastically sample the triplets (pi, pj, pk) from candidate
documents. pi and pj representing similar documents are
sampled from high relevant documents, then pk is sampled from
the less relevant documents. In our implementation, we only
sample pk from the documents with zero relevant label.
For sampling procedure in Section 4.2.3, Φi and Φj are inde-
pendent for two queries i and j. Therefore, the update can be
computed in a highly parallel way.

ALGORITHM 2: Geometric Mean Metric Learning (GMML) [135]
Input: D+ : positive set of documents, D− : negative set of

documents, λ : regularization parameter
Output: M ∈ Sd+ : Mahalanobis metric;
S = λI +∑

pi 6=pj ,pi∈D+,pj∈D+ (pi − pj) (pi − pj)>;
D = λI +∑

pi∈D+,pj∈D− (pi − pj) (pi − pj)>;
M = S−1/2

(
S1/2DS1/2

)1/2
S−1/2

4.3 Evaluations

In this section, we discuss the implementation of our approach
for the LtR problem and display extensive experiments evaluat-
ing our methodology in comparison to the state-of-the-art (R-
MLR, GBRT, and λ-MART). Our design on experiments tackle
the following questions:

• Do we develop a correct localized extension to the global
GMML? To answer this question, we generate varied scale
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ALGORITHM 3: L-GMML to Rank
Input: Candidate set for c queries {D1,D2, . . . ,Dq, . . . ,Dc}, m :

number of local metrics, T : number of iteration, µ : step size,
ζ: hinge loss margin

Output: {(p1,M1) , (p2,M2) . . . , (pm,Mm)} : set of local metrics and
associated anchor points, p ∈ Rd, M ∈ Sd+, Φ ∈ Rc×m :
weights for local metrics to model the ideal candidate
documents for each queries

for q ∈ [1, c] do
Extract D+

q and D−q from Dq;
end
for i ∈ [1,m] do

Sample D+
i and D−i from {Dq}q∈[1,c];

Mi = GMML
(
D+
i ,D−i

)
;

for p ∈ D+
i do

Γ(i)
p ←Sort Di in ascending order by computing
‖p− d‖2

Mi
∀d ∈ Dq;

end
Find the anchor point pr with maximum NDCG score of Γ(i)

pr
;

end
for t = 1 to T do

Sample a tuple (q, p+, p−) from {Dq}q∈[1,c] such that
ζ + fq (p+,Φq (t)) > fq (p−,Φq (t));
Nq ← the number of less relevant documents drawn with
replacement from D−q until p− is found;

Φq (t+ 1) =
[
Φq (t)− µL

(⌊ |D−
q |
Nq

⌋)
·
[
∂fq(p−,Φq(t))

∂Φq(t) − ∂fq(p+,Φq(t))
∂Φq(t)

]]
+
;

end
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synthetic datasets to evaluate the performance gain against
global distance learning algorithm when a different number
of local distance functions invoke in our L-GMML approach
to prove the correctness.

• Is our assumption on the existence of local structures
reasonable? If reasonable, does our solution enjoy high
computational efficiency and the good scalability for scaled
datasets? We make comparisons with the state-of-the-
art distance learning algorithms for ranking in the query-
dependent model on scaled datasets. We attempt to
demonstrate the improvements of our approach over other
distance learning algorithms.

• Does our LtR algorithm have any amazing properties? We
conduct experiments on real-world large-scale datasets to
illustrate the enormous improvement of our approach on
accuracy compared with the dominant ranking methods like
GBRT and λ-MART in the query-independent framework.

4.3.1 Experiments Setting

In our experiments, we have implemented our local GMML
(L-GMML) algorithm in Julia 1, the source code is released
at Github 2. To make a fair comparison against the state-of-
the-art ranking methods, we also implement R-MLR, GBRT
and λ-MART in Julia. We take RankLib3, an open-source
implementation of the GBRT and λ-MART algorithms and
MLR4 as references to implement these algorithms in Julia.

1http://julialang.org/
2https://github.com/yxsu/LtR.jl
3http://sourceforge.net/p/lemur/wiki/RankLib/
4https://github.com/bmcfee/mlr
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Our program is executed on an Ubuntu 14.04 LTS server with
12 Intel Xeon E5-2620 cores and 128GB main memory. All
baseline methods and our method are performed in a parallel
way to fully utilize the computational resources. Our R-MLR
implementation is based on the parallel MLR-ADMM [77].
GBRT and λ-MART come from RankLib.
The statistical tests in the following experiments are computed
over the values for Mean Average Precision (MAP) and Nor-
malized Discounted Cumulative Gain (NDCG) [59] at the top k
retrieved documents denoted as NDCG@k. These two metrics
are the most important and frequently used in information
retrieval community to evaluate a given permutation of a ranked
list using binary and multi-relevance order.

4.3.2 Datasets

For all real-world datasets, we split each of them into two
components: 1), the training set is used to learn ranking models;
2), the test set is purely used to evaluate the performance of the
learned ranking models.
All the datasets we use are freely available online for scientific
purpose. Such datasets can be divided into two groups:

Query-dependent Dataset

We employ CAL10K [112] to make fair comparisons between
our L-GMML and R-MLR. Because, in the original paper, R-
MLR performs well on the CAL10K dataset. Following the
experiments in [77], we use a subset of the CAL10K dataset,
which is provided as ten 40/30/30 splits of a collection of 5419
songs.
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Table 4.1: Different kinds of song representation
# of features # of songs

Audio 1,024 5,419
Lyrics-128 128 2000
Lyrics-256 256 2000

Query-Independent Datasets

In this subsection, we employ two popular real-world large-
scale datasets: Yahoo! and MSN to evaluate the competitive
performance of proposed L-GMML against the state-of-the-art
query-independent LtR methods.
Yahoo! datasets come from Yahoo! Learning to Rank Chal-
lenge [19]. The datasets consist of feature vectors extracted
from query-url pairs along with relevance judgment labels.
In our experiments, we also employ the two set of MSN learning
to rank5 datasets: MSLR-10K and MSLS-30K, both of which
consists of 136 features extracted from query-url pairs. The
MSN datasets provide relevance judgment labels ranging from
0 (irrelevant) to 4 (perfect match). In experiments, each
MSN dataset is partitioned into five subsets for five-fold cross
validation.
The complete statistical information about these datasets are
listed at Table 4.2.

4.3.3 Evaluation of the Proposed Approach

In our L-GMML model, the most important hyper-parameter
is the number of local distance functions, which has significant
influence on the overall model performance. We will evaluate

5https://www.microsoft.com/en-us/research/project/mslr/
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the correction of our localized extension method from synthetic
datasets, and reveal the impact of the metric numbers.

Global GMML vs Local GMML

In this subsection, we attempt to employ multi-class classifi-
cation problem to verify the correction of the local distance
learning algorithm. Because multi-class synthetic datasets
certainly contain local structures around the center of each
class. If the accuracy gain is observed, we can also address the
objective that local distance learning approach is designed to
extend the global distance learning method’s ability of modeling
complex data manifold.
Specifically, we employ the normal distribution to generate
synthetic datasets with multiple centers and 95% confidence
interval. The datasets with {10,50,100} classes are denoted as
Synthetic-10, Synthetic-50, Synthetic-100 respectively. In these
synthetic datasets, we assign the index of class to the relevant
label of the corresponding data point.
We report the performance gain of the proposed local GMML
against the global GMML in Figure 4.2. We can easily find
the fact that when the number of local distance function is
approximate to the number of the real centers in Gaussian
synthetic data distribution, the relative accuracy gain of local
distance function is maximized. This observation meets the
objective of local distance learning approach.

The Number of Local Distance Functions

In this subsection, we will evaluate the significance of the
number of local distance functions, which is typically the most
important parameter in the field of local distance learning.
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Figure 4.2: Comparisons between global GMML and local GMML on
synthetic datasets. The performance is measured by MAP

A large number of local distance function will enhance the
algorithm’s ability to model the complex manifold structure.
However the computational complexity increases linearly with
the number of local distance function. In experiments, we
need to carefully tune the number of local distance function
to make the balance between model’s ability and computational
complexity.
Figure 4.3 displays the impact of the number of local distance
function on all datasets used in our work. For all datasets,
localized method can compete with the corresponding global
method with a single distance function. This fact proves that our
localized extension is reasonable. Another obvious observation
is that the optimal number of local distance function varies
dramatically among different datasets, since it is decided by the
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complexity of the manifold structure sealed in the data space.

Scalability

In our experiments, the synthetic datasets is primarily invoked
to evaluate the scalability of our approach.
Due to the limited scalability of real-world datasets, we synthe-
size datasets with the feature dimensionality scaled from 10 to
1000. In this experiment, we fix the number of local distance
function as 10 since we only concern about the computational
complexity on different scaled dimensions instead of the optimal
number of local distance function. Figure 4.4 illustrates the
training time of our L-GMML on these datasets.
Compared with other local distance learning methods, the less
training time come from two-fold issues: (1) the GMML in
Algorithm 2 is very fast. (2) The update of weighting function
in our approach is relatively simple and straightforward. It does
not involve the huge computational resources to find the optimal
form.

4.3.4 Comparison with R-MLR

The Robust Metric-Learning-to-Rank (R-MLR) [77] is the most
competitive distance learning method for ranking. It retrieves
relevant examples in response to a query instance. To make
direct comparisons, we need to modify our approach by assigning
all anchor points to the query instance. Because our approach
is originally designed for the query-independent framework.
In this set of experiments, we evaluate our approach on the music
similarity task, because the R-MLR method is verified to be
successful in music similarity task compared with other metric-
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Figure 4.4: Training time of L-GMML on different scaled synthetic datasets

learning-to-rank methods such as MLR [84], L1-MLR [96]. For
each song pi, a relevant set D+

i ⊂ Dtrain is defined as the subset
of songs in the training set performed by the top 10 most similar
artists to the performer of pi, where the similarity between
artists is measured by the number of shared users in a sample of
collaborative filter data [84]. This top-10 thresholding results
in the relevant sets in this data being asymmetric and non-
transitive. Therefore, the traditional pairwise distance learning
methods do not work in this situation. However, our approach
based on the sampling on the relevant set is not necessary to
obey the symmetric and transitive properties.
The experiments are conducted on two different kinds of song
representation: audio and lyrics, whose details are listed in Table
4.1. We use recommended candidate hyper-parameters in the
original paper to tune R-MLR on validation set and select the
best parameter to evaluate the performance of the model.
Since the scalability of the original R-MLR is limited, the
experiments of R-MLR employ the latent features compressed
by PCA. Our approach has no such problem and is suitable to
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Figure 4.5: Music similarity performance of each algorithm on the three
feature representation Audio, Lyrics-128 and Lyrics-256. Performance was
measured by MAP and averaged across 10 folds.

conduct the training process on the original 1,024 features.
Figure 4.5 illustrates the performance of three distance learning
algorithms. We fix the number of local distance function in
our L-GMML as 1 to obtain the global GMML algorithm. The
motivation of making such comparison is that we attempt to
demonstrate the different influence of the new GMML algorithm
and our proposed L-GMML algorithm on the performance
improvements.
Therefore, we can draw the conclusion from the experiments in
this subsection that the proposed approach outperforms other
distance learning algorithms for the ranking problem regarding
accuracy and computational efficiency.

4.3.5 Comparisons on Large-scale Real-world Datasets

We attempt to find amazing features of our method in the com-
parisons with two state-of-the-art ranking methods, Gradient-
Boosted Regression Trees (GBRT) and λ-MART on Yahoo!
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Set I&II, MSLR-10K, and MSLR-30K. Because they have been
proved to be the most effective in the Yahoo! learning to rank
challenge and become the dominant methods in the LtR field.
For these four datasets, the feature domain varies dramatically.
To avoid for challenging the floating point precision in complex
mathematical computation, we preprocess these four datasets
by normalizing each feature dimension with 2-norm. For the
stochastic sampling procedure in Algorithm 3, to find the
optimal model, we try different initial weight values Φ(1) ranging
from 0.1 to 10, the hinge loss margin ζ ranging from 0.01 to 1.
The training time of GBRT and λ-MART is sensitive to the
number of trees in both of the models. The number of local
distance function also determines the training time of L-GMML.
When we plan to make comparisons on the accuracy and training
time of three methods, we fix the number of trees of GBRT and
λ-MART as 5000 and the number of local distance function as
500. The motivation of these choices is that the performance
of these two methods become stable on the four datasets. The
comprehensive comparisons on a different measurement of the
above three methods are illustrated in Table 4.4. From the
table, we can draw a conclusion that our approach enjoys a
huge advantage in accuracy compared with the state-of-the-art
ranking methods.
Currently, the only disadvantage of our approach lies in scoring
time. Table 4.5 displays the comparisons about the time of
scoring documents. Our algorithm heavily relies on the scoring
for each document in different stages, which is less efficient
than GBRT and λ-MART. On the other hand, our approach is
simple in structure, and GMML in the first stage is also efficient.
Therefore, our method still has an advantage in computationally
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efficiency. The time-consuming comparison in Table 4.4 can
prove this statement.

4.4 Summary

In this chapter, we focus on improving the accuracy of LtR
methods by utilizing the local structure of documents and
degrading irrelevant features. We firstly developed a localized
GMML algorithm for the query-independent ranking framework.
Specifically, we proposed a concept called ideal candidate doc-
ument to adopt distance learning for ranking algorithm from
a query-dependent model to widely used query-independent
model. In our approach, a well defined smooth weighting
function is optimized by reducing the popular WARP loss,
which is defined for the candidate document set of a given
query. Then we can efficiently score document by calculating
the distance between candidate documents and a nonexistent
ideal candidate document from an optimized distance function.
The experiments prove that our approach outperforms both
of the state-of-the-art query-dependent algorithms and query-
independent algorithms.

2 End of chapter.
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Table 4.2: Characteristics of publicly available large-scale datasets for
learning to rank
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Table 4.3: Comparison on the training time of R-MLR and L-GMML. The
number of local distance functions in L-GMML is fixed as 50.

Time (s) R-MLR L-GMML

Audio N/A 38
Audio with PCA 607 4.7

Lyrics-128 302 2.6
Lyrics-256 1241 7.8
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Table 4.4: Performance of GBRT, λ-MART and proposed L-GMML on large-
scale real-world datasets. Results of MSLR-WEB10K and MSLR-WEB30K
are averaged from the 5 folds in the datasets.
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Table 4.5: Per-document scoring time of GBRT, λ-MART and L-GMML on
Yahoo! and MSLR datasets. The scoring time is united in ms

GBRT λ-MART L-GMML

Yahoo! Set I 276 302 421
Yahoo! Set II 218 286 421

MSLR-WEB10K 73 92 158



Chapter 5

Distributed Deep Distance
Learning Framework with
Hybrid Communications

Deep distance learning is widely used in extreme classification
and image retrieval because of its powerful ability to learn the
semantic low-dimensional embedding of high-dimensional data.
However, the heavy computational cost of mining valuable pair
or triplet of training data and updating models frequently in
existing deep distance learning approaches becomes a barrier
to apply such methods to a large-scale real-world context in a
distributed environment. Moreover, existing distributed deep
learning framework is not designed for deep distance learning
tasks, because it is difficult to implement a smart mining policy
of valuable training data. In this chapter, we introduce a novel
distributed framework to speed up the training process of the
deep distance learning using multiple machines. Specifically,
we first design a distributed sampling method to find the hard-
negative samples from a broader scope of candidate samples
compared to the single-machine solution. Then, we design a
hybrid communication pattern and implement a decentralized

82
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data-parallel framework to reduce the communication workload
while the quality of the trained deep distance models is pre-
served. In experiments, we show excellent performance gain
compared to a full spectrum of state-of-the-art deep distance
learning models on multiple datasets in terms of image clustering
and image retrieval tasks.

5.1 Problem and Motivation

Distance learning attempts to learn an advanced distance metric
space in which the mapped representation of the raw data
preserves the short distance between similar data points and the
long distance between the dissimilar data points [6, 128]. This
well-learned representation plays important role in information
retrieval [109] and recommender systems [56]. For the past few
years, with the success of deep learning, deep distance learning
has received much attention. Because the distance learning
shares similar assumption and objective with deep learning [69].
However, at odds with the conventional deep learning, which are
successfully used to learn category related concepts on a large
number of labeled data, deep distance learning aims to learn a
nonlinear embedding of the data using deep neural network on
a semantic metric space, which preserves the general concept of
distance in data space.
Compared to deep distance learning, the drawback of the tradi-
tional deep neural networks such as GoogleNet [111] and ResNet
[52] comes from the following two-fold: (a), the computational
complexity of training and inference in deep learning is linearly
proportional to the number of classes. It becomes impractical
for extreme or fine-grained classification. (b), the most of deep
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learning models tend to overfit easily on a small amount of data
per class. Therefore, deep distance learning yields promising
results on many applications such as face recognition [99], zero-
shot classification [13] and image retrieval [5].
The general procedure of deep distance learning contains two
steps. First, a modified Siamese network [11] is optimized with
the minimum value of one of the following loss: contrastive
loss [49], random triplet loss [124], triplet loss with semi-hard
negative mining strategy [99], lifted structured embedding loss
[106], N-pair distance metric loss [104] and facility location loss
[105]. Then, the semantic representing space generated from
the Siamese network can be employed by many algorithms with
efficient nearest-neighbor inference using the labeled data [54].
However, the existing deep distance learning approaches en-
counter a huge computational challenging for a large-scale
dataset. Typically, deep distance learning considers a pair or
a triplet of images as a training sample. Hence, n images can
generateO (n2) orO (n3) training samples, which are intractable
to iterate for large-scale dataset. A potential solution to reduce
the size of search space is to find hard samples for training
[26, 134]. Unfortunately, the hard sample mining brings enor-
mous computation demands because it involves the inference for
all data, which constantly varies during the training. To reduce
the inference complexity, [26] involves human to label hard
negative images from the evaluation of the model in each epoch.
[120] samples triplets randomly during the first ten training
epochs, then trains the model with negative hard triplets in each
minibatch after ten epochs. Although a compromise between the
inference complexity and the convergence process during the
training is reached, the inefficient problem still exists in deep
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distance learning framework.
Usually, distributed computation is a prominent tool to provide
enough computational power. In the traditional deep learning
community, distributed computation among multiple machines
is also widely involved to handle the substantial computation
demands [47]. Therefore, a deep distance learning oriented
distributed algorithm is crucial to bring deep distance learning
into big data applications. Since the smart sampling is a special
issue in deep distance learning. It is difficult to utilize the
conventional distributed deep learning platforms to find valuable
training data globally. However, to our best knowledge, there is
no distributed algorithm designed for or platform optimized for
deep distance learning task.
In this chapter, to conduct deep distance learning in distributed
environment efficiently, we first construct a distributed sampling
method to find the valuable triplet training data efficiently
among multiple machines. We analyze the characteristics of
several deep distance learning algorithms, then construct an
empirical framework to distribute the computation task of deep
distance learning into machines. Precisely, a typical Siamese
network consists of two cascading components: Convolutional
Neural Network (CNN) part and the last layer part. In many
deep distance learning algorithms, the first CNN part is ini-
tialized with a pre-trained model from traditional classification
task. Based on the observation that the CNN part with the
massive number of parameters varies infrequently compared to
the frequently updated last layer part with fewer parameters, we
have designed different communication patterns: ring topology
for CNN part, All-Reduce topology for the last layer part to
synchronize these two components among machines.
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In summary, the contributions of this chapter are listed as
follows:

• To the best of our knowledge, we are the first to propose a
distance learning oriented distributed framework to speed
up the training of deep distance learning among multiple
machines.

• We have verified the decentralized distributed computation
with mixed communication topology is reasonable in the
context of deep distance learning.

• We also demonstrate the proposed framework is appropri-
ately coupled with several state-of-the-art deep distance
learning algorithms on CUB200-2011, CARS196, and Stan-
ford Online Products and achieves a remarkable improve-
ment with four machines regarding accuracy and runtime
speedup.

5.2 Methodology

For the training process with large-scale datasets, we need
larger mini-batch, partitioned into multiple machines. However,
the deep distance learning with large mini-batch involves more
communication demands because of the special selection method
for mini-batch. In order to obtain a reasonable speedup with
satisfying the accuracy, we need a smart architecture and policy
for distributed training.
A common architecture for deep neural network systems takes
advantage of data-parallelism [1]: a set of machines train
model replicas on partitions of the input data in parallel. The
model replicas are kept synchronized by all-reduced operation



CHAPTER 5. DISTRIBUTED DDL WITH HYBRID COMM. 87

in Message Passing Interface (MPI) or parameter server, which
maintains a global partition of the trained model and working
machines fetch updated model from the parameter server peri-
odically. These two methods guarantee the strong consistency
of models among machines, but saturate the available network
bandwidth, which becomes the bottleneck to accelerate the
training process. In details, parameter server deteriorates the
utility of the number of machines, because several physical ma-
chines are equipped with server maintaining global parameters.
The network around the server easily becomes a bottleneck
because of heavy communication tasks around the servers. For
all-reduced operation, there is no centralized parameter server,
but the frequent broadcast operations consume lots of network
resources. Meanwhile, the computation unit must wait for
the synchronization of large models. Therefore, it is an open
problem that how deep neural network systems balance the use
of computation and network resources to achieve the fastest
model convergence.
Compared to traditional deep neural network, deep distance
learning contains two unique features: (1), the selection of the
mini-batch with valuable training data containing the hard-
positive and hard-negative samples is costly. (2), the major
component of the whole model is initialized with a sophisticated
pre-trained model. To take advantage of the two features, we
propose a distributed framework to conduct distributed sam-
pling described in subsection 5.2.1 to find the valuable training
data with hard-negative data globally. Then we design a mixed
communication topology to synchronize these components with
the different level of consistency, which is explained in the
subsection 5.2.2.
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Figure 5.1: Illustration of the semi-hard negative mining in distributed
environment.

5.2.1 Distributed Sampling and Evaluation

In this subsection, we first discuss the challenge of the adoption
from single-machine solution to distributed solution for deep
distance learning algorithm. Then, we proposed a distributed
sampling and evaluation policy to alleviate the disadvantage of
the single-machine solution.
Existing distributed deep learning frameworks only focus on the
gradient synchronization (aggregation and scattering) among
machines. There is no further consideration about data sam-
pling methods, which are independent to machines in con-
ventional platforms. Therefore, as illustrated in fig. 5.1, a
straightforward conversion from single machine algorithm to
distributed algorithm leads to a simple aggregation from several
single-machine solutions. For each machine, they can not take
advantage of a large portion of samples from other machines.
This constrained sampling scope becomes a barrier to enhance
the overall performance of deep distance learning algorithms.
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Because a proper sampling strategy plays an equally important
role as a suitable loss function [82].
In order to achieve a fast convergence rate, it is crucial to sample
the hard positive and the hard negative samples from a large
mini-batch. For a given anchor sample xa, the hard positive is
calculated from:

x+ ← arg max
i:y[i]=y[a]

‖f (xa)− f (xi)‖2
2 (5.1)

The hard negative sample is calculated from:

x− ← arg min
i:y[i] 6=y[a]

‖f (xi)− f (xa)‖2
2 (5.2)

To mine the hard negative sample, we formalize our proposed
method with optimization to identify a negative example from
a large scope of mini-batch co-located in all machines. For
machine p, suppose the number of classes in a mini-batch is
|C [p]|. For each class, we randomly select an anchor sample
xa and then find the associated hard positive samples from
the same class in the mini-batch. We denote the indicator set
of the anchor sample for each class as C [p]. To support the
above sampling rules, we should construct the mini-batch with
more classes and keep the number of samples per class relatively
constant.
The search for hard negative sample involves the online evalua-
tion of deep neural networks, which is computationally demand-
ing for a large number of instances from distinct classes. In our
proposed framework, we dispatch the evaluation and comparison
tasks to multiple machines. At the first stage, for each machine
p, it will broadcast the embedding vector of anchor samples{
fp
(
x(i)
a

)}
i∈C[p] to other machines. Note that the deep neural

network model could be slightly different among machines, it
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will be explained in the next subsection. We denote fp as the
deep neural network in the machine p.
At the second stage, each machine seeks for the hard negative
sample corresponding to the incoming anchor samples. Specif-
ically, for each machine q, it conducts the online evaluation of
deep neural network for all samples in the mini-batch first, then
calculates the distances between the embedding vectors and the
incoming anchor samples to find the hard negative samples.
For an anchor point xap from the machine p, the hard negative
sample is computed as:

x
(ap)
− ← arg min

i:y[i] 6=y[ap]

∥∥∥fq (xi)− fp
(
xap

)∥∥∥2
2 . (5.3)

When all hard-negative samples are found, the machine q

will scatter the embedding vectors of these samples to other
machines. Finally, when the set of triplet samples is ready in
machine p, we can employ the back-propagation method with
the following loss definition:

`
(
[X]p , [Y ]p

)
= − 1
|C [p]|·

∑
a∈C[p]

log
exp

{
f (xa)T f

(
xP(a)

)}
exp

{
f (xa)T f

(
xP(a)

)}
+ exp

{
f (xa)T f

(
xN (a)

)}

+ λ

m

m∑
i

‖f (xi)‖2 , (5.4)

where P (·) and N (·) are the indicators of the hard positive
sample and negative sample respectively. m is the size of mini-
batch.
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5.2.2 Hybrid Synchronization

Suppose there are P machines, machine i contains a cascading
model parameterized by θi with two distinct components Ci and
Fi, which denote the parameters of the CNN part initialized
with the pre-trained model and the last fully-connected layer
respectively.
Typically, the parameters are calculated by the back propaga-
tion algorithm with gradient descent, which updates θ itera-
tively:

θ
(t+1)
i ← θ

(t)
i + η(t) ∑

j∈P
∇f

(
θ

(t)
j

)
, (5.5)

where θt are the parameters in iteration t, η(t) is the learning
rate in iteration t.
In the setting of All-Reduce or the synchronous parameter
server, θj = θk ∀j, k ∈ [P ]. It requires the parameter server to
collects all gradients and to conduct the gradient aggregation
in Eq. (5.5), then broadcast the updated parameters to all
machines. This strong consistency requirement brings a heavy
burden for network communication and degrades the training
speed accordingly.
Empirically, we have the two following observations: (a), many
deep distance learning algorithms are designed for two settings:
end-to-end and last-layer. The latter means that the CNN part
is initialized with a pre-trained model and then keeps fixed.
(b), we observe that the average of `2 norm CNN part Ci
varies insignificantly on many datasets, illustrated in fig. 5.5.
Therefore, inspired by the decentralized framework [122], to
increase the communication efficiency, we slacken the strong con-
sistency constraints to allow the models in multiple machines are
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(a) All-Reduce

(b) Parameter Server

(c) Hybrid Synchronization

Figure 5.2: Comparisons of several distributed communication topologies



CHAPTER 5. DISTRIBUTED DDL WITH HYBRID COMM. 93

0 5 10 15 200.3

0.32

0.34

0.36

0.38

0.4

Epoch

` 2
no

rm

Birds
CARS196
Products

Figure 5.3: The average of the `2 norm of all parameters in CNN module
during the training process.

different. We propose the ring-based synchronization topology
as follows:

C
(t+1)
i ← C

(t)
i +η(t)

(
β∇f

(
C

(t)
i

)
+ (1− β)∇f

(
C

(t)
Left(i)

))
, (5.6)

where Left (·) denotes the index of last machine in a ring topol-
ogy, η(t) represent the learning rate at iteration t. Currently,
β = 0.5 is a predefined constant.
Ring-based synchronization is an optimal bandwidth solution
to synchronize the parameters between machines, because the
communication complexity of each machine reduces from O (P )
to O (1). In experiments, we have profiled the training process
to monitor the change of all CNN components C[P ]. Figure
5.5 demonstrates the convergence between any two adjacent
machines in the ring topology.
For the last layer, we follow the strong consistency requirements
to update the last layer Fi, because the number of parameters
in Fi is relatively small and the synchronous update does not
barrier the training process.
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In overall, the proposed hybrid synchronization consists of ring-
based synchronization to update the large amount parameters
in CNN models, and All-Reduce synchronization to update the
frequently changed parameters in the last layer. Figure 5.2
illustrates the difference of the three communication topologies.
Algorithm 4 summaries the proposed distributed deep distance
learning algorithm.

ALGORITHM 4: Proposed Distributed Deep Distance Learning
Algorithm

Input: Image datasets with C labeled categories, P : number of
machines, T : number of iteration, η : step size, λ:
regularization parameter

Output: f(θ): optimized deep neural network parameterized by θ
for t = 1, . . . , T do

forall machine p ∈ [1, P ] do
Randomly sample to from the whole dataset;
Randomly select anchor sample xa for each class. C[p]
represents the indicator set of anchor sample for each class;
Find the hard positive sample by:
x+ ← arg max

i:y[i]=y[a]
‖f (xa)− f (xi)‖2

2

Broadcast
{
fp
(
x(i)
a

)}
i∈C[p]

to other machines;

Receive
{
fq
(
x(i)
a

)
: i ∈ C [q] , q ∈ [1, P ]

}
from other machines;

Find all hard negative samples by:
x

(aq)
− ← arg min

i:y[i] 6=y[aq ]

∥∥∥fp (xi)− fq
(
xaq

)∥∥∥2

2
∀aq ∈ C[q], q ∈ [1, P ];

Scatter the above hard negative samples;
After receiving the hard negative samples, conduct
back-propagation on the loss defined in Eq. (5.4) to update θ;
All-reduce the FC parameters Fp among all machines;
Send CNN parameters Cp to its right neighbor Right(p);
Update Cp with Eq. (5.6);

end
end
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5.2.3 Implementation Details

We have implemented our framework 1 with the popular Py-
Torch [88]. In order to reduce the waiting time of gradient
synchronization, we modified the default PyTorch architecture
to allow us to synchronize the gradients of the current layer in
an asynchronous way while computing the gradients of the next
one simultaneously.
For network architecture, we basically follow the configuration
in [105]. We employ existing network with pretrained parame-
ters and finetune the network on new datasets. At the end of
deep neural network, we conduct `2 normalization first to the
embedding vector before computing the loss. The experimental
ablation study in [106] reports that the dimensionality of the
embedding vector does not play a crucial role during the
training and testing process. We explored the dimensionality
of embedding vector from 64 [105] to 512 [106] . The larger
embedding size will perform slightly better than the smaller
ones in accuracy but bring heavy communication requests in a
distributed setting. Therefore, we select 128 as a trade-off. For
each iteration, we only need to sample m examples and labels
from different classes at random. In particular, we randomly
select 5 images per class in a mini-batch. There is no need to
prepare the data in any rigid paired or triplets format.
For the network architecture, the CNN components are initial-
ized with the ResNet-34 [52] pre-trained on the popular Ima-
geNet / ILSVRC 2012-CLS dataset. The final fully-connected
layers FC are randomly initialized.
We fine-tuned the network on the training datasets with two
configurations:

1https://github.com/yxsu/ddml-hs
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• End-to-End: we fine-tune the overall model and update the
parameters of all the layers during the back-propagation
with the proposed hybrid synchronization. In this case, we
perform 20 epochs of gradient descent.

• Last Layer: we keep all CNN components pretrained on
ImageNet unchanged and update the last layer with our
hybrid synchronization. In this situation, the communica-
tion in our framework is equivalent to the default All-reduce
pattern in PyTorch.

All the input images are resized to 256×256 and cropped at 227×
227. We use a random crop with random horizontal mirroring for
training and a single center crop for testing. [104] takes multiple
random crops and compute the average from the cropped images
as the embedding vector.

5.3 Evaluations

In experiments, we attempt to answer the following two ques-
tions: (a), is our proposed distribution framework correct in
the context of deep distance learning? We can obtain the
answer from the comparisons between proposed framework and
the several existing deep distance learning algorithms regarding
accuracy in clustering and image retrieval. (b), is our frame-
work communication-efficient and does it enjoy good scalability
regarding the number of the machines? The observation on
the execution time of the proposed framework with different
hardware setting will illustrate the efficiency issue.
In the experiments, we evaluate our distributed framework on
the following widely-used fine-grained datasets and employ the
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same train/test splits.

• The Caltech-UCSD Birds (CUB200-2011) [117] consists of
11,788 images of birds from 200 different species/categories.
We use the standard configuration in which the first 100
categories (5,864 images) is used for training and the rest
for test (5,924).

• CARS196 [63] consists of 16,185 images of cars from 196
model categories. The first 98 categories (8,054 images)
are used for training and the rest for test (8,131 images).

• Stanford Online Products [106] consists of 120,253 images
from 22,634 online product categories. The default config-
uration contains 59,551 images from 11,318 categories for
training and 60,502 images from 11,316 categories for test.

In these experiments, we choose to disjoint the categories
for training and testing separately, although they belong to
the same context (they all represent birds, cars or products).
This makes the problem more challenging because traditional
deep neural network models may easily overfit on the training
datasets with a vast number of categories.
All experiments are conducted on 4 servers with 2 Pascal
GPUs each connected by 10 Gbit/s network. To make fair
comparisons, we closely follow [106, 105] for deep distance
learning configuration in experiments.
For clustering evaluation, we calculate the embedding vector on
all the test images first, then conduct affinity propagation clus-
tering algorithm [39] with bisection method for the predefined
number of clusters, which is equal to the number of classes in the
test set. We use the standard Normalized Mutual Information
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(NMI) metrics to quantitatively measure the clustering quality
[105]. NMI is defined by the ratio of mutual information entropy
of clusters and labels.
For the image retrieval evaluation, we employ the standard
Recall@K metric in the standard K nearest neighbor retrieval
task. Recall@K is defined as the fraction of queries for which
there exists a data sample of the same class as that of the query
instance with the first K positions of the retrieved list.
We compare our proposed methods against several state-of-
the-art methods including triplet loss with semi-hard-negative
mining [99], deep distance learning via lifted structure [106],
deep distance learning with histogram loss [114], deep distance
learning with N-pair loss [104], deep distance learning via
facility location (also called NMI-based) [105] and deep spectral
clustering [68]. In experiments, to make completed comparisons,
we have also adopted the state-of-the-art methods from single-
machine solution to distributed computation environment with
All-reduce communication topology, which is the standard dis-
tributed implementation in TensorFlow [1] and PyTorch [88].

5.3.1 Convergence

In this subsection, we attempt to show the correctness of our
proposed framework on all three datasets.
In our proposed framework, the deep neural network model
could be slightly different with its neighbors. Since we loose the
consistency requirement in our hybrid synchronization policy
to the decentralized setting. The theoretical analysis on the
convergence issue of this decentralized deep neural network
models is still an open problem [75]. In this chapter, we only
conduct an empirical study on this convergence issue. Figure 5.5
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Figure 5.4: The training loss of the averaged deep neural network model in
our proposed framework with 4 machines.

illustrates the difference of models among neighbors on three
datasets. From the figure, we can see that the `2 norm difference
of the parameters in CNN model convergence to zero after 10
epochs. It means that all parameters among neighborhood
convergences to the same values.
Figure 5.4 further demonstrates the convergence process of our
proposed framework. During the training process, we take the
average of all training loss in different machines as the overall
training loss depicted in fig. 5.4. After training, we consider the
averaged model as the final optimized model to conduct test
tasks.

5.3.2 Quantitative Results

In this subsection of quantitative evaluation, we try to empir-
ically prove the effectiveness of our proposed distributed deep
distance learning method in image retrieval and clustering tasks.
Tables 5.1, 5.2 and 5.3 display the comparison results be-
tween several state-of-the-art methods and our proposed method



CHAPTER 5. DISTRIBUTED DDL WITH HYBRID COMM. 100

Table 5.1: Evaluations on the Caltech-UCSD Birds (CUB-200-2011) dataset.
Recall@k is the recall with the top k results.
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Table 5.2: Evaluations on the CARS196 dataset. R@k is the recall with the
top k results.
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Table 5.3: Evaluations on the Stanford Online Products dataset. R@k is the
recall with the top k results.
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Figure 5.5: The average of
∥∥∥Ci − CRight(i)

∥∥∥
2
∀i ∈ [P ]. This figure displays the

convergence of CNN models with 4 machines

in terms of the NMI and k nearest neighbor task with the
Recall@K metric. In this subsection, we only consider the
“Original" setting for the state-of-the-art methods. “Original"
means that all these algorithms are executed in the original
single-machine solution with the same configuration in their
original paper. However, we do not report the results of our
proposed framework in the single machine setting. Because in
a single machine, our sampling policy cannot take advantage of
the large portion of data samples in a mini-batch. Therefore,
the comparisons in the single-machine setting are unfair. The
overall performance of our method in this environment is worse
than the N-pairs method [104] with the similar loss definition.
From the tables, we can easily see a considerable improvement of
our proposed method compared to the state-of-the-art methods,
especially the N-pairs method. The improvement against N-
pairs method demonstrates the effectiveness of our distributed
sampling policy. Because our method has a similar loss def-
inition compared to the N-pairs method and the significant
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difference comes from the extension of the sampling policy to
the distributed configuration.
For the execution time, table 5.1, 5.2 and 5.3 also demonstrate
distinguishable results from all these state-of-the-art methods.
The execution time of the triplet loss with semi-hard-negative
mining , the N-pairs method and the lifted structure method are
comparable. Because these methods spend the majority of time
on the online evaluation of the deep neural network. Compared
to other methods, NMI-based method is slowest for each epoch.
This is due to the cost of finding the facility location in this
method.
For different datasets, the evaluation time of these methods
for each mini-batch on the larger Stanford Online Products
dataset is comparable to that on the smaller CUB-200-2011
and CARS196 datasets. Since all input images are scaled
into the same size before evaluating the deep neural network.
However, all methods are slow on the Stanford Online Products
dataset. Because the Stanford Online Products dataset is larger
than the others and has more rounds of mini-batching for each
epoch. For the last-layer setting, as demonstrated in table
5.1, 5.2 and 5.3, the execution time is very fast. Since there
is no computationally expensive back-propagation and heavy
communication demands for the CNN components. However,
in most cases, the performances of our proposed method with
the last-layer setting on three datasets are not competitive
concerning image retrieval and clustering tasks.

5.3.3 Scalability

In this subsection, we attempt to demonstrate the scalability
of several state-of-the-art methods with the distributed setting.
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Figure 5.6: Comparison of computation time and communication time on
the Caltech-UCSD Birds dataset with 4 machines. The results from other
two datasets are similar.

Then, we compare our proposed framework and the other meth-
ods with different distributed settings, in which the different
behaviors motivate our work.
In triplet framework, large batch size brings a large scope of can-
didate samples, and it enjoys high probability to generate use-
ful triplets with real hard-positive and hard-negative samples.
Furthermore, there is generalization gap between large batch
size and small batch size in learning theory. However, since
existing deep distance learning algorithm are all designed for
single machine environment, which contains a limited number
of GPUs. The limited GPU memory constraints the maximum
batch size as well as the model complexity of deep neural
network. For example, we believe the overall performance of the
state-of-the-art methods will increase if we only replace ResNet-
34 with ResNet-151 and keep sampling policy unchanged in
these methods. Unfortunately, the higher complexity of deep
neural network will cost more GPU memory and lead to a
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smaller mini-batch size owing to the limited total GPU memory.
Therefore, a suitable distributed framework is necessary for deep
distance learning algorithm.
From table 5.1, 5.2 and 5.3, we can see that the overall execution
time of all methods decreases when the number of machines
increases. Specifically, the computation time for each epoch
decreases. Because the rounds of mini-batching in each machine
is less than that in single machine. However, the communi-
cation illustrated in fig 5.6 is costly. The strong consistency
requirement in All-reduce distributed framework brings heavy
communication workload in this case. For the performance in
image retrieval and clustering tasks, we can not observe a stable
improvement for the state-of-the-art methods when the number
of machine increases. Therefore, a simple gradient aggregation
policy implemented in All-reduce framework is not benefiting to
distributed deep distance learning. This phenomenon is different
from the conventional distributed deep learning approaches.
The potential improvement should come from a smart sampling
method which utilizes all machine resources.
Our proposed framework performs well in image retrieval and
clustering tasks. In many cases, it achieves the state-of-the-art
results. For the scalability issue, our proposed method performs
better in general when the number of machine increases. These
experiments prove that our distributed sampling method has
a positive impact on the overall performance of deep distance
learning algorithms.
For communication time, we expect that the ratio of commu-
nication time is as low as possible. Figure 5.6 illustrates the
ratio of communication time and computation time of several
methods. From the figure, we can easily observe that the ratio
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of communication time in our proposed method is lower than
many state-the-of-art methods in a conventional distributed
framework. The advantage of our proposed framework is more
obvious if the algorithm is conducted on a larger-scale cluster
with more machines. For NMI-based and Spectral methods,
the lower ratio of communication time does not reveal an
excellent performance on a distributed framework. In fact,
the computation of NMI-based and Spectral methods are more
costly.

5.4 Summary

In this chapter, we present a scalable solution from the per-
spective of distributed computation to tackle the big data
challenge for deep distance learning algorithm. In particular, we
first propose a distributed sampling method to find the hard-
negative samples from all machines to improve the efficiency
of triplet mining method. Then, with the help of the unique
characteristics of deep distance learning, we further propose a
hybrid synchronization policy to speed up the training process of
deep distance learning algorithm by reducing the communication
workload significantly in a distributed environment. Finally,
extensive experimental results demonstrate the effectiveness of
our proposed distributed deep distance learning framework on
image retrieval and clustering tasks.

2 End of chapter.



Chapter 6

Distributed Barycenter
Estimation for Wasserstein
Distance

Wasserstein Generative Adversarial Nets (GANs) are newly
proposed GAN algorithms and widely used in computer vision,
web mining, information retrieval, etc. However, the existing
algorithms with approximated Wasserstein loss converge slowly
due to heavy computation cost and usually generate unstable
results as well. In this chapter, we solve the computation
cost problem by speeding up the Wasserstein GANs from
a well-designed communication efficient parallel architecture.
Specifically, we develop a new problem formulation targeting
the accurate evaluation of Wasserstein distance and propose an
easily parallel optimization algorithm to train the Wasserstein
GANs. Compared to traditional parallel architecture, our pro-
posed framework is designed explicitly for the skew parameter
updates between the generator network and discriminator net-
work. Rigorous experiments reveal that our proposed framework
achieves a significant improvement regarding convergence speed
with comparable stability on generating images, compared to

108
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the state-of-the-art of Wasserstein GANs algorithms.

6.1 Problem and Motivation

Generative Adversarial Networks (GANs) [46] have recently
achieved significant progress for numerous applications such
as computer vision [126], information retrieval [119, 109] and
recommender system [140, 139, 138]. GANs consist of two
networks: a generator network that creates plausible data given
some noise as the latent seed variable, and a discriminator
network that is trained to distinguish between the generator’s
fake output and real data sample. The critical issue in the GAN
training process is to measure the difference between the real
data distribution and the generated fake data distribution. For
better measurement between the two distributions, Wasserstein
GANs [4] are proposed with better training stability over prior
Jensen-Shannon (JS) divergence and Kullback-Leibler (KL)
divergence GANs [46].
Wasserstein GANs have attracted much interest in the com-
munity recently. The original Wasserstein GAN and its variants
employ Kantorovich-Rubinstein duality, which involves a saddle-
point objective with a strong 1-Lipschitz constraint for the
discriminator function. On the other hand, some researchers
approximate the Wasserstein distance in the primal form rather
than solving a dual problem to improve stability. [33] introduces
a random projection to estimate the Wasserstein distance from
samples directly. [97] employs the Sinkhorn algorithm to
calculate the primal form of Wasserstein distance with entropic
regularization. Although the performance of the state-of-the-
art Wasserstein GAN is better than the original version, the
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computation complexity of the approximation to dual or primal
Wasserstein measures keeps increasing.
In general, the Wasserstein GAN framework consists of two
time-consuming components: the forward and backward up-
dates of the discriminator and the generator, and the approxi-
mation of Wasserstein distance. Since the discriminator employs
the approximated Wasserstein distance to estimate the distance
between the real distribution and the generated distribution, we
should guarantee the correctness of the Wasserstein distance per
generator update. Otherwise, the discriminator may mislead the
generator during the training process. Overall, the computation
cost is much heavier when the inaccurate approximation involves
the frequent update of the discriminator. In practice, we usually
spend several days training a generator model with edging
NVIDIA GPUs.
In this chapter, we explore the parallel computation to speed
up the Wasserstein GAN training. A straightforward solution
is based on data-parallelism. A set of worker unit containing
model replicas is fed with different partitions of the input
dataset, and the model replicas are synchronized via a parameter
server. Unfortunately, the above approach is not ideal because
of the skew parameter updates in GAN framework—most of
GAN algorithms update the discriminator several times for
every generator update. The frequent update of discriminator
easily becomes a bottleneck due to the limited communication
bandwidth in all distributed systems.
In order to eliminate the communication bottleneck for the
synchronization of the discriminator, we intend to remove the
synchronization requirements by allowing the discriminators
different among worker units. Besides this, we also follow the



CHAPTER 6. DISTRIBUTED BARY. ESTI. FOR W-DISTANCE 111

data-parallelism to split the whole dataset into different worker
unit. In this case, we can consider that each worker unit contains
different real distribution supported by portions of the whole
dataset. Then we formulate the objective function as minimizing
the averaged Wasserstein distance between the generated distri-
bution and the multiple real distributions. Inspired by [43, 108],
we optimize the objective function by the stochastic algorithm
for discrete optimal transport problem, which can be efficiently
paralleled.
In summary, our contributions to parallel Wasserstein GANs are
highlighted as follows:

• To our best knowledge, we are the first to propose a parallel
architecture for Wasserstein GANs framework to speed up
the training of GANs from the computational perspective.

• Different from common Wasserstein GANs, we develop an
efficient stochastic algorithm to approximate the Wasser-
stein distance with higher accuracy for the newly proposed
parallel framework.

• In experiments, we show that the proposed parallel archi-
tecture enjoys the superior convergence speed and compa-
rable stability.

6.2 Methodology

In all Wasserstein GANs framework, the Wasserstein distance
plays a pivotal role to estimate the distance between the
real distribution Pr and the generated distribution Pg. In
real-world applications, we estimate the distributions by the
empirical probabilistic measure with sampled data. Formally,
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(a) Parameter Server

(b) Proposed Architecture

Figure 6.1: Comparisons of the popular parameter server and the proposed
architecture.
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we formulate the empirical measure of the real distribution µr
and the artificially generated distribution µg by Dirac mass as
follows:

µr =
nr∑

i=1,x∈R
priδxri , (6.1)

µg =
ng∑

j=1,x∈G
pgjδxgj , (6.2)

where δxri and δxgj are Dirac function at location xri and xgj , pri
and pgj are probability masses associated to the i-th real and j-th
generated samples respectively, and nr and ng are the cardinality
of the set of real data and generated fake data in a mini-batch
respectively.
When the number of data in each mini-batch increases, the
empirical distribution µr approximates the real distribution Pr
with higher accuracy [42]. However, the size of the mini-batch
is constrained due to the limited memory in each worker (e.g.,
GPU). To solve this problem, we turn to a parallel training
mechanism in a distributed environment.

6.2.1 Framework

We propose a communication-efficient framework for parallel
Wasserstein GAN. The details are shown in Figure 6.1.
Figure 6.1 (a) shows the traditional parallel approach [31, 70].
In this framework, we split the training dataset across several
workers first. Then, for each iteration, each worker with a model
replica conducts forward-backward computation to calculate
the gradients in parallel. Finally, the model parameters are
synchronized with a global parameter server before the next
iteration starts. This framework is widely used in distributed
deep learning systems like Tensorflow [1].



CHAPTER 6. DISTRIBUTED BARY. ESTI. FOR W-DISTANCE 114

However, the traditional parallel approach in Figure 6.1 (a)
contains two drawbacks. The parameter server is not proper
to train the discriminator for GAN framework. Because the
frequent synchronization of the parameters in the discriminator
and the generator leads to massive communication demand,
which degrades the training speed in any parallel solutions.
Another drawback of the parameter server comes from the
gradient aggregation for a large-scale batch. Traditionally, the
gradient used for back-propagation is the arithmetic mean of
gradients from different portions of mini-batch. The averaged
gradient can not preserve the geometry information, which is
vital to depict the semantic information.
To overcome the drawbacks in traditional parallel approaches,
we propose a new parallel framework for Wasserstein GAN
training, shown in Figure 6.1 (b). In our approach, we assign
K worker unit with a discriminator Dθk and a master unit
with a generator Gϑ. θk and ϑ represent the parameters of
the neural networks in the discriminator k and the generator
respectively. Note that θk 6= θk′ in our proposed architecture
generally. Our proposed framework relaxes the communication
constraints by eliminating the synchronization of the discrimina-
tor among workers. In addition, this relaxed requirement could
improve the diversity of the discriminator model and intuitively
enhance the generator by increasing the difficulty of cheating
the discriminator.
In our proposed architecture, the training real dataset R is split
into K workers. Then, for worker k, the empirical measure µrk
is supported by the subset of real data Rk.
Similar to the original Wasserstein GAN, we try to minimize
the sum of the Wasserstein distance between the generated
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distribution µg and all real distribution µrk with empirical
measures as follows:

L
(
µg, {µrk}

K
k=1

)
= 1
K

K∑
k=1

Wc (µg, µrk) . (6.3)

6.2.2 Parallel Wasserstein GAN Algorithm

We develop a novel parallel Wasserstein GAN algorithm to
solve the objective function in the our proposed architecture,
namely Eq. (6.3). The loss function defined in Eq. (6.3) is
similar to the Wasserstein barycenter problem introduced in [3].
Intuitively, the optimal generated fake distribution should be
approximated to the barycenter of the real distributions in all
workers. Specifically, we employ the empirical distribution of the
barycenter of all real distributions as the supervised information
to train the generator network. In order to solve the problem
in Eq. (6.3) with more accuracy, we consider to calculate
the Wasserstein distance directly, which is different from the
recently popular solutions with entropic regularization [43, 27].
In the proposed framework, we follow [43, 25] to consider the
semi-discrete Kantorovich’s dual formulations of the primal
optimal transport problem in Eq. (2.22):

Wc (µg, µr) =

max
ϕ∈Rng


ng∑
j=1

ϕjp
g
j +

∫
Ω
ϕc(xr)dµr(xr)

 , (6.4)

where ϕc (xr) = c
(
xr, x

g
j

)
− ϕj is the c-transform of the

Kantorovich potential ϕj [116]. Therefore, L is reformulated
as:
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ALGORITHM 5: Generator as Master Unit
Input: K: number of worker unit, ng: batch size in generator, nr:

batch size in worker, T : number of iteration for the estimation
of the probability Dirac mass.

Output: Gϑ: the generator model.
while ϑ has not converged do

Sample Gaussian noise z1, . . . , zng from N (0, 1)
Generate fake images

{
xgj ;x

g
j = Gϑ (zj)

}ng

j=1
ϕj ← 0 ∀j ∈ [1, nr]
Broadcast {xgj}

ng

j=1 to workers
for t=1,. . . ,T do

ϕj ← 1
K

∑K
k=1 ϕ

k
j ∀j ∈ [1, ng]

Broadcast {ϕj, pgj}
ng

j=1 to workers
Receive {ϕkj , Nk

j }
ng

j=1 from workers
pgj ← 1

K

∑K
k=1N

k
j ∀j ∈ [1, ng]

end
Conduct back-propagation with the loss:
Loss({Dg

θ(Gϑ(zj))}ng

j=1, {p
g
j})

end
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L
(
µg, {µrk}

K
k=1

)
=

max
ϕ∈Rng

F (ϕ) =
ng∑
j=1

ϕjp
g
j + 1

K

K∑
k=1

∫
Ωk
ϕc(xr)dµrk(xr)

 (6.5)

From Eq. (6.5), we can know that F (ϕ) is a concave func-
tion. Then we can derive Wc from the optimization using the
stochastic gradient ascent method. Since F (ϕ) is derivative with
respective to each individual ϕj:

∂F

∂ϕj
= pgj −

1
K

K∑
k=1

∫
Vorkϕj

dµrk (xr) , (6.6)

where Vorϕj is Voronoi cells of the point xgj [98] defined in the
following:

Vorϕj ={
x ∈ R : c

(
x, xgj

)
− ϕj ≤ c

(
x, xgj′

)
− ϕj′∀j′

}
. (6.7)

Therefore, Wc is obtained when ∂F
∂ϕj

= 0 and the optimal p∗j is
calculated as:

p∗j = 1
K

K∑
k=1

∫
Vorkϕj

dµrk (xr) (6.8)

= 1
K

K∑
k=1

Exr∼µrk
[
Ixr∈Vorkϕj

]
(6.9)

≈ 1
K

K∑
k=1

nrk∑
i=1

Ixki ∈Vorkϕj
, (6.10)

where I is denoted as the indicator function of a given set. p∗j is
the valuable supervised information of our GAN framework for
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the generated fake point xgj since p
g
j represents the weight of the

point xgj in the empirical distribution.
In our framework, the computation of p∗j in Eq. (6.8) is easily
decomposed to all workers in parallel, because the Voronoi cells
Vorkϕj in each worker k are independent with each other. When
the empirical estimation in each worker is finished, p∗j is reduced
to the master worker with xgj . Algorithm 5 and 6 detail the
proposed parallel algorithm with mini-batch.

ALGORITHM 6: Discriminator as Worker Unit
Input: K: number of worker unit, nr: batch size in worker unit, η :

learning rate for Kantorovich potential, T : number of
iterations for the Dirac mass estimation.

forall worker k ∈ [1, K] do
Sample {xi}nr

i=1 a batch from the real dataset Rk

Receive fake images
{
xgj
}ng

j=1
from the master unit

Evaluate cost cij =
∥∥∥Dθk

(xri )−Dθk

(
xgj
)∥∥∥ ∀i ∈ [1, nr], j ∈ [1, ng]

for t = 1, . . . , T do
Receive {ϕj, pgj}

ng

j=1 from master
for j = 1, . . . , ng do

Compute Vorϕj
from Eq. (6.7)

Nk
j ←

∑nr
k
i=1 Ixk

i ∈Vork
ϕj

ϕkj ← ϕj − ηNk
j

end
Send {ϕkj , Nk

j }
ng

j=1 to master
end
Conduct back-propagation with the loss:
Loss({Dk

θ (x
g
j )}

ng

j=1, {Nk
j })

end

In many machine learning algorithms armed with Wasserstein
distance, the ground cost function on the given metric is rela-
tively simple, such as the `2 norm in Euclidean space. However,
`2 norm is not proper for high-dimensional image data in GAN
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framework, because it lacks complex geometric information.
Therefore, we parameterize the cost function c (xr, xg) from the
discriminator as follows:

cθ (xr, xg) = ‖Dθ (xr)−Dθ (xg)‖ , (6.11)

where Dθ is the discriminator network with parameters θ. When
p∗ is obtained, we update the discriminator network Dk

θ in all
workers and the generator network Gϑ by back-propagation.
It is important to note that our approach does not contain
any cumbersome communication policy that may increase the
negative effect of mismatching communication bandwidth in
the distribution environment. For each worker unit, they only
receive generated data and send a simple vector of size ng
to optimize the proposed objective function collaboratively.
Moreover, our approach is compatible with different configu-
rations for parallel computation: (a) All GPUs are installed
via PCI Express in a single workstation. In this setting, each
GPU is considered as an isolated computation worker in the
parallel concept. (b) There are multiple machines, each of
which may contain more than one GPU, deemed as distributed
computation. In the following, we take experiments in case (b)
to evaluate our approach.

6.3 Evaluations

In the experimental part, we evaluate the proposed parallel
approach on two widely used image datasets CIFAR-10 and
LSUN [133]. CIFAR-10 contains 60,000 small color images with
size 32×32. LSUN is a large-scale scene understanding dataset.
Following the setting in many Wasserstein GANs papers, we
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Figure 6.2: The estimated Wasserstein distance of WGAN-GP and the
proposed method both trained on LSUN Bedroom dataset. To make fair
comparisons, we employ PyTorch’s default MPI interface to train WGAN-
GP in parallel. In (c), we calculate the speedup based on the execution
time from the start to the first checkpoint where the estimated Wasserstein
distance is less than 5.0.

mainly use the bedroom category from LSUN dataset. The
bedroom category contains 3 million color images with a size
of 128× 128.
All experiments in this section are conducted in a cluster with
four machines with 2 NVIDIA GTX 1080 GPUs each. Therefore,
we could scale our approach up to 8 GPUs setting, which
contains one master unit for the generator and seven workers
for the discriminators.
We implement our algorithms with PyTorch [88], and utilize
the 101-layer ResNet block in generator and discriminator. We
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assign the number of iteration for per mini-batch update T = 5
for all experiments. Intuitively, the probability of Dirac mass
for each generator update should be more accurate when T

increases. However, larger T means that the communication
rounds between the master and workers will increase as well.

6.3.1 Convergence Speed for Scalability

In a parallel environment, we assume that all workers have
the same batch size nr. Therefore, in the proposed parallel
approach, the total number of real images sampled from the
dataset for a single generator update is K · nr, where K is the
number of worker unit. Usually, the range of nr is constrained
to the memory in GPUs. Then, the batch size of real images
scales linearly with the number of machines. For the special “2
GPUs" setting in experiments, we utilize two GPUs equipped at
different machines to make a fair comparison, because the inner-
machine communication is much faster than the inter-machine
protocol.
To demonstrate the advantage of our proposed method com-
pared to the traditional distributed deep learning framework,
we implement parallel WGAN-GP through MPI interface in Py-
Torch. MPI follows All-Reduce policy, equivalent to parameter
server framework depicted in Figure 6.1 (a).
Figure 6.2 (a) and (b) illustrate the convergence speed with
regard to the number of the GPUs, where the y-axis shows
the change of estimated Wasserstein distance between the real
distribution and the generated distribution during the training.
From the figures, we can see both of the proposed method and
WGAN-GP with more GPUs always converge faster than the
same approach with fewer GPUs.
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We also employ the standard speedup measurement in dis-
tributed computation to demonstrate the scalability of our
proposed method, and the measurement is defined as below:

Speedup(N) = The execution time of one unit
The execution time of N units . (6.12)

In the experiments, we measure the duration from starts to the
first checkpoint where the corresponding estimated Wasserstein
distance is less than 5.0. We consider 5.0 as an ending point
because all methods converge with less vibration when the
estimated distance is less than 5.0. From Figure 6.2 (c), we
can easily conclude that our method enjoys a better convergence
speed than the traditional distributed deep learning framework,
which is coincident with our expectation.
Due to limited space, we do not demonstrate the figures for
CIFAR10 dataset. Actually, the behavior of two methods in
CIFAR10 is quite similar to Figure 6.2–both methods converge
faster if more GPUs, and our approach is faster than the
traditional parallel framework.

6.3.2 Quantitative and Qualitative Evaluation

We first conduct the quantitative evaluation to demonstrate
the stability of the proposed method. We calculate the In-
ception Score during the training and evaluate the generator
performance on CIFAR-10. A higher Inception Score indicates
a better ability of the generative model to produce samples
with variability. Practically, we calculate the maximal Inception
Score reached in 20,000 generator updates.
We also follow [126] to evaluate the model performance on
LSUN dataset by Fréchet Inception Distance (FID) [53], which
measures the difference between real and fake data distributions.
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Table 6.1: Quantitative evaluations on CIFAR-10 and LSUN dataset.
Smaller FID is better, larger IS is better.

Method LSUN bed. (FID) CIFAR-10 (IS)

WGAN-GP (8 GPUs) 27.3 7.73
Ours (2 GPUs) 23.2 7.12
Ours (4 GPUs) 21.9 7.68
Ours (8 GPUs) 21.0 7.81

From Table 6.1, we observe that the performance of the pro-
posed method becomes better when the number of worker unit
increases, which mainly benefits from larger size of real data
batch among multiple worker units. Moreover, our method
enjoys much better performance over WGAN-GP.
We also take qualitative evaluation from the visualization per-
formance. Figure 6.3 indicates that the generated images of
our proposals with different number of GPUs are comparable
to results in WGAN-GP. Moreover, comparable results in Fig-
ure 6.3 (b-d) show that our parallel method has no restriction
on the number of GPUs used to generate plausible results.
Figure 6.4 shows the performance of our proposed method is
also comparable with WGAN-GP on CIFAR-10 data. Hence our
method enjoys superior performance concerning the convergence
speed with the comparable generation quality.

6.4 Summary

In this chapter, we introduce a novel parallel architecture de-
signed for GANs framework to speed up the costly computation
in Wasserstein GANs with multiple computation units. Ex-
perimental reports demonstrate that our proposed architecture
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enjoys an attractive scalability performance to decrease the
training time remarkably. Moreover, both quantitative scores
and qualitative demonstration display the proposed loss function
with the Wasserstein distance and the parallel algorithm are
reasonable and suitable for the parallel environment.

2 End of chapter.
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(a) WGAN-GP (8 GPUs) (b) Proposed (2 GPUs)

(c) Proposed (4 GPUs) (d) Proposed (8 GPUs)

Figure 6.3: Qualitative comparisons between the state-of-the-art WGAN-GP
and the proposed method with different configurations. Images in (a) are
generated by WGAN-GP; images in (b, c, d) are generated by the proposed
model trained with the different number of GPUs. All models are trained on
LSUN bedroom dataset within 24 hours.
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(a) WGAN-GP (8 GPUs)

(b) Proposed (8 GPUs)

Figure 6.4: Qualitative comparisons between the state-of-the-art WGAN-GP
and the proposed method.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we explore distributed distance learning algo-
rithms from a variety of perspectives, including global distance
learning, local distance learning, deep distance learning, and
probabilistic distance learning.
In chapter 3, we have developed a parallel global distance learn-
ing algorithm from the popular Information-Theoretic Metric
Learning in order to learn the proper distance function from
high-dimensional data without low-rank approximation, which
is infeasible for previous distance learning algorithms.
Moreover importantly, we present a rigorous theoretical analysis
to upper bound the Bregman divergence between the sequential
algorithm and the parallel algorithm, which guarantees the
correctness and performance of the proposed algorithm.
In chapter 4, we focus on improving the performance of local
distance learning framework with a specific application called
learning to rank. Specifically, we firstly developed a localized
GMML algorithm to adopt distance learning for ranking al-
gorithm from a query-dependent model to widely used query-

127
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independent model. Finally, we have demonstrated empirical
experiments to prove that our approach outperforms both
of the state-of-the-art query-dependent algorithms and query-
independent algorithms.
In chapter 5, we present a scalable solution to tackle the big data
challenge for deep distance learning algorithm by mining hard-
negative samples in a distributed environment. Furthermore,
we demonstrate a hybrid synchronization policy to speed up the
training process of deep distance learning algorithm by reduc-
ing the communication workload significantly in a distributed
environment.
In chapter 6, we introduce a novel parallel architecture to
accelerate the costly computation in Wasserstein GANs in a
distributed environment. We further demonstrate that our pro-
posed architecture enjoys an attractive scalability performance
to decrease the training time remarkably.

7.2 Future Work

Distance learning algorithms have been widely studied in the
recent two decades. Distributed computation strategy is a
promising research direction to solve big data and big model
challenges in distance learning. Although there are plenty
of well-designed distance learning algorithms and distributed
optimization methods in the literature respectively, the joint
design is still not adequately explored.

• Distributed global distance learning

Global distance learning mainly involves the heavy compu-
tation of solving semi-definite program (SDP). The convex
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combination of rank-one matrices introduced in Chapter 3
with special structure or regularization is a proper tool to
address the SDP problem without strictly constraints about
matrix rank.
The popular Frank-Wolfe [58] and its variants solve linear
minimization oracles as a subroutine to optimize the rank-
one matrices combination. Therefore, the parallel block
Frank-Wolfe algorithm [121] is expected to enhance the
scalability performance of parallel global distance learning
algorithm.

• Distributed local distance learning

Most local distance learning algorithms address the high
dimensional problem by projecting the original data into lo-
cal dimensional embedding. Usually, any direct projection-
based optimization techniques involving eigendecomposi-
tion is too expensive in time complexity. In optimization
theory, we could assume the low dimensional embedding
lies on the surface of a Riemannian manifold to reduce
the time complexity of the projection operators. Therefore,
the parallel method of Riemannian manifold optimization
should be explored.

• Distributed deep distance learning

The key challenge of deep distance learning is the hard
example mining in each mini-batch during the training
process. Existing methods focusing on hand-crafted sam-
pling policy is limited in the convergence speed. Hence,
to accelerate the convergence of deep distance learning, a
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smarter and dynamic semi-hard negative example mining
in a distributed environment is valuable to explore.

• Distributed Wasserstein distance

The accurate computation of Wasserstein distance enjoys
heavy computation. Any straightforward distributed ap-
proach can easily meet the bottleneck of the scalability issue
due to the complex structure of the original model. To re-
duce the complexity of the original models and algorithms,
regularized or sliced variants of Wasserstein distance is
taken as a trade-off between the time complexity and
model performance. Therefore, the problem of how to
take advantage of distributed optimization for regularized
constraints is a promising research direction to explore.

2 End of chapter.
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Publications during Ph.D.
Study

1. Yuxin Su, Shenglin Zhao, Xixian Chen, Irwin King and
Michael Lyu. “Parallel Wasserstein Generative Adversarial
Nets with Multiple Discriminators" In Proceedings of the
28th International Joint Conference on Artificial Intelli-
gence (IJCAI), 2019.

2. Yuxin Su, Michael Lyu, and Irwin King. “Communi-
cation Efficient Distributed Deep Metric Learning with
Hybrid Synchronization." In Proceedings of the 27th ACM
International Conference on Information and Knowledge
Management (CIKM), 2018.

3. Yuxin Su, Irwin King, and Michael Lyu. “Learning to
Rank Using Localized Geometric Mean Metrics." In Pro-
ceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval
(SIGIR), 2017.

4. Yuxin Su, Haiqin Yang, Irwin King, and Michael Lyu.
“Distributed Information Theoretic Metric Learning in
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Apache Spark." In 2016 International Joint Conference on
Neural Networks (IJCNN), 2016.

5. Haiqin Yang, Guang Ling, Yuxin Su, Michael R. Lyu,
and Irwin King. “Boosting response aware model-based
collaborative filtering." IEEE Transactions on Knowledge
and Data Engineering 27, no. 8 (2015): 2064-2077.

6. Yuxin Su, Haiqin Yang, Michael Lyu, Irwin King. “Dis-
tributed Non-negative Matrix Factorization with Loose
Synchronization." In Proceeding of the WSDM workshop
on Scalable Data Analytics, 2015

7. Junjie Hu, Haiqin Yang, Yuxin Su, Michael Lyu, Irwin
King. “Accelerated Information-Theoretic Metric Learn-
ing." In Proceeding of the WSDM workshop on Scalable
Data Analytics, 2015

Note: The papers [1, 2, 3, 4] are partially involved in this thesis.

2 End of chapter.
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