
Performance Diagnosis of Mobile
Applications and Cloud Services

KANG, Yu

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

August 2016



Thesis Assessment Committee

Professor YIP Yuk Lap (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor LEE Pak Ching (Committee Member)

Professor Cao Jiannong (External Examiner)



Abstract of thesis entitled:
Performance Diagnosis of Mobile Applications and Cloud Ser-

vices
Submitted by KANG, Yu
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in August 2016

Mobility and scalability are two recent technological trends whose
representative techniques are mobile computing and cloud comput-
ing. For example, cloud-based mobile computing, as a mix of the
two, is becoming popular. However, current mobile computing and
cloud services do not satisfy all of the performance requirements
of the critical users. To improve user experience, it is necessary
to enhance the performance of them. In this thesis, we propose a
methodology for tuning the performance of the mobile applications
and cloud services. This thesis contributes significantly to the
performance tuning for both of them.

First, we examine how to tune the performance of mobile app.
Rapid user interface (UI) responsiveness is a key consideration of
Android app developers. However, service requests to the cloud
often take a long time to execute. To avoid freezing the screen by
blocking the UI thread, the requests are usually conducted under
Android’s complicated concurrency model, making it difficult for
developers to understand and further diagnose the performance.
This thesis presents DiagDroid, a tool specifically designed for
Android UI performance diagnosis. The key notion of DiagDroid
is that the UI-triggered asynchronous executions (e.g., cloud service
requests) contribute to UI performance, and hence their performance
and their runtime dependency needs to be properly captured to
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facilitate performance diagnosis. However, there are tremendous
ways to start an asynchronous execution, posing a great challenge
to profiling such executions and their runtime dependency. To this
end, we properly abstract five categories of asynchronous executions
as the building basis. They can be tracked and profiled based
on the specifics of each category using a dynamic instrumentation
approach carefully tailored for Android. DiagDroid can then
profile the asynchronous executions in a task granularity, equipping
it with low-overhead and high compatibility merits. The tool is
successfully applied in diagnosing 33 real-world open-source apps;
we find 27 performance issues in 14 apps. These case studies show
the effectiveness of our tool for Android UI performance diagnosis.

Even when they are finely tuned, many services still require
a long time to execute. Mobile apps should be tolerant of long
processing time. Good user interface (UI) design is the key to
successful mobile apps. UI latency, which can be considered as the
time between the commencement of a UI operation and its intended
UI update, is a critical consideration for app developers. There are
currently no studies of how much UI latency a user can tolerate, and
how to find UI design defects that cause intolerably long UI latency.
As a result, bad UI apps are still common in app markets, leading to
extensive user complaints. This thesis examines user expectations
of UI latency, and develops a tool to pinpoint intolerable UI latency
in Android apps. To this end, we design an app to conduct a user
survey of UI latency in apps. Through the survey, we examine
the relationship between user patience and UI latency. Therefore a
timely screen update (e.g., a loading animation) is critical to heavy-
weighted UI operations (i.e., those that incur a long execution time
before the final UI update is available). We then design a tool that,
by monitoring the UI inputs and updates, can detect apps that do not
meet this criterion. The survey and the tool are open-source released
on-line. We also apply the tool to many real-world apps. The results
demonstrate the effectiveness of the tool in combating UI design
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defects in apps.
Moreover, we investigate methods for improving the perfor-

mance of cloud services. In a cloud, the optimal deployment of
servers is key to providing better service for a wide range of mobile
users. User experience, which is affected by client-server connection
delays, is a key concern for optimizing cloud service deployment;
however, it is a challenging task to determine the user experience of
end users, as users may connect to a cloud service from anywhere.
Moreover, there is generally no proactive connection between a
user and the machine that hosts a service instance. In this thesis,
we propose a framework to model cloud features and capture
user experience. Based on the obtained user experience data, we
formulate an optimal service deployment model. Furthermore, many
services involve multiple clouds. For example, a service provider
may use a hybrid cloud that provides several services in private
and public clouds, or a service may request another service such
as ticket booking agency services. Therefore, we formulate models
for the multiple services co-deployment. Experiments based on a
real-world dataset prove the effectiveness of the proposed models
and algorithms.

In summary, we study the performance tuning problems for
mobile apps and cloud services. We propose the mobile app and
the cloud service performance tuning methods. Our tools are able
to locate previously unknown performance issues in real-world
mobile apps. Moreover, we collect a set of real-world QoS data
from the Internet. The experiments based on the dataset prove the
effectiveness of our models and algorithms. We have public released
the dataset as well as the source codes of our tools.
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摘要  ： 

  

輕量化和規模化是當前技術發展的兩大趨勢，其各自的代

表技術為移動計算和雲計算。例如基於云服務的移動計算作

为這兩種技術的融合正變得流行。然而現有的技術仍不能滿

足挑剔的用戶對應用程序性能的高要求。提高程序性能，改

善用戶體驗對移動應用程序和雲服務都十分關鍵。良好的用

戶體驗直接影響到應用程序能否成功吸引并留住用戶。在本

論文中，我們提出了分別針對移動應用程序和雲計算的性能

調優方法。 

在本論文中，首先，我們研究了移動應用程序的性能調優。

在移動端，用戶界面的響應速度是用戶體驗的關鍵因素也是

衡量應用程序性能的重要指標。然而移動端的一些操作通常

需要比較久的時間完成。為了防止由於阻塞主線程導致的界

面凍結，耗時操作通常會利用移動操作系統（如 Android）中

的複雜並發模式完成。這使得開發人員對於程序性能的理解

以及進一步的調優變得困難。本論文針對 Android UI 性能調
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優的需求實現了 DiagDroid 工具。DiagDroid 設計的主要觀念

是 UI 觸發的異步任務（如雲服務請求）會影響 UI 性能，因

此對程序的性能調優時，需要記錄分析這些異步任務的性能

和他們之間的運行時依賴關係。然而，安卓提供了及其多樣

的方式啟動異步任務，這使得記錄異步任務以及他們之間的

依賴關係變得很困難。本論文中，我們將異步任務分為五類。

對每一種類型的異步任務，我們設計了針對性的追蹤和記錄

的方法。我們利用了 Android 的一些系統特性，基於輕量級

動態插樁，實現了這些記錄方法。我們實現了 DiagDroid 工

具，其能夠在任務級別記錄異步任務的生命週期，并具有低

開銷、高兼容性的優點。我們使用 DiagDroid 對 33 個我們不

熟悉的開源應用進行性能調優，發現了其中 14 個程序包含 27

個新的性能問題，這樣的結果是我們確信 DiagDroid 對開發

者進行性能調優是有幫助的。 

即使經過性能調優，受限於如網絡連接的速度以及服務的

複雜度，許多操作仍然需要很長時間來完成。移動端的設計

需要能夠容忍長延遲的操作。而好的界面設計能夠提升用戶

對長延遲容忍度。而低界面延遲，也即從用戶操作至其相應

的界面更新之間的延遲，是好的界面設計的重要因素。現今

仍然缺乏一項完整的，針對用戶可以容忍多長的界面延遲，

以及如何檢測不良界面設計中導致用戶不耐煩的長界面延遲

缺陷的研究。因此，移動應用市場上充斥著很多界面設計有

缺陷的應用程序，導致了大量的用戶抱怨應用程序的性能問

題。本論文旨在更好的理解移動端用戶對界面延遲的期望，
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基於此檢測并定位那些用戶不滿意的長延遲界面元素。為此，

我們設計了一項對界面延遲的用戶調查。通過問卷調查我們

發現了用戶耐心與界面延遲的關係。因此一個及時的屏幕更

新（例如加載動畫）對于長延遲的用戶操作十分重要。我們

設計了一個工具監視用戶數據和界面更新，并檢測沒有及時

響應的界面元素。我們公佈了用戶調查和工具。我們將工具

應用於在實際程序中，實驗結果表明我們的工具能夠有效檢

測界面設計的缺陷。 

此外，我們研究了雲服務的性能調優問題。在雲端，服務

器的優化部署是為分散的移動用戶提供更好服務的關鍵。用

戶體驗受用戶端和雲端連接延遲的影響，是服務器的優化部

署需要著重考慮的因素。然而用戶可能從各個地方請求雲服

務，用戶通常也不會主動訪問雲服務器提供用戶體驗數據，

因此用戶體驗不容易獲取。本論文對雲服務建模，提出在雲

服務框架中獲取及預測用戶體驗數據的方法。基於獲得的用

戶體驗數據，論文設計了優化服務部署的方法，包括單服務

部署和多服務協同部署的算法。我們收集了實際的用戶訪問

數據，實驗驗證了論文方法的有效性。 

綜上所述，本論文研究了移動應用以及雲服務的性能調優

的方法，提出了移動端和雲端的性能調優方法。實驗驗證了

論文方法的有效性。論文實現的工具集以及使用的數據集已

開源發佈以供其他研究者使用。 
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Chapter 1

Introduction

This thesis presents our research on performance tuning of mobile
applications and cloud services, which attracts widely interests in
both academia and industry. In Section 1.1, we motivate our
research and provide an overview of the research problem. In
Section 1.2, we highlight the main contributions of this thesis. In
Section 1.3, we give the outline of the thesis.

1.1 Overview

Today, mobile devices are an indispensable part of daily life. It is
estimated that about a quarter of the world will use a mobile device
in 2016 [2]. One report shows that on average, a US adult spends
about three hours every day using mobile devices [16]. As a result,
users are demanding high performance in mobile apps (i.e., low UI
latency). Mobile apps are expected to provide a responsive user
interface (UI). Figure 1.1 depicts several user comments and their
ratings of four different apps on the Google Play app store. The
comments are negative and the ratings are below average for the apps
with poor performance (e.g., laggy). Moreover, users have expecta-
tions on the waiting time of some operations and they hate to wait
longer than expected, as shown by the user comments in Figure 1.1a:
“I hate longer waiting than expected waiting time”. Therefore, both

1
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Hamzah S

Latest update is okay, but still horrible It 
seems that you can't revert it back to 
last version, but that okay. One problem 
is loading... I hate longer waiting than 
expected waiting time. Even, I keep 
touch somewhere and no response for 
5 or 10 seconds. That's LAGGY. Period. 
Try again... I love this game so much. 

(a) Rates 3 vs. average rating 4.4

K Bailey

I haven't had any problems until 
the last update. Now everything's 
super laggy all of a sudden. And 
now, on top of being laggy, all of 
my rubies are gone. I'm not im-
pressed.

(b) Rates 2 vs. average rating 4.3

Henry Kuo

Not getting any better... A bit slow 
and laggy. The scrolling at the top 
is awkward and clunky. Refresh 
takes a long time too, and won't 
stop. Sometimes images won't load. 

(c) Rates 2 vs. average rating 4.1

Abhishek Venugopal

Buggy. Version 2.0 brings a well 
deserved change to the game but 
man is it buggy and laggy as hell.. 
The animations are so choppy! Fix 
them soon they make the game less 
enjoyable. Trials and crusade are a 
lot harder by the way! I'm unable to 
clear difficulty 6 which I was able to 
do easily before the update. 

(d) Rates 2 vs. average rating 4.4

Figure 1.1: Examples of user ratings and comments on bad performance

the academic and industry communities are interested in tuning the
performance of mobile apps and designing better UI [33, 153, 161].

Google offers several tips for enhancing the performance of
apps [10]. Tools like TraceView and systrace [153] help developers
to tune app performance. However, these guidelines and the labor-
intensive tools cannot solve all of the performance problems. There
are millions of mobiles apps (i.e., more than 1.6 million apps on
Google Play and 1.5 million apps on the Apple app store [19]).
Many of them suffer from performance issues. Many developers
do not know how to tune app performance. Handy tools for
performance tuning are lacking.

We have also witnessed the rapid growing of cloud services. The
tendency of cloud services is to deliver computation, software, and
data access as services located in data centers distributed over the
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Figure 1.2: Google cloud endpoints & app engine architecture

world [39, 155, 182]. The limited performance of mobile apps is
being extended through the use of cloud services. The combination
of them, known as cloud-based mobile computing, is becoming
popular - “The global mobile cloud market is forecast to hit $46.90
billion by 2019 from $9.43 billion in 2014 growing at a CAGR of
37.8%.” [12]. For cloud-based mobile applications, many of the
tasks are executed on the cloud. To improve performance of mobile
devices, which have limited resources, time-consuming tasks can
be offloaded to cloud. Tasks like voice-to-text speech recognition,
route planning, and word translation are commonly run remotely on
the cloud and the results are sent back to the mobile. Google app
engine service combining with Google cloud endpoints [15], shown
in Figure 1.2, is a representative architecture that can offload time-
consuming tasks to a cloud.

However, the performance of cloud services and mobile apps
are still unsatisfying. For example, the widely used railway ticket
booking app 12306 [1], which has hundreds of millions of users
in China, suffers from performance problems on both mobile app
and its cloud service. For its mobile app, the app computes quite
slowly and in many cases does not notify users about the progress
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Figure 1.3: An overview of cloud-based mobile app performance tuning

of the processing. For example, the search for tickets from Beijing
to Tianjin, sorted by arrival time, takes quite a long time to finish,
and it offers no progress updates during the processing. This annoys
users a lot. For its cloud service, the cloud server is not configured
and deployed optimally for serving a large number of users. It
becomes extremely slow at peak times (e.g., Chinese Lunar New
Year) when there are too many user requests. All of these issues
make the user experience poor and give 12306 an ill reputation for
bad performance [11]. This demonstrates that the performance of
both mobile apps and cloud services should be improved.

An overview of our proposed procedure for tuning the perfor-
mance of mobile apps and cloud services is shown in Figure 1.3. We
tune the performance of mobile apps and cloud services respectively.
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Most of the performance issues of mobile apps are related to the
user interface (UI), as the UI lag is directly perceived by users on
mobile. On the other hand, many performance problems of cloud
services are related to the network, as network delays often degrade
performance.

To tackle the UI-related performance issues of mobile apps, two
steps are taken. First, we detect and diagnose as many performance
issues as possible during pre-release testing to enhance the perfor-
mance before release. Second, we develop methods for enhancing
user tolerance on operation delays, as it is impossible to eliminate all
performance issues, due to the limited resource of mobile devices.
More specifically, we profile the threads of apps during runtime of
testing and detect the slow threads. By localizing the source codes
of suspicious threads, we assist developers conducting performance
diagnosis. We also study the user tolerance for screen freezes in
operations that take a long time to execute. We monitor the screen
refreshes to detect those tasks/operations that take a long time to
execute without offering feedback, as this annoys users. Then we
report the findings to developers to help them design better delay
tolerant UI.

To address network delay caused performance issues of cloud
services, we reduce the delay in cloud-client communications and
cross-(data)center communications. We find that servers in the
cloud are distributed in different data centers, which may have
variable network distances to client users. Thus, the deployment
of servers could affect network delays, which greatly affects the
performance of apps. We obtain the network distance between
cloud and clients, then model and solve the problem of optimal
deployment for cloud servers. There are also many cross-center
dependent services (e.g., a service provider may use a hybrid cloud,
or a service may request another service like a ticket booking agency
service). We measure the cross-center network distance for different
servers deployed in diverse data centers (may belong to one or
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several clouds), which provide different services. Taking both cross-
center and cloud-client communication cost into consideration, we
formulate an optimization problem. By solving the problem, we find
an optimal deployment of complex services in cloud that reduces the
network delay.

1.2 Thesis Contributions

In the thesis, we contribute to the performance tuning of both mobile
apps and cloud services. The contributions can be summarized as
follows.

1.2.1 Performance Diagnosis for Mobile App

Rapid user interface (UI) responsiveness is a key consideration for
Android app developers. To avoid freezing the screen by blocking
the UI thread, the requests are usually conducted under the compli-
cated concurrency model of Android. This makes it difficult for the
developers to understand and further diagnose an app’s performance.
This thesis develops DiagDroid, a tool specifically designed for
Android UI performance diagnosis. The key idea of DiagDroid is
that UI-triggered asynchronous executions contribute to UI perfor-
mance, and hence their performance and their runtime dependency
should be properly captured to facilitate performance diagnosis.
However, there are numerous ways to start these asynchronous
executions, posing a great challenge to profiling such executions
and their runtime dependency. To this end, we properly abstract
five categories of asynchronous executions as the building basis.
These executions can then be tracked and profiled based on the
specifics of each category with a dynamic instrumentation approach
carefully tailored for Android. DiagDroid can then profile the
asynchronous executions in a task granularity, equipping it with low-
overhead and high compatibility merits. The tool is successfully
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applied in diagnosing 33 real-world open-source apps; we find 27
performance issues in 14 of the apps. These results show the
effectiveness of our tool in Android UI performance diagnosis. We
have open-source released DiagDroid online.

1.2.2 Delay-Tolerant UI Design for Mobile App

Even finely tuned, due to limited resources, many operations on
mobile devices are inevitably slow. Therefore, a good user interface
(UI) should be designed to improve user tolerance. UI latency,
which is the time between a UI operation and its intended UI update,
is a critical consideration for app developers. Current literature
still lacks a comprehensive study of how much UI latency a user
can tolerate or how to find UI design defects that cause intolerably
long UI latency. As a result, bad UI apps are still common in app
markets, leading to extensive user complaints. This thesis aims at a
better understanding of user tolerance for UI latency, and develops
a tool to detect intolerable UI latency in Android apps. To this end,
we first design an app to conduct a user survey of app UI latency.
A key finding of the survey is that a timely screen update (e.g., a
loading animation) is critical to heavy-weighted UI operations (i.e.,
those that incur a long execution time before the final UI update is
available). We design a tool to monitor the UI inputs and updates,
and detect apps that do not meet this criterion. The survey and the
tool have been released open-sourced online. We also present our
experiences on applying the tool on many real-world apps. The
results demonstrate the effectiveness of the tool in combating these
app UI design defects.

1.2.3 Service Deployment on Cloud

The cloud service has attracted much interest recently from both
industry and academia. Optimal deployment of cloud services is
critical for providing good performance to attract users. Optimizing
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user experience is usually a primary goal of cloud service deploy-
ment. However, it is challenging to access the user experience,
as mobile users may connect to cloud service from any point.
Moreover, there is generally no proactive connection between a user
and the machine that will host the service instance. To address this
challenge, in this thesis, we first propose a framework to model
cloud features and capture user experience. Then, based on the col-
lected user connection information, we formulate the redeployment
of service instances as k-median and max k-cover problems. We
propose several approximation algorithms to efficiently solve these
problems. Comprehensive experiments are conducted by employing
a real-world QoS dataset of service invocation. The experimental
results demonstrate the effectiveness of our proposed redeployment
approaches.

1.2.4 Multiple Services Deployment on Cloud

Multiple cloud services tend to cooperate with each other to accom-
plish complicated tasks. For example, a service provider may use a
hybrid cloud that provides several services in its private and public
clouds, or one service may request another service like a ticket
booking agency service. Deploying these services independently
may not lead to good overall performance, as there are many
interactions among the different services. Determining an optimal
co-deployment of multiple services is critical for reducing latency
of user requests. If the services are highly related, taking only
the distribution of users into consideration is not enough, as the
deployment of one service affects others. Thus, we employ cross
service information and user locations to build a new model in
integer programming formulation. To reduce the computation time
of the model, we purpose a sequential model running iteratively to
obtain an approximate solution. We collect and publicly release a
real-world dataset to promote future research. The dataset involves
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307 distributed computers in about 40 countries, and 1881 real-
world Internet-based services in about 60 countries. Extensive
experiments have been conducted over the dataset to show the
effectiveness of our proposed model.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2
In this chapter, we review some background knowledge and
related work on performance tuning of mobile applications and
cloud services. Firstly, in Section 2.1, we briefly introduce
cloud-based mobile apps, mainly focusing on the characteris-
tics of mobile apps and the usage of cloud service. Secondly,
in Section 2.2, we review some related work on performance
tuning of mobile applications, including performance diagnosis
related techniques and delay-tolerant UI design. Thirdly, in
Section 2.3, we review some related work on performance tun-
ing of the cloud services, including the background knowledge
of the cloud architecture and the cloud service deployment.

• Chapter 3
In this chapter, we present DiagDroid, a tool for perfor-
mance diagnosis of mobile apps on Android OS. The per-
formance diagnosis is done via anatomizing asynchronous
executions. We first introduce the problem in Section 3.1.
Then we introduce some Android specifics as the preliminary
knowledge in Section 3.2. In Section 3.3, we show two
motivating examples of performance issues caused by asyn-
chronous executions. Section 3.4 and Section 3.5 elaborate the
design and implementation of DiagDroid. We then demo the
successful application of our tool on real-world mobile apps
and how previously unknown performance issues are found in
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Section 3.6. We discuss our tool design and offer some tips for
developers to avoid performance issues in Section 3.7. Finally,
Section 3.8 summarizes this chapter.

• Chapter 4
In this chapter, we present Pretect, a tool which could detect
poor-responsive UI components in Android apps, for delay-
tolerant UI design. The detection is done via monitoring the
user inputs and UI updates. We first introduce the problem
in Section 4.1. Section 4.2 motivates the work by introducing
an example of common program defect that causes poor-
responsive UI. Section 4.3 presents the results of our study
on the relationship between user patience and operations delay
levels, which also provides the motivation for developing our
new tool. Section 4.4 and Section 4.5 illustrate the framework
design and implementation of our tool. Section 4.6 demon-
strates the correctness and effectiveness of the tool. Section 4.7
provides some discussions on the tool design considerations.
Finally, Section 4.8 summaries this chapter.

• Chapter 5
In this chapter, we present a cloud service redeployment mech-
anism which is optimized for performance. We first introduce
the problem and requirement of cloud service redeployment
in Section 5.1. Then we overview the cloud service hosting
mechanism in Section 5.2. Section 5.3 discusses the method of
obtaining performance in terms of user experience. We present
two different models and objective functions for modeling
instance redeployment problem in Section 5.4. Section 5.5
conducts experiments and discusses the experimental results.
Finally, the chapter is summarized in Section 5.7.

• Chapter 6
In this chapter, we present a latency-aware co-deployment
mechanism for optimizing performance of cooperative cloud-
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based services. First, in Section 6.1, we briefly introduce
the problem definition and motivation of cloud-based services
co-deployment. Then we illustrate the framework of cloud-
based multi-services and the data processing procedure in
Section 6.2. Section 6.3 reviews the model of single ser-
vice deployment. Section 6.4 presents our multi-services co-
deployment model. Section 6.5 discusses experimental results.
Finally, Section 6.6 summarizes the chapter.

• Chapter 7
The last chapter concludes this thesis and provides some dis-
cussions on possible future work in this research area.

Notice that to make each chapter independent, in some of the
chapters we may repeat critical contents like motivations and model
definitions.

2 End of chapter.



Chapter 2

Background Review

Chapter Outline

We separately tune performance of mobile applications and
cloud services (Figure 1.3). We review related work on
the architecture of cloud-based mobile applications, mobile
applications performance tuning and cloud service perfor-
mance tuning.

2.1 Mobile Applications and Cloud Services

Building on two mature technologies, cloud-based mobile comput-
ing is a promising development. Cloud-based mobile computing
has the portability of mobile computing and the scalability of cloud
computing. It has attracted widely interests from academia [77] and
is growing in share of the mobile app market [12].

Previous studies have surveyed cloud-based mobile applications.
Abolfazli et al. [25] identify four scenarios in which cloud services
increase the computing capabilities of mobile devices: load sharing,
remote execution, cyber foraging, and mobile computation augmen-
tation. Mobile computation augmentation includes techniques such
as computation offloading, remote data storage, and remote service

12
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requests. Dinh et al. [70] list five advantages of using cloud-based
mobile computing: 1) extending battery lifetime; 2) improving data
storage capacity and processing power; 3) improving reliability; 4)
dynamic provisioning; and 5) scalability.

With so many advantages (e.g., augment computational power,
battery lifetime of mobile devices), it is unsurprising that a number
of studies have proposed offloading computational tasks to clouds.
MAUI [66] enables energy-aware offloading to clouds. It provides
method-level, semi-automatic offloading of the .net code. Although
it improves the performance of some applications, performance
enhancement is not its focus. CloneCloud [61] enables unmodified
mobile applications running in an application-level virtual machine
(VM) to offload part of their execution from mobile devices onto
VMs in clouds. CloneCloud automatically partitions applications
into pieces for migrating to a VM at runtime. The partitioning
is determined offline. However, CloneCloud has limitations with
regards to input applications and native resources. It also needs to be
updated for every new application version. ThinkAir [113] creates
VMs of complete mobile systems on the cloud to address the scala-
bility issues of MAUI, and adopts an online method-level offloading
to address the restrictions of CloneCloud. It also supports on-
demand resource allocation and parallelism. Kovachev et al. [114]
design MACS middleware that gives developers better control over
offloadable components. The above mentioned approaches work on
generic applications. Lee et al. [116] propose Outatime which is
specially designed for mobile cloud games. For these mobile cloud
games, cloud servers execute the games while the mobile clients
only transmit UI input events and display the output rendered by the
servers.

There are also studies of the fundamental issues in cloud-based
mobile computing architecture, such as the tradeoff between perfor-
mance improvement and energy saving [191].

Our work does not focus on the architecture of cloud-based
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mobile applications and its implementation. We do not bind our
approach to any specific architecture or implementation. We ex-
amine the general performance tuning of mobile apps and cloud
services. Therefore, our methods will work to improve performance
in a variety of architectures and their implementations.

2.2 Performance Tuning of Mobile Applications

Our tool assists developers to tune the performance of mobile
apps during testing. Here, we first review related research on
testing mobile apps. Then we review related work on performance
diagnosis. As performance diagnosis cannot solve all performance
issues, we further investigate UI design techniques to make users
more patient with bad performance.

2.2.1 Testing Mobile Applications

Performance diagnosis often requires executing the target app au-
tomatically. Script-based testing is widely used (e.g., UIAutoma-
tor [177], Monkey runner [138], and Robotium [164]). The record-
and-replay approaches (e.g., MobiPlay [156], Reran [88], and SPAG-
C [124]) record an event sequence during the manual exercising
of an app, and generate replayable scripts. Complementary to
these semi-automatic approaches, fuzz testing approaches (e.g.,
Monkey [179], Dynodroid [132], and VanarSena [160]) gener-
ate random input sequences to exercise Android apps. Symbol-
ic execution-based testing approaches (e.g., Mirzaei et al. [137],
ACTEve [32], Jensen et al. [102], EvoDroid [133], A3E [42], and
SIG-Droid [136]) explore the app functions in a systematic way.
Model-based testing approaches (e.g., Android Ripper [30], Swift-
Hand [59], and PBGT [140]) generate a finite state machine model
and event sequences to traverse the model. TestPatch [86] uses
the GUI ripping methods for regression tests. Test case selection
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techniques (e.g., [94, 176]) can also be adopted to exercise the target
apps. These app-exercising tools can work as plugin modules for
our tools. In other words, a developer can exploit the merits of a
testing tool by simply applying it as a plugin to exercise the target
app.

2.2.2 Performance Diagnosis of Mobile Applications

Performance Diagnosis of General Applications

Performance diagnosis has been well studied for many systems.
Much work has been conducted on predicting the performance
of configurable systems [167, 198]. CARAMEL [146] detects
performance problems caused by unnecessary loop executions with
static analysis. Yu et al. [195] propose a performance analysis
approach based on real-world execution traces. However, such
traces are usually not available in our problem setting. PPD [189]
uses dynamic instrumentation for goal-oriented known performance
issues searches. Lag Hunting [107] searches for performance bugs
in JAVA GUI applications in the wild without addressing concurren-
cy issues. Performance issues in Javascript programs are also well
studied [168]. SAHAND [27] visualizes a behavioral model of full-
stack JavaScript apps’ execution, but it does not take the contentions
of asynchronous tasks into consideration. Existing work [29, 103]
also considers “thread waiting time” (i.e., when a thread waits for
other threads during its execution) as a metric to find performance
bottlenecks. In contrast, we focus on queuing time, i.e., the time a
task waits before being executed, to model task dependency. More
specifically, a lock contention (e.g., db operations) pauses a thread
from executing, whereas queuing asynchronous tasks does not. One
task waits for another task in the same worker thread to finish,
while that thread continuously runs. Therefore, our tool is specially
tailored to profile waiting time and task dependency in continuous
threads.
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Performance Diagnosis of Mobile Applications

Performance is a critical concern for mobile apps [31, 162]. Liu
et al. [125] show that many performance issues are caused by the
blocking operations in the main thread. StrictMode [90] analyzes the
main thread to find such blocking operations. Asynchronizer [123]
provides an easy way to refactor specific blocking synchronous
operations into standard AsyncTask implementations. Async-
Droid [122] further refactors AsyncTask to IntentService
to eliminate the memory leakage problems. CLAPP [82] finds
potential performance optimizations by analyzing loops. However,
such static analysis-based tools cannot capture runtime execution
dependency. Banerjee et al. [43, 44] design static analysis-driven
testing for performance issues caused by anomalous cache behav-
iors. Tango [91], Outatime [116], and Cedos [139] optimize WiFi
offloading mechanisms to maintain a low-latency for apps. Smar-
tIO [143] reduces the app delay by reordering IO operations. Of-
floading tasks to remote servers can also reduce the delay [188, 187].
Resource leakage is a common source of performance issues and
has been widely investigated [194]. These approaches solve specific
performance issues. In contrast, our work solves general UI perfor-
mance issues caused by the runtime dependency of asynchronous
executions.

UI Performance Diagnosis of Mobile Applications

User interface (UI) design is one of the key factors in mobile app
development [105]. Many studies have focused on methods for
diagnosing UI performance. Method tracing [153] is an official
tool that is often used to diagnose performance issues, but it has
a high overhead and is suitable for diagnosing known issues only.
QoE Doctor [57] bases its diagnosis on Android Activity Testing
API [26], but can only handle pre-defined operations. Appin-
sight [161] is a tracing-based diagnosis tool for Windows phone
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apps. It traces all of the asynchronous executions from a UI event
to its corresponding UI update, and identifies the critical paths
that influence the performance. Panappticon [196] adopts a similar
approach on Android. However, these approaches typically require
framework and kernel recompilation, which limits their compatibil-
ity with various devices. Moreover, these studies focus on finding
the anomalous task delays; in contrast, our work identifies not only
the runtime dependency between tasks, especially those for different
UI operations, but also the delays that affect user experience.

2.2.3 Performance and UI Design of Mobile Applications

Performance and General UI Design

Many studies have examined the relationship between user satisfac-
tion and system response time.

Early studies of user-tolerable waiting time focus on general
computer applications. Miller [135] notes that different purposes
and actions have different acceptable or useful response times.
Shneiderman [171] states that response times to simple commands
should not exceed 2 seconds. Nielsen [144] suggests that 0.1
second is the limit at which users feel that the system is reacting
instantaneously and 1.0 second is the limit for users’ flow of thought
to remain uninterrupted.

There are also many research investigations on the Web user
tolerance. These studies indicate that over time user tolerance for
delays on Web pages has decreased. The tolerable delay in early
studies was more than 30 to 40 seconds [159, 169]. Hoxmeier et
al. [97] construct an Internet browser-based application to study how
Web delay affects user satisfaction, and find a 12 seconds threshold.
Galletta et al. [83] vary the website delay time from 0 to 12 seconds.
They examine the performance, attitudes, and behavioral intentions
of the subjects to understand user tolerance for website delays. The
results suggest that users are tolerant of delays of about 4 seconds.
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Nah [141] finds that most users are willing to wait for only about 2
seconds for simple information retrieval tasks on the Web.

The above-mentioned research focuses on the absolute value of
delays and does not consider how feedback affects user satisfaction
with a delay. Visual and non-visual feedback is an important
design element in delay-tolerable UI. Duis et al. [71] point out
that a system should let a user know immediately that her input
has been received, but the authors offer these suggestions without
experimental study. Johnson [104] also provides many insights
into system responsiveness and user satisfaction. He suggests that
showing a progress bar for long-term operations is much better than
showing nothing or only a busy bar.

Performance and Touch Screen UI Design

Touch screen user interfaces have attracted research interests for
some time. Findlater et al. [78] compare adaptive interfaces for
small and desktop-sized screens to study the impact of screen size on
user satisfaction. They show that high accuracy adaptive menus are
highly beneficial for small screen displays. Forlines et al. [79] study
the different characteristics of direct touch screen input and mouse
input. They show different input methods have different benefits.

Tolerance for delays on mobile devices has also been studied.
Oulasvirta et al. [149] reveal that user attention spans vary from 4
seconds to 16 seconds on mobile devices once the page loading has
started. Anderson [33] suggests that user tolerance for touch screen
latency for common tasks is below 580 ms. Jota et al. [106] and
their follow-up work [68] show that 1) the initial delay feedback
the users can perceive ranges from 20 to 10 ms, and 2) the user
detectable threshold of direct and indirect operations for different
tasks (tapping and dragging) range from 11 ms to 96 ms. Ng
et al. [142] show that user notice improvements in speed at well
below 10 ms. These results have implications for touch screen UI
design; our research is designed to detect violations of the tolerance
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thresholds.
Visual and non-visual feedback is widely used in the design of

delay tolerable UI. Roto et al. [166] show that multimodal feedback
for delays of more than 4 seconds is required. Lee et al. [117]
note that the absence of feedback affects user performance (e.g.,
typing on flat piezo-electric buttons that have no tactile feedback
significantly reduces expert typists performance). Kristoffersen et
al. [115] suggest using audio feedback on mobiles. Ng et al. [142]
recommend providing low-fidelity visual feedback immediately.
Poupyrev et al. [151] find that tactile feedback is most effective
when the GUI widgets need to be held down or dragged on the
screen. Ripples [190] provide a special system on top of the screen
that can give feedback about the successes and errors of the touch
interactions. In contrast, we do not modify the current mobile
UI framework. Our work focuses on detecting UI elements with
long delays or with no feedback that may leave users uncertain of
the status of their commands. This information can be used by
developers to avoid such problems.

2.3 Performance Tuning of Cloud Server

2.3.1 Cloud Architecture and Datacenter Characteristics

Cloud Architecture

Many previous studies have examined the cloud framework. There
are several good survey work in this area [39, 65, 93, 155, 184]. Luis
et al. [182] give a clear picture of cloud computing, and provide
definitions of key components of the cloud.

At first glance, cloud computing may look very similar to grid
computing [80], but they are not identical. Foster, who posted the
grid framework, compares grid computing to cloud computing in
detail [81]. They can both be used to do parallel computations
and thus reduce the cost of computing. They both manage large
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numbers of facilities and offer users flexibility. The difference is
that grid computing uses distributed resources and an open standard,
whereas cloud computing is sponsored by a single company. The
business models of these two are different and so their target users
are different.

There are three kinds of cloud infrastructures, which correspond
to three layers of services: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS
abstracts the user from details of infrastructure (e.g., physical com-
puting resources, location) to virtual machines. Users are usually
required to install OS images and their application by themselves.
PaaS provides typical development platform for developers. The
platform includes operating system, programming-language execu-
tion environment, database and web server. For SaaS, the provider
install and operate application software in the cloud and users
access the software from the clients. Three real world examples are
Amazon Elastic Compute Cloud (EC2) [5, 87] for Iaas, Microsoft’s
Windows Azure Platform [18] for Paas and Google App Engine [14]
for SaaS. Lenk et al. [119] give an overview of the features of
existing cloud providers. Lin et al. [121] define high level IT as
a service (ITaaS) that can be viewed from both technology and
business model perspectives.

Currently, there is limited cooperation between different cloud
providers. Rochwerger et al. [165] identify the shortcomings of
contemporary clouds as due to the inherently limited scalability
of single-provider clouds, lack of interoperability among cloud
providers, and no built-in Business Service Management (BMS)
support. They present an architecture for a federation of disparate
data centers based on the principles of BMS.

Apart from commercial services, there are open source examples
of cloud services. Eucalyptus [147] is an open-source software
framework for cloud computing. It implements the IaaS principle.

Brandic [49] offers a structure for self-manageable cloud ser-
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vices. This structure uses the concept of autonomic systems. The
procedure has four stages: monitoring, analyzing, planning, and
execution. He uses this life cycle in each work period (meta
negotiation, negotiation, service execution, and post-execution) of
a cloud service to keep the architecture self-manageable. Our work
improves his analysis procedure.

Cloud computing is a commercial product. Buyya et al. [51]
examine cloud issues from a market-orientation. They talk about the
commercial and technological implementations of cloud computing
for industry. Our research considers the effect of budget limitations
and thus also takes the commercial factors into consideration. Sub-
sequent research by Buyya et al. [52] discusses the impact of cloud
computing on the provision of computing power.

As claimed by Walker [185], clouds (e.g., Amazon EC2) per-
form worse in high performance computing contexts than current
HPC clusters. However, there are also some variants that suit
high performance cloud computing. These variants include GPUs
combined with CPUs to form a mixed cloud environment. GPUs
provide more computation power than CPUs, so including GPUs
in a cloud can improve the computing capability greatly. Ama-
zon claims to provide clusters of GPU based instances for high
performance computing [9]. Farivar et al. [75] design an archi-
tecture, MITHRA, that leverages NVIDIA CUDA technology [20]
along with Apache Hadoop [6] to produce scalable performance
gains using the MapReduce [67] programming model. Barak et
al. [45] present a packet for running OpenMP, C++, and unmodified
OpenCL applications on clusters with many GPU devices. Their
experiment demonstrates how powerful GPU clusters can be used to
speedup applications. Our model could improve deployment of both
GPU clusters and CPU clusters, as we do not differentiate them.
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Data Center Characteristics

We have a special interest in data center traffic characteristics. Our
deployment methods are based on the analysis of data center traffics;
therefore, understanding traffic characteristics is very important.
Luckily, there are many studies of data center characteristics.

Wang et al. [186] evaluate the performance of Amazon EC2.
They measure: 1) processor sharing; 2) packet round-trip delay;
3) TCP/UDP throughput; and 4) packet loss. The TCP/UDP
throughput referred to, like other network properties, are measures
of network performance inside the cloud; that is, they measure a pair
of instances in the cloud, but do not consider an outside visit. We
still need to understand the complete traffic pattern for users using
service in a cloud.

Ersoz et al. [73] first characterized network traffic in a cluster-
based multi-tier data center. They find that 1) in most cases, the
request inter-arrival rates follow log-normal distribution, and self-
similarity exists when the data center is heavily loaded; 2) message
sizes can be modeled by the log-normal distribution; and 3) service
times fit reasonably well with the Pareto distribution and show heavy
tailed behavior at heavy loads.

Benson et al. [48] present an empirical study of end-to-end traffic
patterns in data center networks. The same group [47] has con-
ducted experiments in ten data centers belonging to three different
categories, including university, enterprise campus, and cloud data
centers. They collect and analyze SNMP statistics, topology, and
packet-level traces, to provide insights into different data center
characteristics. Srikanth et al. [109] instrument the servers to collect
socket-level logs. They obtain and report detailed views of traffic
and congestion conditions and patterns.

Qian et al. [154] propose a hierarchical modeling approach that
can easily combine all of the components of a cloud environment.
Their model is a very useful analytical tool for online service pro-
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viders who are evaluating cloud computing providers and designing
redirection strategies.

2.3.2 Virtual Machine Live Migration and Management

The virtual machine live migration problem has been well studied.
The Xen migration mechanism is first proposed by Clark et al. [63].
They could transfer an entire machine in hundreds of milliseconds.
Hines et al. [96] propose a post-copy based approach that defers
the transfer of the contents of a machine’s memory until after its
processor state has been sent to the target host. It ensures each
memory page is transferred at most once, thus avoiding the duplicate
transmission overhead of pre-copy. The Remote Direct Memory
Access (RDMA) technique is used to further reduce the migration
time and application downtime [99].

The virtual machine migration technique has been extended
to management problems. Van et al. [180] study the problem
of deciding what types of virtual machines to use for multiple
applications. They consider latency and the service level agreement
with computation cost. Stage et al. [174] consider how much
bandwidth is consumed during the migration. They propose a
network topology-aware scheduling model to minimize the number
of hosts. Andreolini et al. [34] present a management algorithm of
VM placement that improves performance and resource utilization
by considering the load profile of the hosts and the load trend
behavior of the guest.

Although all of the virtual machine management algorithms
consider the load balance across a set of hosts or reduce the number
of required hosts, user experience is seldom considered important
factor. These models omit the network cost in their model, whereas
our model emphasizes network latency and makes the assumption
that the computation cost remains the same, regardless of the host
locations.
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2.3.3 Cloud-based Service Deployment and Algorithms

Web Server Placement

There are solutions that can accelerate Web applications by taking
advantage of extra cache servers such as AICache [3] and Akamai
application performance solutions [7]. However, these commercial
services increase costs. As their technique is merely to use extra
servers, we can generalize the approach into our framework by
increasing the number of servers.

Previous research has examined service deployment in gird com-
puting environments. Kecskemeti et al. [111] design an automatic
service deployment method for a grid that creates virtual appliances
for grid services, deploys service from a repository, and influences
the service schedules by altering execution planning services, candi-
date set generators, or information systems. Unlike a cloud, a grid is
not centralized which limits application of these methods on cloud.

Burg et al. [181] focus on software deployment, especially select-
ing which machine to load and to run the source codes on according
to the QoS. In contrast, our approach is on the application level. Qiu
et al. [157] study the placement of Web server replicas using several
placement algorithms. They evaluate the algorithm by comparing
the output to the result of a super-optimal algorithm based on
Lagrangian relaxation which may not be feasible in practice. Zhang
et al. [197] study the placement problem in shared service hosting
infrastructures. Instead of modeling the placement problem as a k-
median problem, they consider it similar to the capacitated facility
location problem. They define their own penalty cost instead of
using response time directly. However, these studies are not tailored
for cloud computing.

Cloud-Based Service Deployment

The Web server placement problem has been widely studied.
Web server replicas has been studied by Qiu et al. [157]. They



CHAPTER 2. BACKGROUND REVIEW 25

use the result of the k-median model as a super-optimal result.
They use different algorithms to give an approximate solution of
the model. Zhang et al. [197] study service placement in shared
service hosting infrastructures. They formulate a model similar to
the general capacitated facility location model. They do not use
response time directly, but define a new penalty cost.

However, these studies are not tailored for cloud computing.
In our work, the properties of cloud computing are considered.
The user experience is highlighted and a general framework of
service deployment in a cloud environment is proposed. Building on
previous studies of single service deployment, we propose a model
for the co-deployment of multiple services.

k-Median Problem

K-median problem is the problem of finding k medians such that
the sum of distances of all the points to their nearest medians is
minimized. It is a common model for facility location problem.
More discussion of this problem can be found in Section 5.4.1.
Jain and Vazirani [101] provide a 6-approximation for the k-median
problem. Their algorithm uses the Lagrangian relaxation technique.
Their main contribution is that they use the algorithm for the
facility location problem as a subroutine to solve the k-median
problem. They prove that a Lagrangian multiplier preserving α-
approximation algorithm for the facility location problem gives rise
to a 2α-approximation algorithm for the k-median problem. Based
on this approach, many improvements have been achieved. Charikar
and Guha [55] use a similar idea and achieve a 4-approximation
algorithm for the k-median problem. Jain et al. [100] obtain a new
greedy approach for the facility location problems. By improving
the subroutine, they also get a 4-approximation using the same
procedure as in the previous algorithm.

Arya et al. [40] first analyze the local search algorithm for
k-median and provide a bounded performance guarantee. Their
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analysis supports our algorithm, used in Section 5.4.1, which can
approximate the optimal solution to the ratio 3 + ε, the best result
currently known.

Max k-Cover Problem

Max k-cover is the problem of selecting at most k among n sets
- which have many elements in common - that could cover max-
imum number of elements. More discussions could be found in
Section 5.4.2. The Max k-cover problem is related to the set cover
problem. Many algorithms have been proposed (e.g., [62, 76, 127])
to solve this problem. The greedy algorithm [76] is one of the best
polynomial time algorithms for this problem; it gives a (1 − 1/e)-
approximation.

There is also an algorithm for solving the online set cover [28]
problem, which deals with the given elements one-by-one. This
algorithm can fit the needs of users executing services in the cloud.

k-Median Model and Multi-commodity Facility Location

A series of facility location problems have been well studied in the
supply chain management field, as reviewed by Melo et al. [134].
One discrete variation of the facility location problem is the k-
median (also p-median) model [130], which has been studied in
the context of Web service deployment [157]. The original k-
median model considers the facility location problem for only one
commodity. Our model is closer to the multi-commodity facility
location problem.

Pirkul et al. [150] propose the PLANWAR model, which is
an established formulation of the multi-commodity, multi-plant,
capacitated facility location problem. Shen [170] modifies the cost
function and obtains a new model. Cao et al. [54] propose a variation
of the k-median model for the problem. However, these models do
not consider cross-plant transportation; instead the commodities are
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regarded as rather independent.
Thanh et al. [178] propose a very complex dynamic model with

about 40 constraints. The model considers a multi-echelon, multi-
commodity production-distribution network with deterministic de-
mands. They make the assumption that the production process can
be divided into several steps and can be shared between several
plants. The production process does not rely on other productions or
sub-routines. The relation between two commodities is that they can
be manufactured/stored in one facility simultaneously. The multi-
echelon is divided according to the life cycle of a commodity but
not a cross-commodity, as in our model.

2 End of chapter.



Chapter 3

Android Performance Diagnosis via
Anatomizing Asynchronous
Executions

Android Performance Diagnosis

This chapter presents DiagDroid, a tool specifically de-
signed for Android UI performance diagnosis. The key no-
tion is that the UI-triggered asynchronous executions con-
tribute to the UI performance, and hence their performance
and runtime dependency should be properly captured. We
list the points of this chapter as:

• Group tremendous ways to start the asynchronous
executions into five categories; Track and profile them
with low-overhead and high compatibility.

• Implement and open-source release the tool.

• Apply DiagDroid in diagnosing real-world open-
source apps which we are unfamiliar with their imple-
mentations; Successfully locate and diagnose tens of
previously unknown performance issues.

28
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3.1 Motivation and Problem Definition

As daily-use personal devices, mobiles are required to provide quick
response to the user interface (UI). UI performance of a mobile app
is a critical factor to its user experience, and hence becomes a major
concern to developers [125, 126]. Many recent research efforts have
therefore been put on addressing the performance issues of Android
apps (e.g., Asynchronizer [123], Panappticon [196]). However, poor
UI performance of Android apps remains a widely-complaint type
of issues among users [125, 126]. App developers are still lacking a
handy tool to help combat performance issues.

Android provides a non-blocking paradigm to process UI events
(i.e., user inputs) for its apps. The UI main thread dispatches valid
UI events to their corresponding UI event procedures (i.e., the UI
event-handling logic). A UI event procedure generally runs in an
asynchronous manner, so that the main thread can handle other UI
events simultaneously. After the asynchronous part is done, the
UI can be updated with a call-back mechanism. This paradigm
will lead to complicated concurrent executions. Asynchronous
execution processes may bear implicit dependency during their
runtime. For example, two may be scheduled to run in the same
thread by Android, and one may consequently wait for the other to
complete. Such unexpected waiting may result in a longer delay
for a UI procedure, leading to UI performance issues. However,
it is hard to predict such runtime dependency during the coding
phase due to the complications of Android’s asynchronous execution
mechanisms [152]. Performance issues are hence inevitable.

Concurrency is a notorious source of bugs [129]. Current tools
for diagnosing Android UI performance issues generally consider
either the synchronous part of the UI event procedure [90], or the
execution process of one UI event procedure per se [196]. They do
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not focus on the dependency of multiple asynchronous execution
processes. Hence, they are still not enough to cope with the UI
performance issues largely caused by such runtime dependency.

Long-term testing is a well-known, viable means to trigger bugs
caused by concurrency [118]. Unfortunately, we lack an automatic
mechanism to check whether there exists a performance issue in
the long-term testing. Manual inspection of the tremendous traces
produced by current method tracing tools (e.g., Traceview [153]) is
extremely labor-intensive, if not infeasible, not to mention their huge
overhead.

We find that unlike general concurrent programs [50, 53, 98,
108], an Android UI event procedure can be anatomized into a set of
trackable tasks, which can then be properly profiled so as to facilitate
the detection and localization of performance issues. Specifically,
although Android supports tremendous ways to schedule asynchron-
ous executions, we conclude that they can actually be abstracted as
five categories. Each can be tracked and profiled in task granularity
according to the specifics of each category. UI performance can
hence be modeled by the performance of the tasks. We further
tackle the complication of runtime dependency via examining the
dependency of tasks, which can be solved by checking whether the
tasks request the same execution unit (e.g., a thread pool). Via
modeling task performance by not only its execution time, but the
time when it waits for execution (i.e., the time between when it
is scheduled and when it starts execution), we can model how a
task is influenced by the others. Thus, performance issues due to
asynchronous executions can be properly captured.

Hence, this chapter proposes DiagDroid (Performance Di-
agnosis for Android), a novel tool to exercise, profile, and
analyze the UI performance of an Android app without modifying
its codes. First, via a light-weight static analysis of the target
app, DiagDroid obtains the necessary app information for its
profiling mechanism. Then it employs a plugin testing approach
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(e.g., Monkey [179], a random testing approach) to exercise the
original app. The required runtime data are then captured during
the testing run via its profiler. The data are then processed offline
to generate a human readable report. The report can unveil poten-
tial performance bugs to developers and direct them to suspicious
locations in the source codes. Human efforts can greatly be reduced
in diagnosing UI performance issues. Finally, DiagDroid solves
the compatibility and efficiency challenges generally faced by the
dynamic analysis tools by slightly instrumenting only the general
Android framework invocations with a dynamic instrumentation
approach. Hence, it can be applied to most off-the-shelf mobile
models and apps.

We have implemented and open-source released DiagDroid
with a tutorial [69]. We show that it is easy to apply DiagDroid to
real-world practical apps with light configurations. In the 33 open-
source real-world apps we study, 27 performance defects in 14 apps
are found, and we receive positive feedbacks from their developers.
These defects are all caused by the complicated dependency of
asynchronous executions, which can hardly be located by current
UI performance diagnosis practice. This indicates the effectiveness
of DiagDroid.

3.2 Android Application Specifics

3.2.1 UI Event Processing

Designed mainly for user-centric usage patterns, Android apps are
typically UI oriented: An app will iteratively process user inputs,
and accordingly update the display to show the intended contents.
The main thread of an app is the sole thread that handles the
UI-related operations [152], such as processing user inputs and
displaying UI components (e.g., buttons and images). When a valid
user input (i.e., a UI event) comes, the main thread can invoke its
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Figure 3.1: An AsyncTask example

corresponding UI event procedure, i.e., the codes that handle the UI
event.

Some UI event procedures may be time-consuming, for example,
one to download a file from the Internet. To avoid blocking the
main thread, the UI event procedures conduct heavy-weighted work
in an asynchronous manner so that the main thread can handle other
UI inputs simultaneously [152]. After such asynchronous executions
are done, the UI can be updated in the main thread with a call-back
mechanism.

Figure 3.1 shows the codes of an Activity (i.e., a window
container for the UI components to be displayed). It retrieves
data from the Internet and displays the data in a TextView (i.e.,
a UI component to display text) after a button is touched. The
Internet access is done asynchronously in another thread while the
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Table 3.1: Asynchronous execution examples

Class Code Segment

Thread
//Create a new thread and download in that thread

Thread thread = new Thread(new DownloadRunnable(url));

thread.start();

Thread
Pool

Executor

//Download in one thread of a thread pool with capacity 10

ExecutorService threadPool = Executors.newFixedThreadPool(10);

threadPool.execute(new DownloadRunnable(url));

Handler

//Download in a HandlerThread by posting a task on the attached handler

HandlerThread handlerThread = new HandlerThread("DownloadHanderThread");

handlerThread.start();

Handler handler = new Handler(handlerThread.getLooper());

handler.post(new DownloadRunnable(url));

Intent
Service

//Download in a user‐defined Service

Intent downloadIntent = new Intent(this, DownloadService.class);

downloadIntent.putExtra(DownloadService.URLKEY, url);

startService(downloadIntent);

Download
Manager

//Use standard DownloadManager Service, utilizing ThreadPoolExecutor implictly

DownloadManager dm = (DownloadManager) getSystemService (DOWNLOAD_SERVICE);

DownloadManager.Request req = new DownloadManager.Request(Uri.parse(url));

dm.enqueue(req)

TextView update is done in the main thread. More specifically,
the RetrieveDataTask extends the AsyncTask class. It
overrides the doInBackground method to allow accessing the
Internet asynchronously in a worker thread. Its onPostExecute
method is a call-back mechanism to allow the corresponding update
of the TextView object in the main thread. These codes are
abstracted from an open-source project, namely, RestC [24]. It
shows a common coding practice of processing UI-operations.

3.2.2 Asynchronous Executions

Android provides high flexibility to implement asynchronous exe-
cutions. There are tremendous ways for an app to start asynchron-
ous executions. Examples include using AsyncTask, Thread-
PoolExecutor, and IntentService. Actually we can find
hundreds of classes or methods in the Android framework that can
start asynchronous executions, by inspecting the Android source
codes. The implicit ways to start asynchronous executions in-
clude, for example, those via the customized classes that override
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the Android framework classes such as AsyncTask or Han-
dlerThread.

Table 3.1 shows various ways of conducting asynchronous exe-
cutions. For a simple task to download Internet contents, we could
name at least 6 ways (including examples shown in Figure 3.1
and Table 3.1). Choosing which way generally depends on the
developer’s own preference.

No matter how an asynchronous execution starts, it is executed
by the operating system (OS) via the thread mechanism so as to
implement concurrency. However, Android may start a new thread
or reuse a running thread for the asynchronous execution. As a
result, different asynchronous executions may share the same thread
and run sequentially. In other words, they may compete for the same
execution unit. Unfortunately, it is hard for the developer to be aware
of such dependency of asynchronous executions: she may not know
exactly how the asynchronous executions run.

The complex ways of starting asynchronous executions, together
with their complicated runtime dependency, make it difficult for the
developers to comprehend the performance of UI event procedures
they write. Performance issues are hence hard to be eliminated
without a proper tool. Next, we will show two representative
performance issues.

3.3 Motivating Examples

Since there is only one sole main UI thread for each app, UI events
are handled one by one by the thread. Hence, in order not to block
the main thread, the official Android development guide [152]
suggests that asynchronous executions should be conducted for
time-consuming tasks if an event handler includes such tasks.

Actually app developers may overlook such suggestions occa-
sionally and write time-consuming codes in the synchronous part
of the UI event handler (i.e., that executes in the main thread).
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This is long been known as a notorious cause of performance prob-
lems [152], including frequent ANR (Application Not Responding)
reports which indicate the consecutive UI events are blocked for
more than 5 seconds [112]. Numerous tools have been designed to
find such bugs. Examples include the official Google developer tool
StrictMode [90] and Asynchronizer [123], which typically address
this issue via static analysis.

However, addressing the performance problems solely in the
synchronous executions is still far from enough. When a user
regards that she is suffering from slow and laggy UI, she is actually
experiencing a long period of time between her UI operation and its
corresponding intended display update. Even when asynchronous
executions are introduced and the synchronous part completes its
execution quickly, she may still feel that the UI is laggy if the
asynchronous executions are slow and consequently cause the laggy
display update of the intended contents.

The complex ways of starting asynchronous executions of An-
droid may introduce various tricky performance problems. Next
we will show even if simple, seemingly-correct codes may contain
performance problems.

We adopt AsyncTask as an example. AsyncTask is a simple,
handy class that allows developers to conveniently start self-defined
asynchronous executions and notify the main thread to update the
UI [41].

We show two typical cases where performance problems are
introduced. The first is caused by unexpected sequentialized asyn-
chronous executions, while the second by not or not properly
canceling expired asynchronous executions.



CHAPTER 3. ANDROID PERFORMANCE DIAGNOSIS 36

private class MyOnClickListener implements OnClickListener {
@Override
protected void onClick(View v){

RetrieveDataTask task1, task2, task3;
task1 = new RetrieveDataTask(textView1);
task2 = new RetrieveDataTask(textView2);
task3 = new RetrieveDataTask(textView3);
// the frist trial on executing tasks in parallel 
task1.execute(url1);
task2.execute(url2);
task3.execute(url3);

}
}

// example code of executing tasks in parallel, notice the change
// of API in Android 3.0
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

task1.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, url1);
} else {

task1.execute(url1);
}

Figure 3.2: Example codes which may cause potential performance problems

3.3.1 Sequential Running of Multiple Asynchronous Execu-
tions

Let us suppose that an event handler will show three text views in
an Activity. The content of each text view should be loaded
from the Internet. Since Internet access is slow, the developer may
resort to asynchronous executions to download the contents, and
expect to download the three in parallel. Her codes are illustrated
in Figure 3.2, where the class RetrieveDataTask is defined in
our previous example shown in Figure 3.1.

Invoking the execute method is shown as a usage example by
the official guide [41], which is commonly used to start the asyn-
chronous executions defined by the AsyncTask extensions (e.g.,
the RetrieveDataTask class in this example). The developer
may consider that every RetrieveDataTasks would be executed
in separated threads, and hence invoking three execute methods
in sequential will make them run in parallel.

However, even such simple codes contain subtle causes of po-
tential performance problems. Since the execute method of
AsyncTask cannot be overridden, all the execution methods in
this example will actually call the execute method implemented
in their super class (i.e., AsyncTask). In the recent versions of
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private class MyOnClickListener implements OnClickListener {
@Override
protected void onClick(View v){

retrieveDataTask task1, task2, task3;
task1 = new retrieveDataTask(textView1);
task2 = new retrieveDataTask(textView2);
task3 = new retrieveDataTask(textView3);
// the frist trial on executing tasks in parallel
task1.execute(url1);
task2.execute(url2);
task3.execute(url3);

}
}

// example code of executing tasks in parallel, notice the change
// of API in Android 3.0
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

task1.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, url1);
} else {

task1.execute(url1);
}

Figure 3.3: Correct codes to execute an Asynctask

Android framework, invoking the execute method will insert the
corresponding task into a global queue and all tasks will be executed
in sequential in one sole thread instead of in parallel in multiple
threads. This inevitably incurs more time to complete the download
tasks and update the UI accordingly. As a result, the user will
experience laggy UI.

It is worth noting that such sequential execution mechanism is
introduced recently in Android systems with version numbers larger
than 3.0. In previous versions, the codes will, in contrast, execute
in parallel as expected. It is quite possible for the developers to
neglect such changes and introduce potential performance problems.
Android has a quick evolution on the framework. Though providing
good backward compatibility in APIs, the implementations of these
APIs are not guaranteed to be stable. However, current tools like
StrictMode [90] and Asynchronizer [123] only locate problems in
the synchronous executions. As a result, such performance problems
in the asynchronous executions caused by unexpected sequentialized
asynchronous executions cannot be located conveniently by current
tools. Nonetheless, such code defects are quite common among de-
velopers. For example, the Facebook Widget [148] project contains
a similar issue in its class StreamFragment.StatusAdapter.

Note that the execution time values of the tasks per se between
the sequential case and the parallel case may not be quite different.
However, for the sequential case, a task may be queuing for exe-
cution for a longer time after it is scheduled. If a tool can capture
such a queuing time, it can greatly facilitate performance diagnosis.



CHAPTER 3. ANDROID PERFORMANCE DIAGNOSIS 38

public class MyActivity extends Activity {
private class RetrieveDataTask extends AsyncTask<String, Void, String> {

...
@Override
protected String doInBackground(String... urls) {

...
// monitor the cancelation, stop as soon as the task is cancelled
while (!isCancelled() && (length = is.read(buf)) != ‐1) {
...

}
}

private RetrieveDataTask retrieveDataTask1, retrieveDataTask2,
retrieveDataTask3;

...

@Override
public void onStop() {

// should cancel tasks explicitly
if(retrieveDataTask1 != null) retrieveDataTask1.cancel(true);
if(retrieveDataTask2 != null) retrieveDataTask2.cancel(true);
if(retrieveDataTask3 != null) retrieveDataTask3.cancel(true);
super.onStop();

}
}

Figure 3.4: An example of cancelling AsyncTask

DiagDroid is a tool that can well capture such queuing time.
As a consequence, it is able to detect and locate such performance
problem.

Finally, such a code defect can be resolved by invoking the
executeOnExecutor method instead of the execute method
by assigning a new task queue for each download task. We show
the modifications of the first execute statement in Figure 3.2 as
an example in Figure 3.3.

3.3.2 Not Canceling Unnecessary Asynchronous Executions

Let us again consider the example codes shown in Figure 3.1. After
the codes are modified as shown in Figure 3.3 so that the three
tasks can execute in parallel, the codes still may cause performance
problems. Suppose the app allows its user to switch the activities
during the three views being loaded in the current activity, for
instance, with a right-to-left sliding operation. Such a mechanism is
commonly used in Android apps, which facilitates users to quickly
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locate the activity of interest. An example is that an email client
may allow the user to switch from the list-email activity to the read-
email activity, even if the email list is not completely shown in the
list-email activity.

When the user switches to another activity, the three tasks which
are loading contents from the Internet are no longer required since
their associated views and activity are invisible. It is therefore un-
necessary to continue the three asynchronous tasks in downloading
the Internet contents. But the example codes do not explicitly cancel
the asynchronous tasks. The tasks will run until the entire con-
tents are downloaded. Such unnecessary asynchronous executions
may incur resource races (e.g., occupying the Internet bandwidth),
and therefore deteriorate the performance of other asynchronous
executions. Sometimes, they may even block other asynchronous
executions: For example, they can occupy the working threads in a
thread pool and cause other tasks waiting for free threads.

The codes can be further improved, as shown in Figure 3.4. Note
that such code defects are very common to Android apps. We will
show in our experimental study that many developers of the popular
Android apps (e.g., rtweel [158] and BeerMusicDroid [183]) have
made such mistakes.

Note that a canceling operation is typically required when the
task is time-consuming and should be terminated in the middle.
If not properly canceling such a task, its execution latency will
be relatively large. Hence, the key to detect and locate such
a performance issue is to find out the execution latency of the
asynchronous tasks. DiagDroid can well profile the task with its
execution latency, which can greatly facilitate the diagnosis of such
a performance problem.

The above mentioned performance issues shown in Section 3.3.1
and 3.3.2 actually can hardly be tackled by current tools. Tools
like StrictMode [90] and Asynchronizer [123] consider only the
synchronous part of a UI event procedure, which cannot locate the
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Figure 3.5: Overview of DiagDroid Framework

issues caused by the asynchronous executions. Other tools like
Panappticon [196], Method Tracing [153] can track such executions.
However, they largely do not focus on the runtime dependency of
asynchronous executions. It is hard to find out such dependency via
examining the tremendous traces produced by these tools. Hence,
they are still not enough to cope with UI performance issues. Fixing
this gap is the purpose of DiagDroid.

3.4 UI Performance Diagnosis

We notice that the key to pinpoint the above performance issue is
to know not only the execution time of an AsyncTask, but also
the time between when it is scheduled and when it starts to execute
(i.e., the queuing time), as well as the other AsyncTasks that are
in the same thread pool. Specifically, an unexpectedly long queuing
time of an AsyncTask can indicate a performance issue. We can
instantly know there are too many AsyncTasks in the thread pool.
By examining which AsyncTasks are in the pool together with the
pool capacity, we can easily locate these performance issues.

The above notion can also be applied to other mechanisms that
start asynchronous executions. This is the basis of the DiagDroid
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design, which we overview in Figure 3.5. DiagDroid anatomizes
the Android UI event procedures into a set of tasks and then quantize
them so that data analysis can be conducted towards automating
performance diagnosis.

Specifically, as shown in Figure 3.5, DiagDroid first per-
forms a light static analysis of the target app and obtains some
required information to assist runtime profiling. It then exercises
the original app via a plugin testing approach which can involve
random test cases (e.g., Monkey [179]) or user-defined ones (e.g.,
Robotium [164], UIAutomator [177]). During the testing run, the
profiler can track asynchronous executions, so as to anatomize the
UI event procedures into a set of tasks. The performance of the tasks,
together with their runtime dependency, can then be captured. Based
on the profiling data, DiagDroid detects performance issues and
analyzes their causes. A report can finally be generated with an aim
to direct the debugging process.

To this end, we need to address several critical considerations
including the profiling granularity and how to do the profiling and di-
agnosing. Next, we will discuss the profiling granularity of Diag-
Droid, and the required runtime data for modeling asynchronous
executions and their runtime dependency (in Section 3.4.1). Then,
we illustrate how such data can facilitate UI performance diagnosis
(in Section 3.4.2).

3.4.1 Modeling Tasks and Their Dependency

As shown in Section 3.3, subtle runtime dependency of asynchron-
ous tasks can result in tricky performance issues. Analyzing such
dependency is a key concern to DiagDroid. We analyze the app
runtime in task level, defined as follows.

Definition 3.1. An asynchronous task (or task) is a segment of codes
that run in sequence in a single thread. It defines a developer-
intended asynchronous execution process.
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DiagDroid profiles the app runtime in task granularity. The
reasons are as follows. First, it is good enough for performance
diagnosis to profile in such a granularity. A task is a short segment
of codes that can also be well understood by its developer. If the
developer can know which task is anomalous, she can instantly
reason its cause by inspecting the task-related codes. Second, such a
granularity will not incur too much profiling overhead, compared
with the finer granularity (e.g., in method level or in line level).
Most importantly, profiling app runtime in task granularity can well
capture the runtime dependency of two asynchronous tasks. As a
consequence, UI performance issues caused by such dependency
can be easily detected and located.

The task performance naturally reflects the performance of the
entire UI event procedure: a slow task may result in a slow UI event
procedure, leading to a laggy UI. Next, we discuss how to model
task performance. We are aware of the fact that it is possible for a
task to queue in an execution unit before it is executed. As a result,
to model its performance, we should consider not only its execution
time, but also its queuing time in the unit.

Definition 3.2. The queuing time of a task is the interval between
when the task is scheduled (e.g., when execute method is called
to start an AsyncTask) and when it starts to execute.

We propose to use both the queuing time and the execution time
to model the task performance. Note that this is generally different
from the current diagnosis practice with tools like TraceView and
dumpsys [153]. It is hard, if not infeasible, for these tools to obtain
such data as they focus only on the execution time of individual
methods.

The queuing time of a task is influenced by the other tasks that
may compete for the same execution unit. We formally define task
runtime dependency as follows.
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Definition 3.3. Two tasks bear execution dependency if 1) they run
in the same execution unit; and 2) one task is scheduled in during
the other task’s queuing time.

As shown in Section 3.3, task runtime dependency is a critical
factor that influences the UI performance. Care must be taken to
model task execution dependency. We propose to employ three
queue-related features to model the task execution dependency.
Specifically, they are the queuing time, the pool capacity, and the
queuing length of a task.

Definition 3.4. The pool capacity of an execution unit is the maxi-
mum tasks that the unit can simultaneously execute.

For example, for a thread, the pool capacity is 1; while for a
thread pool the pool capacity is its size. Pool capacity is usually
set once and remains unchanged during runtime. Suppose k tasks
bear runtime dependency in an execution unit with capacity N and
k > N . k − N tasks have to wait for execution in the unit. Then,
when one task completes its execution, one of the waiting tasks can
be executed.

Definition 3.5. The queuing length of a task is the total number of
tasks waiting for execution in the execution unit after it is scheduled.

A queuing length L indicates that the task should wait for the
completion of other L tasks before it can be executed.

Figure 3.6 illustrates how the three tasks discussed in Sec-
tion 3.3.1 are executed. The thread pool capacity of AsyncTask
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is 1. When Task 2 is scheduled, it has to wait until Task 1 finishes
its execution. So the queuing length of Task 2 is 1. Similarly, the
queuing length of Task 3 is 2.

The queuing time of a task reflects how other tasks influence its
performance. The queuing length and pool capacity indicate the
cause of a bad-performance task. Such information can greatly help
performance diagnosis. However, existing tools for performance
diagnosis (e.g., Panappticon [196], Method Tracing [153]) cannot
provide such information. As a result, it is difficult for them
to diagnose the subtle performance issues caused by execution
dependency.

We will elaborate how DiagDroid collects these runtime data
in Section 3.5. Next, we will first discuss how DiagDroid
conducts performance diagnosis with the collected data.

3.4.2 Dependency-aware Performance Diagnosis

When the UI is laggy, it indicates that a UI event procedure requires
longer time to complete. As discussed, this can be rooted in either
the synchronous part or the asynchronous executions. Although
many tools (e.g., [123, 90]) have well addressed the former case,
DiagDroid moves a step further by focusing on the latter case, a
far more difficult task in addressing the subtle performance issues
caused by the asynchronous executions.

If the asynchronous part is laggy, it means at least one of the
asynchronous tasks requires more time to complete. Consequent-
ly, DiagDroid should detect performance anomaly by checking
whether there are any anomalous asynchronous tasks. Human
inspection of all the involved tasks is prohibitively labor-intensive.
DiagDroid requires an automatic way to detect anomalous tasks.
A possible approach is to group the tasks in such a way that we can
assume the tasks in the same group have similar performance. Then
we can perform anomaly detection in a group basis.
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But easy as it looks, how to group the tasks is challenging. An
instant approach is to consider the method call-stack when a task
is scheduled. We name such call-stack the execution context of
the task. The execution context actually links to the source codes
that define the task and how the codes are reached. Two tasks with
the same execution context mean that they are corresponding to the
same specific source code segment and execution sequence. Hence,
they should naturally be grouped together.

However, this simple consideration will result in extensive de-
bugging efforts. A code defect may manifest in similar tasks with
slightly-different execution contexts. Reporting all such tasks one
by one based on their execution contexts may be very tedious, and
even make the diagnosis difficult with such tedious information. For
example, two UI event procedures of two buttons may invoke the
same buggy asynchronous task (in the source codes). In these two
cases, the two task invocations have different execution contexts
since they are invoked by different event procedures. But they
should be grouped together to reduce human efforts in inspecting
the codes.

DiagDroid addresses this challenge by putting similar tasks
into a group with a proper definition of task similarity. By consid-
ering each method call as a symbol, an execution context can be
encoded into a sequence. Then the difference of two tasks is the edit
distance of their execution contexts. We adopt such an edit distance
as a similarity measure due to the following considerations. First, it
is suitable to model the differences of two tasks. Again consider the
above example, if two UI event procedures of two buttons invoke
the same buggy asynchronous task (in the source codes), the edit
distance of the execution contexts of the two task invocations will
remain close. As a result, they can be grouped together. Second,
it also takes the invocation order information into consideration,
where such an order in execution context is important to describe
the program runtime. Consequently, two close execution contexts
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indicate that the corresponding tasks are similar during program
runtime. With such a similarity measure, DiagDroid conducts
the single-linkage clustering, a widely-adopted sequence clustering
method, to form groups [84].

DiagDroid examines whether performance anomaly manifests
in each group of tasks by the execution context, queuing time and
execution time. DiagDroid considers both the maximum value of
queuing time and that of the execution time of all the tasks within
each group A. The values are denoted by Mq(A) = max(Q(a))
and Me(A) = max(E(a)) (∀a ∈ A), in which Q(a) and E(a) are
queuing time and execution time for task a respectively. Mq(A) and
Me(A) are then considered as the performance metrics of group A,
since either a long execution time or a long queuing time can result
in anomalous performance.

DiagDroid considers a group is anomalous if one of its two
performance metrics is larger than a threshold τ . It ranks the
anomalous groups according to their performance metrics as well
as their execution contexts. Since each group is corresponding to
a specific source code segment, the ranking can direct the manual
debugging efforts towards a suspicious source code segment that
may cause the performance anomaly. Moreover, a key consideration
of DiagDroid is that the runtime dependency of tasks may also
cause performance issues. In other words, the anomalous task
per se may not always be the root cause of its poor performance.
Especially, when the queuing time of the task is too long, the poor
performance may be due to other tasks that bear runtime dependency
with the poor-performance task. Therefore, DiagDroid also
employs the performance data (the queuing length and performance)
of such tasks to help locate the root cause. We will show in our
experimental study that the localization approach can greatly reduce
human efforts in locating performance issues.

The maximum values of queuing time and execution time are
defined as performance metrics by DiagDroid. We consider the
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maximum values instead of the average values. A large average
value means that many tasks in the group are of poor performance,
and is hence a good indicator of performance issues. However, in
case that only a small portion of the tasks are with poor performance,
the average value may still be small. But this can still be an
important symptom of performance issues [72]. Since in the above
two cases the maximum value will be large, it can indicate the
performance issues. Hence, we consider the maximum value as the
performance metric.

In the above discussions, we have considered a performance
threshold τ as an indicator of whether a group contains poor-
performance tasks. τ is selected empirically based on the develop-
er’s consideration on laggy UI. Previous work (e.g., [141, 145, 166])
has suggested user-tolerable waiting time in web browsing, mobile
web browsing and mobile services, which are from two to several
seconds. One second is regarded as the limit for the user’s flow of
thought to stay uninterrupted [144]. We consider that mobile app
users are more sensitive to UI response time. Therefore, we use
500ms as the value of τ . We will show in our experimental study in
Section 3.6 that such a value is an effective choice.

3.5 Profiling Asynchronous Tasks

DiagDroid requires to profile the queuing time, the execution
time, and the queuing length of task, as well as the pool capacity
of the execution unit. Hence, DiagDroid must firstly track the
life-cycle of a task, i.e., when it is scheduled, when it is executed,
and when it completes.

However, as discussed in Section 3.2, there are hundreds of ways
for developers to implicitly or explicitly start asynchronous tasks.
There are no sole entry/exit points for diverse types of tasks. It is
difficult, if not infeasible, to design specific profiling mechanism
for each. We attack this challenge with a separation-of-concerns
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Table 3.2: Categories of asynchronous tasks

Category  Type  Representative classes

Reusing existing 

threads 

Looper & Handler  HandlerThread 

IntentService 

Pool‐based 

executor 

ThreadPoolExecutor 

AsyncTask 

Creating new threads  Thread  Thread 

 

approach. We first find that the tremendous ways to start tasks can
be classified into five categories (Section 3.5.1). Then based on the
classification, we can specifically track and profile the necessary
runtime data for each category (Section 3.5.2).

3.5.1 Categorizing Asynchronous Tasks

Via carefully inspecting Android source codes, we notice that the
underlying mechanisms for Android to execute a task can be nar-
rowed down into two approaches: 1) reusing existing threads created
beforehand, and 2) creating a new thread. The former case can be
further divided into two types: One directly schedules a task and the
other requests the scheduling of a task by a delegate via sending a
message. We call them the Pool-based Executor mechanism and
the Looper & Handler mechanism respectively. We list them in
Table 3.2, together with their representative classes in Android. We
discuss them in what follows.

Both HandlerThread and IntentService depend on the
Looper & Handler mechanism to start tasks. They create a worker
thread and wait for new tasks to the looper associated with the
thread. The request of scheduling a task is sent via a handler
attached to the looper. The requested task will then wait to be
processed in the worker thread. Since there is only one worker
thread, it can process one message at a time. The other requests
should wait in a queue.
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ThreadPoolExecutor and AsyncTask both use the Pool-
based Executor mechanism. They maintain a pool of worker threads
with its number not exceeding a preset capacity. When a task comes,
the task will be executed in one of the threads in the pool if there are
available threads (i.e., the number of threads which are executing
other tasks is smaller than the capacity). Otherwise, the task has to
wait for an available thread.

The Thread mechanism is relatively simple. Its building basis,
i.e., the Thread class in Android, is the same as the traditional Java
one. This mechanism starts a task immediately in a new thread.

Although there are hundreds of ways for developers to implicitly
or explicitly start asynchronous tasks, the underlying mechanisms
are mostly based on these five representative classes. For ex-
ample, the AsyncQueryHandler class, which is a convenient
API for querying data from a content provider, is based on the
HandlerThread. The CursorLoader class, which is often
used for acquiring data from the database, is based on AsyncTask.
Moreover, the DownloadManager which we have discussed in
Section 3.2 employs the ThreadPoolExecutor. Verifying by
the Android source codes, most types of asynchronous tasks are
covered by the five classes except TimerTask. TimerTask is a
class that defines periodical background tasks which usually would
not update UI, and thus is not our focus.

Each of the five classes for conducting asynchronous tasks has
its pros and cons. The Thread class is the most flexible one. A
developer can get full control on the threading mechanism. The
disadvantage is that more efforts are required to manage the thread.
Moreover, creating a new thread for every task consumes system
resources. The HandlerThread class requires many development
efforts to customize both the background threads and the handler for
the tasks. The ThreadPoolExecutor class is a traditional JAVA class
for multi-threading. It is widely used to manage a pool of worker
threads. However, it is not suitable for tasks that will update UI
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since Android framework prohibits UI updating in worker threads.
The AsyncTask class is specifically customized for Android devel-
opment, which is convenient for UI update after the task finishes.
The IntentService class can start a background service which is
independent of the activity life cycle. It is a relatively heavier
container compared with the above-mentioned classes. It requires
more system resources on execution. Choosing which way to
start asynchronous executions depends on the specific programming
requirements, as well as the developer’s preference.

3.5.2 Profiling Asynchronous Tasks

DiagDroid tracks the tasks with a dynamic instrumentation mech-
anism on the Android framework methods. It requires no changes
to the target app, or recompiling the underlying OS and the Android
framework. This can guarantee the compatibility of DiagDroid
with diverse Android versions and device models. Moreover, it also
requires little human efforts in installing and applying the tool.

Specifically, Android processes of its apps, unlike general Linux
processes, are all set up by duplicating a system process called
Zygote [64]. Android framework functionalities have already been
loaded in Zygote before such duplication. Therefore, we can
instrument the Zygote process and “hijack” the Android frame-
work methods of interest before an app runs. Then when it runs by
forking Zygote, the method invocations are inherently hijacked by
DiagDroid. Hence, we can easily track the methods. We adopt
such a mechanism implemented in the tool named Xposed [193],
usually used for modifying UI [192]. We program our own codes
to hijack the methods of our interest. Next we introduce how
DiagDroid tracks the tasks in each category.

1) Thread: An asynchronous task that implements as a thread
always starts with its start method. Hence, we can instantly
obtain the time when the task is scheduled by tracking the start
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method. However, the task is executed in the overridden run
method of a Runnable object. An abstract method of an interface
like Runnable cannot be instrumented directly. Hence, we resort
to static analysis to find the implementations of the abstract run
method and instrument these implementation methods instead.

The static analysis is performed via the tool apktool [38]. It
decompiles the binary into well-structured Dalvik bytecode. They
can be parsed to obtain the implementations of the abstract run
method, which can direct our dynamic instrumentation approach to
obtain the execution time. It is worth noting that DiagDroid only
decompiles and discovers these methods, instead of modifying and
recompiling the app before installation.

2) HandlerThread: HandlerThread is a thread that pro-
vides a Looper object attached to it. A Handler is associated
with the Looper object and handles messages for the Looper.
Hence, we can obtain the request time of a task by tracking the time
when a Message object is sent to the Handler. Since eventually
sendMessageAtTime or sendMessageAtFrontOfQueue
must be invoked to send a Message, we record the invocation
time of these two Android framework methods as the time when
a task is scheduled. Since Handler actually performs the task by
processing its corresponding Message, we track task execution by
instrumenting its dispatchMessage method.

3) IntentService: An IntentService task always starts
by invoking the startService method of the Android frame-
work class android.app.ContextImpl. Hence, the invoca-
tion time of this method is recorded as the task scheduling time. In-
tentService actually relies on a Hanlder to process the task
by an extended class ServiceHandler of Handler. Hence,
we can track task execution by tracking the dispatchMessage
method of Handler.

4) ThreadPoolExecutor: ThreadPoolExecutor is a
pool-based execution mechanism. The class has an elegant pattern.
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A task is always requested via invoking the execute method.
Moreover, the task always starts immediately after the beforeEx-
ecute method, and is followed by the afterExecute method.
Hence, we track tasks via these methods.

5) AsyncTask: A task can base its implementation on the
complicated Java class inheritance of the basis AsyncTask class.
It turns out that no matter how many layers of class inheritance
are applied, a task is always scheduled by the execute method
or the executeOnExecutor method eventually. Hence, we
can record the task scheduling time by monitoring the invocation
time of the two methods. We find in the Android framework
source codes that for both cases, AsyncTask actually relies on the
ThreadPoolExecutor. Hence, we can utilize the similar way
as that for ThreadPoolExecutor to track task execution.

For the tasks in categories 2-5, they are put into a queue be-
fore they are executed. To model task runtime dependency for
these cases, we use the hash code of the execution unit (e.g.,
ThreadPoolExecutor object) as the queue identifier. Such
a hash code is easy to obtain during runtime according to Java
specifics. Two tasks with the same queue identifier suggest that they
may bear runtime dependency. Finally, the pool capacity could be
obtained via checking some internal field of the queue object (e.g.,
the maximumPoolSize field of a ThreadPoolExecutor object).
Details are omitted here, but can be found in our source codes [69].

The concrete methods for hooking may vary among different
Android framework versions. We have remarked the lines of Diag-
Droid source codes that need to be modified if the implementation
of the framework changed. Thereafter, validating DiagDroid for
new Android versions is acceptable since currently Google usually
releases one new version per year from 2013.
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3.6 Experimental Study

We have implemented DiagDroid and released the project to-
gether with a tutorial open-source online [69]. In our experimental
study, we target on open-source apps since we need to inspect the
source codes to verify the effectiveness of DiagDroid. To this
end, we download such apps from F-Droid, the largest app market
that hosts only free and open-source Android apps [74]. It is also a
popular app source for the research community [132]. We employ
Monkey [179] to exercise our target apps. It is an official random
testing tool delivered by Google and also known as the most efficient
tool in terms of code coverage by empirical study [60]. Among the
apps we download, we exclude those that require a login account for
convenience consideration (so that we do not have to perform user
registrations). Note that DiagDroid can easily handle such apps
as well, by applying a login script when the apps start. The process
is trivial and will not affect the effectiveness of DiagDroid.
We thus get 33 target apps covering diverse categories including
Reading, Multimedia, Science & Education, Navigation, Security
and Internet.

We verify the compatibility of DiagDroid on four smartphone
models covering a wide range of device capacities: Samsung GT-
I9105P (Android 4.1.2), Huawei G610-T11 (Android 4.2.2), Hua-
wei U9508 (Android 4.2.2), and Lenovo K50-T5 (Android 5.1).
Experiments are conducted on the four devices simultaneously to
save time. We also conduct stress tests by injecting loads on
CPU, memory, sdcard IO and network respectively with customized
Android background services. We implement five background
services occupying 80% CPU, five background services occupying
80% memory, five background services consuming 2 Internet down-
loading threads each, two background services each reading 1 file
and writing 1 file on sdcard in separate threads. The parameters are
chosen by common practice. Developers could configure with their
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own preferences. We design a system app to guarantee that these
services would run persistantly (i.e., they will not be terminated
by LowMemoryKiller [128]). Four devices with five configurations
each (four with load injections and one without load injection) come
up to 20 test configurations, each configuration is under Monkey
testing for 30 minutes. We run 19,800-minute test in total for
the 33 apps. DiagDroid reports overall 48 performance issues
marked as highly suspicious for 14 apps, on average 3.4 issues for
each. The reports are also issued on our website. Via inspecting
the related source codes in the reports for several minutes per case
and understanding of the original project, we surprisingly find 14 of
the target apps contain 27 performance issues. The bug cases are
ranked high in the report, (with an average rank of 1.7). Although
unfamiliar with the target app design, we find it very convenient for
us to pinpoint the root causes of the issues.

We categorize the 27 detected issues into 5 categories. Ten
representative issues are presented in Table 3.3, together with their
causes, the locations of their defects and their rankings in the reports.
Detailed descriptions of all issues can be found in our website [69].
We have reported the issues to the app developers, many of which
have been confirmed and corrected accordingly. We have got
positive feedbacks like “for faster search results :)”, “I’ve modified
and I see the performance improvements.” after the developers fix
the performance problems. Next, we will elaborate our experiences
in applying DiagDroid to the performance diagnosis via five
representative cases.

3.6.1 Case studies

Case 1: Unintended Sequential Executions

We provide our experiences on applying DiagDroid to diagnose
OpenLaw (https://openlaw.jdsoft.de/), an app under
Science & Education category providing access to over 6,000 laws

https://openlaw.jdsoft.de/
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Table 3.3: Representative performance issues found (Rank: ranking of the buggy
issue / total number of issues reported)

Category Issue description Class@App Rank

Not awaring AsyncTask.execute() method
results in undesired seqential execution

LawListFragment@OpenLaw 1/4

Loading tens of icons in sequence AppListArrayAdapter@AFWall+ 1/3

Improper cancelation of asynchronous tasks GetRouteFareTask@BartRunnerAndroid 1/4

Not canceling obsolete queries when new
query arrives

AsyncQueryTripsTask@Liberario 2/2

Failed to set optimal size of the thread pool ZLAndroidImageLoader@FBReader 1/2

Use the same pool for loading app list and
app icons

MainActivty@AFWall+ 2/3

Posting various types of tasks (e.g., update
progress, store book) to the same
backgroundHandler

ReadingFragment@PageTurner 3/9

Executing Filter method of AutoComplete-
TextView occupies the Handler of a public
message queue

LocationAdapter@Liberario 1/2

Not canceling the tasks implemented by
third-party library, Android asynchronous
http client - loopj

HeadlineComposerAdapter@OpenLaw 4/4

Use the deprecated findall method of
WebView class which causes blocking

MainActivity@Lucid Browser 1/5

Misusing
third-party
library

Sequential
execution

Forgetting
canceling
execution

Improper
thread
pool

Overloading
message
queue

and regulations. DiagDroid reports 3 highly suspicious perfor-
mance issues. It took us about half an hour to inspect the related
source codes according to the report, and we can summarize 2
performance issues and localize the causes. One case is that the
task group with context c1 is anomalous. It contains the tasks with
queuing time longer than the threshold 500ms. This case is found
in 14 test configurations, mostly under those with heavy CPU or
sdcard IO load, which indicates the case may be related to some IO
intensive operations. We demonstrate the content of DiagDroid
report in Figure 3.7 (The line numbers are added for discussion
convenience).

We can instantly find that such a long queuing time is because
the corresponding anomalous task should wait in queue till the
completion of other tasks with long execution time based on Lines
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1.    asynchronous tasks with context c1   
2.      max queuing time: 1650ms 
3.      pool capacity: 1 
4.      cases with queuing time ≥ 500ms: 
5.        avg. queue length: 1.00 
6.        avg. execution time of the in‐queue tasks: 1666.00ms 
7.      runtime dependency: c2 

 

 

 

 

 

 

 

Context c1 
Class name:  de.jdsoft.law.data.LawSectionList

Call‐stack:  android.os.AsyncTask.executeOnExecutor (Native Method)

  android.os.AsyncTask.execute (AsyncTask.java:535)

  de.jdsoft.law.LawListFragment.onCreate (LawListFragment.java:87)

  … 
Context c2 
Class name:  de.jdsoft.law.data. UpdateLawList

Call‐stack:  android.os.AsyncTask.executeOnExecutor (Native Method)

  android.os.AsyncTask.execute (AsyncTask.java:535)

  de.jdsoft.law.LawListFragment.onCreate (LawListFragment.java:91)

  … 

 

public void onCreate(Bundle savedInstanceState) { 

 

// Load actual list 

final LawSectionList sectionDB = new LawSectionList(LawSectionList.TYPE_ALL); 

 

sectionDB.execute(adapter); 

// And parallel update the list from network 

UpdateLawList updater = new UpdateLawList(); 

updater.execute(adapter); 

   

} 

 

… 

… 

… 
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// Load actual list 

final LawSectionList sectionDB = new LawSectionList(LawSectionList.TYPE_ALL); 

 

sectionDB.execute(adapter); 

// And parallel update the list from network 

UpdateLawList updater = new UpdateLawList(); 
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Context c1 
Class name:  de.jdsoft.law.data.LawSectionList
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  de.jdsoft.law.LawListFragment.onCreate (LawListFragment.java:87)
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  android.os.AsyncTask.execute (AsyncTask.java:535)

  de.jdsoft.law.LawListFragment.onCreate (LawListFragment.java:91)

  … 

 

public void onCreate(Bundle savedInstanceState) { 

 

// Load actual list 

final LawSectionList sectionDB = new LawSectionList(LawSectionList.TYPE_ALL); 

 

sectionDB.execute(adapter); 

// And parallel update the list from network 

UpdateLawList updater = new UpdateLawList(); 

updater.execute(adapter); 

   

} 

 

… 

… 
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Codes

 

Figure 3.7: Report and code segments of case 1

4-7. We know on average one task (Line 5) bears runtime execution
dependency with an anomalous task, of which the context is c2
(Line 7). In other words, the anomalous c1 tasks are due to the
heavy-weighted c2 tasks. The pool capacity is only 1 (Line 3),
which indicates the tasks have to run in sequence. Waiting for
the completion of another heavy-weighted task should generally be
avoided via proper scheduling. We can then focus on its cause.

The c1 and c2 contexts are included in the report, as shown in
Figure 3.7. We can conveniently find the source codes of the two
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tasks and where they are scheduled. Also shown in the figure, the
two tasks are scheduled via execute methods. The developer
has commented “parallel update”, which shows the intention is
to execute the two tasks in parallel. But this is a well-known
mistake [36], since calling execute will actually call the same
method of the super class AsyncTask, which will insert the tasks
into a global thread pool with capacity one. Hence, we can instantly
notice such a defect via inspecting the short code segment. The fix
is to call executeOnExecutor instead with a larger pool.

Note that such bugs are quite common in Android apps. Shown as
another issue in Table 3.3, developers of popular Android Firewall
app (AFWall+) are also unaware of their inefficient sequential
loading of icons until we report it to them. Developers are generally
not aware of how their customized tasks are scheduled during app
runtime, and they wrongly assume that the execution unit is free
when scheduling a task. Sometimes, such sequential tasks may be
defined and scheduled in different source files, making it harder to
capture their execution dependency manually.

In the example, OpenLaw requires to handle tens of UI events.
It is hence difficult, if not infeasible, to manually test and detect
performance issues in tens of UI event procedures. Even if the
developer is aware of which UI event procedure (loading LawLis-
tActivity in this case) is laggy, it is still hard for her to locate the
defect by inspecting nearly 300 hundred lines of codes distributed
in several files, which even involves complicated third-party library
invocation.

Existing tools (e.g., Method Tracing [153], Panappticon [196])
however focus essentially on the execution time of methods. They
generally lack the capability to model the queuing time of tasks
and to identify the execution dependency. It is therefore difficult
for the developers to detect the subtle symptoms and reason the
defect caused by task execution dependency, especially when two
dependent tasks are executed in different places. Take the sequential
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1.    asynchronous tasks with context c1: 
2.      max queuing time: 31885ms 
3.      pool capacity: 1 
4.      cases of queuing time ≥ 500ms: 
5.        avg. queue length: 19.50 
6.        avg. execution time of the in‐queue tasks: 1240.60ms 
7.      runtime dependency: c1, c2 
8.        execution time of c1    max: 19337.00ms    avg. 1419.95ms 
9.        execution time of c2    max: 3446.00ms      avg. 786.69ms 
 
 

 

 
 
protected String doInBackground(Params... paramsArray) { 

Params params = paramsArray[0]; 

      if (!isCancelled()) { 

          return getFareFromNetwork(params, 0); 

    } else { 

            return null; 

      } 

} 
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protected String doInBackground(Params... paramsArray) { 

Params params = paramsArray[0]; 

      if (!isCancelled()) { 

          return getFareFromNetwork(params, 0); 

    } else { 

            return null; 

      } 
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 Codes

 

Figure 3.8: Report and code segments of case 2

execution issue in Osmand (reported in [69]) as an example. The
buggy class has over 500 lines of codes (LoC), and there are over
300 LoC between two sequentially-scheduled tasks. Moreover, it
is worth noting that the method tracing-based tools will generate
a trace of thousands of methods for a UI event procedure. The
performance diagnosis based on such tracing data is like finding a
needle in the hay stack, given the fact that GigaBytes of data will be
produced with Method Tracing for a simple 30-minutes testing run.

In contrast, DiagDroid properly models the task execution
dependency, and provides tidy but helpful information to guide the
diagnosis process. We show that it can greatly reduce the human
efforts by directing the developer to several lines of codes that cause
the performance issue.
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Case 2: Not Canceling Obsolete Tasks

The cancelation of a time-consuming task is necessary when the
task is no longer required. For example, consider an app allowing
activity-switching with a sliding operation, which is commonly used
in facilitating to quickly locate the activity of interest. Suppose
the current activity shows the Internet content being downloaded
by a task. When a user performs activity-switching, the Internet
content is not necessary since its associated activity is invisible. The
downloading task becomes obsolete. Obsolete tasks may occupy
resources (e.g., the Internet bandwidth), and therefore deteriorate
the UI performance. Sometimes, they may even block other tasks.
For example, they can occupy the thread pool and cause other tasks
to wait. However, canceling obsolete tasks is not obligatory and
hence it is often neglected by developers. Our experiment reveals
that many popular Android apps contain performance issues caused
by not canceling obsolete tasks.

We take BartRunnerAndroid, a public transport app, as
an example. DiagDroid finds 5 highly suspicious performance
issues. We can then conveniently locate 5 bugs in the source codes
with the report. Specifically, we detect the anomalous c1 tasks under
all 20 test configurations. The corresponding content of the report is
demonstrated in Figure 3.8. Similar to Case 1, we can instantly find
that the long queuing time is caused by waiting for various tasks that
bear execution dependency with the anomalous tasks (Lines 4 to 7).

It seems that we can apply a fix like that in Case 1 to this issue,
i.e., by allowing each type of tasks to run in its own execution unit.
However, we are aware both tasks could be executed for a long
period (Lines 8-9). DiagDroid tells us the information that many
of these two long term tasks block the others. By inspecting the
codes of the c1 and c2 tasks, we find the developers have already
intended to cancel the obsolete tasks. Taken the c1 task as example,
it is actually inherits from GetRouteFareTask. Its source code
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1.    asynchronous tasks with context c1: 
2.    max queuing time: 514ms 
3.      pool capacity: 3 
4.      cases of queuing time ≥ 500ms: 
5.        avg. queue length: 1.50 
6.        avg. execution time of the in‐queue tasks: 659.29ms 
7.      runtime dependency: c1 

 

 

 
private static final int IMAGE_LOADING_THREADS_NUMBER = 3;//TODO: how many threads? 

private final ExecutorService myPool = Executors.newFixedThreadPool( 

IMAGE_LOADING_THREADS_NUMBER, new MinPriorityThreadFactory()); 

 

void startImageLoading(  ){ 

final ExecutorService pool =   

image.sourceType() == ZLImageProxy.SourceType.FILE ? mySinglePool : myPool; 

pool.execute(    ); 

} 

 

…

… 

… 

Report

 

1.    asynchronous tasks with context c1: 
2.    max queuing time: 514ms 
3.      pool capacity: 3 
4.      cases of queuing time < 500ms: 
5.        avg. queue length: 0 
6.        avg. execution time of the in‐queue tasks: 0.00ms 
7.      cases of queuing time ≥ 500ms: 
8.        avg. queue length: 1.50 
9.        avg. execution time of the in‐queue tasks: 659.29ms 
10.      runtime execution dependency: c1 

 

 

 
private static final int IMAGE_LOADING_THREADS_NUMBER = 3;//TODO: how many threads? 

private final ExecutorService myPool = Executors.newFixedThreadPool( 

IMAGE_LOADING_THREADS_NUMBER, new MinPriorityThreadFactory()); 

 

void startImageLoading(  ){ 

final ExecutorService pool =   

image.sourceType() == ZLImageProxy.SourceType.FILE ? mySinglePool : myPool; 

pool.execute(    ); 

} 

 

…

… 
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Codes

 

Figure 3.9: Report and code segments of case 3

for execution is illustrated in Figure 3.8. The cancelation checking
is done before the time-consuming networking task begins which
means it will not be canceled during its execution even when it is
obsolete. Similar analysis could be applied on c2. In other words,
the developers fail to conduct proper cancelation steps for these tasks
via cancelation checking.

Note that the correct way of cancelation involves two steps: 1)
call cancel method of the AsyncTasks in the onStop method
of the container Activity, and 2) periodically check the result
of isCancelled function in doInBackground and release the
resource when it returns true. Note that releasing the resource in
AsyncTask.onCancel is also a common mistake that should be
avoided.

Case 3: Improper Thread Pool Size

Improper thread pool size is a typical cause of poor performance.
It may cause long queuing time of tasks since the pool is often
busy. We will show how DiagDroid handles such defects via our
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experiences on diagnosing FBReader (https://fbreader.o
rg/), a popular e-book reader.

DiagDroid reports only one performance issue for this app
as shown in Figure 3.9. We detect this case under all 20 test
configurations. We then inspect this performance issue in the source
codes and we find the bug in 20 minutes. Both the execution time
and the queuing time of the c1 tasks are anomalous. According to the
context of c1, we can quickly locate the source codes and confirm
that the execution time is reasonable since the tasks load images.
However, the reason for the long queuing time is that a c1 task has
to wait for other c1 tasks to complete (Lines 4-7). Unlike those in
Case 2, c1 tasks however cannot be canceled since they should run
in parallel to load many images simultaneously. Hence, a quick fix
for this defect is to set a larger pool size (DiagDroid confirms that
5 is a good choice).

Properly setting a pool size is often not easy for a developer
during the coding phase. It is difficult for her to predict the possible
number of concurrent tasks in the same pool. For example, in this
case study, the developer is not sure about the proper setting of the
pool size, and hence put down a to-do comment in the source codes
(see Figure 3.9). We find four such cases in our experimental study.

Finally, note that the existing approaches [153, 196] cannot iden-
tify the performance issues caused by the defects in Cases 2 and 3,
since these approaches focus only on the execution time. Even if the
developer is aware of the bug symptoms, the existing approaches do
not provide a way to automatically analyze the runtime dependency
of the tasks. As a result, it requires daunting manual efforts to find
that a task sometimes has to wait for other tasks by the inspection of
tremendous runtime traces.

Case 4: Overloading Message Queue

Similar to the thread pool, message handler is also a queue-based
execution unit. But a handler has only one thread to process

https://fbreader.org/
https://fbreader.org/
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1.    asynchronous tasks with context c1: 
2.      max queuing time: 6138ms 
3.      pool capacity: 1 
4.      cases of queuing time ≥ 500ms: 
5.        avg. queue length: 1.38 
6.        avg. execution time of the in‐queue tasks: 3274.31ms 
7.      runtime dependency: c1 

 

 

 
// This method could be optimized a lot, but hey processors are fast nowadays 

protected FilterResults performFiltering(  ) { 

 

resultList = autocomplete.execute().get().getLocations(); 

   

} 

… 

… 

…

Report

 

1.    asynchronous tasks with context c1: 
2.      max queuing time: 6138ms 
3.      min queuing time: 3ms 
4.      max execute time: 7262ms 
5.      min execute time: 1286ms 
6.      pool capacity: 1 
7.      cases of queuing time < 500ms: 
8.        avg. queue length: 0.08 
9.        avg. execution time of the in‐queue tasks: 473.14ms 
10.      cases of queuing time ≥ 500ms: 
11.        avg. queue length: 1.38 
12.        avg. execution time of the in‐queue tasks: 3274.31ms 
13.      runtime execution dependency: c1 

 

 

 
// This method could be optimized a lot, but hey processors are fast nowadays 

protected FilterResults performFiltering(  ) { 

 

resultList = autocomplete.execute().get().getLocations(); 

   

} 

… 

… 

…

Codes

 

Figure 3.10: Report and code segments of case 4

incoming messages which makes it vulnerable to performance bugs.
Messages could come from separate UI operations (i.e., continuous
text inputs). If messages come too quickly, a message may wait for
the handler to be available as the handler may be busy processing the
previous messages. This type of issues can also be easily pinpointed
with DiagDroid. We find two such cases in our experimental
study. Next we discuss the Liberario (a public transport app)
case. DiagDroid reports two highly suspicious performance
issues, from which we find two code defects in less than an hour.
We report the cases and the developers have confirmed them and
modified the apps accordingly.

Figure 3.10 demonstrates part of the report. We can see that
the c1 tasks are with anomalous queuing time and execution time.
This problem is detected under all 20 test configurations. The cause
of the long queuing time is that a c1 task has to wait for other c1
tasks to complete (Lines 4-7). The long execution time indicates
that a c1 task may long occupy the corresponding handler. Via
inspecting the source codes of c1, we can easily find the cause.
The c1 task is a Handler for filtering input text, which invokes
performFiltering directly. The method requests a list of
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1.    asynchronous tasks with context c1: 
2.      max queuing time: 664ms 
3.      pool capacity: 1 
4.      cases of queuing time ≥ 500ms: 
5.        avg. queue length: 3.00 
6.        avg. execution time of the in‐queue tasks: 323.00ms 
7.      runtime dependency: c1 

 

 
public void onTextChanged(        ) { 

WV.findAll(s.toString()); 

} 

 

… 

Report

 

1.    asynchronous tasks with context c1: 
2.      max queuing time: 664ms 
3.      pool capacity: 1 
4.    cases of queuing time < 500ms: 
5.        avg. queue length: 1.04 
6.        avg. execution time of the in‐queue tasks: 303.38ms 
7.      cases of queuing time ≥ 500ms: 
8.        avg. queue length: 3.00 
9.        avg. execution time of the in‐queue tasks: 323.00ms 
10.      runtime execution dependency: c1 

 

 
public void onTextChanged(        ) { 

WV.findAll(s.toString()); 

} 

 

… 

Codes

 

Figure 3.11: Report and code segments of case 5

suggested locations with an incomplete location. It involves a time-
consuming Internet query. Consequently, the upcoming messages
will have to wait in the message queue. Actually this is not needed
since the old query is no longer useful, and hence should be canceled
so that the handler can process new messages.

This case is very difficult to be identified. The developers,
after we report the case to them, update 11 files to fix the issue.
If using existing approach [153], we can possibly know that the
execution time is long. However, we may accept the fact that
Internet query is time-consuming. Moreover, Panappticon [196], as
an event tracing system to identify critical execution paths in user
transactions, is not aware of the dependency between tasks invoked
in different UI operations. For example, in this case, tasks bearing
execution dependency are invoked by independent text inputs in the
AutoCompleteTextView. It is generally hard to know how
a long execution time may influence other tasks, without a tool
like DiagDroid to properly model the runtime dependency of the
concurrent tasks.

Case 5: Misusing Third-party Library

Misusing third-party libraries is also a source of performance issues.
Developers usually call a third-party library without knowing its
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implementation details. Misunderstanding the usage of the library
may introduce performance issues. For example, unaware of the
asynchronous tasks in a third-party library, the developer will ne-
glect to cancel them when they are obsolete. DiagDroid can also
reduce the efforts in troubleshooting such defects as well. We detect
three such cases. We present how DiagDroid find such a defect
in Lucid Browser, a web browser app. We infer this issue from
the 3 suspicious issues reported by DiagDroid .

The report is presented in Figure 3.11. We can know this is a
similar defect like that in Case 1 based on Lines 3-7. It involves
unintended sequential executions. Checking source codes related
to c1, we can locate the invocation of the findAll method in
the third-party library WebView. It finds the occurrences of a
specific text in a webpage when the text is modified. Revisiting
findAll, we can find that it is deprecated, and should be replaced
by findAllAsync.

Note that the case is only detected on 3 devices other than Lenovo
K50-T5 (Android 5.1). findAll method does not introduce
performance issues in Android versions above 4.4, as the Webkit-
based WebView is replaced by the Chromium-based WebView
in recent Android versions. Existing tools like Panappticon [196]
which require to recompile the kernel, can work only on a small set
of devices. It is hard for such tools to cope with such defects that do
not persist in all Android versions [46].

3.6.2 Why Clustering

As mentioned in Section 3.4.2, to reduce the number of reporting
suspicious cases, we cluster the execution contexts (i.e., call-stacks)
belonging to the same asynchronous task triggering by similar
running sequences. First we extract two features via scanning
through massive contexts: 1) similar call-stacks are similar in line
level, and 2) similarity of call-stacks is transitive. Then we perform
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 Context c1 Context c2 Context c3

1. de.jdsoft.law.data.UpdateLawList de.jdsoft.law.data.UpdateLawList de.jdsoft.law.data.UpdateLawList 
2. android.os.AsyncTask.executeOnEx

ecutor(Native Method) 
android.os.AsyncTask.executeOn
Executor(Native Method) 

android.os.AsyncTask.executeOn
Executor(<Xposed>) 

3. android.os.AsyncTask.execute(Asyn
cTask.java:534) 

android.os.AsyncTask.execute(As
yncTask.java:534) 

android.os.AsyncTask.execute(As
yncTask.java:539) 

4. de.jdsoft.law.LawListFragment.onCr
eate(LawListFragment.java:91) 

de.jdsoft.law.LawListFragment.on
Create(LawListFragment.java:91)

de.jdsoft.law.LawListFragment.on
Create(LawListFragment.java:91) 

 … … … 
9. android.support.v4.app.FragmentAct

ivity.onCreateView(FragmentActivit
y.java:285) 

android.view.LayoutInflater.creat
eViewFromTag(LayoutInflater.jav
a:676) 

android.view.LayoutInflater.creat
eViewFromTag(LayoutInflater.jav
a:727) 

 … … … 
 

Figure 3.12: Similar contexts without clustering

clustering accordingly. In this section, we show that the clustering
is necessary and effective with a randomly selected example of app
OpenLaw.

For OpenLaw, there are totally 1462 distinct contexts found
under all 20 test configurations. As a result, 226 suspicious perfor-
mance cases are reported. However, we find many of the reported
cases are with very similar contexts. We select three similar contexts
as examples in Figure 3.12. Actually, the three contexts refer to the
same asynchronous task UpdateLawList presented as context
c1 in Case study 1. They differ from each other only until the
9th line of the call-stacks; more specifically, they only have slight
difference in low-level VM processing sequences. There is only
one performance issue instead of three in developers’ viewpoint.
To lighten the workload of developers, the three contexts should be
grouped into one.

Considering the aforementioned features, we cluster contexts
with a customized edit distance (feature 1) plus single-linkage
strategy (feature 2). After the clustering, we successfully reduce the
amount of total contexts from 1462 to 75 (groups). Moreover, only
7 performance cases are reported without losing meaningful cases.
This result indicates the effectiveness of our clustering mechanism.



CHAPTER 3. ANDROID PERFORMANCE DIAGNOSIS 66

Figure 3.13: Message handler blocking delays before (left) and after (right) fix of
Transportr

3.6.3 Performance Enhancement

DiagDroid is able to present to developers with the performance
enhancement after fixing performance issues. DiagDroid offers
the distribution of the queuing & execution delays of asynchronous
executions. Besides confirming the disappearing of the related case
in the report of the fixed version, developers can ensure the perfor-
mance gain via double-checking the delay distributions of related
asynchronous executions before and after fixing the issue. Next,
we illustrate how to visualize the performance enhancement via
demonstrating two official fixes by developers. Notice the example
distributions are simplified (yet good enough) to demonstrate the
enhancement. Developers could tune the parameter to obtain finer
distributions.

Developers of Transportr fix an issue of message queue
overloading with our report. They modify 11 files with 364 additions
and 274 deletions. Since the message processing is network related,
we show the performance enhancement on the Huawei G610-T11
with network load injected. The result is depicted in Figure 3.13.
Similar patterns can be found in other test configurations. It could be
seen that there is no more blocking problem for the new app version.

With our report, developers of AFWall+ fix the sequential load-
ing issue on displaying the app list. They modify the source from
(new GetAppList()).setContext(this).execute()
to (new GetAppList()).setContext(this).execute-
OnExecutor(AsyncTask.THREAD POOL EXECUTOR). We
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Figure 3.14: Queuing delay of showing apps before (left) and after (right) fix of
AFWall+

notice that the queuing effect is more obvious with CPU load inject-
ed on a poorer device. We illustrate in Figure 3.14 the distribution
of queuing delay of the AsyncTask with testing configuration of
Samsung GT-I9105P with CPU load injected. Similar patterns can
be found in other test configurations. It could be seen that there is
no more queuing problem in the new app version.

3.6.4 Discussions of Experiment

Next, we discuss the threats to the validity of our experiments, and
the measures we take to address them. First is the overhead of
DiagDroid, which directly reflects how it affects the test effi-
ciency. We conduct 10, 000 Monkey operations with DiagDroid
on and off. The interval between two consecutive operations is
200ms. We employ the Android time command to obtain the
CPU time for both cases. Their difference is then the overhead of
DiagDroid, which is 0.8%. This shows that DiagDroid does
not have a considerable impact on testing efficiency. Moreover, we
use the maximum latency among all test runs of one type of task as
indicator of problematic tasks, commonly the value would be much
larger than the threshold (i.e., 500ms). Therefore, the overhead of
DiagDroid seldom makes a task to become problematic.

We choose Monkey as our test executor for its efficiency [60].
However, DiagDroid does not rely solely on Monkey as its
test executor. Test executor is a plug-in in DiagDroid. It also
allows to incorporate other automate script-based testing tools like
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UIAutomator [177] and Monkey runner [138].
We test 30 minutes for each of 20 configurations per app to

show the capability of DiagDroid in such a short-term test. The
settings can be changed according to the app specifics to explore the
app more thoroughly. We show the capability of DiagDroid in
even such a short-term test. Note that DiagDroid also carefully
addresses its compatibility issues. Our tool requires no changes
to the target app, or recompiling the underlying OS and Android
framework. It is proven to be compatible over various device models
and Android versions. Parallel testing in multiple mobile devices
with diverse models is feasible.

We have detected 27 real world performance issues among 48
reported cases. The remaining 21 issues are mainly reasonable
time-consuming tasks (e.g., download tasks). We have provided
developers a way to filter out such tasks by name while to be genetic
for all apps we do not use such filter in our experiment.

Finally, DiagDroid resorts to dynamic analysis to diagnose
performance issues. We focus on the performance issues caused
by complicated runtime dependency of asynchronous executions. It
is hard, if not infeasible, for the static analysis approaches to deal
with such types of issues. For example, determining the proper pool
size based only on the source codes is hard, since it is impossible
to predict the possible number of concurrent tasks. Also, it is
difficult to determine when to cancel a task beforehand based only
on the source codes. Human efforts are inevitable. The aim of
DiagDroid is to reduce such efforts, rather than approaching the
task of automatic code correction. As shown in our case studies,
such efforts are light. DiagDroid is able to provide a small set
of possible performance issues. The issues that really contain bugs
are with high rankings. As shown in Table 3.3, the buggy cases
rank 1.7 averagely. This indicates that we can easily be directed to
where the code defect lines. The debugging time of each case is
generally less than an hour, even for us who are familiar with the
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app implementations.

3.7 Tool Insights and Discussions

3.7.1 Tips for Developers

We have learned many kinds of bugs from the experiment. Some
tips for developers could be concluded from these bugs.

Use a Private Pool Instead of the Public One When Necessary

It is necessary to define your own thread pool instead of using a pub-
lic pool like AsyncTask.THREAD POOL EXECUTOR in some
cases. The thread pool is used either for directly executing tasks on
or being called by executeOnExecutor of AsyncTask. Cur-
rent implementation of AsyncTask.THREAD POOL EXECUTOR
has the thread pool size under 10 in usual situations. Therefore
if too many AsyncTasks are put into the pool, it is easy to be
used up. We suggest defining your own thread pool especially for
the case that the asynchronous execution takes a long time or the
asynchronous execution will not update UI after finishes. In the
former case asynchronous execution would occupy a thread in the
pool for a long time. In the latter case, the asynchronous execution
is not necessary to be implemented as AsyncTask.

Set Reasonable Pool Size

When using pool-based asynchronous execution, the developers
should carefully set the pool size. A small pool may increase the
chance for an asynchronous execution to wait in the queue. On the
other hand a large pool may waste system resource if starving from
works. A practical choice is that the developers could just try to set
the pool size several times and run our tool. After getting the reports
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for every run, a best choice among the previous settings could be
found.

Use Third-party Library Carefully

The developers should inspect the specification of third-party li-
braries carefully when utilizing them especially when there are
potential asynchronous executions. It is convenient to use third-
party library. However, the developers are not generally aware of the
implementation details of the library. The library may provide mul-
tiple implementations for an operation to suit different requirements
and situations. The implementations are separated by parameters
passed when calling the function. The default setting of parameters
might be only a moderate setting that meets most requirement. If
the developers did not read the specification carefully, they may set
problematic parameters that do not fit into their requirement. In
which case, there would be potential performance bugs.

Keep Effective Response

Most developers know they should keep the screen response when
an asynchronous execution is performed. But they may sometimes
forget to make an effective response. In some cases, the developers
simply display a progress bar/circle in the entire screen to show the
execution is in progress. The user may get annoyed if a progress bar
displays for long. It could get even worse when the back button is
disabled and the user could do nothing but wait for the execution.
It is acceptable that some operations could be delayed until an
asynchronous execution is finished. Nevertheless, at the same time
the app should keep response to user interacts and better display
some meaningful pages.
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Cancel When No Longer Needed

The developers often do not take care of cancelling the asynchronous
executions when they are no longer needed. For example, an asyn-
chronous task which loads figures in an activity should be cancelled
after the activity is hidden or destroyed. Another example is when
downloading a list of figures that would be displayed on the screen,
the figures swiped out should be cancelled from downloading. All
asynchronous execution requires resources including thread of pool-
based executions, system resource like CPU, network and disk
I/O, etc. If long term asynchronous executions are not cancelled
properly, thread pool may become exhausted or system resources
may become shorted (e.g., network becomes slow).

Use Proper Type of Asynchronous Execution

There are different types of asynchronous executions, the inexpe-
rienced developers may not know which one is better to suit their
requirement. For example, AsyncTask is a class simplifying
generic asynchronous execution. Asynchronizer [123] would refac-
tor long concurrent works into AsyncTasks. However, it is not
a panacea. Officially it is suggested that an asynctask should be
used for short operations (a few seconds at the most) [41]. For long
term operations, it is common to introduce bugs in the design of
AsyncTask. For example, in the codes shown in Figure 3.1, there
is a bug in RetrieveDataTask class. It may take 20 seconds
to retrieve the data from Internet. If during that time the activity
is destroyed, however, the RetrieveDataTask will run until it
finishes. When the onPostExecute is invoked, the text view
no longer exists and the program would be crashed if the error is
not catched. Therefore it is not appropriate to use AsyncTask
for network requests which may take very long. Developers then
resort to the Loader class. However, As suggested in RoboSpice
project [163], AsyncTask has its limitation on performing network
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requests. RoboSpice project [163] may be a better choice in this
case. The developers should better understand the features of
different types of asynchronous executions and apply suitable one
when needed. Misusing of asynchronous executions could introduce
performance bugs.

3.7.2 Discussions on the Implementation

Hooking Methods of Apks

Method hooking is the first step (pre-run step) of our testing frame-
work. When talking about hooking methods in app, the first idea is
to decompile and modify the apk file. There are already several
tools that could do the decompile & recompile like smali [172]
and apktool [38]. However, many apks would obfuscate the codes
when release. Most obfuscated codes can hardly be hooked and
recompiled by these tools. Therefore we resort to runtime hijacking
the framework code which is more reliable.

3.7.3 Limitation of Our Tool

The main thread is different from worker threads. The main thread
is not task-oriented. It keeps running during the entire life cycle of
the app. We do not work on problems on the main thread. Therefore
those performance issues caused by bad design of the main thread
will not be detected by our tools. As mentioned in Section 3.3
several tools address and attempt to solve this problem.

Currently the tool is built only on Android platform. While as
the methodology is generalized, the tool could be easily applied
to other mobile platforms such as Window Phone, iOS. However,
the framework methods interception of these platforms are more
involved.
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3.8 Summary

To conclude, this chapter focuses on an important type of Android
performance issues caused by task execution dependency. We
carefully model the performance of the asynchronous tasks and their
dependency. Taken task dependency into consideration, we design
DiagDroid for task-level performance diagnosis. It is equipped
with a set of sophisticated task profiling approaches based on the
Android multithreading mechanisms.

To make DiagDroid a practical, handy tool for performance
diagnosis, we carefully consider the system design requirements like
compatibility, usability, flexibility and low overhead. Specifically,
DiagDroid relies solely on the general features of Android. Hence
it works for most mainstream Android devices, depending on no
manufacturer specifics. Moreover, DiagDroid is convenient to be
used via a simple installation. It requires no efforts to recompile the
operation system kernel and the Android framework. With a plugin
mechanism, DiagDroid provides the flexibility in selecting the
test executor that is required to exercise the app. It is convenient to
apply different test executors based on the test requirements. Finally,
DiagDroid keeps low overhead by instrumenting slightly on the
framework.

We show DiagDroid can effectively reduce human efforts
in detecting and locating performance issues. We apply the tool
successfully in finding bugs in tens of real-world apps which we
are unfamiliar with.

2 End of chapter.



Chapter 4

Detecting Poor Responsiveness UI
for Android Applications

Delay-Tolerant UI Design

This chapter presents Pretect, a tool that could detect
poor responsive UI for Android apps, for delay-tolerant
UI design. A key finding is that a timely screen update
(e.g., loading animations) is critical to heavy-weighted UI
operations (i.e. those that incur a long execution time before
the final UI update is available). We list the points of this
chapter as:

• Conduct a real-world user study on finding many
insights on the user experiences and the UI latency.

• Implement and open-source release the tool.

• Apply Pretect in diagnosing synthetic benchmark
apps, open-source apps and commercial apps; Proven
the correctness of the tool and successfully locate
hundreds of poor UI designs.

74
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Hamzah S

Latest update is okay, but still horrible It 
seems that you can't revert it back to 
last version, but that okay. One problem 
is loading... I hate longer waiting than 
expected waiting time. Even, I keep 
touch somewhere and no response for 
5 or 10 seconds. That's LAGGY. Period. 
Try again... I love this game so much. 

(a) Rating 3 vs. average rating 4.4

K Bailey

I haven't had any problems until 
the last update. Now everything's 
super laggy all of a sudden. And 
now, on top of being laggy, all of 
my rubies are gone. I'm not im-
pressed.

(b) Rating 2 vs. average rating 4.3

Figure 4.1: Examples of user ratings and comments about bad UI responsiveness

4.1 Introduction

Rapid user interface (UI) responsiveness is a critical factor in the
software quality of mobile apps. Apps with poor UI responsiveness
lead to many user complaints [85]. Such performance defects are
threat to software reliability [31, 187, 188]. Figure 4.1 presents
two examples of user complaints on Google Play, a popular An-
droid app market. Users give the app a low rating due to its
poor responsiveness. Users may also have different expectations
about UI latency (i.e., the time between the commencement of a
user operation and the corresponding UI update) in different UI
operations. As suggested by the comments shown in Figure 4.1a,
users “hate longer waiting than expected waiting time.” Achieving
rapid UI responsiveness and designing better UIs to boost user
patience have long been goals of both the academic and industrial
communities [33].

The key to user satisfaction with UI responsiveness is to of-
fer timely UI feedback (e.g., showing an animation to indicate
a background task is being conducted) on user operations [104].
It is widely accepted that mobile devices may not be able to
immediately complete all of the tasks intended by a UI operation
due to resource limitations. For example, operations that involve
loading Internet resources or accessing remote databases are types of
“heavy-weighted” operations that require long waits before they are
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complete. In such cases, it is necessary to provide quick UI feedback
to the user to let her know that the operation is being processed.

However, designing such feedback for every possible heavy-
weighted UI operations requires a daunting amount of development
effort. Moreover, developers generally have no idea on the latency
on each UI operation. Without a comprehensive performance test
and a handy tool to record UI latency, developers may neglect
potential heavy-weighted operations.

We consider operations that may require a long execution time
without offering quick UI feedback as poor-responsive operations.
Poor-responsive operations, as software design defects, should be
detected before an app is released to limit their influence on user
experience. However, there are currently no methods for detecting
such defects. First, there is no comprehensive understanding of
what degree of UI latency (i.e., the latency threshold) leads to poor-
responsive operations. The Android framework expects Android
apps to be responsive in 5 seconds, otherwise it produces an “Appli-
cation Not Responding (ANR)” alert [112]. Therefore, 5 seconds
can be viewed as a loose upper bound for the latency threshold
of poor-responsive operations. Alternatively, Google suggests that
200 ms as a general threshold beyond which users will perceive
slowness in an application [112]. Therefore, 200 ms can be viewed
as a lower bound for the latency threshold of poor-responsive
operations. However, how much UI latency a typical user can
really tolerate remains unknown, this information is a prerequisite
for detecting poor-responsive operations.

Second, currently there is no tool that can detect poor-responsive
operations during an app test run. The official tool StrictMode [90]
or other tools like Asynchronizer [123] can detect operations that
block the UI thread, but they cannot detect non-blocking operations
that incur long UI latency. The official performance diagnosing
tools Method Tracing (and TraceView) cannot correlate operations
with UI updates [153]. Other performance diagnosis tools such
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as Panappticon [196] also cannot capture the performance of UI
feedback while a UI operation is being processed.

Hence, a tool that can detect poor-responsive operations during
an app test run is necessary to combat poor UI responsiveness.
In this work, we first provide a threshold for classifying poor-
responsive operations based on a real-world user study. Moreover,
we observe that Android apps generally use a unique pattern when
conducting UI updates. Specifically, although Android has a com-
plicated procedure for conducting UI updates that involves diverse
components, we find that every app uses a similar communication
pattern based on a specific system process of Android when it
conducts UI updates. Therefore, we can design a tool to track such
patterns and detect poor-responsive operations.

The contributions of this chapter are as follows.

1. We conduct a real-world user study via a comprehensive sur-
vey. Where we find many insights on the user experiences and
the UI latency. We thus find a reasonable threshold to detect
poor-responsive operations.

2. A handy tool, called Pretect (Poor-Responsive UI Detection
in Android Applications), is implemented and has been open-
source released [37]. The tool aims at detecting poor-responsive
operations. We use the tool to find many UI design defects in
many real-world Android apps.

4.2 Motivation

Android has unique UI design patterns. The main thread of an app is
the sole thread that handles the UI-related operations [152], such as
processing user inputs and displaying UI components (e.g., buttons
and images). When a valid user input (i.e., a UI event) comes,
the main thread invokes the corresponding UI event procedure,
i.e., the codes that handle the UI event. However, some UI event
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File - D:\svn\fps_test\Sources\synthetic_app\synthetic_app\app\src\main\java\com\cudroid\syntheticapp\Gallary_back.java

Page 1 of 1

package com.cudroid.syntheticapp;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.AsyncTask;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.ImageView;

import java.net.HttpURLConnection;
import java.net.URL;

public class Gallary extends Activity {
    private ImageView imageView;
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_gallary);
        setTitle("Gallary");
        ImageView nextBtn = (ImageView) findViewById(R.id.next);
        this.imageView = ((ImageView) findViewById(R.id.gallary));
        nextBtn.setOnClickListener(new View.OnClickListener() {
            public void onClick(View v) {
                new ImageDownloader().execute(downloadUrl[(count++) % downloadUrl.length]);
            }
        });
    }

    private Bitmap downloadBitmap(String urlStr) {
        Bitmap bitmap = null;
        try {
            URL url = new URL(urlStr);
            HttpURLConnection con = (HttpURLConnection) url.openConnection();
            bitmap = BitmapFactory.decodeStream(con.getInputStream());
        } catch (Exception e) {
            e.printStackTrace();
        }
        return bitmap;
    }

    private class ImageDownloader extends AsyncTask<String, Void, Bitmap> {
        protected Bitmap doInBackground(String... urls) {
            return downloadBitmap(urls[0]);
        }

        protected void onPostExecute(Bitmap result) {
            imageView.setImageBitmap(result);
        }
    }
}

Figure 4.2: Screenshot and related source codes of a simple gallery

procedures may be time-consuming; for example, a procedure may
involve downloading a large file from the Internet. Android prevents
such procedures from blocking the main thread, i.e., unable to
respond to other user operations, by introducing the Application Not
Responding (ANR) [112] mechanism.

Commonly, Android apps conduct heavy tasks in an asynchron-
ous manner so as not to block the UI thread. More specifically,
when accepting a user operation, an app will start executing time-
consuming tasks asynchronously in threads other than the main
thread. Once the asynchronous task is finished, there is usually a
callback to the main thread to update the UI accordingly [152].

The UI responsiveness is poor if the asynchronous task takes
a long time to execute and there is no feedback (e.g., no loading
animation) during its execution. Providing no feedback to users
is a common mistake of developers. Figure 4.2 shows a simple
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gallery design and the source codes of its core functionality. The
ImageDownloader task downloads the image with the given
URL and then updates the imageView. Although such functionality
is trivial, it contains a defect that may lead to slow UI respon-
siveness. When the image is large, or the Internet connection is
poor (e.g., on a cellular network), the user has to wait a long
time before the image is loaded. The app provides no feedback
during this waiting period. The user may be uncertain whether
she has successfully touched the “next” sign shown in Figure 4.2.
A better design for this case is showing the progress of loading
with onProgressUpdate function or displaying an instance of
ProgressBar/ProgressDialog.

Although Google has offered some responsive Android widgets
such as SwipeRefreshLayout, in most cases, they only provide
suggestions for improving responsive UI design (e.g., showing the
progress of background work using a ProgressBar) [112]. In next
section, we present a user study that shows how poor-responsive UI
design hurts an app.

4.3 User study

Unlike traditional PC apps, mobile apps are usually executed in an
exclusive manner. Users do not generally switch their focus to other
windows while an app is being used. Therefore, users tend to be
more impatient with delays in mobile apps. This effect is not studied
before, thus we design a user study to reveal it. The study is available
online [37]. Our study examines the relationship between UI latency
and user patience. The results can guide the design of our tool.

We implement a mobile app with different delay levels and
collect user feedback. The feedback reveals user tolerance under
different delay levels. The app interacts with the users using
common multimedia (e.g., video, audio, microphone, etc.). The app
requests user interaction (e.g., clicking buttons) before it continues
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Figure 4.3: Screen shot of survey app

to the next page (i.e., an Android activity). A designed delay is
attached to each user interaction. A sample page of the app is shown
in Figure 4.3. After running the app with a designed procedure, users
are required to answer several questions related to their patience,
each rated from 1 to 9 (e.g., rate 1 for user impatient, 9 for user
patient). The statistical analysis of the ratings show the trends in
user patience.

4.3.1 Test settings

In the study, we set three delay levels: 200 ms, 500 ms, and 2
seconds (i.e., we set feedback after the delay time). As it is hard for
a single user to rate fairly each separate operation with a different
delay, we use a between-subject design [89, 97]. Thus, each user
has one assigned delay level throughout the test and rates the app’s
overall performance; then the rates are compared between the sets
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of similar users.
The parameter settings are chosen based on the previous study

of Johnson [104]; 200 ms is the editorial “window” for events
that reach user consciousness, 500 ms is the attentional “blink”
(inattentiveness to other objects) following recognition of an object,
and 2 seconds is the maximum duration of a silent gap between
turns in person-to-person conversation [104]. Google suggests 100
to 200 ms as the threshold at which users will perceive slowness in
an application [112]. More levels may be helpful to obtain a finer
threshold of user impatience. However, the threshold varies among
different circumstances a conservative threshold is enough for us
in our study. Moreover, too many delay levels would disperse the
subjects (noted that we use between-subject test) which makes the
result less meaningful in statistics.

We take the following measures to address possible threats to the
validity of our user study. 1) Subjects do not rate objectively if they
know the purpose of the study. Therefore, we design more questions
than required to hide our purpose. We ask the subjects to rate for
about ten common questionnaire questions (e.g., [58, 92, 175]), only
two of which are related to user patience. We also ask the subjects
their understanding on the purpose of the study. The results verify
that the subjects are unaware of our real purpose. 2) The ability to
learn a new app varies among subjects. To remove this effect, we
conduct a practice before the study, but do not include the results of
the practice in our analysis. 3) Internet delays are a common source
of delay [31, 173], which can make subjects impatient. Therefore,
to avoid introducing extra Internet delays, our tests are all conducted
on local area networks.

4.3.2 Results

We collect 116 valid replies. All of the subjects are college students
between the ages of 20 and 27. We first collect the user feedback



CHAPTER 4. DELAY-TOLERANT UI DESIGN 82

0 2 4 6 8 10
UI responsiveness

0

2

4

6

8

10

U
se

r 
p
a
ti

e
n
ce

Figure 4.4: Rating on UI responsiveness and user patience (size of a circle is
related to the number of repetitions of that point)

to get a general impression of user patience. Then we utilize SPSS
tool for a detailed statistical analysis of the rating scores.

The written user feedback gives a general impression of the varia-
tion in user patience. Under the 200 ms delay condition, the subjects
seldom complain about the responsiveness of the app, whereas
under the 500 ms delay condition, there are many complaints. For
example, “very slow response”, “Lagged response”, “poor perfor-
mance and UI”, “very irresponsive”, “It really responds slowly”,
etc. When the UI delay reaches 2000 ms, most subjects complain
about the responsiveness of the app, and some even become angry.
For example, “slow as f**k”, “too lag to use”, “seriously, it is
irresponsive”, “extremely irrsponsive!”, etc. We can already see
a relationship between user patience and UI responsiveness. We
resort to statistical analysis for a more detailed understanding of the
relationship.

To increase the reliability of the test, we ask questions about
both UI responsiveness and user patience. The scatter plot of
the relationship between the two factors are shown in Figure 4.4.
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Table 4.1: Patience measurement under different delay levels

Mean
Std.

Deviation N
200 ms 5.59 2.14 38
500 ms 4.68 1.80 37
2000 ms 4.24 2.43 41
Total 4.82 2.21 116

Delay level

Table 4.2: Pairwise patience measurement comparisons on different delay levels

Dependent
Variable

Dependent
Variable

B2Items B2Items

-0.92 -1.35

0.00 0.00

-0.92 -1.35

0.50 0.48

0.07 0.01
Lower
Bound

-1.90
Lower
Bound

-2.31

Upper
Bound

0.07
Upper
Bound

-0.39

2000 ms
vs. 200 ms

Contrast Estimate

Hypothesized Value

Difference (Estimate -

Std. Error

Sig.

95%
Confidence
Interval for
Difference

500 ms vs.
200 ms

Contrast Estimate

Hypothesized Value

Difference (Estimate -

Std. Error

Sig.

95%
Confidence
Interval for
Difference

delay_level Simple Contrastdelay_level Simple Contrast

The statistical analysis demonstrates that the ratings of perceived
responsiveness and participants’ patience are highly correlated, with
a .75 Pearson correlation value (significant at p < .01). Therefore,
we average the two user ratings as a single patience measurement.

The patience measurement shows a clear negative relationship
with the delay level. The descending trend in the ratings with the
delay levels can be instantly observed in the mean and standard
deviation values in Table 4.1: 200 ms (M = 5.59, SD = 2.14),
500 ms (M = 4.68, SD = 1.80), and 2000 ms (M = 4.24, SD =
2.43). The between-subjects test shows that the differences in
the measurements are significant with F (2, 113) = 4.00 under
significance level ≈ 0.021. Further pairwise comparisons between
different delay levels, shown in Table 4.2, reveal that users perceive
a great difference between 200 ms and 2000 ms delay (Mean diff
= 1.35, SD Error = 0.48, Sig = 0.01). Users’ impatience also
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increases between 200 ms and 500 ms delay with a marginal signif-
icance (Mean diff = 0.92, SD Error = 0.50, Sig = 0.07). However,
the 500 ms and 2000 ms delays do not provoke significantly different
levels of impatience (Sig > 1).

These results suggest that 1) users are impatient when using
mobile apps and are sensitive to delays and 2) the developers should
be careful about operations with delays larger than 500 ms.

4.4 Overall framework for poor-responsive UI de-
tection

In this section, we first introduce the UI design problem of our
interest. Then, we propose a workflow to solve the problem. Finally,
we consider how our tool fits within the execution flow.

4.4.1 Problem specification

As mentioned in Section 4.2, the Android framework is specially
tailored to suit the UI-driven requirements of Android apps. De-
velopers try to keep apps responsive. A common practice when
processing long-term operations is to provide a loading bar/circle
animation as feedback to users. However, it requires daunting
human efforts to design feedback for every possible heavy-weighted
operation. In practice, developers usually only notice extremely
long-term operations that may trigger ANR. However, our user study
shows that a 500 ms delay is already long enough for users to
perceive bad UI design.

Developers try their best to keep the app responsive. A com-
mon practice is setting loading bar/circle animation as feedback to
users when processing long term operations. However, it requires
daunting human efforts to design feedbacks for all possible heavy-
weighted operations. In practice, in general developers merely
notice extremely long-term operations that may trigger ANR. While
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Figure 4.5: Detecting poor-responsive operations

as our user study shows, 500ms delay is already long enough for
users to perceive bad UI design.

To facilitate the following discussions, we define several terms
related to UI design.

Definition 4.1 (Operation feedback). A screen update that is trig-
gered after an app receives a user operation (i.e., a button click).

Definition 4.2 (Feedback delay). The latency between a UI opera-
tion and the first UI update that it triggers.

Definition 4.3 (Poor-responsive operations). A UI operation is poor-
responsive if its feedback delay is not less than a threshold T.

In this work, we aim at detecting poor-responsive operations with
feedback that takes longer than T . The UI feedback should be given
as soon as the input event is accepted, but not until the event has
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finished processing. The feedback can reassure users that their input
being processed by the app. Without timely feedback, users are
unsure whether their operations have been accepted or the touch
screen is insensible. As a result, they become impatient.

4.4.2 Proposed execution flow

We propose an execution flow, shown in Figure 4.5, for detecting
poor-responsive operations. First, the system takes a user input I
from either a testing tool (e.g., Monkey [179], MonkeyRunner
[138]) or human input. Then an event monitor module records the
input event without interfering with the execution of the app. After
the input event is processed, the display may or may not update
within a preset time window. A display monitor module captures
all of the display updates.

All of the related information is logged and analyzed offline. A
log analyzer module analyzes the logs by calculating the feedback
delays for each input event. It then generates a report about the poor-
responsive operations. With the report, developers can easily detect
the UI designs that should be improved.

4.4.3 Framework Design

We design a framework called Pretect (Poor-responsive UI De-
tection) for Android apps that realizes the proposed execution flow
shown in Figure 4.5. The main modules are as follows.

Event monitor

The event monitor module monitors the input events conducted on
the touchscreen. Whenever an input event (e.g., touch a button)
is performed, the event monitor module would record the event
information including the type of event, the related UI component,
and the time when the input is conducted in the log.
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Display monitor

The display monitor module monitors the screen updates. Whenever
the screen refreshes, this module logs the UI update information
including the source of the screen update (i.e., the process that
requests the UI update) and the update time.

Log analyzer

The log analyzer module offline analyzes the logs of the input events
and screen updates. The purpose of this module is to identify the
UI designs that could be improved. It reports the poor-responsive
operations. The supporting information it provides in the report
includes the input event information, the feedback delay, and the
related logs.

4.5 Implementation details

We have implemented a poor-responsive UI detection tool based
on the proposed Pretect framework. The implementation of the
main modules in Section 4.4.3 is described in detail in this section.
Details could also be found from the released source codes [37].

It is worth noting that we rely on a dynamic instrumentation
mechanism to keep Pretect compatible with most Android ver-
sions and devices. The mechanism requires no changes to the target
app per se. It also does not require us to recompile the underlying
OS and the Android framework. Moreover, the tool requires little
human effort to install and apply.

We intercept the Android framework methods in both Java and
C. This approach is more light-weight and easier to implement
than tracking the functions at the OS level, which typically requires
heavy-weighted and sophisticated tools for kernel instrumentation.
More importantly, we can thus rely on an Android-specific feature
to conveniently track the relevant methods.
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For Java method tracking, we note that, unlike general Linux
processes, all Android app processes are created by duplicating
a system process called Zygote. The framework binaries are
loaded in Zygote before this duplication. Therefore, we can
instrument the Zygote process and “hijack” the Java-based frame-
work methods we are interested in before the app runs. When the
app is running, the method invocations are inherently hijacked by
Pretect via the forking of Zygote. Hence, we can easily track
the methods. We implement this idea by adopting a tool called
Xposed [193], which is usually used to improve the appearance of
user interfaces [192]. It can substitute the original Zygote process
with an instrumented one. We rely on its mechanism, and program
our own codes to hijack the Java methods we are interested in.

For our C method interception, we note that the Android OS is
based on the Linux kernel. A well-known Linux system tool named
ptrace, which is commonly used in debugging tools (e.g., gdb),
is also available on Android. Ptrace makes it possible to inspect
the child process of the parent process. Ptrace enables the parent
process to read and replace the value of the register of the child
process. We can utilize ptrace to attach code to a target process
(with a known process ID pid). Then, we are able to take over the
execution of the target process. By analyzing the elf-format library
files of the target process, we can locate the memory addresses of
the methods with the relevant names and invoke them accordingly.
Therefore, it is feasible to invoke the dlopen, dlsym library-
related system calls of the target process. We implement the idea
by adopting a tool called LibInject [120].

4.5.1 Event monitor

We implement the event monitor by instrumenting the related An-
droid framework Java methods to obtain the input event information.
In particular, we intercept several event dispatch methods of the
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1. … 2365 …: com.cyberlink.youperfect[Event]com.cyberlink.youperfect.widgetpool.common. 
ChildProportionLayout{425193c8V.E...C....P....270,0-540,67#7f0a051dapp:id/cutout_tab_artis 
tic}_null-Motion-UP : 125696 

 
2. … 138 …: BIPC:****android.gui.SurfaceTexture****, sender_pid:2365, UptimeMilli: 127932 
 

Figure 4.6: Example logs of Pretect

View class; all touchable widgets such as Buttons, ImageView
and ListView are subclasses of the View class. We careful-
ly select a set of methods to cover all types of possible input
events. The methods include dispatchKeyEvent, dispatch-
TouchEvent and some rarely used methods such as dispatch-
KeyShortcutEvent, dispatchKeyEventPreIme and dis-
patchTrackballEvent.

A sample log of an event is shown in line 1 of Figure 4.6.
From this line we can see that the input event is a touch event, as
indicated by the Motion-Up action. The touch event is conducted
on a ChildProportionLayout with the ID cutout tab artistic.
With the ID information, we can locate the component easily via
the Hierarchy Viewer [95] tool published along with Android SDK.
The event is performed 125696 ms after the system is booted. The
highlighted information is important for the subsequent steps of the
analysis.

4.5.2 Display monitor

There are numerous functions that can update Android app dis-
plays (e.g., TextView.setText, ImageView.setImage-
Bitmap). Therefore, it is hard to list and instrument all of them.
Moreover, updating UI display is a cross-layer procedure. Multiple
layers created by the app, Android framework, kernel, and driver
are involved in the procedure. Many components such as Sur-
faceFlinger, OpenGL ES, and FrameBuffer are included.
The complicated nature of the UI display update mechanism makes
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it hard to trace. Luckily, we find that all of the UI updates are
done via the surfaceflinger process provided by the Android
OS. All of the UI update requests from the app are sent to the
surfaceflinger process via binder, which is the standard
inter-process communication (IPC) mechanism in Android.

Therefore, we can obtain the UI update information by intercept-
ing the communication related functions of binder. More specif-
ically, we intercept the surfaceflinger process on ioctl
method of the shared library libbinder.so, which the binder
mechanism is embedded in. The ioctl method is responsible
for reading and writing the inter-process communication contents.
We successfully intercept the invocations of ioctl to get detailed
information about the UI update requests.

There are hundreds of binder communication messages per
second; the UI updating messages are the one type of request that
SurfaceTexture sends from the app under test (pid 2365 in
this example). We show a UI update message in line 2 of Figure 4.6.
The corresponding UI request time is 127932 ms after the system is
booted.

4.5.3 Log analyzer

The log analyzer extracts information from the logs collected during
the offline tests. We implement the analyzer in Python.

The most important task of the log analyzer is to correlate the
input events with their associated UI updates. The log analyzer first
scans the logs to retrieve the input events. For each input event I ,
we check the following binder requests set (R), until it reaches the
next input event. With the information about the process ID (pid)
of the sender process (e.g., we record the sender’s pid, as shown in
the second line in Figure 4.6); the analyzer is able to distinguish the
source of the binder request. We then search for the first binder
request from set R such that 1) the sender’s pid is the same as that
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of the app process (which we can determine from logs, for example,
line 1 shown in Figure 4.6); and 2) the requested component is
SurfaceTexture, which means it is a UI update request. We
regard this UI update request as feedback of the input event I . Then
it is not hard to calculate the feedback delay which is the time span
between the input event and the feedback.

Worse than long feedback delay, some operations may have
no feedback at all. For these operations, there are no following
UI update logs. We filter such events by calculating the interval
between the input event of interest and the following event. If the
interval is too large, we regard the event as having no feedback. The
log analyzer reports poor-responsive operations as these input events
without feedback (i.e., no following UI update request by the app)
or without timely feedback (i.e., feedback delay ≥ T ).

From lines 1-2 in Figure 4.6, we can infer that: 1) the two lines
are a relevant input event and its first UI update; and 2) the feedback
delay of the input event is 127932− 125696 = 2236 ms.

4.6 Experimental study

In this section, we first conduct several experiments on synthetic
apps and open source apps to show the effectiveness of our tool.
Then we illustrate how our tool improves the UI designs by present-
ing several case studies.

4.6.1 Tool effectiveness validation with fault injection

We examine the accuracy of Pretect by evaluating ten apps,
including five synthetic benchmarks and five open source apps.
These apps are selected to represent those with common heavy-
weighted UI operations that may incur long UI latency. The apps
and the selected operations are listed in Table 4.3.

As mentioned in Section 4.2, various types of asynchronous tasks
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Table 4.3: List of applications

Type Name Operation
Worker Thread load an image by worker thread
AsyncTask load an image by AsyncTask
ThreadPool-
Executor

load an image by ThreadPool-
Executor

HandlerThread dump a table of a database
IntentService load an image by IntentService
K9Mail refresh email Inbox
ASqliteManager dump a table of a database
AFWall+ start network firewall
Amaze scan disk for all images
ePUBator convert a pdf file to epub type

Synthetic

Open
source

and UI updates are common sources of poor-responsive operations.
We implement all the five Android asynchronous mechanisms for
this purpose, including Worker Thread, AsyncTask, ThreadPoolEx-
ecutor, HandlerThread, and Intent Service. The app loads an
image after an asynchronous task finishes. We use sleep method
to ensure the asynchronous tasks finish in about 500 ms. To validate
Pretect’s ability to detect poor-responsive operations, we update
the UI for each type of asynchronous mechanisms with two set-
tings: separately with timely feedback and without timely feedback.
More specifically, for the setting with timely feedback leading to
responsive operations, we set a loading circle to appear while the
asynchronous tasks are executing. For the setting without timely
feedback, leading to poor-responsive operations, we do nothing
when the asynchronous tasks are executing.

We validate our tool on open source projects. We select five
open source projects that have representative heavy-weighted UI
operations that may incur long UI latency, as listed in Table 4.3.
These operations may incur UI delays from various sources such as
network requests, database operations, system settings, disk scan-
ning with querying content provider, and CPU-intensive computing.
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Figure 4.7: Feedback delay of applications detected by Pretect

The original apps offer good timely UI feedback on these long-term
operations. During the experiment, we manually switch off the UI
feedback for comparison.

The results presented in Figure 4.7 show a notable difference be-
tween poor-responsive operations and responsive operations. Pre-
tect can easily distinguish responsive operations from poor-res-
ponsive operations.

4.6.2 Overview of Experimental Results

We apply the tool to 115 popular Android apps covering 23 cate-
gories (including BooksReferences, Photography, Sports, etc.). We
download apps on AndroidDrawer [35] from all of the categories
except the library demo category. We randomly select five popular
apps from each category. We conduct the experiments on Huawei
G610-T11 with Android 4.2.2.

The overall statistics for the case where the threshold is 500 ms
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Table 4.4: Statistics of feedback delay

# apps contain bugs 94 Total 327

Max bugs an app 23 Max 29189.0 (ms)
Min bugs an app 0 Min 504.0 (ms)
Avg. bugs per app 2.8 Avg 1603.9 (ms)
Median bugs per app 2 Stdv 2635.5
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0.00%

25.00%

50.00%

75.00%

100.00%

0

15

30

45

0 1 3 6 9 More

Fr
eq

u
en

cy

Number of issues per app

Frequency Cumulative %

Figure 4.8: Cases number distribution
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Figure 4.9: Feedback delay distribution

are shown in Table 4.4. We find that poor-responsive operations
are common defects in UI designs. Of the 115 apps examined,
94 contain potential UI design defects. The maximum number of
defects in a single app is 23 and the minimum number is 0. On
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Figure 4.10: Avg. # of cases per category with different thresholds

average, there are 2.8 (median 2) defects per app. Long feedback
delays are common. We find in total 327 independent components
with feedback delays larger than 500 ms. The maximum delay is
larger than 29 seconds. The distributions of the number of defects
per app and UI feedback delays are shown in Figure 4.8 and 4.9.

Developers can define their preferred threshold for poor UI
designs according to the category of their app. Figure 4.10 demon-
strates the correlation of the number of bad components per category
with the threshold cutoff. We also note the large differences between
apps in different categories. For example, Medical apps contain
the most number of bad UI design components (avg. 11.4 bad
components), followed by Finance apps (avg. 6). Music Audio
contains the least number of bad UI design components (avg. 0.4),
followed by News Magazines (avg. 0.6). Moreover, the threshold
for feedback delay is a key factor for poor-responsive operations
detection. According to the user study, 500 ms is a reasonable
choice. Nevertheless, developers could choose their own threshold
based on their own criteria. We have chosen 500 ms, 800 ms,
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Table 4.5: Top 10 components contain poor-responsive operations

Component Issues found
android.widget.Button 78
android.widget.ListView 30
android.widget.ImageButton 22
android.widget.EditText 21
android.widget.ScrollView 20
android.widget.RelativeLayout 16
android.widget.ImageView 13
android.widget.TextView 10
android.widget.LinearLayout 10
android.support.v7.widget.Toolbar 7

1200 ms respectively as the thresholds for our tests.
We also investigate the top-ranked components that commonly

suffer from poor responsiveness. They are shown in Table 4.5.
When designing these UI components, developers must take special
care to ensure their responsiveness.

Next, we select three representative cases to show how Pretect
contributes to delay tolerant UI design.

4.6.3 Case Study 1: YouCam

YouCam Perfect - Selfie Cam (http://www.perfectcorp.co
m/#ycp) is a popular selfie application. YouCam Perfect helps
users to create better images via customized filters. The Android
app has had more than 60 million downloads.

We apply Pretect to test Youcam Perfect, version 4.10.1. A
representative testing scenario is shown in the “Steps to trigger
bug” section of Figure 4.11. A portion of the report generated by
Pretect is shown in the lower section of Figure 4.11. We test on
the cutout functionality of Youcam Perfect; this process cuts out a
piece of an image and attaches it to a pre-defined template. As can
be seen from the report, the ChildProportionLayout with ID

http://www.perfectcorp.com/#ycp
http://www.perfectcorp.com/#ycp
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1. Open YouCam Perfect app 
2. Open “Cutout” function 
3. Click “Artistic” tab 
4. Click “Fun” tab 
5. Select the first template 
6. Select the first image from Image library 
7. Click “tick” image 
8. Random draw a line to select range 
9. Click “tick” image 
10. Switch to “Artistic” tab 
11. Switch to “Fun” tab 
12. Select the first cover 
13. Click the “save” text 

Steps to trigger bug

 

Operation: com.cyberlink.youperfect.widgetpool.common.ChildProportionLayout cutout_tab_ 
artistic Click 
No screen update delay: 2236 ms 
Related logs: 
2365  2365 D RefreshMon: com.cyberlink.youperfect[Event]com.cyberlink.youperfect. 
widgetpool.common.ChildProportionLayout{425193c8V.E...C....P....270,0-540,67#7f0a051dapp: 
id/cutout_tab_artistic}_null-Motion-UP : 125696 
 
138   138 D RefreshMon: BIPC:****android.gui.SurfaceTexture****, sender_pid:2365, 
UptimeMilli: 127932 

Report

 

Figure 4.11: Selected report of YouCam Perfect

“cutout tab artistic” is problematic. We detect a delay of 2236 ms
without UI updates after the button is clicked. This decreases the
quality of the software and hurts the user experience. This issue
is the only reported issue, which we can immediately identify the
defect. Via simply searching the component ID “cutout tab artistic”
with Hierarchy Viewer [95], we successfully locate the problematic
component, circled in Figure 4.12a. The component is the “Artistic”
tab line 10 of the test scenario. By repeating the test scenario
manually, we observe the latency that occurs without a feedback.

We have reported our findings to Perfect Corp. The leader of the
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(a) Version 4.10.1 (b) Version 5.4.1

Figure 4.12: Screenshots of Youcam Perfect

YouCam Perfect development team has provided us with positive
feedback on our results: “With your hint, we find that we have used
a widget which tends to be slower. We will fix as soon as possible.”
In a later version of Youcam Perfect 5.4.1, the UI design has been
modified, as shown in Figure 4.12b. A test run with Pretect
shows that this modification has reduced the feedback delay to below
100 ms.

4.6.4 Case Study 2: Bible Quotes

Bible Quotes (http://www.salemwebnetwork.com/) is a
popular Bible app that provides verses from the Bible. Users can
lookup verses in the Bible, save favorites, share quotes with others,
etc. The app has had more than a million downloads on Google Play.

http://www.salemwebnetwork.com/
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1. Open Bible Quotes app 
2. Select “Donate” tab 
3. Click “Donate $1” button 
4. Click “Donate $5” button 
5. Click “Donate $10” button 
6. Click “Donate $20” button 
7. Click “Donate $50” button 
8. Click “Donate $100” button 

Steps to trigger bug

 

Operation: Button btnDonate01 Click 
No screen update delay: 2073 ms 
Related logs: 
2519  2519 D RefreshMon: com.dodsoneng.biblequotes[Event]android.widget.Button{41a3da 
0VF.D..C.........0,300-225,372#7f09005aapp:id/btnDonate01}_"Donate $1"-Motion-UP : 78535 
 
2519  2519 D RefreshMon: com.dodsoneng.biblequotes[Event]android.widget.Button{41b63330 
VF.D..C.......315,300-540,372#7f09005bapp:id/btnDonate02}_"Donate $5"-Motion-DOWN : 80608 

Report

 

Screen Shot

 

Figure 4.13: Selected report of Bible Quotes

We apply Pretect to test Bible Quotes, version 4.9. A
representative testing scenario is shown in the “Steps to trigger
bug” section of Figure 4.13. A portion of the report generated by
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Pretect is shown in the middle section of Figure 4.13. We test
the functionality of the donation process of Bible Quotes. As can
be seen from the report, the Button with ID “btnDonate01” is
problematic. Note that this is the first issue in our generated report
(other issues are about other donate buttons which are similar to this
one). Via searching the component ID in Hierarchy Viewer, we im-
mediately locate the button of the app. We find that there are no UI
update-related logs generated between the time the “btnDonate01”
button is clicked and the time the “btnDonate02” button is clicked
(corresponding to the test scenario steps 3-4). This means that the
UI does not update for more than 2 seconds after the “btnDonate01”
button is clicked. This clearly decreases the quality of the app. We
further investigate the app to find the relevant information about the
UI component. The logs reveal that the text on the button is “Donate
$1”; the component is circled in the lower section of Figure 4.13.
The component we are interested in is the “Donate $1” button on
line 3 of the test scenario.

4.6.5 Case Study 3: Illustrate

Illustrate - The Video Dictionary (http://www.mocept.com
/illustrate/) is an effective app for teaching new words and
their meanings. It provides videos with context and real-life exam-
ples allowing the learner to grasp definitions and usage with ease.
ICAL TEFL, a leading provider of English language courses, says
that it is fun and will help students. The University of Michigan
Campus Life News recommend it as the best app in “7 Helpful Study
Apps for GRE, LSAT, and GMAT Preparation”

We apply Pretect to test Illustrate, version 1.2.7. A piece of
the testing scenario is depicted in the upper section of Figure 4.14.
Part of the report generated by Pretect is shown in the middle
section of Figure 4.14. We test the history clearing functionality
of Illustrate. As can be seen from the report, the TextView with

http://www.mocept.com/illustrate/
http://www.mocept.com/illustrate/


CHAPTER 4. DELAY-TOLERANT UI DESIGN 101

1. Open Illustrate  - The Video Dictionary app 
2. Click on the first word 
3. Click on the first word of Explore More Words 
4. Repeat step 3 for 3 times 
5. Click “Back” button on the top left 
6. Click “menu” image on the top left and select “Recents” item 
7. Click “Clear All” button 

Steps to trigger bug

 

Operation:  TextView clearall Click 
No screen update delay:  2351 ms 
Related logs: 
2319  2319 D RefreshMon: com.mocept.illustrate[Event]android.widget.TextView{41c9c9f0V.ED.. 
C....P....0,17-100,54#7f09011fapp:id/clearall}_"Clear All"-Motion-UP : 181382 
138   138 D RefreshMon: BIPC:****android.gui.SurfaceTexture**********, sender_pid:2319, 
UptimeMilli: 183733 

Report

 

Screen Shot

 

Figure 4.14: Selected report of Illustrate

ID “clearall” is problematic. Note that this is the only issue in our
generated report. Via searching the ID in Hierarchy Viewer, we
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immediately locate the component. We detect a delay of 2351 ms
without UI updates after the TextView is clicked. This decreases
the quality of the software and tests users’ patience. We further
investigate the app to find the relevant information about the UI
component. An examination of the logs reveals that the text of the
TextView is “Clear All”, which is circled in the lower section of
Figure 4.14. The component of interest is the “Clear All” button in
line 7 of the test scenario. By repeating the test scenario manually,
we observe the latency without feedback.

4.7 Discussions

Our user study results show that more than 500 ms delay can cause
the users become impatient. To conduct the survey, we choose
most active mobile users (between 20 to 27 years old [8]) and
common usage scenarios (e.g., video, audio, map). Users may
tolerant 500 ms delay in other scenarios. Whereas, our focus is
on revealing the relationship between user patience and UI latency,
rather than obtaining the exact threshold of user impatience. We
have shown in Section 4.6.2 that the threshold is just a parameter
of Pretectwhich can be easily set to suit the requirement of
developers.

Current approaches cannot properly detect poor-responsive op-
erations. Approaches including StrictMode [90] and Asynchro-
nizer [123] can detect operations that blocks the UI, but fail to
detect asynchronous tasks that do not provide feedback. Other
approaches (e.g., Appinsight [161], Panappticon [196]) define a
delay as the time interval between the initiation of an operation
and the completion of all of the triggered tasks. These approaches
aim to detect the abnormal execution of asynchronous tasks rather
than feedback delay. In such cases, using Pretect to detect
feedback delay is a better approach to improving the responsiveness
of UI design. Moreover, these approaches may report some long-
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term background tasks (e.g., download) as suspicious, as a result of
focusing on the life cycle of the tasks. However, this kind of task
does not update the display when finished. They are less relevant
to the responsiveness. In comparison, Pretect pays attention to
whether the app notifies the users that the operations that will trigger
the background tasks have been accepted.

The screen refreshes even when the app UI does not update, as
the action bar on the top of the screen also refreshes. However,
the action bar is not our focus. Therefore, intercepting low level
system functions related to full screen display refresh such as
eglSwapBuffers in /system/lib/libsurfaceflinger.so is not a good
choice. We further inspect the related screen update procedure and
find binder used in the process. We then intercept binder and
measure the screen update time of the app more precisely with the
logged pid.

Even with the action bar updates filtered out, we are not guar-
anteed to obtain the right user intended UI update after one user
operation. Because UI updates triggered by periodical updating,
advertisement banners, or previous long-processed tasks may affect
our detection on first UI updating after user operation. As validated
in Section 4.6.1, cases reported by Pretect, the first tool for
detecting poor-responsive operations, are all poor-responsive that
need to be taken care with. The improvement of false-negative rate
could be leave as our future work. A possible solution is to study the
user concentration and app design to understand the user intended UI
update after a user operation.

4.8 Summary

In this chapter, we discuss the problem of responsive UI design
in Android apps. We motivate the problem of detecting poor-
responsive operations by conducting a user survey. The survey re-
sults show that users’ patience is correlated with UI responsiveness.
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We design and implement a tool called Pretect that can detect
poor-responsive operations. The tool is shown to work correctly on
synthetic benchmarks and on open source apps. We further verify
Pretect with real-world case studies. The results demonstrate the
effectiveness of Pretect.

2 End of chapter.



Chapter 5

Deployment of Single Cloud Service

Single Service Deploy

Making optimal server deployment of cloud services is
critical for providing good performance to attract users.
The key to making optimal deployment is to know the user
experience of end users. With such knowledge, we then
model and solve the optimal deployment problem. We list
the points of this chapter as:

• Propose a framework to model cloud features and
capture user experience.

• Formulate the optimal service deployment considering
user experience; propose approximation algorithms.

• Evaluate the proposed model solving method on real-
world dataset; public release the dataset and simulation
code for repeatable experiments.

105
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5.1 Background and Motivation

In cloud computing systems, computation, software, and data access
can be delivered as services located in data centers distributed over
the world [39, 155]. Typically, these services are deployed on
instances (e.g., virtual machine instances) in the cloud data cen-
ters. Recently, numerous systems have been implemented with the
cloud computing paradigm (e.g., Amazon Elastic Compute Cloud
(EC2) [5]).

In the emerging cloud computing systems, auto scaling and
elastic load balance are keys to host the cloud services. Auto scaling
enables a dynamic allocation of computing resources to a particular
application. In other words, the number of service instances can
be dynamically tailored to the request load. For example, EC2
can automatically launch or terminate a virtual machine instance
for an EC2 application based on user-defined policies (e.g., CPU
usage) [4]. Elastic load balance distributes and balances the in-
coming application traffic (i.e., the user requests) among the service
instances (e.g., the virtual machine instances in EC2 [13]).

Auto scaling and elastic load balance directly influence the
Internet connections between the end users and the services as
they essentially determine the available service instance for an end
user. Hence, they are important to the user experience of service
performance.

Unfortunately, current auto scaling and elastic load balance
techniques are not usually optimized for achieving best service
performance. Specifically, typical auto scaling approaches (e.g., that
adopted in EC2 [4]) cannot start or terminate a service instance at
the data center which is selected according to the distributions of
the end users. For example, when the number of users increases
dramatically in an area, a new instance located far away, instead
of nearby, may be activated for serving the users. Furthermore,
elastic load balance generally redirects user requests to the service
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instances merely based on loads of the instances. It does not take the
user specifics (e.g., user location) into considerations. As a result, a
user may be directed to a service instance far away even if there is
another available service instance nearby.

In this chapter, we model the features of user experience mainly
by latency (other features can be extended in the framework) in
cloud service. After that we address these issues by proposing a new
user experience-based service hosting mechanism. Our mechanism
employs a service redeployment method. This method has two
advantages:

1. It improves current auto scaling techniques by launching the
best set of service instances according to the distributions of
end users.

2. It extends elastic load balance. Instead of directing the user
request to the lightest load service instance, it directs user
request to a nearby one.

The prerequisite of such a service hosting mechanism is to
know the user experience of a potential service instance, before
we choose to activate the instance and deliver the user requests
to it. This is quite a challenging task, as there is generally no
proactive connection between a user and the machine that will host
the service instance. Measuring the user experience beforehand is
hence impossible. We notice that the user experience of a cloud
service depends heavily on the communication delay between the
end user and the service instance the user accesses, which is mainly
caused by the Internet delay between the user and the data center
hosting the instance. We therefore propose a viable method to
conveniently measure and predict such an Internet delay.

With the predicted user experiences, the service hosting problem
is essentially how to redeploy a set of data centers for hosting
the service instances, while guaranteeing the user experience for
frequent users. We formulate it as a k-median problem and a
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Figure 5.1: Framework of cloud-based services

max k-cover problem, which can be efficiently solved by several
algorithms we proposed in this chapter. We evaluate our service
hosting mechanism based on a large set of real-world data (roughly
130,000 accesses to Internet-based services). The results demon-
strate that our mechanism can approach rapid and scalable cloud
service hosting.

5.2 Overview of Cloud-Based Services

5.2.1 Framework of Cloud-Based Services

Figure 5.1 shows the framework of cloud-based services. A cloud
contains several data centers (eclipse in Figure 5.1). Physical
machines are virtualized as instances in the data center. Service
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providers would deploy service running on these instances. An end
user normally connects to the cloud to get data and run applica-
tions/services. User requests are directed to the service instances.

A good example is the Chrome OS developed by Google. Via
such kind of light client, the end user can access data as well as
application logic provided by the cloud as services.

Since the instances are inside the cloud, the connection infor-
mation especially Round Trip Time (RTT) between a user and an
instance can be maintained by the cloud provider. The solid lines
in Figure 5.1 represent RTT information being recorded between a
user and some instances. Some links are not used thus the related
RTT information is missing. We can derive new methods to predict
these values. Dash lines in Figure 5.1 stand for this situation.

Generally user experience contains three elements: the Internet
delay between user and cloud data center, the delay inside a data
center in the cloud, and the time to handle the service request. As
machines in a data center are typically connected by gigabit links,
delay inside a data center can be ignored. Moreover, the time to
handle the service requests is only affected by the computing ability
of a service instance. As a result, the processing time is almost the
same for two service instances. Hence, the user experience is mainly
determined by the Internet delay.

5.2.2 Challenges of Hosting the Cloud Services

In order to attract users by low latency, service providers are
concerning about where to deploy service instances in the cloud.
The challenge of hosting the cloud service in the cloud comes from
the difficulties of foreseeing user experience before actually running
the service. So normally redeployment is required after knowing the
distributions of users better.

After the service operating for a period, the Internet delay
between users and every cloud data center can either be measured
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or be predicted. We describe this in Section 5.3. This means in the
cloud we can obtain all information regarding the potential positions
for deploying service instances, while many existing computing
infrastructures such as Internet services do not have such a feature.
All the information is organized as a distance matrix. An element in
the matrix is the distance value between a user and a data center.

Moreover, we notice the fact that the number of data centers is
limited, while there is no bound on the number of services. So there
are multiple services deployed in the data centers of a cloud. This
fact suggests that we can use this measurement for optimizing any
service in the cloud.

Consequently, we employ a distance matrix to formulate the
redeployment problem as a k-median problem in Section 5.4.1.
However, we have not taken the limitation of resource for a single
service instance into consideration. Another model of max k-cover
problem is engaged to deal with this limitation and to make the
model more realistic. We discuss this formulation in Section 5.4.2.
Through solving these problems we can redeploy the service in-
stances intelligently.

The fact is that the physical machines are not required to migrate
when redeploying service instances in the cloud. Generally we store
the data of a service instance in the cloud storage and to redeploy
the instance we could load the image to another machine in the
cloud. If the new service instance for redeploying lies in another
data center of the original one, the loading overhead is huge and this
is usually the case. Since the major part of the users does not vary
frequently, we defeat this problem by running our redeployment
approach periodically (the period can be set long such as one or
two days). Another method is to redeploy the service instances one
by one. Then when one instance is under redeploying the other
instances could take over the users connecting to the instance and
split the workload.
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5.3 Obtaining User Experience

5.3.1 Measure the Internet Delay

A user request of service in the cloud is responded by an instance
inside the cloud. Therefore the cloud provider is able to record the
round trip time (RTT) from the user to the instance. This RTT value
is kept as the distance dij from the user i to the data center j as the
delay inside a data center can be ignored. The user generally calls
several services and the related service instances are distributed in
different data centers throughout the cloud. As a result, we can get
plenty of distance values between different users and data centers.

5.3.2 Predict the Internet Delay

A user may not get a response from VM instances deployed in every
data center. Therefore we cannot get distance data between each user
and every data center directly which means the measured distance
matrix is quite sparse. We call it a missing value if the distance
dij between a pair of user and data center (i, j) is not available.
The task is to fill in the missing values in the distance matrix. The
technique given in [131] can be used to predict the missing values.
The idea goes as the following. Some users may come from the
same place and use the network infrastructure of the same provider,
thus their network performance is similar. We can examine the
existing values to find these similar users of user i. In the computing,
Pearson Correlation Coefficient is employed to define the similarity
between two users based on the distance to data centers they visited
in common. As these similar users may get the response from data
center j already, we combine distance values between similar users
and data center j intelligently to predict the missing distance value
dij between the pair of user and data center (i, j). Technical details
can be found in the work [131].
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Table 5.1: Alphabet of problem model

Descriptions Notation

Number of data centers M

The set of data centers Z

Number of frequent users N

Number of instances to deploy k

Distance between user i and data center j dij

5.4 Redeploying Service Instances

Suppose a service provider p will provide a service s in the cloud,
and suppose the service will be distributed on k instances in the
cloud among totally M data centers (the set of Z) due to budget
restriction. At first, the cloud service hosting mechanism h can only
guess where to place the k instances. But after a period of running
service s, h knows a bunch of (in total N) users who use s frequently.
The k instances can then be redeployed.

With this setting, the problem is to redeploy k instances such that
the result is optimal for the current N frequent users by considering
the distance matrix we obtained in Section 5.31. The notations we
used in the following sections are first listed in Table 5.1.

5.4.1 Minimize Average Cost

Suppose for a specific user u who would like to take the service s,
our mechanism would direct the user to the closest one of the k
instances (in terms of network distance). We define cost of user u as
the distance between u and the closest instance. Our objective is to
minimize the average cost of N users. Note that N is fixed and the

1The network link may vary in different time. Average value of distance can be utilized in the
algorithm. While we are not interested in the exact value of distance, our task is to deploy service
instance. As long as the order of distances between a user and different data centers is preserved,
our choice of data center is fine.
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target is equivalent to minimize the total cost.
We formulate this problem as the followings:
Given
Z = the set of data centers
C = the set of users
dij = distance between every pair i, j ∈ C × Z
Minimize:

N∑
i=1

min
j∈Z ′
{dij}

Subject to:

Z ′ ⊂ Z

|Z ′| = k

This is exactly the well known k-median problem, which is NP-
hard. So we resort to the following fast approximation algorithms.

Brute Force

In a small scale (e.g., select 3 instances from M potential data
centers), it is possible to list all combinations. We call this brute
force algorithm in our experiment in Section 5.5. The complexity of
this algorithm is O(Mk ·N), where M, N and k follow the definition
in Table 5.1. If k is small, it can be calculated in reasonable time.

Greedy Algorithm

Greedy algorithm runs as follows. Suppose we would choose k
among M data centers to deploy the instances. In the first iteration,
we evaluate each of M data centers individually to determine which
one is the best to be chosen first. We compute the average distance
from each data center to all users. The one achieving the smallest
average cost will be chosen. In the second iteration, we search for
a second data center. Together with the first data center we have
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Algorithm 5.1 Local search algorithm for k-median problem
1: S ← an arbitrary feasible solution.
2: for each s ∈ S, s′ /∈ S do
3: if cost(S − s+ s′) ≤ (1− ε

p(N,M)) ∗ cost(S) then
4: S ← S − s+ s′

5: end if
6: end for
7: return S

already chosen, the two data centers yield the smallest average cost.
We do the iteration until k data centers are chosen.

Local Search Algorithm

Local search can provide the current best known bound for approxi-
mating k-median problem [40].

The idea is not complicated, and Algorithm 5.1 shows the
approach. Cost(S) in the algorithm means the average cost for all
users. s ∈ S, s′ /∈ S are two sets containing the same number of
elements. P (N,M) is a polynomial in M and N . The constraint
cost(S − s + s′) ≤ (1 − ε

p(N,M)) ∗ cost(S) is to guarantee that the
algorithm terminates in finite steps.

Assume sets s and s′ are of size t. It is easy to verify that the
algorithm runs in O(l · kt ·M t ·N) time where l is related to ε, and
other notations are given in Table 5.1.

On initializing this algorithm we use mainly two methods. The
first one we utilize is the data centers selected by the greedy
algorithm to initialize, and the second one we use is a random vector.
As local search would naturally find the local optimum, output of the
algorithm is always no worse than that of the original one. So the
one initialized by the greedy algorithm would return a better or at
least equivalent solution to the greedy result. We call this approach
greedy init + single swap, as we swap only one element in local
search algorithm.
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Random Selection Algorithm

Random selection algorithm would randomly choose k out of M
data centers with equal probability. Every data center has the same
possibility to be chosen. This is a simple algorithm. Generally the
method to improve the performance of a random selection algorithm
is to run it multiple times. The purpose of this algorithm is to
designate it as a base line of performance. So instead of running
random selection algorithm at fixed times, we determine the times
of running dynamically. For example, if we would like to know
how good the greedy algorithm is in terms of time complexity
and approximation rate, we would use a dynamic random selection
algorithm for comparison. We record the run time of the greedy
algorithm Tgreedy and launch the random selection algorithm running
several times with the total running time roughly equal to Tgreedy.
Consequently we could compare either their relative performance to
the optimal choice or their average distance to all users directly. If
the result is comparable then we argue that the greedy algorithm is
not a good algorithm as its performance is no better than the random
selection algorithm while the approach is more complicated, and
vice versa.

In our experiment we also use the random algorithm to evaluate
the local search algorithm.

5.4.2 Maximize Amount of Satisfiable Users

In the previous section, we set our target to minimize the average
cost of all users. Through later experiments we confirm the greedy
init + single swap algorithm is good enough in terms of both
result and time complexity to solve the k-median problem. This
makes the redeployment simple; however, there is a limitation of
the k-median model. Recall on formulating redeployment in the k-
median problem we have assumed users are evenly distributed and
all users can request service from their nearest service instance. In
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practice, this condition does not always hold. All the users request
to the nearest service instance would cause some service instances
overload in real world cases.

It is reasonable to think that we are deploying the instances in
the cloud and the cloud has virtually infinite resource. However, in
reality we only get limited budget and we can only launch limited
(say, k) instances in the cloud. If we want to ease the burden of
some overload instances, we are required to put some extra instances
in the same data centers. As a result, we usually distribute service
instances in k′ (where k′ < k) data centers.

Moreover, in some cases part of the users may be extremely far
away from most of the data centers. While considering minimizing
the average cost, these users have a tendency to force some service
instances deployed in the data center close to them. This kind
of users is called outlier in [56]. Though the model of k-median
problem with outliers in [56] can successfully deal with outliers, it
has two drawbacks. First, it does not suit for the huge amount of
data (i.e., thousands of users and hundreds of candidate locations).
Second, it does not limit the number of users a service instance can
serve. So in this model some instances may overload.

In this chapter we employ another model to deal with the outliers
and the service overload problem. On considering QoS of a service,
we believe it is unacceptable if some responses take a very long
time. In this model we set a threshold value T for the response time.
We try several values of the proper threshold in our experiment. If
some dij > T , we drop this link by considering it disconnected.
Moreover, to simplify the problem, we assume the user accepts the
service as long as the response time is shorter than the threshold.
Overall, our target is to determine k instances that satisfy as many
users as possible. Our mechanism can be extended to direct the user
to a light load and close enough but not necessary the closest service
instance.

To model this situation, consider following problem:
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Given Bipartite graph B(V1, V2, E) where

|V1| =M
|V2| = N

i ∈ V1, j ∈ V2{
(i, j) ∈ E, dij ≤ T ;
(i, j) /∈ E, otherwise.

Maximize:
|NB(V

′)|
Subject to:

V ′ ⊂ V1
|V ′| = k

|NB(V
′)| is the number of nodes in the neighbor set of V’,

meaning the target is to choose a subset of V1 to cover as many
vertices in V2 as possible. Actually it is a max k-cover problem.

In this problem we construct M sets by setting i to be the ith
vertex in V1 and the elements in this set are vertices connected to
i in V2. We are trying to find k-sets to cover as many elements as
possible.

Max k-cover problem is a classical problem and is well studied.
This problem is NP hard hence we do not expect to achieve the
exact answer. Again we use approximate algorithms. Greedy
algorithm (Algorithm 5.2) is proven to be one of the best polynomial
time algorithms for this problem [76]. It could give a (1 − 1/e)
approximation, which means it could cover at least (1− 1/e) of the
maximum elements k-sets could cover.

In the greedy algorithm, every round we find a data center s
which, when combined with current selection set S, could cover the
maximum users. There may be more than one such data centers. In
Algorithm 5.2 we choose one of them randomly. It can also be done
more precisely as we can use a stack to record and try all choices one
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Algorithm 5.2 Greedy algorithm for max k-cover problem
1: S ← φ.
2: while Have not covered all users yet & Used less than k instances do
3: maxcover ← 0
4: clear list l
5: for all data centers s do
6: if use s could cover c > maxcover more users than use instances in S then
7: clear list l
8: add s to l
9: maxcover ← c

10: else if use s could cover exactly maxcover more users than use instances in S
then

11: add s to l
12: end if
13: end for
14: random select s from l
15: S ← S + s
16: (random eliminate limit users in cover list of s if s covers more than limit users)
17: end while
18: return S

by one. However, we find that with the growing of k, the amount of
branches increases so fast that the reward quickly diminishes. So we
do not include this implementation in this chapter.

Moreover this model as well as the algorithm can be easily
modified to direct the user to a light load and close enough but not
necessary the closest service instance. This can be done by restrict-
ing the number of users to whom an instance can be connected.
To modify the formulation, we can add a constraint |NB(u)| <=
limit,∀u ∈ V ′ after |V ′| = k, where limit is the number of users
an instance can connect to. As for the Algorithm 5.2, in line 15,
instead of S ← S + s we consider the integer limit. If s covers
≥ limit more users, we randomly pick up limit number of users to
cover. Moreover, if s covers ≥ limit users we would force to set it
as covering = limit users (Line 16). By these changes, we can limit
the connections and select a data center to deploy multiple instances
if needed. This constraint can make the model more realistic. We
call this algorithm modified algorithm.
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Local search method would find local extreme solution thus can
be utilized to help improving the greedy algorithm. Again we use
single swap for the original greedy algorithm. While in the modified
algorithm, swapping is not that easy, we launch the algorithm several
times to improve its performance.

5.5 Experiment and Discussion

In this section we conduct experiments to show the necessity of
redeployment and to compare different algorithms. The dataset
as well as the simulation program are open source released for
reproducible experiments on our website [22].

5.5.1 Dataset Description

To obtain real-world response-time values of different service in-
stances, we implement a WSCrawler and a WSEvaluator using Java.
Employing our WSCrawler, addresses of 4,302 openly-accessible
services are obtained from the Internet. We deploy our WSEvaluator
to 303 distributed computers of PlanetLab, which is a distributed
test-bed made up of computers all over the world. In our experiment,
each PlanetLab computer invokes all the Internet services for one
time and the corresponding response-time value is recorded. By this
real-world evaluation, we obtain a 303 × 4302 matrix containing
response-time values.

5.5.2 Necessity of Redeployment

We first establish the necessity of redeploying service instances. We
fix the number of used service instances to 3 and scale the user from
100 to 500. We repeat the experiment for 100 times and find in
the worst case the performance is really bad. This is illustrated in
Figure 5.2. Suppose we deploy the optimal service instances for
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Figure 5.2: Worst case without redeployment

the first 100 users. With the number of users growing, if we do not
redeploy the instances the average cost may decrease below 70% of
the optimal average cost. In worse cases, far away users would make
the average cost much larger. Without redeployment the network
performance may discourage the new users. To avoid the worst case
from happening, redeployment or at least a performance checking is
necessary. Whereas, redeployment is a costly operation which we
should not do too frequently.

5.5.3 Weakness of Auto Scaling

As discussed before, current cloud service would apply auto scaling
in responding to the change of user scale. We should answer whether
it is good enough to simply apply this service without redeployment.
We indicate there are two main drawbacks of current auto scaling
approaches which we show as followings.

Current auto scaling is limited within one region. We simulate
this by selecting out only a part of data centers as potential data
centers to deploy instances. Applying the same algorithm to deploy
instances, we can see that the average user cost is higher to choose
instances from partial data centers than that of choosing from all
data centers. Figure 5.3 shows the result. We pick out 50, 100, 150
data centers from totally 303 data centers and deploy 10 instances in
these data centers. We apply the greedy init + single swap algorithm
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Figure 5.3: Deploy in limited data centers
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Figure 5.4: Auto scaling algorithms

and the result of using total 303 potential data centers is employed as
the baseline. The performance decreases greatly if we choose only
50 potential data centers. Moreover, we find the performance is not
affected much by the number of users. Note the distance between
users and data centers is better preserved if we choose 100 (33%)
or more from the total data centers, and thus the performance gets
greatly improved in these cases. It is due to the fact that there are
several data centers which are close to many users. The average
distance would decrease greatly if we could pick up these data
centers.
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Figure 5.5: Selecting data centers by redeployment algorithm

Another disadvantage of current auto scaling approach is that it
launches new instances in the data center containing least instances.
It is like randomly picking up a new data center to grow. We simulate
randomized scaling and the result is in Figure 5.4. On a small scale
(e.g., select no more than 4 instances), we consider all possible
combination and find the optimal choice. On a larger case, we use
again the greedy init + single swap algorithm as our best choice. We
start from one optimal instance and 200 users. Then we randomly
add 200 users at each step and select one more instance.2 We see

2We notice there is a decreasing trend in the figure. As we randomly pick up users, we use
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the performance is bad in this situation. If we defer the random
selecting after we find 3 optimal service instances for 600 users, we
would obtain a better choice than doing so in the beginning.

As we see in this case, if we could do the scaling a little more
intelligently by using a simple greedy algorithm, we can get a
very good result. However, there still exist some problems by
using greedy algorithm, such as some instances would get extremely
heavy load. We would discuss this issue later.

5.5.4 Comparing the Redeployment Algorithms for k-Median

The previous experiment confirms the need for redeployment. As
we discussed in Section 5.4.1, we formulate the redeployment as the
k-median problem and compare the algorithms we proposed. First
we set k to be 2,3 and M to be 303. We compare the algorithm output
to the optimal output generated by the brute force algorithm.

We utilize the optimal average cost as the baseline and compare
the greedy algorithm output with the baseline. For initialization of
local search with single swap (of selected data center) algorithm,
we use the output obtained by the greedy algorithm or a random
vector. From Figure 5.5a and 5.5b we know in such a small scale,
the greedy algorithm is good enough. The local search algorithm
would be even better. Moreover, these algorithms are better in terms
of time complexity as they perform better than the random selection
algorithm.

When selecting more than 10 instances the brute force algorithm
would run in an unacceptably long time, and we use the greedy
init + single swap algorithm as the baseline to observe the relative
performance of the greedy and the random init + single swap
algorithms. Once more we compare them with the random selection

expected value to illustrate this trend. Suppose the expected average cost for one instance to serve
200 users is c. Then expected average cost for 2 instances serve 200 users each independently
should also be c. Since we get the optimal 2 instances serve 400 users the value should be less
than c. Similar analyses hold for the rest of the curve.
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Figure 5.6: Selecting 10 - 20 data centers for 4000 users

Table 5.2: Execution time of the algorithms (unit: ms)

Brute Force Greedy Greedy
init +
single
swap

Random
init +
single
swap

(2,200) 203 < 1 < 1 16

(2,400) 375 < 1 16 31

(2,600) 547 < 1 15 47

(2,800) 735 < 1 31 31

(3,600) 78969 < 1 31 63

(10,4000) - 94 328 2641

(15,4000) - 172 500 13109

(20,4000) - 203 1906 25469

algorithm. We select 10 to 20 data centers to deploy instances
so as to satisfy 4000 users. The result is shown in Figure 5.6.
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Figure 5.7: Histogram on number of connected users for each server

The random init + single swap algorithm is slightly better than the
greedy algorithm, but it takes longer to compute. Again, the random
selection algorithm fails to give a satisfying answer, which means
both the greedy and the local search algorithms are well suited for
this problem.

Table 5.2 lists some typical computing times for running these
algorithms. The pair (s, u) in the table (e.g, (2, 400)) stands for
selecting s service instances to satisfy u users. Values in the table are
the executing time and the unit is millisecond. We are interested in
their comparative relation. We can see that the brute force algorithm
does cost with an exponential time growth. The greedy as well as the
greedy init + single swap algorithms run quite fast comparing to the
random init + single swap algorithm because normally we expect
more swaps to find a local optimizer by a random initial vector.

5.5.5 Redeployment Algorithms for Max k-Cover

Through experiments we confirm the greedy + single swap algo-
rithm is good enough in terms of both result and time complexity to
solve k-median problem. This makes the redeployment simple; how-
ever, there is a limitation of k-median model. Recall on formulating
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Figure 5.8: Max k-cover using greedy approach

redeployment in the k-median problem we have assumed users are
evenly distributed and all users can request service from their nearest
service instance. In practice this condition does not always hold.

To motivate the construction of the max k-cover model, Fig-
ure 5.7 shows a typical distribution of user connections on the
service instances. 20 instances are selected to provide service for
4000 users. We expect all instances to connect to about 200 users
each, while the real case is that about 20% instances connect to up
to 400 or more users. Therefore these instances get very heavy load
and the performance may become unsatisfiable.

Virtually the cloud has infinite resource, however, in reality the
budget is restricted. Service providers can only launch limited (say,
k) instances in the cloud. If we would like to ease the burden of
some instances we are required to put more than one instances in
one data center and to distribute the service instances in k′ (where
k′ < k) data centers.

To attack this, we use another model to formulate the problem
which is max k-cover problem. As discussed in Section 5.4.2,
the threshold to cut edges is a key parameter we should pick up
carefully. We employ the entire 303×4302 matrix in our experiment
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Figure 5.9: Average cost by max k-cover model

and test the value of the threshold ranging from 0.05 to 1. We select
data centers to deploy 20 service instances. Two typical values of
limitation are applied. The first one is 215, with 20 ∗ 215 = 4300,
which means we can cover at most 4300 users. The second one is
300 which is a loose limitation. The result is illustrated in Figure 5.8.
The local search (with single swap) has no much improvement over
the greedy algorithm under this setting. A tight limitation (e.g., 200)
will affect the performance of coverage; on the other hand loosen
the limitation a little bit, the performance will be unaffected by this
limitation (close to the result of no limitation).

Since we cut the edges with a weight less than the threshold, the
average cost of the covered users is less than that of the threshold.
So the threshold to some extent is related to the average cost of the
users. To this end, we compared the average cost of users by the
instances we selected using the greedy algorithm for the max k-cover
problem to the cost by instances we selected using the algorithms
for the k-median problem. We use the result generated by the greedy
init + single swap algorithm of the k-median model as a baseline.
The result is illustrated in Figure 5.9. During the experiment we
changed k, the number of instances to choose, and accordingly we
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set the total number of users to 200 ∗ k. We pick up two typical
values of limitation and threshold. On setting the limitation we use
a tight limitation of 200 and a loose one of 300 as done previously.
As for the threshold, from previous experiment we get the average
cost of above 0.1 using greedy init + single swap algorithm. So
we use 0.15 as the threshold to ensure the cost of the covered users
is below 0.15. We note using the threshold of 0.5 can cover most
users in max k-cover model. So we employ these two values in the
experiment. The result shows a lower threshold would be better than
a higher one. Although this limitation decreases the performance,
the resulting model is more realistic.

5.6 Discussion

The main contribution of this work is to model the cloud service de-
ployment problem instead of proposing new algorithm. Therefore,
in this work we use quite simple but shown to be effective algorithms
to solve the proposed model. We choose greedy algorithm and local
search algorithm because greedy algorithm is proven to be one of
the best polynomial time algorithms for the set cover problem [76],
and local search provides the current best known bound for approx-
imating k-median problem [40]. Some other heuristic algorithms
to solve optimization problems can also apply but that is not our
contribution.

In this work, we collect a dense distance matrix in a controlled
environment. However, in real cloud environment, the distance
matrix is sparse with many missing values since users may not
visit all data centers in advance. Therefore we use the missing
value prediction technique proposed by Ma et al. [131] to recover
the dense matrix as collected in this work. Other missing value
prediction techniques can also be applied as long as it could recover
the distance matrix with full connection.
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5.7 Summary

In this chapter, we highlight the problem of hosting the cloud
services. Our work consists two parts. First we propose a framework
to address the new features of cloud. In the cloud we can get
all possible connection information on potential locations that the
service instances could be deployed. The second work is that we
formulate the redeployment of service instances as k-median and
max k-cover problems. By doing so, they can be solved by fast
approximate algorithms.

We employ a large data set collected via real-world measurement
to evaluate the algorithms. The experimental results show our
algorithms work well on this problem. The data set and the source
codes for the experiment are public released.

2 End of chapter.



Chapter 6

Deployment of Multiple Cloud
Services

Chapter Outline

In cloud computing, multiple services tend to cooperate
with each other to accomplish complicated tasks. De-
ploying these services should take the interactions among
different services into consideration. We model and solve
the multi-services co-deployment problem in this chapter.
The key points of this chapter are as followings:

• Introduces the framework of cloud-based multi-
services and the data processing procedure.

• Model cloud-based multi-services co-deployment
problem.

• Evaluate the proposed model on real-world dataset;
Public release the dataset and simulation code for
repeatable experiments.

130
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6.1 Background and Motivation

We have witnessed the rapid growing of cloud-based services. The
tendency of cloud-based services is to deliver computation, soft-
ware, and data access as services located in data centers distributed
over the world [39, 155, 182]. Typically, cloud provides three
layers of services namely infrastructure as a service, platform as a
service and software as a service (i.e., IaaS, PaaS and SaaS). The
cloud-based services are generally deployed on virtual machines
(VMs) in the cloud data centers (e.g., Amazon EC2) [186]. Since
there are usually a large number of virtual machines in a cloud,
making optimal deployment of cloud-based services to suitable
virtual machines is an important research problem.

To provide good service performance for users, auto scaling and
elastic load balance are widely studied [4, 13]. Currently, different
cloud services are typically deployed independently by their own
providers. Let’s take Facebook and Google as examples. Facebook
provides social network service in its own cloud; Google also pro-
vides email services and document services in its own cloud. These
companies have their own users. They make optimal deployment
of their services independently. Our previous work [110], which is
shown in Chapter 5, proposes a redeployment mechanism to make
optimal deployment for such kind of independent cloud services,
considering the distribution of users and workload of the servers.

However, in reality, different cloud-based services may cooperate
with each other to complete complicated tasks. For example, when
watching a video on YouTube, you can click the share button to
share it to Facebook or Twitter by invoking the services provided by
Facebook or Twitter; when editing a file on Google Doc you can call
Gmail service to shard the document with your colleagues by email;
when purchasing commodities on Taobao1, you can call Alipay2

1http://www.taobao.com
2http://www.alipay.com
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service to pay the money (both Taobao and Alipay are affiliated
entities of Alibaba Group). The number of various kinds of cloud-
based services increasing, whereas the giant cloud providers in the
market are not so many, thus multiple services deployed by the same
provider cooperate together to fulfill user requests becomes even
more common.

Compared with making optimal deployment for a single service,
making optimal deployment for multiple correlated services is a
more challenging research problem. The situation becomes very
complicated when there are tons of services and their deployments
affect each other. We could not simply treat the request from other
services as the same as those from users since the service VMs of
other services are under deployment at the same time and could be
migrated to other places. Therefore it is critical to make a global
decision for deploying multiple services together, especially for
companies (e.g., Google and Alibaba) which host many services or
for companies that would like to cooperate with each other. We call
this the co-deployment problem of cloud-based services.

This chapter points out the new research problem of multi-
services co-deployment in cloud computing and provides compre-
hensive investigations. For ease of discussion, we assume the
cloud-based services are deployed on virtual machines. Replacing
VMs with physical servers does not affect our model. We model
the multi-services co-deployment problem formally as an integer
programming problem which minimizes the latency of user requests.
To evaluate the effectiveness of our proposed multi-services co-
deployment model, large-scale real-world experiments are conduct-
ed, involving 307 distributed computers in about 40 countries,
and 1881 real-world Internet-based services in about 60 countries.
The comprehensive experimental results show that our proposed
latency-aware co-deployment mechanism can provide much better
performance than traditional independent deployment techniques.
To make our experiments reproducible, we publicly release [21] our
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Figure 6.1: The framework of cloud-based multi-services
(The two user icons in the figure actually represent the same user u.)

reusable research dataset, which includes about 577,000 accesses
of Internet-based services and 94,000 pings of computers over the
world as well as our source codes for experiment.

6.2 Framework of Cloud-based Multi-services

Figure 6.1 shows the general framework of cloud-based multi-
services. As shown in the figure, multiple services (e.g., S1 and S2)
are to be deployed in different clouds. Suppose S1 (e.g., Google Doc
service) and S2 (e.g., Gmail service) are correlated services (i.e., one
request of S1 would involve S2 and vice versa). There are three data
centers. The network distances between these data centers are shown
in the figure (the unit of network distance is second). Among these
data centers, C2 (e.g., Amazon EC2) allows public access while C1

and C3 are private clouds (e.g., provided by Google Doc and Gmail,
respectively). In this example, S1 can be deployed in C1 and C2

while S2 can be deployed in C2 and C3.
Network distances between users and data centers are marked in
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Model 6.1 Single Cloud-based Service Deployment Model

minimize
∑
i∈U
j∈C

ridijxij

subject to: ∑
j∈C

xij = 1, ∀i ∈ U, (6.1)

xij ≤ yj, ∀i ∈ U,∀j ∈ C, (6.2)∑
j∈C

yj ≤ k, (6.3)

xij ∈ {0, 1}, ∀i ∈ U, j ∈ C,
yj ∈ {0, 1}, ∀j ∈ C.

the figure. Firstly, we apply the traditional independent deployment
technologies for each service, where the requests from end users and
these from other service VMs are not distinguished. It is not hard
to see that C1 and C3 would be chosen separately for S1 and S2.
This deployment makes the average latency of requests from both
users and other services to be 1s. If we deploy S1 (or S2) in C2, the
average network distance of S1 (or S2) would increase to 1.5s. The
deployment decision seems optimal for both S1 and S2 when making
independent deployment. However, if the providers of S1 and S2

cooperate with each other to seek a better deployment solution (e.g.,
development teams of Google Doc and Gmail try to making co-
deployment of these two services together, since there are a lot of
invocations between these services and these two teams belong to
the same company), the objective becomes to reduce the overall
request latency for the users of both services instead of independent
services.

For example, a request of S2 (S1 similarly) is actually a calling
sequence user→ S2 → S1. To finish this sequence, the latency 2s
consists two parts, namely 1s from user to service VM of S1 in C1
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and 1s from service VM of S1 in C1 to service VM of S2 in C3.
If the deployment problem would be considered globally, deploying
both services in C2 would be a better choice. Therefore the overall
request latency of the calling sequence would be 1.5s rather than 2s.

6.3 Independent Deployment of Single Service

First we consider a simple case of deploying a single cloud-based
service. Suppose a service is to be deployed on k VMs with that we
have already obtained the distances between users and service VMs.
We apply the long existing k-median model [130] in the integer
programming formulation as Model 6.1.

In Model 6.1, U and C are the sets of users and potential
service VMs. ri is the count of requests from user i. dij is the
network distance between user i and j-th candidate service VM. xij
and yj are decision variables. yj indicates whether service VM j

is chosen or not to deploy the service. xij indicates whether user i
would request j-th service VM. This model aims at selecting a set
of service VMs to deploy service (yj = 1 if selected). User i
could connect to the closest available service VM (xij = 1 if
connected). The objective function is to minimize the total distance
of all requests. Constraint 6.1 ensures one user would connect to one
service VM to fulfill the requests. Constraint 6.2 ensures requests
of the users would only be processed on the selected service VM.
Constraint 6.3 guarantees at most k service VMs are chosen.

The model is in integer programming formulation. We can
apply mature techniques to solve the problem very efficiently with
an acceptable approximation of the optimal solution. Actually
more constraints could be added (e.g., model the computing power
decreasing of servers with number of connections). Whereas, to
simplify the discussion in this section as a starting point, we use
the basic model.
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Table 6.1: Alphabet of the multiple cloud-based services co-deployment model

Notation Descriptions

U Set of users

m Number of services

Ch Candidate VMs set of service h

kh Number of VMs service h could deploy

rhi Number of requests for service h from user i

dhij Distance between user i and j-th VM of service h

riqs
Number of times that service q is involved in the

requests for service s from user i

dpqrs
Distance between p-th VM of service q and r-th

VM of service s

xhij
(Indicator variable) whether user i would request j-th VM

for the service h

yipqrs

(Indicator variable) for user i whether r-th VM of service

s is chosen to respond the requests from p-th VM

of service q

zhj (Indicator variable) whether j-th VM of service h is chosen

6.4 Co-deployment of Multi-services

After introducing the single cloud-based service deployment, we
turn to the more complicated problem of deploying multiple ser-
vices. We extend the model of deploying a single service. An
integer programming model is proposed and heuristic approach is
provided to solve the problem. The notations in the model are given
in Table 6.1.
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Model 6.2 Cloud-based Multi-services Co-deployment Model

minimize
∑
i∈U

1≤h≤m
j∈Ch

rhidhijxhij +
∑
i∈U

1≤q,s≤m,q 6=s
p∈Cq ,r∈Cs

riqsdpqrsyipqrs

subject to: ∑
j∈Ch

xhij = sign(rhi), 1 ≤ h ≤ m,∀i ∈ U, (6.4)

xhij ≤ zhj, 1 ≤ h ≤ m,∀j ∈ Ch, (6.5)
∀i ∈ U,∑

j∈Ck

zhj ≤ kh, 1 ≤ h ≤ m, (6.6)∑
1≤s≤m
s 6=h
r∈Cs

yijhrs ≤ xhij, 1 ≤ h ≤ m,∀j ∈ Ch, (6.7)

∀i ∈ U,
yipqrs ≤ zrs, 1 ≤ q, s ≤ m, q 6= s, (6.8)

∀p ∈ Cq,∀r ∈ Cs,
∀i ∈ U,∑

p∈Cq

r∈Cs

yipqrs = sign(riqs), 1 ≤ q, s ≤ m, q 6= s, (6.9)

∀i ∈ U,
xhij ∈ {0, 1}, 1 ≤ h ≤ m, j ≤ Ch,

∀i ∈ U,
yipqrs ∈ {0, 1}, 1 ≤ q, s ≤ m, q 6= s,

∀p ∈ Cq,∀r ∈ Cs,
zhj ∈ {0, 1}, 1 ≤ h ≤ m,∀j ∈ Ch.

6.4.1 Multiple Cloud-based Services Co-deployment Model

As we have introduced the motivation of deploying multiple services
simultaneously, a model is designed. Model 6.2 optimizes the
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Algorithm 6.1 Iterative sequential co-deployment algorithm
1: tempS ← φ, S ← φ
2: temp←MAX, tempmin←MAX,min←MAX
3: for all service h do
4: Select a set Sh of kh service VMs randomly among the candidate set Ch
5: tempS ← tempS + Sh
6: end for
7: for i = 1→ n do
8: tempmin← Evaluate the solution tempS
9: repeat

10: temp← tempmin
11: for all service h do
12: Select a set S′h of kh service VMs according to Model 6.1 with decided

tempS
13: tempS ← tempS − Sh + S′h
14: end for
15: tempmin← Evaluate the solution tempS
16: if tempmin < min then
17: min← tempmin
18: S ← tempS
19: end if
20: until |tempmin− temp| ≤ ε
21: Disturb the solution set tempS
22: end for
23: return S

latencies of both the requests from users and the cross-services
requests.

Model 6.2 decides the co-deployment of service VMs in a
candidate set for all services (zhj = 1 if the VM is selected for
Service h). User i could connect to the closest available service VM
for service h (xhij = 1 if connected). The objective function aims
at minimizing the total distance of all requests (including requests
from all users and other cooperative services).

The Constraints 6.4 to 6.6 are similar to those in single cloud-
based service deployment model. The function sign(x) in Equa-
tion 6.4 returns 1 for x > 0 and 0 for x = 0. Equation 6.4 constrains
user i would connect to one service VM to fulfill the requests if
the user has a request of service h. Inequality 6.5 ensures the
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requests of the users would only be processed on the selected service
VM. Constraint 6.6 ensures at most kh service VMs are chosen for
service h. The Constraints 6.7 to 6.9 are introduced for cross-service
requests. Inequality 6.7 means for user i the cross-service requests
from service h to s should be initiated from the j-th VM of service h,
in which j-th service VM is chosen to serve user i for requests of
service h. Inequality 6.8 constrains the cross-service requests could
only be sent to selected service VMs. Constraint 6.9 ensures one
link would be set if and only if there are cross-service requests.

6.4.2 Iterative Sequential Co-deployment Algorithm

We have acquired a co-deployment model in Section 6.4.1, whereas,
there are already too many decision variables. It is infeasible to
apply general methods to obtain an approximate solution of the
model. Therefore we take the special properties of this problem and
get a heuristic approach. Algorithm 6.1 shows the approach.

Algorithm 6.1 first generates a random deployment (Line 3 to 6)
as there is no information about where to deploy. After deciding a
temporary deployment, the algorithm tries to sequentially improve
the deployment of the services one by one (Line 11 to 14). It treats
the requests from other services the same as those from the users in
Line 12. By iteratively doing the improvement procedure in Line 9
to 20, the deployment of all services would converge. The best
deployment of the iteration does not necessary appear at last, so
we record the best ever deployment in Line 16 to 19. Since the
iterative sub-procedure would fall into a local minimum, we disturb
the solution (usually change one or two chosen service VMs) and
run n loops to find a good enough co-deployment.

It is worth mentioning that this iterative computing algorithm is
different from doing unsupervised single service deployment. The
goal of this algorithm is to acquire a feasible suboptimal solution for
Model 6.2. It is true that if we do not participate in the deploying
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schedule of all the services, after some time these services would
also evolve to an overall balanced suboptimal deployment. We call
this a natural evolution approach. There are several disadvantage of
natural evolution approach compared to our algorithm. We list three
of them.

1. For the natural evolution approach, we have to wait for quite a
long time until the deployment performing well globally since
the redeployment of services would not be done frequently. On
contrary, our algorithm can compute the result in a short time.

2. The natural evolution approach would incur many real migra-
tions of service VMs which costs a lot. The migration of
one service could cause the migrations of some other services
and a chain reaction continues, but the order is random and
hard to predict. Our algorithm exploits the changes in a more
systematic way and does not trigger any real migrations.

3. Last but the most important reason that our algorithm outper-
forms the natural evolution approach is we are not necessary
to fall into local optimum. We disturb the result in Line 21
and repeat our iterative algorithm to jump out of the local
minimum, while the natural evolution approach has no choice
but to be stuck in the local optimum.

6.5 Experiment and Discussion

We first collect a large real-world latency data set. Based on the data
set we conduct the experiment to evaluate methods of deploying
multiple cloud-based services. We compare our algorithm to the
independent deployment method. The independent deployment
method deploys the service VMs randomly at the beginning. After
the logs have been collected, all services redeploy the VMs applying
single service deployment model without differentiating requests
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from users and from other services. Ilog Cplex 9.0 [17] is applied
to give a good enough approximate solution of the integer program-
ming problems (Model 6.1). Both the dataset and the related source
codes are public released on our website [21].

6.5.1 Latency Data Collection

We use a similar assumption as in our previous work [110] described
in Chapter 5. Generally, latency of a service request (the request
either from user or another service) contains three parts: the Internet
delay between the request sponsor and the gateway of cloud data
center, the Intranet delay inside the cloud, and the computing time
on the service VM. While inside a data center, usually gigabyte
switches are used, the Intranet delay can be ignored. Moreover,
assuming two service VMs in the same data center have the same
computational capability. Thus their processing time of a service can
be viewed as the same. Therefore, the dominant part of the latency
is the Internet delay. Under this assumption, there is no difference
between two VMs in the same data center. We use distance between
a user u and a data center C to denote the latency between u and
any VM v in C. Similarly, distance between a pair of data centers
Ci and Cj represents the latency between any pair of VMs vi and vj
deployed in Ci and Cj separately.

Since the service VMs are running in the cloud, the service
providers can collect the latency data when fulfilling user requests.
The calling sequences of services are recorded as well. One log
entry contains the user ID, the service ID it requests, a sequence of
service IDs involved and a sequence of latencies of every service
requests.

For any user u, if u has ever requested a service VM v in data
center C, the recorded latency between (u, v) is used to represent
the distance between u and C. When more than one VM in C is
requested by u, we take the average latency. Distance between two
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pairs of data centers is retrieved by the same way. If there exists a
latency record from a service VM vi in data center Ci to vj in Cj,
this value is taken as the distance between Ci and Cj. If there is no
historical information about a specific distance, we could use similar
user/data center to predict the missing distance value (applying the
method described in the work [131]).

We use again the example in Figure 6.1 to illustrate this. The
user u requests the VM v1 followed by the VM v1 requests the
VM v2. The calling sequence is recorded together with the latency
between the pair (u, v1) and (v1, v2). These two values are regarded
as distances between pair (u,C1) and (C1, C2).

After this period of data processing, we obtain two distance ma-
trices. One matrix records the distances between every (user, data
center) pair. Another matrix records the distances between every
pair of data centers.

6.5.2 Dataset Description

To obtain real-world response time values of diverse users and
service VMs, we implement a Crawler using Java. Employing our
Crawler, we get the addresses of 1,881 openly-accessible services.
We deploy shell script codes to 307 distributed computers of Planet-
Lab, which is a distributed test-bed with hundreds of computers all
over the world. During the experiment, each PlanetLab computer
pings all the Internet services as well as all the other PlanetLab
computers once and records the round trip time (RTT). The ping
operations are done simultaneously in a randomized way to avoid
overflow on one computer. By this real-world evaluation, we obtain
two matrices and public release them [21]. One is a 307 × 1881
matrix containing RTT values between PlanetLab computers and
web services (P2W Matrix). The other one is a 307×307 matrix with
RTT values between every pair of PlanetLab computers inside (P2P
Matrix). These two matrices are used as the two matrices described
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Table 6.2: Dataset statistics (unit: ms)

Statistics P2W Matrix P2P Matrix

minimum 0.01 0.08

25th percentile 53.69 58.58

median 118.14 133.76

75th percentile 176.00 188.53

maximum 1604.02 5704.04

average 129.41 138.38

Table 6.3: Parameters used in randomized log generation

Notation Descriptions Default

nh Number of log entries of service h 1880

ρh Ratio of users use service h to total users 0.2

l
Number of services involved in one service

request
5

in the previous section. All the service VMs are represented by the
containing data center in the experiment.

6.5.3 Experiment Parameters

The experiment is conducted on the data set we obtained (whose
statistics is shown in Table 6.2) with randomly generated user
logs. The iterative sequential algorithm for solving Model 6.2 is
evaluated. If it is not specially explained the parameters of the model
in Table 6.1 are set to default values. By the default setting, there
are 1881 users, 10 services. Every service would deploy 10 service
VMs among a candidate set in 100 data centers. A user of service s
would have 5 request logs. One request of a service would involve
on average 5 requests of other services. The parameters without
default value riqs together with parameter rhi depend on user logs.
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Figure 6.2: Convergence of sequential procedure
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Figure 6.3: Number of disturbs

We generate user logs randomly. Table 6.3 states several parameters
related to the randomized log generation.

6.5.4 Algorithm Specifics

Convergence of Iterative Sequential Procedure

There is a sequential procedure in Algorithm 6.1 (Line 11 to 14) that
does the service deployment one by one. As shown in Figure 6.2,
the procedure would soon converge after 5 iterations. So it is quite
safe to limit the iteration number and make the algorithm run faster.
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Figure 6.4: Number of services

Number of Disturbs

To avoid falling into a bad local minimum, we disturb the result and
run several loops to get a better result in Algorithm 6.1. Figure 6.3
shows the effect of adding disturbs. The latency value of disturb
0 is the average latency of random deployment. We could see
as the figure shows the biggest improvement is made on the first
iteration. The disturbing would let the algorithm jump out of the
local minimum. The result of the first several iterations is good
enough that less further improvements are made.

6.5.5 Number of Services

We change the total number of services and conduct the experiment.
The result is shown in Figure 6.4. We can see our algorithm has the
improvement of 10% to 20%. Since we set the number of services
involved in one request to be the default value, the average latency
of one request does not vary a lot. The variations of two curves are
caused by the random generation of the candidate set of service VMs
of different services in different service number setting.

An observation is that the improvement of our algorithm de-
creases for big service numbers. It is because with the growing
number of services there are more service VMs selected. Therefore
more information is known when deploying one service. Every
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Figure 6.5: Set size of candidate VMs
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Figure 6.6: Number of service VMs to deploy

service could choose overall better service VMs for many users and
other service VMs independently. Thus, the improvement of our
algorithm decreases. While it is more common situation that there
are not many services, our algorithm is effective.

6.5.6 Number of Service VMs

Size of Candidate Set of Service VMs

We set different size of candidate service VM set. The result can
be found in Figure 6.5. The decreasing tendency of the curve is not
hard to understand. Since there are more potential service VMs to
be chosen from the result should be better. The abnormal increasing
on set size 170 is caused by randomized initial deployment phase.
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Figure 6.7: Number of service users

It is worth mentioning that our algorithm has greater improvement
with bigger set size. The reason is with more candidates to be
chosen from, our algorithm could do a much better decision than
considering the deployment independently.

Number of Service VMs to Deploy

Figure 6.6 is generated by modifying the number of total service
VMs of every service. We can see our algorithm outperforms
the independent deployment method by at most 25 percentages.
Especially deploying a smaller number of VMs, we can make
a much better decision. If we can deploy many service VMs,
independently decision could find several outstanding VMs that
perform well. Therefore in these cases our algorithm does not have
many advantages.

6.5.7 Services Logs

We tried different log generation parameters and see the behavior of
our algorithm under different use cases of the services.
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Figure 6.8: Average call length
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Figure 6.9: Average usage

Number of Service Users

In Figure 6.7 we change the number of service users. Since we have
totally 1881 sample users we change the ratio of users to use one
service. For example 10% means we have logs of 188 users that
use a specific service. The result shows that due the randomization
property the performance of independent deployment varies a lot,
while our algorithm is quite stable under all size of users. Moreover,
our algorithm reduces the average latency up to 30%.

Average Call Length of Service

We define the call length as the number of service requests involved
in one user task. For example, a call length of 5 means a user
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request of a specific service s would involve 4 consequent requests
of other services from the VM of service s. As shown in Figure 6.8,
our algorithm outperforms the independent deployment method
especially when the service call length is large. It can also be found
that the increasing curve of our algorithm is more stable.

Number of Logs

We modify the number of total logs on randomized generation. The
result is shown in Figure 6.9. Average usage of a user means the
average number of a user requesting a specific service. We can ex-
pect the more records of users the more intelligent we can deploy the
service. As we can see in the figure, the average latency decreases
with more user logs. An observation is that the gap between our
algorithm and independent deployment method becomes narrower
with the growing number of the user logs. This could be explained
by that there are numerous user logs providing enough information
even for deploying service independently. We can see the tendency
of two curves. Our algorithm converges when there are more than 10
average usages, while independent deployment method converges
after 14. Therefore our algorithm could do a better deployment when
the number of logs is insufficient.

6.6 Summary

In this chapter, we investigate the latency-aware cloud-based multi-
ple services co-deployment problem. Motivating examples are given
to illustrate the problem. We offer the method to show what and how
the user logs could be collected. The co-deployment problem is ab-
stracted in a general framework. Integer programming formulation
is employed to model the problem and a new heuristic algorithm is
given to obtain an approximate solution. Extensive experiments are
conducted on hundreds of computers over the world. The dataset
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and the source codes of the experiment are public released. The
experimental results show the effectiveness of our model.

2 End of chapter.



Chapter 7

Conclusion and Future Work

Chapter Outline

In this chapter, we give a brief conclusion of this thesis
and summarize our contributions. We also provide several
interesting future directions.

7.1 Conclusion

Performance is a critical criterion for mobile applications and cloud
services. Users are very intolerant to poor performance in mobile
apps (e.g., laggy, slow responses). However, due to a lack of handy
tools and clear guidelines, developers struggle to tune the perfor-
mance. In this thesis, we discuss performance-tuning mechanisms
for both mobile applications and cloud services. Open-source tools
and optimization guides are offered. Real-world performance issues
are found by our tools.

More specifically, in Chapters 3 and 4 we discuss tuning the
performance of mobile apps. In Chapters 5 and 6, we investigate
mechanisms for tuning the performance of cloud services. We first
study mechanisms for diagnosing the performance of mobile apps
in Chapter 3. In Chapter 4, we discuss the UI design that could

151
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make the users more tolerant of long latency. Finally, cloud service
deployment, which is a critical aspect of performance, is studied.
We study single cloud service deployment in Chapter 5 and multiple
services co-deployment in Chapter 6.

In Chapter 3, we introduce the design and implementation of
DiagDroid, a handy, open-source tool that allows developers to
diagnose the performance of mobile apps. It is the first work that
can be easily applied to Android mobile devices with different OS
versions. We first categorize the asynchronous tasks of Android
apps. Then we propose the Android framework instrumentation
method for profiling the asynchronous tasks. Then, the suspicious
asynchronous tasks are identified according to some pre-defined
criteria. The suspicious tasks together with their related piece of
source codes are then reported to the developers which help them
a lot on performance diagnosis. We have successfully applied our
tool to real-world Android apps and found 27 previously unknown
performance issues. The whole diagnosis procedure can be done
by ourselves, who are not familiar with the apps being tested. This
result is convincing that our tool can be useful to developers.

In Chapter 4, we discuss the problem of responsive UI design
in Android apps. The need to detect poor-responsive operations
is confirmed by our user survey. The survey results show that
users’ patience is correlated with UI responsiveness. We design and
implement a tool called Pretect that can detect poor-responsive
operations. The tool is shown to work correctly on synthetic bench-
marks and on open source apps. We further verify Pretect with
real-world case studies. The results demonstrate the effectiveness of
Pretect.

In Chapter 5, we propose a model for optimizing cloud service
redeployment. The users and cloud VM instances communication
costs are a critical component of operation delays in mobile app. We
first model and extract the major part of such communication delays.
Then we propose methods for measuring and predicting such delays.
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We propose two optimization problems for reducing the total delay.
Several algorithms are put forth to solve the problems. To verify
our idea and the usefulness of the algorithms, we collect a dataset
of communication delays in the real-world and conduct simulation
experiments. The results show the effectiveness of our proposed
methods. Our collected data and simulation source codes have been
public released. Other researchers could repeat our results or use our
data for further research.

In Chapter 6, we extend the cloud service deployment problem
discussed in the previous chapter to the multiple cooperative cloud
services deployment case. In this work, we collect a dataset of not
only the communication delays between users and VM instances but
also communication delays between VM instances. Then, we pro-
pose an optimization model for service deployment that considers
both user-service and service-service communication delays. We
also collect real-world data and conduct simulations to show the
effectiveness of our methods. Again, the data and the source codes
for the simulation have been public released.

In summary, in this thesis we enhance the user experienced
performance of mobile apps and cloud services by reducing latency.
We propose comprehensive performance tuning mechanisms for
both mobile apps and cloud services. We implement the proposed
mechanisms. The data and our tools have been public released
online to make our results repeatable, and more importantly, to make
our mechanism available to developers.

7.2 Future work

Delays in cloud-based mobile apps can come from three sources:
mobile-side delays, cloud-side delays and communication delays.
The performance can be tuned in all three parts. Although we have
made a number of significant achievements in this thesis, there are
still many interesting research problems for future studies.
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7.2.1 User Experience Enhancement of Mobile Applicaions

Users interact directly with their mobile apps. Therefore, optimiz-
ing the performance of mobile apps is critical to improving user
experience. We propose two promising directions for research on
user experience enhancement, separately, preloading/precomputing
techniques, and delay-tolerant UI design.

Selective Loading, Computing in Advance

Preloading large size resources, and precomputing long-term com-
putations are accepted as effective methods for reducing laten-
cy. The idea is to use the mobile devices’ hardware resources
during idle circles to enhance performance. Unlike PCs, mobile
devices have limited energy; therefore, unnecessary preloading and
precomputing should not be conducted to avoid wasting energy.
Predicting and judging more precisely whether the pre-processing
of the resources/computation would be beneficial is the key to
saving energy. Our work, which detects the long-term operations
during testing, provides some help for this problem. Identifying
the frequent use patterns of these long-term operations may help
users and developers to select appropriate resources/computations
for preloading/precomputing.

Delay Tolerant UI Design

Our study has shown that without feedback, users tend to become
impatient with long-term operations. The users may doubt the
sensitivity of the touch screen or believe that the UI has frozen.
In our work, we focus on offering yes/no feedback to user input.
Further research could examine what kind of feedback is better
for users. For example, Airbnb [23] shows fancy pictures when
loading information. However, no study has shown that this design
outperforms a traditional loading bar design and developers may
doubt whether it is really a better design. A survey similar to the one
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in this thesis could be conducted to verify whether new UI designs
outperform established ones in terms of user satisfaction.

7.2.2 Cloud Service Processing Time Optimization

With the powerful computation resource, processing time of cloud
services can be reduced a lot. This work focuses on optimizing
the deployment of computing instance in clouds. We try to make
the instance as close to users as possible. Another direction for
optimizing instance deployment is to move the instances to where
the data are stored. The instances that store the data in the cloud
could be different from the instances that perform computing. This
would create delays inside the cloud for retrieving data. The
topology of the cloud could be optimized by reducing the distance
between the data servers and computation servers.

Another direction is considering application-specific optimiza-
tion. This work focuses on general applications, but different appli-
cations have distinct characteristics. For example, social network-
ing applications may require a lot of inter-server communications
inside a cloud for obtaining massive amounts of information (e.g.,
presenting updates from large groups of friends), whereas, servers
for different news applications store similar contents. The cloud
server characteristics of different applications could be taken into
consideration for further optimization.

7.2.3 Cloud-client Communication Cost Reduction

In addition to tuning the performance on both mobile apps and cloud
services, the communication between the two could be optimized
to reduce the delays. Our proposed mechanism is one method for
reducing the cost per communication, further research could is to
reduce the number of communications.

The communication complexity between the two has already
been studied in fields such as information theory, but the theoretical
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bound has not been achieved in practice. Applying the theorem suc-
cessfully to real-world cloud-mobile communication is an interest-
ing and practical research problem. What kind of communications
can be merged to reduce the number of communications and how to
do this are interesting problems. The extent to which the number of
communications can approach the bound also deserves further study.

2 End of chapter.
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