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Abstract of thesis entitled:
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for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in July 2024

Python has emerged as a widely favored dynamic programming language,

as demonstrated by its rank as the second most utilized language on GitHub

since 2019. Developers working with Python derive substantial advantages from

its dynamic features. Among these, the dynamic type system and the dynamic

run-time environment stand out as particularly significant. The dynamic type

system eliminates the need for explicit type declarations, thereby simplifying the

development of generic functions. The dynamic run-time environment removes

the necessity for compilation during the development phase, facilitating the in-

tegration of the latest third-party packages. These features collectively enhance

fast prototyping capabilities, reducing the effort required to develop Python soft-

ware. This streamlined development process significantly contributes to Python’s

popularity in software engineering.

However, the flexibility afforded by Python’s dynamic features is not without

drawbacks, as it may compromise the reliability of the software. The absence of

strict requirements like type declarations and compilation increases the suscep-

tibility of Python software to reliability issues such as type errors and run-time

environment conflicts. In this thesis, we propose methods to detect and miti-

gate the reliability issues arising from the dynamic type system and the dynamic
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runtime environment inherent to Python. Our approach aims to bolster the

reliability of Python software, addressing key vulnerabilities introduced by its

dynamic nature.

Firstly, we introduce a hybrid type inference method termed HiTyper,

which synergizes static type inference with neural predictions. Type inference

statically assigns types to variables in the code, enabling the detection of type

errors by checking potential type conflicts via type checking tools. Our approach

merges the precision of static type inference with the extensive coverage and

effectiveness of neural predictions. To facilitate this integration, we document

type dependencies among variables within each function and represent these re-

lationships through Type Dependency Graphs (TDGs). Utilizing TDGs allows

for the seamless incorporation of type inference rules at the nodes to perform

static inference, alongside type rejection rules to filter out incorrect neural pre-

dictions. HiTyper iteratively executes static inference and neural prediction

until the TDG is fully resolved, thereby determining the types for all variables

in the code. This method enhances the type reliability of Python software by

preventing potential type errors.

Secondly, we propose a generative type inference approach named TypeGen

to further improve the performance of HiTyper. Recognizing that the perfor-

mance upper bound of HiTyper is contingent upon the performance of the un-

derlying deep learning models, we design a more advanced generative approach

based on powerful large language models. This approach generates chain-of-

thought (COT) prompts by converting the procedural steps of static type analysis

into structured prompts derived from Type Dependency Graphs (TDGs). This

format allows the language models to internalize the methodologies employed by

static analysis for type inference. TypeGen enhances this learning process by

incorporating code snippets and type hints alongside the COT prompts, creating
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comprehensive example prompts based on human annotations. These example

prompts facilitate in-context learning, enabling the language models to generate

similar COT prompts that include the final type predictions. This innovative

approach not only improves the performance of neural type predictions but also

expands the capabilities of HiTyper in handling complex type inference scenar-

ios.

Thirdly, we propose a domain-aware prompt-based program repair method

named TypeFix for repairing existing Python type errors. Prompt-based pro-

gram repair techniques have demonstrated effectiveness, however, their perfor-

mance largely hinges on the quality of the prompt templates used for insert-

ing masks. TypeFix enhances the prompt-based approach by first employing a

novel hierarchical clustering algorithm to mine generalized fix templates. These

templates capture common editing patterns and contextual differences associ-

ated with type error corrections. Based on the mined generalized fix templates,

TypeFix generates code prompts for pre-trained code models, utilizing the mined

templates as domain-specific knowledge. This approach significantly improves the

performance of prompt-based program repair by allowing for the adaptive place-

ment of masks tailored to a certain type error, rather than relying on randomly

determined locations.

Fourthly, we undertake an empirical analysis of existing approaches to API

recommendation. Recognizing that third-party packages in runtime environments

primarily furnish implementations for external APIs, we believe that recommend-

ing high-quality external APIs can mitigate some runtime environment conflicts.

To this end, we evaluate 11 existing API recommendation approaches alongside

four widely-used Integrated Development Environments (IDEs), and construct a

benchmark, designated APIBench. Utilizing APIBench, we extract actionable

insights and identify prevailing challenges of API recommendation. This study
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contributes to a deeper understanding and improvement of API recommendation

systems, which is crucial for developing reliable Python software.

Lastly, we introduce a novel source-level runtime environment conflict detec-

tion approach named PyConf. Previous approaches primarily addressed con-

flicts among third-party packages within the runtime environment but overlooked

potential conflicts between these packages and the software itself. PyConf im-

plements three targeted checks at distinct stages of library interaction: setup,

packing, and usage. This approach systematically examines the compatibility of

the constructed runtime environments with the software by monitoring the exe-

cution of import statements and detecting possible run-time errors. Through the

deployment of PyConf on the PyPI platform, we have identified fifteen kinds

of configuration issues and discovered that 183,864 library releases have poten-

tial configuration problems. This method significantly advances our capability to

foresee and mitigate runtime environment conflicts, enhancing the stability and

reliability of software deployments.

In summary, this thesis addresses the reliability issues arising from the dy-

namic type system and the dynamic runtime environment associated with the

Python language. Our primary focus is on devising methodologies to prevent, de-

tect, and rectify these reliability issues. We have proposed a comprehensive suite

of approaches tailored to enhance the run-time reliability of Python software. Ex-

tensive experimental evaluations underscore the effectiveness of the approaches

introduced in this thesis, demonstrating significant advancements in managing

the inherent challenges posed by the dynamic features of Python.
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論文題目: 智能化 Python 軟件運行時可靠性分析

作者 : 彭昀

學校 : 香港中文大學

學系 : 計算機科學與工程學系

修讀學位: 哲學博士

摘要 :
Python 近來成為一種流行的動態編程語言，自 2019 年以來在 GitHub 的

使用量位居第二。Python 開發者從 Python 的動態特性中受益匪淺。其中最重

要的動態特性包括動態類型系統和動態運行時環境。動態類型系統省去了代碼

中類型聲明的需求，從而極大地簡化了開發者編寫泛型函數的工作。動態運行

時環境消除了開發階段將軟件和整個運行時環境打包編譯的需要，使得 Python

擁有豐富的第三方函式庫支持。得益於動態特性帶來的快速原型的優勢，開發

者在構建 Python 應用時可以投入更少的努力。

然而，動態特性的代價在於可能帶來更多運行時問題，這威脅到了 Python

軟件的可靠性。由於缺少嚴格的規範，如類型聲明和軟件分發前的編譯，Python

軟件在使用中面臨更多的可靠性問題，例如類型錯誤和運行時環境衝突。在本

論文中，我們提出了一種檢測和解決由於 Python 的動態類型系統和動態運行

時環境所引發的可靠性問題的方法。

首先，我們提出了一種名為 HiTyper的混合類型推斷方法，基於靜態類型

推斷和神經網絡預測。類型推斷在靜態上為代碼中的變量提供類型，這可以進

一步用於通過類型檢查工具檢查潛在的類型衝突來檢測類型錯誤。我們希望結

合靜態類型推斷中的類型正確性優勢和神經網絡預測的有效性及高覆蓋率。為

實現這一目標，我們記錄每個函數中變量之間的類型依賴關係，並將依賴信息

編碼到類型依賴圖（TDGs）中。基於類型依賴圖，我們可以輕鬆地在節點中整

合類型推斷規則以進行靜態推斷，並使用類型拒絕規則來檢查神經網絡預測的

正確性。HiTyper 會迭代進行靜態推斷和神經網絡預測，直到類型依賴圖完全
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被推斷出來，從而獲得代碼中所有變量的類型。

其次，我們提出了一種名為 TypeGen 的生成型類型推斷方法，以進一步

提升 HiTyper 的性能。我們認識到 HiTyper 的性能上限依賴於它所使用的

深度學習模型的表現，因此我們基於強大的大型語言模型設計了一種更先進的

生成方法。TypeGen 通過將靜態分析的類型推斷步驟轉化為基於類型依賴圖

的提示，創建思維鏈（COT）提示詞，使語言模型能夠從靜態分析推斷類型的

過程中學習。TypeGen結合思維鏈提示詞、代碼片段和類型提示，從少量人工

類型標註中構建示例提示，教導語言模型通過上下文學習生成類似的思維鏈提

示詞，生成的思維鏈提示詞中包含了我們所需的最終類型預測。

第三，我們還提出了一種基於領域認識和提示詞的程序修復方法，名為

TypeFix ，用於修復現有的 Python 類型錯誤。基於提示詞的程序修復方法

相當有效，但其性能依賴於用於添加掩碼的提示詞模板的質量。為創建有領域

認識的提示詞模板，TypeFix 首先通過一種新穎的層次聚類算法挖掘出通用的

修復模板。這些識別出的修復模板顯示了現有類型錯誤修復的常見編輯模式和

上下文。然後 TypeFix利用這些通用的修復模板作為領域知識，為代碼預訓練

模型生成代碼提示，在其中掩碼的位置是根據每個類型錯誤自適應定位的，從

而大大提高了基於提示詞的程序修復方法的性能。

第四，我們對現有的 API 推薦方法進行了實證研究。基於對於運行時環境

中大多數第三方包用於為軟件中調用的外部 API 提供實現的洞察，我們認為

推薦高質量的外部 API 可以防止運行時環境衝突。我們研究了 11 種現有方法

和 4 種廣泛使用的 IDE，並建立了一個名為 APIBench 的基準測試集。基於

APIBench，我們提煉出了一些可行的研究方向和 API推薦面臨的挑戰。我們

還總結了一些對提高 API 推薦方法性能的啟示和方向。

最後，我們建立了一種名為 PyConf的源代碼級別運行時環境衝突檢測方

法。先前的方法僅關注運行時環境中第三方包之間的衝突，卻忽略了第三方包

與軟件之間的衝突。PyConf 採用三種不同的檢查，分別針對第三方庫的設置、

打包和使用階段。PyConf 通過追蹤軟件執行中的導入語句來識別潛在的運行
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時錯誤，檢查建立的運行時環境與軟件的兼容性。基於 PyConf ，我們識別出

15 種配置問題，並發現 PyPI 有 183,864 個第三方庫版本受到潛在配置問題的

影響。

總結來說，本論文針對由於 Python 語言的動態類型系統和動態運行時環

境所導致的可靠性問題。我們專注於如何預防、檢測和修復可靠性問題，並提

出了一系列方法。廣泛的實驗證明了我們在本論文中提出的方法的有效性。
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Chapter 1

Introduction

This thesis presents our research towards run-time reliability engineering for

Python software with a focus on the reliability issues brought by the dynamic

type system and run-time environment in Python. Given the great popularity

and fast development of Python language, the topic of this thesis is an important

field of study and practice in software analysis and reliability. We provide a brief

overview of research problems under study in Sec. 1.1, and highlight the main

contributions of this thesis in Sec. 1.2. The overall structure of this thesis is

described in Sec. 1.3.

1.1 Overview

Python, recognized for its flexibility as a dynamic programming language,

has seen a significant surge in popularity. According to data from GitHub Octo-

verse [56], which monitors trends in open-source software, Python ascended to the

position of the second most utilized programming language in 2019. Presently,

Python exhibits an annual growth rate exceeding 20% in its contributor base,

underscoring its expanding adoption and potential within the developer commu-
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nity. This trend highlights Python’s increasing relevance and utility in modern

software development.

Python is renowned for its ease of learning and usability. Its powerful dy-

namic features facilitate fast prototyping, significantly enhancing software de-

velopment efficiency. Among these features, the dynamic type system and dy-

namic run-time environment are particularly crucial. The dynamic type system

allows variable types to be determined at run-time, enabling developers to ef-

fortlessly craft generic functions. The dynamic run-time environment obviates

the need for compiling Python projects into binary code, so developers only need

to provide the core scripts and associated configuration files. Python’s package

management tools, such as pip, will analyze these configurations to build run-

time environments that incorporate all necessary dependencies, thus streamlining

code execution. Leveraging the dynamic run-time environments, developers can

seamlessly integrate external APIs into their projects by specifying dependencies

in the configuration files. This flexibility has spurred the proliferation of diverse

third-party packages, minimizing the effort to replicate functionalities. Presently,

PyPI [41], the largest third-party package management platform for Python, hosts

over 530,000 packages with more than 5,640,000 releases, significantly bolstering

Python’s widespread adoption.

Run-time Reliability Issues. The flexibility afforded by Python’s dy-

namic type system and dynamic run-time environment does not come without

costs. These features, while facilitating rapid development, introduce more re-

liability issues compared to static programming languages like Java and C++.

Since Python software is not compiled before distribution, it bypasses the rigorous

checks and optimizations typically performed during the compilation process of

static languages. As a result, when software is deployed, it may contain latent is-

sues that could disrupt normal operation. Key among these are type errors, which
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arise from Python’s dynamic type system, and run-time environment dependency

conflicts, where incorrect run-time environments can interfere with the software.

These issues contribute to potential instability and complicate the maintenance

of software reliability.

Type errors manifest when the types of variables involved in an operation

are incompatible. For instance, attempting to access a key in a variable of type

List results in a type error, as List lacks the key attribute inherent to Dict

types. In Python, where developers are not obligated to specify variable types

explicitly, the likelihood of overlooking potential type conflicts increases, leading

to type errors during code execution. A recent study [143] indicates that over 30%

of discussions on Python in forums such as Stack Overflow and GitHub pertain

to type errors. Further analysis reveals that approximately half of these errors

require more than one week to resolve. This extended troubleshooting duration

imposes significant burdens on developers, underscoring the challenges inherent

in maintaining Python software effectively.

Run-time environment dependency conflicts arise when the version of a de-

pendency required by software does not match the version present in the run-time

environment. For example, if a software’s API demands a version of torch greater

than 2.2.0 (torch>2.2.0), but the installed version is torch==2.0.0, a conflict

occurs. This mismatch can lead to errors when the API is invoked, which is also

a common issue highlighted in developer discussions. The run-time environment,

encompassing the operating system, system libraries, the interpreter, and third-

party packages, is integral to the smooth execution of software. Since Python’s

package management platforms do not verify the correctness of configuration

files provided by developers, and given that dependent third-party packages may

evolve independently of the software, conflicts frequently emerge. Users who set

up their run-time environments based on the original configuration files often
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encounter these conflicts, which can significantly disrupt software functionality.

Challenges. Significant research has been dedicated to resolving the re-

liability issues associated with Python’s dynamic type system. Two primary

approaches have emerged to mitigate type errors.

The first approach involves introducing static typing into Python code through

type inference techniques, allowing traditional type-checking tools to identify po-

tential type errors. Initially, this approach utilized rule-based type inference

methods similar to those employed in compilers for static languages. However,

these methods often struggle with Python’s lack of explicit type declarations,

particularly with function arguments and other variables whose types cannot be

readily inferred. As a result, coverage was typically limited. More recent efforts

have shifted towards data-driven techniques, employing deep learning models to

treat code as text and predict variable types. Although these models can offer

type predictions for each variable, they cannot guarantee the accuracy of these

predictions due to their probabilistic nature.

The second approach does not prevent new type errors but focuses on fixing

existing ones using program repair techniques. These methods utilize manually

defined rules and templates to repair specific type errors. While effective for

certain scenarios, the need to manually craft these rules and templates makes

this approach labor-intensive and less adaptable to type errors not covered by

the existing rules.

To tackle the issue of run-time environment conflicts in Python, researchers

have also developed two main approaches.

The first approach involves scrutinizing the configuration files provided by

developers. This method effectively identifies potential conflicts between depen-

dencies specified in the configuration files. However, simply checking versions

does not fully ensure compatibility between the run-time environment and the
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Figure 1.1: The overview of research in the thesis.

Python software. This is because conflicts can also arise from discrepancies be-

tween the external APIs used in the software and the versions of dependencies

installed in the run-time environment. For instance, conflicts can occur if the

software uses an API that has been deprecated, but the version-level checks in

configuration files cannot catch this issue.

The second approach focuses on API recommendation. This method assumes

that most dependencies in the run-time environments are intended to support ex-

ternal API implementations in the software. By ensuring correct API usage, this

approach can significantly reduce run-time environment conflicts. For example,

avoiding the use of deprecated APIs would prevent the aforementioned conflict.

API recommendation tools are designed to help developers select appropriate

APIs, thus saving time and reducing errors. However, the effectiveness of these

tools is not well-studied, indicating that further exploration and validation are

needed in this area.

Existing approaches offer valuable strategies for mitigating type errors and

run-time environment conflicts, yet each has its limitations and requires further

refinement to mitigate the reliability issues.

Our Research. In this thesis, we study the run-time reliability issues caused
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by Python’s dynamic type system and dynamic run-time environment. Figure 1.1

provides an overview of the research scope. Our research seeks to significantly

improve the reliability of Python software by addressing two of the most criti-

cal challenges in dynamic programming environments: type errors and run-time

environment conflicts.

For type errors, we introduce a hybrid type inference method that combines

the correctness of static type inference with the effectiveness of data-driven tech-

niques. This approach enhances the accuracy of type inference by integrating

the methodological soundness of static analysis with the effectiveness afforded

by data-driven models. Additionally, we innovate a generative type inference

technique to further improve the performance of data-driven approaches. To

fix existing type errors, we propose a novel domain-aware prompt-based repair

technique utilizing the capabilities of advanced large language models.

For run-time environment conflicts, we begin with a thorough empirical anal-

ysis of existing API recommendation approaches, evaluating their effectiveness

and summarizing key insights for developing approaches that can accurately rec-

ommend high-quality APIs compatible with the required run-time environments.

Following this, we introduce a fine-grained, source-level detection method for

identifying conflicts between Python software and its run-time environment. This

approach aims to pinpoint and resolve discrepancies that can lead to run-time

failures.

1.2 Thesis Contributions

We summarize the contributions of this thesis as follows.

1. Hybrid Type Inference Based on Static Inference and Deep Learn-

ing.
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Type inference for dynamic programming languages such as Python is an

important yet challenging task. Static type inference techniques can pre-

cisely infer variables with enough static constraints but are unable to handle

variables with dynamic features. Deep learning (DL) based approaches are

feature-agnostic, but they cannot guarantee the correctness of the predicted

types. Their performance significantly depends on the quality of the train-

ing data (i.e., DL models perform poorly on some common types that rarely

appear in the training dataset). It is interesting to note that the static and

DL-based approaches offer complementary benefits. Unfortunately, to the

best of our knowledge, precise type inference based on both static inference

and neural predictions has not been exploited and remains an open chal-

lenge. In particular, it is hard to integrate DL models into the framework of

rule-based static approaches. We fill the gap and propose a hybrid type in-

ference approach named HiTyper based on both static inference and deep

learning. Specifically, our key insight is to record type dependencies among

variables in each function and encode the dependency information in type

dependency graphs (TDGs). Based on TDGs, we can easily integrate type

inference rules in the nodes to conduct static inference and type rejection

rules to inspect the correctness of neural predictions. HiTyper iteratively

conducts static inference and DL-based prediction until the TDG is fully

inferred. Experiments on two benchmark datasets show that HiTyper

outperforms state-of-the-art DL models by exactly matching 10% more hu-

man annotations. HiTyper also achieves an increase of more than 30%

on inferring rare types. Considering only the static part of HiTyper, it

infers 2× ∼ 3× more types than existing static type inference tools. More-

over, HiTyper successfully corrected seven wrong human annotations in

six GitHub projects, and two of them have already been approved by the

7



repository owners.

2. Generative Type Inference.

The previous hybrid type inference we proposed takes advantage of static

type inference and deep learning models. However, we find that the per-

formance upper bound of hybrid type inference relies on the performance

of the deep learning models we choose. How to improve the performance

of deep learning models remains a great challenge. Current type inference

approaches based on deep learning models are supervised type inference

approaches, which require large, high-quality annotated datasets to train

the models and are limited to pre-defined types. Based on powerful pre-

trained deep learning models, the cloze-style approaches reformulate the

type inference problem into a fill-in-the-blank problem by leveraging the

general knowledge in powerful pre-trained code models. However, their

performance is limited since they ignore the domain knowledge from static

typing rules which actually reflect the inference logic. Furthermore, their

predictions are not interpretable, hindering developers’ understanding and

verification of the results. To address these challenges, we introduce Type-

Gen, a few-shot generative type inference approach that incorporates static

domain knowledge from static analysis. TypeGen creates chain-of-thought

(COT) prompts by translating the type inference steps of static analysis

into prompts based on the type dependency graphs (TDGs), enabling lan-

guage models to learn from how static analysis infers types. By combining

COT prompts with code slices and type hints, TypeGen constructs ex-

ample prompts from human annotations. TypeGen only requires very

few annotated examples to teach language models to generate similar COT

prompts via in-context learning. Moreover, TypeGen enhances the in-

terpretability of results through the use of the input-explanation-output
8



strategy, which generates both explanations and type predictions in COT

prompts. Experiments show that TypeGen outperforms the best baseline

Type4Py by 10.0% for argument type prediction and 22.5% in return value

type prediction in terms of top-1 Exact Match by using only five exam-

ples. Furthermore, TypeGen achieves substantial improvements of 27%

to 84% compared to the zero-shot performance of large language models

with parameter sizes ranging from 1.3B to 175B in terms of top-1 Exact

Match.

3. Domain-aware Prompt-based Type Error Repair.

There exist rule-based approaches for automatically repairing Python type

errors. The approaches can generate accurate patches for the type errors

covered by manually defined templates, but they require domain experts

to design patch synthesis rules and suffer from low template coverage of

real-world type errors. Learning-based approaches alleviate the manual

efforts in designing patch synthesis rules and have become prevalent due

to the recent advances in deep learning. Among the learning-based ap-

proaches, the prompt-based approach which leverages the knowledge base

of code pre-trained models via pre-defined prompts, obtains state-of-the-

art performance in general program repair tasks. However, such prompts

are manually defined and do not involve any specific clues for repairing

Python type errors, resulting in limited effectiveness. How to automatically

improve prompts with the domain knowledge for type error repair is chal-

lenging yet under-explored. We present TypeFix, a novel prompt-based

approach with fix templates incorporated for repairing Python type errors.

TypeFix first mines generalized fix templates via a novel hierarchical clus-

tering algorithm. The identified fix templates indicate the common edit

patterns and contexts of existing type error fixes. TypeFix then generates
9



code prompts for code pre-trained models by employing the generalized fix

templates as domain knowledge, in which the masks are adaptively located

for each type error instead of being pre-determined. Experiments on two

benchmarks, including BugsInPy and TypeBugs, show that TypeFix

successfully repairs 26 and 55 type errors, outperforming the best baseline

approach by 9 and 14, respectively. Besides, the proposed fix template

mining approach can cover 75% of developers’ patches in both benchmarks,

increasing the best rule-based approach PyTER by more than 30%.

4. Empirical Analysis of API Recommendation.

Application Programming Interfaces (APIs), which encapsulate the imple-

mentation of specific functions as interfaces, greatly improve the efficiency

of modern software development. As the number of APIs grows fast nowa-

days, developers can hardly be familiar with all the APIs and usually need to

search for appropriate APIs for usage. So lots of efforts have been devoted to

improving the API recommendation task. However, it has been increasingly

difficult to gauge the performance of new models due to the lack of a uniform

definition of the task and a standardized benchmark. For example, some

studies regard the task as a code completion problem, while others recom-

mend relative APIs given natural language queries. To reduce the challenges

and better facilitate the goal of recommending high-quality APIs, we revisit

the API recommendation task and aim at benchmarking the approaches.

Specifically, we group the approaches into two categories according to the

task definition, i.e., query-based API recommendation and code-based API

recommendation. We study 11 recently proposed approaches along with 4

widely-used IDEs. One benchmark named APIBench is then built for the

two respective categories of approaches. Based on APIBench, we distill

some actionable insights and challenges for API recommendation. We also
10



achieve some implications and directions for improving the performance

of recommending APIs, including appropriate query reformulation, data

source selection, low resource setting, user-defined APIs, and query-based

API recommendation with usage patterns.

5. Source-Level Run-time Environment Conflict Detection.

Python’s popularity is largely owing to the extensive support from diverse

third-party libraries within the PyPI ecosystem. Nevertheless, the uti-

lization of third-party libraries can potentially lead to conflicts in depen-

dencies, prompting researchers to develop dependency conflict detectors.

Moreover, endeavors have been made to automatically infer dependencies.

These approaches focus on version-level checks and inference, based on the

assumption that configurations of libraries in the PyPI ecosystem are cor-

rect. However, our study reveals that this assumption is not universally

valid, and relying solely on version-level checks proves inadequate in en-

suring compatible run-time environments. We conduct an empirical study

to comprehensively study the configuration issues in the PyPI ecosystem.

Specifically, we propose PyConf, a source-level detector, for detecting

potential configuration issues. PyConf employs three distinct checks, tar-

geting the setup, packing, and usage stages of libraries, respectively. To

evaluate the effectiveness of the current automatic dependency inference

approaches, we build a benchmark called VLibs, comprising library releases

that pass all three checks of PyConf. We identified 15 kinds of configu-

ration issues and found that 183,864 library releases suffer from potential

configuration issues. Remarkably, 68% of these issues can only be detected

via the source-level check. Our experiment results show that the most ad-

vanced automatic dependency inference approach, PyEGo, can successfully

infer dependencies for only 65% of library releases. The primary failures
11



stem from dependency conflicts and the absence of required libraries in

the generated configurations. Based on the empirical results, we derive six

findings and draw two implications for open-source developers and future

research in automatic dependency inference.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2

In this chapter, we conduct a background review of the dynamic type sys-

tem and the dynamic run-time environment of Python. In particular, we

first introduce the Python type system and some examples of type errors

in Sec. 2.1. We then provide an overview of the run-time environment and

some examples of run-time environment conflicts in Sec. 2.2. In Sec. 2.3,

we review previous work on type inference, program repair, API recommen-

dation, run-time environment conflict detection, and run-time environment

dependency inference.

• Chapter 3

In this chapter, we present HiTyper, the first hybrid type inference ap-

proach based on static type inference and deep learning models. In Sec. 3.1,

we briefly introduce the challenges of previous type inference approaches

and the insight behind our hybrid type inference approach HiTyper. We

then give a detailed motivating example to show the effectiveness and ad-

vantages of HiTyper in Sec. 3.2, compared with previous rule-based and

supervised type inference approaches. We present the technical details of

HiTyper in Sec. 3.3 and further evaluate HiTyper with selected previ-
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ous approaches as baselines in Sec. 3.4. Finally, we list the limitations of

HiTyper in Sec. 3.5 and summarize the chapter in Sec. 3.6.

• Chapter 4

In this chapter, we present TypeGen, the first few-shot generative type

inference approach. In Sec. 4.1, we briefly introduce the challenges of pre-

vious rule-based, supervised, and cloze-style type inference approaches. We

then provide the technical details of TypeGen in Sec. 4.2. In Sec. 4.3,

we describe the datasets, baselines, metrics used in the evaluation, and

the implementation details of TypeGen. We evaluate the performance of

TypeGen compared with previous rule-based, supervised, and cloze-style

approaches in Sec. 4.4. In Sec. 4.5, we provide an example to demon-

strate the interpretability of TypeGen and list the potential limitations

of TypeGen. Sec. 4.6 acts as a summary of the entire chapter.

• Chapter 5

In this chapter, we present TypeFix, the first domain-aware prompt-based

approach for repairing Python type errors. In Sec. 5.1, we emphasize the

importance of handling type errors and introduce the challenges of existing

program repair approaches on repairing type errors. In Sec. 5.2, we provide

a detailed motivating example to show how domain-aware prompts can help

current prompt-based program repair methods repair type errors. Sec. 5.3

presents the technical details of TypeFix. In Sec. 5.4, we describe the

datasets, baselines, metrics used in the evaluation, and the implementation

details of TypeFix. We evaluate the effectiveness of TypeFix, compared

with current rule-based and prompt-based approaches in Sec. 5.5. Finally,

We summarize this chapter in Sec. 5.6.

• Chapter 6
13



In this chapter, we conduct an empirical analysis on existing API rec-

ommendation approaches and build a benchmark named APIBench. In

Sec. 6.1, we introduce the motivation of our empirical analysis and clas-

sify current API recommendation approaches into two categories: query-

based approaches and code-based approaches. We then provide a back-

ground review for query-based and code-based API recommendation ap-

proaches in Sec. 6.2. In Sec. 6.3, we describe how we build the benchmark

APIBench. Sec. 6.4 and Sec. 6.5 present the empirical results for query-

based API recommendation approaches and code-based API recommenda-

tion approaches, respectively. In Sec. 6.6, we conclude some implications to

further research on how to recommend high-quality APIs. We list the po-

tential threats to the validity of our empirical analysis in Sec. 6.7. Sec. 6.8

summarizes the entire chapter.

• Chapter 7

In this chapter, we present PyConf, the first source-level Python run-

time environment conflict detection approach. In Sec. 7.1, we introduce

the challenges of current version-level run-time environment conflict detec-

tion approaches and provide a motivating example. In Sec. 7.2, we present

the technical details of PyConf and how we perform an empirical anal-

ysis on popular packages in PyPI based on PyConf. We describe the

benchmarks, baselines, metrics, and environments used in the evaluation

in Sec. 7.3. In Sec. 7.4, we analyze the dependency conflicts detected by

PyConf and summarize the potential reasons. Based on the detected

conflicts, we provide several suggestions for developers to avoid run-time

environment conflicts in Sec. 7.5. Sec. 7.6 summarizes the entire chapter.

• Chapter 8
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In this chapter, we summarize the contents of this thesis in Sec. 8.1 and

propose some future directions for research on the reliability issues brought

by the dynamic type system and the dynamic run-time environment of

Python in Sec. 8.2.
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Chapter 2

Background

This chapter introduces the dynamic type system and the dynamic run-time

environment of Python. For each, we first present the basic definition and then

give some examples of type errors, which are brought by the dynamic type system,

and run-time environment conflicts, which are derived from the dynamic run-time

environments. Furthermore, we provide a literature review of related research ef-

forts in mitigating the reliability issues brought by them, including type inference,

automatic program repair, API recommendation, run-time environment conflict

detection, and run-time environment dependency inference.

2.1 Dynamic Type System

The dynamic type system is a typical feature that distinguishes Python from

static languages such as C++ and Java. In this section, we provide the definition

of the Python type system and present some examples of type errors that occurred

under the dynamic type system of Python.
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θ ∈ Type (Θ) ::= γ | α[θ, ..., θ] | u | None | type

γ ∈ Elementary Type (Γ) ::= int | float | str | bool | bytes

α ∈ Generic Type (A) ::= List | Tuple | Dict | Set |

Callable | Generator | Union

b ∈ Builtin Type (B) ::= γ | α[θ]

u ∈ User Defined Type (U) ::= all classes and named

tuples in code

o ∈ Overloading User ::= all classes with

Defined Type (O) operator overloading in code

Figure 2.1: Types in Python.

2.1.1 Python Type System

Fig. 2.1 presents the classification of different types as defined in the official

Python documentation [37] and its associated type checker, mypy [36]. Notably,

we have excluded the object and Any types due to their non-conformance with

strict static typing principles. Types can generally be divided into two categories:

built-in types, which are predefined within the Python language specification,

and user-defined types, which are crafted by developers. User-defined types allow

developers to specify the operations or methods that the types support. This

capability extends to overriding certain built-in operations. For instance, a de-

veloper might implement an __add__() method within a class, enabling direct

addition of instances derived from this class via the built-in + operator. This is

known as operator overloading. We introduce a subcategory specifically for user-

defined types that demonstrate operator overloading since they have different
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typing rules.

The type categories shown in Fig. 2.1 are widely used in most static type

inference techniques [133, 160, 166]. Differently, deep learning-based studies [7,

129] generally categorize the types into common types and rare types based on

a pre-defined threshold of occurrence frequencies (e.g., 100 in [7]). For a fair

comparison, we also follow this definition for evaluation.

We show the expressions for typing in Python in Fig. 2.2. Expressions in

Fig. 2.2 generate new types based on existing types in operands. For example, the

boolean expression “v1 And v2” takes the types of variables v1 and v2 as inputs

and outputs a result with type bool. Note that the statements in the Python

language specification also have types, but we do not consider them in this thesis

because they hardly invoke type errors and are used in certain static analyses.

With the definition of types and the definitions of expressions that generate

new types, we can add typing rules for specific expressions to guide type inference,

which aims to give a type for every variable and expression in the code. However,

the dynamic type system of Python does not require the type declaration when

defining a new variable. This means that we cannot statically get the types

of variables in code and can only do this at run-time when all variables and

expressions have specific values. Therefore, the built-in type inference in Python

interpreter only performs at run-time and invokes type errors when it identifies

type conflicts.

2.1.2 Python Type Errors

Python type errors arise when the Python interpreter fails to determine

a compatible type assignment for the variables and expressions within a code

segment. Upon encountering such an error, the Python interpreter will raise a

TypeError and halt the execution of the code. Consequently, type errors are
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e ∈ Expr ::= v | c | e blop e | e numop e |

e cmpop e | e bitop e |

(e, ..., e) | [e, ..., e] |

{e : e, ..., e : e} | {e, ..., e} |

[e for e in e] | {e for e in e} |

{e : e for e, e in e} | (e for e in e) |

e(e, ..., e) | e[e : e : e] | e.v

v ∈ Variables ::= all identifiers in code

c ∈ Constants ::= all literals in code

blop ∈ Boolean Operations ::= And | Or | Not

numop ∈ Numeric Operations ::= Add | Sub | Mult | Div | Mod |

UAdd | USub

bitop ∈ Bitwise Operations ::= LShift | RShift | BitOr | BitAnd |

BitXor | FloorDiv | Invert

cmpop ∈ Compare Operations ::= Eq | NotEq | Lt | LtE | Gt | GtE |

Is | IsNot | In | NotIn

Figure 2.2: The syntax of expressions for typing in Python

critical, as they pose a significant threat to the reliability of Python software,

potentially leading to the abrupt termination of applications.

We give some examples of type errors in Listing. 2.1.

1 #Example 1

2 int_value = 100

3 str_value = "10"
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4 result = int_value / str_value

5 #Example 2

6 def divide(input_list):

7 result = input_list[0]

8 for item in input_list[1:]:

9 result = result / item

10 return result

11 divide(100)

12 divide([100, "10"])

Listing 2.1: Examples of type errors in Python.

In the first example, the variable int_value is assigned the type int, while

str_value is assigned the type str. The variable result attempts to store the

outcome of a division operation between int_value and str_value. However,

such an operation is undefined between an int type and a str type, leading the

Python interpreter to be unable to determine the expression’s type and conse-

quently, it throws a type error. This error is straightforward and can be statically

detected by type checkers such as MyPy [133].

The second example illustrates a more complex scenario involving type er-

rors. In the function from this example, division is performed on elements within

an input list. Due to Python’s dynamic typing, where developers are not re-

quired to specify type declarations, the type of the function argument input_list

remains unknown until the function is executed. This ambiguity makes the func-

tion particularly susceptible to type errors.

We demonstrate this with two function calls that result in type errors. In

the first call, the function receives an integer value 100 as its parameter. Since

integers are not iterable, the Python interpreter raises a type error. In the second

call, the function is passed a list containing both an integer and a string. Here,

the interpreter throws a type error because the division between an int type and
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   setup.py,
   requirements.txt,
   setup.cfg,
   pyproject.toml,
   ...

>=3.8

Required Python Version

Configuration Files

numpy>=1.20.3
python-dateutil>=2.8.2
pytz>=2020.1
tzdata>=2022.1

Required Package Dependencies

   numpy==1.24.1
   python-dateutil==2.8.2
   pytz==2020.3
   tzdata==2023.3

Supported Platforms

Installed Package Dependencies

==3.8

Installed Python Version

Required System Libraries

User Selection

import numpy as np
...
def _get_colors_from_colormap(
    colormap: str | Colormap,
    num_colors: int,
) -> list[Color]:
    """Get colors from colormap."""
    cmap = _get_cmap_instance(colormap)
    return [cmap(num) for num in np.linspace(0, 1,
num=num_colors)]
...

Program in the ProjectInstalled System Libraries

Manual
Installation

Python Project

Solving
Constraints①

②

Analyzing
Dependencies

③ ④

Installing
Packages

User Selection

⑤ ⑥

⑦

Running

Figure 2.3: The typical process of run-time environment installation for Python

projects.

a str type is undefined, as illustrated in line 9 of the code.

Writing complex functions without explicit type declarations poses signifi-

cant challenges for developers, who must anticipate and manage potential type

inconsistencies. Although static type checking tools like MyPy can aid in detect-

ing some static type errors, their effectiveness is limited without explicit type

declarations, restricting their ability to preemptively identify and resolve type

errors in the code.

2.2 Dynamic Run-time Environment

2.2.1 Python Run-time Environment

As an interpreted programming language, Python offers the advantage of not

requiring compilation prior to execution. This attribute facilitates fast prototyp-

ing and enables Python programs to be executed on different platforms. However,

benefiting from rich support from external libraries, nearly all Python projects

depend on multiple third-party or system libraries to avoid redundant implemen-

tations of common functionalities. Therefore, it becomes imperative to establish

the appropriate run-time environment, comprising all necessary libraries, before
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running a Python project effectively.

We illustrate the process of installing the run-time environment for a Python

project based on its source code in Fig.2.3. Typically, developers document all

project dependencies in configuration files. As the Python community evolves,

various configuration formats like requirements.txt and setup.py have emerged.

Additionally, there are diverse developer tools, such as setuptools, available to

analyze these configuration files ( 1⃝ in Fig.2.3). The configuration files contain

three types of dependencies: 1) the required Python version, 2) the necessary

third-party libraries, and 3) the required platform and corresponding system li-

braries.

In most cases, users must first select the appropriate Python version and

platform ( 2⃝ and 3⃝ in Fig.2.3) before proceeding with the installation of other

dependencies. If the Python project relies on some system libraries of the se-

lected platform, users may also need to install them manually ( 4⃝ in Fig. 2.3).

Since Python third-party libraries are hosted on the PyPI platform [41], Python

Software Foundation also provides a dedicated tool named pip [39] to facilitate

automated installation. Pip first resolves the constraints of third-party libraries

provided in the configuration file ( 5⃝ in Fig. 2.3), and then selects the latest

valid version for each library ( 6⃝ in Fig. 2.3). By ensuring the presence of the

appropriate Python version, third-party libraries, and system libraries, users can

successfully execute certain Python projects ( 7⃝ in Fig. 2.3).

Through the above process of building run-time environments, we can see

that most efforts are paid on the user side and developers only provide config-

uration files to guide the construction of run-time environments. As the relied

third-party packages continue to evolve, different users may build different run-

time environments even if they are given the same configuration files. This is

quite different from what static programming languages such as C++ and Java
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do. For C++ and Java, developers should prepare the implementations of all

relied third-party packages and compile them with the core software into a sin-

gle binary. Users only need to download the compiled binary and run it in the

declared operating system by developers.

2.2.2 Python Run-time Environment Conflicts

The dynamic run-time environment of Python offers substantial convenience

for developers in building and distributing software. This flexibility simplifies the

deployment process and enhances accessibility across different platforms. How-

ever, this feature also introduces potential risks, notably run-time environment

conflicts. Run-time environment conflicts exist when users try to build the run-

time environments and when users run the software in the built run-time envi-

ronments.

When configuring run-time environments using configuration files, develop-

ers may encounter two primary types of conflicts:

• Incorrect Configurations. This issue arises when the configuration files

distributed by developers contain errors. A common example is specifying a

version of a third-party package that does not exist on the package manage-

ment platform. Such discrepancies can prevent the successful installation

of the required packages, leading to run-time errors.

• Installation Conflicts. These occur when the configuration files specify

two or more versions of third-party packages that are incompatible and

cannot be co-installed. For instance, if a package A requires a dependency

C > 1.0 and another package B requires C < 1.0, there is a conflict between

A and B over the acceptable version of C, making it impossible to satisfy

both dependencies simultaneously. These are referred to as version-level
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conflicts.

While significant research efforts focus on detecting and resolving version-

level conflicts, the conflicts between software and run-time environments remain

less explored. These conflicts arise when the implementations of APIs utilized

in the software are absent in the installed run-time environments, leading to

execution halts. Python specifically designates a series of errors to signal such

conflicts: ImportError, ModuleNotFoundError, and AttributeError. A prevalent

form of these conflicts involves the use of deprecated APIs. When software relies

on older versions of APIs that have since been deprecated and removed, issues

arise, particularly because package management tools like pip typically install

the most recent versions of packages. If these newer versions no longer support

the deprecated APIs, the necessary implementations may not be present in the

run-time environment, leading to what we refer to as source-level conflicts.

Detecting source-level conflicts necessitates a thorough analysis of both the

software and the run-time environment. This task can be challenging for human

developers, given the intricate details involved in assessing API compatibility

and version history across different environment setups. Tools and automated

processes that can scan and analyze these discrepancies are essential for mitigating

the risk of such conflicts, ensuring software reliability and consistency in various

deployment contexts.

2.3 Related Work

2.3.1 Type Inference

We classify existing type inference approaches into three categories: rule-

based, supervised and cloze-style approaches, and present an overview of three

kinds of type inference approaches in Fig. 2.4.
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a = 1 + 2

π |- 1: int

π |- 2: int

π |- 2: intπ |- 1: int

π |- 1 + 2: int

π |- 1 + 2: int

π |- a: int

①

②

③

④

Code:

Rules:

(1) Rule-based Type Inference

Code
a = 1+ 2

Identifers
a

Comments
...

Code tokens
a,=,1,+,2

               RNN

               RNN

               RNN

Vectors

Classifiers

int

(2) Supervised Type Inference

int

Type Annotations

Loss

def add(a: <mask0>, b: <mask1>)  --> <mask2>:
        c: <mask3> = a + b
        return c

Source Code

Pre-trained Code
Model

<mask0>: int, <mask1>: int
<mask2>: int, <mask3>: int

(3) Cloze-Style Type Inference

Mask Predictions

Figure 2.4: Three kinds of type inference approaches.

Rule-based Type Inference. Rule-based approaches for type inference

rely on predefined rules to determine the types of variables. Fig. 2.4(1) shows

an example where four rules are associated with the type inference of variable a.

Each rule has premises (above the line) and conclusions (below the line). A rule

can be triggered only if all premises are known, and then the result type is given

based on the conclusion.

To address the need for static type hints in dynamically typed programming

languages, various approaches have been proposed for type inference and check-

ing, such as Pyright [161] and Pylance from Microsoft, Pyre from Meta [160],

Pytype from Google [166], and Python’s official type checker mypy [133]. In ad-

dition to industry tools, some academic approaches have been proposed for type

inference in different programming languages, such as Python and JavaScript [10,

20, 29, 46, 80, 151]. While these approaches are quite accurate, they are limited

by the low coverage problem caused by dynamic features and external calls [152].

Supervised Type Inference. Supervised type inference approaches uti-

lizing deep learning models have made significant progress in predicting types

for dynamic languages. Fig. 2.4(2) illustrates the typical process of these ap-

proaches: features are extracted from code and encoded into vectors using deep

learning models such as recurrent neural networks (RNNs) [188]. A classifier is

then used to classify the vectors into pre-defined types. The loss is calculated

25



based on the type prediction of the classifier and the human type annotation,

and the parameters of the deep learning models and classifier are updated via

back-propagation.

Allamanis et al. [7] adopt an open vocabulary model which encodes code

as graphs to predict types. Pradel et al. [157] uses multiple RNN models to

encode features such as identifiers and code tokens. Mir et al. [129] improve

the top-1 accuracy via a deep similarity clustering algorithm. Wei et al. [219]

propose to use graph neural networks to predict types. Jesse et al. [81] propose

TypeBERT by reformulating type prediction as a NER problem. Peng et al.

[153] propose HiTyper, which uses deep learning models to recommend types for

static inference. While these approaches achieve satisfying performance, they

require high-quality datasets for training, which can be difficult to obtain in the

wild. Furthermore, supervised type inference approaches only provide predictions

without any explanation about how they infer the types, making it challenging

for developers to understand and verify the results.

Cloze-Style Type Inference. To enhance the reliability of Python soft-

ware and prevent potential type errors, the Python Software Foundation has

introduced a series of Python Enhancement Proposals (PEPs)[99, 100, 204, 250]

that enable developers to add static type annotations to their code. As these

annotations become part of the code, they can be leveraged by pre-trained code

models that are trained on a vast amount of open-source Python programs. Cloze-

style type inference approaches, as illustrated in Fig.2.4(3), add masks on the

locations of type annotations in the code and invoke pre-trained code models to

fill in the masks with predicted types.

All pre-trained code models with Masked Language Modeling (MLM) train-

ing objectives such as CodeBERT [31], GraphCodeBERT [62] and CodeT5 [217]

can be naturally used to predict type annotations. UniXcoder [61] is a unified
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cross-modal pre-trained model to support both code-related understanding and

generation tasks. InCoder [44] is a large code generative model that can refill

arbitrary regions of code. More recently, Llama3 [119] and GPT4 [147] even

provide more powerful support for all code-related tasks. Leveraging pre-trained

code models, cloze-style type inference approaches can be readily implemented.

However, they still exhibit limited performance as they solely rely on the gen-

eral knowledge of pre-trained code models. These approaches can hardly handle

complicated types without domain knowledge from static typing rules, and their

predictions lack interpretability without explanations.

2.3.2 Automatic Program Repair

As an important method to improve the reliability of software, automatic

program repair (APR) has drawn a lot of attention [52, 131] in recent years.

Currently, most APR approaches can be classified into rule-based approaches

and learning-based approaches.

Rule-based Approaches. Rule-based APR approaches leverage pre-defined

templates and rules to generate patches for bugs via static and dynamic analy-

sis. There are a series of rule-based APR approaches designed for Java pro-

grams [51, 55, 85, 118, 138, 223, 233, 236], and for the memory bugs of C pro-

grams [48, 70, 74, 98, 238]. For Python programs, PyTER [143] utilizes nine

pre-defined templates with type-aware fault localization to repair type errors.

Learning-based Approaches. Learning-based APR approaches become

quite popular and demonstrate their superior performance recently. Motivated

by the study [210, 211, 239] of neural machine translation (NMT) [197], there

are many research efforts being devoted to NMT-based APR approaches. Se-

quenceR [21] presents a sequence-to-sequence LSTM model for program repair.

DLFix [104] leverages tree-based RNN to transform code inputs and generate
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patches. CoCoNuT [112] separates the context and buggy line in NMT-based

APR. CURE [86] is the first approach that integrates pre-trained models in

NMT-based APR, followed by work [27, 115]. Recoder [249] generates code edits

instead of modified code. RewardRepair [240] uses execution-based backpropa-

gation to improve the compilation rate of patches generated by NMT-based APR

approaches. In the era of large language models, AlphaRepair [228] is the first

prompt-based APR approach that transforms the APR problem into a fill-in-the-

blank problem, and generate patches by filling the masks with tokens predicted

by LLMs. Prenner et al. [159] propose to use LLMs to directly generate the fixed

function based on the identified buggy function. ChatRepair [230] proposes to

fix bugs via multiple iterations of chatting with LLMs. Xia et al. [227] conducts

a comprehensive study on automated program repair methods based on LLMs.

2.3.3 API Recommendation

Query-based API Recommendation. Multiple existing works [18, 60,

76, 106, 109, 117, 132, 167, 172, 196, 199, 232, 234, 242, 244, 246, 248, 248] explore

the possibility to provide developers with concrete API recommendation, using

the natural language queries as input. Most of these works utilize open-source

code bases, and some also use the knowledge in crowd-sourcing forums and wiki

websites for augmentation.

Portfolio [117], proposed by McMillan et al. , recommends relevant APIs by

utilizing several NLP techniques and indexing approaches with spreading activa-

tion network (SAN) algorithms as well as PageRank [13]. Zhang et al. supplement

the call graph with control flow analysis and design Flow-Augmented Call Graph

(FACG) to utilize it for API recommendation [244]. Chan et al. model API in-

vocations as API graphs and design subgraph search algorithm to recommend

APIs [18]. Rahman et al. collect the crowdsourced knowledge on Stack Over-
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flow to extract keyword-API correlations and find several relevant API classes

based on them [172]. Huang et al. propose BIKER [76] to bridge the lexical gap

and knowledge gap that previous approaches faced during API recommendation.

BIKER obtains API candidates from Stack Overflow, and uses the similarity

between queries and documentations as well as Stack Overflow posts to recom-

mend API methods. Liu et al. propose KG-APISumm [109], which is the first

knowledge graph designed for API recommendation. KG-APISumm sorts the

APIs through similarity calculation between queries and relevant parts of the

constructed knowledge graph to recommend API classes.

Other than coding problems encountered by developers, there is another

source of natural language functionality descriptions for APIs: feature requests

from product managers or users. Thung et al. propose a method to recom-

mend APIs based on the feature requests by learning from other modifications

of the projects [199]. Xu et al. propose MULAPI [234], which takes feature

locations, project repositories and API libraries into consideration when recom-

mending APIs.

DeepAPI [60], proposed by Gu et al. , is the first approach that combines

deep learning with API recommendation. It reformulates the API recommenda-

tion task as a query-API translation problem and uses an RNN Encoder-Decoder

model to recommend API sequences. Xiong et al. propose to use representa-

tion learning to recommend web-based smart service [232]. Ling et al. propose

GeAPI [106] based on graph embedding to provide more semantic information

about and between APIs. GeAPI utilizes projects’ source code to automatically

construct API graphs and leverages graph embedding techniques for API repre-

sentation. Given a query, it searches relevant subgraphs on the original graph

and recommends them to developers. Zhou et al. propose BRAID [248] and uti-

lize approaches such as active learning as well as learning-to-rank based on the
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feedback of users to further improve the performance.

Code-based API Recommendation. Zhong et al. propose MAPO [247]

to mine API usage patterns and then recommend the relevant usage patterns to

developers. Schäfer et al. propose Pythia [187] to utilize static pointer analysis

and usage-based property inference to recommend APIs for JavaScript. Wang et

al. propose UP-Miner [209] and use source code to extract succinct usage pat-

terns to recommend APIs. Nguyen et al. propose APIREC [135], which uses

fine-grained code changes and the corresponding changing contexts to recom-

mend APIs. D’Souza et al. propose PyReco [28]. It first extracts API usages

from open-source projects and uses such information to rank the API recommen-

dation results by utilizing nearest neighbor classifier techniques. Fowkes et al.

propose PAM [42] to tackle the problem that the recommended API lists are

large and hard to understand. PAM mines API usage patterns through an al-

most parameter-free probabilistic algorithm and uses them to recommend APIs.

Niu et al. propose another API usage pattern mining approach, which segments

the data using the co-existence relationship of object usages to mine API usage

patterns [141]. Liu et al. propose RecRank [110] to improve the top-1 accuracy

based on API usage paths. Nguyen et al. propose FOCUS [139], which mines

open-source repositories and analyzes API usages in similar projects to recom-

mend APIs and API usage patterns based on context-aware collaborative-filtering

techniques. Wen et al. propose FeaRS [222], which mines open-source reposito-

ries and extracts API sequences that are implemented together in the same tasks

frequently to recommend APIs.

Hindle et al. adopt the n-gram model, a widely-used statistical language

model, on the code of software [69], and develop a code suggestion tool based on

the n-gram model. Tu et al. propose to enhance the n-gram model by adding

a cache component [203]. Raychev et al. propose to extract API sequences
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from open-source projects and index them into statistical language models to

recommend APIs [177]. Nguyen et al. propose a graph-based language model

GraLan [136]. Based on GraLan, they design an AST-based language model

named ASTLan to recommend APIs. Raychev et al. propose a probabilistic

model with decision trees named TGEN [175] to predict code tokens. Several

recent works try to utilize syntax and data flow information for more accurate

recommendation, besides focusing on token sequences [66, 90]. He et al. propose

PyART [66], which utilizes a predictive model along with data-flow, token similar-

ity and token co-occurrence to recommend APIs. Kim et al. leverage Transformer-

based techniques to learn the syntactic information from source code [90].

2.3.4 Run-time Environment Conflict Detection

To improve the reliability of software, some researchers work on detecting

potential dependency conflicts of software. Artho et al. [11] conduct a case study

for conflict defects on software packages. Patra et al. [150] propose to detect

the dependency conflicts between JavaScript libraries. Soto-Valero et al. [193]

study the problem of multiple versions of the same library co-existing in Maven

Central. LibHarmo [75] detects library version inconsistencies for Java Maven

projects. Wang et al. [212, 213, 214, 215, 216] conduct a series of empirical

analyses and develop several tools to facilitate dependency conflict issue diagnosis

for the ecosystem of different programming languages.

There are also some research efforts on repairing dependency conflict issues.

Su et al. [194] propose to repair the inconsistencies between file systems and

configuration scripts. Weiss et al. [221] capture and replay developer changes to

repair the system configuration. HireBuild [64] repairs failing gradle build scripts

based on the patterns from TravisTorrent dataset. SmartPip [207] proposes to

address the efficiency problem of previous approaches on the PyPI [41] ecosystem.
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2.3.5 Run-time Environment Dependency Inference

There are a lot of efforts [75, 212] being devoted to automatically infer-

ring environment dependencies for software. Most recently, DockerizeMe [71]

infers third-party and system libraries via static analysis and dynamic analysis.

V2 [72] enhances DockerizeMe and explores possible environment dependencies

based on feedback-directed search. Pipreqs [156] builds the requirements.txt files

for Python projects by analyzing the import statements in code. SnifferDog [208]

builds the execution environments for Python Jupyter notebooks. PyEGo [241]

and PyCRE [22] utilize knowledge graphs to represent and analyze the depen-

dencies between the third-party packages used by Python programs.
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Chapter 3

Hybrid Type Inference for

Python

Type inference has been studied for a long time since the 1970s. Type in-

formation provides strong support for the reliability of software. The dynamic

type system of Python, however, does not require explicit type declaration in

code. This makes it quite necessary to explore type inference in Python to avoid

potential type errors that would not occur in static languages. In this chapter,

we focus on type inference for Python programs. The main points of this chap-

ter are as follows. (1) we propose a hybrid type inference framework HiTyper

that integrates static inference with deep learning for more accurate type predic-

tion. (2) We design an innovative type dependency graph to strictly maintain

type dependencies of different variables. (3) We tackle some challenges faced by

previous studies and design a series of type rejection rules and a type correction

algorithm to validate neural predictions. (4) We conduct extensive experiments to

demonstrate the superior performance of HiTyper than state-of-the-art baseline

models and static type inference tools in the task.
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3.1 Introduction

Dynamically typed programming languages such as Python are becoming

increasingly prevalent in recent years. According to GitHub Octoverse 2019 and

2020 [56], Python outranks Java and C/C++ and becomes one of the most

popular programming languages. The dynamic features provide more flexible

coding styles and enable fast prototyping. However, without concretely defined

variable types, dynamically typed programming languages face challenges in en-

suring security and compilation performance. According to a recent survey by

Jetbrains [82], static typing or at least some strict type hints becomes the top 1 de-

sired feature among Python developers. To address such problems, some research

adopts design principles of statically typed programming languages [63, 89, 174].

For example, reusing compiler backend of the statically typed languages [92]

and predicting types for most variables [7, 10, 46, 65, 68, 80, 158]. Moreover,

Python officially supports type annotations in the Python Enhancement Propos-

als (PEP) [99, 100, 204, 250].

Type prediction is a popular task performed by existing work. Traditional

static type inference approaches [10, 46, 65, 80, 176] and type inference tools such

as Pytype [166], Pysonar2 [162], and Pyre Infer [160] can correctly infer types for

the variables with enough static constraints, e.g., for a = 1 we can know the type

of a is int, but are unable to handle the variables with few static constraints,

e.g. most function arguments or dynamic evaluations such as eval() [180].

With the recent development of deep learning (DL) methods, we can leverage

more type hints such as identifiers and existing type annotations to predict types.

Many DL-based methods [7, 68, 114, 129, 158, 235] have been proposed, and they

show significant improvement compared with static techniques [95]. While DL-

based methods are effective, they face the following two major limitations:
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(i) No guarantee of the type correctness. Pradel et al. [158] find that the

predictions given by DL models are inherently imprecise as they return a list of

type candidates for each variable, among which only one type is correct under

a certain context. Besides, the predictions made by DL models may contradict

the typing rules, leading to type errors. Even the state-of-the-art DL model

Typilus [7] generates about 10% of predictions that cannot pass the test of a type

checker. The type correctness issue makes the DL-based methods hard to be

directly deployed into large codebases without validation. Recent work [7, 158]

leverages a search-based validation in which a type checker is used to validate

all combinations of types returned by DL models and remove those combinations

containing wrong types. However, these approaches cannot correct the wrong

types but only filter them out.

(ii) Inaccurate prediction of rare types. Rare types refer to the types with

low occurrence frequencies in datasets [7]. Low-frequency problem has become

one of the bottlenecks of DL-based methods [88, 108, 173, 178, 243]. For example,

Typilus’s accuracy drops by more than 50% for the types with occurrence fre-

quencies fewer than 100, compared to the accuracy of the types with occurrence

frequencies more than 10,000. More importantly, rare types totally account for

a significant amount of annotations even though each of them rarely appears.

We analyze the type frequencies of two benchmark datasets from Typilus [7] and

Type4Py [127], and find a long tail phenomenon, i.e., the top 10 types in the two

datasets already account for 54.8% and 67.8% of the total annotations, and more

than 10,000 and 40,000 types in two datasets are rare types with frequency pro-

portions less than 0.1%. They still occupy 35.5% and 25.5% of total annotations

for the two respective datasets and become the long “tail” of type distributions.

To remedy the limitations of the previous studies, this chapter proposes a

hybrid type inference framework named HiTyper, which conducts static type in-
35



ference and accepts recommendations from DL models (Static+DL). We propose

a novel representation, named type dependency graph (TDG), for each function,

where TDG records the type dependencies among variables. Based on TDG, we

reformulate the type inference task into a blank filling problem where the “blanks”

(variables) are connected with dependencies so that both static approaches and

DL models can fill the types into “blanks”.

HiTyper infers the “blanks” in TDG mainly based on static type infer-

ence, which automatically addresses DL models’ rare type prediction problem

since static type inference rules are insensitive to type occurrence frequencies.

HiTyper extends the inference ability of static type inference by accepting rec-

ommendations from DL models when it encounters some “blanks” that cannot

be statically inferred. Different from the search-based validation by Pradel et

al. [158], HiTyper builds a series of type rejection rules to filter out all wrong

predictions on TDG, and then continues to conduct static type inference based

on the reserved correct predictions.

We evaluate HiTyper on two public datasets. One dataset is released by

Allamanis et al. in the paper of Typilus [7], and the other is ManyTypes4Py [129],

one large dataset recently released for this task. Experiment results show that

HiTyper outperforms both SOTA DL models and static type inference tools.

Compared with two SOTA DL models Typilus and Type4Py, HiTyper presents

a 10%∼12% boost on the performance of overall type inference, and a 6% ∼ 71%

boost on the performance of certain kinds of type inference such as return value

type inference and user-defined type inference. Without the recommendations

from neural networks and only looking at the static type inference part, Hi-

Typer generally outputs 2× ∼ 3× more annotations with higher precision than

current static type inference tools Pyre [160] and Pytype [166]. HiTyper can

also identify wrong human annotations in real-world projects. We identify seven
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wrong annotations in six projects of Typilus’s dataset and submit pull requests

to correct these annotations. Two project owners have approved our corrections.

Contributions. Our contributions can be concluded as follows:

• To the best of our knowledge, we are the first to propose a hybrid type infer-

ence framework that integrates static inference with DL for more accurate

type prediction.

• We design an innovative type dependency graph to strictly maintain type

dependencies of different variables.

• We tackle some challenges faced by previous studies and design a series

of type rejection rules and a type correction algorithm to validate neural

predictions.

• Extensive experiments demonstrate the superior performance of the pro-

posed HiTyper than SOTA baseline models and static type inference tools

in the task.

3.2 Motivation

Listing 3.1 illustrates an example of code snippet from the WebDNN project.1

Results of several baselines, including static type inference techniques - Pytype

and Pysonar2, and state-of-the-art DL models - Typilus, are depicted in Table 3.1.

1 #src/graph_transpiler/webdnn/graph/shape.py

2 def parse(text):

3 normalized_text = _normalize_text(text)

4 tmp = ast.literal_eval(normalized_text)

5 shape = []

1https://github.com/mil-tokyo/webdnn
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Figure 3.1: Type dependency graph of the parse() from Code.3.1.

6 placeholders = {}

7 for i, t in enumerate(tmp):

8 if isinstance(t, str):

9 pt = Placeholder(label=t)

10 placeholders[t] = pt

11 elif isinstance(t, int):

12 pt = t

13 shape.append(pt)

14 return shape , placeholders

Listing 3.1: A Function from WebDNN.

Static Inference. According to Table 3.1, we can find that the static type
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Table 3.1: Prediction results of different baselines for Listing 3.1.

Approach Baseline Argument Return Value

Ground

Truth
str

Tuple[List[int, Placeholder],

Dict[str, Placeholder]]

Static
Pysonar2 ? Tuple[List[int],Dict]

Pytype ? Tuple[List, Dict]

DL Typilus 1. str

1. Tuple[collections.OrderedDict[

Text, List[DFAState]],

Optional[Text]],Tuple[Any,

List[Tuple[Any]], Any]

2. Tuple[Text]

3. Tuple[torch.Tensor]

Static

+ DL

HiTyper

(Typilus)
str

Tuple[List[int, Placeholder],

Dict[str, Placeholder]]

inference techniques fail to infer the type of the argument text since the argument

is at the beginning of data flow without any assignments or definitions. One

common solution to infer the type is to use inter-procedural analysis and capture

the functions that call parse() [186]. However, tracing the functions in programs,

especially in some libraries, is not always feasible. As for the return value, by

analyzing the data flow and dependencies between variables, static inference can

easily identify that shape (line 5, 13) and placeholders (line 6, 10) consist of

the return value. It can recursively analyze the types of the two variables and

finally output the accurate type of the return value. Indeed, both Pysonar2 and

Pytype can correctly infer that the return value is a tuple containing a list and

dict.

DL Approach. The DL model Typilus [7] accurately predicts the type as

str according to the semantics delivered by the argument text and contextual
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information. The case illustrates that DL models can predict more types than

static inference. However, Typilus fails to infer the type of the return value of

parse(). Current DL models cannot maintain strict type dependencies between

variables. Therefore, Typilus only infers the type as a tuple but cannot accurately

predict the types inside the tuple. When adding a type checker to validate Typ-

ilus’s predictions, its argument prediction is reserved since it does not violate any

existing type inference rules. However, for the return value, its 2nd and 3rd type

predictions in Table 3.1 by Typilus are rejected since the return value of parse()

explicitly contains two elements with different types. The 1st prediction is also

rejected because it contains the type Optional[text] that does not appear in

the return value. In this case, the model does not produce any candidate type

for the return value.

Static+DL Approach. For the code example, we find that static inference

is superior to DL models when sufficient static constraints or dependencies are

satisfied, while DL models are more applicable for the types lacking sufficient

static constraints. Given the code, HiTyper first generates the TDG of it, as

shown in Fig. 3.1, and tries to fill all nodes in TDG with corresponding types

(”blank filling”). For the argument text, HiTyper identifies that the type can-

not be inferred by static inference (it does not have any input edges) and asks DL

for recommendations. HiTyper does not directly output the predictions from

DL as final type assignments. Instead, HiTyper validates the prediction’s cor-

rectness and accepts the result only if no type inference rules are violated. When

predicting the return value, HiTyper captures its type dependencies based on

the TDG (it connects with two input nodes) and directly leverages static infer-

ence to infer the type. For this case, DL predictions are not required, largely

avoiding the imports of wrong types.
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3.3 HiTyper

In this section, we first introduce the definitions used in HiTyper and then

elaborate on the details of HiTyper.

          Type Dependency
         Graph Generator

Blank Type Dependency Graph
(TDG)

            Forward Type   
        Inference

Patially-Inferred
TDG TDG with

Hot Type Slots

            Deep 
              Neural Network

Recommended
TDG

Type Dependency Graph Generation Static Type Inference

Final Output

Fully-Inferred 
TDG

Similarity-based 
Type Correction

            Backward Type 
          Rejection

        Source
    Files

            Hot Type Slots 
          Finder

Neural Type Prediction

Figure 3.2: Overall architecture of HiTyper. Black solid nodes, hollow nodes,

red nodes, and yellow nodes in the type dependency graphs represent inferred

type slots, blank type slots, hot type slots, and the type slots recommended by

the DL model, respectively.

3.3.1 Overview

HiTyper accepts Python source files as input and outputs JSON files record-

ing the type assignment results. Fig. 3.2 illustrates its overall architecture. Hi-

Typer includes three major components: type dependency graph generation,

static type inference, and neural type prediction. The static type inference com-

ponent comprises two main steps, i.e., forward type inference and backward type

rejection.

Type Dependency Graph (TDG) Generation. Specifically, given a

Python source file, HiTyper first generates TDGs for each function and identifies

all the imported user-defined types (Sec. 3.3.2). TDG transforms every variable

occurrence and expression into nodes and maintains type dependencies between
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them so that static inference and DL models can work together to fill types into

it.

Static Type Inference - Forward Type Inference. To maintain the

correctness of prediction results, HiTyper focuses on inferring types using static

inference. Given a TDG, HiTyper conducts forward type inference by walking

through the graph and implementing the type inference rules saved in each ex-

pression node (Sec. 3.3.3). However, due to the limitation of static inference, in

most cases HiTyper can only infer partial type slots, i.e., variables, indicated

as black solid nodes in the partially-inferred TDG in Fig. 3.2; while the blank

nodes denote the type slots without sufficient static constraints and remaining

unsolved. To strengthen the inference ability of HiTyper, we ask DL models for

recommendations.

Neural Type Recommendation. Through the hot type slot finder, Hi-

Typer identifies a key subset of the blank nodes as hot type slots, marked as red

nodes in Fig. 3.2, for obtaining recommendations from DL models. HiTyper also

employs a similarity-based type correction algorithm to supplement the predic-

tion of user-defined types, which are the primary source of rare types (Sec. 3.3.4).

The types recommended by the neural type prediction component are filled into

the graph, resulting in the recommended TDG.

Static Type Inference - Backward Type Rejection. HiTyper utilizes

type rejection rules to validate the neural predictions in hot type slots (Sec. 3.3.3).

Then, it traverses the whole TDG to transmit the rejected predictions from out-

put nodes to input nodes so that all nodes in TDG can be validated. Finally,

HiTyper invokes forward type inference again to infer new types based on the

validated recommendations.

The interactions between forward type inference and backward type rejection

could iterate until the TDG reaches a fixed point, i.e., the types of all nodes do not
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change anymore. Meanwhile, the iterations between static inference and neural

prediction can repeat several times until all type slots are inferred, or a maximum

iteration limit is reached.

3.3.2 Type Dependency Graph Generation

This section introduces the creation of the type dependency graph (TDG),

which describes the type dependencies between different variables in programs.

Fig. 2.2 presents the syntax of all the expressions that generate types in Python,

where each expression corresponds to a node in the AST (Abstract Syntax Tree).

Given the AST of a program, HiTyper can quickly identify these expressions.

The expression nodes constitute a major part of TDG. We define TDG as below.

Definition. We define a graph G = (N,E) as a type dependency graph

(TDG), where N = {ni} is a set of nodes representing all variables and expressions

in source code, and E is a set of directed edges of ni → nj indicating the type of

nj can be solved based on the type of ni by type inference rules. We also denote

ni is the input node of nj and nj is the output node of ni here.

The TDG contains four kinds of nodes:

• symbol nodes represent all the variables for which the types need to be

inferred. We also use type slots to indicate symbol nodes in the following

sections.

• expression nodes represent all the expressions that generate types as shown

in Fig. 2.2.

• branch nodes represent the branch of data flows.

• merge nodes represent the merge of data flows.
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HiTyper creates a node for every variable occurrence instead of every vari-

able in TDG because Python’s type system allows variables to change their types

at run-time. Similar to static single assignment (SSA), HiTyper labels each

occurrence of a variable with the order of occurrences, so that each symbol node

in the TDG has a format of $name$order($lineno) to uniquely indicate a vari-

able occurrence. For example, in Fig. 3.1, we create three symbol nodes (pt0(9),

pt1(10), pt2(12)) for variable pt as it appears three times in Listing 3.1 (Line

9, 10, and 12).

Algorithm 1 Type Dependency Graph Generation
Input: The AST of given function, func_ast;

1:

Output: Type dependency graph of the given function, tg

2: Initialize an expression stack ex_stack

3: Initialize a variable stack var_stack

4:

5: for all node ∈ func_ast && node is not visited do

6: // handle expression nodes

7: if node.type ∈ Expressions then

8: ex_stack.push(node); ex_node← new ex(node)

9: visit(node.operands); ex_stack.pop(node)

10: if not ex_stack.empty() then

11: tg.addEdge(ex_node→ ex_stack.top())

12: end if

13: tg.addNode(ex_node)

14: end if

15: // handle symbol nodes

16: if node.type == ast.Name then
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17: sym_node← new symbol(node)

18: if node.ctx == write then

19: tg.addEdge(ex_stack.top() → sym_node)

20: else

21: tg.addEdge(var_stack.top() → sym_node)

22: tg.addEdge(sym_node→ ex_stack.top())

23: end if

24: var_stack.push(sym_node); tg.addNode(sym_node)

25: end if

26: // handle branch and merge nodes

27: if checkTypeBranch(node) then

28: branch_node← new branch(node)

29: tg.addNode(branch_node)

30: ctx1, ctx2← Branch(ctx)

31: visit(node.left, ctx1); visit(node.right, ctx2)

32: end if

33: if checkTypeMerge(node) then

34: merge_node← new merge(node)

35: tg.addNode(merge_node)

36: ctx← Merge(ctx1, ctx2)

37: end if

38: end for

Import Analysis. Before establishing TDG for every input function, Hi-

Typer first conducts import analysis to extract all user-defined types so that it

can distinguish the initialization of user-defined types from regular function calls.

HiTyper first collects all classes in source files, which constitute the initial set

of user-defined types. Then it analyzes all local import statements such as “from
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package import class”, and adds the imported classes into the user-defined type

set. For all global import statements such as “import package”, HiTyper locates

the source of this package and adds all the classes and named tuples in the source

into the user-defined type set. For each imported class, HiTyper solves the lo-

cation of external source files and checks whether operator overloading methods

exist in this class.

Type Dependency Graph Generation. Given the AST of input code

and all the user-defined types extracted by import analysis, HiTyper creates

TDG for each function based on the main logic shown in Alg. 1. HiTyper first

locates all the variables and expressions in the code by traversing the whole AST.

Specifically, to visit each AST node, HiTyper employs the ASTVisitor provided

by Python’s module ast [163]. HiTyper identifies expressions according to the

definitions of expression nodes in Python (as depicted in Fig. 2.2) and records

every visited expression node using an expression stack. Whenever HiTyper

identifies an expression node (Line 3), it builds the same node in the current

TDG and pushes it into the expression stack. HiTyper will then recursively visit

the expression’s operands to capture new expression nodes until it encounters a

variable node (Line 12), which is the leaf node of the AST.

HiTyper builds a symbol node in TDG for each visited identifier node of

AST and maintains a variable map to record all the occurrences of each variable.

The AST already indicates the context of each variable occurrence, i.e., whether

read or write.

(i) If the variable context is read, HiTyper will obtain the last occurrence of

the variable according to the maintained variable map under the current context.

It then creates an edge from the symbol node of the last occurrence to the symbol

node of the current variable (Line 16 - 18).

(ii) If the variable context is write, HiTyper will fetch the value from the
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last expression in the expression stack and build an edge connecting from the

expression node to the symbol node of the current variable (Line 14 - 15).

Analogous to regular data flow analysis, HiTyper also checks whether the

data flow branches (Line 23 - 27) or merges at certain locations (Line 29 - 32).

In TDG, each symbol node keeps a list of candidate types, while each expres-

sion node includes type inference rules and type rejection rules. When HiTyper

walks through TDG, the rules will be activated to produce new types. Thus,

types can flow from arguments to return values. By traversal, HiTyper obtains

the types of each symbol node and outputs the type assignment. The leveraged

type inference rules and type rejection rules are detailed in the next subsections.

3.3.3 Static Type Inference

This section describes the type inference and rejection rules integrated into

expression nodes, which are the key components of our static type inference.

Fig. 3.3 and Fig. 3.4 denote all the type inference and rejection rules used in

static type inference. Each rule consists of some premises (contents above the

line) and conclusions (contents below the line). They obey the following form:

π ⊢ e : θ.

In this form, π is called the context, which includes lists that assign types to

expression patterns. e is the expression showed in Fig. 2.2, and we use e1, ..., en

to represent different expressions. θ is the type showed in Fig. 2.1. We use

θ1, ..., θn to represent different types. A rule under this form is called a type

judgment or type assignment. Our goal is to get the context π that assigns types

to all the variables in the code.

The premises of each rule in Fig. 3.3 and Fig. 3.4 are the types of input

nodes θ1, θ2, ... that construct an expression, and the valid type set θ̃ for the

current operation. Usually, type inference rules only have one conclusion, which
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v ∈ Dom(π)

π ⊢ v : θ
(Variable)

π ⊢ c : θ
(Constant)

π ⊢ e : θ

π ⊢ e.v : θ.v
(Attribute)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃ = {bool, int, O}
π ⊢ e1 bitop e2 : θ ∧ θ̃ π ⊢ e1 : θ1 ∧ θ̃ π ⊢ e2 : θ2 ∧ θ̃

(LShift, RShift)

π ⊢ e1 : θ1 θ̃ = {bool, int, float, O}

π ⊢ e2 : θ2 θ′ = getMorePreciseType(θ1 ∧ θ̃, θ2 ∧ θ̃)

π ⊢ e1 numop e2 : θ′ π ⊢ θ1 ∧ θ̃ π ⊢ θ2 ∧ θ̃
(Numeric Operations)

π ⊢ e1 : θ1 θ̃1 = {int,bool} π ⊢ e2 : θ2 θ̃2 = {Γ, List, Tuple, O}
π ⊢ e1 numop e2 : θ2 ∧ θ̃2 π ⊢ e1 : θ1 ∧ θ̃1 π ⊢ e2 : θ2 ∧ θ̃2

(Mult)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃ = {Γ, List, Tuple, O}
π ⊢ e1 cmpop e2 : bool π ⊢ e1 : θ1 ∧ θ2 ∧ θ̃ π ⊢ e2 : θ1 ∧ θ2 ∧ θ̃

(Lt,LtE,Gt,GtE)

π ⊢ u(e1, ..., en) : u
(Class Instantiation)

π ⊢ e1 : θ1 ... π ⊢ en : θn

π ⊢ (e1, ..., en) : Tuple[θ1, ..., θn] π ⊢ [e1, ..., en] : List[θ1, ..., θn]

π ⊢ {e1, ..., en} : Set[θ1, ..., θn] (Tuple, List, Set)

π ⊢ e : θ θ̃ = {A, str,bytes} θ′ = getElementType(θ ∧ θ̃)

π ⊢ for v in e : θ′ π ⊢ e : θ ∧ θ̃
(Comprehension)

π ⊢ for v in e1 : θ1 π ⊢ e2[v] : θ2

π ⊢ (e2[v] for v in e1) : Generator[θ2]
(Generator)

π ⊢ for v in e1 : θ1 π ⊢ e2[v] : θ2

π ⊢ [e2[v] for v in e1] : List[θ2] π ⊢ {e2[v] for v in e1} : Set[θ2]
(List, Set Comprehension)

Figure 3.3: Type inference and rejection rules of expressions in Python - Part I

is the result type of the current expression. However, as we also involve neural

predictions in TDG and use type rejection rules to validate them, the conclusions

of each rule in Fig. 3.3 and Fig. 3.4 have two parts: 1) the result type of the

current expression node and 2) the validated types of input nodes. (Some rules

may not have the second part because they accept any input types.)

The result type of the current expression node is what traditional static

type inference techniques usually infer. We denote it as forward type inference.

However, there exist types that are not allowed to conduct certain operations,

which are guided by type constraints. When a type constraint is violated, e.g.,

48



adding an integer to a string, traditional static inference techniques [133, 160,

166] throw type errors. For the wrongly predicted cases, HiTyper does not

directly throw a type error since it accepts recommendations from DL models.

To “sanitize” the recommendations from DL models, we create type rejection

rules to validate and remove the wrong predictions in input nodes. We call this

as backward type rejection.

Forward Type Inference. HiTyper starts forward type inference with

the nodes that do not have input nodes in TDG. It gradually visits all nodes in

the graph and activates corresponding type inference rules if their premises are

satisfied, i.e., all input nodes are fully inferred. This is the forward traversal of

TDGs. As forward type inference in HiTyper is similar to traditional static type

inference techniques, we only discuss the [Call] rule for which HiTyper has a

special strategy. The premise of the [Call] rule requires the type of callees, which

is beyond the scope of current functions. This premise is one major barrier for

most static inference techniques to fully infer a program due to a large number of

external APIs in Python programs [73, 186]. HiTyper only focuses on inferring

the types of functions with explicit implementation in the current source code,

in which the TDGs of the functions are connected. HiTyper does not infer

external calls for two reasons: 1) DL models perform well on predicting the types

of commonly-used APIs that frequently occur in the training set; 2) Python

maintains a typeshed [165] project to collect the type annotations of frequently-

used modules, so HiTyper can directly access the types.

Backward Type Rejection. An input type in an expression must fulfill

two constraints before it can conduct the expression: 1) it must be the valid type

to conduct a certain expression, 2) it must have a valid relationship with other

input types. HiTyper rejects the input types that violate these two constraints.

It first checks whether the type is valid for an expression. We indicate valid types
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π ⊢ e1 : θ1 π ⊢ e2 : θ2

π ⊢ e1 blop e2 : Union[θ1, θ2]
(Boolean Operations)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃ = {bool, int, Set, O}
π ⊢ e1 bitop e2 : θ ∧ θ̃ π ⊢ e1 : θ1 ∧ θ̃ π ⊢ e2 : θ2 ∧ θ̃

(BitOr, BitAnd, BitXor)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃ = {Γ, List, Tuple, O}
π ⊢ e1 numop e2 : θ ∧ θ̃ π ⊢ e1 : θ1 ∧ θ2 ∧ θ̃ π ⊢ e2 : θ1 ∧ θ2 ∧ θ̃

(Add)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃ = {Γ, Set, O}
π ⊢ e1 numop e2 : θ ∧ θ̃ π ⊢ e1 : θ1 ∧ θ2 ∧ θ̃ π ⊢ e2 : θ1 ∧ θ2 ∧ θ̃

(Sub)

π ⊢ e1 : θ1 π ⊢ e2 : θ2

π ⊢ e1 cmpop e2 : bool
(Eq,NotEq,Is,IsNot)

π ⊢ e1 : θ1 π ⊢ e2 : θ2

θ̃ = {str,bytes,List, Tuple, Set, Dict, Generator}
π ⊢ e1 cmpop e2 : bool π ⊢ e2 : θ2 ∧ θ̃

(In,NotIn)

π ⊢ e : θ π ⊢ e1 : θ1 ... π ⊢ en : θn

θ̃ = {Callable[[θ1, ..., θn], θ]} θ′ = getReturnType(θ ∧ θ̃)

π ⊢ e(e1, ..., en) : θ
(Call)

π ⊢ e1 : θ1 ... π ⊢ en : θn

π ⊢ {e1 : e2, ..., en−1 : en} : Dict[θ1 : θ2, ..., θn−1 : θn]
(Dict)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃1 = {Dict} θ′ = getV alueType(θ1 ∧ θ̃1)

π ⊢ e1[e2] : θ′ π ⊢ e1 : θ1 ∧ θ̃1
(SubScript)

π ⊢ for v in e1 : θ1 π ⊢ e2[v] : θ2 π ⊢ e3[v] : θ3

π ⊢ {e2[v] : e3[v] for v in e1} : Dict[θ2 : θ3]
(Dict Comprehension)

π ⊢ e1 : θ1 π ⊢ e2 : θ2 θ̃1 = {A, str,bytes}

θ̃2 = {int,bool} θ′ = getElementType(θ1 ∧ θ2)

π ⊢ e1[e2] : θ′ π ⊢ e1 : θ1 ∧ θ̃1 π ⊢ e2 : θ2 ∧ θ̃2
(Slice)

Figure 3.4: Type inference and rejection rules of expressions in Python - Part II

for each expression as θ̃ in Fig. 3.3 and Fig. 3.4. For example, in [In, NotIn] rule,

the types of e2 must be iterable so int is not allowed and should not be in the

valid type set θ̃. Then HiTyper checks whether the relationships between all

inputs are valid. Apart from valid types for a certain operation, some operations

also require the inputs to satisfy a certain relationship. For example, in [Add]

rule, the two operands must have the same type. For types of two inputs int and

str, even though they are in the valid type set of this operation, they are still

rejected because they are not the same type. Therefore, in the [Add] rule, the
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final valid input types are the intersection of all input type sets θ1, θ2 and valid

type set θ̃.

Type Rejection rules can validate and reject the input types of an operation.

However, the input types are the results of previous operations, so the type rejec-

tion process will also affect the input types of previous operations. To thoroughly

remove the influence of wrong types, HiTyper also rejects the input types that

result in the rejected types according to forward type inference rules. HiTyper

gradually validates all type slots by starting from the type slots without output

edges and producing the rejected input types. Then, it traverses other slots until

the whole TDG is visited. This is the backward traversal of TDGs.

Correctness. Different from the DL-based approaches [68, 129], HiTyper

can always guarantee the correctness of its type assignments based on static

inference. According to the architecture of HiTyper in Fig. 3.2, the type as-

signments generated by HiTyper have two cases: 1) If the static inference can

successfully handle a program, HiTyper does not need to invoke DL models to

give type recommendations. Consequently, the type assignments fully based on

the inference rules (Fig. 3.3 and Fig. 3.4) are sound because they are collected

from the Python official implementation CPython [38]; and 2) If the static in-

ference cannot fully infer a program and the DL models are invoked to provide

type recommendations (Sec. 3.3.4), HiTyper utilizes type rejection rules to

validate the recommendations and then calls the type inference rules again to

infer the remaining types. In this case, our rejection rules thoroughly eliminate

the influence of wrong recommendations, and the final results are also produced

by static inference. Therefore, HiTyper always maintains the type correctness.
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3.3.4 Neural Type Recommendation

HiTyper conducts static type inference based on type inference rules. When

static type inference can fully infer all the variables in TDG. However, some

variables are hard to be statically typed so that HiTyper only gets a partially-

inferred TDG. In this case, HiTyper asks DL models for recommendations. The

neural type recommendation part of HiTyper includes two procedures: hot type

slot identification and similarity-based type correction.

Hot Type Slot Identification. Some variables can impact the types of

many other variables because they locate at the beginning of the data flow or

possess type dependencies with many variables. We call these variables as hot

type slots. Given the types of hot type slots, static type inference techniques can

infer the remaining type slots. Therefore, to optimize the type correctness of

HiTyper, DL models are only invoked on the hot type slots instead of all the

blank type slots.

To identify the hot type slots, HiTyper first removes slots already filled by

static type inference and obtains a sub-graph with all the blank type slots. Then

HiTyper employs a commonly-used dominator identification algorithm semi-

NCA [54] to capture all dominators in the sub-graph. A node X dominating

another node Y in a graph means that each entry node to Y must pass X. Thus,

if a type slot X dominates another type slot Y , Y ’s type can be inferred from

X’s type. HiTyper gradually removes the type slots Y from the sub-graph until

no type slots can be removed. In the smallest sub-graph, each type slot is not

dominated by other type slots, and all the slots are hot type slots. For these type

slots, HiTyper accepts type recommendations from DL models.

Similarity-based Type Correction for User-defined Types. DL mod-

els provide one or more type recommendations for each hot type slot, depending

on the strategy (Top-1, -3, or -5) HiTyper uses. Some DL models [68, 158]
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treat user-defined types as OOV tokens and do not predict the types, while other

models [7, 166] directly copy user-defined types from the training set but fail to

predict those never appearing in the training set. We propose to complement the

recommendation of user-defined types using the similarity-based type correction

algorithm shown in Alg. 2. Note that HiTyper only focuses on replacing the

explicitly incorrect user-defined types, i.e., those never imported or defined in the

current source file, with the most similar user-defined types collected by import

analysis.

Algorithm 2 Type correction of user-defined types
Input: Variable name, name;

1: Valid user defined type set, S;

2: Type String recommended by deep neural networks, t;

3: Penalty added for name-type similarity to align with type-type similarity,

penalty;

Output: Corrected type of current variable, ct;

4: if t ∈ S or isBuiltin(t) then

5: ct← t;

6: else

7: largest_sim← 0; largest_type← None;

8: tw ← BPE(t); namew ← BPE(name);

9: for each pt ∈ S do

10: ptw ← BPE(pt);

11: if sim(ptw, tw) > largest_sim then

12: largest_sim← sim(ptw, tw); largest_type← pt;

13: end if

14: if sim(ptw, namew) + penalty > largest_sim then

15: largest_sim← sim(ptw, namew); largest_type← pt;
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16: end if

17: end for

18: ct← largest_type;

19: end if

Specifically, if the recommended type does not belong to built-in types, Hi-

Typer checks whether the type appears in the user-defined type set collected

from import analysis (Line 1). If the check result is False, the type will be

regarded as explicitly incorrect and should be corrected. For these incorrect user-

defined types, HiTyper replaces them with the most similar candidate in the

user-defined type set. HiTyper employs Word2Vec [123] to embed two types

and the variable name into word embeddings and calculates the cosine distance

as the similarity of the two types (Line 6-12). For the OOV tokens, HiTyper

splits them into subtokens using the BPE algorithm [47, 189] (Line 5). Finally,

HiTyper chooses the type candidate with the largest similarity to fill the user-

defined type (Line 15).

3.4 Evaluation

In the section, we answer the following research questions:

RQ1: How effective is HiTyper compared to baseline approaches?

RQ2: Can HiTyper well predict the rare types?

RQ3: What is the performance of the static type inference component in Hi-

Typer?
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Table 3.2: Type distribution in the test set. “Rare” indicates rare types and

“User” indicates user-defined types.

Category Total Rare User Arg Return Local

Typilus
Count 15,772 7,103 5,572 11,261 4,511 -

Prop. 100% 45% 35% 71% 29% -

Type4Py
Count 37,408 14,035 10,023 11,807 5,491 20,110

Prop. 100% 37% 27% 32% 15% 53%

3.4.1 Experimental Setup

Dataset. We used the two Python datasets mentioned in Sec. 3.2 for evalu-

ation. One is the Typilus’s Dataset released by Allamanis et al. [7]; and the other

one is ManyTypes4Py released by Mir et al. [127], with the number of different

types in the test set and more detailed statistics shown in Table 3.2 and Sec. 3.2,

respectively.

Evaluation Metrics. Following the previous work [7, 129], we choose two

metrics Exact Match and Match to Parametric for evaluation. The two metrics

compute the ratio of results that: 1) Exact Match: completely matches human

annotations. 2) Match to Parametric: satisfy exact match when ignoring all

the type parameters. For example, List[int] and List[str] are considered as

matched under this metric.

Baseline Approaches. To verify the effectiveness of the proposed Hi-

Typer, we choose five baseline approaches for comparison:

1) A naive baseline. It represents a basic data-driven method. We build this

baseline following the work [158], which makes predictions by sampling form the

distribution of the most frequent ten types.

2) Pytype [166] and Pyre Infer [160]. They are two popular Python static

type inference tools from Google and Facebook, respectively.
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3) Typilus [7] and Type4Py [129]. Typilus is a graph model that utilizes

code structural information. Type4Py is a hierarchical neural network that uses

type clusters to predict types.

Implementation of HiTyper The entire framework of HiTyper is imple-

mented using Python, which contains more than 9,000 lines of code. We obtain

all typing rules and rejection rules from Python’s official documentation [37] and

its implementation CPython2. We use the Word2Vec model from the gensim

library [251] as the embedding when calculating the similarity between the two

types. We train the Word2Vec model by utilizing all the class names and variable

names in the training set of Typilus. The dimensions of the word embeddings

and the size of the context window are set as 256 and 10, respectively. Due to

the small training corpus for Word2Vec, we choose the Skip-Gram algorithm for

model training [124]. We choose Typilus and Type4Py as the neural network

model from which HiTyper accepts type recommendations. We chose the exact

hyper-parameters for Typilus, and Type4Py used in the original papers. We run

all experiments on Ubuntu 18.04. The system has an Intel(R) Xeon(R) CPU

(@2.4GHz) with 32GB RAM and 2 NVIDIA Titan V GPUs with 12GB RAM.

3.4.2 RQ 1: Effectiveness of HiTyper

We evaluate the effectiveness of HiTyper considering different type cate-

gories, including arguments, local variables, and return values. The results are

depicted in Table 3.3.

Overall performance. The naive baseline achieves high scores regarding

the top-5 exact match metric for different type categories, some of which are

even close to the performance of DL models. Since the naive baseline only pre-

dicts types with high occurrence frequencies in the dataset, the results indicate
2https://github.com/python/cpython
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Table 3.3: Comparison with the baseline approaches. Top-1,3,5 of HiTyper

means it accepts 1,3,5 candidates from deep neural networks in the type recom-

mendation phase. The neural network in HiTyper is the corresponding compar-

ison DL model.

Dataset Type Category Approach

Top-1 Top-3 Top-5

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

ManyTypes4Py

Argument

Naive Baseline 0.14 0.16 0.33 0.38 0.43 0.51

Type4Py 0.61 0.62 0.64 0.66 0.65 0.68

HiTyper 0.65 0.67 0.70 0.74 0.72 0.76

Return Value

Naive Baseline 0.07 0.10 0.19 0.28 0.28 0.42

Type4Py 0.49 0.52 0.53 0.59 0.54 0.63

HiTyper 0.60 0.72 0.63 0.76 0.65 0.77

Local Variable

Naive Baseline 0.13 0.17 0.33 0.45 0.47 0.65

Type4Py 0.67 0.73 0.71 0.78 0.72 0.79

HiTyper 0.73 0.85 0.74 0.86 0.75 0.86

All

Naive Baseline 0.13 0.16 0.31 0.40 0.43 0.57

Type4Py 0.62 0.66 0.66 0.72 0.67 0.73

HiTyper 0.69 0.77 0.72 0.81 0.72 0.82

Typilus’s

Dataset

Argument

Naive Baseline 0.19 0.20 0.38 0.42 0.46 0.50

Typilus 0.60 0.65 0.69 0.74 0.71 0.76

HiTyper 0.63 0.68 0.72 0.76 0.76 0.79

Return Value

Naive Baseline 0.11 0.11 0.28 0.31 0.36 0.43

Typilus 0.41 0.57 0.48 0.62 0.50 0.64

HiTyper 0.57 0.70 0.63 0.75 0.64 0.77

All

Naive Baseline 0.17 0.18 0.35 0.39 0.44 0.48

Typilus 0.54 0.62 0.63 0.70 0.65 0.72

HiTyper 0.61 0.69 0.69 0.76 0.72 0.78

the challenge of accurately predicting rare types. Typilus and Type4Py mitigate

the challenge by using similarity learning and type clusters and achieve ∼0.6 re-

garding the top-1 exact match metric. HiTyper further improves the metric

by 11% and 15% compared with Typilus and Type4Py, respectively. HiTyper

also enhances the top-1 match to parametric metric by 17% and 11% compared

with Typilus and Type4Py, respectively. The improvement indicates the effec-

tiveness of HiTyper in accurate type prediction. Besides, HiTyper presents

better performance than the respective DL models regarding the top-3,5 metrics,
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demonstrating that HiTyper infers new results based on the static type inference

rules, instead of just filtering out or reordering the predictions of DL models.

Type categories. Both Type4Py and Typilus perform better on the argu-

ment category than the return value category, which may reflect the difficulty of

predicting the types of return values. By building upon type inference rules and

TDGs, HiTyper can handle the complicated type dependencies of return values

and thereby improve Type4Py and Typilus by 22% and 39%, respectively, w.r.t.

the Top-1 exact match metric. HiTyper also slightly meliorates the prediction

of the argument category by 7% and 5% compared with Type4Py and Typilus,

respectively. The improvement may be attributed to the type correction for user-

defined types. Moreover, HiTyper outperforms Type4Py by 9% for predicting

local variables.

Answer to RQ1: HiTyper shows great improvement (11% ∼ 15%) on overall

type inference performance, and the most significant improvement is on return

value inference (22% ∼ 39%).

3.4.3 RQ 2: Prediction of Rare Types

Rare types are defined as the types with proportions less than 0.1% among

the annotations in the datasets, and we observe that 99.7% and 79.0% of rare

types are user-defined types in ManyTypes4Py and Typilus’s dataset, respec-

tively. Table 3.4 illustrates the prediction results of rare types and user-defined

types. We can observe that the naive baseline barely infers rare types and user-

defined types. Besides, the performance of Type4Py and Typilus drops signif-

icantly for the two type categories, which indicates that type occurrence fre-

quencies can impact the performance of DL models. HiTyper shows the best

performance on predicting the two type categories. Specifically, for inferring the
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Table 3.4: Comparison with the baseline DL approaches.

Dataset Type Category Approach

Top-1 Top-3 Top-5

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

Exact

Match

Match to

Parametric

ManyTypes4Py

User-defined Types

Naive Baseline 0.00 0.00 0.00 0.00 0.00 0.00

Type4Py 0.29 0.29 0.34 0.34 0.36 0.36

HiTyper 0.49 0.49 0.56 0.56 0.58 0.58

Rare Types

Naive Baseline 0.03 0.07 0.08 0.21 0.13 0.35

Type4Py 0.39 0.46 0.45 0.54 0.47 0.57

HiTyper 0.51 0.66 0.56 0.72 0.58 0.73

Typilus’s

Dataset

User-defined Types

Naive Baseline 0.00 0.00 0.00 0.00 0.00 0.00

Typilus 0.32 0.32 0.40 0.40 0.42 0.42

HiTyper 0.47 0.47 0.56 0.56 0.60 0.60

Rare Types

Naive Baseline 0.00 0.01 0.01 0.03 0.03 0.09

Typilus 0.32 0.43 0.41 0.53 0.43 0.55

HiTyper 0.43 0.55 0.52 0.63 0.56 0.67

rare types, HiTyper outperforms Type4Py and Typilus by 31% and 34%, re-

spectively, w.r.t. the top-1 exact match metric. Regarding the prediction of

user-defined types, HiTyper increases the performance of Type4Py and Typilus

by 69% and 47%, respectively.

Answer to RQ2: HiTyper greatly alleviates the prediction issue of rare types

faced by DL models by achieving a > 30% boost, taking advantage of the static

type inference component.

3.4.4 RQ 3: Performance of the Static Type Inference

Component

In this RQ, we evaluate the performance of the static type inference compo-

nent in HiTyper compared with popular static type inference tools Pytype [166]

and Pyre [160]. The results are shown in Table 3.5. We only consider the type

categories of argument and return value for comparison since Pyre and Pytype

do not infer types for local variables. We use the metric number of correct anno-
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Table 3.5: Comparison with static type inference tools.

Dataset
Type

Category
Approach

Exact #Correct

Match Annotations

ManyTypes4Py

Argument

Pytype - 0

Pyre Infer 0.96 613

HiTyper 0.94 1060

Return

Value

Pytype 0.81 777

Pyre Infer 0.84 662

HiTyper 0.86 2603

All

Pytype 0.81 777

Pyre Infer 0.89 1275

HiTyper 0.88 3663 (16918*)

Typilus’s

Dataset

Argument

Pytype - 0

Pyre Infer 0.96 543

HiTyper 0.88 983

Return

Value

Pytype 0.79 552

Pyre Infer 0.71 484

HiTyper 0.91 2461

All

Pytype 0.79 552

Pyre Infer 0.82 1027

HiTyper 0.90 3444

* The number of correct annotations when including local variables.

tations to replace the metric match to parametric that is usually used to evaluate

DL models, considering that the results of static inference are exact and not

recommendations.

As shown in Table 3.5, the exact match scores of all the static tools are

greatly high, and HiTyper achieves the best performance. The results indicate

the effectiveness of the static type inference component in HiTyper. We also find

that there remains ∼10% of the results inconsistent with human annotations in
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the datasets. By using Python’s official type checker mypy to check these results,

we observe that all the types annotated by HiTyper do not produce type errors,

which reflects the correctness of the proposed HiTyper. After manual check-

ing of these inconsistent types, we find this inconsistency is caused by subtypes,

we further discuss them in Sec. 3.5. Besides, mypy’s results indicate very few

inconsistent cases are caused by incorrect human annotations. To test whether

HiTyper can rectify the incorrect annotations, we replace the original annota-

tions with the results inferred by HiTyper, and inspect whether the original

type errors are fixed. We finally correct 7 annotations on 6 GitHub reposito-

ries, including memsource-wrap [53], MatasanoCrypto [6], metadata-check [225],

coach [79], cauldron [190], growser [201], and submit pull requests to these repos-

itory owners. The owners of MatasanoCrypto and cauldron have approved our

corrections.

While Pytype and Pyre present high exact match scores, the numbers of

variables they can accurately infer are small. Table 3.5 shows that HiTyper

generally outputs 2x argument types and 3x return value types compared with

them in both datasets, which suggests HiTyper’s stronger inference ability than

Pyre and Pytype. Such improvements attribute to HiTyper’s import analysis

and [Class Instantiation] rule on supporting the inference of user-defined types,

and inter-procedural analysis on supporting the inference of class attributes and

functions.

Answer to RQ3: Only considering the static inference part, HiTyper still

outperforms current static type inference tools by inferring 2× ∼ 3× more

variables with higher accuracy.
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3.5 Discussion

Inference of subtypes. Although HiTyper achieves promising results for

type prediction and passes the check of mypy, it is still unable to infer some vari-

able types (around 10%). The failure mainly occurs in the inference of subtypes.

1 #File: miyakogi.wdom/wdom/node.py

2 #Human annotation: AbstractNode

3 #Typilus: ForeachClauseNode HiTyper: Node

4 def _append_element(self, node: AbstractNode) -> AbstractNode:

5 if node.parentNode:

6 node.parentNode.removeChild(node)

7 self.__children.append(node)

8 node.__parent = self

9 return node

10 def _append_child(self, node):

11 if not isinstance(node, Node):

12 raise TypeError

13 ...

14 return self._append_element(node)

Listing 3.2: An example HiTyper fails to infer.

Listing 3.2 shows an example for which HiTyper’s result is inconsistent

with the original annotations but still passes the check of mypy. The return

statement at Line 9 indicates that the type of return value is the same as the

type of argument node. Typilus predicts the type as ForeachClauseNode, which

is invalid since it is not imported in the code and is from other projects in the

training set. HiTyper infers the type as xml.dom.Node, because the function is

called by another function named _append_child in the same file, and the caller

transmits a variable with type Node. However, developers annotate the variable

as AbstractNode, the parent type. Such behavior is common in practice and

62



poses a challenge for accurate type prediction.

3.6 Summary

In this chapter, we propose HiTyper, a hybrid type inference framework

that iteratively integrates DL models and static analysis for type inference. Hi-

Typer creates TDG for each function and validates predictions from DL models

based on typing rules and type rejection rules. Experiments demonstrate the ef-

fectiveness of HiTyper in type inference, enhancement for predicting rare types,

and advantage of the static type inference component in HiTyper.
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Chapter 4

Generative Type Inference for

Python

In the previous chapter, we introduce HiTyper, which combines static type

inference and neural type predictions for more accurate and effective type in-

ference. However, the performance upper bound of HiTyper is limited by the

effectiveness of the deep learning model used in HiTyper. In this chapter, we fo-

cus on how to improve the performance of data-driven type inference approaches.

The main points in this chapter are as follows. (1) We propose a few-shot gen-

erative type inference approach named TypeGen for Python. (2) We propose a

novel prompt design to incorporate different static domain knowledge into lan-

guage models, which includes code slices, type hints, and COT prompts. (3)

We conduct extensive experiments to demonstrate the effectiveness of TypeGen

compared with supervised and cloze-style type inference approaches, as well as

the capability of TypeGen on language models with different parameter sizes.
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4.1 Introduction

With the boom of artificial intelligence and data science, Python is becom-

ing increasingly popular in recent years. As a dynamically typed programming

language, Python is famous for its convenience and usability. The dynamic type

system makes it possible to reuse the same code snippets for different function-

alities, which significantly improves development efficiency. However, this con-

venience comes with a cost. The dynamic type system poses a threat to the

reliability of Python software by introducing more type errors. Oh et al. [143]

find that 30% of questions raised by developers at GitHub and Stack Overflow

are related to type errors. To reduce potential type errors, Python Software

Foundation introduces type annotations in a series of Python Enhancement Pro-

posals (PEPs) [99, 100, 204, 250]. Manually annotating types for each vari-

able in Python programs is overwhelming, so many automatic type inference

approaches [7, 68, 128, 153, 157] are proposed to infer types statically to release

the burden of developers. Automatic type inference approaches work along with

static type checkers [133, 160, 161, 166] to detect potential type errors for Python

programs [143, 155].

The earliest proposed automatic type inference approaches are rule-based,

as described in previous work [10, 20, 29, 46, 80, 151]. These approaches rely on

pre-defined typing rules and static analysis to accurately infer types. However,

they are limited by the low coverage problem since the types of many variables

in Python programs cannot be resolved statically.

Inspired by the remarkable achievements of deep learning in the natural lan-

guage processing (NLP) field, supervised type inference approaches [7, 81, 128,

157, 220] take the code context of the target variable as input and leverage deep

learning models to classify the context into one type. They can naturally avoid

the low coverage problem of rule-based approaches, as deep learning models are
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feature-agnostic and make predictions based on probability rather than rules.

Taking advantage of identifiers in code, supervised type inference approaches are

quite effective after training on a large dataset of annotated code. Despite the ef-

fectiveness, supervised type inference approaches based on classification methods

classify inputs into pre-defined type categories and perform badly on rare types.

Peng et al. [152] propose a hybrid type inference approach HiTyper to mitigate

these problems by using deep learning models to recommend type predictions for

static analysis. However, deep learning models in supervised approaches require

large high-quality datasets of type annotations, which needs substantial human

efforts.

Cloze-style type inference approaches [31, 44, 61, 62, 217] transform the

type inference problem into a fill-in-the-blank problem by adding masks on the

locations of type annotations in code. These approaches are well-aligned with

the pre-training objectives of pre-trained code models and do not require large

datasets, making them suitable for zero-shot settings. However, they face the

following challenges:

1) Lack of static domain knowledge. Cloze-style approaches are characterized

by the insertion of masks in source code, allowing pre-trained code models to

predict the missing type information. While they have the advantage of not

requiring large datasets, unlike supervised approaches, they rely solely on the

general knowledge that pre-trained code models acquire during the pre-training

phase. Consequently, their performance may be suboptimal, as they lack an

understanding of how types are constructed based on typing rules.

2) Lack of interpretability. Current learning-based type inference approaches,

including supervised and cloze-style approaches, adopt the input-output method-

ology, taking code as input and outputting single types. However, they provide

no idea about how deep learning models reach the output types from the input
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code. This lack of transparency makes it challenging for developers to compre-

hend and validate the predicted types, particularly when there are insufficient

static constraints.

Our work. We propose TypeGen, the first few-shot generative type infer-

ence approach for Python programs. TypeGen has four phases, including code

slicing, type hint collection, chain-of-thought (COT) prompt construction, and

type generation. In the code slicing phase, TypeGen generates type dependency

graphs (TDGs) and builds code slices based on TDG as the contexts of target

variables, i.e., the variables whose types need to be inferred. In the type hints col-

lection phase, TypeGen collects all available user-defined types and third-party

types as type hints via import analysis to provide additional knowledge that

does not exist in code slices. In the COT prompt construction phase, Type-

Gen translates the inference steps of static analysis for target variables into a

COT prompts [218]. The code slices, type hints and COT prompts generated in

the first three phases are combined as the example prompts, which provides rich

static domain knowledge. In the last type generation phase, TypeGen adopts

the in-context learning (ICL) methodology and constructs the input prompt by

concatenating several example prompts and the target variable prompt, which

includes code slice as well as type hints of the target variable. A language model

is then invoked to complete the input prompt with the COT prompt of the tar-

get variable. With both explanations and predicted types in the generated COT

prompts, TypeGen can improve the interpretability of results.

We evaluate TypeGen on the widely-used ManyTypes4Py dataset [127].

Our experiment results show that TypeGen outperforms the most advanced

baseline Type4Py [128] by 10.0% for argument types and 22.5% for return value

types in terms of top-1 Exact Match. Furthermore, we observe that TypeGen

can achieve improvements of 27% ∼ 84% over the zero-shot performance of lan-
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guage models with parameter sizes ranging from 1.3B to 175B in terms of top-1

Exact Match, which are 2× ∼ 3× of the improvements achieved by the standard

ICL method without static domain knowledge.

Contributions. We summarize our contributions as follows.

• To the best of our knowledge, we propose the first few-shot generative type

inference approach named TypeGen for Python.

• We propose a novel prompt design to incorporate different static domain

knowledge into language models, which includes code slices, type hints, and

COT prompts.

• Extensive experiments demonstrate the effectiveness of TypeGen com-

pared with supervised and cloze-style type inference approaches, as well as

the capability of TypeGen on language models with different parameter

sizes.

4.2 TypeGen

4.2.1 Overview

As a generative approach, TypeGen first generates domain knowledge-

aware prompts and then inputs them into language models for type prediction.

To achieve this, TypeGen adopts the widely-used in-context learning method-

ology [26]. This methodology provides a few example questions and answers as

demonstrations for the language model and then asks the answer for a new ques-

tion. Leveraging this methodology, TypeGen constructs the input prompt by

adding some domain knowledge-aware example prompts (example questions and

answers) before the target variable prompt (new question). Fig. 4.1 illustrates

an input prompt with an example from the code in Fig. 4.3. The domain-aware
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Python Code: [Code]

Available User-defined Types: [User-defined types from static analysis]

Q: What's the type of the variable [name]?

A: [To be generated]

Q: What''s the type of the variable DATABASES?

Python Code:

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.sqlite3',
        'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
    }
}
DATABASES['default'].update(db_from_env)

Available User-defined Types:

os.Mapping, os.MutableMapping, os.PathLike, os._AddedDllDirectory, os._Environ, os._wrap_close

A: First, the variable DATABASES is assigned from a dict. Second, the key of the dict is a str. The value
of the dict is a dict. Third, the keys of the dict are a str and a str. The values of the dict are a str and a
function call os.path.join. Therefore, the type of the variable DATABASES is `dict[str, dict[str, str]]`.

Example Prompt: 

Target Variable Prompt: +

①. Code Slice

②. Type Hint

③. COT Prompt

①. Code Slice

②. Type Hint

Figure 4.1: Input prompt with example from the code in Fig. 4.3.

example prompts include three parts: code slice, type hint and COT prompt,

as shown in Fig. 4.1. They are designed to incorporate different static domain

knowledge for language models. Specifically, the code slice isolates the state-

ments contributing to the construction of the type for the target variable, with

the remaining unrelated statements removed. The type hint includes external

knowledge that is specific to different code slices, including user-defined types and

third-party types. The COT prompt indicates the inference steps of static anal-

ysis, aiming at teaching language models how to infer types. The target variable

prompt contains only the code slice and the type hint of the target variable.

We provide an overview of TypeGen’s workflow in Fig. 4.2. To start, Type-

Gen takes a set of annotated Python source files to select examples and a target

Python source file where the target variable is located. For each target source file,
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Example Prompt #2
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Code Slice Type Hints

Target Variable
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Example Prompt

+

||
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Figure 4.2: The overview of TypeGen.

TypeGen generates an input prompt that incorporates domain-aware example

prompts and the target variable prompt. A language model is then employed

to produce the COT prompt, which includes both the predicted type and corre-

sponding explanations. To generate domain-aware example prompts, TypeGen

conducts three phases: (1) code slicing, (2) type hint collection, and (3) COT

prompt construction to generate the code slice, type hint, and COT prompt,

respectively, finally, in the (4) Type Generation phase, TypeGen leverages in-

context learning to infer the types of target variables.

4.2.2 Code Slicing

The code slicing phase aims at identifying the code statements related to the

target variable based on the type dependency graph (TDG), which indicates the

type dependencies among variables [153].

TDG Generation

In order to extract the type dependencies of the target variable, TypeGen

generates type dependency graphs (TDGs) using HiTyper [153]. A TDG is a
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...
12 import os
...
25 DEBUG = bool( os.environ.get('DJANGO_DEBUG', True) )
27 ALLOWED_HOSTS = ['stepper-v2.herokuapp.com', '127.0.0.1']
...
71 DATABASES = {
72    'default': {
73        'ENGINE': 'django.db.backends.sqlite3',
74        'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
75    }
76 }
...
129 db_from_env = dj_database_url.config(conn_max_age=500)
130 DATABASES['default'].update(db_from_env)
...

Figure 4.3: The source code for the example prompt in Fig. 4.1, where

DATABASES is the target variable.

directed graph (N,E), where N is the node set and E is the edge set. Each node

n ∈ N in TDG represents a variable (symbol node), an operation (operation

node), or a type (type node), while each edge e ∈ E indicates that the type of

the output node depends on the type of the input node. If the target variable

is an argument, a return value or a local variable in the function, TypeGen

generates the TDG for the specific function. Otherwise, if the target variable is

a global variable, TypeGen generates the TDG for all statements in the source

file except class definitions and function definitions. To better illustrate the code

slicing phase, we give a code example in Fig. 4.3 and its sliced TDG in Fig. 4.4,

where the target variable is “DATABASES”.

To refine the initial TDG, TypeGen prunes the nodes that do not have

any type dependency with the target variable. For instance, in the code pre-

sented in Fig.4.3, TypeGen removes the nodes generated from statements at

lines 25, 27, 129, etc. TypeGen then merges identical symbol nodes that are
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DATABASES

Dict_Read

Dict_Read "default"
Type: Str

"ENGINE"
Type: Str

"Name"
Type: Str

"django.db.backends.sqlite3"
Type: Str

keyvalue

keykey

Call

value value

BASE_DIR "db.sqlite3"
Type: Str

(hop 1)

(hop 2)

(hop 3)

(hop 4)

(hop 0)

Figure 4.4: The sliced type dependency graph (TDG) of code in Fig. 4.3.

directly connected, since they represent different occurrences of the same vari-

able. To generate the sliced TDG, TypeGen locates the sub-graph where the

target variable is defined in the refined TDG. For the example in Fig.4.3, Type-

Gen identifies the target variable node “DATABASES” at line 71 and extracts

the reachable sub-graph of the refined TDG as the sliced TDG, as illustrated in

Fig. 4.4.

Code Slice Generation

Using the sliced TDG, TypeGen generates a code slice from the original

input source code, containing only the statements that have type dependencies

with the target variable. In this way, TypeGen reduces the entire function into a

smaller code slice that includes only the information relevant to the type inference

of the target variable. TypeGen employs different strategies for generating code

slices for local variables, return values, and arguments.
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Arguments. To facilitate the generation of code slices for function ar-

guments, TypeGen adopts a different approach, since arguments do not have

explicit definitions. TypeGen collects the usages of function arguments, as vari-

able usages often provide hints about their types. For instance, operations such

as open are usually associated with File types. Thus, TypeGen begins with

all nodes of the target argument and traverses forward on the TDG, i.e., in

the same direction as the TDG edges, to include nodes that use the target argu-

ment. TypeGen generates code slices for nodes with distances within a specified

maximum threshold, similar to local variables and return values.

4.2.3 Type Hints Collection

Unlike built-in types that are available in every source file, user-defined and

third-party types are specific to each source file and are defined through class

definitions and import statements. However, general knowledge bases in language

models do not cover this specific domain knowledge [153]. To address this issue,

TypeGen collects all the user-defined and third-party types that are imported

to the current source file as type hints.

To identify user-defined types, TypeGen performs an import analysis on

the current source directory. First, it collects all class definitions in the cur-

rent source file as user-defined types. Then, it examines the import statements

to determine which source files are imported in the current file and adds their

class definitions to the list of user-defined types. For third-party types, following

previous study [241], TypeGen downloads the top 10,000 popular Python pack-

ages ranked by libraries.io [105] and employs the same import analysis technique

to identify third-party types. All third-party types collected by TypeGen are

stored in a database, which can be queried by TypeGen to identify the available

third-party types based on the import statements in the current source file.
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When generating type hints, TypeGen analyzes all the import statements

in the current source file. If a user-defined package is imported, TypeGen di-

rectly conducts import analysis to gather all available user-defined types. If a

third-party package is imported, TypeGen queries the database and obtains all

available third-party types. All available types are concatenated to build the type

hint, with an example shown in Fig. 4.1 (highlighted in orange color). To prevent

excessively long type hints, TypeGen imposes a maximum threshold (set to 50

in this chapter) for the number of collected types. Considering the scarcity of

user-defined types, TypeGen prioritizes the importance of types based on the

following order: “user-defined types in current source file > user-defined types in

other source files > third-party types.”.
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4.2.4 Chain-of-Thought Prompt Construction

Table 4.1: Chain-of-Thought Prompt Template. [NAME] indicates the name of

symbol nodes, [OP] indicates the name of operation nodes and [TYPE] indicates

the name of type nodes. [GTTYPE] indicates the annotated type for the target

variable. DD-RV and DD-A indicate the dependency description for local vari-

ables and return values, and arguments, respectively.

Part Type Template

DD-RV

Operation→Symbol
The variable/return value of [NAME]

is assigned from [OP] operation.

Symbol→Symbol
The variable/return value of [NAME]

is assigned from variable [NAME].

Type→Symbol
The variable/return value of [NAME]

is assigned from [TYPE].

Operation→Operation
The operand(s)/target(s)/key(s)/value(s)

of [OP] is/are [OP] operation.

Symbol→Operation
The operand(s)/target(s)/key(s)/value(s)

of [OP] is/are variable [NAME].

Type→Operation
The operand(s)/target(s)/key(s)/value(s)

of [OP] is/are [TYPE].

DD-A

Usage
The argument [NAME] is used

in [OP]/[NAME].

Naming
Based on the naming convention,

it is reasonable to assume that the type of

the argument [NAME] is [GTTYPE].

Con Conclusion
Therefore, the type of the variable/return

value of/argument [NAME] is [GTTYPE].

TypeGen translates the type inference steps of static analysis into chain-of-

thought (COT) prompts [218] to involve static domain knowledge of how a type
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is constructed, where a COT is a series of intermediate reasoning steps [218]. To

generate COT prompts, TypeGen utilizes the sliced TDG produced by the code

slicing phase.

Given the sliced TDG, TypeGen first organizes the nodes into different

hops according to their distance from the target variable node. The hop of the

node of the target variable is set to 0, and the hops of other nodes are deter-

mined by their distance, as shown in Fig. 4.4. The COT prompt constructed

by TypeGen includes dependency description and conclusion. The dependency

description explains how the type is inferred, whereas the conclusion gives the

final type prediction. TypeGen translates each hop in the TDG into a sentence

of dependency description and generates the conclusion based on the annotated

types from developers. Following the recent study [245], we summarize the pow-

erful templates of COT prompts from the zero-shot outputs of language models

and present them in Table 4.1. For the conclusion, TypeGen fills in the variable

name and annotated type into the template. Regarding the dependency descrip-

tion, TypeGen employs different prompt templates for local variables, return

values, and arguments as TypeGen utilizes different information for them in the

sliced TDGs in Sec. 4.2.2.

Local Variables and Return Values. Local variables and return values

have clear definitions in the code, so it is possible to construct a comprehensive

description of how the type of target variable should be inferred. To construct

the dependency description for them, TypeGen starts with the edges connected

to the target variable node and traverses backward on the TDG to translate each

edge into a sentence of dependency description. Since there are three major types

of nodes in the TDG, we design six templates for six kinds of edges in TDG to

generate dependency descriptions, as shown in the first part of Table 4.1. Note

that the type node cannot be the output node as its type does not depend on
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other nodes. Take the TDG in Fig. 4.4 as an example. There is an edge from op-

eration node Dict_Read to symbol node DATABASES. For this edge, TypeGen

adopts the Operation→Symbol template and generates a sentence “The variable

DATABASES is assigned from a dict”. There is also an ordinal number at the be-

ginning of each sentence to indicate one inference step. Sentences generated from

all edges are concatenated together according to the backward traversal order to

form a complete dependency description.

Arguments. As arguments usually do not have clear definitions in the

code, it is difficult for static analysis to infer their types. Rather than providing

solid definition information, TypeGen provides usage and naming information as

hints for type prediction. We present the usage template and naming template

in the second part of Table 4.1. For usage information, TypeGen collects all

nodes in the sliced TDG and constructs the sentence “The argument ... is used

in ...”. For the naming information, TypeGen adds the sentence “Based on the

naming convention, it is reasonable to assume that the type of the argument is ...”

to remind language models to consider the argument name. These two sentences

form a complete dependency description for arguments.

The generated dependency description and conclusion are finally combined

together to form a complete COT prompt. Fig. 4.1 shows the COT prompt

generated by TypeGen for the code example in Fig. 4.3, highlighted in green

color.

4.2.5 Type Generation

For each input source file and target variable, TypeGen generates its corre-

sponding code slice and selects a set of code slices from the training set as exam-

ples based on BM25 similarity [182]. BM25 similarity calculates the token similar-

ity between two code slices and has been widely used in recent studies [50, 102].
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Following previous work [107], the example prompts are ordered based on the

BM25 similarity of code slices: {EP1, ..., EPn}(∀i ∈ [1, n) BM25(EPi, TP ) ≤

BM25(EPi+1, TP )) where EP is an example prompt and TP is the target vari-

able prompt. The example prompts are then combined with the target variable

prompt to form the complete input prompt, as shown in Fig. 4.1.

Given the examples in the input prompt, language models can learn to gen-

erate a similar COT prompt for the target variable. To facilitate the automatic

evaluation of the generated COT prompts, TypeGen surrounds type predictions

in example COT prompts with quotes, such as d̀ict[str, dict[str, str]]ìn Fig. 4.1.

This allows language models to learn to emphasize type predictions in generated

COT prompts by adding quotes. Ultimately, TypeGen extracts the content

within the quotes as the types predicted by the language models.

4.3 Experiment Setup

4.3.1 Dataset

We follow previous work [129, 153] and evaluate our approach on the Many-

Types4Py dataset [127] by splitting the dataset into a training set and a test

set with an 80:20 ratio. We use the training set to train the baseline models

and select examples for TypeGen and evaluate the performance of TypeGen

and baselines in the test set. In order to accommodate the computational re-

source limitations, we further sample 10,000 instances from the test set during

the evaluation of large language models. Table 4.2 presents the statistics of the

experimental datasets.
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Table 4.2: The statistics of the ManyTypes4Py dataset. ‘Arg” indicates function

arguments, “Ret” indicates function return values, “Var” indicates global and

local variables, “Ele” indicates elementary types, “Gen” indicates generic types,

and “Usr” indicates user-defined types and third-party types.

Dataset Total Arg Ret Var Ele Gen Usr

Training

Set

242,954 48,461 22,034 172,459 128,006 67,185 47,763

100% 20.0% 9.1% 70.9% 52.7% 27.6% 19.7%

Test

Set

85,205 16,700 7,754 60,751 44,605 23,310 17,290

100% 19.6% 9.1% 71.3% 52.5% 27.4% 20.1%

Sampled

Test Set

10,000 1,995 914 7,091 5,199 2,748 2,053

100% 20.0% 9.1% 70.9% 52.0% 27.5% 20.5%

4.3.2 Baselines

We choose the following four type inference approaches as our baselines:

• TypeBERT [81] is a supervised type inference apporoach. It reformu-

lates the type inference problem into a Named Entity Recognition (NER)

problem and regards types as labels.

• TyperWriter [157] is a supervised type inference approach. It extracts

different code features, such as identifiers and code tokens, and utilizes four

RNNs to encode the extracted features and make type predictions.

• Type4Py [129] is a supervised type inference approach. It builds different

type clusters and classifies a new Python program into one of the type

clusters to determine the type.

• HiTyper [153] is a hybrid type inference approach. It builds a type depen-

dency graph (TDG) for each target variable and utilizes both static analysis
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Table 4.3: The statistics of language models used in the evaluation.

Model #Parameters Training Dataset Type

CodeT5 220M/770M
CodeSearchNet

& BigQuery

Generative

& Infilling

UniXcoder 126M CodeSearchNet Infilling

GPT-Neo 1.3B/2.7B The Pile Generative

InCoder 1.3B/6.7B
GitHub &

Stack Overflow

Generative

& Infilling

CodeGen 6B
The Pile, BigQuery

& GitHub
Generative

GPT-J 6.7B The Pile Generative

GPT-3.5 175B - Generative

ChatGPT 175B - Generative

and neural prediction to fill the blanks in the TDG and finally outputs the

validated types.

We choose three popular pre-trained code models, including CodeT5 [217],

UniXcoder [61], and InCoder [44] to represent the performance of cloze-style type

inference approaches. Besides, we choose GPT-Neo [12], GPT-J [206], Code-

Gen [140], GPT-3.5 [14] and ChatGPT [145] to evaluate the performance of

TypeGen on language models with different parameter sizes. We present the

statistics of all the language models in Table 4.3.

4.3.3 Metrics

We use two commonly used metrics in previous work [7, 129, 153] to evaluate

the performance of TypeGen and other baselines:

• Exact Match is defined by the ratio of type predictions made by an ap-
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proach that exactly match type annotations from developers.

• Match to Parametric is defined by the ratio of type predictions made by

an approach that share the common outmost type with type annota-

tions from developers.

For example, List[int] and List[str] are considered Match to Parametric but not

Exact Match since they are different types while sharing the same outmost type

List.

4.3.4 Implementation

For the four type inference baselines TypeBERT [81], TyperWriter [157],

Type4Py [129] and HiTyper [153], we directly use the replication packages re-

leased by the authors and other researchers. For all the language models except

GPT-3.5 and ChatGPT, we download them from HuggingFace Hub [77] and de-

ploy them locally. Following the previous work [129, 153], we adopt the generated

sentences with top-5 probabilities as predictions. For GPT-3.5 and ChatGPT,

we use the public APIs provided by OpenAI under engine “text-davinci-003” and

“gpt-3.5-turbo-0301”, respectively. We acquire 50 samples with a temperature

of 1.0 for each target variable and rank the top-5 predictions according to the

occurrence frequency, following the work [226, 229]. We choose the maximum

distance threshold of TDG nodes at 3 for the code slicing phase of TypeGen,

as previous studies [7, 129] only consider types with nested levels smaller than

3. All experiments are conducted on a Linux machine (Ubuntu 18.04) with one

112-core Intel Xeon Gold 6348 CPU@ 2.60GHz, two NVIDIA A100-80GB GPUs,

and 1TB RAM.
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4.4 Evaluation

4.4.1 Research Questions

In the evaluation, we focus on the following four research questions:

• RQ1: How effective is TypeGen in type inference compared with existing

approaches?

• RQ2: How capable is TypeGen in language models with different param-

eter sizes?

• RQ3: What are the impacts of different parts in the prompt design of

TypeGen?

• RQ4: What are the impacts of different examples in TypeGen?

To study RQ1, we conduct experiments on both TypeGen and baseline ap-

proaches with the entire test set (85,205 instances), aiming to comprehensively

verify the effectiveness of TypeGen against state-of-the-art type inference tech-

niques. However, due to limited computational resources, we only use the sampled

test set (10,000 instances) for RQ2-4. For RQ2, we evaluate six language models

under TypeGen to examine the tool’s effectiveness across language models with

different parameter sizes. We also include two additional settings: Zero-Shot

and Standard ICL. In the Zero-Shot setting, we do not provide any exam-

ple and only use the source code of the target variable as the input prompt for

language models in the type prediction. The Zero-Shot setting tests the basic per-

formance of language models on type prediction. In the Standard ICL setting,

we provide three fixed example prompts before the target variable prompt and use

only source code in the input prompts, which is the same with recent study [103].

The Standard ICL setting indicates the basic performance of language models
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with the in-context learning methodology. To fairly compare TypeGen with the

Standard ICL setting, we also set the number of examples in TypeGen to 3 in

RQ2. For RQ3, we remove different parts of the prompt design in TypeGen to

study the impacts of each part. For RQ4, we vary the number of examples and

the example selection method to investigate the impacts of different examples.

We choose ChatGPT as the base model of TypeGen and use five examples in

TypeGen in all the RQs except RQ2.

Table 4.4: The performance of TypeGen along with the baselines under four

types of variables in terms of Top-1,3,5 Exact Match (%) and Match to Parametric

(%). “Arg”, “Ret”, “Var”, and “All” indicate function arguments, function return

values, global and local variables, and all of above, respectively. Under each

metric the best performance is marked as gray .

Metric Category Approach
Top-1 Top-3 Top-5

Arg Ret Var All Arg Ret Var All Arg Ret Var All

Exact

Match

(%)

Supervised

TypeBERT 28.0 38.5 51.1 45.4 34.8 52.6 55.8 51.4 36.5 57.1 58.6 54.1

TyperWriter 53.3 52.8 - - 61.1 60.7 - - 65.8 65.3 - -

Type4Py 66.5 56.1 82.0 76.6 72.0 59.2 83.8 79.3 73.8 60.7 84.3 80.1

Cloze

Style

InCoder-1.3B 20.9 20.5 15.1 16.7 21.3 20.8 15.5 17.1 21.3 21.0 15.6 17.2

InCoder-6.7B 24.1 42.0 18.7 21.9 24.6 42.7 19.1 22.3 24.7 43.1 19.2 22.4

UniXcoder 55.0 49.2 35.9 40.9 66.9 64.6 42.1 49.0 70.6 69.8 45.2 52.4

CodeT5-base 51.1 57.6 21.7 30.7 59.3 64.4 28.0 37.4 62.0 66.9 30.7 40.1

CodeT5-large 56.2 60.2 44.7 48.4 61.6 64.5 50.4 53.9 63.9 66.3 53.4 56.6

Generative TypeGen 73.1 68.7 82.2 79.2 81.0 77.1 87.9 85.6 82.7 79.1 89.1 87.0

Match to

Parametric

(%)

Supervised

TypeBERT 29.8 41.4 54.0 48.1 36.0 55.9 58.0 53.5 37.7 60.8 61.2 56.5

TyperWriter 54.4 54.1 - - 63.4 63.5 - - 68.8 69.3 - -

Type4Py 68.0 59.0 86.2 80.2 74.1 64.1 88.3 83.3 75.9 66.3 88.8 84.3

Cloze

Style

InCoder-1.3B 22.9 22.8 18.7 19.9 23.3 23.1 19.1 20.3 23.4 23.3 19.2 20.4

InCoder-6.7B 28.8 51.6 25.0 28.1 29.3 52.1 25.3 28.5 29.4 52.5 25.3 28.6

UniXcoder 61.9 61.8 44.3 49.3 72.3 76.0 51.2 57.6 75.0 80.1 53.8 60.4

CodeT5-base 54.8 66.7 27.7 36.6 62.9 74.2 34.4 43.6 65.6 76.4 37.1 46.3

CodeT5-large 61.4 69.4 55.7 58.0 66.8 74.3 61.2 63.5 68.9 76.2 63.7 65.9

Generative TypeGen 78.7 75.6 91.2 87.3 84.9 83.0 93.7 91.0 86.1 84.5 94.1 91.7
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4.4.2 RQ1: Effectiveness of TypeGen

Comparison with Supervised Approaches

We compare TypeGen with three supervised type inference approaches,

namely TypeBERT, TyperWriter, and Type4Py. The results are presented in

Table 4.4, where we report the top-1, top-3, and top-5 Exact Match and Match

to Parametric for four categories of variables. It is worth noting that TyperWriter

is designed solely for argument and return value type predictions. Analyzing the

top-1 prediction results in Table 4.4, we observe that TypeGen outperforms the

best supervised approach, Type4Py, by 10.0% for argument type prediction and

22.5% for return value type prediction in terms of Exact Match. This improve-

ment of TypeGen over Type4Py is even more significant for top-5 predictions,

where TypeGen outperforms Type4Py by 12.1% for argument type prediction

and 30.3% for return type prediction in terms of Exact Match. Moreover, when

considering Match to Parametric, TypeGen achieves a consistent improvement

of 8.7% ∼ 9.3% on overall variables than Type4Py. These results demonstrate

that, even with few annotated examples, the generative type inference approach

TypeGen is more effective than supervised approaches such as Type4Py. We

also observe that TypeGen does not perform much better than Type4Py on

predicting local variables. This can be attributed to the lower difficulty of type

inference for local variables compared to arguments and return values, so static

domain knowledge incorporated by TypeGen provides limited improvements.

This can also be verified by Table 4.4, where all the supervised approaches ob-

tained much higher performance on local variables than arguments and return

values.
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Table 4.5: The performance of HiTyper with different base models under four

types of variables. Variable categories are the same with Table 4.4.

Metric Base Model Arg Ret Var All

Exact

Match

(%)

- 8.0 43.5 65.7 52.4

Type4Py 73.5 73.4 90.6 85.7

TypeGen 84.9 77.9 90.5 88.3

Match to

Parametric

(%)

- 8.4 52.7 70.2 56.5

Type4Py 76.1 83.4 95.3 90.1

TypeGen 87.4 87.3 95.3 93.1

Comparison with Cloze-Style Approaches

We compare TypeGen with cloze-style approaches, namely InCoder, UniX-

coder and CodeT5, and present the results in Table 4.4. Our observations indicate

that, in general, cloze-style approaches perform worse than supervised approaches

due to their lack of domain knowledge from data and static analysis. By intro-

ducing five annotated examples and incorporating static knowledge, TypeGen

outperforms the best cloze-style approach CodeT5-large by 63.6% on overall top-

1 Exact Match and 53.7% on overall top-5 Exact Match. This suggests that

incorporating domain knowledge from static analysis with a few examples can

largely improve the performance of type inference.

Comparison in Hybrid Approach HiTyper

As HiTyper is a hybrid approach, we study its performance with the best

supervised approach Type4Py and TypeGen, and present the experiment results

in Table 4.5. For Type4Py and TypeGen, we use their top-5 predictions as type

recommendations since HiTyper can reject wrong types. The results show that

85



HiTyper performs poorly when there is no base model, particularly in argument

type inference, where it achieves an Exact Match of only 8%. This verifies the

low coverage problem of static analysis. When associating with base models,

HiTyper with TypeGen still outperforms HiTyper with Type4Py by 15.5%

for argument type inference and 6.1% for return value inference. This indicates

that the performance gap of TypeGen over Type4Py cannot be bridged by

simply combining them with static analysis.

Answer to RQ1: TypeGen outperforms the best baseline Type4Py by 8.6%

on all variables, with particularly notable improvements of 12.1% and 30.3% for

argument and return value types, respectively, in terms of top-5 Exact Match.

4.4.3 RQ2: Capability of TypeGen in Different Language

Models

We compare the performance of TypeGen on six language models with

parameter sizes ranging from 1.3B to 175B with the Zero-Shot setting and the

Standard ICL setting and present the overall top-1,3,5 Exact Match in Table 4.6.

In the Zero-Shot setting, our results indicate that language models with larger

model sizes generally perform better, with ChatGPT achieving a 2× top-1 Exact

Match than GPT-Neo-1.3B. When providing language models with three fixed

examples in the Standard ICL setting, we observe an 8% ∼ 56% improvement

in top-1 Exact Match, demonstrating the effectiveness of the in-context learning

methodology. For TypeGen, we find consistent improvements of 27% ∼ 84%

on different language models, with the improvements being more significant for

smaller language models like GPT-Neo-1.3B than larger language models like

ChatGPT. With less general knowledge stored in the models, smaller language

models benefit more from the domain knowledge associated by TypeGen. Fur-
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Table 4.6: The performance of different language models under three settings for

all variables in terms of Top-1,3,5 Exact Match (%). △ indicates the improvement

of Standard ICL and TypeGen over the Zero-Shot setting.

Base Model Approach Top-1 (△) Top-3 (△) Top-5 (△)

GPT-Neo

(1.3B)

Zero-Shot 31.5 40.6 42.8

Standard ICL 44.0 (40%) 50.0 (23%) 50.8 (19%)

TypeGen 57.0 (81%) 61.5 (51%) 62.8 (47%)

GPT-Neo

(2.7B)

Zero-Shot 43.2 50.0 51.9

Standard ICL 46.6 (8%) 52.3 (5%) 52.8 (2%)

TypeGen 55.5 (28%) 61.9 (24%) 63.0 (21%)

GPT-J

(6.7B)

Zero-Shot 42.4 43.7 43.9

Standard ICL 50.8 (20%) 54.9 (26%) 55.3 (26%)

TypeGen 62.7 (48%) 67.3 (54%) 68.4 (56%)

CodeGen

(6B)

Zero-Shot 34.7 44.0 45.5

Standard ICL 54.1 (56%) 60.5 (38%) 61.9 (36%)

TypeGen 63.7 (84%) 69.1 (57%) 70.8 (56%)

GPT-3.5

(175B)

Zero-Shot 62.0 65.4 66.3

Standard ICL 69.7 (12%) 74.2 (13%) 75.8 (14%)

TypeGen 78.9 (27%) 85.0 (30%) 86.2 (30%)

ChatGPT

(175B)

Zero-Shot 61.3 66.1 67.5

Standard ICL 68.0 (11%) 71.8 (9%) 73.1 (8%)

TypeGen 78.8 (29%) 85.3 (29%) 86.7 (28%)

thermore, the improvements achieved by TypeGen over the Zero-Shot setting

are 2× ∼ 3× of that achieved by the Standard ICL setting, in terms of top-1

Exact Match. For the top-5 type prediction, TypeGen even achieves a 10×

of improvement obtained by the Standard ICL setting on GPT-Neo-2.7B. These

findings demonstrate the usefulness of incorporating static domain knowledge in

the prompt design of TypeGen, which cannot be outweighed by simply provid-

ing some examples.
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Table 4.7: The performance of TypeGen when removing different parts of the

prompt design in TypeGen in terms of Top-5 Exact Match (%). “Ele”, “Gen”,

and “Usr” indicate elementary types, generic types and user-defined types as well

as third-party types, respectively. Other variable categories are the same with

Table 4.4.

Ablation Arg Ret Var Ele Gen Usr All

w/o Code Slice 74.8 77.0 68.8 75.1 75.5 73.9 70.8

w/o Type Hint 76.1 75.9 89.3 94.1 77.2 75.9 85.5

w/o COT Prompt 82.3 78.6 86.4 92.9 70.8 84.3 84.9

TypeGen 83.5 79.4 89.7 94.3 77.8 84.6 87.5

Answer to RQ2: TypeGen is capable of consistently improving the zero-shot

performance of type inference for language models with different parameter sizes

and achieves 2× ∼ 3× of improvements made by the Standard ICL setting.

4.4.4 RQ3: Impacts of Different Parts of Prompt Design

To investigate the impact of different parts of the prompt design of Type-

Gen, we conduct an ablation study and present the results in Table 4.7. The

results show that removing code slicing techniques and inputting the whole func-

tion of target variables in the prompts leads to a significant performance drop of

24% on overall type inference. This decrease is mainly caused by local variables

and arguments, as there is typically only a small set of statements in the function

that have type dependencies with them, while inputting the entire function can

introduce useless information and bias the language model. When type hints are

removed, the performance of TypeGen on user-defined types decreases the most
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Figure 4.5: The top-5 Exact Match of TypeGen with different numbers of ex-

amples and different example selection methods

(11%), indicating the importance of providing available user-defined types as ad-

ditional knowledge for language models. Additionally, when COT prompts are

removed, the performance of TypeGen on generic types drops the most (10%),

as generic types usually involve complicated type dependencies that should be

well handled by static analysis. Providing the inference steps of static analysis in

COT prompts can greatly help improve the performance of language models on

generic types.
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Answer to RQ3: In the prompt design, code slicing improves the overall

performance of type inference by 24%, type hints improve the performance of

user-defined type inference by 11%, and COT prompts improve the performance

of generic type inference by 10%.

4.4.5 RQ4: Impacts of Different Examples

To evaluate the effects of the number of examples and example selection

methods in the prompt design of TypeGen, we vary the number of examples

from one to nine and compare two example selection methods: fixed examples

and BM25 similarity-based examples. We present the top-5 Exact Match results

of TypeGen in Fig. 4.5.

Based on the results presented in Fig. 4.5, we observe that the performance

of TypeGen is largely affected by the number of examples provided in the in-

put prompts. Specifically, the performance drops notably when there is only

one example, highlighting the importance of providing sufficient examples for

effective in-context learning. Additionally, the performance of TypeGen using

BM25 similarity-based examples increases up to five examples, after which it

starts decreasing. This suggests that both inadequate and excessively long input

contexts can harm the performance of TypeGen. When changing the example

selection method, we find that using BM25 similarity-based examples performs

better than using fixed examples, particularly when only one example is provided.

However, when we provide five examples, the performance drop with fixed exam-

ples is relatively small (less than 1.3%). One possible explanation is that large

language models learn how to perform type inference from the example prompts

rather than solely relying on the direct correlations between type predictions in

different example prompts [126].
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Python Function:
def compose_options():
    options = ["-f", compose_path("demo.yml")]
    return {"options": options, "name": "demo",
         "priority": ">base", "variant": "openedx"}
...

Generated COT Prompt:
First, the return value of compose_options is assigned from a dict. Second,
the keys of the dict are a str, a str, a str, and a str. The values of the dict are
options, a str, a str, and a str. Third, options is assigned from a list.
Therefore, the type of the return value of compose_options is `dict[str,
typing.Union[str,list[str]]]`.

Figure 4.6: A function whose return value type can only be inferred by TypeGen.

The type annotation for the return value is Dict[str, Union[str, List[str]]].

Answer to RQ4: TypeGen achieves the best performance with five examples.

TypeGen shows only a small performance drop (<1.3%) even when provided

fixed examples, releasing the burden of developers to design examples.

4.5 Discussion

4.5.1 Interpretability of TypeGen

To better illustrate the interpretability of COT prompts generated by Type-

Gen, we give an example of a function whose return value can only be inferred

by TypeGen in Fig. 4.6. Due to the page limitation, we only present the code

slice and the generated COT prompt. To infer the return type of function com-

pose_options, TypeGen follows similar inference steps as static analysis. First,

it infers that the return value is assigned from a dictionary in the generated COT

prompt. Then it identifies the types of keys and values by specifying that there

are four keys in the dictionary with types of str, and there are three values with

types of str as well as one variable named options. The second step in the gener-
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ated COT precisely matches the code given in the input prompt, indicating that

large language models like ChatGPT have the capacity to simulate the inference

steps of static analysis. In the third step of the generated COT prompt, Type-

Gen recognizes the unknown variable options and locates its assignment from a

list. Since we set the maximum number of hops to 3, TypeGen generates the

conclusion directly after the third step. From this example, we can find that by

providing an explanation in the COT prompt, human developers can easily un-

derstand the predictions and determine whether the predictions are correct based

on the explanations.

4.5.2 Limitations of TypeGen

Despite the effectiveness of TypeGen, we also identify the following limita-

tions:

1) Limited context. Although TypeGen adopts static code slicing techniques

based on TDGs, we have observed a limited number of instances in the test set

(∼ 1000) with code slices exceeding the maximum context length of language

models. This primarily occurs in extremely long functions with complex type

dependencies. We recognize that extracting code slices without sacrificing key

dependency information is still a challenge.

2) Limited knowledge for function arguments. As function arguments lack

precise definitions, TypeGen provides naming and usage information to enable

language models to predict their types. However, this information is incomplete

and can potentially introduce biases in the model’s predictions [49]. Incorporating

data flow information via inter-procedural analysis may be a possible solution to

enhance argument information.
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4.6 Summary

In this chapter, we present TypeGen, a few-shot generative type inference

method for Python programs. Our approach incorporates static domain knowl-

edge into language models via a novel prompt design in the in-context learning

paradigm. Experimental results show that TypeGen outperforms both state-of-

the-art supervised type inference methods and cloze-style type inference methods.
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Chapter 5

Domain-aware Prompt-based

Automatic Repair for Python

Type Errors

Type inference approaches can statically add type information to Python

code, and thus prevent the occurrence of type errors by checking potential type

errors. However, it provides limited help in fixing existing type errors. In this

chapter, we focus on repairing existing type errors in the wild. The main points

in this chapter are as follows. (1) We propose a domain-aware prompt-based ap-

proach for repairing Python type errors named TypeFix. (2) We propose a novel

fix template design that can handle type errors at different levels, along with a

novel hierarchical clustering approach to mine various fix templates from exist-

ing type error fixes. (3) We conduct extensive experiments to demonstrate the

effectiveness of TypeFix compared with state-of-the-art rule-based and learning-

based baselines, and the high coverage of the mined fix templates.
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5.1 Introduction

Being used in most artificial intelligence and data science applications, Python

has become extremely popular in recent years. According to GitHub Octo-

verse [56], which records the state of open-source software, Python is the second

most-used programming language in 2022. Moreover, Python continues to see

gains in its usage across GitHub with a 22.5% year-over-year increase [56].

Python adopts a dynamic type system, in which the type of a variable will

be resolved only at run-time. This enables fast prototyping and brings much

convenience for developers to write an executable program. The catch, how-

ever, is that more type errors occur at run-time, threatening the reliability of

Python applications. Oh et al. [143] find that about 30% of questions in Stack

Overflow and issues in GitHub of Python are about type errors. To avoid type er-

rors, Python Software Foundation accepts several Python Enhancement Propos-

als (PEPs) [99, 100, 204, 250] and releases a static type checker named mypy [133],

allowing developers to add type annotations and check potential type conflicts

statically. What’s more, the recent research [8, 130, 154, 195] on type infer-

ence aims at statically inferring the types of variables, which further reduces the

burden of manual type annotation. These approaches can reduce potential type

errors but provide limited help to repair existing type errors.

To automatically fix type errors, Oh et al. [143] propose the first rule-based

approach. They manually define nine templates and several synthesis rules to

generate patches via dynamic analysis, but the manually defined templates suffer

from low coverage of real-world type errors, and designing patch synthesis rules

requires substantial effort from domain experts.

General learning-based automatic program repair (APR) approaches [27,

86, 112, 228, 240, 249] have become quite popular and powerful in recent years

since they are feature-agnostic and can automatically learn to generate patches
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from existing bug fixes, without explicit definitions of synthesis rules. Among

the learning-based approaches, the Neural Machine Translation (NMT)-based

approach that translates the buggy lines into correct lines was typically used

in the past. Most recently, Xia et al. [228] propose the first prompt-based

APR approach named AlphaRepair and obtain state-of-the-art performance. Un-

like NMT-based APR approaches, AlphaRepair transforms the APR problem

into a fill-in-the-blank problem by masking several tokens in buggy lines and

invoking pre-trained models to predict the masked tokens. Despite the supe-

rior performance of the prompt-based approach over NMT-based approaches, the

prompts in AlphaRepair are pre-defined, i.e., where to mask and how to add

masks in buggy code are manually designed. Without domain-specific knowl-

edge, the prompt-based approach can hardly fix the type errors with complex

patterns [143]. However, automatically incorporating the prompt with domain

knowledge is challenging due to different levels of type errors and various type

error fixing patterns.

Our Work. To address the aforementioned challenge, we propose Type-

Fix, a domain-aware prompt-based approach for repairing type errors. TypeFix

has two main phases: the template mining phase and the patch generation phase.

The template mining phase aims to extract and organize fix templates from exist-

ing type error fixes. Fix templates are designed to handle type errors at different

levels (e.g., expression level and statement level). TypeFix first parses type error

fixes into specific fix templates and then employs a novel hierarchical clustering

algorithm to abstract and merge the specific fix templates into general fix tem-

plates. The patch generation phase aims at exploiting the mined fix templates

in the first phase for producing patches. TypeFix selects the most matched

and commonly-used fix templates based on Breadth-First Search (BFS) and a

frequency-aware ranking algorithm, and then generates code prompts by apply-
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ing the ranked fix templates, and invokes CodeT5 [217] for prediction. TypeFix

is fully automated and extendable, as it does not need manually defined tem-

plates as well as patch synthesis rules. Additionally, the minded fix templates

enable the proposed prompt-based TypeFix to be aware of domain knowledge

when generating patches.

We evaluate TypeFix on two benchmarks BugsInPy [224] and Type-

Bugs [143] by comparing it with four baselines, including both the recent rule-

based and learning-based approaches. In the BugsInPy benchmark, TypeFix

successfully fixes 26 out of 54 type errors, outperforming the most effective base-

line Codex [19] by 9. In the TypeBugs benchmark, TypeFix successfully fixes

55 out of 109 bugs, outperforming the most effective baseline PyTER [143] by

14. Experiments also show that the fix templates mined by TypeFix can cover

about 75% of type errors in both benchmarks, much higher than PyTER which

only covers 40% of the type errors. The results demonstrate the effectiveness of

TypeFix in repairing Python type errors.

Contributions. We conclude our contributions as follows.

• To the best of our knowledge, TypeFix is the first domain-aware prompt-

based approach for repairing Python type errors.

• We propose a novel fix template design that can handle type errors at

different levels, along with a novel hierarchical clustering approach to mine

various fix templates from existing type error fixes.

• Extensive experiments demonstrate the effectiveness of TypeFix compared

with state-of-the-art rule-based and learning-based baselines and the high

coverage of the mined fix templates.

97



5.2 Motivation

To better illustrate our motivation, we give an example in Listing 5.1. The

type error in Listing 5.1 is from a popular GitHub project scrapy in the BugsInPy

benchmark. The correct fix for this type error is to add a user-defined type con-

version function to_bytes to the entire string, as shown in the green-colored line.

We also provide the patches provided by the baseline approaches and TypeFix

in Listing 5.1.

Baseline Approaches. CoCoNuT [112] is an NMT-based APR approach

that translates the buggy line into the correct line. In the patch, it modifies

the content of the string since the variables user and password are often used in

authorization. However, this cannot fix the type error. AlphaRepair [228] is a

prompt-based APR approach that masks the tokens in the buggy line to generate

patches. In the patch, it masks the function name unquote and fills a new name

ascii to generate the patch. Without the domain knowledge indicating there

should be a new function call wrapping the entire buggy string, it fails to identify

the correct location to add masks and thus fails to fix this type error. Codex [19] is

a large language model from OpenAI. Powered by the huge knowledge base stored

in the model, Codex identifies that this type error is related to bytes types, but

it adds checks for the user and password instead of the entire string, failing to

fix this type error. This may be because adding type conversions for variables

is much more frequent than that for the entire expression. PyTER [143] is a

rule-based approach via dynamic analysis. It fails to find the correct variable

inducing the type error, and also cannot introduce the required user-defined type

conversion function to_bytes.

# Buggy Code: scrapy/scrapy:f042ad

if user:

- user_pass = '%s:%s' % (unquote(user), unquote(password))
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+ user_pass = to_bytes('%s:%s' % (unquote(user), unquote(password)))

raise ValueError('Port cannot be 0 or less.')

creds = base64.b64encode(user_pass).strip()

else:

creds = None

# Patches:

# Incorrect Patch provided by CoCoNuT

user_pass = 'Proxy-Authorization'%(unquote(user), unquote(password))

# Incorrect Patch provided by AlphaRepair

user_pass = '%s:%s' % (ascii(user), unquote(password))

# Incorrect Patch provided by Codex

if not isinstance(user, bytes):

user = user.encode('ascii')

if not isinstance(password, bytes):

password = password.encode('ascii')

# Incorrect Patch provided by PyTER

if isinstance(creds, bytes):

creds = str(creds, 'utf-8')

# Correct Patch provided by TypeFix

user_pass = to_bytes('%s:%s' % (unquote(user), unquote(password)))

Listing 5.1: A type error in BugsInPy benchmark

TypeFix. Before fixing a type error, TypeFix first mines fix templates

from existing type error fixes via hierarchical clustering. In the clustering process,

TypeFix can generalize the fix pattern of adding a type conversion for a variable

into that of adding a type conversion for an expression. Even though the later

fix pattern has low occurrence frequency, TypeFix can still successfully identify

and apply the fix pattern to this type error. Guided by the selected fix template,

TypeFix adds a new function to wrap the original buggy string, and inserts

masks for the name of the new function, instead of randomly masking several

tokens. As a prompt-based APR approach, TypeFix also mitigates the problem
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Figure 5.1: Overview of TypeFix

of introducing user-defined type conversion functions in rule-based approaches

like PyTER, since language models can learn from the contexts of the type error.

Therefore, TypeFix can successfully fix the type error.

5.3 TypeFix

5.3.1 Overview

TypeFix contains two main phases: the template mining phase and patch

generation phase, with the overview shown in Fig. 5.1. In the template mining

phase, TypeFix aims at extracting domain-aware fix templates. TypeFix first

parses existing type error fixes into specific fix templates and then employs a

novel hierarchical clustering algorithm to abstract and merge them into general

fix templates. TypeFix also organizes the specific to general fix templates into

clustering trees. In the patch generation phase, TypeFix aims at generating

patches for new buggy programs by incorporating prompts with the mined fix

templates. Specifically, it selects and ranks the mined fix templates and applies

them to buggy code to generate domain-aware code prompts automatically. The

CodeT5 [217] model is finally invoked to generate patches by filling the masks in
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the code prompts.

5.3.2 Mining Phase

The template mining phase mainly contains two stages: fix parsing and fix

template mining. The fix parsing stage aims to transform type error fixes into

specific fix templates, and the fix template mining stage abstracts and merges

parsed specific fix templates into general fix templates via the proposed hierar-

chical clustering algorithm. We first give formal definitions of fix templates for

ease of understanding.

Definition of Fix Template

To represent the domain knowledge of where and how to add masks in buggy

code for building code prompts, we define fix template as a combination of three

parts: fix pattern, internal context and external context. The fix pattern indicates

how the buggy code is edited to fix the type error, the internal context pinpoints

the locations for applying fix patterns to handle type errors at different levels, and

the external context indicates the location of the internal context in the entire

buggy program. The three components are all represented based on template

trees, which are defined below.

Definition 5.3.1. (Template Tree) A template tree is a tree (N , E, rt) with

nodes N , edges E and root node rt ∈ N . An edge is a triple (n, n′, r) where node

n is the parent of n′ with relation r. A node is a quadruple (bt, t, v, i) where bt ∈

{Variable, Op, Literal, Builtin, Type, Attribute, Expr, Stmt} is the base type of

node, t is the AST node type, v is the value, and i is the id. bt, t, and v have a

special value ABS to represent a hole.

We define template trees based on the abstract syntax tree (AST) [40] of

Python. Keeping the original AST node type t, we add a base type bt by re-
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classifying all original AST node types and attribute types into eight base types,

and thus a base type can include multiple AST node types, for example, AST

node types BoolOp, BinOp, and UnaryOp belong to the same base type Expr.

We design base types to obtain a higher level of abstraction than that of ASTs.

For instance, the above three AST node types can all be the conditions of If

statements that serve as guards to prevent type errors. Representing the three

AST node types as Expr to indicate general conditions help create more general

fix templates.

Definition 5.3.2. (Fix Pattern) A fix pattern is a map B_Tree → A_Tree,

where B_Tree is a template tree of the buggy code, and A_Tree is a template

tree of the fixed code.

Definition 5.3.3. (Internal Context) An internal context is a pair (IC_Tree,

rn), in which IC_Tree is a template tree of the deepest statement where a fix

pattern locates, and rn is a map n→ (br, ar) where br and ar are edge relations,

n ∈ IC_Tree.N indicates the node where B_Tree is removed with the edge

(n,B_Tree.rt, br) and A_Tree is added with the edge (n,A_Tree.rt, ar).

The internal context is defined to handle edits at different levels. For exam-

ple, some expression-level edits only modify single expressions in the statements,

while other statement-level edits replace the entire statements. Since fix patterns

only represent the edits themselves, we use internal contexts to represent the rest

parts of the deepest statements for expression-level edits. The internal contexts

are empty when the edits are at the statement level.

Definition 5.3.4. (External Context) An external context is a pair (BC_Tree,

AC_Tree), where BC_Tree is a template tree of statements before the internal

context and AC_Tree is a template tree of the statements after the internal

context.
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Figure 5.2: An example of fix parsing process on the fix commit ansible:075c6e.

We define external contexts to provide extra location information when

B_Tree in the fix pattern and the internal context are both empty. This usually

happens when the fix is about adding a new statement and does not modify exist-

ing buggy code. The fix template is a combination of three components, including

the fix pattern, internal context and external context, defined as below.

Definition 5.3.5. (Fix Template) A fix template is a triple (P , IC, EC),

where P (P ̸= ∅) is the fix pattern, IC is the internal context, and EC is the

external context.

We classify fix templates into four categories based on the fix patterns P :

• Add: B_Tree = ∅ ∧ A_Tree ̸= ∅

• Remove: B_Tree ̸= ∅ ∧ A_Tree = ∅

• Insert: B_Tree ̸= ∅ ∧ A_Tree ̸= ∅ ∧ B_Tree ⊂ A_Tree

• Replace: B_Tree ̸= ∅ ∧ A_Tree ̸= ∅ ∧ B_Tree ⊈ A_Tree

Note that there could be more fine-grained classifications under the Replace

category, such as shuffling the order of statements. However, we find that except

for the Insert category, these cases are really rare (less than 10 cases in the

dataset), so we just adopt the general Replace category.

103



Fix Parsing

In the fix parsing process, TypeFix parses all type error fixes into specific

fix templates, with an example illustrated in Fig. 5.2.

Parsing Fix Patterns and Internal Contexts. Given a fix commit,

TypeFix first extracts the line information of all added and deleted statements,

and then walks through the ASTs of buggy code and fixed code to build template

trees. To handle edits at different levels, TypeFix locates the deepest statement-

level AST nodes that contain the modified lines, and extracts the corresponding

sub-trees in buggy code and fixed code as Bug_Tree and Fix_Tree, respectively.

For example, in the fix commit shown in Fig. 5.2(a), TypeFix locates the If nodes

in the ASTs of buggy code and fixed code, since it is the deepest statement-level

AST node containing the edits about variable value. Fig. 5.2(b) illustrates the

extracted sub-trees as Bug_Tree and Fix_Tree. TypeFix then prunes the

same sub-trees shared by Bug_Tree and Fix_Tree to leave only the changed

part. For example, the bodies of If nodes (grey nodes) are pruned and only the

conditions remain in Fig. 5.2(b).

As the pruned Bug_Tree and Fix_Tree contain only the edit, TypeFix

can check whether the edit is at the expression level or the statement level. If

Bug_Tree and Fix_Tree share the same root node, TypeFix determines that

the edit does not rewrite the entire statement and thus it is at the expression

level. Otherwise, TypeFix can determine that the edit is at the statement level.

For instance, Bug_Tree and Fix_Tree in Fig. 5.2(b) have the same root node

If (blue nodes), so the edit is at the expression level. For statement-level edits,

the internal context is empty. For expression-level edits, TypeFix creates the in-

ternal context by extracting the same nodes shared by Bug_Tree and Fix_Tree

to form a new template tree IC_Tree, and subtracts IC_Tree from Bug_Tree

and Fix_Tree to build B_Tree and A_Tree in the fix pattern. The relations of
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edges that connect IC_Tree in the internal context and B_Tree and A_Tree

in the fix pattern are also recorded in the internal context. In the example of

Fig. 5.2, the If node is extracted as IC_tree in the internal context in Fig. 5.2(d),

and the final B_Tree and A_Tree constitute fix pattern in Fig. 5.2(c).

Parsing External Contexts. TypeFix identifies statements that locate

outside the scope of the internal context but have direct data dependencies with

the fix pattern as external contexts. Specifically, it extracts statements that share

the same variables with fix patterns before and after the internal context to build

BC_Tree and AC_Tree, respectively. To simplify the fix template abstraction

process, TypeFix also prunes the sub-trees in BC_Tree and AC_Tree that

do not contain shared variables. For example, in Fig. 5.2, TypeFix identifies

the statement value = boolean(value, strict=False) because it contains the same

variable value used in the fix pattern. TypeFix builds a template tree BC_Tree

based on this statement and prunes irrelevant sub-trees such as strict=False.

Since there is no statement after internal contexts that shares the same variables

with fix pattern in Fig. 5.2(c), AC_Tree is left empty. The final parsed external

context is shown in Fig. 5.2(e).

Fix Template Mining

In the fix template mining process, TypeFix abstracts and merges the spe-

cific fix templates into general fix templates via hierarchical clustering. The

rationale of template mining is to ensure the least loss of domain knowledge in

fix templates. Based on this rationale, TypeFix abstracts or merges the two

most similar fix templates each time, and organizes specific to general fix tem-

plates as clustering trees. To measure the similarity between two fix templates,

we define two kinds of similarity metrics: value distance and structural distance.

The structural distance measures the ratio of nodes in two template trees that
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have the same type regardless of values (type matching), while the value distance

measures the ratio of nodes in two template trees that have the same types and

values (value matching).

Definition 5.3.6. (Fix Pattern Distances) The value distance dp and struc-

tural distance sdp between two template trees in fix patterns are defined as

dp(t1, t2) = 1− VMp(t1.rt, t2.rt)

Num(t1) + Num(t2)

sdp(t1, t2) = 1− TMp(t1.rt, t2.rt)

Num(t1) + Num(t2)
,

where Num(t) indicates the number of nodes in the template tree t, and Value-

Match VMp and TypeMatch TMp are defined as

VMp(n1, n2) =

 0 n1 ̸= n2

2 +
∑

i∈child(n1,n2)
VMp(n

i
1, n

i
2) otherwise

TMp(n1, n2) =

 0 n1.t ̸= n2.t

2 +
∑

i∈child(n1,n2)
TMp(n

i
1, n

i
2) otherwise

Definition 5.3.7. (Context Distances) The value distance dc and structural

distance sdc between two template trees in contexts are defined as

dc(t1, t2) = 1− MAX(LeafNode(t1),LeafNode(t2), V Mc)

Num(t1) + Num(t2)

sdc(t1, t2) = 1− MAX(LeafNode(t1),LeafNode(t2), TMc)

Num(t1) + Num(t2)
,

where MAX(a, b, c) pairs the elements in a and b, and finds the highest similarity

c achieved by the pairs, and returns the number of pairs, Num(t) indicates the

number of nodes in the template tree t, and LeafNode(t) returns the leaf node

set of a template tree t. The ValueMatch VMc and TypeMatch TMc are defined

as

VMc(n1, n2) =

 0 n1 ̸= n2

2 + VMc(n1.parent, n2.parent) otherwise
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TMc(n1, n2) =

 0 n1.t ̸= n2.t

2 + TMc(n1.parent, n2.parent) otherwise

To calculate the distances of fix patterns, we adopt a top-down methodology.

We start with the root node and require two nodes to be type-matching or value-

matching before we compare their child nodes. To calculate the distances of

contexts, we adopt a bottom-up methodology. We start with the leaf nodes and

require two nodes to be type-matching or value-matching before we compare their

parent nodes. Such a difference is caused by the functionality of fix patterns and

contexts. The template trees in the fix patterns are used to generate patch code,

so based on the definition of ASTs the children nodes are meaningful only if

their parent nodes are determined. On the contrary, the template trees in the

contexts are used to match the locations that fix patterns should apply instead of

generating code, so the children nodes contain more specific location information

than the parent nodes. For example, in Fig. 5.2(d), even if we remove the node

Assign, it can still match the original statement through Call, but if we remove

the node Variable, it can match more general statements that have no direct data

dependency with fix pattern in Fig. 5.2(b).

Template Abstraction. TypeFix does not abstract the whole fix tem-

plate, instead, it abstracts one component, i.e., fix pattern, internal context or

external context, each time. TypeFix abstracts the two similar components

through a process named Abstract. Fig. 5.3 and Fig. 5.4 formally present the

processes of Abstract on fix patterns and contexts, respectively.

The abstraction of fix patterns and contexts follows the aforementioned top-

down and bottom-up methodology, respectively. Generally, there could be four

cases when abstracting the template node a and b from two similar template

trees:

• Same Node: a and b are exactly the same, and they can be reserved for
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Abstract(n1(C
1
r1
, ..., C1

rm
), n2(C

2
r1
, ..., C2

rn
)) =

n1(Or1 , ..., Ork ) if n1 = n2

where k = min(m,n),

p = min(len(C1
ri
), len(C2

ri
)), Ori = {O1

ri
, ..., Op

ri},

Oj
ri = Abstract(C1j

ri , C
2j
ri ) ∀j ∈ [1, p]

(Same Node)

o(Or1 , ..., Ork ) if n1.v ̸= n2.v ∧ n1.t = n2.t ∧ n1.bt = n2.bt

where o.v = ABS, o.t = n1.t, o.bt = n1.bt,

k = min(m,n), p = min(len(C1
ri
), len(C2

ri
)),

Ori = {O1
ri
, ..., Op

ri},

Oj
ri = Abstract(C1j

ri , C
2j
ri ) ∀j ∈ [1, p]

(Value Abstraction)

o if n1.t ̸= n2.t ∧ n1.bt = n2.bt

where o.v = ABS, o.t = n1.bt, o.bt = n1.bt

(Type Abstraction)

∅ otherwise (Node Removal)

where n1, n2 ∈ A_Tree.N or n1, n2 ∈ B_Tree.N,Cj
ri

= {Cjt
ri
}

s.t. Edge(nj , Cjt
ri
, ri) ∈ A_Tree.E or Edge(nj , Cjt

ri
, ri) ∈ B_Tree.E

Abstract(P (a1, b1), P (a2, b2)) = P (a, b)

where a.rt = Abstract(a1.rt, a2.rt)

b.rt = Abstract(b1.rt, b2.rt)

Figure 5.3: The process of Abstraction for fix patterns.

the generalized fix template.

• Value Abstraction: a and b have the same types but different values.

TypeFix creates a node with the same type and set the value as a special

ABS token to indicate a hole.

• Type Abstraction: a and b have the same base types but different types

and values. TypeFix creates a node with the same base type, and sets the

type and value as a special ABS token to indicate a hole.

• Node Removal: a and b have no common attributes. TypeFix directly
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Abstract(n1(P
1
r1
), n2(P

2
r2
)) =

n1(Or) if n1 = n2

where Or = Abstract(P 1
r1
, P 2

r2
) if r1 = r2,

Or = ∅ if r1 ̸= r2 (Same Node)

o(Or) if n1.v ̸= n2.v ∧ n1.t = n2.t ∧ n1.bt = n2.bt

where o.v = ABS, o.t = n1.t, o.bt = n1.bt,

Or = Abstract(P 1
r1
, P 2

r2
) if r1 = r2,

Or = ∅ if r1 ̸= r2 (Value Abstraction)

o if n1.t ̸= n2.t ∧ n1.bt = n2.bt

where o.v = ABS, o.t = n1.bt, o.bt = n1.bt

(Type Abstraction)

∅ otherwise (Node Removal)

where n1, n2 ∈ IC_Tree.N or n1, n2 ∈ BC_Tree.N

or n1, n2 ∈ AC_Tree.N,Edge(nj , P j
rj
, rj) ∈ IC_Tree.E

or Edge(nj , P j
rj
, rj) ∈ BC_Tree.E or Edge(nj , P j

rj
, rj) ∈ AC_Tree.E

Abstract(IC(a1), IC(a2), Pairs(c)) = IC(a)

where LeafNode(a) = {Abstract(pi1, pi2)} ∀pi ∈ c

Abstract(EC(a1, b1), EC(a2, b2), Pairs(c1, c2)) = EC(a, b)

where LeafNode(a) = {Abstract(pi1, pi2)} ∀pi ∈ c1

LeafNode(b) = {Abstract(pi1, pi2)} ∀pi ∈ c2

Figure 5.4: The process of Abstraction for both internal context and external

context.

removes the two nodes.

TypeFix also prunes all child nodes in Type Abstraction and Node Removal,

because the change of types for an AST node disables the functionality of its

original child nodes.

Mining Fix Templates via Hierarchical Clustering.

With the above-mentioned similarity metrics and abstraction processes, Type-

Fix selects similar fix templates and merges them via hierarchical clustering to

build clustering trees. We give the definition of the clustering tree as follows.
109



Definition 5.3.8. (Clustering Tree) A clustering tree is a tree (T,E, rt) with

fix template set T , edges E and root fix template rt ∈ T . An edge is a pair (t, t′)

where fix template t is the parent of fix template t′, indicating that t is directly

abstracted from t′.

To ensure the least loss of domain knowledge, TypeFix follows two strategies

in the mining process. First, TypeFix follows the priority order of “external

context > internal context > fix pattern” when selecting component pairs for

abstraction, ensuring that abstraction of fix patterns happens only if no external

context pairs and internal context pairs can be abstracted. Second, TypeFix

prefers value abstraction to type abstraction, so it prioritizes component pairs,

i.e., fix pattern pairs, internal context pairs or external context pairs, with a

structural distance at 0.
Algorithm 3 Fix Template Mining
Input: A set of parsed specific fix templates, T

Output: Mined fix templates, CT

1: CT ← T

2: while isChanged(CT ) do

3: Dp, DIC , DEC ← CalculateValueDistances(CT )

4: SDp, SDIC , SDEC ← CalculateStructuralDistances(CT )

5: CT ← Deduplicate(CT )

6: clusters← selectClusters(CT , DP , DIC , DEC , SDEC)

7: for c ∈ clusters do ▷ Handle external contexts

8: t1, t2 ← argmin(c, DEC); nt← t1

9: pairs← getPairs(DEC(t1, t2))

10: nt.EC ← Abstract(t1.EC, t2.EC, pairs, Context)

11: CT ← CT − {t1, t2}+ {nt}

12: t1.parent, t2.parent← nt

13: end for
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14: continue if isChanged(CT )

15: clusters← selectClusters(CT , DP , DIC , SDIC)

16: //Handle internal contexts

17: for c ∈ clusters do

18: t1, t2 ← argmin(c, DEC); nt1 ← t1; nt2 ← t2

19: pairs← getPairs(DIC(t1, t2))

20: nt1.IC, nt2.IC ← Abstract(t1.IC, t2.IC, pairs, Context)

21: CT ← CT − {t1, t2}+ {nt1, nt2}

22: t1.parent← nt1; t2.parent← nt2

23: end for

24: continue if isChanged(CT )

25: clusters← selectClusters(CT , DP , SDP )

26: for c ∈ clusters do ▷ Handle fix patterns

27: t1, t2 ← argmin(c, DP ); nt1 ← t1; nt2 ← t2

28: nt1.P, nt2.P ← Abstract(t1.P, t2.P , Pattern)

29: CT ← CT − {t1, t2}+ {nt1, nt2}

30: t1.parent← nt1; t2.parent← nt2

31: end for

32: end while

We present the hierarchical clustering algorithm of TypeFix in Alg. 3. At

the beginning of each iteration, TypeFix calculates the distances of three compo-

nents for every two fix templates (lines 3∼4). TypeFix then removes duplicated

fix templates. Based on the calculated distances, TypeFix first handles external

context pairs (lines 7 ∼ 13), then internal context pairs (lines 16 ∼ 22), and

finally fix patterns (lines 25 ∼ 30). If any abstraction or merge happens, the

current iteration will be terminated and a new iteration will begin (lines 14 and

23).
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When handling external context pairs, TypeFix groups the fix templates

with the same internal contexts and fix patterns into different clusters (line 6).

When handling internal context pairs, TypeFix groups the fix templates with

the same fix patterns into different clusters (line 15). When handling fix patterns,

all fix templates are grouped into one single cluster (line 24). This ensures that

only fix templates in the same cluster can be abstracted and merged into more

general fix templates under the priority order. For each cluster, TypeFix selects

the certain components with the lowest distance in two fix templates (lines 8, 17,

26), and abstracts them into more general components in each iteration (lines

10, 19, 27). The selection has two stages. In the first stage, only components

with a structural distance of 0 in the fix templates are considered to prioritize

value abstraction. In the second stage, when no such component exists, the rest

components are considered. Note that there could be trivial abstractions such

as removing all nodes for a template tree so that an empty template tree can

represent any code. As empty fix patterns provide no domain knowledge for

patch generation, TypeFix does not select two fix patterns whose distance and

structural distance are both at 1 in the fix templates for further abstraction.

At the end of each iteration, the new fix templates are included in the set,

and the old fix templates are removed from the set (lines 11, 20, 28). The rela-

tionships between the new fix templates and the old fix templates are recorded

in the clustering tree (lines 12, 21, 29). The merge of fix templates happens only

when handling external contexts since the fix patterns and internal contexts of

fix templates are already required to be the same at this time. TypeFix also

records the number of instances each fix template represent in the training set

to facilitate fix template ranking in the next phase. When the template mining

process completes, clustering trees that contain specific to general fix templates

are generated, facilitating the next patch generation phase.
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5.3.3 Patch Generation Phase

The patch generation phase of TypeFix mainly contains two processes:

fix template matching and prompt-based patch generation. The fix template

matching process aims to select and rank appropriate fix templates that could be

applied to the buggy program. The prompt-based patch generation process aims

to generate candidate patches by applying selected fix templates to generate code

prompts and invoking code pre-trained models for mask prediction.

Fix Template Matching

In the fix template matching process, TypeFix selects matched fix templates

on clustering trees via Breadth-First Search (BFS) and then ranks fix templates

with frequency and abstraction ratio.

Selecting Fix Templates. Given a buggy program, TypeFix parses the

bug lines into a template Tree Bug_Tree, and the contexts before and after

the bug lines into template trees BBug_Tree and ABug_Tree, respectively.

TypeFix compares the triple (Bug_Tree, BBug_Tree, ABug_Tree) with fix

templates in the clustering trees to find the appropriate fix templates. We define

the following rules to check whether a buggy program matches a fix template.

Definition 5.3.9. (Template Node Match) For two template nodes a and b,

a matches b if a.value matches b.value and (a.t, a.bt) matches (b.t, b.bt). a.value

matches b.value if b.value = ABS ∨ a.value = b.value. (a.t, a.bt) matches

(b.t, b.bt) if a.bt = b.bt ∧ (a.bt = b.t ∨ a.t = b.t).

Definition 5.3.10. (Template Tree Match) For two template trees A and B,

A matches B if there is a node a ∈ A.N where a matches to B.rt and there ex-

ists node maps {ac1 → bc1, ..., acn → bcn} where aci matches bci, {ac1, ..., acn} ⊆

a.children, aci+1.id > aci.id, and {bc1, ..., bcn} =B.rt.children. A always matches
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B if B = ∅.

Definition 5.3.11. (Fix Template Match) For a buggy program (Bug_Tree,

BBug_Tree, ABug_Tree) and a fix template (P , IC, EC), the buggy program

matches the fix template if BBug_Tree matches EC.BC_Tree, ABug_Tree

matches EC.A_Tree and Bug_Tree matches Concat(IC.IC_Tree, P.B_Tree,IC.rn),

where Concat(a, b, rn) indicates concatenating template tree b to template tree

a with edge (n, b.rt, rn[n].br).

With the above rules, TypeFix starts with the root fix template (most

general fix templates) of each clustering tree and walks through the clustering

tree via bread-first search (BFS) until it finds the deepest fix template (most

specific fix templates) matched by the buggy program. These fix templates are

collected to be ranked in the next step.

Ranking Fix Templates. TypeFix ranks the fix templates before ap-

plying them to the buggy program. To provide the most domain knowledge for

pre-trained models in the patch generation process, TypeFix utilizes a two-step

strategy to prioritize fix templates.

TypeFix groups the fix templates with the same concatenated template tree

of IC_Tree and B_Tree. These fix templates provide different fix solutions for

the same buggy pattern. TypeFix ranks fix templates in one group based on the

number of training instances they represent because a larger number indicates

that the fix template is used more frequently on the given buggy program. Type-

Fix then ranks the groups based on the abstraction ratio of A_Tree of the first

fix template in each group. The abstraction ratio of a template tree is defined

by the ratio of nodes whose values or types are ABS tokens. A higher abstrac-

tion ratio of A_Tree indicates less domain knowledge associated, so that code

pre-trained models need to predict more information before they can generate

complete candidate patches. For example, an abstraction ratio of 1.0 indicates
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the fix template actually is a huge hole and there is no domain knowledge assist-

ing the generation of patches. Therefore, TypeFix prioritizes the groups with a

lower abstraction ratio to include more domain knowledge in the patch generation

process.

Prompt-based Patch Generation

In the process, TypeFix applies ranked fix templates on the buggy program

and generates code prompts. CodeT5 model is then invoked to fill the masks in

code prompts and generate candidate patches.

Applying Fix Templates. For each selected fix template, TypeFix com-

pletes the A_Tree in its fix pattern by adding dummy AST nodes, i.e., AST nodes

with values of ABS tokens, as placeholders, because some child AST nodes are

removed in the fix template mining process. TypeFix then replaces the sub-tree

AST of the buggy program that matches B_Tree with the completed A_Tree,

and converts the modified AST of the buggy program to code prompts. Code

prompts are source code that contains ABS tokens as masks to be predicted by

code pre-trained models.

Generating Patches. Most code pre-trained models are trained to predict

masks in source code, thus they can naturally be used to predict the value of ABS

tokens in the code prompts. In this chapter, we choose CodeT5 [217] as the code

pre-trained model in the patch generation process, since it is specially designed

for the code generation task [217]. When generating patches, TypeFix replaces

the ABS tokens in the code prompt with ordered mask tokens used in CodeT5,

e.g., <extra_id_0>, ..., <extra_id_99>. TypeFix then invokes CodeT5 to

predict tokens for each mask. The predicted values for the masks are filled into

the code prompts to generate candidate patches.

Validating Patches. TypeFix adopts the classic generate-and-validate
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methodology in patch generation. For the generated patches, TypeFix first

filters out those with syntax errors, and then runs the test suite on each patch

to find plausible patches, i.e., those can successfully pass all test cases. Plausible

patches are further examined by the authors to identify correct patches, i.e., those

are semantically identical to the developer patch when ignoring I/O side effects

such as messages in print statements.

5.4 Experiment Setup

5.4.1 Dataset

Training Set. Following previous work [143], we build a dataset for the fix

template mining process of TypeFix and the training of baselines. We collect

8,722 merged pull requests from GitHub that contain the term “fix type error”.

We extract the fixes from the commits in collected pull requests. We remove the

overlong commits that contain more than 50 lines of modified code. Finally, we

get 10,981 fixes to form the training set.

Benchmarks. Following previous work [143], we use two benchmarks BugsInPy [224]

and TypeBugs [143]. The two benchmarks initially separate type errors by com-

mits, but we find that a single commit can also involve more than one type errors

in different locations. To avoid the correct fix of one type error being hidden by

another type error, we further split the commits that contain two or more type

errors into multiple ones. We also remove the duplicated type errors, i.e., those

that have the same commit signatures, in two benchmarks. Finally, we get 54

type errors from BugsInPy and 109 type errors from TypeBugs.
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5.4.2 Baselines

We compare TypeFix with the following four baselines.

PyTER. PyTER [143] is a rule-based APR approach designed for repair-

ing Python type errors. It has nine pre-defined templates and several rules to

synthesize templates to generate candidate patches.

AlphaRepair. AlphaRepair [228] is the state-of-the-art prompt-based ap-

proach for general-purpose APR. It masks tokens in the buggy code based on

some general prompt templates and invokes code pre-trained models to generate

patches.

CoCoNuT. CoCoNuT [112] is an NMT-based approach for general-purpose

APR. It translates the buggy code into candidate patches.

Codex. Codex [19] is a large GPT model fine-tuned on publicly available

code from GitHub. It is designed by OpenAI and used to power GitHub Copi-

lot [122] service.

5.4.3 Metrics

We adopt the commonly used Correct and Plausible metrics in previous

work [86, 112, 143, 228] to evaluate the performance of TypeFix on repairing type

errors. Besides, we add a new metric named Template Coverage to evaluate

the number of developer patches covered by the fix templates mined by TypeFix

and pre-defined ones from PyTER. Template Coverage is defined by the ratio

of bugs whose developer patch matches a fix template of an approach.

5.4.4 Implementation

The entire framework of TypeFix is implemented using Python, which con-

tains more than 10,000 lines of code. We adopt the CodeT5-base [185] model to
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predict the masks in code prompts and generate candidate patches. For PyTER,

AlphaRepair and CoCoNuT, we directly use the replication packages released by

the authors and re-implement them on our task. We train CoCoNuT with its

original training set and the training set we collected to adapt it to fix Python

type errors. Since Codex is not publicly available, we use the public API [146] of

engine code-davinci-002 provided by OpenAI to query it with prompts. We use a

similar prompt from previous work [226]. The only difference is that we use three

examples instead of two at the beginning of the prompt and only mask the buggy

line to maximize the performance of Codex. We make all other settings consis-

tent with previous work [86, 112, 143, 226, 228]. All experiments are conducted

on a Linux machine (Ubuntu 20.04) with two Intel Xeon@2.20GHZ CPUs, one

NVIDIA A100-SXM4-40GB GPU and 256GB RAM.

5.5 Evaluation

In this section, we evaluate the performance of TypeFix on the following

three research questions:

• RQ1: How effective is TypeFix to fix type errors?

• RQ2: How capable is TypeFix to mine fix templates from existing bug

fixes?

• RQ3: When does TypeFix fail to fix type errors?

5.5.1 RQ1: Effectiveness of TypeFix

To evaluate the effectiveness of TypeFix on repairing type errors, we com-

pare TypeFix with state-of-the-art rule-based APR approaches and learning-
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based APR approaches. Table 5.1 presents the performance of TypeFix along

with baseline approaches on two benchmarks TypeBugs and BugsInPy.

Table 5.1: Evaluation results of TypeFix compared with three baselines. Results

are presented in the Correct/Plausible format. Fix rate is the ratio of correct

patches.

TypeBugs

Project #B TypeFix PyTER Codex AlphaRepair CoCoNuT

airflow 14 9/9 4/4 7/7 1/6 0/4

beets 1 0/0 0/1 0/0 0/0 0/0

core 9 7/7 5/7 4/5 4/4 2/3

kivy 1 0/0 0/1 0/0 0/1 0/1

luigi 2 0/2 0/0 0/2 1/2 0/0

numpy 3 0/3 0/2 0/1 0/2 0/0

pandas 48 21/32 17/27 18/19 11/22 3/10

rasa 2 2/2 0/0 2/2 0/0 0/0

requests 4 4/4 4/4 2/2 0/1 0/0

rich 4 2/3 0/1 1/1 0/0 0/0

salt 8 5/8 5/5 4/5 1/5 0/2

sanic 2 0/0 2/2 0/0 0/0 0/0

scikit-learn 7 2/3 2/3 1/2 0/0 0/0

tornado 1 0/0 1/1 0/0 0/0 0/0

Zappa 3 3/3 1/1 0/0 1/3 0/1

Total 109 55/76 41/59 39/46 19/46 5/21

Fix Rate (%) - 50.5 37.6 35.8 17.4 4.6

BugsInPy

Project #B TypeFix PyTER Codex AlphaRepair CoCoNuT

ansible 1 0/0 0/0 0/0 0/0 0/0

fastapi 1 1/1 0/0 1/1 0/0 0/0

keras 7 4/6 1/1 0/3 0/4 0/4

luigi 7 4/5 3/5 3/3 0/0 0/0

pandas 19 4/13 4/6 2/6 3/10 3/8

scrapy 12 10/11 5/7 10/12 1/4 2/4

spacy 1 0/1 0/1 0/0 0/1 0/1

tornado 2 1/1 1/1 1/1 0/1 0/1

youtube-dl 4 2/3 1/1 0/2 1/1 1/1

Total 54 26/41 15/22 17/28 5/21 6/19

Fix Rate (%) - 48.1 27.8 31.5 9.3 11.1
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Table 5.2: Comparison of the number of unique type error fixes and template

coverage between TypeFix and PyTER.

Approach
TypeBugs BugsInPy

#Unique Coverage #Unique Coverage

TypeFix 24 83 (76.1%) 16 40 (74.1%)

PyTER 10 46 (42.2%) 5 18 (33.3%)

Comparison with Rule-based Approach. As can be seen in Table 5.1,

TypeFix can successfully fix 55 type errors in TypeBugs and 26 type errors

in BugsInPy, outperforming rule-based approach PyTER by 14 and 11 type

errors, respectively. We attribute the improvement of TypeFix to the higher

coverage of fix templates mined from existing type error fixes and the generated

domain-aware code prompts. Furthermore, we analyze the unique type errors

that TypeFix and PyTER can fix in two benchmarks and present the results in

Table 5.2. We find that TypeFix obtains 24 and 16 unique type error fixes in

TypeBugs and BugsInPy, respectively, while PyTER only obtains 10 and 5

unique type error fixes in TypeBugs and BugsInPy, respectively. This further

demonstrates the effectiveness of TypeFix when compared with PyTER.

Comparison with Learning-based Approaches. From Table 5.1 we

can see that TypeFix, Codex and AlphaRepair generally perform much bet-

ter than CoCoNuT, indicating the superior performance of prompt-based ap-

proaches. When comparing TypeFix with AlphaRepair which adopts general

domain-unaware prompt templates, we find that TypeFix achieves a 1× ∼ 4×

larger fix rate than AlphaRepair. This indicates that general domain-unaware

prompt templates such as randomly replacing several tokens in code can hardly

handle complicated type errors. Compared with the most advanced code pre-

trained model Codex, TypeFix still obtains a significant improvement by fixing
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(a) TypeBugs (b) BugsInPy

Figure 5.5: Venn diagram of correct patches provided by learning-based APR

approaches.

16 and 9 more type errors than Codex in TypeBugs and BugsInPy, respec-

tively. This improvement further demonstrates the importance of domain knowl-

edge for repairing type errors, even though Codex has a much larger parameter

size (12B) than that (220M) of the CodeT5 model utilized by TypeFix.

In addition to the total number of type errors fixed by each approach, we fur-

ther evaluate the number of unique type error fixes. Fig. 5.5 presents the unique

type errors that TypeFix and three learning-based approaches can correctly fix

in the format of Venn diagrams. We observe that TypeFix obtains 16 and 10

unique type error fixes in TypeBugs and BugsInPy, respectively, while other

approaches only obtain 0 ∼ 3 unique bug fixes in two benchmarks. This indicates

that the contribution of domain-aware fix templates cannot be replaced by the

combination of existing learning-based approaches.

Answer to RQ1: TypeFix successfully fixes 55 and 26 bugs in two bench-

marks, outperforming state-of-the-art approaches by at least 14 bugs and 9
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Table 5.3: Statistics of fix templates mining in TypeFix.

Category #Instances
#Clustering Trees

(>1/>5)
Mining Time/s

Add 2,656 150/27 2,819

Remove 570 10/5 59

Insert 1,648 350/47 659

Replace 6,107 184/70 32,621

bugs, respectively. Meanwhile, TypeFix obtains the most unique type error

fixes in two benchmarks.

5.5.2 RQ2: Capability of TypeFix to Mine Fix Templates

To comprehensively investigate the capability of TypeFix to mine fix tem-

plates, we focus on the performance of TypeFix in template mining and the

usefulness of fix templates mined by TypeFix.

Table 5.3 presents the performance of TypeFix in fix template mining pro-

cess. Starting with thousands of existing bug fixes, TypeFix can mine 10 ∼ 350

clustering trees. After discarding the clustering trees with occurrence frequency

lower than a threshold (5 in this chapter), TypeFix finally gets 5 ∼ 70 clus-

tering trees. The mining process generally takes shorter than one minute to at

most nine hours. Table 5.2 presents the template coverage achieved by TypeFix

and PyTER. From it we can observe that fix templates mined by TypeFix can

cover about 75% of type errors in two benchmarks while the manually defined fix

templates in PyTER can only cover about 30% ∼ 40% of type errors.

To further study how fix templates mined by TypeFix can help the patch

generation process, we conduct an ablation study on fix templates under each

category. Following previous study [228], we start with the case that no fix
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Table 5.4: Ablation results.

TypeBugs BugsInPy

#Correct #Plausible #Correct #Plausible

No Template 19 41 6 20

Add +11 +10 +3 +5

Remove +1 +1 +0 +0

Replace +6 +8 +4 +9

Insert +18 +16 +13 +17

Total 55 76 26 41

template is applied, i.e., the CodeT5 model is asked to generate a completely

new line to replace the original buggy line. We then gradually apply fix templates

under Add, Remove, Replace and Insert categories, and observe the number of new

correct and plausible patches, respectively. We show the results in Table 5.4. We

can find that all four categories of fix templates contribute to generating correct

patches. This demonstrates the contribution of domain knowledge stored in the

fix templates. We also note that fix templates under Insert and Add categories

contribute the most. The reason could be attributed to that developers often add

guards to guarantee the desired types or directly convert input types into desired

types when fixing type errors.

Answer to RQ2: TypeFix achieves a template coverage of about 75% on both

benchmarks. Ablation results also demonstrate the usefulness of fix templates

mined by TypeFix under each category.

123



5.5.3 RQ3: Limitations of TypeFix

Our experiments also show the limitations of TypeFix as it cannot fix all

type errors in two benchmarks. By analyzing the type errors that TypeFix

cannot fix in two benchmarks, we conclude two possible limitations.

The first limitation is that TypeFix cannot always find matched fix tem-

plates to the current buggy program. Based on Table 5.2, we can find that even if

fix templates mined by TypeFix can cover as many as 75% cases in two bench-

marks, there exist a few cases (∼25%) that do not share similar patterns with

instances in the training set. An example is illustrated in the first type error of

Listing 5.2. To fix this type error, the developer changes a list comprehension into

an attribute access, which does not appear in the training set. TypeFix thus

cannot find proper fix templates for this type error and fails to fix it. This limita-

tion can be mitigated by adapting TypeFix to new datasets, so that TypeFix

can mine new fix templates to improve the template coverage.

1 #Type Error 1: apache/airflow:892d4d

2 if conf.getboolean('core', 'store_dag_code',\

3 fallback=False):

4 - DagCode.bulk_sync_to_db([dag.fileloc for dag in orm_dag])

5 + DagCode.bulk_sync_to_db([orm_dag.fileloc])

6 #Type Error 2: pandas -dev/pandas:a3e903

7 elif (is_extension_array_dtype(left) or\

8 - is_extension_array_dtype(right)):

9 + (is_extension_array_dtype(right) and not is_scalar(right))):

10 return dispatch_to_extension_op(op, left, right)

Listing 5.2: Two type errors that TypeFix fail to fix

The second reason is that the CodeT5 model TypeFix uses sometimes can-

not generate the correct patches even if the correct fix template is given. By com-

paring Table 5.1 and Table 5.2, we can find that fix templates mined by TypeFix
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can cover 83 bugs in TypeBugs but only 55 of them are correctly fixed. This

indicates the limitations of CodeT5 when generating candidate patches from code

prompts. We also show an example as the second type error of Listing 5.2. In

this type error, we need to add a new condition as the guards and this fix pattern

is commonly used in the wild. However, CodeT5 cannot give is_scalar as the

new condition and thus TypeFix fails to fix this type error. We believe this

limitation can be mitigated by using more advanced code pre-trained models, as

the parameter size of CodeT5 is only 220M.

Answer to RQ3: TypeFix sometimes fails to fix type errors due to the limited

performance of pre-trained code models and a few cases (∼ 25%) that mined

fix templates cannot cover.

5.6 Summary

We propose a domain-aware prompt-based approach named TypeFix for

repairing Python type errors. TypeFix improves prompt-based approach by in-

corporating domain-aware fix templates. TypeFix implements a novel fix tem-

plate design to handle type errors at different levels, and mines fix templates via

a novel hierarchical clustering algorithm. TypeFix incorporates domain knowl-

edge into code prompts by applying fix templates into buggy code and invokes

code pre-trained models to generate candidate patches from code prompts. Ex-

periments demonstrate the effectiveness of TypeFix and the usefulness of fix

templates mined by TypeFix.
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Chapter 6

Evaluation Study for Automatic

Third-party API

Recommendation Approaches

With the rich support of third-party packages in Python, developers can

easily invoke external APIs to avoid implementing similar functionalities in the

development of Python software. Given the large volume of external APIs, even

the most skilled developers cannot be familiar with all of them. Therefore, it

is essential to develop API recommendation approaches to help developers se-

lect the most appropriate APIs to avoid potential run-time environment conflicts

caused by the absence of the implementations of external APIs in the run-time

environment. In this chapter, we evaluate existing API recommendation ap-

proaches and aim to identify the challenges of recommending high-quality APIs.

The main points of this chapter are as follows. (1) we systematically study both

query-based and code-based API recommendation techniques on two large-scale

datasets including Java and Python. (2) We build an open-sourced benchmark

named APIBench to fairly evaluate query-based and code-based approaches.
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(3) We study how different settings can impact the performance of current ap-

proaches, including query quality, cross-domain adaptation, etc. (4) We conclude

some findings and implications that would be important for future research in API

recommendation.

6.1 Introduction

Application Programming Interfaces (APIs) provided by software libraries

or frameworks play an important role in modern software development. Almost

all programs, even the basic “hello world!” program, include at least one API.

However, there are a huge number of APIs from different modules or libraries.

For example, the Java standard library [148] provides more than 30,000 APIs.

It is therefore infeasible for developers to be familiar with all APIs. To address

this problem, many approaches are proposed to recommend APIs based on input

queries, which describe the programming task in natural language, or surrounding

context, i.e., the code already written by developers.

However, a uniform definition of the current API recommendation task is

still absent, making the task hard to be followed by potential researchers. Some

studies [15, 90, 135, 177, 181] regard the task as a code completion problem,

and recommend any code tokens including APIs. These studies focus on im-

proving the prediction results of all the tokens instead of only APIs. Some stud-

ies [60, 76, 109, 170, 172] recommend relative APIs on different levels given natural

language queries. Besides, the evaluation results are difficult to be reproduced by

future related work. For example, for query-based API recommendation, manual

evaluation is generally adopted, so the performance reported by different studies

can hardly be aligned. Comparing with widely-used Integrated Development En-

viroments (IDEs) or search engines is another commonly adopted yet inconsistent
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evaluation strategy in previous research. Therefore, to better facilitate future ex-

ploration of the API recommendation task, in this chapter, we summarize the

recent related approaches and build a general benchmark named APIBench.

To facilitate the benchmark creation, we group the recent related approaches

into two categories according to the task definition: query-based API recommen-

dation and code-based API recommendation:

1) query-based API recommendation. Approaches for query-based API

recommendation aim at providing related APIs to developers given a query that

describes programming requirements in natural language. The approaches can

inform developers which API to use for a programming task.

2) code-based API recommendation. Approaches for code-based API

recommendation aim at predicting the next API given the code surrounding the

point of prediction. They can directly improve the efficiency of coding.

Besides the unreproducible evaluation, the two groups of studies face their

own challenges. 1) For query-based approaches, high-quality queries play a criti-

cal role in accurate recommendation. However, there may exist a knowledge gap

between developers and API designers in choosing terms for describing queries

or APIs. For example, developers who do not know the term “heterogeneous

list” in API documents would use other words such as “list with different types

of elements” in the query. Whether current query reformulation techniques are

effective for API recommendation and how effective it is are still remaining un-

explored. 2) For code-based approaches, the quality of code before the recom-

mendation point also affects the recommendation performance. Generally, the

approaches are evaluated by simulating an actual development, i.e., some parts

of a project are removed for imitating a limited context. The APIs to recommend

may be located in the front, middle, or back of the code, so exploring the impact

of different recommendation points is important for understanding the recom-
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mendation capability of existing approaches. Other factors such as whether the

APIs are standard or user-defined, lengths of given context, and different do-

mains can also influence the recommendation performance, which have not yet

been fully investigated.

To comprehensively understand the above challenges and align the perfor-

mance of current approaches, we first build a benchmark named APIBench.

APIBench is built on Python and Java, and involves two datasets for evalu-

ation, named as APIBench-Q and APIBench-C for query-based and code-

based approaches, respectively. APIBench-Q contains 6,563 Java queries and

4,309 Python queries obtained from Stack Overflow and API tutorial websites.

APIBench-C contains 1,477 Java projects with 1,229,698 source files and 2,223

Python projects with 414,753 source files obtained from GitHub. Based on

APIBench, we study the following research questions:

• RQ1: How effective are current query-based and code-based API recom-

mendation approaches?

• RQ2: What is the impact of query reformulation techniques on the perfor-

mance of query-based API recommendation?

• RQ3: What is the impact of different data sources on the performance of

query-based API recommendations?

• RQ4: How well do code-based approaches recommend different kinds of

APIs?

• RQ5: What is the performance of code-based approaches in handling dif-

ferent contexts?

• RQ6: How well do code-based approaches perform in cross-domain scenar-

ios?
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APIBench involves the implementation of the related approaches proposed

in the recent five years, specifically including five query-based approaches and five

code-based approaches. In RQ1, we compare the performances of the approaches

in APIBench. To answer RQ2 and RQ3, we apply four popular query reformu-

lation techniques to the queries of APIBench-Q and observe the performance

of the query-based approaches given reformulated queries. To answer RQ4 to

RQ6, we analyze the APIs in APIBench-C from different aspects and study the

performance of code-based approaches under different experimental settings.

Key Findings. Through the large-scale empirical study, we achieve some

findings and summarize the key findings as below.

(1) For query-based API recommendation:

• While current approaches make a good progress on class-level recommen-

dation, recommending the exact API methods is still a challenging task.

• Query reformulation techniques, including query expansion and query mod-

ification, are quite effective in improving the performance of query-based

approaches.

• Adding data sources such as Q&A forums and tutorials that are more sim-

ilar to real-world queries can significantly improve the performance of cur-

rent approaches.

(2) For code-based API recommendation:

• Recent deep learning models such as Transformers show superior perfor-

mance on this task. Meanwhile, current IDEs can achieve competitive per-

formance as recent pattern-based and learning-based approaches. They

work far more than just recommending APIs based on alphabet orders.
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• Current approaches are effective to recommend APIs from standard libraries

and popular third-party libraries, but their performance drops a lot when

recommending user-defined or project-specific APIs.

• Approaches trained on one single domain face the problem of cross-domain

adaptation. Approaches trained on multiple domains achieve satisfying per-

formance when testing on most single domains, and they even outperform

those trained on corresponding single domains.

Based on the findings, we conclude some implications and suggestions that

would benefit future research. On the one hand, query-based API recommen-

dation approaches should be built along with query reformulation techniques to

handle queries with different qualities. We also encourage future work to lever-

age different data sources and few-shot learning methods to address the low re-

source challenge in query-based API recommendation. On the other hand, we

suggest future code-based API recommendation approaches focus on improving

the performance of recommending user-defined APIs as it is currently the major

bottleneck.

Contributions. To sum up, our contribution can be concluded as follows.

• To the best of our knowledge, we are the first to systematically study both

query-based and code-based API recommendation techniques on two large-

scale datasets including Java and Python.

• We build an open-sourced benchmark named APIBench to fairly evaluate

query-based and code-based approaches.

• We study how different settings can impact the performance of current

approaches, including query quality, cross domain adaptation, etc.
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Original Query:  
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Query - API Pairs
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API Tutorial Sites

finally calculate int value square root

Return int value square root

Query Modification

Query Expansion

Figure 6.1: The typical query-based API recommendation framework.

• We conclude some findings and implications that would be important for

future research in API recommendation.

6.2 Background

In this section, we summarize the query-based approaches and code-based

approaches, respectively.

6.2.1 Query-Based API Recommendation Methods

We describe the typical query-based API recommendation process in Fig-

ure 6.1. Given a query “Calculate int value square root”, query reformulation

techniques first modify the query as “return int value square root” or expand it

as “finally calculate int value square root”. A knowledge base built upon available

data sources is also prepared for API candidate selection. Based on the knowl-

edge base, retrieval-based methods or learning-based methods recommend the

APIs relevant to the queries.
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Query Reformulation Techniques

Input queries can be short in length or vague in semantics. Besides, there

may exist a knowledge gap between developers and search engines in query de-

scription. For rendering search engines better understand the query semantics,

query reformulation is a common pre-processing method. In general, there are

two major types of query reformulation approaches:

1) query expansion, which adds extra information to the original queries;

2) query modification, which modifies, replaces or deletes some words in the

original queries.

Query expansion. Query expansion aims at identifying important words

that are missing in the input queries. The topic is originally stemmed from the

field of natural language processing (NLP). For example, the work [111] utilizes

word embeddings to map words in the vector space and finds similar words to en-

rich the queries. For the API recommendation task, since APIs are encapsulated

and organized according to classes and modules, class names and module names

are important hints for recommendation. Rahman et al. [170, 172] propose to use

keyword-API class co-occurrence frequencies and keyword-keyword co-occurrence

frequencies to build the relationship between words and API classes, and add the

suggested API class for query expansion.

Query modification. Query modification aims at mitigating both the lexi-

cal gap and knowledge gap between the user queries and descriptions in knowledge

base. The lexical gap, such as mis-spelling, can be easily addressed by spelling

correction and synonym search, etc. Recent work focuses on how to mitigate

the knowledge gap by replacing inappropriate words in queries. Mohammad et

al. [4] extract important tokens in code, and Sirres et al. [191] leverage dis-

cussions and code from Stack Overflow posts to build a knowledge base. Cao et

al. [16] collect query reformulation history from Stack Overflow and propose a
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Transformer-based approach to learn how developers change their queries when

search engines do not return desired results.

Recommendation with Knowledge Base

Knowledge base. API recommendation approaches generally require a

knowledge base that contains all the existing APIs as the search space. There

are three primary sources for the knowledge base creation, including: 1) official

documentations which contain comprehensive descriptions about the API func-

tionality and structure. 2) Q&A forums, which provide the purposes of APIs and

different API usage patterns. Many studies [76, 169] leverage the Q&A pairs from

Stack Overflow to select API candidates. 3) Wiki sites, which describe concepts

that link different APIs. For example, Liu et al. [109] utilizes API concepts from

Wikipedia to help build API knowledge graphs.

Retrieval-based methods. Retrieval-based methods retrieve API candi-

dates from the knowledge base and then rank the candidate APIs by calculating

the similarities between queries and APIs. For example, Rahman et al. [170, 172]

utilize the keyword-API occurrence frequencies and API-API occurrence frequen-

cies to find the most relevant APIs. Huang et al. [76] first identify the similar

posts from Stack Overflow by computing query-documentation similarities and

choose the APIs mentioned in posts as candidates. Liu et al. [109] build an API

knowledge graph to represent relationships between APIs and then calculate the

similarities between queries and certain parts of API knowledge graph to rank

the APIs.

Learning-based methods. Another type of method is to automatically

learn the relationships between queries and APIs based on deep learning tech-

niques. The knowledge base provides query-API pairs as the ground truth. For

example, Gu et al. [60] formulate the task as a translation problem in which a
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1 public class Sort { 
2  public static void main(String args[]) { 
3    String[] strArray =  
4 new String[] { "example" }; 
5    List l = Arrays.asList(strArray); 
6    Collections.<Recommendation Point>; 
7    ... 
8  } 
9 }

Target Code

Implementation of String,
Arrays.asList(),...

External Context

(c) AST MethodDeclaration

LocalVariable 
Declaration

ClassDeclaration

LocalVariable 
Declaration

Current Code Before
Recommendation Point

Internal Context

......

Pattern-based
Methods

Learning-based
Methods

String Arrays.asList() ...
func1 0 1 ...

func2 1 0 ...

main 1 1 ...

(d) API Matrix

Context Representation

Recommendations: 
 

java.util.Collections.sort(), 
java.util.Collections.addAll(), 

java.util.Collections.min() 
....

(a) API Sequence: String, Arrays.asList, ...
 

(b) Token Flows: public class sort public ...

Figure 6.2: The typical code-based API recommendation framework.

model is built to translate word sequences into API sequences. They propose an

RNN model with an encoder-decoder structure to implement the translation.

6.2.2 Code-Based API Recommendation Methods

We describe the workflow of code-based API recommendation in Figure 6.2.

Given a target code, context representation is an essential step. Based on the

extracted context, pattern-based methods or learning-based methods are adopted

by previous studies to recommend the next API.

Context for the Target Code

Most code-based API recommendation methods regard the code before the

recommendation point as the context. We name such context as internal con-

text since it only considers code in the current source code or current function

body. For example, Line 1 ∼ 6 of the target code in Figure 6.2 belongs to inter-

nal context. Xie et al. [231] find that replacing external APIs in code (such as

Arrays.asList() in Figure 6.2) with their implementations can help the identifi-

cation of common usage patterns. They propose to build a hierarchical context

by integrating the implementation out of the current source file. We name the

implementation of external APIs as external context.
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Context Representation

We divide the context representation methods into two types, i.e., pattern-

based representation and learning-based representation. Pattern-based repre-

sentations [28, 137, 139, 222, 231] do not consider all the code tokens. Instead,

they only identify APIs to build API usage sequences, as shown in Figure 6.2 (a),

API matrix, as shown in Figure 6.2 (d), or API dependency graphs to represent

the current context. Learning-based representations [66, 69, 90, 177, 203]

usually represent the context with token flows, as illustrated in Figure 6.2 (b), or

other syntax structures such as Abstract Syntax Trees (ASTs), as illustrated in

Figure 6.2 (c).

Recommendation Based on Context

Pattern-based methods. API recommendation is inherently a recom-

mendation task, so some studies [28, 139] follow the collaborative filtering (user-

item) methodology of traditional recommendation systems [179]. As shown in

Figure 6.2 (d), they regard the internal context as the users and APIs as the

items. They then calculate the similarities between different users to find the

most similar API for recommendation. However, the methods do not consider

the relationships between APIs. More recent work [222, 231] build API depen-

dency graphs or mines association rules to capture API usage patterns.

Learning-based methods. Hindle et al. [69] discover the naturalness of

software, rendering it possible to deploy machine learning or deep learning meth-

ods on code. Different from pattern-based methods that consider the relationships

between API occurrences, learning-based methods regard API as a single code

token, and reformulate the code-based API recommendation problem into a next

token prediction problem. Many statistical language models [136, 175, 177, 203]

are proposed to predict the next code token. Besides using the token sequences,
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more recent work [66, 90] try to leverage syntax and data flow information for

more accurate prediction.

Note that we do not aim to provide a comprehensive summary of all query-

based and code-based API recommendation approaches but to choose some rep-

resentatives to describe the general workflow in this section. For a more compre-

hensive literature review, we refer the readers to previous surveys and empirical

studies [93, 183, 184].

6.3 Methodology

In this section, we introduce the scope of the studied APIs, the preparation

of benchmark datasets, and implementation details.

6.3.1 Scope of APIs

To fairly compare the current API recommendation approaches, benchmark

datasets should be prepared, during which the scope of studied APIs first needs

to be defined. In this work, we focus our evaluation on two popular programming

languages, i.e., Python and Java.

For facilitating the analysis of the challenges in API recommendation, we

divide all APIs into standard APIs, user-defined APIs, and popular third-party

APIs. The standard APIs refer to the APIs that are clearly defined and built-in

in corresponding programming languages while the user-defined APIs are defined

and used in projects along with popular third-party APIs. Following previous

work [76, 109, 170, 172] we evaluate query-based API recommendation methods

only on the standard APIs since currently standard APIs have the most compre-

hensive documentations and extensive discussions to build the knowledge base.

We evaluate code-based API recommendation methods on all three kinds of APIs.
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The details of each kind for different programming languages are depicted below.

(1) Standard Java APIs. We chose the version Java 8 for our analysis

since it is the most widely-used version in current projects according to the 2020

JVM Ecosystem Report [192]. We collect 34,072 APIs from the Java documen-

tation [148] as standard APIs.

(2) Android APIs. We choose APIs from the Android library [57] since

Android is the most popular application of Java programs. We collect 11,802

APIs from the official documentation of Android in total.

(3) Standard Python APIs. As Python Software Foundation has stopped

the support for Python 2, currently only 6% of developers are still using Python

2, according to the development survey conducted by Jetbrains [82]. Consider-

ing that APIs of different versions above 3.0 are similar, we choose the newest

version 3.9 to ensure compatibility and collect 5,241 APIs from Python standard

library [164] as the standard APIs.

(4) Popular Python third-party APIs. Python is well extended by a

lot of third-party modules. We choose five widely-used modules with sufficient

documentations, including flask [32], django [25], matplotlib [116], pandas [149]

and numpy [142]. We collect 215, 700, 4,089, 3,296, and 3,683 APIs from them,

respectively.

(5) User-defined APIs. For code-based API recommendation, we regard

all the functions defined in current projects as user-defined APIs. We do not

explicitly collect them as a fixed set because they vary across projects. By in-

specting the implementations, we can always identify the user-defined APIs.

6.3.2 Benchmark Datasets

In this section, we describe how we build the benchmark datasets APIBench-

Q and APIBench-C.
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Table 6.1: Statistics of APIBench-Q. Ori. represent the original queries, Exp.

represent the expanded queries produced by query expansion techniques, Mod.

represents the modified queries produced by query modification techniques.

PL
Stack Overflow Tutorial Websites

Ori. Exp. Mod. Ori. Exp. Mod.

Python 1,925 78,157 100,100 2,384 95,360 123,968

Java 1,320 80,343 68,640 5,243 319, 783 272,636

Creation of APIBench-Q

We build the benchmark dataset APIBench-Q by mining Stack Overflow

and tutorial websites. Note that we find that currently there is no query-based

API recommendation approach specially designed for Python programs, but we

still collect the query benchmark for it to facilitate further research investigation.

Mining Stack Overflow. As one of the most popular Q&A forums for

developers, Stack Overflow contains much discussion about the usage of APIs.

Stack Overflow is the primary source for building APIBench-Q. We first down-

load all posts from Aug 2008 to Feb 2021 on Stack Overflow (SO) via Stack

Exchange Data Dump [30]. Each post is associated with a tag about the related

programming language. We filter out the posts not tagged as Java or Python,

resulting in 1,756,183 Java posts and 1,661,383 Python posts. Similar to other

studies related to Stack Overflow mining [27], [55], we further filter out the posts

based on the following rules:

• To increase the quality of the posts, we remove the posts that are not

answered or do not have endorsed answers.

• We remove the posts that do not contain the HTML tag <code>, because
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we cannot extract any API from them.

• We remove the posts that contain code snippets longer than two lines since

we focus on single API recommendation in this chapter and code snippets

longer than two lines usually contain an API sequence. For multiple code

snippets in one post, we remove the post only if all code snippets are longer

than two lines.

• We use string matching to find the APIs in the code of each post and

remove the posts that do not contain any APIs involved in this chapter, as

described in Section 6.3.1.

After the rule-based filtering, we obtained 156,493 Python posts and 148,938

Java posts that contain descriptions of APIs. However, some of the posts are

not directly related to API recommendation. For example, some posts only ask

about comparing two similar APIs. Unrelated posts are hard to be automatically

identified by rules. To ensure the relatedness of the posts in our benchmark

dataset, we invite 16 participants with an average of 3 years of development

experience in Python or Java for manual checking. For each post, two of the

participants are involved in checking the following aspects:

1) whether the query asks about API recommendation;

2) whether the standard APIs recognized by the previous rules are intact,

i.e., including the whole class and method names.

3) whether the APIs in answers exactly address the query.

If two participants provide the same answers for one post and also one of the

above three aspects is not satisfied, we directly remove the post. If the two

participants do not reach an agreement, the post will be forwarded to one of the

authors to make a final decision.

As the remaining posts are still too many to be manually checked, we con-
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ducted two rounds of annotations. In the first round of annotations, we ask the

annotators to label 100 randomly selected posts and conclude the reasons for the

cases that they think are not about API recommendation. Then we collect the

keywords that frequently appear in these unrelated cases, and remove the posts

whose titles contain such keywords. For example, some post titles may contain

some specific error names such as “AttributeError: ‘Namespace’ object has no

attribute”. We identify these titles and remove them because such posts tend

to be related to debugging. However, we will keep the posts if the titles also

contain the word “how”, since we believe that the posts are likely to ask about

error-handling APIs. Although the filtering strategy is coarse, we can remove

some noisy posts and facilitate manual annotation. In the second round of an-

notations, we ask annotators to label all the remaining posts. It takes about one

month to complete the two-round annotation process. After both rounds of anno-

tations, we manually checked 13,775 posts, of which 1,262 posts did not reach an

agreement with the annotators and needed further checks by one of the authors.

We use the commonly-used Fleiss Kappa score [33] to measure the agreement

degree between the two annotators and the value is 0.77. The result indicates a

high agreement between them. Based on the manual check, 3,245 of the 13,775

labeled posts remain. We take the titles of 3,245 posts as queries following pre-

vious studies [16, 76], and finally, we get 1,925 Python queries and 1,320 Java

queries. They comprise the first part of our benchmark APIBench-Q, as shown

in the second column of Table 6.1.

Mining tutorial websites. API tutorial websites are the second major

source of query-API pairs. We choose three popular API tutorial websites Geeks-

forGeeks [1], Java2s [2], and Kode Java [3] to establish APIBench-Q. Different

from Stack Overflow which contains discussion on various topics, API tutorial

websites focus on providing examples of how to use APIs. Therefore, manually
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Table 6.2: Statistics of Benchmark APIBench-C. The data includes both the

training set and the testing set.

PL Domain #Projects #Files
LOC

(per func)

#API

(per func)

Total number of APIs (only testset) LOC Threshold

of Short Func

LOC Threshold

of Long FuncStandard User-defined Popular

Python

General 899 230,064 15.24 5.55 1,363,240 1,747,878 54,244 8.875 54.875

ML 323 46,556 13.89 6.08 629,437 339,821 125,377 12.65 46.05

Security 126 15,785 18.98 6.72 111,393 64,809 3,613 6 86.5

Web 568 82,771 14.14 5.05 369,114 241,602 11,832 7.35 51.625

DL 307 39,577 14.58 6.25 413,295 220,228 76,654 11.675 52.525

Java

General 935 1,056,790 11.16 4.06 5,164,481 3,808,124 36,178 6.26 19.2

Android 377 87,468 8.24 2.91 517,461 267,141 75,069 7.28 16.8

ML 52 41,377 12.82 4.77 194,013 136,963 0 7.52 19.74

Testing 55 23,618 9.93 3.98 105,577 55,241 22 6.44 15.68

Security 58 20,445 12.35 5.32 125,558 74,471 1,243 6.88 20.78

annotating the relatedness of each query to API recommendation is not neces-

sary. We adopt similar rules as mining Stack Overflow to filter out those without

code snippets or associated with large code snippets. We finally collect 5,243

Java queries and 2,384 Python queries, which comprise the second part of our

benchmark APIBench-Q, as shown in the fifth column of Table 6.1.

Note that we include all queries and corresponding APIs as our test set in

APIBench-Q. We do not build a uniform training and validation set for query-

based API recommendation approaches because the data sources used by the

current work are quite different. For example, using extra data sources is a major

contribution for BIKER [76]. Lucene [34] does not need the training set at all.

It is hard for us to build a unified training set for training all the approaches.

To prevent potential data leakage, we remove the instances that overlap between

training sets used by current approaches and APIBench-Q in the preprocessing

phase.
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Creation of APIBench-C

We create the benchmark dataset APIBench-C by mining GitHub. GitHub [120]

is one of the most popular websites for sharing code and includes large numbers

of code repositories on different topics and programming languages.

In order to explore the performance of API recommendation under different

domains, we first determine the domains for analysis. According to the Jet-

Brains’ developer survey and topic labels provided by GitHub1, we chose four

popular domains for Python and Java, respectively, as shown in Table 2. For

Python, we consider the domains “Machine Learning” (ML), “Security”, “Web”,

and “Deep Learning” (DL); while for Java, we involve domains “Android”, “Ma-

chine Learning” (ML), “Testing”, and “Security”. For each domain, we focus on

the repositories tagged with the corresponding topic labels. For example, the

“ML” domain only covers the repositories with the “machine learning” tag. As

GitHub automatically aggregates all related projects under each domain, we di-

rectly collect 500 repositories with the most stars and 500 repositories with the

most forks on GitHub2. Besides the specific domains, we also built a “General”

domain which only considers the popularity of repositories. For the “General”

domain, we collect 1,000 repositories with the most stars and 1,000 repositories

with the most forks on GitHub regardless of the topics.

Not all the collected repositories are applicable for code-based API recom-

mendation. Some popular repositories do not contain enough code, e.g., only

including documentation. To remove such repositories, we use cloc [5] to scan

the code in each repository and filter out the repositories that 1) have fewer than

10 files or 2) have fewer than 1000 lines of code or 3) have code in Python or

Java but with the ratio less than 10%. The number of projects, number of files,
1https://github.com/topics
2The collection was conducted during April 2021.
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Figure 6.3: Distribution of code lines per function for projects under general

domain (Left: Python, Right: Java).

and average number of code lines for each domain of APIBench-C are shown

in Table 6.2.

As most approaches [43, 66, 90, 139, 177] for code-based API recommenda-

tion require a training set to learn the API patterns or train the models, we split

APIBench-C into a training set and a test set with a ratio of 80% and 20%,

respectively. Note that we do not split a project both into the training set and

test set, but put all the files of the same project into either the training set or

test set, because Alon et al. [9] and LeClair et al. [97] find that code in the same

project usually share the same variable names and code patterns, and splitting

without considering project can cause data leakage. For the approaches requiring

a validation set, we prepare it from the training set.

In order to study the impact of different recommendation points and differ-

ent lengths of functions on the performance of current approaches, we analyze

the average length of functions in each repository. we leverage Kernel Density
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Estimation (KDE) with Gaussian kernels to simulate the distributions. The dis-

tributions of the “General” domain for the Python and Java datasets are depicted

in Figure 6.3. From the figure, we observe that function lengths are almost nor-

mally distributed. Most Python functions contain 5 ∼ 30 lines of code (LOC)

and most Java functions contain 5 ∼ 20 lines of code. For studying the impact of

function lengths, we divide the functions into extremely short functions, functions

of moderate lengths, and extremely long functions according to the confidence

interval under 90% confidence level. The confidence interval can be directly cal-

culated by the standard deviations and means. We first determine the confidence

interval of functions in different domains using standard deviations and regard

the functions with lengths in the confidence interval as functions of moderate

lengths. We regard functions with lengths smaller than the confidence interval

as extremely short functions and functions with lengths larger than the confi-

dence interval as extremely long functions. Note that except for the study on

the impacts of function length, in other experiments we only consider functions

of moderate lengths to guarantee that our collected data is representative. The

detailed thresholds of confidence intervals for distinguishing extremely long and

short functions are illustrated in Table 6.2. We study the impact of function

lengths on the performance of code-based approaches in Section 6.5.3.

In order to study the performance of current approaches on different kinds

of APIs, we convert the source files of each repository into ASTs and extract all

the function calls in them. We label a function call as a standard API or popular

third-party API if it matches one of the APIs collected in Sec. 6.3.1. We label

a function call as a user-defined API if its implementation can be found in the

current repository via import analysis. The average number of API calls per

function, number of standard APIs, and number of user-defined APIs are shown

in columns 6 ∼ 8 of Table 6.2, respectively.
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6.3.3 Implementation Details

In this section, we describe the details of each approach involved in the

benchmark and the metrics for evaluation.

Query reformulation techniques. We choose four popular query refor-

mulation techniques, including Google Prediction Service [59], NLPAUG [113],

SEQUER [16], and NLP2API [170]. The detailed description of each technique

is illustrated in Table 6.3. Google prediction service is included as one of the

most effective approaches in practice, while SEQUER [17] is the state-of-the-art

approach. NLPAUG [113] is considered since it is widely used for query reformu-

lation in many NLP studies [87, 134, 168, 237]. We also include NLP2API [171]

since it differs from major reformulation methods by first predicting the API class

related to the query and then adding the predicted API class into the query.
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Table 6.3: The query reformulation techniques and query-based API recommen-

dation approaches involved in the paper. For tools, the years they were last

updated are listed. The column name “PL” indicates the applicable program-

ming language.

Approach
Category/

Data Source
PL Venue Year

Query Reformulation

Google

Prediction Service [59]

Query expansion,

modification
Any - 2021

NLPAUG [113]
Query expansion,

modification
Any - 2021

SEQUER [16]
Query expansion,

modification
Any ICSE 2021

NLP2API [170] Query expansion Java ICSME 2018

Query-Based API Recommendation

RACK [172]
Official documentation,

Stack Overflow
Java ICSE 2016

KG-APISumm [109]
Official documentation,

Wikipedia
Java FSE 2019

Naive Baseline Official documentation Any - 2021

DeepAPI [60] Official documentation Java FSE 2016

Lucene
[34]

Official documentation Any - 2021

BIKER [76]
Official documentation,

Stack Overflow
Java ASE 2018

Query-based API recommendation approaches. We choose five query-

based API recommendation approaches published by recent top conferences, in-
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cluding KG-APISumm [109], BIKER [76], RACK [172], and DeepAPI [60], along

with a popular search library Lucene [34]. The detailed description of each base-

line is shown in Table 6.3. We reproduce the five approaches based on the repli-

cation packages released by the authors. Besides, we build a naive baseline that

recommends APIs by computing the similarities between queries and API descrip-

tions based on BERTOverflow [94]. The native baseline serves as an indicator

of the basic performance of similarity-based models. We also notice that differ-

ent sources are adopted by the approaches for creating the knowledge base. For

example, the naive baseline and DeepAPI only consider official documentation,

while BIKER and RACK also involve the Q&A forum – Stack Overflow. We

list the knowledge source of each approach in Table 6.3. During implementation,

we do not align the sources of the approaches, since the sources are claimed as

contributions in the original papers. Instead, we design a separate RQ to study

the impact of knowledge sources on the performance of API recommendations.

During studying the impact of query reformulation on the recommendation

performance, we implement all four query reformulation techniques for each of

the six API recommendation baselines because all the baselines do not integrate

query reformulation techniques in the original papers.
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Table 6.4: The code based API recommendation baselines included in this empir-

ical study. For tools we list the year of its most recent update time. The column

name “PL” indicates the applicable programming language.

Approach Representation PL Venue Year

Practical IDE

PyCharm [84] Code tokens Python - 2021

Visual Studio Code [121] Code tokens Python - 2021

Eclipse [35] Code tokens Java - 2021

IntelliJ IDEA [83] Code tokens Java - 2021

Approach in Academia

TravTrans [90] AST Python ICSE 2021

PyART [66]
Token flow

Data flow
Python ICSE 2021

Deep3 [175] AST, DSL Python ICML 2016

FOCUS [139] API Matrix Java ICSE 2019

PAM [42] API sequence Java FSE 2016

PAM-MAX API sequence Java FSE 2016

Code-based API recommendation approaches. We choose four IDEs

and five approaches published at recent top conferences as our code-based API

recommendation baselines. A detailed description of each baseline is shown in
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Table 6.4. For the IDEs and some of the approaches such as TravTrans [90] and

Deep3 [175], they can predict any code tokens besides API tokens. In this chapter,

we focus on evaluating their performance in recommending APIs. Following prior

research [43, 66, 90, 139, 177], we use the training set of APIBench-C to train

each of the approaches in academia for a fair comparison.

PAM [43] is the only context-intensive approach, primarily designed for intra-

project API pattern mining. In this chapter, we also extend the approach to cross-

project recommendation by selecting the best API from projects in the training set

for each test case. The extended version of PAM is named as PAM-MAX, which

indicates the theoretical maximum performance the context-insensitive approach

can achieve.

Evaluation metrics. Since both query-based and code-based API recom-

mendation baselines output a ranked list of candidate APIs, we adopt the com-

monly used metrics in recommendation tasks for evaluation. The Mean Recipro-

cal Rank (MRR), Mean Average Precision (MAP), and Normalized Discounted

Cumulative Gain (NDCG) metrics are widely adopted by previous API recom-

mendation studies [76]. In this study, we also involve a new metric Success Rate.

The Success Rate@k is defined to evaluate the ability of an approach in recom-

mending correct APIs based on the top-k returned results regardless of the orders.

To determine the relevance score in NDCG calculation, we use a relevance score

of 1 if an approach hits the correct API class, and a relevance score of 2 if the

correct API method is hit. Therefore, we can align the performance of class-level

and method-level approaches.
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Table 6.5: The basic performance of query-based API recommendation baselines

without applying any query reformulation techniques at different metrics (Top-

1,3,5,10). Note that we define NDCG as a uniform metric to evaluate class level

and method level together, so the NDCG scores listed in two levels have the same

values. The red numbers indicate the best performance achieved in top-10 results.

Baseline Level
Success Rate@k MAP@k

MRR
NDCG@k

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

RACK Class 0.17 0.30 0.35 0.41 0.17 0.23 0.24 0.24 0.25 0.17 0.24 0.26 0.28

KG-APISumm Class 0.19 0.33 0.40 0.50 0.19 0.25 0.26 0.27 0.28 0.19 0.24 0.27 0.31

Naive Baseline
Class 0.07 0.13 0.16 0.21 0.07 0.10 0.10 0.10 0.11 0.07 0.09 0.10 0.13

Method 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.03 0.03 0.07 0.09 0.10 0.13

DeepAPI
Class 0.19 0.27 0.29 0.30 0.19 0.22 0.23 0.23 0.23 0.17 0.22 0.23 0.24

Method 0.05 0.09 0.10 0.11 0.05 0.07 0.07 0.07 0.07 0.17 0.22 0.23 0.24

Lucene
Class 0.15 0.21 0.24 0.29 0.15 0.17 0.18 0.17 0.19 0.12 0.15 0.16 0.20

Method 0.04 0.08 0.10 0.14 0.04 0.06 0.06 0.06 0.07 0.12 0.15 0.16 0.20

BIKER
Class 0.33 0.51 0.59 0.67 0.33 0.41 0.41 0.39 0.44 0.27 0.32 0.35 0.42

Method 0.12 0.23 0.29 0.37 0.12 0.16 0.18 0.18 0.19 0.27 0.32 0.35 0.42

6.4 Empirical Results of Query Reformulation

and Query Based API Recommendation

In this section, we study the RQ 1-3 discussed in Sec. 6.1 and provide the

potential findings concluded from the empirical experiments. Since currently

no query-based API recommendation approach is specially designed for Python

APIs, we focus on studying query-based API recommendation approaches for

Java.
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6.4.1 Effectiveness of Query-Based API Recommendation

Approaches (RQ1-1)

To answer RQ1, we evaluate the six query-based API recommendation base-

lines listed in Table 6.3 by using the original queries in our benchmark APIBench-

Q. The evaluation results are illustrated in Table 6.5.

Class-level v.s. Method-level. Regarding the class-level recommenda-

tion, as shown in Table 6.5, we can find that BIKER achieves the highest Success

Rate, e.g., 0.67 for Success Rate@10, indicating that BIKER is more effective in

finding the correct API class in the top-10 returned results for 60%∼70% of cases.

Unsurprisingly, the naive baseline shows the worst performance for all the met-

rics. Even so, the naive baseline can successfully predict the correct API class for

around 20% of cases. However, with respect to the method-level recommenda-

tion, all the approaches show obvious declines. For example, the Success Rate@10

of BIKER is only 0.37, decreasing by 44.8% compared to the class-level recom-

mendation. The Success Rates@10 of DeepAPI and Lucene are only around 0.10,

which is far from the requirement of practical development. On average, the ap-

proaches fail to give the exact methods for 57.8% APIs that they give the correct

classes in top-10 returned recommendations. Thus, recommending method-level

APIs still remains a great challenge.

Finding 1: Existing approaches fail to predict 57.8% method-level APIs that

could be successfully predicted at the class level. The performance achieved

by the approaches is far from the requirement of practical usage. Accurately

recommending the method-level APIs still remains a great challenge.

Retrieval-based methods v.s. Learning-based methods. By compar-

ing learning-based methods, such as DeepAPI and naive baseline, with the other

retrieval-based methods, we can observe that learning-based methods achieve rel-
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atively lower performance regarding the Success Rate@10 metric. For example,

on average, retrieval-based methods can accurately predict 46.8% class-level and

25.5% method-level APIs among all the cases in the top-10 returned results, re-

spectively, while learning-based methods can only successfully recommend 25.5%

class-level and 8% method-level APIs. A possible reason may be the insufficient

training data for the learning-based methods in this task domain. Since there are

more than 30,000 APIs from the official documentation, learning-based meth-

ods require a large number of query-API pairs for training. However, even the

largest Q&A forum, Stack Overflow, contains only about 150,000 posts after our

pre-processing, which is not enough for model training.

Finding 2: Learning-based methods do not necessarily outperform retrieval-

based methods in recommending more correct APIs. The insufficient query-API

pairs for training limit the performance of learning-based methods.

Performance in API ranking. From Table 6.5, we find that there exist

obvious gaps between the scores of Success Rate@k and the metrics for evaluating

API ranking, such as MAP@k and NDCG@k. For example, RACK achieves a

Success Rate@10 score at 0.41, but its MAP@10 score is only 0.24. This indicates

that although the approaches are able to find the correct APIs, they cannot well

rank them ahead in the returned results. The low MRR scores, e.g., 0.11 ∼

0.44 for class-level API recommendation and 0.03 ∼ 0.19 for method-level API

recommendation, and NDCG scores also show the poor ranking performance of

the approaches. The results manifest that API ranking is still challenging for

current approaches.

Finding 3: Current approaches cannot rank the correct APIs well, considering

the huge gap between the scores of Success Rate and the other ranking metrics.

153



To sum up, accurately recommending method-level APIs and ranking candi-

date APIs still remain great challenges. Besides, the insufficient data for training

hinders the performance of current learning-based approaches.

6.4.2 Effectiveness of Query Reformulation Techniques (RQ2)

Original queries can be short in length or contain vague terms. Query re-

formulation aims at changing original queries for facilitating downstream tasks.

In this RQ, we explore the impact of query reformulation on the performance of

query-based API recommendation.

We implement the four query reformulation techniques, as listed in Table 6.3,

for the original queries. We name the queries reformulated by query expansion

techniques and query modification techniques as expanded queries and modified

queries, respectively. For each original query, we conduct the reformulation 10

times, producing 10 expanded or modified queries, with the statistics shown in Ta-

ble 6.1. Note that NLPAUG [113] is a comprehensive data augmentation library

for general NLP tasks. We choose the popular word-level insertion and substi-

tution methods designed for manipulating single sentences based on five mod-

els, including BERTOverflow [94], Google News Word2vec [58], Stack Overflow

Word2vec [205], WordNet [125], and Random model, in the library to generate

expanded and modified queries.
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Figure 6.4: The maximum improvement of Success Rate@10 by all query reformu-

lation techniques on class-level query-based API recommendation baselines. We

do not evaluate the performance of RACK and KG-APISumm in NLP2API re-

formulated queries as they are only class-level recommendation approaches while

NLP2API directly give the predicted API classes. Note that we include Google

Prediction Service and SEQUER as expansion techniques here because they ex-

pand the queries in most cases.

The queries output by the query reformulation techniques are not ranked in

order, and may impact the downstream API recommendation performance vari-

ously. To explore the maximum potential effect brought by query reformulation

techniques, we evaluate the API recommendation approaches on each reformu-
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lated query and choose the best result for analysis. We choose the maximum

improvement instead of average improvement for analysis based on the follow-

ing considerations: 1) It is hard to provide a fair comparison between query

reformulation approaches that rank the processed queries such as SEQUER and

query reformulation approaches that do not rank the processed queries such as

NLPAUG. 2) Query modification would change the query semantics [16, 101];

therefore, using average improvement tends to involve wrong queries and bias

the evaluation results. 3) Our goal is to show the potential of current query re-

formulation approaches, and motivate future research on query reformulation to

enhance the performance of API recommendation.

We study the impact of query reformulation on API recommendation from

the following two aspects:

1) whether query reformulation techniques can help predict more correct

APIs;

2) whether query reformulation can improve the API ranking performance.

Influence on predicting more correct APIs

With query reformulation v.s. Without query reformulation. The

Success Rate metric reflects the proportion of the APIs an approach can cor-

rectly predict. The results of implementing the reformulation techniques on API

recommendation approaches are illustrated in Figure 6.4 (class-level) and Fig-

ure 6.5 (method-level). From the figures, we observe that query reformulation

can increase the performance of API recommendation in most cases. Only for

a few cases, the performance drops, which can be attributed to the inefficiency

of some query reformulation techniques. For example, NLPAUG (WordNet) and

NLPAUG (Random) tend to poorly modify the original queries for recommen-

dation, as shown in Figure 6.4 (b) and Figure 6.5 (b). Overall, on average the
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process improves the class-level and method-level recommendation by 0.11 and

0.08, which is a corresponding boost of 27.7% and 49.2% compared with the basic

performance on original queries.
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Figure 6.5: The maximum improvement of Success Rate@10 by all query reformu-

lation techniques on method-level query-based API recommendation baselines.

Finding 4: Query reformulation techniques are quite effective in helping query-

based API recommendation approaches give the correct API by adding an aver-

age boost of 27.7% and 49.2% on class-level and method-level recommendations,
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respectively.

Query expansion v.s. Query modification. By comparing the class-

level and method-level recommendation results of query expansion and query

modification in Figure 6.4 and Figure 6.5, respectively, we observe that all the

query expansion techniques improve the API recommendation performance, but

not all the query modification techniques benefit the recommendation. For ex-

ample, NLPAUG (WordNet) and NLPAUG (Random) generally decrease the

performance of current approaches both in class-level and method-level recom-

mendations. This indicates that query expansion techniques bring more stable im-

provement than query modification techniques. Furthermore, on average, query

expansion techniques improve the performance by 0.13 and 0.10 on class-level

and method-level recommendation, which is much higher than the improvement

of 0.09 and 0.06 achieved by query modification techniques. This also suggests

that query expansion techniques are more effective than query modification tech-

niques.

Finding 5: Query expansion is more stable and effective to help current query-

based API recommendation approaches give correct APIs than query modifica-

tion.

Comparing different query expansion techniques. As shown in Fig-

ure 6.4 (a) and Figure 6.5 (b), NLP2API and NLPAUG (BERT) present the

largest improvement on the performance of query-based API approaches at both

class level and method level. For analyzing the improvement, we use two exam-

ples to illustrate the query expansion results of NLP2API and NLPAUG (BERT),

respectively. In both examples, the most effective approach BIKER fails to pre-

dict the API based on the original queries but succeeds given the reformulated

queries.
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Example 1: Query Expansion

Technique NLP2API

Original Query Returns a new Document in-

stance

Processed Query DocumentBuilderFactory Re-

turns a new Document instance

In the first example, NLP2API expands the query by adding a predicted

API class DocumentBuilderFactory that is related to the original query. With

such an explicit hint, the recommendation approach can narrow down the search

scope and pinpoint the requested API method.

Example 2: Query Expansion

Technique NLPAUG (BERT)

Original Query Java reverse string

Processed Query java reverse character string

In the second example, the query is looking for the API java.lang.StringBuilder.

reverse(), whose description in official documentation is “Causes this character

sequence to be replaced by the reverse of the sequence”. NLPAUG (BERT) adds

a relevant word character to enrich the semantics of the original query.

Comparing NLPAUG (W2V) with NLPAUG (BERT) and NLP2API in Fig-

ure 6.4 and Figure 6.5, we find that the NLPAUG (W2V) is much less effective.

To obtain a possible reason for such a difference, we give the third example be-

low. As shown in this example, we find that NLPAUG (W2V) adds two irrelevant

words into the original query, which negatively impacts the prediction results of

BIKER. This also indicates that contextual embeddings such as BERT are more

effective than traditional word embeddings.
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Example 3: Query Expansion

Technique NLPAUG (W2V-SO)

Original Query Convert from Radians to De-

grees in Java

Processed Query Convert from AV Radians to

Degrees in Long Java

Finding 6: In query expansion, adding predicted API class names or relevant

words to queries are more useful than adding other tokens.

Comparing different query modification techniques. Among all query

modification techniques, NLPAUG (BERT) presents the biggest improvement on

all the baselines at both class level and method level. Example 4 illustrates how

NLPAUG (BERT) modifies words in the original query. In the example, the

original query asks about ways to calculate the time difference between two dates

and the correct API is java.time.Period.between(). The description of the API in

its official documentation is “obtains a period consisting of the number of years,

months, and days between two dates”. However, the word “difference” used in the

original query does not clearly describe the functional request. NLPAUG (BERT)

modifies the word into “months” which exactly appears in the official description.

Based on the modifications, the correct API is recommended.

From the second and fourth examples above, we find that BERT-based mod-

els show great performance on both query expansion and query modification to

help improve the performance of current query-based API recommendation ap-

proaches. This indicates that even though the current data source limits the

performance of these models to directly predict the correct APIs, they can be

used to improve the query quality as query reformulation techniques.
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Example 4: Query Modification

Technique NLPAUG (BERT)

Original Query How do I calculate difference

between two dates

Processed Query how do they I calculate

months difference between

two dates

Finding 7: BERT-based data augmentation shows superior performance in

query modification compared with other query modification techniques.

Influence on the performance of API ranking

In this section, we analyze the impact of query reformulation techniques on

the performance of API ranking. Since the ideal case is that the correct APIs

rank first in the returned results, we use the metric NDCG@1 which considers

both class-level and method-level recommendation performance. We compute the

changes of NDCG@1 scores for the query-based API recommendation approaches

before and after query reformulation. Besides, to focus our analysis on the per-

formance of API ranking instead of the overall recommendation accuracy, the

computation is performed only on the cases that are correctly predicted with and

without query reformulation.

The results are illustrated in Figure 6.6. As can be seen in Figure 6.6 (a),

most query expansion techniques also improve the ranking results of the query-

based recommendation approaches. Among all the query expansion techniques,

SEQUER, NLPAUG (BERT), RACK and NLP2API can improve the ordering

performance relatively better than the others. The biggest improvement of 0.14
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Figure 6.6: The maximum improvement of NDCG@1 by all query reformulation

techniques on query-based API recommendation baselines under original success-

ful cases.

(32% boost) is achieved by NLP2API on the Lucene approach. We also find that

on average query expansion also improves MRR by 0.09 (36% boost) and 0.08

(89% boost) on class-level and method-level recommendation, respectively, which

indicates that the correct APIs are ranked much higher based on reformulated

queries.

According to Figure 6.6 (b), compared with query expansion techniques,

query modification techniques are much less effective in improving the API rank-
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ing performance. For example, the average improvement of NDCG@1 brought

by query modification is 0.01 (4% boost), which is 0.06 (14% boost) for query

expansion techniques. Comparing different data augmentation methods, we also

find that WordNet and random methods tend to negatively impact the ranking

results, leading to 24% and 14% drop in terms of NDCG@1, respectively. The

results indicate that inappropriate query modification will reduce the ranking

performance of the query-based recommendation approaches.

Finding 8: Expanding queries or modifying queries with appropriate data

augmentation methods can improve the ranking performance of the query-based

API recommendation techniques.

To sum up, query reformulation, especially query expansion, can not only

help current approaches recommend more correct APIs, but also improve the

ranking performance. However, the reformulation step is generally ignored by

current studies. Future work is suggested to involve such a step for more accurate

API recommendation.
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Figure 6.7: The maximum and average Success Rate@10 on all baselines when

randomly deleting some words in original queries.

A special Query Modification Method: Word Deletion

In previous subsections, we compare and evaluate different query expan-

sion and modification techniques. They aim at enriching the original queries

by adding, replacing, or modifying some words without deleting words. In this

section, we focus on studying the impact of word deletion, a special query mod-

ification method, on the performance of query-based API recommendation ap-
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proaches. Different from the previous query reformulation techniques which rely

on external data sources, the word deletion method we studied does not leverage

any extra knowledge. Our goal is to explore whether original queries contain

meaningless or noisy words. Specifically, we randomly delete some words from

the original query every time and produce ten different modified queries for one

original query.

The maximum and average Success Rate@10 scores based on the modified

queries are illustrated in Figure 6.7. As can be seen, the average performance

of the query-based API recommendation approaches, denoted as the orange bar,

decreases by 0.05 (13% drop) at the class level and 0.03 (18% drop) at the method

level. The results are not surprising and indicate that most words in the original

queries are helpful for the recommendation. However, the maximum scores, de-

noted as the green bar, all show that word deletion improves the recommendation

performance with an average boost of 38% and 64% for class level and method

level, respectively. The improvement demonstrates that the original queries con-

tain noisy words that can bias the recommendation results, although most of the

words are useful for recommendation.

After checking all cases, we find that word deletion is helpful for successfully

recommending APIs of 545 queries, which maybe attributed to that some noisy

words are removed from the original queries. To understand what kinds of words

are noisy for the accurate recommendation of these 545 queries, we manually

compare the original queries and processed queries. We summarize three possible

situations as below:

1) 349 (64%) queries contain unnecessary or meaningless words.

In Example 5, the phrases “Standard way to” and “in java” are not beneficial

for pinpointing the correct API. Stop word removal also has a limited effect on

eliminating these words.
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Example 5: Word Deletion

Technique Random Deletion

Original Query Standard way to iterate over a

StringBuilder in java

Processed Query Standard way to iterate over a

StringBuilder in java

2) 156 (29%) queries contain too detailed words for explanation.

Example 6: Word Deletion

Technique Random Deletion

Original Query converts a color into a string like

255,0,0

Processed Query converts a color into a string

like 255,0,0

In Example 6, the phrase “like 255,0,0” is used to explain the “string”.

However, such phrases never appear in the official documentation and the specific

number adversely impacts the recommendation results.

3) 34 (6%) queries contain extremely long descriptions.

Based on work [16], most queries have lengths of between one to seven words.

In our manual analysis process, one query is regarded as extremely long if it con-

tains more than 10 words. In Example 7, the words after “while” actually describe

nothing about the task. The long query descriptions can decrease the weight of

useful words in the queries thus confusing API recommendation approaches.

166



Example 7: Word Deletion

Technique Random Deletion

Original Query how to add progress bar to zip

utility while zipping or extract-

ing in java

Processed Query how to add progress

bar to zip utility

while zipping or extracting in java

Finding 9: Original queries raised by users usually contain noisy words which

can bias the recommendation results, and query reformulation techniques should

consider involving noisy-word deletion for a more accurate recommendation.

6.4.3 Data Sources (RQ3)

In RQ1-1, we highlight that insufficient data greatly limits the performance

of current learning-based methods. In this section, we conduct a deep analysis on

the influence of different data sources on the recommendation results. From Ta-

ble 6.3, we can observe that current approaches generally leverage three different

data sources: official documentation, Q&A forums, and tutorial websites. For

analysis, we choose two methods, Lucene and naive baseline, which are flexible

to incorporate different data sources. Specifically, we evaluate the methods on

the part of queries from the tutorial websites collected in APIBench-Q, and the

method training is conducted based on the following knowledge base:

1) only official documentation,

2) only Stack Overflow posts, and

3) both official documentation and Stack Overflow posts.

The experiment results are shown in Figure 6.8. As can be seen, training
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Figure 6.8: The Success Rate@10 of Lucene and Naive Baseline under three data

source settings.

on Stack Overflow posts achieves much better performance than on official docu-

mentation at both class and method levels. For example, Lucene achieves a 29%

boost in class-level and an 169% boost in method-level recommendation when

searching based on Stack Overflow than on official documentation; and the naive

baseline even achieves a 71% boost in class-level and a 602% boost in method-level

recommendation. The advantage of leveraging Stack Overflow posts may be at-

tributed that the discussion on Stack Overflow is more natural and similar to user

queries, compared with the descriptions in the official documentation. Besides,

the extended usage of some APIs is rarely mentioned in official documentation

but is widely discussed in Stack Overflow. An example is used to illustrate the

influence of different data sources.

In Example 8, the query asks about the API for generating an MD5 hash of

a file. However, there is no standard API specially designed to generate the MD5

hash, so Lucene focuses on two words “hash” and “file” for recommendation. But

the official description of ground truth API java.security.MessageDigest.digest()

does not contain the word “file” since it is a general API that not merely handles
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Example 8: Data Source

Baseline Lucene

Original Query Compute the md5 hash of a File

Correct API java.security.MessageDigest.digest(),

java.security.MessageDigest.getInstance()

API Description Completes the hash computation by per-

forming final operations such as padding

Similar SO Post How can I generate an MD5 hash in Java?

files. Under this circumstance, Lucene recommends a more relevant but wrong

API java.nio.file.attribute.FileTime.hashCode(). When involving Stack overflow

posts, as there already exists discussion on how to generate the MD5 hash, Lucene

can easily pinpoint and recommend the correct API in the posts.

The advantage of leveraging Stack Overflow for recommendation is also

demonstrated by the BIKER approach [76], which is the most effective approach

in Section 6.4.1. Our finding is consistent with the claim in the work [76] that

Stack Overflow posts can mitigate the semantics gap between user queries and

official descriptions.

Finding 10: Apart from official documentation, using other data sources such

as Stack Overflow can significantly improve the performance of query-based API

recommendation approaches.
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Table 6.6: The performance of code-based API recommendation baselines at

different metrics (Top-1,3,5,10). All baselines are trained and tested on the

full dataset from “General” domain of APIBench-C except for PyART. Since

PyART takes months to train and test on our full dataset, we randomly sampled

20% of original training and testing testset to evaluate it. The “PL” column indi-

cates the programming language the baselines target. The red number indicates

the best performance.

PL Baseline
Success Rate@k MAP@k

MRR
NDCG@k

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Python

TravTrans 0.45 0.57 0.59 0.62 0.45 0.50 0.51 0.51 0.51 0.45 0.52 0.53 0.54

Deep3 0.21 0.34 0.37 0.43 0.20 0.27 0.28 0.28 0.28 0.21 0.29 0.30 0.32

PyART 0.29 0.38 0.46 0.60 0.29 0.33 0.35 0.37 0.37 0.29 0.34 0.37 0.41

Java

FOCUS 0.01 0.03 0.04 0.06 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.03 0.04

PAM 0.01 0.02 0.03 0.05 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.03

PAM-MAX 0.22 0.32 0.36 0.45 0.22 0.26 0.27 0.28 0.28 0.22 0.27 0.29 0.32

6.5 Empirical Results of Code-Based API Rec-

ommendation

In this section, we study the RQ1 and RQ 4 ∼ 6 discussed in Sec 6.1. To

study RQ1, RQ4 and RQ5, we evaluate the performance of all the code-based

API recommendation approaches on the “General” domain of our benchmark

APIBench-C, as shown in Table 6.2, since the “General” domain includes code

with different topics and can reflect the overall performance of baselines. For

studying the ability of cross-domain adaptation in RQ6, we evaluate the perfor-

mance of the approaches on all the five domains of our APIBench-C.
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6.5.1 Effectiveness of Existing Approaches (RQ1-2)

According to Table 6.4, three approaches for Python and three approaches

for Java are evaluated on the “General” domain of APIBench-C. The results

are depicted in Table 6.6. We can observe that the learning-based method Trav-

Trans obtains the best performance on the Python dataset, achieving 0.62 and

0.54 for Success Rate@10 and NDCG@10, respectively. The results mean that

TravTrans can successfully recommend 62% of APIs in our benchmark and well

predict the API rankings. However, the traditional statistical method Deep3 only

achieves 0.43 and 0.32 for Success Rate@10 and NDCG@10, respectively, while

the pattern-based method FOCUS and PAM achieve less than 0.10 for both Suc-

cess Rate@10 and NDCG@10. This suggests that learning-based methods obtain

superior performance in code-based API recommendation, which is quite different

from query-based API recommendation. The possible reason is that lots of well-

organized public code repositories provide sufficient data for training code-based

API recommendation models.

We also find that FOCUS and PAM show low recommendation accuracy,

with all the metric values lower than 0.1. The low performance is attributed to the

context representation of the approaches. PAM is a context-insensitive approach,

which only mines the top-N APIs that are most likely to be used in the training

set and directly recommends them for each file in the test set; while FOCUS takes

one step further by extracting the APIs in the test set and building a matrix to

match the APIs in the training set. Such coarse-grained context representation

or context-insensitive representation does not well capture the relations between

APIs. PAM-MAX shows the theoretical best performance context-insensitive

methods can achieve. However, the performance of PAM-MAX is still lower than

that of TravTrans and PyART which consider fine-grained code features such as

code tokens and data flows. The results indicate the effectiveness of fine-grained
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Table 6.7: The performance of code-based API recommendation baselines along

with 4 widely used IDEs tested on 500 cases sampled from the testset of all do-

mains in APIBench-C. The “PL” column indicates the programming language

the baselines target. The red number indicates the best performance. The rows

with gray background indicates the performance of IDEs.

PL Baseline
Success Rate@k MAP@k

MRR
NDCG@k

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Python

TravTrans 0.38 0.46 0.48 0.50 0.38 0.42 0.42 0.43 0.43 0.38 0.43 0.44 0.44

Deep3 0.19 0.26 0.31 0.38 0.19 0.22 0.23 0.24 0.24 0.19 0.23 0.25 0.28

PyCharm 0.31 0.42 0.47 0.49 0.31 0.36 0.37 0.37 0.37 0.31 0.38 0.40 0.40

VSCode 0.05 0.15 0.21 0.35 0.05 0.09 0.11 0.13 0.13 0.05 0.11 0.14 0.18

Java

FOCUS 0.02 0.04 0.05 0.07 0.02 0.03 0.03 0.04 0.04 0.02 0.03 0.04 0.04

PAM 0.01 0.02 0.05 0.07 0.01 0.02 0.02 0.03 0.03 0.01 0.02 0.03 0.04

PAM-MAX 0.27 0.38 0.43 0.56 0.27 0.31 0.33 0.34 0.34 0.27 0.33 0.35 0.39

Eclipse 0.28 0.42 0.49 0.60 0.28 0.34 0.35 0.37 0.37 0.28 0.36 0.39 0.42

IntelliJ IDEA 0.42 0.58 0.65 0.67 0.42 0.49 0.51 0.51 0.51 0.42 0.51 0.54 0.55

approaches for code-based API recommendation.

Besides the recent code-based API recommendation approaches, we also com-

pare the widely-used IDEs. Since it is hard to automatically evaluate IDEs’ rec-

ommendation performance, we sampled 500 APIs from the original large test

set of APIBench-C based on the distribution shown in Table 6.2. We then

conduct a manual evaluation by imitating the behaviors of developers on the

500 sampled APIs. We show the results on the sampled test set in Table 6.7.

As can be seen, for Python, Pycharm achieves the Success rate@10 at 0.49 and

NDCG@10 at 0.40, which is truly competitive to the performance of TravTrans,

with Success Rate@10 and NDCG@10 at 0.50 and 0.44, respectively. For Java,

IDEs also show competitive performance compared with the baseline approaches.

The results demonstrate that the widely-used IDEs are generally effective in API

recommendation and far from relying on alphabet orders for recommendation.
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Figure 6.9: The Success Rate@10 of baselines on three categories of APIs at the

“General” domain of APIBench-C.

Finding 11: DL models such as TravTrans show superior performance on

code-based API recommendation by achieving a Success Rate@10 of 0.62, while

widely-used IDEs also obtain satisfying performance by achieving a Success

Rate@10 of 0.5 ∼ 0.6.

6.5.2 Capability to Recommend Different Kinds of APIs

(RQ4)

Exploring which kinds of APIs tend to be wrongly predicted is essential for

understanding the bottleneck of current approaches and for providing clues for

further improvement. In Section 6.3, we have classified all APIs into standard

APIs, popular third-party APIs and user-defined APIs. In this RQ, we study

the performance of current baselines for different kinds of APIs. Specifically, we

evaluate TravTrans, Deep3, FOCUS, PAM and PAM-MAX on the full test set of

the “General” domain, with results shown in Figure 6.9.

As can be seen in Figure 6.9, most approaches achieve a very high Success

Rate@10 on standard APIs. For example, TravTrans even successfully recom-

mends more than 90% of standard APIs in the test set. The approaches also

present relatively good performance for the popular third-party libraries, e.g.,
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TravTrans achieves a Success Rate@10 of more than 0.8. As standard APIs and

popular APIs from third-party libraries are widely used in real-world projects,

data-driven methods can achieve superior performance. However, it is hard for

the approaches to correctly recommend the user-defined APIs as they fail to pre-

dict 35.3% ∼ 91.3% more of user-defined APIs compared to the prediction of

standard APIs.

Finding 12: Although current approaches achieve good performance on rec-

ommending standard and popular third-party libraries, they face the challenges

of correctly predicting the user-defined APIs.

6.5.3 Capability to Handle Different Contexts (RQ5)

As context representation is an important part of the current code-based

API recommendation shown in Figure 6.2, it is worthwhile to study the impact

of different contexts on the performance of current approaches. In this RQ, we

explore the impact of the following two different types of context.

• lengths of functions, which evaluates the capability of current approaches

to handle different lengths of contexts;

• different recommendation points, since different recommendation points af-

fect how much context an approach can be aware of before recommendation.

Capability to handle different lengths of functions. In Section 6.3

and Table 6.2 we classify all functions of APIBench-C into extremely short

functions, functions of moderate lengths, or extremely long functions by sampling

the first 5%, middle 90%, and last 5% according to the distribution of function

lengths. As code-based API recommendation is often based on the context in

a function, the length of the function can represent the length of context that
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Figure 6.10: The Success Rate@10 of baselines on extremely short, normal, and

extremely long contexts at the “General” domain of APIBench-C.

an approach needs to handle. We study the performance of current baselines on

functions of different lengths and show the results of TravTrans, Deep3, FOCUS,

PAM, and PAM-MAX in Figure 6.10.

From Figure 6.10, we find that most baselines share similar performance dis-

tributions on functions of different lengths. They present the best performance on

functions with moderate lengths and suffer from performance drops on extremely

long or short functions. To be more specific, the performance drops by 7.1%

for extremely long functions and 10.6% for extremely short functions on average.

The results indicate that context length can affect the performance of current ap-

proaches. Besides, the approaches are more difficult to recommend correct APIs

for functions of extremely short lengths than those of extremely long lengths.

Finding 13: Context length can impact the performance of current approaches

in API recommendation. The approaches perform poorly for the functions with

extremely short or long lengths, and accurate recommendation for the extremely

short functions is more challenging.

Capability to handle different recommendation points. Similar to the

previous work [139], we first define three locations of recommendation points.
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Suppose that the LOC of a function is n and the total number of APIs used in

the function is m. we define a recommendation point that is on the ath line of

the function and is the bth API in the function locates on

1) the front of function if a/n < 1/4 and b/m < 1/4, or

2) the middle of function if 1/4 < a/n < 3/4 and 1/4 < b/m < 3/4, or

3) the back of function if a/n > 3/4 and b/m > 3/4.

We show an example for illustrating front, middle and back recommendation

point in listing 6.1.

1 public static void main(String args[]) {

2 //first 1/4 part

3 String[] strArray =

4 new <Front Recommendation Point >

5 ...

6 //middle 1/2 part

7 List l = Arrays.<Middle Recommendation Point >

8 ...

9 //last 1/4 part

10 Collections.<Back Recommendation Point >;

11 ...

12 }

Listing 6.1: Example of Recommendation Points

For all the APIs in the test set of the “General” domain, we replace them

with placeholders of the above three types of recommendation points for evalu-

ation. We also remove APIs in extremely long or short functions (according to

the thresholds shown in Table 6.2) to alleviate the influence of function lengths.

We show the results of TravTrans, Deep3, FOCUS, PAM, and PAM-MAX in

Figure 6.11.

From Figure 6.11, we observe that current approaches generally perform

worse at the front recommendation points by achieving an average Success Rate@10
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Figure 6.11: The Success Rate@10 of baselines on three categories of recommen-

dation points at the general domain of APIBench-C.

of 0.316. This is intuitive since there exists less information for current approaches

to leverage at front recommendation points. However, it is worth noting that not

all approaches achieve the best performance at the back recommendation point

which is associated with the most context among all the recommendation points.

The reason may be that the approaches cannot well handle the overwhelming

information in long contexts.

Finding 14: The location of recommendation points can affect the performance

of current approaches. Current approaches perform worst at front recommenda-

tion points due to limited contexts. Some of them also suffer from overwhelming

contexts at back recommendation point.

To sum up, different contexts can affect the performance of current code-

based API recommendation approaches. Among them, the extremely short con-

texts and front recommendation points bring the most challenges for the accurate

recommendation.
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Table 6.8: The cross-domain Success Rate@10 of Python code-based API recom-

mendation baselines. The rows list the domains where three baselines are trained

and the columns list the domains where three baselines are evaluated. The red

number indicates the best performance an approach achieves when trained on one

domain (The largest number in each row). The numbers with gray background

indicate the best performance achieved on a specific testing domain (The largest

number in each column).

Training Domain
TravTrans Deep3 PyART

ML Security Web DL ML Security Web DL ML Security Web DL

ML 0.64 0.58 0.53 0.71 0.42 0.41 0.36 0.48 0.39 0.35 0.40 0.40

Security 0.40 0.54 0.54 0.39 0.31 0.51 0.42 0.29 0.36 0.48 0.47 0.36

Web 0.54 0.63 0.64 0.51 0.33 0.42 0.46 0.31 0.42 0.47 0.50 0.40

DL 0.66 0.58 0.50 0.68 0.44 0.39 0.33 0.44 0.43 0.36 0.38 0.45

General 0.72 0.76 0.78 0.74 0.55 0.65 0.62 0.57 0.44 0.44 0.46 0.46

6.5.4 Adaptation to Cross-Domain Projects (RQ6)

We have divided APIBench-C into five different domains in Section 6.3.

In this section, we aim at studying the adaption capability of current approaches

for cross-domain projects. We train the approaches in one domain and evaluate

them in other different domains. We choose the approaches TravTrans, Deep3,

and PyART, which are all designed for Python, for analysis. We do not involve

the approaches FOCUS, PAM, or PAM-MAX, since they use coarse-grained con-

text representations or context-insensitive feature, and are difficult to incorporate

project-specific information. The first four rows of Table 6.8 list the cross-domain

Success Rate@10 of TravTrans, Deep3 and PyART, respectively.

According to Table 6.8, the approaches trained on one domain generally

perform best on the test set of the same domain. For example, when trained on

data from the “Security” domain, TravTrans, Deep3 and PyART obtain the best
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scores at 0.54, 0.51, and 0.48 on the test set of the same domain, respectively, in

terms of Success Rate@10. However, their performance drops by 2.1% ∼ 43.1%

when recommending APIs from different domains.

Finding 15: Current approaches using fine-grained context representation are

sensitive to the domain of the training data and suffer from performance drop

when recommending cross-domain APIs.

We also analyze the cross-domain performance of the approaches when train-

ing on multiple domains instead of on one single domain. Such analysis is worth-

while to explore whether different domains can complement each other. Then we

train the approaches on the projects from the “General” domain of APIBench-

C and evaluate them on the other four different domains. We show the results

in the last row of table 6.8.

From the table, we can see that the approaches trained on the “General”

domain generally show the best performance when evaluating on different do-

mains. For example, TravTrans trained on the “General” domain achieves the

Success Rate@10 of 0.72, 0.76, 0.78 and 0.74 on ML, Security, Web and DL

domains, respectively, which is significantly higher than the corresponding best

scores obtained by TravTrans trained on single one domain. We observe an aver-

age boost of 14% for the performance of the approaches when trained on multiple

domains than on a single domain. The results indicate that training approaches

on multiple domains greatly improve the recommendation performance.

Finding 16: Training on multiple domains helps the current approaches to

recommend APIs in different single domains, and the performance is generally

better than only training on a single domain.
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6.6 Implications

6.6.1 Query Reformulation for Query-based API Recom-

mendation

In Sec. 6.4.2, we find that query reformulation techniques can not only help

current query-based API recommendation approaches find more correct APIs but

also improve the ranking performance. Based on query reformulation, BIKER can

even achieve a Success Rate@10 of 0.80 at class-level and 0.51 in method-level

API recommendation. The results demonstrate that query quality has a great im-

pact on the recommendation results and suggest that query reformulation should

become a common pre-processing technique used before query-based API rec-

ommendation. We also discover that some query reformulation techniques, such

as adding predicted API class names or relevant words, can improve the perfor-

mance of query-based API recommendation approaches. However, to the best of

our knowledge, few studies have considered integrating these techniques, which

could be one major reason that current approaches achieve limited performance.

By implementing a random deletion strategy, in Sec. 6.4.2 we find that user

queries usually contain noisy words, which can bias the recommendation results.

We summarize three kinds of cases in which a query contains noisy words. How-

ever, there exists very little work that aims to detect and eliminate irrelevant

words for recommendation systems, which poses a great challenge for current

approaches to be robust when handling various user queries. Although a ran-

dom deletion strategy reduces the overall performance on average, the positive

improvement of deletion on some specific words indicates the potential benefits

of noisy word deletion.
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Implication 1: Current query-based API recommendation approaches should

be integrated with query reformulation techniques to be more effective.

6.6.2 Data Sources for Query-based API Recommenda-

tion

In Sec. 6.4.1, we point out that current query-based API recommendation

approaches face the problem of building a comprehensive knowledge base due to

the lack of enough data such as query-API pairs. In Sec. 6.4.3, we further discover

that there is a semantic gap between user queries and descriptions from the official

documentation. Both the lack of enough data for knowledge base creation and

the semantic gap increase the difficulty of accurate API recommendation based on

only official documentation. Such challenges can not be easily solved by improving

learning-based models or pattern-based models. One effective way to mitigate the

difficulty is to involve Stack Overflow posts, as analyzed in Section 6.4.3. While

Stack Overflow is only one type of data source, our analysis demonstrates that

adding appropriate data sources can improve the performance of query-based API

recommendation approaches.

Implication 2: Apart from query reformulation, adding appropriate data

sources provides another solution to bridge the gap between queries and APIs.

6.6.3 Low Resource Setting in Query-based API Recom-

mendation

In Section 6.4.1, we find that current learning-based methods do not neces-

sarily outperform traditional retrieval-based methods. We attribute the results to
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the limited data such as query-API pairs in the query-based API recommendation

task, which is a low-resource scenario [24, 67]. We also discover that pre-trained

models such as BERT show superior performance in query reformulation in Sec-

tion 6.4.2. This indicates that current pre-trained models can implicitly mitigate

the semantic gap between user queries and official descriptions of APIs. Future

work is suggested to explore how to make the best use of pre-trained models for

query-based API recommendation based on limited available data.

Implication 3: Few-shot learning with powerful pre-trained models can be a

solution to further improve the performance of query-based API recommenda-

tion.

6.6.4 User-defined APIs

In Section 6.5.2, we find that current code-based API recommendation ap-

proaches, no matter pattern-based or learning-based models, all face the challenge

of recommending user-defined APIs. User-defined APIs have become the major

bottleneck to further improve the performance of current code-based API rec-

ommendation approaches. However, as user-defined APIs usually do not appear

in the training set, they can hardly be learned by machine learning methods

or be mined by pattern-based methods. A possible solution used by current ap-

proaches [76, 91] is to regard the API as a code token and predict the token based

on previous contexts. However, this solution also fails if the API token never ap-

pears in previous context. Thus, accurately predicting user-defined APIs should

be one major direction of code-based API recommendation in future work.
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Implication 4: User-defined API recommendation is one major bottleneck

for improving the performance of current code-based API recommendation

approaches and remains unsolved.

6.6.5 Query-based API Recommendation with Usage Pat-

terns

In this chapter, we only focus on testing whether an approach can recommend

the correct APIs, but we believe developers can always benefit more from detailed

information about how to use the recommended APIs. A common method is to

provide summaries such as the signature and constraints extracted from official

documentation along with the recommended APIs. For example, KG-APISumm

proposed by Liu et al. [109] provides a detailed summary of the recommended API

class. However, official documentation sometimes cannot provide enough usage

information about an API, which may cause API misuse. For instance, a fresh

developer may search “how to read a file” in Python and the recommended API

should be fileObject.read(), but without sufficient experience to use file operations,

the developers may forget to close the file after reading it.

A possible solution to complement official documentation and avoid possible

API misuse is to provide usage patterns from other developers. In the above

example, a common usage pattern open(), fileObject.read(), fileObject.close() can

prevent dangerous file operations. As there exist some pattern mining approaches

on code, we can combine query-based API recommendation with code-based pat-

tern mining methods for better providing the usage pattern.
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Implication 5: Code-based API recommendation approaches can provide us-

age patterns to enrich the results returned by query-based API recommendation

approaches.

6.6.6 Implications for Different Group of Software Prac-

titioners

In this subsection, we conclude some implications for different group of soft-

ware practitioners.

Software Researchers. For query-based API recommendation, we con-

clude that query reformulation techniques can bring significant improvement for

current API recommendation approaches in Section 6.4.2. Despite of the effec-

tiveness of query reformulation, it still remains unexplored on the factors that

impact the performance of the technique. We believe a comprehensive study of

query reformulation can be an important future direction for API recommenda-

tion. For code-based API recommendation, we find that the major bottleneck for

current approaches is user-defined API recommendation in Section 6.5.2. We sug-

gest software researchers to focus more on the user-defined API recommendation

for improving the practicability of API recommendation approaches.

Software Developers. As illustrated in Section 6.4.3, there exists a knowl-

edge gap between official documentation and user queries, which limits the perfor-

mance of current query-based API recommendation approaches. For developers

who design new APIs, we believe adding more practical examples in the documen-

tation or using more natural language descriptions would mitigate the knowledge

gap. In Section 6.4.2, we find that current queries sometimes contain unnecessary

information that confuses the API recommendation approaches. For developers
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who search for APIs, we believe that creating a query by using more professional

words instead of unnecessary long descriptions can facilitate the search process.

6.7 Threat To Validity

In this section, we describe the possible threats we may face in this study

and discuss how we mitigate them.

6.7.1 Internal Validity

Our research may face the following internal threats:

Baseline Re-implementation. In this chapter, we re-implemented several

baselines according to the code or replication packages released by their authors.

However, as some baselines are not primarily designed for API recommendation,

we slightly modified their code and adapted them into our task and our bench-

mark. For example, we limit the prediction scope of code completion baselines to

only API tokens. Such adaptations may cause the performance of baselines to be

slightly different from those in the original papers. To mitigate this threat and

validate the correctness of our re-implementation, we refer to some related work

that cites these baselines and confirm our experiment results with them.

Data Quality. We build APIBench-Q by manually selecting and labeling

API-related queries from Stack Overflow and some tutorial websites. This process

involved some human checks so that some subjective factors may influence the

quality of our datasets. To mitigate this threat, we involve at least two persons to

label one case and let one of our authors further check if the previous two persons

give different opinions to the case. We also implement some rules to automatically

filter out the cases that are explicitly unrelated to API recommendation.

Identification of User-defined APIs. We utilize commonly used static
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import analysis to analyze the import statements in each source file and try

to identify the implementation of imported libraries. To guarantee the quality

of our benchmark dataset, we regard an API as a user-defined API only if we

can find its implementation. However, since the completeness of static import

analysis is still an open challenge, there may exist several user-defined APIs that

cannot be identified. We will further refine the dataset when more advanced

static important analysis tools are available.

6.7.2 External Validity

Our research may face the following external threats:

Data Selection. To the best of our knowledge, APIBench is the largest

benchmark in API recommendation task. We try to make it more representa-

tive by selecting real-world code repositories from the most popular domains at

GitHub and real-world queries from the largest Q&A forum StackOverflow ac-

cording to several developer surveys [82, 192]. All findings in this empirical study

are based on this dataset. However, there may still be slight differences when

adapting our findings into other domains and datasets that we do not discuss in

this chapter.

Programming Language. Our study focuses on the API recommenda-

tion for Python and Java, and the findings included in this study may not be

generalized to other programming languages. However, we believe the impacts of

programming languages should not be significant as Python and Java are the most

representative dynamically typed and statically typed languages, respectively.
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6.8 Conclusion

In this chapter, we present an empirical study on the API recommendation

task. We classify current work into query-based and code-based API recommen-

dation and build a benchmark named VLibs to align the performance of different

recommendation approaches. We conclude some findings based on the empirical

results of current approaches.

For query-based API recommendation approaches, we find that 1) recom-

mending method-level APIs is still challenging; 2) query reformulation techniques

have great potential to improve the quality of user queries thus they can help cur-

rent approaches better recommend APIs. What’s more, user queries also contain

some meaningless and verbose words and even a simple word deletion method can

improve the performance; 3) approaches built upon different data sources have

quite different performances. Q&A forums such as Stack Overflow can greatly

help mitigate the gap between user queries and API descriptions.

For code-based API recommendation, we emphasize the superior perfor-

mance of current deep learning models such as Transformer. However, they still

face the challenge of recommending user-defined APIs. We also find different con-

texts, such as different locations of recommendation points and context length,

can impact the performance of current approaches. Besides, current approaches

suffer from recommending cross-domain APIs.

Based on the findings, we summarize some future directions for improving

the performance of API recommendation. For query-based approaches, we en-

courage researchers to integrate query reformulation techniques with query-based

API recommendation approaches to obtain better performance, but how to choose

the best query reformulation strategy still remains as future work. We also be-

lieve some few-shot learning methods and different data sources can bridge the

gap between user queries and knowledge base under low-resource scenarios. For
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code-based approaches, we recommend future work focusing on improving the

performance of user-defined API recommendation and training the approach on

multiple domains instead of a single domain.

Apart from the findings and implications concluded in this chapter, we also

identify some future work that can be conducted for API recommendation. First,

our paper focuses on benchmarking and provides an objective evaluation for all

approaches. However, some approaches provide summaries for the recommended

APIs that are not assessed in our study. For such approaches, subjective evalu-

ation such as a developer survey can be conducted to verify the quality of rec-

ommended API descriptions and usage information. Future work could consider

complementing our work. Second, our empirical results show that query refor-

mulation techniques are quite effective in improving the query quality. As this

chapter mainly focuses on API recommendation, we do not discuss different query

reformulation techniques comprehensively. Future work can focus on studying the

query reformulation techniques for facilitating downstream tasks.
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Chapter 7

Source-level Python Run-time

Environment Conflict Detection

It is beneficial for developers to check the correctness of their configuration

files before publishing them to the users. Current version-level run-time environ-

ment conflict detection approaches can only check the errors in the configuration

files but ignore the incompatibility between the configuration file and the soft-

ware. In this chapter, we focus on checking the potential run-time environment

conflicts caused due to the incompatibility between the built run-time environ-

ments and the software. The main points of this chapter are as follows. (1) We

study the source-level configuration issues in the PyPI ecosystem systematically.

(2) We propose an automatic approach PyConf that incorporates Installation

Check, Dependency Check and Import Validation to detect configuration issues

for Python projects. (3) We build a benchmark VLibs that includes 131,720

library releases to facilitate the evaluation of automatic dependency inference

approaches.
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7.1 Introduction

Python has experienced a remarkable 22.5% year-over-year surge in usage,

positioning it as the second most favored programming language within the

GitHub open-source community [56]. The popularity of Python is primarily es-

tablished by its flexible and readable syntax, making it easier for developers to

maintain complicated software. Nowadays, the success of Python owes much to

its thriving and supportive community, which plays a pivotal role in fostering its

prosperity. The accessibility and utility of Python are further amplified by the

public libraries available on the Python Package Index (PyPI) platform. With

over 470 thousand Python projects and more than 4.7 million releases [41], PyPI

serves as the primary repository for numerous third-party libraries. By encapsu-

lating reusable functionalities with APIs in third-party libraries, developers can

easily build complicated applications.

In the dynamic ecosystem of third-party libraries hosted on PyPI, multiple

releases of the same library are often available, distinguished by version numbers.

To use a specific library release, developers must specify both the library’s name

and the desired version. Utilizing the official library management tool, pip [39],

for PyPI, developers can effortlessly retrieve and install the intended release based

on the associated configurations. Once installed in the current run-time environ-

ment, the library release can be accessed through import statements within the

source code. Compared with static programming languages such as Java and

C/C++, third-party library usage in Python is much simpler and requires no

compilation. However, even with this streamlined approach, the presence of any

configuration issues in the third-party libraries can lead to potential run-time

failures.

Numerous research efforts [11, 150, 193, 213, 214, 215] are dedicated to de-

tecting potential dependency conflicts among diverse third-party libraries during
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requirements.txt:

torch>=1.3.0
gym>=0.9.7
numpy>=1.10.4
filelock
pillow

pfrl/wrappers/monitor.py:

...
from gym.wrappers import Monitor as _GymMonitor
...

Installed Dependencies:

torch==1.13.1
gym==0.26.2
numpy==1.21.6
filelock==3.12.2
pillow==9.5.0

AttributeError: module 'gym.wrappers'
has no attribute 'Monitor'

Figure 7.1: A configuration issue of the third-party library PFRL.

the constraint-solving process. As a library may rely on others, a dependency

graph can be established to represent the interconnected libraries with nodes and

version constraints with edges. Based on the dependency graph, these approaches

use SMT solvers to determine an available version assignment for each library. In

addition, some other work [22, 71, 241] develops knowledge graphs for third-party

libraries on PyPI and then builds run-time environments for new Python projects

based on the knowledge graphs.

The aforementioned version-level approaches have been established and eval-

uated under the assumption that the configurations of existing Python projects

are accurate, as they solely examine version constraints in configurations without

inspecting the source code. However, we have discovered instances where this

assumption does not hold, and we present an illustrative example in Fig. 7.1.

In this example, the third-party library PFRL [45] implements several well-known

reinforcement learning algorithms. It records all required third-party libraries in

the requirements.txt file. During installation, the library manager pip resolves

the constraints in requirements.txt and installs the latest available version for

each library. A widely-used library, gym, is among the dependencies specified in

requirements.txt. The configuration for gym merely requires a version newer

than 0.9.7. As a result, pip installs the latest version, 0.26.2, into the project as
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it satisfies the constraint1. Since version 0.26.2 of gym does not conflict with other

libraries in requirements.txt, it passes the regular conflict check and becomes

part of the run-time environment. However, when running the code in PFRL, an

AttributeError is raised as the Monitor class from gym.wrappers in the file

pfrl/wrappers/monitor.py cannot be found. This issue is widely discussed on

PFRL’s GitHub issues [198] and Stack Overflow [96]. The root cause is that gym

removed the Monitor class starting from version 0.23.0. Since this change only

affects the source code and is not detected by version-level checks, the problem re-

mains unnoticed. This scenario highlights the inadequacy of version-level checks

in ensuring the compatibility of source code and run-time environments. To ad-

dress this problem, the library gym should be constrained to versions gym>=0.9.7,

gym<0.23.0. However, predicting such changes in gym during the development

of PFRL is not feasible since version 0.23.0 of gym had not been released at that

time. Therefore, the configurations in Python projects can be outdated despite

being correct at the release time.

The above-mentioned challenge of version-level dependency checks may pose

big threats to the development and evaluation of automatic dependency inference

approaches that heavily depend on PyPI library configurations. To address this

challenge, we first comprehensively study the potential configuration issues in the

PyPI ecosystem (RQ1) and then construct a source-level compatible dataset to

facilitate the evaluation of existing automatic dependency inference approaches

(RQ2).

To answer RQ1, we introduce PyConf, an automatic approach designed to

identify both version-level and source-level configuration issues in third-party

libraries on the PyPI platform. PyConf incorporates three distinct checks,

namely Installation Check, Dependency Check and Import Validation, to detect
1The installation was performed in July 2023.
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configuration issues during the setup stage, packing stage and usage stage of

third-party libraries, respectively. Through an analysis of PyConf’s results, we

identify 183,864 (54%) library releases among the 338,069 checked releases that

exhibit potential configuration issues. Notably, 68% of these issues are newly

detected by the source-level check, i.e., the Import Validation. We identify 15

kinds of configuration issues based on the run-time error types and classify them

into three major categories: Incomplete Configuration, Incorrect Configuration

and Incorrect Code. For RQ2, we construct a benchmark, VLibs, consisting of

131,720 library releases that successfully pass all three checks implemented by

PyConf. We then evaluate the correctness of the inferred run-time environ-

ments by the three state-of-the-art automatic dependency inference approaches

Pipreqs [156], Dockerizeme [71] and PyEGo [241], respectively.

Key Findings. Based on a thorough analysis of the experiment results

pertaining to RQ1 and RQ2, we have summarized the following key findings:

1) Developers tend to provide inadequate configurations for the usage of

libraries, especially for Python versions and direct imports in source code.

2) Developers make mistakes in writing configurations since 19% of config-

uration issues are incorrect configurations. What’s more, about 50% incorrect

configuration issues can only be detected by Import Validation, indicating the

importance of source-level validation.

3) Current automatic dependency inference approaches fail to infer about

35% of Python projects. Among the failures, the majority are attributed to

dependency conflicts and the absence of required libraries in the generated con-

figurations.

Based on the findings, we conclude two implications for the developers of

third-party libraries on the PyPI platform and the future research of automatic

dependency inference. Specifically, we find that “less is more”, i.e., fewer depen-
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dency constraints can lead to more configuration errors, so we suggest developers

avoid employing open constraints such as version>1.0, but set complete and

strict dependency constraints limiting the versions of dependencies to the veri-

fied ones before the release dates. For future research on automatic dependency

inference, we suggest researchers add more conflict checks to avoid generating

incorrect configurations.

Contributions. To sum up, we list our contributions as follows.

• To the best of our knowledge, we are the first to study the source-level

configuration issues in the PyPI ecosystem systematically.

• We propose an automatic approach PyConf that incorporates Installation

Check, Dependency Check and Import Validation to detect configuration

issues for Python projects.

• We build a benchmark VLibs that includes 131,720 library releases to fa-

cilitate the evaluation of automatic dependency inference approaches.

7.2 Methodology

In this section, we introduce how we collect the metadata of PyPI libraries

and how PyConf works to detect potential configuration issues.

7.2.1 Data Preparation

As of July 2023, the PyPI ecosystem boasts a substantial collection of ap-

proximately 471,000 libraries, encompassing over 4,712,000 releases [41]. It is

quite difficult to perform a comprehensive analysis of all the libraries and their re-

leases on a single machine. To address this challenge, we employ a well-established

strategy used in prior studies [22, 71, 241] and collect data from the top 10,000
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Figure 7.2: The overview of PyConf.

most popular libraries, as reported by libraries.io [200]. Libraries with only one or

two releases, which generally do not necessitate automatic version determination,

are excluded from our analysis, resulting in a dataset comprising 8,282 libraries

and 338,069 releases2. The first column of Table 7.1 provides statistics on these

libraries. In accordance with Python Enhancement Proposal (PEP) 508 [23],

names of PyPI libraries are case-insensitive, and distinctions between dash, dot,

and underscore are disregarded. To ensure consistency and avoid multiple names

for the same library, we normalize all library names to lowercase and replace all

dots and underscores with dashes.

Initial Python Version Assignment. As mentioned in Chp. 2, a smooth

pip installation requires the correct Python version. Hence, we begin by assign-

ing an initial Python version to each library release in the dataset. To acquire

the Python version constraints for each library release, we examine the classi-

fiers set by developers on the project web page of the PyPI platform. PyPI

offers a set of classifiers for developers to denote the compatibility status of li-

brary releases. Among these classifiers, those categorized under the programming
2Data was collected in November 2022.
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Table 7.1: The statistics of the PyPI libraries in our study. “Installed” and “Val-

idated” indicate the libraries passing the Dependency Check and all checks of

PyConf, respectively. #Stars indicate the number of GitHub Stars of libraries.

#Stars, #Classes, #Functions and #Imports are shown in the format of Avg/-

Max/Min. The data of #Stars is calculated per library and others are calculated

per release. Note that the source code data in the first column is not available as

the libraries are not installed.

All Installed Validated (VLibs)

#Libraries 8,282 7,830 5,371

#Releases 338,069 303,377 131,720

#Modules - 368,304 144,250

#Stars (k) 2.3/159.0/0.0 - -

#Classes (k) - 0.3/88.1/0.0 0.2/21.9/0.0

#Functions (k) - 1.5/261.4/0.0 0.6/50.3/0.0

#External Imports - 49/2207/0 23/386/0

#Lines of Code (k) - 18.2/7455.3/0.0 6.5/551.3/0.0

language category specify the Python versions with which a library release is

compatible. For instance, the developers of library release pipreqs-0.4.13 add

classifier Python::3.7 in the web page [144], indicating that pipreqs-0.4.13

can be used in Python version 3.7. By collecting such classifiers from the web

pages, we determine the latest Python version applicable to each library release

as the initial Python version.

The initial Python versions inferred from classifiers provide relatively reliable

insights into developers’ intentions regarding library usage. However, setting

classifiers is not mandatory when developers publish a new release on PyPI,

so we cannot assign initial Python versions for certain library releases lacking
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appropriate classifiers. To tackle this problem, we collect the release dates of

such library releases and select the latest Python version released 180 days before

the release dates of the library releases. This assignment may not be accurate

but can be fixed by PyConf when the installation fails.

7.2.2 PyConf: Detecting Configuration Issues

PyConf checks both version-level and source-level configuration issues for

libraries in the PyPI ecosystem. We present the overview of PyConf in Fig. 7.2.

PyConf conducts three checks, namely Installation Check, Dependency Check

and Import Validation, to discover potential configuration issues in the setup

stage, the packing stage and the usage stage of libraries, respectively. The In-

stallation Check verifies the availability of the library releases and detects fatal

configuration errors, such as dependency conflicts, that even prevent successful li-

brary installation. The Dependency Check verifies the consistency of the installed

environment with the specified configuration, correctness of the library metadata

and syntactic correctness of the source code, which are threatened by mistakes

made during the packing stage before a library is published. The Import Vali-

dation verifies the compatibility of the source code with the installed run-time

environment to discover run-time errors during the usage of libraries.

Installation Check. Upon receiving the name and version of a library,

PyConf initiates an empty run-time environment within a docker container us-

ing the initial Python version. The library release is then installed using the

command pip install <library> == <version>. However, due to certain ini-

tial Python version assignments being estimated based on release dates, and the

existence of erroneous configurations authored by developers, some library re-

leases may fail to be installed under the initial Python version. For libraries with

Python version constraints, PyConf retries the installation using another valid
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Python version. For libraries lacking such constraints or failing on all versions

indicated by the constraints, PyConf adopts a heuristic searching approach to

minimize overhead. Specifically, PyConf first copies the Python version of other

successfully installed releases of the same library as different releases of the same

library require similar run-time environments. In cases where the installation still

fails, PyConf attempts commonly used versions such as 2.7, 3.6, and 3.10. The

heuristic searching strategy can handle most installation failures and PyConf re-

sorts to trying all possible Python versions only when the heuristic search proves

unsuccessful. Therefore, the installation check fails only when there is no compat-

ible Python version for the given library release or when there are critical errors

in applying the configurations provided by developers. This indicates that the

library release is not available for use under any Python version.

Dependency Check. During the installation process of a library release

via pip, three types of data are downloaded into the system:

1) Metadata. The metadata is stored in the format of a folder named

<package> -<version>.dist-info. To analyze this metadata, PyConf focuses

on the top_level.txt file, which enumerates all modules that can be imported

from the library release.

2) Run-time environment. PyConf captures information regarding the in-

stalled run-time environment, including the versions of installed third-party li-

braries and the version constraints of the required third-party libraries, via the

pipdeptree [202] tool. PyConf then proceeds to resolve the version constraints

of the required third-party libraries and cross-checks them against the installed

versions to detect potential inconsistencies.

3) Source files. To validate the syntactic correctness of the source code,

PyConf locates source folders or files based on the modules collected from the

metadata. It employs the ast module [40] to parse all source files and identifies
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the presence of any syntax errors.

Algorithm 4 Import Block Analysis
Input: Abstract Syntax Tree (AST) of the current source file, ast;

Output: Import blocks, B; Block-free Imports, D;

1: function getImportBlocks(block) ▷ The main function

2: importBlocks← {}; subBlocks← divideBlock(block)

3: for sb ∈ subBlocks do

4: curIB ← {}; curBFI ← {}

5: for node ∈ sb.importnodes do

6: if isIforTryOutside(node) then

7: bNode← getOutmostIforTryNode(node)

8: curIB ← curIB + {getImportBlocks(bNode)}

9: else

10: curBFI ← curBFI + {node}

11: end if

12: end for

13: curB ← curIB + {curBFI}

14: importBlocks← importBlocks + {curB}

15: end for

16: return importBlocks

17: end function

18: blocks ← { }; D ← { }; B ← { } ▷ The overall algorithm

19: for node ∈ ast.importnodes do

20: if isIforTryOutside(node) then

21: blocks← blocks + {getOutmostIforTryNode(node)}

22: else

23: D ← D + {node}
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24: end if

25: end for

26: for b ∈ blocks do

27: B ← B + {getImportBlocks(b)}

28: end for

Import Validation. Successful installation and consistent run-time en-

vironment do not necessarily guarantee the smooth usage of the library, since

the execution still fails if some external import requirements in the source code

cannot be fulfilled. PyConf conducts Import Validation to detect these issues.

PyConf leverages a finite state machine (FSM) with four states to guide the

process of Import Validation, as shown in step III of Fig. 7.2.

1) Collect Imports and Local Modules (STATUS 0→ STATUS 1/2). Initially,

all library releases enter STATUS 0 if PyConf can successfully locate their

source code in Dependency Check. For library releases with STATUS 0, PyConf

collects import statements in the source code. Import statements in the source

code can be of two types: internal imports, which introduce local modules within

the project, and external imports, which require third-party libraries from the

run-time environment. PyConf employs different approaches to handle the two

kinds of import statements.

Local modules are required to distinguish internal imports and external im-

ports. Different source files also have different available local modules. For each

source file in the library release, PyConf collects the names of all Python source

files and the sub-directories with __init__.py file in the same directory, as well

as image files such as .so and .pyd, as local modules. Next, PyConf checks all

import statements in the source file and compares the imported module with the

local modules to identify internal imports. Since internal imports are not perti-

nent to the run-time environment, they are excluded from the Import Validation
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If con1:
    import a
    import b
    try:
        import c
    except Error1:
        import d
        import e
else:
    import f
    import g

OR

the entire try statement

import a
import bAND OR

the entire if statement

import f
import g

the false branch

the true branch

import c

the try branch

import d
import e

the except branch

Figure 7.3: An example of block analysis for external imports.

process. The remaining import statements are regarded as external imports. Py-

Conf executes external imports in the installed run-time environment to detect

potential compatibility issues.

If the above process succeeds under Python 3, the library release enters

STATUS 1. Otherwise, PyConf retries the similar process under Python 2 with

some small adaptations to Python 2 syntax. The library release analyzed under

Python 2 enters STATUS 2.

2) Analyze Import Blocks (STATUS 1/2 → STATUS 3). Developers may

handle different run-time environments by utilizing branch statements, such as

if-else and try-except, to wrap the import statements in the code. We term

this practice as multiple version control. In such scenarios, not all imports are

executed during program execution, making it essential to discern whether fail-

ures of certain imports indicate configuration issues. To address this challenge,

PyConf introduces import block analysis, which effectively categorizes imports

under multiple version control into import blocks. The main algorithm for import

block analysis is detailed in Alg. 4. Additionally, Fig. 7.3 provides an illustrative

example to enhance comprehension of import block analysis.

The import block analysis takes the abstract syntax tree (AST) of the cur-

rent source file as input and generates two outputs: import blocks B, which are
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sets of imports grouped based on the branch statements, and block-free imports

D, which are import statements unaffected by any branch statements. Specifi-

cally, PyConf collects all import nodes present in the AST and verifies whether

they are enclosed within branch statement nodes (line 20). Import nodes not

associated with branch statements are grouped as block-free imports (line 23).

For import nodes associated with branch statements, PyConf identifies the out-

ermost branch statement node to facilitate further analysis (line 21). In the code

of Fig. 7.3, all import statements are included in a if-else statement, so there

is no block-free import.

To accommodate nested branch statements, such as the try-except state-

ment within the true branch of the if-else statement in Fig. 7.3, PyConf

adopts a recursive approach (lines 1∼17) to handle them, where the branch state-

ment is divided into different blocks based on the branches (line 2). Each block is

treated as a new virtual source file, and PyConf recursively gathers the current

import blocks and block-free imports for the given branch (lines 3∼15). These

current import blocks and block-free imports are then consolidated into a larger

import block representative of the entire branch. This recursive process contin-

ues until all branch statements are effectively handled. The generated import

blocks may exhibit nested structures due to this recursive nature. For instance,

in Fig. 7.3, PyConf partitions the if-else statement into two blocks, high-

lighted in green. It then recursively handles statements in the two blocks. In

the true branch block, PyConf collects all current block-free imports and the

try-except statement as two sub-blocks, highlighted in orange. The try-except

block is further processed to different sub-blocks, highlighted in yellow, based on

the branch try and except.
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7.3 Experiment Setup

In this section, we introduce the built benchmark VLibs, the baselines in

the evaluation and the experiment environment.

Benchmark. We include the 5,371 libraries and their 131,720 releases that

pass the three checks of PyConf in our benchmark VLibs. As PyPI libraries

themselves are Python projects and have dependencies, verified PyPI libraries can

form a good benchmark to evaluate the effectiveness of automatic dependency

inference approaches. We show the statistics of VLibs in the last column of

Table 7.1.

Baselines. We select three state-of-the-art automatic dependency inference

approaches as our baselines:

Pipreqs [156]: It generates requirements.txt files for Python projects based

on the import statements in code.

Dockerizeme [71]: It generates Dockerfile files for Python projects by scan-

ning the source code. The Dockerfile files contain dependencies of the Python

version and third-party libraries.

PyEGo [241]: It generates all information required to set up the run-time

environments, including the Python version, the third-party libraries and system

libraries. It utilizes knowledge graphs to store the information of PyPI libraries

and invokes SMT solvers to solve the most proper version for each dependency.

Metric. We use Pass Rate to evaluate the performance of automatic de-

pendency inference approaches. Pass Rate is defined as the rate of library releases

whose run-time environments inferred by the approach pass all the checks of Py-

Conf.

Environment. To avoid potential attacks on the host machine, PyConf

utilizes Docker [78] to install run-time environments. We re-implement all base-

lines using the replicate packages provided by the authors. We conduct all experi-
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ments on a Linux machine (Ubuntu 20.04 LTS) with a 112-core Intel(R) Xeon(R)

Platinum 8276 CPU @ 2.20GHz and 256GB memory.

7.4 Result Analysis

7.4.1 Research Questions

We focus on the following research questions:

• RQ1: What are the configuration issues detected by PyConf?

• RQ2: How effective are existing automatic dependency inference approaches

on VLibs?

To answer RQ1, we run PyConf on the 8,282 libraries and their 338,069

releases, as depicted in the first column of Table 7.1, to detect configuration is-

sues. During the Installation Check and Import Validation, PyConf executes the

libraries’ code, capturing and logging run-time errors like ImportError encoun-

tered during the execution for analysis. In Dependency Check, PyConf collects

library releases that violate the pre-defined rules in Sec. 7.2. To summarize po-

tential configuration issues, we categorize and group the reported run-time errors

based on their types. We then review the error messages to identify recurring

issue patterns. Regarding RQ2, due to the time-consuming nature of building

run-time environments for all baselines using the complete benchmark, we opted

to sample 5,000 library releases from VLibs for analysis. To prevent potential

bias during sampling, we initially select one release from each library, excluding

a few that do not require configurations in VLibs, ensuring representation from

all libraries. We then randomly sample the remaining releases to reach a total

of 5,000 releases in the sample dataset. We run the three baselines on the sam-

pled dataset and calculate the Pass Rates of the output configurations for each
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baseline. Moreover, we conduct a comprehensive analysis to identify the primary

reasons behind the failure of baselines to provide accurate configurations.

7.4.2 RQ1: Configuration Issues

Overall Results on Top Popular PyPI Libraries. We present the statis-

tics of libraries that successfully pass the Dependency Check and all three checks

of PyConf in the second and last columns of Table 7.1, denoted as installed li-

braries and validated libraries, respectively. Installed libraries, which are verified

by PyConf along with the specified run-time environments, can be correctly set

up and are available to users without encountering fatal errors. We observe that

there are 7,830 (95%) installed libraries with 303,377 (90%) releases, indicating

that the setup configurations of most PyPI libraries are correct. However, the

situation becomes less favorable when examining the compatibility of imports

in the source code with the specified run-time environments. Only 5,371 (65%)

libraries, comprising 131,720 (39%) releases, successfully pass all three checks of

PyConf. This indicates that approximately 30% of libraries and 51% of releases

on the PyPI platform can be installed but may encounter source-level compatibil-

ity problems. Although these issues may not be severe enough to entirely prevent

the usage of the library, they can adversely affect specific functionalities.

We categorize the configuration issues identified from the library releases that

failed in the three checks of PyConf into three groups: Incomplete Configuration,

Incorrect Configuration, and Incorrect Code. All these configuration issues are

presented in Table 7.2. We define a configuration issue as ”fatal” if it hinders the

usage of the entire library release, and a configuration issue as ”not fatal” if it

only impacts a portion of the library’s functionality. In the rest section of RQ1,

we provide a detailed exploration of each configuration issue.

Incomplete Configuration. The issues under this category are raised due
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Table 7.2: Configuration issues detected by PyConf. There may be multiple

issues occurring in one release.

Category Issue Check #Releases Fatal? Possible Reasons

Incomplete

Configuration

Missing configuration files Installation Check 251 4

Missing

required

information

Missing required libraries for setup Installation Check 3,318 4

Missing Python versions Dependency Check 55,138 8

Missing required

libraries for direct imports
Import Validation 142,521 8

Incorrect

Configuration

Dependency conflicts in setup Installation Check 6,318 4 Unsolvable constraints

Incorrect Python versions Installation Check 4,155 4 Incorrect dependencies

Other run-time Errors in setup Installation Check 3,464 4 Missing files

Inconsistent

configurations with metadata
Dependency Check 592 8 Naming error

Inconsistent version

numbers with release dates
Dependency Check 12,018 8 Confusing version orders

Missing required

modules for indirect imports
Import Validation 11,023 8

Incorrect dependenciesInconsistent modules in direct

imports with installed depenencies
Import Validation 6,678 8

Other run-time Errors in imports Import Validation 8,178 8

Incorrect

Code

Missing source code Dependency Check 2,588 4 Creating placeholders

Parsing error Dependency Check 431 4 Invalid syntax/encoding

Multiple version control failure Import Validation 15,507 8 Incorrect dependencies

to the lack of some important information in the configurations. Specifically, the

four issues are classified based on the missing information.

1) Missing configuration files. As mentioned in Sec. 2.2.1, most libraries

use configuration files such as requirements.txt to record the required depen-

dencies. However, PyConf identifies 251 library releases missing necessary con-

figuration files, which directly results in failures in the Installation Check. One

such instance is the installation failure of PyAstronomy-0.10.0, as it requires an-

other library, numpy, before the successful execution of setup.py. However, the

absence of a proper configuration file indicating the dependencies results in the
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failure to install the library.

2) Missing required libraries for setup. PyConf identifies 3,318 library re-

leases that encounter installation failures due to the absence of libraries required

for setup in their configurations. This configuration issue is distinguished by the

occurrence of ModuleNotFoundError and ImportError during the Installation

Check. For example, in the library release translators-4.0.4, a ModuleNotFoundError

is triggered due to a missing module requests. This happens when the installer

tries to obtain the version from __init__.py, but there are some external imports

that are not specified in the setup_requires field of setup.py.

3) Missing Python versions. PyConf identifies 55,138 library releases that

do not indicate the required Python versions in their configurations during De-

pendency Check. The absence of specified Python versions presents significant

risks to the reliability of the libraries, as the breaking changes introduced in dif-

ferent Python versions can impact the functionality of the libraries. A notable

example is the introduction of new keywords async and await in Python version

3.5. Identifiers async and await valid in Python versions < 3.5 become invalid

in Python versions > 3.5.

4) Missing required libraries for direct imports. We define direct imports

as the import statements in the source code of the current library release, and

indirect imports as the import statements that are called by direct imports in

the source code of third-party libraries required in the configurations. PyConf

identifies 142,521 library releases where modules required by direct imports are

not installed because of missing corresponding library dependencies in the config-

urations. This issue is characterized by ModuleNotFoundError and ImportError

occurring in direct imports in Import Validation. For example, in the library

release claripy-7.8.8.1, there is an import statement ”import celery” in the file

backends/remotetasks.py. However, the corresponding library celery for the
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module celery is not included in the configuration.

Finding 1: Developers tend to provide inadequate configurations for the usage

of libraries, especially for Python versions and direct imports in source code.

Incorrect Configuration. The issues under this category are raised due

to incorrect information in the configurations. Specifically, eight types of issues

are classified based on incorrect information.

1) Dependency conflicts in setup. Dependency conflict in the setup occurs

when the dependency constraints of third-party libraries cannot be resolved to

valid versions on the PyPI platform. PyConf identifies 6,318 library releases

with dependency conflicts during the Installation Check, as indicated by the error

message “Could not find a version that satisfies the requirement”. For instance, the

library release accountant-0.0.6 requires enum>=1.1.5, but the latest version of

enum available on the PyPI platform is 0.4.7, which does not satisfy the specified

constraint.

2) Incorrect Python versions. For library releases with Python version con-

straints, PyConf initially selects the latest Python version in the constraint for

the installation and retries other Python versions in the constraints if the ini-

tial Python version fails. However, PyConf finds 4,155 library releases with

Python version constraints but all the Python versions in the constraints fail in

Installation Check. This suggests that the Python version constraints written by

developers for these library releases are incorrect.

3) Other run-time errors in setup. In addition to dependency conflicts and

Python version issues, PyConf identifies two types of run-time errors occurring

during the setup process. Specifically, there are 966 library releases associated

with AttributeError and 2,498 library releases associated with FileNotFoundError

in the Installation Check. The AttributeError is caused by incorrect setup de-
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pendencies, while the FileNotFoundError is a result of some non-configuration

files being absent. As an example, the library release aiodocker-0.1 requires

README.md, but it does not exist.

4) Inconsistent configurations with metadata. PyConf checks the potential

inconsistencies between the configurations and the library metadata. It identifies

592 library releases with such inconsistencies. The inconsistencies primarily result

from the naming errors of files or folders. For example, the metadata folder in

the library release kfp-0.1.23 is named kfp-0.1.22.dist-info.

5) Inconsistent version numbers with release dates. When resolving version

constraints of third-party libraries, pip installs the latest versions that meet the

constraints. The selection of the latest version is determined by comparing the

version number strings. However, we have discovered cases where the version

number order does not align with the release date order. For example, the library

multipart released version 2.0 in 2019 and version 0.1.1 in 2020. Developers who

used this library in 2019 expected that future versions would be greater than 2.0

and thus set the constraint multipart<0.2. However, pip still considers version

0.1.1 as valid for this constraint, leading to the selection of an unexpected version.

As a result, the inconsistency between the version number order and the release

date order can undermine the validity of constraints set by developers. In our

analysis, PyConf identifies 12,018 library releases that depend on third-party

libraries with this issue.

Finding 2: Inconsistencies between version number order and release date order

are prevalent in the PyPI ecosystem, undermining the validity of developers’

dependency constraints.

6) Missing required modules for indirect imports. PyConf identifies 11,023

library releases where modules in indirect imports are not installed, as indicated
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by ModuleNotFoundError and ImportError in Import Validation. This issue

arises due to two possible reasons.

Firstly, the required third-party libraries may not properly handle their own

dependencies. For instance, the library release keras-bert-0.10.0 requires keras in

the configuration and has an import statement “import keras.backend”. How-

ever, when importing keras.backend, tensorflow is also required, but keras does

not list it as a dependency in its configuration, resulting in import failure.

Secondly, incorrect dependencies for third-party libraries in the configura-

tions may be the cause. For example, the library release replit-1.4.0 has an

external import statement “import flask”, which, in turn, includes an import

statement “from markupsafe import soft_unicode”. However, soft_unicode

is removed starting from version 2.1.0 of markupsafe, and there is no constraint

preventing pip from getting the latest version of markupsafe, leading to the

import failure.

Finding 3: Ignoring indirect dependencies is one of the major (∼ 18%) incorrect

configuration issues, indicating that developers often ignore indirect dependen-

cies and only focus on the modules directly used in the source code.

7) Inconsistent modules in direct imports with installed dependencies. Py-

Conf identifies 6,678 library releases where modules in direct imports have corre-

sponding library dependencies in the configurations but fail to be imported. This

issue arises because pip automatically acquires the latest available version of the

required libraries, which may lead to the exclusion of certain required modules

in the direct imports if they have been removed in the latest version. A prime

example of this is the library jtskit, which is deprecated, and its developers create

an empty release 0.5.0 to install another library jsontableschema, resulting in the

failure of the direct import “import jtskit”.
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8) Other run-time errors in imports. We include all other run-time er-

rors in this case. PyConf identifies 8,178 library releases with run-time er-

rors other than ModuleNotFoundError and ImportError in the Import Valida-

tion, which include TypeError, ValueError, and so on. These run-time errors

are induced by the execution of global statements in the module, resulting in

the failure of the module import. For instance, in the library release pandas-

market-calendars-1.6.0, there is an import statement “import trading_calendars”.

Upon executing this import, a global statement ”NP_NAT = np.array([pd.NaT],

dtype=np.int64)[0]” in the module trading_calendars leads to a TypeError due

to the use of int() on NaTType type.

Finding 4: Developers make mistakes in writing configurations since 19% of

configuration issues are incorrect configurations. What’s more, about 50% incor-

rect configuration issues can only be detected by Import Validation, indicating

the importance of source-level validation.

Incorrect Code. The issues under this category are raised due to the

incorrect source code. Specifically, there are three cases classified based on source

code errors.

1) Missing source code. PyConf identifies 2,588 library releases whose

source code cannot be located in Dependency Check. PyConf cannot further

validate the import statements without the source code. One possible reason

we observed through manual analysis is that some library releases are published

as placeholders on the PyPI platform without any actual source code. For ex-

ample, the library release mypy-protobuf-1.0 contains no source code and the

top_level.txt file in it indicates there is no available module in the library.

2) Parsing error. PyConf identifies 431 library releases with Python files

that cannot be parsed due to syntax errors, such as incorrect use of semicolons
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Table 7.3: The Pass Rates (%) of three baselines on the sampled 5,000 releases

from our benchmark.

Python Version? Pipreqs Dockerizeme PyEGo

4 52.9 26.6 60.7

8 - 23.2 65.0

in Python code and encoding errors. Libraries with parsing errors cannot be

handled by the Python interpreter, rendering them infeasible to be imported and

used by users.

3) Multiple version control failure. In Sec. 7.2, PyConf conducts import

block analysis to partition import statements in different branches into separate

blocks and generate boolean expressions to validate the correctness of imports.

We identify 15,507 library releases whose generated boolean expressions evaluate

to False in Import Validation, indicating that none of the branches in the branch

statements successfully handle the specified run-time environments. We refrain

from analyzing the run-time errors in individual branches as they may not be

executed in practice. Instead, we collectively refer to these cases as ”multiple

version control failures,” highlighting the incompatibilities between the version

control in the source code and the actual run-time environments.

Finding 5: Incorrect configurations can hardly be handled by the multiple

version control logic in source code, as there are 5% of library releases suffering

from multiple version control failures.
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7.4.3 RQ2: Effectiveness of Automatic Dependency Infer-

ence Approaches

We evaluate the configurations provided by three baselines in two different

settings, considering that the baseline Pipreqs does not output Python versions.

In the first setting, we utilize the validated Python versions obtained in RQ1

and rely solely on the third-party library dependencies provided by the baselines

to build run-time environments. In the second setting, we do not provide the

validated Python versions and use those supplied by the baselines for building run-

time environments. Table 7.3 presents the Pass Rates of the three baselines under

these two settings. Notably, PyEGo achieves the highest Pass Rate of 65.0% when

using its own inferred Python versions. This suggests that approximately 35% of

library releases cannot be successfully inferred by PyEGo. On the other hand,

for Pipreqs and Dockerizeme, their performance is limited, covering only 20% to

50% of library releases, despite the slight improvement when provided with the

correct Python versions.

To investigate the primary reasons behind the failures of the three baselines

in inferring correct dependencies, we present the major issues with at least 50 oc-

currences (>1%) during the check process of PyConf in Table 7.4. Surprisingly,

we find that for Pipreqs and PyEGo, approximately 68% and 51% of the fail-

ures, respectively, come from dependency conflicts during setup. This suggests

that some dependencies provided by these baselines are not valid on the PyPI

platform. Since these baselines rely on import statements to determine which

libraries should be included in the configurations, there are instances where local

modules share names with third-party modules or different libraries share mod-

ule names, confusing their inference. In the case of Dockerizeme, around 86%

of the failures arise from missing required libraries for direct imports. This is-

sue is also the second most common cause of failures for Pipreqs and PyEGo.
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Table 7.4: The issues that three baselines fail to pass the checks of PyConf when

we provide the Python versions. Only issues with more than 50 occurrences are

included.

Issue Pipreqs Dockerizeme PyEGo

Missing required

libraries for setup
71 168 13

Missing required

libraries for direct imports
589 3,099 597

Dependency

conflicts in setup
1,675 310 823

Missing required modules

for indirect imports
14 20 147

Multiple version

control failure
124 15 24

One possible explanation is that the baseline databases cannot cover all libraries.

For instance, PyEGo’s database only includes the top 10,000 popular PyPI li-

braries [241], while PyPI hosts over 471 thousand libraries. Regarding the other

three issues in Table 7.4, we observe that they only frequently occur in one spe-

cific baseline, suggesting that they might arise from inappropriate designs in that

particular baseline’s approach.

Finding 6: Current automatic dependency inference approaches fail to infer

about 35% of Python projects. Most failures come from dependency conflicts

and the absence of required libraries in the generated configurations.
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7.5 Implications

Fewer dependency constraints lead to more configuration issues.

“Less is More” seems to be a widely-used strategy to cut costs in software devel-

opment. However, our findings from RQ1 reveal that 74% of configuration issues

arise from insufficient dependency constraints. While these constraints may be

valid and correct during the initial release of third-party libraries, they can be-

come outdated over time as dependencies evolve. Therefore, run-time errors may

occur when using certain functionalities, which cannot be detected during the

setup process of run-time environments. As a result, these issues are challenging

to detect without a comprehensive evaluation of the source code. Fortunately,

the resolution for these issues is relatively straightforward –by adding more strict

dependency constraints. We advise third-party library developers to avoid setting

open constraints like version>1.0. Instead, they should opt for complete and

strict dependency constraints that restrict Python versions and library depen-

dencies to the verified versions at the time of release. By doing so, developers can

enhance the reliability of their libraries and mitigate potential run-time errors

caused by evolving dependencies.

Fewer conflict checks result in more dependency inference failures.

During our analysis of why the three baselines fail to infer correct configurations,

we have identified two major issues. First, some required libraries are missing,

which can be resolved by updating the databases to align with the PyPI ecosys-

tem. Second, we have observed dependency conflicts in the generated configu-

rations. It indicates that the baselines lack sufficient conflict checks to validate

the generated configurations thoroughly. For example, they do not handle the

potential conflicts between the local modules inside the project and the external

modules from the PyPI platform. Therefore, we recommend that future research

on automatic dependency inference should incorporate more extensive conflict
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checks between local projects and libraries on the PyPI platform.

7.6 Conclusion

In this chapter, we conduct an empirical study on configuration issues in the

PyPI ecosystem. We propose PyConf to automatically identify configuration

issues in the setup stage, the packing stage and the usage stage of third-party

libraries. We also build a benchmark VLibs for the evaluation of automatic

dependency inference approaches. We discover six findings and conclude two im-

plications to facilitate the development of third-party libraries and future research

on automatic dependency inference.
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Chapter 8

Conclusion and Future Work

This chapter summarizes the main contributions in the thesis and presents

three future directions on type inference, API recommendation, and run-time

environment dependency inference, respectively.

8.1 Conclusion

In this thesis, we address significant concerns arising from the inherent chal-

lenges of dynamic type systems and runtime environments in Python software.

These issues predominantly manifest as type errors and conflicts within the run-

time environment, which compromise the software’s reliability. To mitigate these

reliability issues, we propose a suite of methods and validate their effectiveness

through rigorous experiments. Our methodologies are aimed at enhancing the

detection, prevention, and resolution of these reliability issues.

Specifically, in Chapter 3, we propose HiTyper, a hybrid type inference

framework that iteratively integrates deep learning models and static analysis for

type inference. HiTyper creates a type dependency graph for each function and

validates predictions from deep learning models based on typing rules and type
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rejection rules. Experiments demonstrate the effectiveness of HiTyper in type

inference, enhancement for predicting rare types, and advantage of the static type

inference component in HiTyper.

In Chapter 4, we present TypeGen, a few-shot generative type inference

method for Python programs. Our approach incorporates static domain knowl-

edge into language models via a novel prompt design in the in-context learning

paradigm. Experimental results show that TypeGen outperforms both state-of-

the-art supervised type inference methods and cloze-style type inference methods.

In Chapter 5, We propose a domain-aware prompt-based approach named

TypeFix for repairing Python type errors. TypeFix improves prompt-based

approach by incorporating domain-aware fix templates. TypeFix implements

a novel fix template design to handle type errors at different levels, and mines

fix templates via a novel hierarchical clustering algorithm. TypeFix incorpo-

rates domain knowledge into code prompts by applying fix templates into buggy

code and invokes code pre-trained models to generate candidate patches from

code prompts. Experiments demonstrate the effectiveness of TypeFix and the

usefulness of fix templates mined by TypeFix.

In Chapter 6, we present an empirical study of the API recommendation task.

We classify current work into query-based and code-based API recommendation,

and build a benchmark named APIBench to align the performance of different

recommendation approaches. We conclude some findings based on the empirical

results of current approaches.

For query-based API recommendation approaches, we find that 1) recom-

mending method-level APIs is still challenging; 2) query reformulation techniques

have great potential to improve the quality of user queries thus they can help cur-

rent approaches better recommend APIs. What’s more, user queries also contain

some meaningless and verbose words and even a simple word deletion method can
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improve the performance; 3) approaches built upon different data sources have

quite different performances. Q&A forums such as Stack Overflow can greatly

help mitigate the gap between user queries and API descriptions.

For code-based API recommendation, we emphasize the superior perfor-

mance of current deep learning models such as Transformer. However, they still

face the challenge of recommending user-defined APIs. We also find different con-

texts, such as different location of recommendation points and context length, can

impact the performance of current approaches. Besides, current approaches suffer

from recommending cross-domain APIs.

In Chapter 7, we conduct an empirical study on configuration issues in the

PyPI ecosystem. We propose PyConf to automatically identify configuration

issues in the setup stage, the packing stage and the usage stage of third-party

libraries. We also build a benchmark VLibs for the evaluation of automatic

dependency inference approaches. We discover six findings and conclude two im-

plications to facilitate the development of third-party libraries and future research

on automatic dependency inference.

8.2 Future Work

8.2.1 Synergistic Type Inference

Type information plays a crucial role in the development and maintenance of

scalable software. The absence of type information in code introduces vulnerabil-

ities and complicates maintenance tasks. Dynamic languages, which often omit

type information to accelerate prototyping, require robust type inference mecha-

nisms to enhance software reliability. Traditional static type inference methods

are sound, however, they are limited in their ability to infer types across a broad

range of variables. On the other hand, data-driven techniques, particularly those
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utilizing recent advancements in Large Language Models (LLMs), have shown

significant effectiveness in predicting types. Nevertheless, these methods do not

provide assurances regarding the accuracy of their predictions. Consequently,

existing methodologies struggle to simultaneously deliver high performance and

ensure prediction correctness in type inference.

In this thesis, we introduce HiTyper, which employs static analysis tech-

niques to enhance the accuracy of type predictions. Additionally, we propose

TypeGen, a generative type inference approach that leverages the capabilities of

large language models (LLMs) to deliver interpretable type predictions. Together,

these two methodologies address some of the limitations inherent in existing type

inference methods. Despite these advancements, a significant challenge remains:

LLMs do not inherently learn from their incorrect type predictions, which curtails

their performance.

To overcome this limitation, we propose a future direction of synergistic type

inference, designed to foster collaboration between static type checkers and LLMs.

In this model, static type checkers and LLMs function as cooperative agents. The

static checkers validate the correctness of type predictions, while the LLMs utilize

the feedback from error messages to learn and adjust incorrect predictions. We

believe this cooperative framework can substantially enhance the effectiveness of

LLMs in type inference.

8.2.2 High-quality API Recommendation

Based on the insights garnered from Chapter 6, we outline several prospec-

tive avenues for enhancing API recommendation systems. For query-based ap-

proaches, we advocate for the integration of query reformulation techniques with

existing API recommendation frameworks to improve their performance. How-

ever, determining the optimal query reformulation strategy remains an open area
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for future research. Additionally, we propose the adoption of few-shot learn-

ing methods and the utilization of diverse data sources to effectively bridge the

discrepancies between user queries and the knowledge base, particularly in low-

resource settings.

For code-based API recommendation systems, we recommend that future

research should concentrate on refining the accuracy and relevance of recom-

mendations for user-defined APIs. Moreover, it is advisable to extend training

methodologies across multiple domains rather than restricting them to a single

domain. This multi-domain approach could potentially enhance the robustness

and applicability of API recommendation systems, thereby contributing to more

personalized and effective developer support.

Additionally, we identify further research directions in the evaluation of API

recommendation. Firstly, while this thesis primarily concentrates on benchmark-

ing and delivering an objective evaluation of various API recommendation meth-

ods, it does not assess the quality of summaries provided by some approaches for

the recommended APIs. To bridge this gap, subjective evaluations, such as devel-

oper surveys, could be employed to ascertain the quality of these API descriptions

and their usage information. This would provide a more comprehensive under-

standing of the utility and clarity of the API recommendations from a developer’s

perspective.

Secondly, our empirical findings highlight the effectiveness of query reformu-

lation techniques in enhancing query quality. Although our focus was predomi-

nantly on assessing the performance of API recommendation systems, a detailed

exploration of different query reformulation strategies was not conducted. Future

research could therefore delve deeper into these techniques, examining their role

and effectiveness in facilitating downstream tasks. Such studies would likely yield

valuable insights into optimizing query reformulation for improved API recom-

221



mendation outcomes.

8.2.3 Source-level Run-time Environment Dependency In-

ference

In Chapter 7, we introduce PyConf, a novel approach for detecting conflicts

in source-level runtime environments, and we present a comprehensive empirical

study on configuration issues identified through this methodology. While we

have managed to discern specific patterns and underlying causes of these issues

through manual analysis, currently, there lacks a method to correct these incor-

rect configurations provided by developers. We believe that source-level runtime

environment dependency inference could represent a significant advancement in

both preventing and resolving the configuration issues detected by PyConf.

This method would consider not only the interrelationships among various

third-party dependencies but also assess the compatibility of external APIs uti-

lized within the software with these third-party libraries. Given the dynamic and

evolving nature of third-party dependencies, a static configuration file established

by developers may become outdated or incompatible over time. We believe that a

more effective strategy for setting up Python runtime environments would involve

employing a source-level runtime environment dependency inference framework to

generate the most recent compatible configurations automatically. The runtime

environment would then be constructed based on these dynamically generated,

up-to-date configurations.
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