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Abstract of thesis entitled:
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ing

Submitted by WANG, Yue

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in January 2021

Social media platforms, such as microblogging services and

online forums, are becoming increasingly popular, profoundly

revolutionizing how people share information and voice opin-

ions. Due to the wide availability of mobile devices and easy

connectivity, millions of user-generated messages are produced

on a daily basis, leading us to the information explosion era. As

a result, the current decade has witnessed a pressing demand

for automatically digesting the large volume of social media

data and discovering its crucial content. To this end, keyphrase

prediction, which aims to summarize a social media post into

a set of succinct keywords (or hashtags), receives growing

attention in the social media research community.

Previous progress made in this field has mainly focused on

either extraction-based or classification-based approaches, which

are limited in that they cannot predict keyphrases absent in the

source text or the predefined candidate list. To overcome this

limitation, in this thesis, we study neural keyphrase generation

methods that enable new keyphrases to be created for social

media posts. In contrast to early methods relying on hand-
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crafted features, we take advantage of recent advances in deep

learning and employ neural network-based frameworks that

allow effective representation learning in a data-driven manner.

More importantly, to alleviate the data sparsity issue widely

exhibited in unstructured social media posts, we propose to

enrich contexts via either implicitly exploiting the post-level

latent topics or explicitly leveraging the user replies or the

accompanying images.

First, we propose a novel topic-aware sequence generation

model that leverages implicit latent topics to guide the keyphrase

generation. Specifically, we make use of unsupervised topic

models to induce a topic representation and then incorporate

it into a sequence-to-sequence (seq2seq) model for generating

keyphrases. Our topic models are also built with a neural

architecture and allow end-to-end training of both components.

Experimental results on three datasets from Twitter, Weibo,

and StackExchange show that our model outperforms existing

methods in keyphrase prediction, meanwhile generating more

coherent topics.

Second, we explore how to leverage external knowledge for

keyphrase generation. We propose to explicitly exploit user

conversations about the target post to alleviate the data sparsity

issue and design a bi-attention module to better model the inter-

actions between the post and its conversation contexts. Unlike

most prior work using classification models for recommending

keyphrases, our model employs a sequence generation framework

that is able to generate rare and even unseen keyphrases, which

is however not possible for these existing methods. Experiments

on two large-scale datasets from Twitter and Weibo validate the

superiority of our model over traditional methods.
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Third, we focus on predicting keyphrases for cross-media

posts, which additionally contains images to deliver auxiliary in-

formation from authors. Apart from the informal texts, images

in cross-media posts usually cover diverse categories and have a

complex text-image relationship, making it difficult to identify

their core meanings. To cope with this, we propose to exploit

the image wordings (OCR texts and image attributes) to bridge

text-image semantic gap and design a novel Multi-Modality

Multi-head Attention (M3H-Att) to better capture the dense

interactions between them. Moreover, we propose a unified

framework to integrate the outputs of keyphrase classification

and generation and couple their advantages. Experiments on

a dataset of text-image tweets demonstrate the effectiveness of

our model in predicting more precise keyphrases and attending

indicative information from various aspects in both modalities

with our multi-head attention.

Last but not least, to better leverage the visual cues from

multi-modal social media posts, we take a further step to study

how to effectively learn visual and linguistic representations

in a more general setting. For this study, we focus on the

visual dialog task, one of the most challenging vision-language

tasks, and propose a unified vision-dialog Transformer with

BERT (VD-BERT) for it. Our model captures the intricate

interactions between image and dialog within a single-stream

Transformer and achieves the effective fusion of features from the

two modalities via simple visually grounded training. Besides, it

supports both answer ranking and answer generation seamlessly

through the same architecture. Our model achieves effective

vision and language fusion within a unified Transformer encoder

and yields a new state of the art for visual dialog tasks.

iii



In summary, the thesis targets keyphrase generation to facil-

itate a quicker understanding of the target information for users

when navigating the massive amount of noisy social media data.

Extensive experiments on real-world datasets show that by

exploring both implicit and explicit approaches to alleviate data

sparsity in social media posts, our proposed models outperform

state-of-the-art methods in keyphrase prediction with better

accuracy for both text-only and cross-media posts. The last pilot

study in visual dialog also points out an interesting future work

of extending vision-language pretraining to benefit multi-modal

social media understanding, which is becoming increasingly

crucial with the advent of the mobile Internet era.
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論文題目：針對社交媒體理解的神經網絡關鍵詞生成

作者 ：王樾

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

諸如微博服務和在線論壇之類的社交媒體平台正變得越來越流

行，深刻地革新了人們共享信息和發表觀點的方式。由於移動

設備的廣泛可用性以及便捷的連接性，每天都會產生數百萬條

用戶生成的消息，這使我們進入了信息爆炸的時代。於是在當

前十年中，迫切需要能自動化理解大量社交媒體數據並發現其

關鍵內容的技術。為此，關鍵詞預測旨在將社交媒體帖子概括

為幾個簡潔的關鍵字或主題標籤，在最近的社交媒體研究社區

中受到越來越多的關注。

該領域的先前進展主要集中在基於提取的或基於分類的方法

上，它們的局限性在於它們無法預測源文本或預定義的候選列

表中以外的關鍵詞。在本文中，我們研究了基於神經網絡的關

鍵詞生成方法，這些方法可以為社交媒體帖子創建新的關鍵

詞。與依靠手工特徵提取的傳統方法相比，我們利用了深度學

習方面的最新進展並採用了基於神經網絡的框架，從而以數據

驅動的方式來進行有效的特徵表示學習。更重要的是，為了緩

解在非結構化社交媒體帖子中廣泛出現的數據稀疏問題，我們

提出隱含地利用帖子的潛在主題或者顯性利用用戶回复或圖像

來豐富數據內容。

首先，我們提出了一種新穎的主題感知的序列生成模型，該模

v



型利用隱式潛在主題來指導關鍵詞的生成。具體而言，我們採

用非監督主題模型來得到主題表示並且把它傳入到基於序列到

序列（seq2seq）的框架以此來生成關鍵詞。此外，我們的主

題模型也是採用神經網絡框架，能夠與另一模型進行端到端的

共同訓練。在Twitter，微博和StackExchange的三個數據集上

的實驗結果表明，我們的模型在關鍵詞短語預測方面優於現有

方法，並且能夠學習到更連貫的主題。

其次，我們探索如何利用外部知識來幫助關鍵詞生成。我們提

出隱式利用有關目標帖子的用戶對話來緩解數據稀疏性問題，

並設計一種雙向注意來更好地建模該帖子及其對話上下文之間

的交互關係。與大多數使用分類模型來推薦關鍵詞的先前工作

不同，我們採用了序列生成模型使之能夠生成稀有甚至未出現

過的詞，而這對於現有方法而言是不可能的。在Twitter和微

博上的兩個大規模數據集上進行的實驗驗證了我們模型相比與

傳統方法的優越性。

第三，我們關注於為多模態社交媒體帖子生成關鍵詞，這種帖

子額外包含圖片來傳遞作者的輔助信息。除了不正式的文本內

容，多媒體帖子中的圖片通常涵蓋來多樣的種類，並且有著複

雜的圖文關係，這使得很難確定他們的核心含義。為了解決這

個問題，我們提出利用圖片語意特徵（光學識別的字符以及圖

片屬性）彌補圖片與文本的語義差距，並且設計了一種創新的

多模態多頭注意力機制來更好的捕捉圖文之間的密集交互。此

外，我們提出了一個統一框架來整合分類模型和生成模型的輸

出，以此來融合兩種模型的優勢。在Twitter的圖文數據集上

的實驗表明，我們的模型能夠更準確的預測關鍵詞，並且我們

提出的多頭注意力機制能夠捕捉到兩種模態交互中多樣的有效

信息。

最後，為了更好地利用多模式社交媒體帖子中的視覺信息，我

們更進一步研究如何在更廣義的場景中有效學習視覺和語言表

示形式。在本研究中，我們專注於視覺對話任務，這是最具挑
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戰性的視覺語言任務之一，並為此提出了一個帶有BERT的統

一視覺對話Transformer模型（VD-BERT）。我們的模型捕獲

了單流Transformer中圖像和多輪對話之間的複雜交互，並通

過基於圖像的簡單預訓練實現了兩種模態特徵的有效融合。此

外，它通過統一的架構無縫支持答案排名和答案生成。我們的

模型展示了使用統一的Transformer編碼器的強大的視覺和語

言融合能力，並在視覺對話任務上取得最先進的效果。

綜上所述，本文目標是研究關鍵詞生成，以幫助用戶在瀏覽大

量嘈雜的社交媒體數據時更快地了解目標信息。在真實數據集

上進行的大量實驗表明，通過探索隱式和顯式方式來緩解社交

媒體帖子中的數據稀疏性，我們提出的模型在針對純文本或多

模態帖子的關鍵詞預測中的表現優於最新方法，具有更高的準

確性。最後一項針對視覺對話任務的試點研究還指明了一個有

趣的未來工作，即拓展視覺語言預訓練以幫助更好的多模態社

交媒體理解，這隨著移動互聯網時代的到來變得越來越重要。
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Chapter 1

Introduction

1.1 Overview

As social media continues its worldwide expansion, the last

decade has witnessed the revolution of interpersonal communica-

tion, shifting from offline “kitchen table conversations” to public

discussions on online platforms. Among them, microblogging

services and online forums have become an essential outlet for

individuals to voice opinions and exchange information. While

empowering individuals with richer and fresher information,

the flourish of social media also results in millions of posts

generated on a daily basis. According to the current statistics

from Twitter1, there are around 500 million tweets generated per

day. Facing a sheer quantity of texts, language understanding

has become a daunting task for human beings. Under this

circumstance, there exists a pressing need to develop automatic

systems capable of digesting massive social media texts and

figuring out what is essential.

In recent decades, numerous machine learning techniques have

been studied towards social media understanding, which cov-

1https://twitter.com

1
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ers a broad set of real-world applications, such as microblog

search [37, 10], sentiment analysis [34, 146], summarization [177,

23], sarcasm detection [19], user profiling [152, 38], stock price

prediction [17, 108], event extraction [87] and categorization [2],

and so forth. In this thesis, we target understanding social media

by generating keyphrases using deep neural networks. In general,

keyphrases are formed with words or phrases and able to convey

the main idea of the target posts quickly, thereby effectively

helping users when navigating a large volume of noisy social

data. Specifically, in microblogs, users employ hashtags (i.e.,

“#DeepLearning”) prefixed with a “#” to represent their key

topics, which are regarded as keyphrases in this thesis following

the common practice [176, 179]. Keyphrase prediction has been

shown to benefit a wide range of downstream tasks, such as

instant detection of trending events [151], summarizing public

opinions [101], and analyzing social behavior [124].

Despite the substantial efforts made in social media keyphrase

prediction, most progress to date has focused on extracting

phrases from source posts [176, 179] or selecting candidates

from a predefined list [45, 175, 178]. However, social media

keyphrases can often appear in neither the target posts nor the

given candidate list mainly due to two reasons. For one thing,

social media platforms allow large freedom for users to write

whatever keyphrases they like and do not set any restrictions to

let them include the keywords in the posts. For another thing,

due to the wide range and rapid change of social media topics,

a wide variety of keyphrases can be created daily, making it

impossible to be covered by a fixed candidate list. Inspired by

the recent advances in neural language generation, we approach

social media keyphrase prediction with a sequence generation
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framework, enabling new keyphrases to be created out of both

the source post and the candidate list. Specifically, we regard the

keyphrase as a short sequence of words (e.g., “#DeepLearning”

to be “deep learning”) instead of a discrete label like previous

work did. Then we build on a sequence-to-sequence (seq2seq)

framework [139] to generate the keyphrases in a word-by-word

manner. The seq2seq learning has been widely adopted for

improving a wide spectrum of language generation tasks, such

as machine translation [8, 96], text summarization [127], dialog

response generation [80, 164], and question generation [82, 42],

so forth.

Recently, seq2seq models have been also applied to generate

keyphrases for scientific articles [100, 24, 26, 27]. However,

their performance would be compromised when directly applied

to noisy social media data. Unlike conventional formal and

well-edited texts in these previous studies, social media content

suffers from the data sparsity issue and poses a unique hurdle

for precisely identifying its main idea. On the one hand, social

media texts are usually short in length and thus contain limited

features for understanding them. For example, microblogging

services like Twitter and Sina Weibo2 initially restrict the

content length to be less than 140 characters. Although such

constraints might be relieved (e.g., changed to 280 characters in

tweets) through the development, users still exhibit the habits

of posting short messages. For example, the average length of

a tweet is around 28 characters [1], and some studies further

suggest that shorter posts tend to receive more likes, comments,

and sharing. On the other hand, due to the informal and

colloquial nature of user-generated content, social media posts

2https://weibo.com
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usually contain lots of misspelling words, grammatical errors,

abbreviations, emojis, and even slangs. For example, given the

tweet, “Ok no Bunz by choice. But can I atleast get some head?

Lmao”, it is difficult to understand its meaning based on such a

short sentence, which contains not only typos like “Bunz” and

“atleast”, but also the specific social media domain abbreviation

“Lmao” (laughing my ass off).

To address the data sparsity challenge, we explore to enrich

useful features by encoding either implicit contexts like latent

topics (W1) or explicit contexts like user comments (W2) and

accompanying images (W3). In W1, we explore the effects of

latent topics inferred from unsupervised topic models [15, 102] in

aiding keyphrase prediction. Intuitively, the learned topics can

narrow down the search space and serve as auxiliary contexts to

indicate the keyphrases. While latent topics have been shown

to benefit short text classification [174], it is unclear how it can

help keyphrase prediction, which has a much larger vocabulary

space (thousands vs. up to 50 classes in [174]) and the more

complex multi-step decoding process compared to the one-step

classification. Our W1 aims to fill this gap by proposing a topic-

aware keyphrase generation model, which intelligently leverages

topic information to guide keyphrase generation.

In W2 and W3, we resort to explicitly exploiting external knowl-

edge to enhance keyphrase prediction. Social media platforms

like Twitter allow users to form conversations on interests by

retweet with comments or replying to previous messages to voice

their opinions. Table 1.1 shows an example target post and

the corresponding conversation initiated by it. We can hardly

identify its keyphrase as Super Bowl from the target post and

might just know it is a comment for some sports games given
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Target post for hashtag generation

Thank you fox for showing the good sposmanship segment! That’s what

it should always be like. #SuperBowl

Replying messages forming a conversation

[T1] Bet you are happy dancing right about now lol! You are the biggest

Steelers fan I know, so I have been thinking of you tonight.

[T2] Thank you! That’s a huge compliment. They have won a lot this

season. It would have been poetic to end the season that way.

[T3] Yes, just think of all the money you will save, not having to buy all

the SuperBowl champions gear.

Table 1.1: A post and its conversation snippet about “Super Bowl” on

Twitter. “#SuperBowl” is the user tagged keyphrase for the target post.

Words indicative of the keyphrase are in blue and italic type.

such limited information. To deal with this, we leverage the

user conversations to enrich contexts, which has been shown to

benefit the understanding of the original post [23, 81]. As can be

seen from the example, key content words in the conversation are

useful to unveil the reason why it is tagged with “#SuperBowl”,

e.g., “Steelers” in the first reply message is a famous team in a

Super Bowl football game, and even ‘the keyphrase ‘SuperBowl”

directly appears in the third reply message. In W2, we explore

how to make use of the user conversations to better understand

the target post.

Thanks to improved smartphones and the flourish of mobile

Internet, cross-media posts with matching images are becoming

ubiquitous and bring additional difficulties for understanding

them. Traditional keyphrase prediction methods relying only on

the textual information would achieve suboptimal performance

as they neglect the critical clues conveyed from the images.

To illustrate our motivation, we depict two cross-media tweet

examples in Figure 1.1. In the post (a), the text is an



CHAPTER 1. INTRODUCTION 6

Post (a): I was watching all the

bees Honeybee collecting pollen

on the flowers Bouquet #Cats

Post (b): Congrats producer of

the year, non-classical winner -

Williams #Grammys

Figure 1.1: Two multimedia posts from Twitter where texts offer limited

help in identifying their keyphrases while images provide essential clues.

anthropomorphic description and hardly unveils the key content

cats, which can be clearly signaled by the image. As for the post

(b), the keyphrase grammys is directly reflected by the optical

characters in the image. Inspired by these examples, in W3,

we explore how to encode matching images for compensating

the limited contexts exhibited in the texts. Notably, studying

the combined effects of text and image in social media is more

challenging than traditional vision-language tasks like image

captioning or visual question answering (VQA) [6], where the

two modalities often have most semantics shared and their

images mostly are natural scene photos. By contrast, texts and

images in cross-media posts are not necessarily connected in

semantic space and can have a variety of relationships. A recent

finding [142] points out there can be four diverse text-image

semantic relations (depending on whether text is represented

in image and whether image adds to semantics in text) on
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Twitter. Besides, social media images tend to have a more

diverse category apart from photos, e.g, the poster with texts in

post (b). To handle these unique challenges, we propose novel

methods for distilling more useful features from the image and

capture its interaction with texts.

So far, while W1 and W2 focus on the single modality (text-

only), W3 explores keyphrase generation in a more challenging

multi-modal setting, where interactions between text and image

should be effectively captured and exploited. To further investi-

gate how to achieve better vision and language fusion, we focus

on a more general vision-language task visual dialog (W4), where

an agent is asked to answer a series of questions conditioned

on an image and previous dialog turns. By pretraining with

visually grounded self-supervised objectives in the visual dialog

task, self-attention in Transformer [141] can capture the cross-

modality interaction more effectively. Such findings provide a

strong indication that vision-language pretraining would benefit

the cross-media understanding for keyphrase generation in W3,

where its proposed model is also built on a Transformer.

To better illustrate the structure of our thesis, we show the

roadmap of our contributions in Figure 1.2. Our thesis targets

at social media keyphrase generation and proposes to encode

implicit contexts like latent topics [148] and explicit contexts

like user conversations [150] and images [149] to alleviate the

data sparsity in social media. To explore better ways for fusing

multi-modal features, we take a further step to study a more

challenging visual dialog task. We extensively investigate the

effects of vision-language pretraining [147] for vision and dialog

fusion, which points out an interesting future work to adapt such

pretraining back to benefit cross-media understanding.
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1.2 Thesis Contributions

In this thesis, we make contributions to neural keyphrase

generation for social media understanding as follows.

• Encoding Implicit Topics for Keyphrase Genera-

tion [148]

To mitigate the data sparsity in social media posts, we

propose a novel topic-aware keyphrase generation model

that leverages implicit latent topics to enrich useful fea-

tures. Specifically, we propose a sequence-to-sequence

(seq2seq) based framework that considers latent topics

for better keyphrase prediction. Instead of employing

traditional topic models, we exploit a neural topic model

that can be seamlessly integrated into our seq2seq model

for the end-to-end joint training. Experimental results on

three newly constructed datasets from Twitter, Weibo, and

StackExchange show that our model outperforms previous

keyphrase prediction methods while generating more coher-

ent topics.

• Encoding Explicit Conversation for Keyphrase Gen-

eration [150]

In this work, we propose to explicitly exploit user conver-

sations about the target post to better predict keyphrases

for microblog posts. Unlike most prior work that regards

keyphrase to be inseparable and employs classification mod-

els for keyphrase recommendation, we propose a sequence

generation model to generate keyphrase in a word-by-word

manner, enabling rare and even unseen keyphrases to be

created. Moreover, we design a bi-attention module to
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model the interactions between the post and its conver-

sation contexts. Extensive experiments on two datasets

from Twitter and Weibo validate our model’s superiority

over traditional methods with more accurate keyphrase

predictions.

• Cross-Media Keyphrase Prediction: A Unified Frame-

work with Multi-Modality Multi-Head Attention

and Image Wordings [149]

We explore another explicit knowledge from the visual

modality, which is the ubiquitous accompanying images

in cross-media tweets. Due to social media’s informal

style, tweet images often have an exceptionally diverse cat-

egory and have a complicated relationship with the target

texts. To distill indicative signals from the noisy cross-

media posts, we propose to exploit the image wordings

to bridge the text-image semantic gap and design a novel

Multi-Modality Multi-head Attention (M3H-Att) to better

capture the dense interactions between them. Moreover,

we propose a unified framework to leverage the outputs

of keyphrase classification and generation and couple their

advantages. Extensive experiments on a dataset of text-

image tweets demonstrate the effectiveness of our model

in predicting more precise keyphrases and being able to

attend information from various aspects in both modalities

with M3H-Att.

• Vision-Language Pretraining for Visual Dialog [147]

To better leverage the visual cues for understanding multi-

modal social media posts, we take a further step to study

how to effectively learn visual and linguistic representations
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in a more general task visual dialog. In this task, an

agent is asked to answer a series of questions based on

the joint understanding of an image and the dialog history.

We propose a unified vision-dialog Transformer with BERT

(VD-BERT). Our model captures the intricate interactions

between image and dialog and achieves the effective fusion

of features from the two modalities via simple visually

grounded training. Besides, it supports both answer rank-

ing and answer generation seamlessly through the same

architecture. Our model yields a new state of the art in

discriminative settings and promising results in generative

settings for visual dialog tasks.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2

This chapter presents a systematic review of the back-

ground knowledge and related work in neural keyphrase

prediction and social media research. First, we briefly

introduce some basic knowledge of deep neural networks, on

which all the proposed models in the thesis are based. Then

we review existing techniques for keyphrase prediction

tasks, which can be divided into extraction, classification,

and generation methods. Lastly, we review some recent

advances in social media research for both text-only and

multi-modal settings.

• Chapter 3

In this chapter, we present a topic-aware neural keyphrase
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generation model for social media posts. We first define

the keyphrase generation problem and introduce our mo-

tivations in Section 3.1. Then we present the formulation

of our proposed topic-aware keyphrase generation approach

that consists of two components (neural topic model and

keyphrase generation model) in Section 3.2. After that, we

introduce our experiment setup including the collection of

three social media datasets in Section 3.3. We comprehen-

sively analyze the experimental results in Section 3.4 and

conclude this work in Section 3.5.

• Chapter 4

In this chapter, we propose to approach microblog keyphrase

annotation as a sequence generation problem. We first give

an overview of the task in Section 4.1 and introduce our

neural keyphrase generation model for that in Section 3.2.

Then we introduce how to construct the dataset and set up

the experiments in Section 3.3. Lastly, Section 3.4 shows

some empirical results compared to previous methods and

Section 3.5 concludes this work.

• Chapter 5

In this chapter, we propose a unified framework for cross-

media keyphrase prediction. We first briefly introduce

its unique challenges compared to conventional vision-

language tasks and our motivations to address them in

Section 5.1. Then Section 5.2 gives an overview of our

proposed model, which consists of a multi-modality en-

coder to digest features from three modalities, a multi-

modality multi-head attention to capture their complex

interactions, and a unified keyphrase prediction module
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to couple the advantages of keyphrase classification and

generation. After that, we introduce and analyze the

newly-constructed multi-modal tweet dataset together with

experiment setup in Section 5.3. In the end, Section 5.4

shows the experimental results and Section 5.5 concludes

this work.

• Chapter 6

In this chapter, we focus on a more general and challenging

multi-modal task visual dialog. We first introduce the task

and our motivations to improve it in Section 6.1, followed

by a brief review of its related work in Section 6.2. Then

we introduce our VD-BERT model in Section 5.2, which

employs a single-stream vision-dialog Transformer encoder

to encode the image and its multi-turn dialogs and visual

grounded training objectives to encourage their effective

fusion, together with a ranking optimization module to fine-

tune the final predictions. We introduce the experiment

setup in Section 6.4 and show the empirical results in

Section 6.5. Lastly, Section 6.6 concludes this work.

• Chapter 7

The last chapter summarizes the contributions of this thesis

and presents some potential future research directions

about social media keyphrase prediction.

2 End of chapter.



Chapter 2

Background Review

In this chapter, we review the background knowledge and related

work of our research contributions. We first introduce some

basic knowledge of deep neural networks on which our proposed

models are built in Section 2.1. Then we review the related

work of keyphrase prediction in Section 2.2, which can be

categorized into extraction-based methods, classification-based

methods, and generation-based methods. After that, we review

related research for social media understanding with text-only

and multi-modal content in Section 2.3.

2.1 Neural Network Basics

A great number of recent approaches for keyphrase prediction

are based on deep neural network models. These models avoid

the need of feature engineering and allow effective representation

learning via a purely data-driven manner. In this section, we

review some background knowledge for most neural models,

including sequence encoders with building blocks like word

embeddings and Recurrent Neural Networks (RNNs), and the

sequence-to-sequence (seq2seq) models with copy mechanisms

14
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for generation tasks. We also review the recent advances of

the powerful Transformer architecture and its exceptional use

for pretraining. Throughout the thesis, we employ W and b to

respectively denote a trainable projection matrix and a trainable

bias vector in a neural network model.

2.1.1 Neural Sequence Encoders

Given an input sequence, neural sequence encoders aim to

encode the sequential contexts via learning high-dimensional

representations. In recent decades, with the expansion of deep

learning in all kinds of areas, neural networks like RNNs have

been widely adopted as the backbone for modeling a sequence of

inputs. Typically, the encoding procedure consists of two steps:

first, map the discrete input tokens into continuous vectors via

an embedding lookup table; second, RNNs such as LSTMs and

GRUs are employed to derive their contextual representations.

Word Embeddings

Formally, let us define a discrete input sequence as x =

{x1, ..., xn}, where n is the number of tokens and each token

xi is in a vocabulary V . Word embedding aims to map each

xi into a distributed vector ei ∈ Rde with a lookup table

E ∈ Rde×|V |, where de denotes the embedding size. After that,

these embeddings will be integrated into other neural modules

and jointly trained. In general, word embedding is deemed as

the foundation of the successful use of deep learning in NLP.

Apart from training the embedding matrix E from scratch, one

can also load pretrained ones like word2vec [104] and GloVe [114]

as a better start point. These embeddings are trained from
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Figure 2.1: Illustration of RNNs. Figure is from [32].

some large corpus with self-supervised objectives and capture

basic task-agnostic language representations. To further deal

with the out-of-vocabulary problem when handling big corpus,

character-level or sub-word representations are widely employed

in many NLP applications, such as CharCNN [67], FastText [16]

and Byte-Pair Encoding [128].

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [122] have been extensively

adopted as the backbone for encoding sequences due to the

unique recurrent structure. Specifically, as shown in Figure 2.1,

such a unique recurrent module can be unrolled along multiple

time steps, thereby enabling RNNs to encode arbitrarily long

sequences. Moreover, RNNs employ parameter sharing for each

time step and largely reduce the parameter numbers. Formally,

an RNN cell is represented as:

ht = RNN(ht−1,xt; θ), (2.1)

where xt and ht are the embeddings of the input token and

hidden state respectively at time step t, and θ is the shared

parameters for all time steps, which will be learned by back

propagating gradients. We omit the θ for simplicity below.
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Despite its ability to encode arbitrarily long sequences, RNNs

suffer from the long-range dependencies, where gradients propa-

gated over many time steps tend to either vanish or explode [47].

The underlying reason is that training on long-term depen-

dencies will produce exponentially smaller weights (due to the

multiplication of many Jacobians) compared to the short-term

ones. To alleviate such issues, researchers introduce a gating

mechanism to better control the message propagation along

long-term dependencies. Concretely, it dynamically determines

how much of past information will be discarded or kept at each

cell state. Among these methods, LSTMs and GRUs are two

widely adopted RNN variants.

Formally, an LSTM cell employs three gates to update its hidden

state at each time step via:

ut = σ(Wxuxt + Whuht−1 + bu), (2.2)

ft = σ(Wxfxt + Whfht−1 + bf), (2.3)

ot = σ(Wxoxt + Whoht−1 + bo), (2.4)

c′t = tanh(Wxc′xt + Whc′ht−1 + bc′), (2.5)

ct = ft ◦ ct−1 + ut ◦ c′t, (2.6)

ht = oi ◦ tanh(ct), (2.7)

where σ(.) is the sigmoid function and ◦ denotes element-wise

multiplication. ct ∈ Rdh is the current internal cell state with

dimension size to be dh. ut, ft,ot ∈ Rdh are the input, forget, and

output gates to decide how much of information will be added to

the cell state, removed from the cell state, and passed to hidden

states, respectively.

Compared to LSTMs, GRUs simplify the gating mechanism with

only two gates, i.e., reset and update gate, and still achieve

comparable performance. Formally, a GRU cell updates the
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hidden state at each time step via:

rt = σ(Wxrxt + Whrht−1 + br), (2.8)

zt = σ(Wxzxt + Whzht−1 + bz), (2.9)

h̃t = tanh(Wxh̃xt + Whh̃(rt ◦ ht−1) + bh̃), (2.10)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t, (2.11)

where rt is the reset gate that controls how much of past

information will be neglected while zt is the update gate that

determines how much of past information will be reserved.

GRUs can achieve comparable performance as LSTMs but

with a simpler architecture and will be adopted in multiple

approaches proposed in the thesis.

To encode more useful contexts, bi-directional RNN encoders

have been widely adopted to model the sequential input from

two directions. Specifically, it employs a forward RNN and a

backward RNN to respectively read input sequence x from x1

to xn and from xn to x1:

−→
h t = RNN(xt,

−→
h t−1), (2.12)

←−
h t = RNN(xt,

←−
h t+1). (2.13)

The forward and backward hidden states
−→
h t and

←−
h t are

concatenated to form a hidden representation hi = [
−→
h t;
←−
h t]

for the input xt. As such, H = {h1, ...,hn} can be deemed as

the contextual representations for the whole sequence.

After obtaining the sequential representations, one can feed

them for a sequence decoder to generate another sequence

(Section 2.1.2), or directly make a prediction based on them.

For the latter, the representations are usually aggregated into

a vector via max or mean pooling and transformed to v via
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Figure 2.2: Illustration of seq2seq models.

multi-layer perceptron (MLP) for later use. Take the multi-

class classification as an example. A softmax layer can directly

operate on them to yield the probabilities:

softmax(v) =
exp(v)∑
k=1 exp(vk)

, (2.14)

where k is the number of classes and the softmax function

produces a normalized distribution over the class vocabulary.

2.1.2 Sequence to Sequence Models

Apart from making a discriminative prediction, one can also

predict another target sequence based on the learned source

sequence representations H. This is well known as the sequence

to sequence (seq2seq) learning that typically employs an en-

coder and decoder framework (as shown in Figure 2.2). The

seq2seq models have been originally proposed for neural machine

translation task and later widely adopted as the paradigm for

a number of language generation tasks, e.g., dialog response

generation, question generation, text summarization, and also

the keyphrase generation [100, 26, 27, 22, 148]. RNNs are the

most popular backbone for the seq2seq models.

Formally, given the source input sequence x = {x1, ..., xn}, an

encoder reads this sequential input and summarizes them into a

context vector c (one popular choice is to employ the ht). Then
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a decoder generates the output sequence y = {y1, ..., ym} based

on the fixed-size context vector. At each decoding step t, the

decoder calculate a hidden state s ∈ Rds:

st = RNN(st−1,yt−1), (2.15)

where st−1 is the previous decoder hidden state and yt−1 the

embedded word predicted at the last time step. Usually, c

is employed as the initial state s0 and a special token <BOS>

(begin of sentence) is inserted as the first token y0 to trigger the

decoding process. To ensure the autoregressive property, the

decoder is built on uni-directional RNNs.

Based on the hidden state st, the decoder employs a MLP with

softmax to derive a probability distribution over words in a

predefined vocabulary V :

P (yt|y<t,x) = softmax(WV st + bV ), (2.16)

where y<t refers to {y1, y2, ..., yt−1}. The decoding process is

usually terminated when a special token <EOS> (end of sentence)

is emitted.

Attention Mechanism

However, the traditional encoder-decoder frameworks often suf-

fer from the so-called hidden state bottleneck that is caused by

attempting to summarize an arbitrarily long sequence into a

fixed-size vector, which is unrealistic and inevitably restricts the

capability of capturing long-range dependencies. To address this

issue, attention mechanisms have been widely adopted to allow

the decoder to fully make use of all the contexts in the source

sequence.
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Figure 2.3: Illustration of attention mechanism.

As illustrated in Figure 2.3, attention mechanisms add shortcut

connections from each decoder state st to all the encoder states

in H. Specifically, the decoder computes an attention score αt,i
using the following equations:

αt,i = vT tanh(Whhi + Wsst + bα), (2.17)

at,i =
exp(αt,i)∑n
j=1 exp(αt,j)

, (2.18)

where v ∈ Rdα×1,Ws ∈ Rdα×ds,Wh ∈ Rdα×dh,bα ∈ Rdα. The

attention weight αt,i measures the compatibility score between

the decoder state st and encoder state hi, which will be used to

compute the context vector ct via:

ct =
n∑
i=1

αt,ihi. (2.19)
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Figure 2.4: Illustration of copy mechanism. Figure is from [127]

Here ct is a dynamic context vector depending on the decoding

state and represents the relevant information distilled from the

source sequence. At each time step t, the decoder takes the

context vector into account and predict the output yt via:

P (yt|y<t,x) = softmax(WV [st; ct] + bV ), (2.20)

where [; ] denotes the concatenation operation. By incorporating

the context vector ct, attentional seq2seq models overcome the

hidden state bottleneck issue and are more capable of capturing

long-range dependencies.

Copy Mechanism

In many language generation tasks, the output sequence often

contains some shared contexts with the source sequence, e.g.,

text summarization and the keyphrase generation. In such cases,

copy mechanism [106, 48, 127] that allows the decoder to directly

extract source words as the predicted outputs has been widely
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employed for improving the overall performance. Another major

advantage of the copy mechanism is to help handle the out-of-

vocabulary (OOV) problem, which is a well-known phenomenon

in NLP, especially when processing large-scale corpus. As it is

impractical to maintain a large vocabulary for all the words,

a common approach is to set a fixed vocabulary size for most

frequent words and regard the rest long-tail words as unknown

words (often marked as <UNK>). Copy mechanism brings an

extra opportunity to recover these words if they directly appear

in the source sequence.

Figure 2.4 illustrates one of the most popular copy mechanisms

proposed by See et al. [127], where they devise a pointer and

generator model for text summarization tasks. Specifically, to

select words from the source sequence, the copy mechanism

often employs the attention scores α in Eq. (2.18) as the

extractive probabilities. Besides, it computes a soft switch pgen
to determine whether to copy from the local source sequence or

generate from the global vocabulary:

pgen = σ(uTg [ct; st; yt−1]), (2.21)

where σ is a sigmoid function that maps to pgen ∈ [0, 1]. As

such, the final prediction is computed by linearly combining both

probabilities:

Pfinal(yt) = pgenP (yt) + (1− pgen)
n∑

i:xi=yt

αt,i, (2.22)

where pgen controls the percentage of contribution that each

module makes to final predictions, e.g., pgen = 1 represents the

original model without a copy mechanism.
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2.1.3 Transformer and Pretraining

Recently, Transformers [141] relying only on attention mech-

anism have received growing attention and revolutionized nu-

merous NLP tasks, including both natural language generation

(NLG) like machine translation and natural language under-

standing (NLU) like the GLUE benchmarks [143]. Compared to

RNNs that employ a recurrent structure to encode sequences,

Transformers get rid of such sequential nature and utilize fully

self-attention networks, thereby enabling better parallelization

and largely improving efficiency. Moreover, they are more

capable of capturing long-range dependencies by adding direct

shortcut connections between any tokens in the sequence. Due

to its strong representation learning and great efficiency, Trans-

formers tend to be the new paradigm for encoding texts, and

even any other types of sequential data, such as speech [31] or

video [138].

Transformer Architecture

Figure 2.5 illustrates the overview of the Transformer architec-

ture, which consists of a Transformer encoder and Transformer

decoder. Formally, let Hl be a matrix with rows {hl1, ...,hlT}
corresponding to the intermediate representations after the l-

layer. Multi-head attention is applied to compute each hlt from

the l − 1 layer’s outputs and each head is defined as:

Ai = softmax(
QiK

T
i√

dk
)Vi, (2.23)

Qi = hl−1
t WQ

i ,Ki = hl−1
t WK

i ,Vi = hl−1
t WV

i , (2.24)

where {Qi,Ki,Vi}(i ∈ [1,m]) is a set of queries, keys, and values

for computing the i-head Ai ∈ dk and m is the number of heads.
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Figure 2.5: Illustration of Transformer and multi-head attention. Figure is

from [141].

WQ
i , WK

i , and WV
i are the trainable projection weights. Com-

pared to traditional single-head attention, multi-head attention

is able to attend information from various representation spaces

and hence exhibits better representation learning capability.

Next, outputs from all the heads are concatenated and passed to

a Feed-Forward Network (FFN) with residual connection [52],
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Figure 2.6: Illustration of pretrain-then-finetune paradigm.

followed by layer normalization [7]:

hlt = Concat(A1, ...,Am)WO, (2.25)

hlt = LayerNorm(hl−1
t + hlt), (2.26)

h̃lt = max(0,hltW1 + b1)W2 + b2, (2.27)

hlt = LayerNorm(h̃lt + hlt), (2.28)

where WO is the projection weights to combine various head’s

outputs, and W1,W2,b1,b2 are trainable weights and biases in

FFN layer. The outputs HL at the final layer from the encoder

will be based to make a discriminative prediction for NLU tasks

or generate a target sequence with a decoder for NLG tasks.

Pretraining Tasks

To fully unleash the potential of Transformer models, it requires

a large amount of data for sufficient training. As for some

tasks with limited data, one can leverage the large-scale out-

of-domain data for pretraining and then finetune it with small

task datasets. Generally, pretraining aims to learn generic repre-

sentations that can be transferred to downstream tasks. It can

improve generalization especially when the target domain has

scarce data. Such pretrain-then-finetune paradigm (Figure 2.6)

has been ubiquitously applied in numerous applications in NLP,
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CV, and also their intersection.

As it is very expensive to obtain huge annotated data for

pretraining, researchers in NLP resort to applying unsuper-

vised learning (or self-supervised learning) to derive generic

representations from the abundant text data like Wikipedia or

book corpus. Among them, BERT [35], short for bidirectional

encoder representations from Transformers, is one of the most

popular pretrained language models based on a multi-layer

bidirectional Transformer. The BERT model is pretrained on a

large language-corpus in an end-to-end fashion under two tasks:

masked language modelling (MLM) and next sentence prediction

(NSP).

In masked language modelling, tokens in x are randomly masked

out with a probability of 15%. Each of the masked tokens will

be replaced with (1) a special [MASK] token 80% of the time, (2)

a random token 10% of the time, (3) the unchanged one 10%

of the time. Next, the BERT model is teached to recover the

masked tokens based on the observed set with cross entropy loss:

LMLM(θ) = −Ew∼D, t∼T logPθ(wt|w\t), (2.29)

where θ represents all the trainable parameters and w is

sampled from the whole training set D. w\t is defined as

{w1, ..., wt−1, [MASK], wt+1, ..., wT}, and Pθ(wt|w\t) is implemented

by mapping hLt (the representation of wt at the final Transformer

layer) to a distribution over the vocabulary with a linear layer.

In next sentence prediction, a pair of sentences (A, B) are

sampled from the input document D, and the model is trained

to predict whether or not sentence B follows sentence A in the

source text. Specifically, the two sentences are passed it into the
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BERT following the format:

{[CLS], wA1, ..., wAT , [SEP], wB1, ..., wBT , [SEP]}.

A sigmoid classifier operating on the final output representation

for the [CLS] token is trained to minimize a binary cross-entropy

loss:

LNSP (θ) = −E(A,B)∼D[y log(Sθ(A, B))

+ (1− y)log(1− Sθ(A, B))],
(2.30)

where Sθ(A, B) is the matching score of the sentences A and

B from the classifier and y ∈ {0, 1} indicates the relationship

between the two sentences. Both positive and negative sentence

pairs are sampled with the equivalent probability (i.e., 50%) to

achieve a balanced label distribution.

Inspired by its success in NLP, recent work attempts to extend

pretrained Transformer models to the vision and language

domain. They employ similar pretraining tasks on a language-

vision input and achieve prominent improvements in various

visual and linguistic tasks, such as image/video captioning,

question answering, cross-modal retrieval, etc.

2.2 Keyphrase Prediction

The goal of keyphrase prediction is to predict a set of con-

cise keyphrases that summarize the main ideas of the input

document. It can be considered as a special case of text

summarization but with a different granularity. Formally, given

an input document x, keyphrase prediction aims to output

a set of keyphrases Y = {y(1), . . . ,y(|Y|)}, where |Y| is the
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number of keyphrases and each keyphrase y(i) is a phrase

consisting of several words. The document x and a keyphrase

y(i) are formulated as word sequences x = 〈x1, ..., xlx〉 and

y = 〈y(i)
1 , ..., y

(i)
ly
〉, where lx and ly denote the number of words

in x and y(i) respectively.

Generally, keyphrase prediction methods can be divided into

extraction-based methods, classification-based methods (specif-

ically in social media), and generation-based methods. In the

social media domain, hashtags that prefixed with “#” conveying

the main topic are often regarded as the keyphrases for a

post [176]. Apart from regarding each hashtag as a discrete

label, one can employ segmentation rules to split it into several

words, e.g., “DeepLearning” to “Deep” and “Learning”.

2.2.1 Extraction-based Methods

Traditional keyphrase prediction studies mainly focus on hand-

crafted features, which select key words or phrases from the

document as the predicted keyphrases. It typically adopts a two-

step pipeline: candidates are first extracted with handcrafted

features and then ranked by various scoring functions. At

the candidate extraction step, these methods identify a set of

keyphrase candidates based on handcrafted features, such as

Part-of-Speech (POS) tags [90, 144, 76] and TF-IDF scores [99].

At the candidate ranking step, there are mainly two kinds of al-

gorithms: unsupervised and supervised learning. Unsupervised

learning algorithms are primarily built on a text graph, where

they first regard each candidate as a node and then calculate its

importance score in the graph [39, 156, 58, 107, 98, 91, 43]. As

for supervised learning algorithms, they build a binary classifier

to determine whether each candidate is a keyphrase, and then
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the predicted scores are employed to rank the candidates.

These methods also rely on handcrafted features such as phrase

position and length, as well as the TF-IDF scores.

These methods undergo labor-intensive feature engineering and

hence lead to the growing popularity of adopting fully data-

driven methods using deep neural networks. Most efforts are

based on sequence tagging style extraction [95, 44, 176] and

combine the traditional two-step pipeline together into one

step. Specifically, sequence tagging methods predict a label

for each token in the document indicating whether it belongs

to a keyphrase or not. Apart from the binary label, these

methods often employ a more fine-grained categorization, i.e.,

(B) beginning of a keyphrase; (E) ending of keyphrase; (I) inside

a keyphrase; (S) single-word keyphrase; or (O) otherwise. As for

the social media domain, Zhang et al. [176] and Zhang et al. [179]

also employ sequence tagging methods to extract keyphrases.

2.2.2 Classification-based Methods

Classification-based keyphrase prediction methods [54, 153, 126,

45, 57, 175] are mainly employed in the social media domain,

where they usually regard each keyphrase as a discrete label

and build classifier to predict it. Specifically, classification-

based methods first construct a predefined candidate list and

then select some of them based on the classifier’s scores.

As for deep neural classifiers, Gong et al. [45] propose attention-

based convolutional neural networks (CNNs) [77] consisting of

a local attention channel and global channel to recommend

hashtags. Huang et al. [57] employ end-to-end memory net-

works [137, 154] for this task, where they incorporate the

histories of users into the external memory and leverage a hi-
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erarchical attention mechanism to select more related histories.

Recently, due to the wide availability of mobile devices and easy

connectivity, multimedia contents are more prevalent in various

social media platforms. To encoding more contexts, Zhang et

al. [175] incorporate visual signals from the matching images

in Twitter posts and employ co-attention networks [94, 163] to

capture the text-image relationship.

2.2.3 Generation-based Methods

However, both extraction-based methods and classification-

based methods have limitations in that they cannot produce

keyphrases out of the source documents or the predefined

candidate list. Inspired by the recent success of seq2seq learning

in language generation tasks like text summarization, Meng

et al. [100] first introduce sequence generation methods that

predict keyphrase in a word-by-word manner for keyphrase

prediction tasks. Generation-based methods overcome the

drawbacks of the above two types of methods and enable new

keyphrases beyond the source document or predefined list to be

flexibly created. Most generation-based methods are proposed

for predicting keyphrases from scientific articles.

As a pioneer work, Meng et al. [100] employ the pointer and

generator framework [127] to either generate a word from the

global vocabulary or copy it from the source sequence, which

yields remarkable improvements over traditional extraction-

based methods. Inspired by its success, a number of generation-

based models [27, 24, 169, 26, 22, 171] have been proposed for

this task. Chen et al. [27] propose a TG-Net that differentiates

the importance of the title and the document, and explicitly

makes use of the title to guide the understanding of the docu-
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ment, while Chen et al. [24] propose a CorrRNN that applies

the coverage mechanism in [127] to avoid generating repetitive

keyphrases. Chen et al. [26] propose a hybrid approach that inte-

grates keyphrase extraction, keyphrase retrieval, and keyphrase

generation with a merging module and then returns the top-

ranked candidates as the final predictions.

Some of them explore the keyphrase generation from some new

perspectives. Ye et al. [169] investigate a different scenario where

the amount of labeled data is limited and propose to leverage

semi-supervised methods for improving the performance. Yuan

et al. [171] consider to let the model itself determine the

number of keyphrases that should be generated for a document.

Along this line, Chan et al. [22] further introduce reinforcement

learning (RL) to encourages a model to generate both sufficient

and accurate keyphrases with an adaptive reward function.

In this thesis, we are the first to introduce sequence generation

models to predict keyphrases for social media posts. Due to

the informal nature of social media, the posts usually are short

in length and contain lots of misspellings, making it difficult

to process them effectively. To deal with such data sparsity in

social media keyphrase generation, we propose to encode explicit

contexts from user comments [150] or implicit latent topics that

can be learned from a corpus in an unsupervised manner [148].

We further leverage the matching images to enrich the contexts

and propose a unified model to couple the advantages of

keyphrase classification and generation [149]. Similar to this,

Chen et al. [26] also exploits the power of classification for

keyphrase generation but in a separated retrieval manner, where

we elegantly integrate them with a tailored copy mechanism and

allow for the end-to-end joint training.
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2.3 Social Media Understanding

The recent decades witness the flourish of social media, revolu-

tionizing the ways people share information and interact with

others. As a result, millions of user-generated data can be

produced daily, leading us to the era of information explosion.

To effectively process such a large volume of data and distill

useful knowledge, social media understanding with automated

techniques has received growing attention. In this section, we

categorize current approaches for social media understanding

into two groups based on the type of social media data: text-

only and cross-media research.

2.3.1 Text-only Research

The abundance of user-generated texts fertilizes a broad set

of real-world applications, such as microblog search [37, 10],

sentiment analysis [34, 146], summarization [177, 23], user

profiling [152, 38], stock price prediction [17, 108], and so

forth. Among them, text classification and topic modeling are

popular base approaches for language understanding proven to

be useful in a variety of downstream tasks. Recently, with the

success of seq2seq models for language generation, keyphrase

prediction that summarizes a document into a set of concise

keyphrases receives increasing attention due to its flexibility in

creating multiple keyphrases in a large space. Hence, automatic

keyphrase prediction serves as an important research topic for

social media understanding.

Previous progress made in keyphrase prediction has mainly

focused on either extraction-based or classification-based ap-

proaches, which are limited in that they cannot predict keyphrases
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absent in the source text or the predefined candidate list. To

overcome their shortcomings, in this thesis, we propose neural

keyphrase generation models that enable new keyphrases to

be flexibly created for social media posts. Although seq2seq-

based generation models have demonstrated their effectiveness

in keyphrase generation for scientific articles, their performance

will be inevitably compromised when directly applied to noisy

social media texts. The inferior performance is attributed to the

severe data sparsity widely exhibited in short and informal social

media posts. To deal with this, we propose to enrich contexts

via either implicitly exploiting the post-level latent topics or

explicitly leveraging conservation contexts from other users.

Our first work is also closely related to topic models that discover

latent topics from word co-occurrence at the document level.

They are commonly in the fashion of latent Dirichlet allocation

(LDA) based on Bayesian graphical models [15]. These models,

however, rely on the expertise involvement to customize model

inference algorithms. Our framework exploits the recently

proposed neural topic models [102, 134] to infer latent topics,

which facilitate end-to-end training with other neural models

and do not require model-specific derivation. It has proven

useful for citation recommendation [9] and conversation under-

standing [173]. In particular, Zeng et al. [174] propose to jointly

train topic models and short text classification, which cannot fit

our scenario due to the large diversity of the keyphrases [150].

Different from them, our latent topics are learned together with

language generation, whose effects on keyphrase generation have

never been explored before in existing work.
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2.3.2 Cross-media Research

“A picture is worth a thousand words”. With the improved

bandwidth and smartphones, cross-media posts are becoming

ubiquitous as they can convey more diverse and complex infor-

mation from the authors. For example, Twitter allows users to

create tweets with multiple images and even videos. Some recent

studies also find that tweets with images take up an increasing

faction and receive significantly more engagement than tweets

without images, approximately 22.8% more retweets, favorites,

replies compared to text-only tweets [18]. However, cross-media

posts bring more challenges for automatic understanding as they

contain multi-modal features that involve complex interactions

and require effective fusion.

In recent decades, numerous multi-modal machine learning tech-

niques have been studied towards cross-media understanding,

which covers a broad set of real-world applications, such as per-

sonalized image captioning [111], event extraction [87], sarcasm

detection [19], possession extraction [29], and crisis event cate-

gorization [2]. Closest to our work, [175, 178] study multimedia

hashtag classification and employ co-attention [94, 163] to model

the text-image associations, where a single attention function

is concurrently performed to infer either visual or textual

distributions. We argue that they might be suboptimal to model

intricate text-image associations, as a recent finding [142] points

out there can be four diverse semantic relations held by images

and texts on Twitter.

To allow for better modeling, in our fourth work, we take

advantage of the recent advance of multi-head attention [141]

capable of learning from different representation subspaces and

extend it to capture diverse cross-media interactions. While
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multi-head attention has been widely exploited in many vision-

language (VL) tasks, such as image captioning [181], visual

question answering [140, 92], and visual dialog [60], its potential

benefit to model flexible cross-media posts has been previously

ignored. Moreover, to well align the images’ semantics to texts’,

we propose to encode image wordings and define two forms for

that — explicit optical characters detected from the optical char-

acter reader (OCR) and implicit image attributes [157], high-

level text labels predicted to summarize the image’s semantic

concepts. Some prior work has pointed out the usefulness of

OCR texts [25] and image attributes [158] to endow images with

higher-level semantics beyond visual features, where we are the

first to study how OCR texts and image attributes work together

to indicate keyphrases.

Cross-media research usually benefits from the development of

more general multi-modal research, where conventional vision-

language (VL) tasks like image captioning, visual question

answering [6], and visual dialog [33] are extensively studied.

Their core goal is to derive a generic visual and linguistic

representation that achieves effective fusion from two modalities.

Differently, cross-media studies can bring unique difficulties

mainly due to the informal style in social media. For one thing,

the text-image relationship in cross-media posts is rather compli-

cated [142], while in conventional VL tasks the two modalities

have most semantics shared. For another thing, social media

images usually exhibit a more diverse distribution and a much

higher probability of containing OCR tokens, thereby posing a

hurdle for effectively processing. In the future, we will explore

how to extend powerful visual and linguistic representation

learning methods for improving cross-media understanding.



Chapter 3

Encoding Implicit Topics for

Keyphrase Generation

This chapter presents our study in implicitly leveraging latent

topics for social media keyphrase generation. Latent topics

learned from a corpus via unsupervised methods like topic

models can provide additional clues for understanding docu-

ments. While topic information has been proven useful in short

text classification, we are the first to investigate its effects in

keyphrase generation. The main points of this chapter are as fol-

lows. (1) We propose a topic-aware keyphrase generation model

that incorporates corpus-level topics to enrich useful features

for short social media posts. (2) Our topic-aware keyphrase

generation model consists of a seq2seq model and a neural

topic model that are elegantly integrated and jointly trained

in an end-to-end manner. (3) We evaluate our models on three

newly-constructed social media datasets from Twitter, Weibo,

and StackExchange. The results show our model outperforms

existing methods in keyphrase prediction, meanwhile generating

more coherent topics.

37
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Source post with keyphrase “super bowl”:

[S]: Somewhere, a wife that is not paying attention to the game, says ”I

want the team in yellow pants to win.”

Relevant tweets:

[T1]: I been a steelers fan way before black & yellow and this super bowl !

[T2]: I will bet you the team with yellow pants wins .

[T3]: Wiz Khalifa song ’black and yellow” to spur the pittsburgh steelers

and Lil Wayne is to sing ”green and yellow ’ for the packers .

Table 3.1: Sample tweets tagged with “super bowl” as their keyphrases. Blue

and italic words can indicate the topic of super bowl.

3.1 Introduction

As social media continues its worldwide expansion, the last

decade has witnessed the revolution of interpersonal commu-

nication. While empowering individuals with richer and fresher

information, the flourish of social media also results in millions

of posts generated on a daily basis. Facing a sheer quantity of

texts, language understanding has become a daunting task for

human beings. Under this circumstance, there exists a pressing

need for developing automatic systems capable of absorbing

massive social media texts and figuring out what is important.

In this work, we study the prediction of keyphrases, generally

formed with words or phrases reflecting main topics conveyed

in input texts [179]. Particularly, we focus on producing

keyphrases for social media language, proven to be beneficial to a

broad range of applications, such as instant detection of trending

events [78], summarizing public opinions [101], analyzing social

behavior [124], and so forth.

In spite of the substantial efforts made in social media keyphrase

identification, most progress to date has focused on extract-

ing words or phrases from source posts, thus failing to yield



CHAPTER 3. TOPIC-AWARE KEYPHRASE GENERATION 39

keyphrases containing absent words (i.e., words do not appear

in the post). Such cases are indeed prominent on social media,

mostly attributed to the informal writing styles of users therein.

For example, Table 3.1 shows a tweet S tagged with keyphrase

“super bowl” by its author, though neither “super” nor “bowl”

appears in it.1 In our work, distinguishing from previous studies,

we approach social media keyphrase prediction with a sequence

generation framework, which is able to create absent keyphrases

beyond source posts.

Our work is built on the success of deep keyphrase gener-

ation models based on neural sequence-to-sequence (seq2seq)

framework [100]. However, existing models, though effective on

well-edited documents (e.g., scientific articles), will inevitably

encounter the data sparsity issue when adapted to social media.

It is essentially due to the informal and colloquial nature of social

media language, which results in limited features available in the

noisy data. For instance, only given the words in S (Table 3.1),

it is difficult to figure out why “super bowl” is its keyphrase.

However, by looking at tweets T1 to T3, we can see “yellow pants”

is relevant to “steelers”, a super bowl team. As “yellow” and

“pants” widely appear in tweets tagged with “super bowl ’, it

becomes possible to identify “super bowl” as S’s keyphrase.

Here we propose a novel topic-aware neural keyphrase generation

model that leverages latent topics to enrich useful features. Our

model is able to identify topic words, naturally indicative of

keyphrases, via exploring post-level word co-occurrence pat-

terns, such as “yellow” and “pants” in S. Previous work have

shown that corpus-level latent topics can effectively alleviate

1Following common practice [176, 179], we consider author-annotated hashtags as

tweets’ keyphrases.



CHAPTER 3. TOPIC-AWARE KEYPHRASE GENERATION 40

data sparsity in other tasks [174, 84]. The effects of latent topics,

nevertheless, have never been explored in existing keyphrase

generation research, particularly in the social media domain.

To the best of our knowledge, our work is the first to study

the benefit of leveraging latent topics on social media keyphrase

generation. Also, our model, taking advantage of the recent

advance of neural topic models [102], enables end-to-end training

of latent topic modeling and keyphrase generation.

We experiment on three newly constructed social media datasets.

Two are from English platform Twitter and StackExchange,

and the other from Chinese microblog Weibo. The comparison

results over both extraction and generation methods show that

our model can better produce keyphrases, significantly outper-

forming all the comparison models without exploiting latent

topics. For example, on Weibo dataset, our model achieves

34.99% F1@1 compared with 32.01% yielded by a state-of-the-

art keyphrase generation model [100]. We also probe into our

outputs and find that meaningful latent topics can be learned,

which can usefully indicate keyphrases. At last, a preliminary

study on scientific articles shows that latent topics work better

on text genres with informal language style.

3.2 Topic-Aware Neural Keyphrase Genera-

tion Model

In this section, we describe our framework that leverages latent

topics in neural keyphrase generation. Figure 3.1 shows our

overall architecture consisting of two modules — a neural topic

model for exploring latent topics (Section 3.2.1) and a seq2seq-

based model for keyphrase generation (Section 3.2.2).
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Figure 3.1: Our topic-aware neural keyphrase generation framework.

Before starting with more details, we first introduce the for-

mulations of inputs. Formally, given a collection C with |C|
social media posts {x1,x2, ...,x|C|} as input, we process each

post x into bag-of-words (BoW) term vector xbow and word

index sequence vector xseq. xbow is a V -dim vector over the

vocabulary (V being the vocabulary size). It is fed into the

neural topic model following the BoW assumption [102]. xseq
serves as the input for the seq2seq-based keyphrase generation

model.

Below we first introduce our two modules and then describe how

they are jointly trained.

3.2.1 Neural Topic Model

Our neural topic model (NTM) module is inspired by Miao et

al. [102] based on variational auto-encoder [69], which consists
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of an encoder and a decoder to resemble the data reconstruction

process.

Specifically, the input xbow is first encoded into a continuous la-

tent variable z (representing x’s topic) by a BoW encoder. Then

the BoW decoder, conditioned on z, attempts to reconstruct

x and outputs a BoW vector x′bow. Particularly, the decoder

simulates topic model’s generation process. We then describe

their division of labor.

BoW Encoder. The BoW encoder is responsible for estimating

prior variables µ and σ, which will be used to induce intermedi-

ate topic representation z. We adopt the following formula:

µ = fµ(fe(xbow)), log σ = fσ(fe(xbow)), (3.1)

where f∗(·) is a neural perceptron with an ReLU-activated

function following Zeng et al. [174].

BoW Decoder. Analogous to LDA-style topic models, it is

assumed that there are K topics underlying the given corpus

C. Each topic k is represented with a topic-word distribution φk
over the vocabulary, and each post x ∈ C has a topic mixture

denoted by θ, a K-dim distributional vector. Specifically in

neural topic model, θ is constructed by Gaussian softmax [102].

The decoder hence takes the following steps to simulate how

each post x is generated:

• Draw latent topic variable z ∼ N (µ, σ2)

• Topic mixture θ = softmax(fθ(z))

• For each word w ∈ x

– Draw w ∼ softmax(fφ(θ))
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Here f∗(·) is also a ReLU-activated neural perceptron for inputs.

In particular, we employ the weight matrix of fφ(·) as the topic-

word distributions (φ1, φ2, ..., φK). In the following, we adopt the

topic mixture θ as the topic representations to guide keyphrase

generation.

3.2.2 Neural Keyphrase Generation Model

Here we describe how we generate keyphrases with a topic-

aware seq2seq model, which incorporates latent topics (learned

by NTM) in its generation process. Below comes more details.

Overview. The keyphrase generation module (KG model) is

fed with source post x in its word sequence form xseq =

〈w1, w2, ..., w|x|〉 (|x| is the number of words in x). Its target

is to output a word sequence y as x’s keyphrase. Particularly,

for a source post with multiple gold-standard keyphrases, we

follow the practice in [100] to pair its copies with each of the

gold standards to form a training instance.

To generate keyphrases for source posts, the KG model employs

a seq2seq model. The sequence encoder distills indicative

features from an input source post. The decoder then generates

its keyphrase, conditioned on the encoded features and the

latent topics yielded by NTM (henceforth topic-aware sequence

decoder).

Sequence Encoder. We employ a bidirectional gated recurrent

unit (Bi-GRU) [30] to encode the input source sequence. Each

word wi ∈ xseq (i = 1, 2, ..., |x|) is first embedded into an em-

bedding vector νi, and then mapped into forward and backward

hidden states (denoted as
−→
hi and

←−
hi) with the following defined
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operations: −→
hi = GRU(νi,hi−1), (3.2)
←−
hi = GRU(νi,hi+1). (3.3)

The concatenation of
−→
hi and

←−
hi , [
−→
hi ;
←−
hi ], serves as wi’s hidden

state in encoder, denoted as hi. Finally, we construct a memory

bank: M = 〈h1,h2, ...,h|x|〉, for decoder’s attentive retrieval.

Topic-Aware Sequence Decoder. In general, conditioned on the

memory bank M and latent topic θ from NTM, we define

the process to generate its keyphrase y with the following

probability:

Pr(y |x) =

|y|∏
j=1

Pr(yj |y<j,M, θ), (3.4)

where y<j = 〈y1, y2, ..., yj−1〉. And Pr(yj|y<j,M, θ), denoted as

pj, is a word distribution over vocabulary, reflecting how likely

a word to fill in the j-th slot in target keyphrase. Below we

describe the procedure to obtain pj.

Our sequence decoder employs a unidirectional GRU layer.

Apart from the general state update, the j-th hidden state

sj is further designed to take input x’s topic mixture θ into

consideration:

sj = GRU([uj; θ], sj−1), (3.5)

where uj is the j-th embedded decoder input2 and sj−1 is

the previous hidden state. Here [; ] denotes the concatenation

operation.

The decoder also looks at M (learned by sequence encoder) and

puts an attention on it to capture important information. When
2We take the previous word from gold standards in training by teacher forcing and

from the predicted word in test.
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predicting the j-th word in keyphrase, the attention weights on

wi ∈ xseq is defined as:

αij =
exp(fα(hi, sj, θ))∑|x|
i′=1 exp(fα(hi′, sj, θ))

, (3.6)

where

fα(hi, sj, θ) = vTα tanh(Wα[hi; sj; θ] + bα). (3.7)

Here vα, Wα, and bα are trainable parameters. fα(·) measures

the semantic relations between the i-th word in the source and

the j-th target word to be predicted. Such relations are also

calibrated with the input’s latent topic θ in order to explore

and highlight topic words. We hence obtain the topic sensitive

context vector cj with:

cj =

|x|∑
i=1

αijhi. (3.8)

Further, conditioned on cj, we generate the j-th word over the

global vocabulary according to:

pgen = softmax(Wgen[sj; cj] + bgen). (3.9)

In addition, we adopt copy mechanism [127] following Meng et

al. [100], which allows keywords to be directly extracted from the

source input. Specifically, we adopt a soft switcher λj ∈ [0, 1]

to determine whether to copy a word from source as the j-th

target word:

λj = sigmoid(Wλ[uj; sj; cj; θ] + bλ), (3.10)

with Wλ and bλ being learnable parameters. Topic information

θ is also injected here to guide the switch decision.



CHAPTER 3. TOPIC-AWARE KEYPHRASE GENERATION 46

Finally, we obtain distribution pj for predicting the j-th target

word with the formula below:

pj = λj · pgen + (1− λj) ·
|x|∑
i=1

αij, (3.11)

where attention scores {αij}|x|i=1 serve as the extractive distribu-

tion over the source input.

3.2.3 Jointly Learning Topics and Keyphrases

Our neural framework allows end-to-end learning of latent topic

modeling and keyphrase generation. We first define objective

functions for the two modules respectively.

For NTM, the objective function is defined based on negative

variational lower bound [14]. Here due to space limitation,

we omit the derivation details already described in [102], and

directly give its loss function:

LNTM = DKL(p(z) || q(z |x))− Eq(z |x)[p(x | z)], (3.12)

where the first term is the Kullback-Leibler divergence loss and

the second term reflects the reconstruction loss. p(z) denotes a

standard normal prior. q(z |x) and p(x | z) represent the process

of BoW encoder and BoW decoder respectively.

For KG model, we minimize the cross entropy loss over all

training instances:

LKG = −
N∑
n=1

log(Pr(yn |xn, θn)), (3.13)

where N denotes the number of training instances and θn is xn’s

latent topics induced from NTM.
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Finally, we define the entire framework’s training objective with

the linear combination of LNTM and LKG:

L = LNTM + γ · LKG, (3.14)

where the hyper-parameter γ balances the effects of NTM and

KG model. Our two modules can be jointly trained with their

parameters updated simultaneously. For inference, we adopt

beam search and generate a ranking list of output keyphrases

following Meng et al. [100].

3.3 Experimental Setup

3.3.1 Datasets

We conduct experiments on three social media datasets collected

from two English online platforms, Twitter and StackExchange,

and a Chinese microblog website, Weibo. Twitter and Weibo are

microblogs encouraging users to freely post with a wide range of

topics, while StackExchange, an online Q&A forum, are mainly

for question asking (with a title and a description) and seeking

answers from others.

The Twitter dataset contains tweets from TREC 2011 microblog

track.3 For Weibo dataset, we first tracked the real-time

trending hashtags in Jan-Aug 2014,4 and then used them as

keywords to search posts with hashtag-search API.5 And the

StackExchange dataset is randomly sampled from a publicly

available raw corpus.6

3http://trec.nist.gov/data/tweets/
4http://open.weibo.com/wiki/Trends/
5http://www.open.weibo.com/wiki/2/
6https://archive.org/details/stackexchange
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For the target keyphrases, we employ user-annotated hashtags

for Twitter and Weibo following Zhang et al. [176], and author-

assigned tags (e.g., “artificial-intelligence”) for StackExchange.

Posts without such keyphrase tags are hence removed from

the datasets. Particularly, for StackExchange, we concatenate

the question title together with its description as the source

input. For Twitter and Weibo source posts, we retain tokens in

hashtags (without # symbols) for those appearing in the middle

of posts, since they generally act as semantic elements and thus

considered as present keyphrases [176]. For those appearing

before or after a post, we remove the entire hashtags and regard

them as absent keyphrases as is done in [150].

For model training and evaluation, we split the data into three

subsets with 80%, 10%, and 10%, corresponding to training, de-

velopment, and test set. The statistics of the three datasets are

shown in Table 3.2. As can be seen, over 50% of the keyphrases

do not appear in their source posts, thus extractive approaches

will fail in dealing with these posts. We also observe that

StackExchange exhibits different keyphrase statistics compared

to either Twitter or Weibo, with more keyphrases appearing in

one post and more diverse keyphrases.

3.3.2 Preprocessing

For Twitter dataset, we employed Twitter preprocessing toolkit

in [11] for source post and hashtag (keyphrase) tokenization.

Chinese Weibo data was preprocessed with Jieba toolkit7 for

word segmentation, and English StackExchange data with nat-

ural language toolkit (NLTK) for tokenization.8

7https://github.com/fxsjy/jieba
8https://www.nltk.org/
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Source posts
# of Avg len # of KP Source

posts per post per post vocab

Twitter 44,113 19.52 1.13 34,010

Weibo 46,296 33.07 1.06 98,310

StackExchange 49,447 87.94 2.43 99,775

Target KP |KP| Avg len % of Target

per KP abs KP vocab

Twitter 4,347 1.92 71.35 4,171

Weibo 2,136 2.55 75.74 2,833

StackExchange 12,114 1.41 54.32 10,852

Table 3.2: Data statistics of source posts (on the top) and target keyphrases

(on the bottom). Avg len: the average number of tokens. KP: keyphrases.

Abs KP: absent keyphrases. |KP|: the number of distinct keyphrases.

We further take the following preprocessing steps for each of

the three datasets: First, posts with meaningless keyphrases

(e.g., single-character ones) were filtered out; also removed were

non-alphabetic (for English data) and retweet-only (e.g., “RT ”)

posts. Second, links, mentions (@username), and digits were

replaced with generic tags “URL”, “MENT ”, and “DIGIT ”

following Wang et al. [150]. Third, a vocabulary was maintained,

with 30K most frequent words for Twitter, and 50K for Weibo

and StackExchange each. For BoW vocabulary of the input xbow
for NTM, stop words and punctuation were removed.

3.3.3 Model Settings

We implement our model based on the pytorch framework

in [113]. For NTM, we implement it following the design9 in [174]

and set topic number K to 50. The KG model is set up mostly

based on [100]. For its sequence encoder, we adopt two layers of

9https://github.com/zengjichuan/TMN
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bidirectional GRU and one layer of unidirectional GRU for its

decoder. The hidden size of the GRU is 300 (for bi-GRU, 150

for each direction). For the embedding, its size is set to 150 and

values are randomly initialized. We apply Adam [68] with initial

learning rate as 1e − 3. In training, gradient clipping = 1.0 is

conducted to stabilize the training. Early-stopping strategy [21]

is adopted based on the validation loss. Before joint training,

we pretrain NTM for 100 epochs and KG model for 1 epoch

as the convergence speed of NTM is much slower than the KG

model. We empirically set the γ = 1.0 for balancing NTM and

KG loss (Eq. (3.14)) and iteratively update the parameters in

each module and then their combination in turn.

3.3.4 Comparisons

In comparison, we first consider a simple baseline selecting

majority keyphrases (henceforth Majority) — the top K

keyphrases ranked by their frequency in training data are used

as the keyphrases for all test instances. We also compare with

the following extractive baselines, where n-grams (n = 1, 2, 3)

in source posts are ranked by TF-IDF scores (henceforth TF-

IDF), TextRank algorighm [103] (henceforth TextRank), and

KEA system [156] (henceforth KEA). We also compare with

a neural state-of-the-art keyphrase extraction model based on

sequence tagging [176] (henceforth Seq-Tag). In addition, we

take the following state-of-the-art keyphrase generation models

into consideration: seq2seq model with copy mechanism [100]

(henceforth Seq2Seq-Copy) and its variation Seq2Seq with-

out copy mechanism, Seq2Seq-Corr [24] exploiting keyphrase

correlations, and TG-Net [27] jointly modeling of titles and

descriptions (thereby only tested on StackExchange).



CHAPTER 3. TOPIC-AWARE KEYPHRASE GENERATION 51

3.4 Results and Analysis

In the experiment, we first evaluate our performance on keyphrase

prediction in Section 3.4.1. Then, we study whether jointly

learning keyphrase generation can in turn help produce coherent

topics in Section 3.4.2. At last, further discussions are presented

with an ablation study, a case study, and an analysis for varying

text genres.

3.4.1 Keyphrase Prediction Results

In this subsection, we examine our performance in predicting

keyphrases for social media. We first discuss the main com-

parison results, followed by a discussion for present and absent

keyphrases.

Popular information retrieval metrics macro-average F1@K and

mean average precision (MAP) are adopted for evaluation.

Here for Twitter and Weibo, most posts are tagged with one

keyphrase on average (Table 3.2), thus F1@1 and F1@3 are

reported. For StackExchange, we report F1@3 and F1@5,

because on average, posts have 2.4 keyphrases. MAP is mea-

sured over the top 5 predictions for all three datasets. For

keyphrase matching, we consider keyphases after stemmed by

Porter Stemmer following Meng et al. [100].
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Main Comparison Discussion. Table 3.3 shows the main com-

parison results on our three datasets, where higher scores indi-

cate better performance. From all three datasets, we observe:

• Social media keyphrase prediction is challenging. As can be

seen, all simple baselines give poor performance. This indi-

cates that predicting keyphrases for social media language

is a challenging task. It is impossible to rely on simple

statistics or rules to yield good results.

• Seq2seq-based keyphrase generation models are effective.

Compared to the extractive baselines and Seq-Tag, seq2seq-

based models perform much better. It is because social

media’s informal language style results in a large amount

of absent keyphrases (Table 3.2), which is impossible for

extractive methods to make correct predictions. We also

find Seq2seq-copy better than Seq2seq, suggesting the

effectiveness to combine source word extraction with word

generation when predicting keyphrases.

• Latent topics are consistently helpful for indicating keyphrases.

It is observed that our model achieves the best results,

significantly outperforming all comparisons by a large mar-

gin. This shows the usefulness of leveraging latent topics

in keyphrase prediction. Interestingly, compared with

StackExchange, we achieve larger improvements for Twitter

and Weibo, both exhibiting more informal nature and

prominent word order misuse. For such text genres, latent

topics, learned under BoW assumption, are more helpful.

Also, the following interesting points can be observed by com-

paring results across datasets:
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• Keyphrase generation is more challenging for StackEx-

change. When MAP scores of seq2seq-based methods

are compared over the three datasets, we find that the

scores on StackExchange are generally lower. It is prob-

ably attributed to the data characteristics of more diverse

keyphrases and larger target vocabulary (Table 3.2).

• Twitter and Weibo data is noisier. We notice that TF-

IDF, TextRank, and KEA perform much worse than

Majority, while the opposite is observed on StackEx-

change. It is because Twitter and Weibo, as microblogs,

contain shorter posts (Table 3.2) and exhibit more informal

language styles. In general, models relying on simple word

statistics would suffer from such noisy data.

Present and Absent Keyphrase Prediction. We further discuss

how our model performs in producing present and absent

keyphrases. The comparison results with all neural-based

models are shown in Figure 3.2. Here F1@1 is adopted for

evaluating the prediction of present keyphrases and recall@5 for

absent keyphrases.

The results indicate that our model consistently outperforms

comparison models in predicting either absent or present keyphrases.

Also, interestingly, copy mechanism seems to somehow sacrifice

the performance on absent keyphrase generation for correctly

extracting the present ones. Such side effects, however, are not

observed on our model. It is probably attributed to our ability to

associate posts with corpus-level topics, hence enabling absent

keywords from other posts to be “copied”. This observation

also demonstrates the latent topics can help our model to better

decide whether to copy (Eq. (3.10)).
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Figure 3.2: The prediction results for present (on the top) and absent

keyphrases (on the bottom, R@5: recall@5). For present cases, from left to

right shows the results of Seq-Tag, Seq2Seq, Seq2Seq-Copy, Seq2Seq-

Corr, TG-Net (only for StackExchange), and our model. For absent cases,

models (except Seq-Tag) are shown in the same order.

3.4.2 Latent Topic Analysis

We have shown latent topics useful for social media keyphrase

generation above. Here we analyze whether our model can learn

meaningful topics.

Coherence Score Comparison. We first evaluate topic coherence

with an automatic CV measure. Here we employ Palmetto

toolkit10 [121] on the top 10 words from each latent topic follow-

ing Zeng et al. [174]. The results are only reported on English

Twitter and StackExchange because Palmetto does not support

10https://github.com/dice-group/Palmetto/
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Datasets Twitter StackExchange

LDA 41.12 35.13

BTM 43.12 43.52

NTM 43.82 43.04

Our model 46.28 45.12

Table 3.4: CV topic coherence score comparison on our two English datasets.

Higher scores indicate better coherence. Our model produces the best scores.

LDA
bowl super quote steeler jan watching egypt

playing glee girl

BTM
bowl super anthem national christina aguil-

era fail word brand playing

NTM
super bowl eye protester winning watch half-

time ship sport mena

Our model bowl super yellow green packer steeler nom

commercial win winner

Table 3.5: Top 10 terms for latent topics “super bowl”. Red and underlined

words indicate non-topic words.

Chinese. For comparisons, we consider LDA (implemented with

a gensim LdaMulticore package11), BTM12 [165] (a state-of-the-

art topic model specifically for short texts), and NTM [102]. For

LDA and BTM, we run Gibbs sampling with 1, 000 iterations to

ensure convergence. From the results in Table 3.4, we observe

that our model outperforms all the comparison topic models by

large margins, which implies that jointly exploring keyphrase

generation can in turn help produce coherent topics.

Sample Topics. To further evaluate whether our model can

produce coherent topics qualitatively, we probe into some sample

words (Table 3.5) reflecting the topic “super bowl” discovered

11https://pypi.org/project/gensim/
12https://github.com/xiaohuiyan/BTM
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Model Twitter Weibo SE

Seq2Seq-Copy 36.60 32.01 31.53

Our model (separate train) 36.75 32.75 31.78

Our model (w/o topic-attn) 37.24 32.42 32.34

Our model (w/o topic-state) 37.44 33.48 31.98

Our full model 38.49 34.99 33.41

Table 3.6: Comparison results of our ablation models on three datasets (SE:

StackExchange) — separate train: our model with pretrained latent topics;

w/o topic-attn: decoder attention without topics (Eq. (3.7)); w/o topic-state:

decoder hidden states without topics (Eq. (3.5)). We report F1@1 for Twitter

and Weibo, F1@3 for StackExchange. Best results are in bold.

by various models from Twitter. As can be seen, there are

mixed non-topic words 13 in LDA’s, BTM’s, and NTM’s sample

topic. Compared with them, our inferred topic looks more

coherent. For example, “steeler” and “packer”, names of super

bowl teams, are correctly included into the cluster.

3.4.3 Ablation Study

We compare the results of our full model and its four ablated

variants to analyze the relative contributions of topics on

different components. The results in Table 3.6 indicate the

competitive effect of topics on decoder attention and that on

hidden states, but combining them both help our full model

achieve the best performance. We also observe that pretrained

topics only bring a small boost, indicated by the close scores

yielded by our model (separate train) and Seq2Seq-Copy.

This suggests that the joint training is crucial to better absorb

latent topics.

13Non-topic words refer to words that cannot clearly indicate the corresponding topic,

including off-topic words more likely to reflect other topics.
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Figure 3.3: Attention visualization for the sample post in Table 3.1. Only

non-stopwords are selected. The table below shows the top five words for the

1st topic.

3.4.4 Case Study

We feed the tweet S in Table 3.1 into both Seq2Seq-copy

and our model. Eventually our model correctly predicts the

keyphrase as “super bowl” while Seq2Seq-copy gives a wrong

prediction “team follow back” (posted to ask other to follow

back). To analyze the reason behind, we visualize the attention

weights of two models in Figure 3.3. It can be seen that both

models highlight the common word “team”, which frequently

appears in “team follow back”-tagged tweets. By joint modeling

of latent topics, our model additionally emphasizes topic words

“yellow” and “pants”, which are signals indicating a super bowl

team steeler (also reflected in the 1st topic) and thus helpful to

correctly generate “super bowl” as its keyphrase. Without such

topic guidance, Seq2seq-copy wrongly predicts a common but
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Figure 3.4: Proportion of absent n-gram keyphrases (n: 1, 2, 3, > 3). The

dashed lines with ‘*’ marks: the five scientific article datasets used in [100].

unrelated term “team follow back”.

3.4.5 Topic-Aware KG for Other Text Genres

We have shown the effectiveness of latent topics on social media

keyphrase generation. To examine how they affect in identifying

keyphrases for well-edited language, we also experiment on the

traditional scientific article datasets [100], but limited improve-

ments are observed. Latent topics can better help keyphrase

generation on social media, probably because there are larger

proportion of keyphrases with absent words (Figure 3.4), where

latent topics can cluster relevant posts and enrich the source

contexts. Another possible reason lies in that social media

language exhibits prominent arbitrary word orders. Thus latent

topics, learned under BoW assumption, can better provide

useful auxiliary features.
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3.5 Summary

In this chapter, we have presented a novel topic-aware keyphrase

generation model for social media language. Unlike prior

methods based on extraction or classification, our keyphrase

generation model can create new keyphrases that do not appear

in the source post. In order to alleviate the data sparsity

issue in social media, we exploit the corpus-level latent topics

to enrich features, thereby benefiting the keyphrase prediction.

Particularly, our model allows the joint learning of latent topic

representations in an end-to-end manner. Experimental results

on three newly constructed social media datasets show that

our model significantly outperforms state-of-the-art methods

in keyphrase prediction, meanwhile producing more coherent

topics. Further analysis interprets our superiority to discover

key information from noisy social media data. We release our

code and datasets to benefit future research on text analysis and

topic modeling in social media.



Chapter 4

Encoding Explicit Conversation

for Keyphrase Generation

Social media platforms like microblogging services allow users

to form conversations on issues of interests by replying to target

posts for voicing their opinions. Such conversation contexts can

enrich the limited features conveyed from the short target posts

and thus are useful for identifying their key ideas. This chapter

explores how to improve keyphrase generation by explicitly

encoding conversation contexts for social media posts. The main

points of this chapter are as follows. (1) Unlike most prior work

relying on classification-based methods, we employ a sequence

generation model that can generate rare and even unseen

keyphrases. (2) We propose to leverage the user conversation

with a bi-attention mechanism to model its interactions with

the target post. (3) Experimental results on English Twitter

and Chinese Weibo datasets validate our model’s superiority

over traditional classification methods.

61
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4.1 Introduction

Microblogs have become an essential outlet for individuals to

voice opinions and exchange information. Millions of user-

generated messages are produced every day, far outpacing the

human being’s reading and understanding capacity. As a result,

the current decade has witnessed the increasing demand for

effectively discovering gist information from large microblog

texts. To identify the key content of a microblog post, hashtags,

user-generated labels prefixed with a “#” (such as “#NAACL”

and “#DeepLearning”), have been widely used to reflect top-

ics [166, 55, 83]. Following the common practice in [176, 179],

we regard hashtags as keyphrases for a social media post. By

tagging keyphrases for social media posts, it can further benefit

downstream applications, such as microblog search [37, 10],

summarization [177, 23], sentiment analysis [34, 146], and so

forth. Despite the widespread use of keyphrases, there are a

significant fraction of microblog messages without any user-

provided keyphrases. For example, less than 15% tweets contain

at least one hashtag [146, 64]. Consequently, for a multitude of

posts without human-annotated hashtags, there exists a pressing

need for automating the keyphrase annotation process for them.

Most previous work in this field focuses on extracting phrases

from target posts [176, 179] or selecting candidates from a

predefined list [45, 57, 175]. However, keyphrases usually appear

in neither the target posts nor the given candidate list. The

reasons are two folds. For one thing, microblogs allow large

freedom for users to write whatever keyphrases they like. For

another, due to the wide range and rapid change of social media

topics, a vast variety of keyphrases can be daily created, making
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Target post for hashtag generation

This Azarenka woman needs a talking to from the umpire her weird

noises are totes inappropes professionally. #AusOpen

Replying messages forming a conversation

[T1] How annoying is she. I just worked out what she sounds like one of

those turbo charged cars when they change gear or speed.

[T2] On the topic of noises, I was at the NadalTomic game last night

and I loved how quiet Tomic was compared to Nadal .

[T3] He seems to have a shitload of talent and the postmatch press conf.

He showed a lot of maturity and he seems nice.

[T4] Tomic has a fantastic tennis brain...

Table 4.1: A post and its conversation snippet about “Australian Open”

on Twitter. “#AusOpen” is the human-annotated keyphrase for the target

post. Words indicative of the keyphrase are in blue and italic type.

it impossible to be covered by a fixed candidate list. Prior

research from another line employs topic models to generate

topic words as keyphrases [46, 176]. These methods, ascribed

to the limitation of most topic models, are nevertheless incapable

of producing phrase-level keyphrases.

In this work, we approach keyphrase annotation from a novel

sequence generation framework. In doing so, we enable phrase-

level keyphrases beyond the target posts or the given candidates

to be created. Here, keyphrases are first considered as a sequence

of tokens (e.g., “#DeepLearning” as “deep learning”). Then,

built upon the success of sequence to sequence (seq2seq) model

on language generation [139], we present a neural seq2seq model

to generate keyphrases in a word-by-word manner. To the best of

our knowledge, we are the first to deal with keyphrase annotation

in sequence generation architecture.

In processing microblog posts, one major challenge we might face

is the limited features to be encoded. It is mostly caused by the
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data sparsity exhibited in short and informal microblog posts.1

To illustrate such challenge, Table 4.1 displays a sample Twitter

post tagged with “#AusOpen”, referring to Australian Open

tennis tournament. Only given the short post, it is difficult to

understand why it is tagged with “#AusOpen”, not to mention

that neither “aus” nor “open” appear in the target post. In

such a situation, how shall we generate keyphrases for a post

with limited words?

To address the data sparsity challenge, we exploit conversations

initiated by the target posts to enrich their contexts. Our

approach is benefited from the nature that most messages

in a conversation tend to focus on relevant topics. Con-

tent in conversations might hence provide contexts facilitating

the understanding of the original post [23, 81]. The effects

of conversation contexts, useful on topic modeling [83, 85]

and keyphrase extraction [179], have never been explored on

microblog keyphrase generation. To show why conversation

contexts are useful, we display in Table 4.1 a conversation

snippet formed by some replies of the sample target post. As can

be seen, key content words in the conversation (e.g., “Nadal”,

“Tomic”, and “tennis”) are useful to reflect the relevance of

the target post to the keyphrase “#AusOpen”, because Nadal

and Tomic are both professional tennis players. Concretely,

our model employs a dual encoder (i.e., two encoders), one for

the target post and the other for the conversation context, to

capture the representations from the two sources. Furthermore,

to capture their joint effects, we employ a bidirectional attention

(bi-attention) mechanism [129] to explore the interactions

between two encoders’ outputs. Afterward, an attentive decoder

1For instance, the eligible length of a post on Twitter or Weibo is up to 140 characters.
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is applied to generate the word sequence of the keyphrase.

In experiments, we construct two large-scale datasets, one from

English platform Twitter and the other from Chinese Weibo.

Experimental results based on both information retrieval and

text summarization metrics show that our model generates

keyphrases closer to human-annotated ones than all the compar-

ison models. For example, our model achieves 45.03% ROUGE-

1 F1 on Weibo, compared to 25.34% given by the state-of-

the-art classification-based method. Further comparisons with

classification-based models show that our model, in a sequence

generation framework, can better produce rare and even new

keyphrases.

To summarize, our contributions are three-fold:

• We are the first to approach microblog keyphrase annota-

tion with sequence generation architecture.

• To alleviate data sparsity, we enrich context for short target

posts with their conversations and employ a bi-attention

mechanism for capturing their interactions.

• Our proposed model outperforms state-of-the-art models

by large margins on two large-scale datasets, constructed

as part of this work.

4.2 Conv-aware Neural Keyphrase Genera-

tion Model

In this section, we describe our framework shown in Figure 4.1,

which is a conv-aware (short for conversation-aware) keyphrase

generation model. There are two major modules: a dual encoder
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to encode both target posts and their conversations with a bi-

attention module to explore their interactions, and a decoder to

generate keyphrases.

Input and Output Formally, given a target post xp formulated

as word sequence 〈xp1, x
p
2, ..., x

p
|xp|〉 and its conversation context

xc formulated as word sequence 〈xc1, xc2, ..., xc|xc|〉, where |xp| and

|xc| denote the number of words in the input target post and

its conversation, respectively, our goal is to output a keyphrase

y represented by a word sequence 〈y1, y2, ..., y|y|〉. For training

instances tagged with multiple gold-standard keyphrases, we

copy the instances multiple times, each with one gold-standard

keyphrase following Meng et al. [100]. All the input target posts,

conversations, and keyphrases share the same vocabulary V .

4.2.1 Post-Conversation Dual Encoder

To capture representations from both target posts and conver-

sation contexts, we design a dual encoder, composed of a post

encoder and a conversation encoder, each taking the xp and xc

as input, respectively.

For the post encoder, we use a bidirectional gated recurrent unit

(Bi-GRU) [30] to encode the target post xp, where its embed-

dings e(xp) are mapped into hidden states hp = 〈hp1,h
p
2, ...,h

p
|xp|〉.

Specifically, hpi = [
−→
hpi ;
←−
hpi ] is the concatenation of forward hidden

state
−→
hpi and backward hidden state

←−
hpi for the i-th token:

−→
hpi = GRU(e(xpi ),

−−→
hpi−1), (4.1)

←−
hpi = GRU(e(xpi ),

←−−
hpi+1). (4.2)
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Figure 4.1: Our Conv-aware keyphrase generation framework with a dual

encoder, including a post encoder and a conversation encoder, where a bi-

attention (bi-att) module distills their salient features, followed by a merge

layer to fuse them. An attentive decoder generates the keyphrase sequence.

Likewise, the conversation encoder converts conversations into

hidden states hc via another Bi-GRU. The dimensions of both

hp and hc are d.

Bi-attention. To further distill useful representations from our

two encoders, we employ the bi-attention module to explore the

interactions between the target posts and their conversations.

The adoption of bi-attention mechanism is inspired by Seo et

al. [129], where the bi-attention was applied to extract query-

aware contexts for machine comprehension. Our intuition is
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that the content concerning the key points in target posts

might have their relevant words frequently appearing in their

conversation contexts, and vice versa. In general, such content

can reflect what the target posts focus on and hence effectively

indicate what keyphrases should be generated. For instance, in

Table 4.1, names of tennis players (e.g., “Azarenka”, “Nadal”,

and “Tomic”) are mentioned many times in both target posts

and their conversations, which reveals why the keyphrase is

“#AusOpen”.

To this end, we first put a post-aware attention on the conver-

sation encoder with coefficients:

αcij =
exp(fscore(h

p
i ,h

c
j))∑|xc|

j′=1 exp(fscore(h
p
i ,h

c
j′))

, (4.3)

where the alignment score function fscore(h
p
i ,h

c
j) = hpiWbi−atth

c
j

captures the similarity of the i-th word in the target post and the

j-th word in its conversation. Here Wbi−att ∈ Rd×d is a weight

matrix to be learned. Then, we compute a context vector rc

conveying post-aware conversation representations, where the

i-th value is defined as:

rci =

|xc|∑
j=1

αcijh
c
j. (4.4)

Analogously, a conversation-aware attention on post encoder is

used to capture the conversation-aware post representations as

rp.

Merge Layer. Next, to further fuse representations distilled by

the bi-attention module on each encoder, we design a merge

layer, a multilayer perceptron (MLP) activated by hyperbolic
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function:

vp = tanh(Wp[h
p; rc] + bp), (4.5)

vc = tanh(Wc[h
c; rp] + bc), (4.6)

where Wp,Wc ∈ Rd×2d and bp,bc ∈ Rd are trainable parame-

ters.

Note that either vp or vc conveys the information from both

posts and conversations, but with a different emphasis. Specifi-

cally, vp mainly retains the contexts of posts with the auxiliary

information from conversations, while vc does the opposite.

Finally, vectors vp and vc are concatenated and fed into the

decoder for keyphrase generation.

4.2.2 Sequence Decoder

Given the representations v = [vp; vc] produced by our dual

encoder with bi-attention, we apply an attention-based GRU

decoder to generate a word sequence y as the keyphrase. The

probability to generate the keyphrase conditioned on a target

post and its conversation is defined as:

Pr(y|xp,xc) =

|y|∏
t=1

Pr(yt|y<t,xp,xc), (4.7)

where y<t refers to (y1, y2, ..., yt−1).

Concretely, when generating the t-th word in keyphrase, the

decoder emits a hidden state vector st ∈ Rd and puts a global

attention over v. The attention aims to exploit indicative

representations from the encoder outputs v and summarizes

them into a context vector ct defined as:

ct =

|xp|+|xc|∑
i=1

αdtivi, (4.8)
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αdti =
exp(gscore(st,vi))∑|xp|+|xc|

i′=1 exp(gscore(st,vi′)
, (4.9)

where gscore(st,vi) = stWattvi is another alignment function

(Watt ∈ Rd×d) to measure the similarity between st and vi.

Finally, we map the current hidden state st of the decoder

together with the context vector ct to a word distribution over

the vocabulary V via:

Pr(yt|y<t,xp,xc) = softmax(Wv[st; ct] + bv), (4.10)

which reflects how likely a word to be the t-th word in the

generated keyphrase sequence. Here Wv ∈ RV×2d and bv ∈ RV

are trainable weights.

4.2.3 Learning and Inferring Keyphrases

During the training stage, we apply stochastic gradient descent

to minimize the loss function of our entire framework, which is

defined as:

L(Θ) = −
N∑
n=1

log(Pr(yn|xpn,xcn; Θ)). (4.11)

Here N is the number of training instances and Θ denotes the

set of all the learnable parameters.

In keyphrase inference, based on the produced word distribution

at each time step, word selection is conducted using beam

search. In doing so, we generate a ranking list of output

keyphrases, where the top K keyphrases serve as our final

output.

4.3 Experimental Setup

Here we describe how we set up our experiments.
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Datasets
# of Avg len Avg len Avg len # of tags

posts of posts of convs of tags per post

Twitter 44,793 13.27 29.94 1.69 1.14

Weibo 40,171 32.64 70.61 2.70 1.11

Table 4.2: Statistics of our datasets. Avg len of posts, convs, tags refer to the

average number of words in posts, conversations, and hashtags, respectively.

4.3.1 Datasets

Two large-scale experiment datasets are newly collected from

popular microblog platforms: an English Twitter dataset and a

Chinese Weibo dataset. The Twitter dataset was built based on

the TREC 2011 microblog track.2 To recover the conversations,

we used Tweet Search API to fetch “in-reply-to” relations

in a recursive way. The Weibo dataset was collected from

January to August 2014 using Weibo Search API via searching

messages with the trending queries3 as keywords. For gold-

standard keyphrases, we take the user-annotated keyphrases,

appearing before or after a post, as the reference.4 The statistics

of our datasets are shown in Table 4.2. We randomly split

both datasets into three subsets, where 80%, 10%, and 10%

of the data corresponds to training, development, and test sets,

respectively.

To further investigate how challenging our problem is, we

show some statistics of the keyphrases in Table 4.3 and the

distributions of keyphrase frequency in Figure 4.2. In Table

4.3, we observe the large size of keyphrases in both datasets.

Moreover, Figure 4.2 indicates that most keyphrases only appear

2https://trec.nist.gov/data/tweets/
3http://open.weibo.com/wiki/Trends/
4keyphrases in the middle of a post are not considered here as they generally act as

semantic elements [176, 179].
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Datasets |Tagset| P C P ∪ C
Twitter 4,188 2.72% 5.58% 7.69%

Weibo 5,027 8.29% 6.21% 12.52%

Table 4.3: Statistics of the keyphrases. |Tagset|: the number of distinct

keyphrases. P , C, and P∪C: the percentage of keyphrases appearing in their

corresponding posts, conversations, and the union set of them, respectively.
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Figure 4.2: Distribution of keyphrase frequency. The horizontal axis refers

to the occurrence count of keyphrases (shown with maximum 50 and bin 5)

and the vertical axis denotes the data proportion.

a few times. Given such a large and imbalanced keyphrase space,

keyphrase selection from a candidate list, as many existing

methods do, might not perform well. Table 4.3 also shows that

only a small proportion of keyphrases appearing in their posts,

conversations, and either of them, making it inappropriate to

directly extract words from the two sources to form keyphrases.

4.3.2 Preprocessing

For tokenization and word segmentation, we employed the tweet

preprocessing toolkit [11] for Twitter, and the Jieba toolkit5 for

Weibo. Then, for both Twitter and Weibo, we further take the

following preprocessing steps: First, single-character keyphrases

were filtered out for not being meaningful. Second, generic

5https://pypi.python.org/pypi/jieba/
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tags, i.e., links, mentions (@username), and numbers, were

replaced with “URL” “MENTION”, and “DIGIT”, respectively.

Third, inappropriate replies (e.g., retweet-only messages) were

removed, and the remainder were chronologically ordered to

form a sequence as conversation contexts. Last, a vocabulary

was maintained with the 30K and 50K most frequent words,

for Twitter and Weibo, respectively.

4.3.3 Comparisons

For experiment comparisons, we first consider a weak baseline

Random that randomly ranks keyphrases seen from training

data. Two unsupervised baselines are also considered, where

words are ranked by latent topics induced with the latent

Dirichlet allocation topic model (henceforth LDA), and by their

TF-IDF scores (henceforth Tf-Idf). Here for TF-IDF scores,

we consider the N -gram Tf-Idf (N ≤ 5). Besides, we compare

with supervised models below:

• Extractor: Following Zhang et al. [179], we extract

phrases from target posts as keyphrases via sequence tag-

ging and encode conversations with memory networks [137].

• Classifier: We compare with the state-of-the-art model

based on classification [45], where keyphrases are selected

from candidates seen in training data. Here two versions

of their classifier are considered, one only taking a target

post as input (henceforth Classifier (post only)) and the

other taking the concatenation of a target post and its con-

versation as input (henceforth Classifier (post+conv)).

• Generator: A seq2seq generator (henceforth Seq2Seq) [139]

is applied to generate keyphrases given a target post.
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We also consider its variant augmented with copy mech-

anism [48] (henceforth Seq2Seq-copy), which has proven

effective in keyphrase generation [100] and also takes the

post as input. The proposed seq2seq with the bi-attention

to encode both the post and its conversation is denoted as

Our model for simplicity.

4.3.4 Model Settings

We conduct model tunings on the development set based on grid

search, where the hyper-parameters that give the lowest objec-

tive loss are selected. For the sequence generation models, the

implementations are based on the OpenNMT framework [70].

The word embeddings, with dimension set to 200, are randomly

initialized. For encoders, we employ two layers of Bi-GRU cells,

and for decoders, one layer of GRU cell is used. The hidden

size of all GRUs is set to 300. In learning, we use the Adam

optimizer [68] with the learning rate initialized to 0.001. We

adopt the early-stop strategy: the learning rate decreases by a

decay rate of 0.5 till either it is below 1e−6 or the validation

loss stops decreasing. The norm of gradients is rescaled to 1 if

the L2-norm > 1 is observed. The dropout rate is 0.1 and the

batch size is 64. In inference, we set the beam-size to 20 and

the maximum sequence length of a keyphrase to 10.

For Classifier and Extractor, lacking publicly available

codes, we reimplement the models using Keras.6 Their results

are reproduced in their original experiment settings. For LDA,

we employ an open source toolkit lda.7

6https://keras.io/
7https://pypi.org/project/lda/
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Evaluation Metrics. Popular information retrival evaluation

metrics F1 scores at K (F1@K) and mean average precision

(MAP) scores [97] are reported. Here, different K values are

tested on F1@K and result in a similar trend, so only F1@1 and

F1@5 are reported. MAP scores are also computed given the top

5 outputs. Besides, as we consider a keyphrase as a sequence

of words, ROUGE metrics for summarization evaluation [88]

are also adopted. Here, we use ROUGE F1 for the top-

ranked keyphrase prediction computed by an open source toolkit

pythonrouge,8 with Porter stemmer used for English tweets. For

Weibo posts, scores calculated at the Chinese character level

following Li et al. [85]. We report the average scores for multiple

gold-standard keyphrases on ROUGE evaluation.

4.4 Results and Analysis

In this section, we first report the main comparison results

in Section 4.4.1, followed by an in-depth comparative study

between classification and sequence generation models in Sec-

tion 4.4.2. Further discussions are then presented to analyze

our superiority and errors.

8https://github.com/tagucci/pythonrouge
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4.4.1 Main Comparison Results

Table 4.4 reports the main comparison results. For Classi-

fier, their outputs are ranked according to the logits after

a softmax layer. For Extractor, it is unable to produce

ranked keyphrases and thus no results are reported for F1@5

and MAP. For LDA, as it cannot generate bigram keyphrases,

no results are presented for ROUGE-SU4. In general, we have

the following observations:

• keyphrase annotation is more challenging for Twitter than

Weibo. Generally, all models perform worse on Twitter

measured by different metrics. The intrinsic reason is the

essential language difference between English and Chinese

microblogs. English allows higher freedom in writing,

resulting in more variety in Twitter keyphrases (e.g., ab-

breviations are prominent like “aus” in “#AusOpen”). For

statistical reasons, Twitter keyphrases are more likely to

be absent in either posts or conversations (Table 4.3), and

have a more severe imbalanced distribution (Figure 4.2).

• Topic models and extractive models are ineffective for keyphrase

annotation. The poor performance of all baseline models

indicates that keyphrase annotation is a challenging prob-

lem. LDA sometimes performs even worse than Random

due to its inability to produce phrase-level keyphrases. For

extractive models, both Tf-Idf and Extractor fail to

achieve good results. It is because most keyphrases are

absent in target posts, as we see in Table 4.3 that only

2.72% keyphrases on Twitter and 8.29% on Weibo appear in

target posts. This confirms that extractive models, relying

on word selection from target posts, cannot well fit the
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keyphrase annotation scenario. For the same reason, copy

mechanism fails to bring noticeable improvements for the

seq2seq generator on both datasets.

• Sequence generation models outperform other counterparts.

When comparing Generators with other models, we find

the former uniformly achieve better results, showing the

superiority to produce keyphrases with sequence generation

framework. Classification models, though as the state of

the art, expose their inferiority as they select labels from

the large and imbalanced keyphrase space (reflected in

Table 4.3 and Figure 4.2).

• Conversations are useful for keyphrase generation. Among

the sequence generation models, Our model achieves the

best performance across all the metrics. The observation

indicates the usefulness of bi-attention in exploiting the

joint effects of target posts and their conversations, which

further helps in identifying indicative features from both

sources for keyphrase generation. However, interestingly,

incorporating conversations fails to boost the classification

performance. The reason why Our model better exploits

conversations than Classifier (post+conv) might be that

we can attend the indicative features when decoding each

word in the keyphrase, which is however not possible for

classification models (considering keyphrases to be insepa-

rable).

4.4.2 Classification vs. Generation

From Table 4.4, we observe that the classifiers outperform topic

models and extractive models by a large margin but exhibit
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Figure 4.3: F1@1 on Twitter (the left subfigure) and Weibo (the right

subfigure) in inferring keyphrases with varying frequency. In each subfigure,

from left to right shows the results of Classifier (post only), Classifier

(post+conv), Seq2Seq, and Our model. Generation models consistently

perform better.

generally worse results than sequence generation models. Here,

we present a thorough study to compare keyphrase classifica-

tion and generation. Four models are selected for compari-

son: two classifiers, Classifier (post only) and Classifier

(post+conv), and two sequence generation models, Seq2Seq

and Our model. Below, we explore how they perform to

predict rare and new keyphrases.

Rare keyphrases. According to the keyphrase distributions in

Figure 4.2, we can see a large proportion of keyphrases appearing

only a few times in the data. To study how models perform to

predict such keyphrases, in Figure 4.3, we display their F1@1

scores in inferring keyphrases with varying frequency. The lower

F1 score on less frequent keyphrases indicates the difficulty to

yield rare keyphrases. The reason probably comes from the

overfitting issue caused by limited data to learn from.

We also observe that sequence generation models achieve consis-

tently better F1@1 scores on keyphrases with varying sparsity
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Model Twitter Weibo

Classifier (post only) 1.15 1.65

Classifier (post+conv) 1.13 1.52

Seq2Seq 1.33 10.84

Our model 1.48 12.55

Table 4.5: ROUGE-1 F1 scores (%) in producing unseen keyphrases. Best

results are in bold.

degree, while classification models suffer from the label sparsity

issue and obtain worse results. The better performance of the

former might result from the word-by-word generation manner

in keyphrase generation, which enables the internal structure of

keyphrases (how words form a keyphrase) to be exploited.

New keyphrases. To further explore the extreme situation where

keyphrases are absent in the training set, we experiment to see

how models perform in handling new keyphrases. To this end,

we additionally collect instances tagged with keyphrases absent

in training data and construct an external test set, with the

same size as our original test set. Considering that classifiers will

never predict unseen labels, to ensure comparable performance,

we only adopt summarization metrics here for evaluation and

report ROUGE-1 F1 scores in Table 4.5.

As can be seen, creating unseen keyphrases is a challenging

task, where unsurprisingly, all models perform poorly on this

task. Nevertheless, sequence generation models perform much

better on both datasets, e.g., at least 6.5x improvements over

classification models observed on Weibo dataset. For Twitter

dataset, the improvements are not that large, which confirms

again that keyphrase annotation on Twitter is more difficult
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Model Twitter Weibo

Seq2seq (post only) 10.44 26.00

Seq2seq (conv only) 6.27 18.57

Seq2seq (post + conv) 11.24 29.85

Our model (post-att only) 11.18 28.67

Our model (conv-att only) 10.61 28.06

Our model (full) 12.29 31.96

Table 4.6: F1@1 scores (%) for our variants. Best results are in bold.

due to the noisier data characteristics. In particular, compared

to seq2seq, our model achieves an additional performance

gain in producing new keyphrases by leveraging conversations

with the bi-attention module.

4.4.3 Ablation Study

We report the ablation study results in Table 4.6 to examine the

relative contributions of the target posts and the conversation

contexts. To this end, our model is compared with its five

variants below: Seq2Seq (post only), Seq2Seq (conv only),

and Seq2Seq (post+conv), using standard seq2seq to generate

keyphrases from their target posts, conversation contexts, and

their concatenation, respectively; Our model (post-att only)

and Our model (conv-att only), whose decoder only takes vp

and vc defined in Eq. (4.5) and Eq. (4.6), respectively. The

results show that solely encoding target posts is more effective

than modeling the conversations alone, but exploring their joint

effects can further boost the performance, especially combined

with a bi-attention mechanism over them.
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Model Top five outputs

LDA found; stated; excited; card; apparently

TF-IDF inappropes; umpire; woman need; azarenka

woman; the umpire

Classifier fail; facebook; just saying; quote; pro choice

Seq2seq fail; jan 25; yr; eastenders; facebook

Our model aus open ; bbc football ; bbc aus ; arsenal ;

murray

Table 4.7: Model outputs for the target post in Table 4.1. “aus open”

matches the gold-standard keyphrase.

4.4.4 Case Study

We further present a case study on the target post shown in

Table 4.1, where the top five outputs of some comparison models

are displayed in Table 4.7. As can be seen, only our model suc-

cessfully generates “aus open”, the gold standard. Particularly,

it not only ranks the correct answer as the top prediction, but

also outputs other semantically similar keyphrases, e.g., sport-

related terms like “bbc football”, “arsenal”, and “murray”. On

the contrary, Classifier and Seq2Seq tend to yield frequent

keyphrases, such as “just saying” and “jan 25 ”. Baseline models

also perform poorly: LDA produces some common single word,

and TF-IDF extracts phrases in the target post, where the

gold-standard keyphrase is however absent.

To analyze why our model obtains superior results in this

case, we display the heatmap in Figure 4.4 to visualize our bi-

attention weight matrix Wbi−att. As we can see, the bi-attention

mechanism can identify the indicative word “Azarenka” in

the target post, via highlighting its other pertinent words in

conversations, e.g., “Nadal” and “tennis”. In doing so, salient

words in both the post and its conversations can be unveiled,
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Figure 4.4: Visualization of the bi-attention module given the input case in

Table 4.1. The horizontal axis denotes a snippet of a truncated conversation.

The vertical axis shows the target post. Salient words are highlighted.

facilitating the correct keyphrase “aus open” to be generated.

4.4.5 Error Analysis

Taking a closer look at our outputs, we find that one type

of major errors comes from the unmatched outputs with gold

standards, even as a close guess. For example, our model

predicts “super bowl” for a post tagged with “#steelers”, a team

in super bowl. In future work, the semantic similarity should

be considered in keyphrase evaluation. Another primary type

of error is caused by the non-topic keyphrases, such as “#fb”

(indicating the messages forwarded from Facebook). Such non-

topic keyphrases cannot reflect any content information from
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target posts and should be distinguished from topic keyphrases

in the future.

4.5 Summary

In this chapter, we have presented a novel framework of keyphrase

generation via jointly modeling of target posts and conversation

contexts. To this end, we have proposed a neural seq2seq model

with bi-attention over a dual encoder for capturing indicative

representations from the two sources. Experimental results

on two newly collected datasets have demonstrated that our

proposed model significantly outperforms existing state-of-the-

art models. Further studies have shown that our model can

effectively generate rare and even unseen keyphrases.



Chapter 5

Cross-Media Keyphrase

Prediction: A Unified

Framework with

Multi-Modality Multi-Head

Attention and Image Wordings

With the advent of mobile Internet, more and more social

media posts contain images to convey more diverse and com-

plex information from the authors. Such images can provide

complementary knowledge to the target post and thus should

be exploited for better cross-media understanding. This chap-

ter investigates the combined effects of texts and images for

indicating keyphrases for a multimedia post. The main points

of this chapter are as follows. (1) We propose to exploit image

wordings to bridge the text-image semantic gap and design a

novel M3H-Att to capture the dense interactions between them

better. (2) We propose a unified framework to integrate the

outputs of keyphrase classification and generation and couple

their advantages. (3) Experiments on a text-image Twitter

dataset demonstrate the effectiveness of our model.

85
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Post (a): Contemplating the

mysteries of life from inside my

egg carton...,

Post (b): The <mention> have

the slight lead at halftime!

#cat #cats #CatsOfTwitter #NBAFinals

Figure 5.1: Two multimedia posts from Twitter, where texts offer limited

help in identifying their keyphrases while images provide essential clues.

5.1 Introduction

The prominent use of social media platforms (such as Twitter)

exposes individuals with an abundance of fresh information

in a wide variety of forms such as texts, images, videos, etc.

Meanwhile, the explosive growth of multimedia data has far

outpaced individuals’ capability to understand them, presenting

a concrete challenge to digest massive amounts of data, distill

the salient contents therein, and provide users with quick access

to the information they need when navigating noisy online data.

To that end, extensive efforts have been made to social media

keyphrase prediction — aiming to produce a sequence of words

that reflect a post’s key concern. Nevertheless, previous work

mostly focuses on the use of textual signals [179, 148, 150], which

sometimes provide limited features as social media language is
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essentially informal and fragmented. To enrich the contexts,

here we resort to exploiting the matching images, which are

widely used in social media posts to deliver auxiliary information

from authors (e.g., opinions, feelings, topics, etc.), primarily due

to the flourish of mobile Internet.

To illustrate our motivation, Figure 5.1 shows the texts and

images of two Twitter posts (tweets). The left is tagged with

a keyphrase “cat”, which can be clearly signaled with its image

while the paired text is an anthropomorphic description and

hardly unveils its real semantics. For the right, the image depicts

a basketball game scene with optical characters “2019 NBA

FINALS”, directly indicating its keyphrase, which is difficult

to identify from the texts. In both examples, images play

a more vital role in reflecting the key information. These

points motivate our cross-media keyphrase prediction study that

examines how the salient contents can be indicated by the

coupled effects of post texts and their matching images.

Previous work [175, 178] employs co-attention networks [94, 163]

to encode multimedia posts, where a single attention function

is concurrently performed to infer either visual or textual

distributions. We argue that they might be suboptimal to model

intricate text-image associations, as a recent finding [142] points

out there can be four diverse semantic relations held by images

and texts on Twitter. To allow for better modeling, in this

work, we take advantage of the recent advance of multi-head

attention [141] capable of learning from different representation

subspaces and extend it to capture diverse cross-media inter-

actions, named as Multi-Modality Multi-Head Attention (M3H-

Att). Moreover, to well align the images’ semantics to texts’, we

adopt image wordings and define two forms for that — explicit
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optical characters (such as “NBA Finals” in post (b)) detected

from the optical character reader (OCR) and implicit image

attributes [157], high-level text labels predicted to summarize

the image’s semantic concepts (such as a “cat” label for post

(a)).

Furthermore, unlike prior work employing either classification

[45] or generation models [148], we propose a unified frame-

work to couple the advantages of keyphrase classification and

generation. Specifically, in addition to the joint training of

both modules, we further extend the copy mechanism [127] to

explicitly aggregate classification outputs together with tokens

from the source input. Empirical results show that integrating

classification outputs not only keeps classification’s superiority

to predict common keyphrases (Figure 5.7(c)) while enables

keyphrase creation beyond a predefined candidate list, but also

largely benefits the keyphrase generation with better absent

keyphrase prediction (Figure 5.7(b)).

For experiments, we collect large-scale tweets with texts and

images, which is presented as part of our work. The empirical

results show that our model significantly outperforms the state-

of-the-art (SOTA) methods using traditional attention mecha-

nisms. For example, we obtain 47.06% F1@1 compared with

43.17% by [148] (keyphrase generation from texts only) and

42.12% by [175] (multi-modal keyphrase classification). We

then examine how we perform to handle absent and present

keyphrases, and varying keyphrase frequency and post length.

The results indicate the consistent performance boost brought

by our M3H-Att design in diverse scenarios and the significant

benefit to absent keyphrase prediction offered from our unified

framework (Section. 5.4.2). We further quantify the effects of
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different settings of multi-head attention and image wordings

to see when and how they work the best (Section. 5.4.3). A

qualitative analysis is given at last to interpret why our model

results in superior multimedia understanding (Section. 5.4.4).

In summary, our contributions are three-fold:

• We extensively study the joint effects of texts and images

for social media keyphrase prediction and present a large-

scale Twitter dataset for that.

• A novel design of Multi-Modality Multi-Head Attention

(M3H-Att) and image wordings are proposed to effectively

capture dense interactions between texts and images in

social media styles.

• To the best of our knowledge, we are the first to propose

a unified framework coupling classification and generation

models for keyphrase prediction, which shows promising

empirical results.

5.2 Unified Cross-Media Keyphrase Predic-

tion Model

Given a collection C with |C| text-image post pairs {(xn, In)}|C|n=1

as input, we aim to predict a keyphrase set Y = {yi}|Y|i=1 for

each of them. Following Meng et al. [100], we copy the source

input pair multiple times to allow each paired to have one

keyphrase. We represent each input as a triplet (x, I,y), where

x and y are formulated as word sequences x = 〈x1, ..., xlx〉 and

y = 〈y1, ..., yly〉 (lx and ly denote the number of words).

We show the overview of our proposed cross-media keyphrase

prediction model in Figure 5.2. We first encode a text-image
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The … lead at halftime!  <sep>  NBA FINALS … OCR

Text Modality
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𝜶𝑡

𝒄𝑓𝑢𝑠𝑒

𝜷

𝑢𝑡

ℎ1 ℎ2 ℎ𝑙𝑥

1 − 𝜆𝑡

𝜆𝑡

Extractive

𝑎 𝑏

Figure 5.2: The overview of our unified cross-media keyphrase prediction

model. Work flow: (1) a text-image post is encoded into text, attribute, and

vision modalities; (2) the encoded features are fused with M3H-Att; (3) the

output of a keyphrase classifier and generator are aggregated for a unified

prediction.

tweet into three modalities: text, attribute, and vision (Sec-

tion 5.2.1), and propose a Multi-Modality Multi-Head Attention

(M3H-Att) to capture their intricate interactions (Section 5.2.2).

Then, we feed the learned multi-modality representations for

either keyphrase classification or generation. At last, a tailored

aggregator is devised to combine their outputs (Section 5.2.3)

and the entire framework can be jointly trained in an end-to-end

manner (Section 5.2.4).
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5.2.1 Multi-modality Encoder

Learning Text Representation. We first embed each token xi
from the input sequence into a high-dimensional vector via a

pretrained lookup table, and then employ bidirectional gated

recurrent unit (Bi-GRU) [30] to encode the embedded input

token e(xi):

−→
hi = GRU(e(xi),

−−→
hi−1), (5.1)

←−
hi = GRU(e(xi),

←−−
hi+1). (5.2)

Forward hidden state
−→
hi and backward one

←−
hi are later con-

catenated into hi = [
−→
hi ;
←−
hi ]. We employ it as the context-aware

representation of xi and pack all of them in the input sequence

into a textual memory bank Mtext = {hi, ...,hlx} ∈ Rlx×d, where

d denotes the hidden state dimension.

Encoding OCR Text. To detect optical characters from images,

we use an open-source toolkit [133] to extract OCR texts in form

of a word sequence. It is then appended into the post text with a

delimited token 〈sep〉 to notify the change of text genres, which

is shown to be a simple yet effective design to combine OCR

features (Table 5.4).

Learning Image Representation. We consider two types of image

representations: grid-level or object-level visual features. For

the former, we apply a pretrained VGG-16 Net [132] to extract

7 × 7 convolutional feature maps for each image I. For the

latter, inspired by bottom-up attention [5], we use the Faster-

RCNN [120] pretrained on Visual Genome [72] to detect the

objects and extract their features. Each feature map is further
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transformed into a new vector vi through a linear projection

layer. As such, we construct a visual memory bank as Mvis =

{v1, ...,vlv} ∈ Rlv×d, where lv denotes the number of image

regions or objects.

Encoding Image Attribute. Following Cai et al. [19], we first

train an attribute predictor based on the Resnet-152 [53] fea-

tures on Microsoft COCO 2014 caption dataset [89]. Specifically,

we extract noun and adjective tokens from the image captions

as the attribute labels. Afterwards, the top five attributes of

each image are mapped with another linear layer to produce the

attribute memory bank Mattr = {a1, ..., a5} ∈ R5×d, which aims

to capture images’ high-level semantic concepts.

5.2.2 Multi-modality Multi-Head Attention

Our design of multi-head attention is inspired by its prototype

in Transformer [141]. We extend it to capture multiple forms

of cross-modality interactions for a multimedia post, which is

therefore named as M3H-Att, short for Multi-Modality Multi-

Head Attention. The three modalities (text, attribute, and vi-

sion) are modeled in a pairwise co-attention manner, compared

with its original form as a self-attention over texts only.

For each co-attention, we perform scaled dot attention A on a

set of {Query, Key, Value}:

A(Q,K,V) = softmax(
QKT

√
dK

)V, (5.3)

AMulti-head(Q,K,V) = [head1; ...;headH ]WO, (5.4)

where headh = A(QWQ
h ,KWK

h ,VWV
h ). (5.5)
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WQ
h ,W

K
h ,W

V
h ∈ Rd×dH are learnable weights to project the

query, key, and value from dimension d to a lower space

of dH-dimension and H is the head number. Outputs from

all the heads are concatenated in AMulti-head and passed to a

feedforward network with residual connections [53] and layer

normalization [7].

Specifically, we employ the text features as a query to at-

tend to the vision/attribute modality and vice versa.1 Here

max/average-pooling is adopted to obtain one holistic query

vector for each modality instead of token-level queries consid-

ering the noisy nature of social media data. Moreover, we stack

multiple co-attention layers to empower its modeling capability,

where Ltext, Lattr, Lvis denote the number of stacked layers for

text, attribute, and vision queries. After that, the outputs from

all co-attention layers are summed up with a linear multi-modal

fusion layer to produce a context vector cfuse ∈ Rd. It will

be fed into a keyphrase classifier and generator for the unified

prediction. Notably, this indicates that our M3H-Att’s great

potential to serve as a generic module for benefiting other cross-

media applications.

5.2.3 Unified Keyphrase Prediction

We describe how we combine the keyphrase classification and

generation for the unified prediction.

Keyphrase Classification. As each keyphrase y usually consists

of only several tokens, it can be considered as a discrete integral

label and predicted it with a keyphrase classifier. Here we

1We also try other combinations, e.g., M3H-Att between the vision and attribute, but

the improvements are negligible.
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Figure 5.3: Overview of M3H-Att to fuse multi-modal features from text,

attribute, and vision modalities.

directly pass the multi-modal context vector cfuse into a two-

layer of multi-layer perceptron (MLP) and map it to ŷ in the

label vocabulary space Vcls:

Pcls(y) = softmax(MLPcls(cfuse)). (5.6)

Keyphrase Generation with Pointer. For keyphrase generation,

we base on a sequence-to-sequence framework to predict the

keyphrase word sequence y = 〈y1, ..., yly〉, where the generation

probability is defined as
∏ly

t=1 P (yt |y<t).
Concretely, we use an unidirectional GRU decoder to model

the generation process, which emits the hidden state st =

GRU(st−1,ut) ∈ Rd based on the previous hidden state st−1 and

the embedded decoder input ut. The decoder state is initialized

by the last hidden state hlx of the text encoder. Here an

attention mechanism [8] is adopted to obtain a textual context
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ctext:

ctext =

lx∑
i=1

αt,ihi, (5.7)

αt,i = softmax(S(st,hi)), (5.8)

S(st,hi) = vTα tanh(Wα[st; hi] + bα), (5.9)

where S(st,hi) is a score function to measure the compatibility

between the t-th word to be decoded and the i-th word from the

text encoder. Wα ∈ Rd×2d,bα,v ∈ Rd are trainable weights.

Next, we incorporate the static multi-modal vector cfuse (pro-

duced by M3H-Att and independent of the decoder state) to

construct a context-rich representation ct = [ut; st; ctext⊕ cfuse],

where ⊕ denotes the addition operation. Based on it, we apply

another MLP with softmax to produce a word distribution over

token vocabulary Vgen:

Pgen(yt) = softmax(MLPgen(ct)). (5.10)

To further allow the decoder to explicitly extract words from the

source post, we apply the copy mechanism [127] by calculating

a soft switch λt ∈ [0, 1] with a sigmoid-activated MLP on ct.

It indicates whether to generate the word from the vocabulary

Vgen or copy it from the input sequence, where the extractive

distribution is decided by the text attention weights αt,i in

Eq. (5.8).

Classification Output Aggregation. We further extend the copy

mechanism to aggregate the classification’s outputs to benefit

keyphrase generation. First, we retrieve the top-K predictions

from the classifier and convert each into the word sequence w =

〈w1, ..., wlw〉, where lw is the sequence length of the combined
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predictions. Then, we normalize their classification logits using

softmax into a word-level distribution β ∈ Rlw , which represents

the extractive probability from the classification output. Finally,

we obtain the unified prediction via:

Punf(yt) =λt · Pgen(yt) + (5.11)

(1− λt) · (a ·
lx∑

i:xi=yt

αt,i + b ·
lw∑

j:wj=yt

βj),

where a, b (a + b = 1) are hyper-parameters to decide whether

to copy from the input sequence or the classification outputs.

To stabilize the aggregation of classification outputs, we warm

up the classifier for several epochs first by setting a to 1 and b

to 0 and then both to 0.5 for further training.

5.2.4 Joint Training Objective

We employ the standard negative log-likelihood loss and define

the entire framework’s training objective with the linear combi-

nation of the label classification loss and the token-level sequence

generation loss for multitask learning:

L(θ) = −
N∑
n=1

[logPcls(y
n)︸ ︷︷ ︸

Classification

+γ ·
lny∑
t=1

logPunf(y
n
t )︸ ︷︷ ︸

Unified

], (5.12)

where N is size of the training text-image pairs and γ is a

hyper-parameter to balance the two losses (empirically set to

1) and θ denotes the trainable parameters shared for the whole

framework. Intuitively, jointly training keyphrase classification

would benefit the unified prediction by not only implicitly better

parameter learning, but also explicitly providing more precise

outputs to be copied by the aggregation module.
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5.3 Experimental Setup

5.3.1 Data Collection

Since there are no publicly available datasets for multi-modal

keyphrase annotation, we contribute a new dataset with social

media posts from Twitter. Specifically, we employ the Twitter

advanced search API2 to query English tweets that contain

both images and hashtags from January to June 2019. For

keyphrases, we consider to use user-generated hashtags following

common practice [176, 179].

Data Filtering. We clean the raw data in the following ways:

(1) we only retain tweets with one color image in JPG form;

(2) we remove tweets with less than 4 tokens or more than 5

hashtags to filter out noise data (e.g., #AI, #MachineLearning,

#DeepLearning, #ML, #DL, #Tech, #ArtificialIntelligence);

(3) rare hashtags (occurring less than 10 times) and their

corresponding tweets are removed to alleviate sparsity issue; (4)

we remove the duplicate tweets (e.g., retweets) and images and

obtain 53,701 tweets with each containing a distinct tweet text-

image pair.

Preprocessing. We employ an open-source Twitter preprocess-

ing tool3 [12] to tokenize the tweets, segment the hashtags,

and apply common spelling corrections. To reduce the errors

introduced by the automatic hashtag segmentation, we manually

check them and construct a complete mapping list. Follow-

ing Wang et al. [148], we retain tokens in hashtags (without

2https://twitter.com/search-advanced
3https://github.com/cbaziotis/ekphrasis
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Split #Post
Post #KP |KP| KP % of

Vocab
Len /Post Len occ. KP

Train 42,959 27.26 1.33 4,261 1.85 37.14 48,019

Val 5,370 26.81 1.34 2,544 1.85 36.01 16,892

Test 5,372 27.05 1.32 2,534 1.86 37.45 17,021

Table 5.1: Data split statistics. KP: keyphrase; |KP|: the size of unique

keyphrase; % of occ. KP: percentage of keyphrases occurring in the source

post.

# prefix) for those occurring in the middle of the posts due

to their inseparable semantic roles. We further remove all the

non-alphabetic tokens and replace links, mentions (@username),

digits into special tokens as 〈url〉, 〈mention〉,and 〈number〉
respectively.

Finally, we obtain 53, 701 text-image tweets.. For training and

evaluation, we randomly split the data into 80%, 10%, 10%

corresponding to training, validation, and test set. The data

split statistics of tweet texts are displayed in Table 5.1. We

observe that only around 37% keyphrases appear in the source

posts, making it difficult for extraction methods to perform well.

5.3.2 Dataset Analysis

Tweet Image Analysis. To further analyze the Twitter image

characteristics, we sample 200 text-image tweets and analyze

their distributions over varying types in Figure 5.4. We observe

a rather diverse set of categories: cartoon/drawings (12%),

posters (11%), sports-related images (11%), screenshots (6%),

pure-text images (4%), and others (2%). We also notice that

only around half of the images are natural photos (54%), which
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Figure 5.4: Image type distribution of 200 sampled text-image tweets in our

collected dataset.

differs a lot from other image datasets such as MS-COCO.

Moreover, we conduct a pilot study to categorize the text-image

relations following Vempala et al.[142]. Some example tweets

for four text-image relationships in our sampled set are shown in

Figure 5.5. Post (a) represents text in the image and image adds

to the semantics since it helps to infer that “good girl” refers to

dogs, while in post (b), image represents but does not add to

due to no additional information provided in the image. Post (c)

does not represent text in the image but image adds to semantics

as it reveals the connection between text with “Trump”. As for

post (d), image is just a comment for text and does not have

a direct semantic association with text. We observe there are

(1) 48%: image can represent text and add to more semantics

of the tweet; (2) 25%: image can represent text but does not

add to semantics; (3) 15%: image cannot represent text but add

to semantics; (4) 12%: image cannot represent text and also

does not add to semantics. Namely, 52% of them have either
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Post (a): Sharing is car-

ing. Good girl Kit, cause

I know how much you love

your bed. #Dogs #Kind-

ness

Post (b): Waves crash

against the North Pier this

evening at Tynemouth,

River Tyne in the

UK @david1hirst

#StormHour

Post (c): “I am declaring

an emergency that only i

can fix”

#BoycottTrumpPrimeTime

Post (d): The whole

of the uk when armadillo

and danny say anything

#LoveIsland

Figure 5.5: Tweets of four different types of text-image relationship in our

dataset. Post (a): text is represented and image adds to. Post (b): text is

represented and image does not add to. Post (c): text is not represented and

image adds to. Post (d): text is not represented and image does not add to.

texts or images useless to represent semantics. Such diverse

categories of images and complex text-image relationship pose

the challenge to attend essential information from noisy cross-

media data, where our M3H-Att and image wordings may help

alleviate such issue.

Image Wording Analysis. Here we shed light on some interesting

statistics on image wordings. We first visualize the word cloud

of our image attributes in Figure 5.6. The top 5 attributes

predicted from the images in our dataset are {man, shirt,

woman, sign, white}, which shows that most of the images on

Twitter are about people. The top 5 attributes predicted from

the images in our dataset are {man, shirt, woman, sign, white},
which shows that most of the images on Twitter are about people.

For OCR texts, we employ a widely used OCR engine Tesserocr4

to extract optical characters. From all matching images, there

are around 35% of them contain characters, significantly larger

4https://pypi.org/project/tesserocr/
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Figure 5.6: Word cloud for the image attributes from our dataset, indicating

most tweet images are about people.

than the corresponding number in COCO images (4%), indi-

cating social media users’ preference to post images containing

optical characters. To mitigate the effects of OCR errors, we

only consider tokens present in the vocabulary of tweet texts

and find about 17% images left. We further analyze their

statistics. Their median length is 16 tokens while 32% have

words appearing in their corresponding keyphrases and 13%

contain the entire keyphrases. This suggests the potential help

from OCR texts in keyphrase prediction.

5.3.3 Comparisons

Evaluation Metrics. We mainly evaluate our model with pop-

ular information retrieval metrics macro-average F1@K, where

K is 1 or 3 as there are 1.33 keyphrases on average per tweet

(Table 5.1). To further measure the keyphrase orders (as we can

generate a keyphrase ranking list with beam search), we employ

mean average precision (MAP) for the top five predictions

following Chen et al. [26]. The higher scores from all the metrics

indicate better performance. For word matchings in evaluation,
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we consider the results after processed with Porter Stemmer

following Meng et al. [100].

Comparison Models. We first consider the upper-bound per-

formance of extractive methods, denoted as EXT-ORACLE.

Then, the following baselines are compared:

• Image-only models: we apply max/average pooling on

the grid-level VGG features or object-level BUTD [5] and

aggregate them for classification.

• Text-only models: we consider classification-based (CLS)

or sequence generation-based (GEN) methods. For CLS

models, we consider simple max/average pooling on the

text features learned from Bi-GRU encoder and the Topic

Memory Network (TMN) [174] (a SOTA short text classi-

fication model). For GEN models, we employ the seq2seq

with attention [8], copy mechanism [127], and latent top-

ics [148] (the SOTA topic-aware model for social media

keyphrase generation).

• Text-image models: we consider the SOTA CLS model

for multi-modal hashtag recommendation [175] using co-

attention and its variant with image-attention [168], as

well as Bilinear Attention Networks (BAN) [66] (a SOTA

variant for Visual Question Answering [6]). For our models,

we first adopt the basic variants with M3H-Att separately

applying to either CLS or GEN. Then we additionally

combine image wordings and the joint training strategy

(Eq. (5.12)). Our full model is obtained by further ag-

gregating the CLS and GEN outputs (Eq. (5.11)).
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5.3.4 Model Settings

We maintain a generation vocabulary Vgen of 45K tokens and

the keyphrase classification vocabulary Vcls with 4, 262 labels.

All the models are pretrained with 200-d Twitter GloVe embed-

ding [114]. We employ two layers of Bi-GRU for the encoder

and a single layer GRU for the decoder with hidden size set

to 300. For visual signals, we extract either 49 grid-level VGG

512-d features or 36 object-level BUTD 2048-d features. We

set up our models on the NVIDIA TITAN Xp GPU with 12G

memory. In training, we set the loss coefficient γ = 1 and employ

Adam optimizer [68] with a learning rate as 0.001. We decay

it by 0.5 if validation loss does not drop and apply gradient

clipping with the max gradient norm as 5. Early stop [21] is

adopted via monitoring the change of validation loss. For the

M3H-Att, we employ 4 heads with 64-d subspace, where 4 layers

are stacked for attention to text modality, and 1 layer for vision

or attribute modality. For inference, we employ beam search

with beam size set to 10 to generate a ranking list of keyphrases.

For the baselines, we re-implement CLS-IMG-ATT and CLS-

CO-ATT, and employ the released codes to produce results for

CLS-TMN5, GEN-TOPIC6, and CLS-BAN7.

5.4 Results and Analysis

5.4.1 Main Comparison Results

We first report the main comparison results in Table 5.2 and

draw the following observations:

5https://github.com/zengjichuan/TMN
6https://github.com/yuewang-cuhk/TAKG
7https://github.com/jnhwkim/ban-vqa
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Models F1@1 F1@3 MAP@5

EXT-ORACLE 39.50 23.20 39.26

Im
a
g
e
-o

n
ly

CLS-VGG-MAX 14.2035 12.2024 17.6831

CLS-VGG-AVG 15.6921 13.6706 19.7020

CLS-BUTD-MAX 17.6532 15.0021 21.7729

CLS-BUTD-AVG 20.0227 16.9706 24.7311

T
e
x
t-

o
n

ly



CLS-AVG 35.9611 27.5905 41.8414

CLS-MAX 38.3347 28.8409 44.1534

CLS-TMN 40.3339 30.0728 46.2827

GEN-ATT 38.3628 27.8315 43.3520

GEN-COPY 42.1019 29.9130 46.9435

GEN-TOPIC 43.1724 30.7313 48.0723

T
e
x
t-

Im
a
g
e



CLS-BAN 38.7318 29.6823 45.0315

CLS-IMG-ATT 41.4833 31.2214 47.9334

CLS-CO-ATT 42.1238 31.5533 48.3934

CLS-M3H-ATT (ours) 44.1117 31.47 14 49.4511

+ image wording 44.4612 32.8224 50.3915

+ joint-train 45.1609 33.2710 51.4811

GEN-m3H-ATT (ours) 44.2505 31.5813 49.3510

+ image wording 44.5609 31.7723 49.9522

+ joint-train 45.6917 32.7809 51.3712

GEN-CLS-M3H-ATT (ours) 47.0604 33.1101 52.0703

Table 5.2: Comparison results (in %) displayed with average scores from 5

random seeds. Our GEN-CLS-M3H-ATT significantly outperforms all the

comparison models (paired t-test p < 0.05). Subscripts denote the standard

deviation (e.g., 47.0604 ⇒ 47.06±0.04).
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• Textual features are more important than visual signals. It

is seen from the better performance of the text-only models

compared with their counterparts relying solely on images. For

image-only models, we find that object-level BUTD outperforms

grid-level VGG, while for pooling methods, average pooling

works better for visual signals while max pooling is more suitable

for texts.8

• Vision modality can provide complementary information to

the text. Most models considering cross-media signals perform

better than text-only and image-only baselines. An exception is

observed on CLS-CO-ATT, which indicates the limitation of

traditional co-attention to well exploit multi-modality represen-

tations from social media.

• Both M3H-Att and image wordings are helpful to encode social

media features. We find that both M3H-Att and image wordings

contribute to the performance boost of keyphrase classification

or generation or their joint training results, which showcase their

ability to handle multi-modality data from social media. We will

discuss more in 5.4.3.

• Our output aggregation strategy is effective. Seq2seq-based

keyphrase generation models (especially armed with the copy

mechanism to enable better extraction capability) perform bet-

ter than most classification models and even upper bound results

of extraction models. It is probably because of the high absent

keyphrase rate and the large size of keyphrase tags (Table 5.1)

exhibited in the noisy social media data. Nevertheless, GEN-

CLS-M3H-ATT, coupling advantages of classification and gen-

eration, obtains the best results (47.06 F1@1), drastically

8In experiments, we find that VGG works better than BUTD features for M3H-Att in

our variants. Below we show results with the better setting without otherwise specified.
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Figure 5.7: Model comparison over: (a) present keyphrases, (b) absent

keyphrases, (c) varying keyphrase frequency, and (d) varying post length.

Striped bars or dashed lines denote previous models while solid ones denote

ours. In (a) and (b), x-axis: various models; y-axis: F1@1 for present and

recall@5 for absent keyphrases. In (c) and (d), x-axis (%): data proportion;

y-axis: F1@1. Best viewed in color.

outperforms the SOTA text-only model (43.17) and text-image

one (42.12).

5.4.2 Quantitative Analysis

We examine how our model performs in diverse scenarios:

present vs. absent keyphrases and varying keyphrase frequency

and post length in Figure 5.7.

Present vs. Absent Keyphrases. We report the F1@1 for evalu-

ating present keyphrases and recall@5 for absent keyphrases.

As shown in Figure 5.7 (a-b), generation models with copy

mechanism consistently outperform classification models for
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present keyphrase, while the latter works better for absent

keyphrases. Nonetheless, our output aggregation strategy is

able to cover generation models’ inferiority for absent keyphrases

and exhibits better results from GEN-CLS-M3H-Att than

GEN-M3H-Att (41.19 vs. 35.83 recall@5 score). Besides,

visual signals are helpful to both generation and classification to

yield either present or absent keyphrases, though larger boost is

observed for the latter probably owing to the inadequate clues

available from texts.

Keyphrase Frequency. From Figure 5.7 (c), we observe better

F1@1 from all models to produce more frequent keyphrases, be-

cause common keyphrases allow better representation learning

from more training instances. For extremely rare keyphrases

(occur < 10 times in training), generation models with copy

mechanisms exhibit better capability to handle them than

classification ones.

Post Length. From Figure 5.7 (d), we observe that longer post

length does not guarantee better performance and the best

results are obtained for posts with 15 ∼ 35 tokens. It might

be attributed to the noisy nature of social media data — longer

posts provide both richer contents and more noise. For the posts

with < 15 tokens, all multi-modal methods perform better than

the text-only ones, as the image modality enriches the context

for short texts.

5.4.3 Analysis of M3H-Att and Image Wording

We proceed to quantify the effects of different settings in M3H-

Att and image wording.
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# Layer
2 Head 4 Head 8 Head 12 Head

64-d 128-d 256-d 64-d 128-d 256-d 64-d 128-d 256-d 64-d 128-d 256-d

1 42.06 43.32 43.01 43.11 43.98 43.63 43.75 44.18 43.43 43.48 43.81 43.53

2 43.22 44.36 44.26 44.27 44.38 44.27 44.58 44.59 43.12 45.05 38.16 39.97

3 43.51 44.23 43.62 44.50 44.25 43.00 44.70 43.27 36.05 44.49 35.70 31.35

4 44.38 44.42 31.72 45.29 36.03 30.47 37.17 32.73 31.69 37.85 34.99 30.91

Table 5.3: Analysis of M3H-Att with various stacked layer number, head

number, and subspace dimension.

Models
No Image Wording Add OCR Add Attribute

Full OCR Attr Full ∆ (%) OCR ∆ (%) Full ∆ (%) Attr ∆ (%)

CLS-MAX 38.31 36.11 32.04 38.75 +1.1 40.67 +12.6 41.09 +7.3 37.87 +18.2

GEN-COPY 42.01 40.81 35.55 42.86 +2.0 43.58 +6.8 43.11 +2.6 38.10 +7.2

CLS-M3H-ATT 44.19 42.93 36.93 44.27 +0.2 46.53 +8.4 44.38 +0.4 38.73 +4.9

GEN-M3H-ATT 44.33 43.26 35.93 44.48 +0.3 46.31 +7.1 44.77 +1.0 39.90 +11.0

Table 5.4: F1@1 over three test sets with settings: no image wording, adding

either OCR or attribute. ∆: the relative improvements over no image

wording.

M3H-Att Analysis. We investigate how various configurations

(Lvis ∈ {1, 2, 3, 4}, H ∈ {2, 4, 8, 12}, dH ∈ {64, 128, 256} ) of our

M3H-Att affect the prediction results in Table 5.3. Here we only

show the classification results (and similar trends are observed

from generation). We notice that more complex models do

not always present better results and even render performance

deteriorate in some cases due to the overfitting issue. The best

performance is attained by 4 stacked layers of 4 heads with a

64-d subspace.

Image Wording Analysis. To examine image wording effects, we

compare four models in three settings: no image wording, OCR

(only), and image attributes (only) in Table 5.4. The results

are shown in three test sets: the entire test set (Full), the 889
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Head 0 Head 5 Head 9 Head 11

Figure 5.8: Attention weight visualization of M3H-Att for two example posts

with image-to-text (top) and text-to-image attention (bottom). Best viewed

in color.

subset instances with OCR tokens (OCR), and the 266 ones

containing keyphrases from ImageNet labels9 (Attr) [123]. For

the CLS-MAX and GEN-COPY, we add attributes by using

its max-pooled features to attend the text memory, which is

later used for prediction.

We observe that either OCR texts or image attributes contribute

to better F1@1 on the entire test set for all chosen models, while

much more performance gain can be observed on their subsets

with OCR texts or ImageNet keyphrases, indicating that images

with optical characters and natural styles can benefit more from

image wordings.

9Here we assume that posts with ImageNet keyphrases have a higher probability to

contain natural photos drawn from our observations.
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Post (a): Contemplating the

mysteries of life from inside my

egg carton...,
#CatsOfTwitter

Post (b): Epic Texas #sun-

set from NNE Bastrop County

TX. @TxStormChasers

Post (c): Your plastic bag

ends up somewhere, and

sometimes, it goes to the

ocean. #WorldOceansDay

(cat yellow grey bananas) (sky sun sunset field) (world oceans day June 8)

gen-copy: star wars

cls-co-att: cats of twitter

Our: cats of twitter

gen-copy: storm hour

cls-co-att: storm hour

Our: sunset

gen-copy: plastic fandom

cls-co-att: plastic

Our: world oceans day

Figure 5.9: Tweet image’s effects for keyphrase prediction. Blue tokens are

the top four attributes and purple ones are OCR tokens. Correct predictions

are in bold.

5.4.4 Qualitative Analysis

To explore whether M3H-Att is able to attend different aspects

from the image, we probe into its attention weights via heatmap

visualization in Figure 5.8. Here CLS-M3H-ATT is employed

with a single layer of 12 heads, whose image-to-text and text-to-

image attention are examined. The top figure shows that all its

heads attend to the text based on the visual cues, where some

attend to “turtle” while others attend to “world” and “globe”

with various emphasis. Interestingly, Head 11 highlights the

“happy” token, which also appears in the image. For the text-to-

image attentions (bottom), we find some heads tend to highlight

the specific local objects, such as the two players by Head 0

and 5 and the textual regions by Head 9, while some capture a

more global view of the image like Head 11. We provide more

attention visualizations in Figure 5.10, where our M3H-Att is

able to attend various aspects from both image-to-text or text-
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Post (a): I thought Older

Hanzo died after D’Vorah

killed him? @Nether-

Realm #MortalKombat11

Post (b): Congrats producer of

the year, non-classical winner -

Williams #Grammys

Post (c): Last year’s high-

est rated animated movie spider

man into the Spider-Verse is now

streaming on Netflix! #Spider-

Man

Post (f): We need to make sure

the ratings are high

#SaveShadowhunters

(mortal kombat story all full movie) (williams at grammy awards) (spider man into the spider-verse) (will someone save shadow hunters)

gen-copy: quote

cls-co-att: destiny 2

Our: mortal kombat 11

gen-copy: live under par

cls-co-att: a star is born

Our: grammys

gen-copy: spider verse

cls-co-att: marvel

Our: spider man

gen-copy: teacher goals

cls-co-att: brexit

Our: save shadowhunters

Figure 5.11: More qualitative examples showing the effectiveness of encoding

OCR texts. Among various models, only our model that considers OCR

tokens correctly predicts the keyphrases (in bold). Purple tokens are some

of OCR tokens detected by an off-the-shelf OCR engine. We observe that

keyphrases directly appear in these images.

to-image directions with different heads.

We further illustrate how images (visual signals, image at-

tributes, and OCR tokens) help cross-media keyphrase predic-

tion by analyzing their predictions in Figure 5.9. In post (a), vi-

sual features help both CLS-CO-ATT and our model correctly

predict its keyphrase, where our model precisely attends the

cat’s face (key region reflecting the image’s semantics) . Without

such context, GEN-COPY wrongly predicts “star wars”, which

might be caused by the misleading token “mysterious” in the

texts. Besides, the keyphrase is also revealed in the top

predicted attribute. In post (b-c), only our model with image

wordings makes correct predictions, where we observe that the

ground-truth keyphrases directly appear in the attributes or

OCR texts. More outputs from different models are provided

for demonstrating the effectiveness of OCR texts (Figure 5.11)

and image attributes (Figure 5.12). Among most of these cases,

image wordings help our model to correctly predict keyphrases
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Post (a): Good night, ev-

eryone. I hope that you have

had a delightful day and a

restful weekend. #hooray-

fordogs

Post (b): Head up, chest

out! A handsome purple

finch poses for a shot.

#birds #wildlife #photogra-

phy

Post (c): I was watching all

the bees Honeybee collecting

pollen on the flowers Bou-

quet

#CatsOfTwitter

Post (d): For 1970, Ply-

mouth intended to make its

GTX model a street power-

house. #MuscleCar #Clas-

sicCar

(dog white yellow brown plate) (branch bird red top small) (cat white pink grey flowers) (car roof park old meter)

gen-copy: friday feeling

cls-co-att: hooray for

dogs

Our: hooray for dogs

gen-copy: gap ol

cls-co-att: birding

Our: birds; wildlife

gen-copy: photography

cls-co-att: springwatch

Our: cats of twitter

gen-copy: plymouth

cls-co-att: mopar

Our: classic car

Figure 5.12: More qualitative examples showing the effectiveness of encoding

image attributes. Our model that considers image attributes correctly

predicts the keyphrases for all these cases (in bold). Blue tokens are the

top five predicted attributes.

while GEN-COPY considering only texts and CLS-CO-ATT

relying on both texts and images fail to so.

5.5 Summary

In this chapter, we extensively study cross-media keyphrase

prediction on social media and present a unified framework to

couple the advantages of generation and classification models for

this task. Moreover, we propose a novel Multi-Modality Multi-

Head Attention to capture the dense interactions between texts

and images, where image wordings explicit in optical characters

and implicit in image attributes are further exploited to bridge

their semantic gap. Experimental results on a large-scale newly-

collected Twitter corpus show that our model significantly

outperforms SOTA either generation or classification models

with traditional attentions. Further discussions show our ability

to attend useful multi-modal features to indicate keyphrases.
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Head 0 Head 1 Head 2 Head 9 Head 11

Head 1 Head 3 Head 4 Head 7 Head 10

Head 2 Head 5 Head 6 Head 8 Head 9

Post (e): So excited to hear her new song never really over every hour all day 

Post (c):  Yeah! It' s here! There is nothing like holding your work in your own hand 

Post (d): Johnny Hodges - Blues A Plenty (full album <number>) johnny hodges (alto saxophone)…

Post (a)

Post (b)

Figure 5.10: More attention weight visualization for both image-to-text

attention and text-to-image attention.



Chapter 6

Vision-Language Pretraining

for Visual Dialog

In cross-modality learning, the core step is to fuse features from

distinct modalities and derive a joint generic representation for

various downstream applications. In this chapter, we take a

further step to study how to effectively learn visual and linguistic

representations in a more general task: visual dialog. It is one

of the most challenging tasks where an agent is required to

answer a series of questions grounded on an image. We explore

the use of Vision and Language pretraining with Transformers

for this task. The main points of this chapter are as follows.

(1) We propose a unified vision-dialog Transformer with BERT

(VD-BERT) for visual dialog tasks, which captures the intricate

interactions between image and dialog using Transformer and

achieves their effective fusion from the two modalities via simple

visually grounded training. (2) Our VD-BERT supports both

answer ranking and answer generation seamlessly through the

same architecture. (3) Our model achieves effective vision and

language fusion within a unified Transformer encoder and yields

a new state of the art for visual dialog tasks.

114
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6.1 Introduction

Visual Dialog (or VisDial) aims to build an AI agent that can

answer a human’s questions about visual content in a natural

conversational setting [33]. Unlike the traditional single-turn

Visual Question Answering (VQA) [6], the agent in VisDial

requires to answer questions through multiple rounds of inter-

actions together with visual content understanding.

The primary research direction in VisDial has been mostly

focusing on developing various attention mechanisms [8] for a

better fusion of vision and dialog contents. Compared to VQA

that predicts an answer based only on the question about the

image (Figure 6.1 (a)), VisDial needs to additionally consider

the dialog history. Typically, most of previous work [110, 40, 60]

uses the question as a query to attend to relevant image regions

and dialog history, where their interactions are usually further

exploited to obtain better visual-historical cues for predicting

the answer. In other words, the attention flow in these methods

is unidirectional – from question to the other components

(Figure 6.1 (b)).

By contrast, in this work, we allow for bidirectional attention

flow between all the entities using a unified Transformer [141]

encoder, as shown in Figure 6.1 (c). In this way, all the

entities simultaneously play the role of an “information seeker”

(query) and an “information provider’ (key-value), thereby

fully unleashing the potential of attention similar to [125].

We employ the Transformer as the encoding backbone due

to its powerful representation learning capability exhibited in

pretrained language models like BERT [35]. Inspired by its

recent success in vision-language pretraining, we further extend
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(a) Most VQA

V H

Q

A
(b) Most VisDial

V H

Q

A
(c) Our VD-BERT

Figure 6.1: Attention flow direction illustration. V: vision, H: dialog history,

Q: question, A: answer. The arrow denotes the attention flow direction and

the dashed line represents an optional connection.

BERT to achieve simple yet effective fusion of vision and dialog

contents in VisDial tasks.

Recently several emerging works have attempted to adapt

BERT for multimodal tasks [138, 92, 140, 181]. They often

use self-supervised objectives to pretrain BERT-like models on

large-scale external vision-language data and then fine-tune on

downstream tasks. This has led to compelling results in tasks

such as VQA, image captioning, image retrieval [170], and visual

reasoning [136]. However, it is still unclear how visual dialog

may benefit from such vision-language pretraining due to its

unique multi-turn conversational structure. Specifically, each

image in the VisDial dataset is associated with up to 10 dialog

turns, which contain much longer contexts than either VQA or

image captioning.

In this work, we present VD-BERT, a novel unified vision-dialog

Transformer framework for VisDial tasks. Specifically, we first

encode the image into a series of detected objects and feed them

into a Transformer encoder together with the image caption and

multi-turn dialog. We initialize the encoder with BERT for
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better leveraging the pretrained language representations. To

effectively fuse features from the two modalities, we make use

of two visually grounded training objectives – Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP). Differ-

ent from the original MLM and NSP in BERT, we additionally

take the visual information into account when predicting the

masked tokens or the next answer.

VisDial models have been trained in one of two settings:

discriminative or generative. In the discriminative setting, the

model ranks a pool of answer candidates, whereas the generative

setting additionally allows the model to generate the answers.

Instead of employing two types of decoders like prior work, we

rely on a unified Transformer architecture with two different self-

attention masks [36] to seamlessly support both settings. During

inference, our VD-BERT either ranks the answer candidates

according to their NSP scores or generates the answer sequence

by recursively applying the MLM operations. We further fine-

tune our model on dense annotations that specify the relevance

score for each answer candidate with a ranking optimization

module.

In summary, we make the following contributions:

• To the best of our knowledge, our work serves as one of

the first attempts to explore pretrained language models

for visual dialog. We showcase that BERT can be effec-

tively adapted to this task with simple visually grounded

training for capturing the intricate vision-dialog interac-

tions. Besides, our VD-BERT is the first unified model

that supports both discriminative and generative training

settings without explicit decoders.
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• We conduct extensive experiments not only to analyze

how our model performs with various training aspects

(Section 6.5.2) and fine-tuning on dense annotations (Sec-

tion 6.5.4), but also to interpret it via attention visual-

ization (Section 6.5.3), shedding light on future transfer

learning research for VisDial tasks.

• Without the need to pretrain on external vision-language

data, our model yields new state-of-the-art results in the

discriminative setting and promising results in the genera-

tive setting on the visual dialog benchmarks (Section 6.5.1).

6.2 Related Work

Visual Dialog. The Visual Dialog task has been recently pro-

posed by Das et al. [33], where a dialog agent needs to answer

a series of questions grounded by an image. It is one of the

most challenging vision-language tasks that require not only to

understand the image content according to texts, but also to

reason through the dialog history. Previous work [93, 130, 159,

71, 59, 167, 51, 110] focuses on developing a variety of attention

mechanisms to model the interactions among entities including

image, question, and dialog history. For example, Kang et

al. [60] proposed DAN, a dual attention module to first refer to

relevant contexts in the dialog history, and then find indicative

image regions. ReDAN, proposed by Gan et al. [40], further

explores the interactions between image and dialog history via

multi-step reasoning.

Different from them, we rely on the self-attention mechanism of

the Transformer model to capture such interactions in a unified

manner and derive a “holistic” contextualized representation
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for all the entities. Similar to this, Schwartz et al. [125]

proposed FGA, a general factor graph attention that can model

interactions between any two entities but in a pairwise manner.

There is recent work [109, 3] also applying the Transformer to

model the interactions among many entities. However, their

model neglects the important early interaction of the answer

entity and cannot naturally leverage the pretrained language

representations from BERT like ours.

Regarding the architecture, our model mainly differs from

previous work in two facets: first, unlike most prior work that

considers answer candidates only at the final similarity compu-

tation layer, our VD-BERT integrates each answer candidate

at the input layer to enable its early and deep fusion with

other entities, similar to [125]; second, existing models adopt an

encoder-decoder framework [139] with two types of decoder for

the discriminative and generative settings separately, where we

instead adopt a unified Transformer encoder with two different

self-attention masks [36] to seamlessly support both settings

without extra decoders.

Pretraining in Vision and Language. Pretrained language mod-

els like ELMo [115], GPT [119], and BERT [35] have boosted

performance greatly in a broad set of NLP tasks. In order to

benefit from the pretraining, there are many recent work on

extending BERT for vision and language pretraining. They

typically employ the Transformer encoder as the backbone with

either a two-stream architecture to encode text and image

independently such as ViLBERT [92] and LXMERT [140], or

a single-stream architecture to encode both text and image

together, such as B2T2 [4], Unicoder-VL [79], VisualBERT [86],
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VL-BERT [135], and UNITER [28]. Our VD-BERT belongs to

the second group. These models yield prominent improvements

in a wide spectrum of understanding-based vision-language tasks

including VQA, text-image retrieval [170, 62], visual entail-

ment [162], referring expression [63], visual reasoning [136], and

commonsense reasoning [172].

More recently, Zhou et al. [181] proposed VLP which also

allows generation using a unified Transformer with various self-

attention masks [36]. Their model was proposed for VQA and

image captioning. Our model is inspired by VLP and specifically

tailored for the visual dialog task. Most closely related to

this work is the concurrent work VisDial-BERT by [105], who

also employ vision-language pretrained models (i.e., ViLBERT)

for visual dialog. Our work has two major advantages over

VisDial-BERT: first, VD-BERT supports both discriminative

and generative settings while theirs is restricted to only the

discriminative setting; second, we do not require to pretrain on

large-scale external vision-language datasets like theirs and still

yield better performance (Section 6.5.1).

6.3 The VD-BERT Model

We first formally describe the visual dialog task. Given a

question Qt grounded on an image I at t-th turn, as well as its

dialog history formulated as Ht = {C, (Q1, A1), ..., (Qt−1, At−1)}
(where C denotes the image caption), the agent is asked to

predict its answer At by ranking a list of 100 answer candidates

{Â1
t , Â

2
t , ..., Â

100
t }. In general, there are two types of decoder

to predict the answer: a discriminative decoder that ranks the

answer candidates and is trained with a cross entropy loss, or
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a generative decoder that synthesizes an answer and is trained

with a maximum log-likelihood loss.

Figure 6.2 shows the overview of our approach. First, we employ

a unified vision-dialog Transformer to encode both the image

and dialog history, where we append an answer candidate Ât in

the input to model their interactions in an early fusion manner.

Next, we adopt visually grounded MLM and NSP objectives to

train the model for effective vision and dialog fusion using two

types of self-attention masks – bidirectional and seq2seq. This

allows our unified model to work in both discriminative and

generative settings. Lastly, we devise a ranking optimization

module to further fine-tune on the dense annotations.

6.3.1 Vision-Dialog Transformer Encoder

Vision Features. Following previous work, we employ Faster R-

CNN [120] pretrained on Visual Genome [72] to extract the

object-level vision features. Let OI = {o1, ..., ok} denote the

vision features for an image I, where each object feature oi is

a 2048-d Region-of-Interest (RoI) feature and k is the number

of the detected objects (fixed to 36 in our setting). As there

is no natural orders among these objects, we adopt normalized

bounding box coordinates as the spatial location. Specifically,

let (x1, y1) and (x2, y2) denote the coordinates of the bottom-

left and top-right corner of the object oi, its location is encoded

into a 5-d vector: pi = (x1W ,
y1
H ,

x2
W ,

y2
H ,

(x2−x1)(y2−y1)
WH ), where W

and H respectively denote the width and height of the input

image, and the last element is the relative area of the object.

We further extend pi with its class id and confidence score for a

richer representation.
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Â

t
in

to
a

si
n
gl

e-

st
re

am
T

ra
n
sf

or
m

er
en

co
d
er

,
an

d
th

en
tr

ai
n

it
w

it
h

tw
o

vi
su

al
ly

gr
ou

n
de

d
le

ar
n
in

g
ob

je
ct

iv
es

:
m

as
ke

d
la

n
gu

ag
e

m
o
d
el

in
g

(M
L

M
)

an
d

n
ex

t
se

n
te

n
ce

p
re

d
ic

ti
on

(N
S
P

).
T

h
e

N
S
P

is
tr

ai
n
ed

to
d
is

ti
n
gu

is
h

w
h
et

h
er
Â
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Language Features. We pack all the textual elements (caption

and multi-turn dialog) into a long sequence. We employ

WordPiece tokenizer [160] to split it into a word sequence w,

where each word is embedded with an absolute positional code

following Devlin et al. [35].

Cross-Modality Encoding. To feed both image and text into

the Transformer encoder, we integrate the image objects with

language elements into a whole input sequence. Similar to

BERT, we use special tokens like [CLS] to denote the beginning

of the sequence, and [SEP] to separate the two modalities.

Moreover, to inject the multi-turn dialog structure into the

model, we utilize a special token [EOT] to denote end of

turn [155], which informs the model when the dialog turn ends.

As such, we prepare the input sequence into the format as x

= ([CLS], o1, ..., ok, [SEP], C, [EOT], Q1A1, [EOT], ..., QtÂt,

[SEP]). To notify the model for the answer prediction, we further

insert a [PRED] token between the QtÂt pair. Finally, each input

token embedding is combined with its position embedding and

segment embedding (0 or 1, indicating whether it is image or

text) with layer normalization [7].

Transformer Backbone. We denote the embedded vision-language

inputs as H0 = [e1, ..., e|x|] and then encode them into multiple

levels of contextual representations Hl = [hl1, ...,h
l
|x|] using L-

stacked Transformer blocks, where the l-th Transformer block

is denoted as Hl = Transformer(Hl−1), l ∈ [1, L]. Inside each

Transformer block, the previous layer’s output Hl−1 ∈ R|x|×dh is

aggregated using the multi-head self-attention [141]:

Q = Hl−1WQ
l ,K = Hl−1WK

l ,V = Hl−1WV
l , (6.1)
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Mij =

{
0, allow to attend

−∞, prevent from attending
(6.2)

Al = softmax(
QKT

√
dk

+ M)V, (6.3)

where WQ
l ,W

K
l ,W

V
l ∈ Rdh×dk are learnable weights for comput-

ing the queries, keys, and values respectively, and M ∈ R|x|×|x|

is the self-attention mask that determines whether tokens from

two layers can attend each other. Then Al is passed into a

feedforward layer with a residual connection [52] to compute Hl

for next layer. In the following, the self-attention mask M will

be adjusted accordingly to support different training settings.

6.3.2 Visually Grounded Training Objectives

We use two visually grounded training objectives—masked lan-

guage modeling (MLM) and next sentence prediction (NSP)

to train our VD-BERT. Particularly, we aim to capture dense

interactions among both inter-modality (i.e., image-dialog) and

intra-modality (i.e., image-image, dialog-dialog).

Similar to MLM in BERT, 15% tokens in the text segment

(including special tokens like [EOT] and [SEP]) are randomly

masked out and replaced with a special token [MASK]. The

model is then required to recover them based not only on the

surrounding tokens w\m but also on the image I:

LMLM = −E(I,w)∼D logP (wm|w\m, I), (6.4)

where wm refers to the masked token and D denotes the training

set. Following Zhou et al. [181], we do not conduct masked

object/region modeling in the image segment.
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As for NSP, instead of modeling the relationship between two

sentences (as in BERT) or the matching of an image-text pair

(as in other vision-language pretraining models like ViLBERT),

VD-BERT aims to predict whether the appended answer can-

didate Ât is correct or not based on the joint understanding of

the image and dialog history:

LNSP = −E(I,w)∼D logP (y|S(I,w)), (6.5)

where y ∈ {0, 1} indicates whether Ât is correct, and S(·) is a

binary classifier to predict the probability based on the [CLS]

representation T[CLS] at the final layer. Below we introduce the

discriminative and generative settings of VD-BERT.

Discriminative Setting. For training in the discriminative set-

ting, we transform the task of selecting an answer into a point-

wise binary classification problem. Concretely, we sample an

answer Ât from the candidate pool and append it to the input

sequence, and ask the NSP head to distinguish whether the

sampled answer is correct or not. We employ the bidirectional

self-attention mask to allow all the tokens to attend to each other

by setting the mask matrix M in Eq. (6.2) to all 0s. To avoid

imbalanced class distribution, we keep the ratio of positive and

negative instances to 1:1 in each epoch. To encourage the model

to penalize more on negative instances, we randomly resample

a negative example from the pool of 99 negatives w.r.t. every

positive one at different epochs. During inference, we rank the

answer candidates according to the positive class score of their

NSP heads.

Generative Setting. In order to autoregressively generate an

answer, we also train VD-BERT with the sequence-to-sequence
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(seq2seq) self-attention mask [36]. For this, we divide the

input sequence to each Transformer block into two subsequences,

context and answer :

x , (I,w) = (I,Ht, Qt,︸ ︷︷ ︸
context

Ât). (6.6)

We allow tokens in the context to be fully visible for attending

by setting the left part of M to all 0s. For the answer sequence,

we mask out (by setting −∞ in M) the “future” tokens to get

autoregressive attentions (see the red dots in Figure 6.2).

During inference, we rely on the same unified Transformer

encoder with sequential MLM operations without an explicit

decoder. Specifically, we recursively append a [MASK] token to

the end of the sequence to trigger a one-step prediction and

then replace it with the predicted token for the next token

prediction. The decoding process is based on greedy sampling

and terminated when a [SEP] is emitted, and the resulting log-

likelihood scores will be used for ranking the answer candidates.

6.3.3 Fine-tuning with Rank Optimization

As some answer candidates may be semantically similar (e.g.

“brown and tan” vs “brown” in Figure 6.2), VisDial v1.0

additionally provides dense annotations that specify real-valued

relevance scores for the 100 answer candidates, [s1, ..., s100] with

si ∈ [0, 1]. To fine-tune on this, we combine the NSP scores

from the model for all answer candidates together into a vector

[p1, ..., p100].

As dense annotation fine-tuning is typically a Learning to Rank

(LTR) problem, we can make use of some ranking optimization

methods. After comparing various methods in Table 6.3c, we
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adopt ListNet [20] with the top-1 approximation as the ranking

module for VD-BERT:

LListNet = −
N∑
i=1

f(si) log(f(pi)), (6.7)

f(xi) =
exp (xi)∑N
j=1 exp (xj)

, i = 1, ..., N. (6.8)

For training efficiency, we sub-sample the candidate list and use

only N = 30 answers (out of 100) for each instance. To better

leverage the contrastive signals from the dense annotations, the

sub-sampling method first picks randomly the candidates with

non-zero relevance scores, and then it picks the ones from zero

scores (about 12% of candidates are non-zero on average).

6.4 Experimental Setup

6.4.1 Datasets

We evaluate our model on the VisDial v0.9 and v1.0 datasets1 [33].

Specifically, v0.9 contains a training set of 82,783 images and a

validation set of 40,504 images. The v1.0 dataset combines the

training and validation sets of v0.9 into one training set and adds

another 2,064 images for validation and 8,000 images for testing

(hosted blindly in the task organizers’ server). Each image is

associated with one caption and 10 question-answer pairs. For

each question, it is paired with a list of 100 answer candidates,

one of which is regarded as the correct answer.

Apart from these sparse annotations, extra dense annotations

for the answer candidates are provided for the v1.0 validation

1Available at https://visualdialog.org/data
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split and a part of v1.0 train split (2, 000 images) to make the

evaluation more reasonable. The dense annotation specifies a

relevance score for each answer candidate based on the fact that

some candidates with similar semantics to the ground truth

answer can also be considered as correct or partially correct,

e.g., “brown and tan” and “brown” in Figure 6.2.

6.4.2 Evaluation Metric

Following Das et al. [33], we evaluate our model using the

ranking metrics like Recall@K (K ∈ {1, 5, 10}), Mean Reciprocal

Rank (MRR), and Mean Rank, where only one answer is

considered as correct. Since the 2018 VisDial challenge (after the

acquisition of dense annotations), NDCG metric that considers

the relevance degree of each answer candidate, has been adopted

as the main metric; the winner of the challenge is picked based

solely on this metric.

6.4.3 Model Settings

We use BERTBASE as the backbone, which consists of 12

Transformer blocks, each with 12 attention heads and a hidden

state dimensions of 768. We keep the max input sequence length

(including 36 visual objects) to 250. We use Adam [68] with an

initial learning rate of 3e− 5 and a batch size of 32 to train our

model. A linear learning rate decay schedule with a warmup

of 0.1 is employed. We first train VD-BERT for 30 epochs on

a cluster of 4 V100 GPUs with 16G memory using MLM and

NSP losses (with equal coefficients). Here we only utilize one

previous dialog turn for training efficiency. For instances where

the appended answer candidate is incorrect, we do not conduct
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MLM on the answer sequence to reduce the noise introduced by

the negative samples. After that, we train for another 10 epochs

with full dialog history using either NSP in the discriminative

setting or MLM on the answer sequence in the generative setting.

For dense annotation fine-tuning in the discriminative setting,

we train with the ListNet loss for 5 epochs.

6.5 Results and Analysis

In this section, we first compare our VD-BERT with state-of-

the-art baselines on VisDial datasets. Then we conduct exten-

sive ablation studies to examine various aspects of our model.

Further, we interpret how VD-BERT attains the effective fusion

of vision and dialog via visualizing attention weights, followed

by an in-depth analysis of fine-tuning on dense annotations.

6.5.1 Main Results

We report main quantitative comparison results on both VisDial

v1.0 and v0.9 datasets below.

Comparison. We consider state-of-the-art published baselines,

including NMN [56], CorefNMN [71], GNN [180], FGA [125],

DVAN [49], RvA [110], DualVD [59], HACAN [167], Synergis-

tic [51], DAN [60], ReDAN [40], CAG [50], Square [65], MCA [3],

MReal-BDAI and P1 P2 [117]. We further report results from

the leaderboard2 for a more up-to-date comparison, where some

can be found in the arXiv, such as MVAN [112], SGLNs [61],

VisDial-BERT [105], and Tohoku-CV [109].

2https://evalai.cloudcv.org/web/challenges/challenge-page/161/

leaderboard/483\#leaderboardrank-1
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Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean ↓
P

u
b

li
sh

ed
R

es
u

lt
s



NMN 58.10 58.80 44.15 76.88 86.88 4.81

CorefNMN 54.70 61.50 47.55 78.10 88.80 4.40

GNN 52.82 61.37 47.33 77.98 87.83 4.57

FGA 52.10 63.70 49.58 80.97 88.55 4.51

DVAN 54.70 62.58 48.90 79.35 89.03 4.36

RvA 55.59 63.03 49.03 80.40 89.83 4.18

DualVD 56.32 63.23 49.25 80.23 89.70 4.11

HACAN 57.17 64.22 50.88 80.63 89.45 4.20

Synergistic 57.32 62.20 47.90 80.43 89.95 4.17

Synergistic† 57.88 63.42 49.30 80.77 90.68 3.97

DAN 57.59 63.20 49.63 79.75 89.35 4.30

DAN† 59.36 64.92 51.28 81.60 90.88 3.92

ReDAN† 64.47 53.73 42.45 64.68 75.68 6.64

CAG 56.64 63.49 49.85 80.63 90.15 4.11

Square† 60.16 61.26 47.15 78.73 88.48 4.46

MCA∗ 72.47 37.68 20.67 56.67 72.12 8.89

MReal-BDAI†∗ 74.02 52.62 40.03 68.85 79.15 6.76

P1 P2†∗ 74.91 49.13 36.68 62.98 78.55 7.03

L
ea

d
er

b
oa

rd
R

es
u

lt
s



LF 45.31 55.42 40.95 72.45 82.83 5.95

HRE 45.46 54.16 39.93 70.45 81.50 6.41

MN 47.50 55.49 40.98 72.30 83.30 5.92

MN-Att 49.58 56.90 42.42 74.00 84.35 5.59

LF-Att 49.76 57.07 42.08 74.82 85.05 5.41

MS ConvAI 55.35 63.27 49.53 80.40 89.60 4.15

UET-VNU† 57.40 59.50 45.50 76.33 85.82 5.34

MVAN 59.37 64.84 51.45 81.12 90.65 3.97

SGLNs† 61.27 59.97 45.68 77.12 87.10 4.85

VisDial-BERT∗ 74.47 50.74 37.95 64.13 80.00 6.28

Tohoku-CV†∗ 74.88 52.14 38.93 66.60 80.65 6.53

O
u

rs

{ VD-BERT 59.96 65.44 51.63 82.23 90.68 3.90

VD-BERT∗ 74.54 46.72 33.15 61.58 77.15 7.18

VD-BERT†∗ 75.35 51.17 38.90 62.82 77.98 6.69

Table 6.1: Summary of results on the test-std split of VisDial v1.0 dataset.

The results are reported by the test server. “†” denotes ensemble model and

“∗” indicates fine-tuning on dense annotations. The “↑” denotes higher value

for better performance and “↓” is the opposite. The best and second-best

results in each column are in bold and underlined respectively.
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Results on VisDial v1.0 test-std. We report the comparison

results on VisDial v1.0 test-std split in Table 6.1 and make the

following observations.

• New state of the art for both single-model and ensemble

settings. Our single-model VD-BERT significantly outper-

forms all of its single-model counterparts across various

metrics, even including some ensemble variants such as

Synergistic, DAN (except R@10), and ReDAN (except

NDCG). With further fine-tuning on dense annotations, the

NDCG score increases quite sharply, from 59.96 to 74.54

with nearly 15% absolute improvement, setting a new state

of the art in the single-model setting. This indicates that

dense annotation fine-tuning plays a crucial role in boosting

the NDCG scores. Moreover, our designed ensemble version

yields new state-of-the-art results (75.35 NDCG), outper-

forming the 2019 Visual Dialog challenge winner MReal-

BDAI [116] (74.02 NDCG) by over 1.3 absolute points.

• Inconsistency between NDCG and other metrics. While

dense annotation fine-tuning yields huge improvements on

NDCG, we also notice that it has a severe countereffect on

other metrics, e.g., reducing the MRR score from 65.44 to

46.72 for VD-BERT. Such a phenomenon has also been

observed in other recent models, such as MReal-BDAI,

VisDial-BERT, Tohoku-CV Lab, and P1 P2, whose NDCG

scores surpass others without dense annotation fine-tuning

by at least around 10% absolute points while other metrics

drop dramatically. We provide a detailed analysis of this

phenomenon in Section 6.5.4.

• Our VD-BERT is simpler and more effective than VisDial-
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BERT. VisDial-BERT is a concurrent work to ours that

also exploits vision-language pretrained models for visual

dialog. It only reports the single-model performance of

74.47 NDCG. Compare to that, our VD-BERT achieves

slightly better results (74.54 NDCG), however, note that

we did not pretrain on large-scale external vision-language

datasets like Conceptual Captions [131] and VQA [6] as

VisDial-BERT does. Besides, while VisDial-BERT does

not observe improvements by ensembling, we endeavor to

design an effective ensemble strategy to further increase the

NDCG score to 75.35 for VD-BERT (see Table 6.3d).

Results on VisDial v0.9 val. We further show both discrimina-

tive and generative results on v0.9 val split in Table 6.2. For

comparison, we choose LF, HRE, HREA, MN [33], HCIAE [93],

CoAtt [159], RvA, and DVAN as they contain results in both

settings on the v0.9 val split. Our model continues to yield much

better results in the discriminative setting (e.g., 70.04 MRR

compared to DVAN’s 66.67) and comparable results with the

state of the art in the generative setting (e.g., 55.95 MRR score

vs. DVAN’s 55.94). This validates the effectiveness of our VD-

BERT in both settings using a unified Transformer architecture.

By contrast, VisDial-BERT can only support the discriminative

setting.
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6.5.2 Ablation Study

We examine the effects of varying training settings and contexts,

ranking optimizations, and ensemble strategies on VD-BERT.

For this, we use VisDial v1.0 dataset in the discriminative

setting.

(a) Training Settings. Table 6.3 (a) demonstrates how different

training settings influence the results. We observe that initial-

izing the model with weights from BERT indeed benefits the

visual dialog task a lot, increasing the NDCG score by about 7%

absolute over the model trained from scratch. Surprisingly, the

model initialized with the weights from VLP that was pretrained

on Conceptual Captions [131], does not work better than the

one initialized from BERT. It might be due to the domain

discrepancy between image captions and multi-turn dialogs, as

well as the slightly different experiment settings (e.g., we extract

36 objects from image compared to their 100 objects). Another

possible reason might be that the VisDial data with more than

one million image-dialog turn pairs (as each image is associated

with 10 dialog turns) can provide adequate contexts to adapt

BERT for effective vision and dialog fusion. We also find that

the visually grounded MLM is crucial for transferring BERT

into the multimodal setting, indicated by a large performance

drop when using only NSP.

(b) Training Contexts. We study the impact of varying the

dialog context used for training (Table 6.3 (b)). With longer

dialog history (“Full history”), our model indeed yields better

results in most of the ranking metrics, while the one without

using any dialog history obtains the highest NDCG score. This
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Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean ↓

(a)

From scratch 56.20 62.25 48.16 79.57 89.01 4.31

Init from VLP 61.79 66.67 53.23 83.60 91.97 3.66

Init from BERT 63.22 67.44 54.02 83.96 92.33 3.53

↪→ only NSP 55.89 63.15 48.98 80.45 89.72 4.15

(b)

No history 64.70 62.93 48.70 80.42 89.73 4.30

One previous turn 63.47 65.30 51.66 82.30 90.97 3.86

Full history 63.22 67.44 54.02 83.96 92.33 3.53

↪→ only text 54.32 62.79 48.48 80.12 89.33 4.27

(c)

CE 74.47 44.94 32.23 60.10 76.70 7.57

ListNet 74.54 46.72 33.15 61.58 77.15 7.18

ListMLE 72.96 36.81 20.70 54.60 73.28 8.90

ApproxNDCG 72.45 49.88 37.88 62.90 77.40 7.26

(d)

Epoch 74.84 47.40 34.30 61.58 77.78 7.12

Length 75.07 47.33 33.88 62.20 78.50 7.01

RANK 75.13 50.00 38.28 60.93 77.28 6.90

Diverse 75.35 51.17 38.90 62.82 77.98 6.69

Table 6.3: Extensive ablation studies: (a) various training settings and (b)

training contexts on v1.0 val; (c) Dense annotation fine-tuning with varying

ranking methods and (d) various ensemble strategies on v1.0 test-std.

indicates that dense relevance scores might be annotated with

less consideration of dialog history. If we remove the visual

cues from the “Full history” model, we see a drop in all

metrics, especially, on NDCG. However, this version still obtains

comparable results to the “No history” variant, revealing that

textual information dominates the VisDial task.

(c) Ranking Optimization. In Table 6.3 (c), we compare Cross

Entropy (CE) training with several other listwise ranking meth-

ods: ListNet [20], ListMLE [161], and approxNDCG [118].3

Among these methods, ListNet yields the best NDCG and Mean

3https://github.com/allegro/allRank
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Rank, while the approxNDCG achieves the best MRR and

Recall on VisDial v1.0 test-std.

(d) Ensemble Strategy. We also explore ways to achieve the

best ensemble performance with various model selection criteria

in Table 6.3 (d). We consider three criteria, Epoch, Length,

and Rank that respectively refer to predictions from different

epochs of a single model, from different models trained with

varying context lengths and with different ranking methods in

Table 6.3 (b-c). We use four predictions from each criterion

and combine their diverse predictions (diverse) by summing

up their normalized ranking scores. We observe that epoch

contributes the least to the ensemble performance while rank

models are more helpful than length models. The diverse set

of them leads to the best ensemble performance.

6.5.3 Attention Visualization of VD-BERT

We proceed to probe into the attention weights of our VD-

BERT, aiming to analyze whether or not and how it achieves

the effective vision and dialog fusion via the visually grounded

training. We visualize their heatmaps for a validation example

in Figure 6.3 and progressively dissect them below.

We first investigate whether the attention heads in our VD-

BERT can be used for entity grounding. We visualize the

attention weights on the top 10 detected objects in the image

from its caption in Figure 6.3 (a). We observe that many heads

at different layers can correctly ground some entities like person

and motorcycle in the image, and even reveal some high-level

semantic correlations such as person↔motorcycle (at L5H5

and L8H2) and motorcycle↔street (at L1H11). On the other
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Layer 4 Head 12

Attend to previous word

Layer 2 Head 12

Attend to next word

Layer 10 Head 2

Attend to self-token

(c)

(a)
Layer 1 Head 11 Layer 3 Head 1 Layer 8 Head 2Layer 5 Head 5

Figure 6.3: Attention weight visualization in our VD-BERT: (a) some

selected heads at various layers capturing the image-caption alignment via

grounding entities; (b) an attention heatmap showing the fusion of image

and multi-turn dialog; (c) heatmaps of all 144 heads for both image and a

single-turn dialog with some attention patterns.

hand, heads at higher layers tend to have a sharper focus on

specific visual objects like the man and the motorcycles.

Next, we examine how VD-BERT captures the interactions

between image and dialog history. In contrast to other vision-

language tasks, visual dialog has a more complex multi-turn

structure, thereby posing a hurdle for effective fusion. As shown

in Figure 6.3 (b), VD-BERT can ground entities and discover

some object relations, e.g., helmet is precisely related to the

man and the motorcycle in the image (see the rightmost red

box). More interestingly, it can even resolve visual pronoun
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Figure 6.4: Various ranking scores across epochs of fine-tuning on dense

annotations using ListNet.

coreference of he in the question to the man in the image (see

the middle red box).

Finally, we analyze the self-attention weights for all layers and

all heads for both image and dialog segments in Figure 6.3 (c).

Instead of attempting to interpret all the 144 heads (12 layers

and each layer has 12 heads), we analyze them in a holistic

way. Compared to the words in the dialog, visual objects overall

receive much less attention in most cases. This also explains

the reason why relying solely on texts can still yield reasonably

good results (Table 6.3 (b)). We also show three other apparent

attention patterns: attentions that a token puts to its previous

token, to itself, and to the next token. We see that the patterns

for image and text are disparate (where image objects can hardly

learn to attend previous/next tokens) as objects in image lack

explicit orders like tokens in a text. We provide more attention

visualization examples in Figure 6.6.

6.5.4 Fine-tuning on Dense Annotations

In this section, we focus on the effect of dense annotation fine-

tuning. We first show how various metrics change for fine-
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1. no (0.0) 
2. yes (1.0) 
3. no it is not (0.0) 
4. it is not visible (0.0) 
5. i cannot tell ( 0.0)
6. yes, it is (1.0) 
7. it is (0.8) 
8. i can't tell (0.0)

1. yes (1.0) 
2. yes it is (1.0) 
3. yes, it is (1.0) 
4. yep (0.8) 
5. it is (0.8)
6. yes some (0.6)
7. I think so (0.6)
8. definitely (0.6)

W/ Fine-tuning
NDCG=97.06

Base Model
NDCG=41.31

An elephant eats large amounts of foliage 
as another elephant stands nearby

Q1: is the elephant a baby? 
A1: no

Q2: is he eating from a tree?
A2: no the ground

Q3: are they outside?
A3: yes

Q4: is the food in his mouth?
A4: yes (GT)

1. yes (0.0) 
2. yes people (0.0) 
3. no it's empty (0.4) 
4. i cannot tell (0.8) 
5. yes a few (0.0)
6. yes there are (0.0)
7. no (0.4)
8. yes for sure (0.0)

1. i cannot tell (0.8) 
2. i can't tell (0.8) 
3. can't tell (0.8) 
4. not sure (0.8) 
5. i don't know (0.8)
6. i cannot see any (0.8)
7. not visible (0.6)
8. not that i can see (0.6)

W/ Fine-tuning
NDCG=91.80

Base Model
NDCG=42.19

A double decker bus sits empty 
at the station

Q1: are there any people? 
A1: yes

Q2: are they on the bus?
A2: no, the bus is empty

Q3: are there any other buses?
A3: 1 other bus

Q4: are there people on bus?
A4: no it's empty (GT)

Figure 6.5: Two examples where relevant answer candidates are elevated into

higher ranks after fine-tuning on dense annotations. GT: ground truth.

tuning in Figure 6.4. For this experiment, we randomly sample

200 instances from VisDial v1.0 val as the test data and use

the rest for fine-tuning with the ListNet ranking method. We

observe that NDCG keeps increasing with more epochs of fine-

tuning, while other metrics such as Recall@K and MRR) drop.

In the following, we explore the reason for this disparity between

NDCG and other ranking metrics in depth.

Case Study. We provide two examples to qualitatively demon-

strate how dense annotation fine-tuning results in better NDCG

scores in Figure 6.5. For the example at the top, fine-tuning

helps our model to assign higher ranks to the answers that

share similar semantics with the ground truth answer and

should also be regarded as correct (“yes, it is” and “yep” vs.

“yes”). In the example at the bottom, we spot a mismatch

between the sparse and dense annotations: the ground truth

answer “no, it’s empty” is only given 0.4 relevance score, while

uncertain answers like “i don’t know” are considered to be more
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Models All

Relevance Score Question Type

1.0 0.6∼0.8 0.2∼0.4 0.0 Yes/no Number Color Others

(31%) (35%) (25%) (9%) (76%) (3%) (11%) (10%)

DAN 58.28 63.29 61.02 53.29 43.86 59.86 41.03 57.55 51.89

Ours 63.55 70.25 65.18 58.40 48.07 65.45 48.98 58.51 58.75

Ours (w/ ft) 89.62 95.38 89.76 84.63 82.84 91.05 74.41 84.00 89.12

Table 6.4: NDCG scores in VisDial v1.0 val split broken down into 4 groups

based on either the relevance score or the question type. The % value in the

parentheses denotes the corresponding data proportion.

relevant. In this case, fine-tuning instead makes our model fail to

predict the correct answer despite the increase of NDCG score.

We continue to quantitatively analyze how such annotation

mismatches influence the NDCG results.

Relevance Score and Question Type Analysis. For further anal-

ysis, we classify the 2, 064 instances in VisDial v1.0 val set

based on the ground-truth’s relevance score and question type

(Table 6.4). We consider 4 bins {0.0, 0.2 ∼ 0.4, 0.6 ∼ 0.8, 1.0}
for the relevance score and 4 question types: Yes/no, Number,

Color, and Others. We then analyze the NDCG scores assigned

by DAN [60] and our VD-BERT with and without dense anno-

tation fine-tuning. We choose DAN as it achieves good NDCG

scores (Table 6.1) and provides the source code to reproduce

their predictions.

By examining the distribution of the relevance scores, we

find that only 31% of them are aligned well with the sparse

annotations and 9% are totally misaligned. As the degree of

such mismatch increases (relevance score changes 1.0 → 0.0),

both DAN and our model witness a plunge in NDCG (63.29→
43.86 and 70.25 → 48.07), while dense annotation fine-tuning

significantly boosts NDCG scores for all groups, especially for
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the most misaligned one (48.07 → 82.84 for our model). These

results validate that the misalignment of the sparse and dense

annotations is the key reason for the inconsistency between

NDCG and other metrics.

In terms of question type, we observe that Yes/no is the major

type (76%) and also the easiest one, while Number is the most

challenging and least frequent one (3%). Our model outperforms

DAN by over 10% in most of the question types except the Color

type. Fine-tuning on dense annotations gives our model huge

improvements across all the question types, especially for Others

with over 30% absolute gain. We provide more qualitative

comparison results in Figure 6.7.

6.6 Summary

In this chapter, we have presented VD-BERT, a unified vision-

dialog Transformer model that exploits the pretrained BERT

language models for visual dialog. VD-BERT is capable of

modeling all the interactions between an image and a multi-

turn dialog within a single-stream Transformer encoder and

enables the effective fusion of features from both modalities

via simple visually grounded training. Besides, it can either

rank or generate answers seamlessly. Without pretraining on

external vision-language datasets, our model establishes new

state-of-the-art performance in the discriminative setting and

shows promising results in the generative setting on the visual

dialog benchmarks. We further conduct thorough experiments

to analyze and interpret our model, providing insights for future

transfer learning research on visual dialog tasks and even other

cross-media understanding tasks.



CHAPTER 6. VD-BERT FOR VISUAL DIALOG 142

L
5
H
1

L
4
H
7

L
3
H
6

L2H4L1H4 L5H1

L1H11 L4H9 L7H1 L9H12

L2H7 L11H9L1H2 L5H3
(b)

(c)

(a)

Figure 6.6: More attention visualization examples. LxHy: Layer x Head y

(1 ≤ x, y ≤ 12). Our VD-BERT pretrained on the visual dialog data achieves

effective fusion of vision and dialog contents, where some of its attention

heads can precisely ground some entities between image and caption/multi-

turn dialog: (a) horse, wild, and giraffe; (b) teenage girl, hair, and

phone; (c) pizza, beer, and table.
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Image + Caption GT Dialog DAN VD-BERT VD-BERT (w/ft)

a brown building stands at the 
corner of a street on a sunny day

Q1: is there any people in the photo?
A1: yes far away
Q2: are there any streets visible in the photo?
A2: yes
Q3: are there cars parked along the streets?
A3: no
Q4: what kind of buildings appear in the photo?
A4: older architectural building like a library
Q5: is there any signs visible in the photo?
A5: there is a no entry sign
Q6: are there traffic lights visible?
A6: no
Q7: can you see the sidewalk?
A7: yes
Q8: are the sidewalks clean?
A8: immaculate
Q9: are there any trees planted near the building?
A9: there is a tree next to the building
Q10: is the tree short or tall?
A10: tall

Q1: is there any people in the photo?
A1: yes
Q2: are there any streets visible in the photo?
A2: no on the street
Q3: are there cars parked along the streets?
A3: no
Q4: what kind of buildings appear in the photo?
A4: yes shops
Q5: is there any signs visible in the photo?
A5: yes
Q6: are there traffic lights visible?
A6: 1 light pole
Q7: can you see the sidewalk?
A7: yes
Q8: are the sidewalks clean?
A8: yes very clean
Q9: are there any trees planted near the building?
A9: yes
Q10: is the tree short or tall?
A10: tall

Q1: is there any people in the photo?
A1: yes
Q2: are there any streets visible in the photo?
A2: yes
Q3: are there cars parked along the streets?
A3: no
Q4: what kind of buildings appear in the photo?
A4: older architectural building like a library
Q5: is there any signs visible in the photo?
A5: yes
Q6: are there traffic lights visible?
A6: no
Q7: can you see the sidewalk?
A7: yes
Q8: are the sidewalks clean?
A8: yes
Q9: are there any trees planted near the building?
A9: there is a tree next to the building
Q10: is the tree short or tall?
A10: tall

Q1: is there any people in the photo?
A1: yes
Q2: are there any streets visible in the photo?
A2: yes
Q3: are there cars parked along the streets?
A3: no
Q4: what kind of buildings appear in the photo?
A4: not sure
Q5: is there any signs visible in the photo?
A5: yes
Q6: are there traffic lights visible?
A6: no
Q7: can you see the sidewalk?
A7: yes
Q8: are the sidewalks clean?
A8: yes, they are clean
Q9: are there any trees planted near the building?
A9: no there isn't
Q10: is the tree short or tall?
A10: tall

man pointing at tv display in a store

Q1: is the picture in color?
A1: yes
Q2: how many people are in the picture?
A2: i see 2 people
Q3: how many tv's are in the picture?
A3: 18 screens on the display but there are some in 
boxes as well
Q4: is 1 of the people a worker in the store?
A4: no it doesn’t look like it
Q5: is there an image on the tv that he is pointing 
at?
A5: yes it is an cartoon
Q6: is the man standing or sitting?
A6: standing
Q7: what is the brand of tv?
A7: i am unable to tell
Q8: can you tell what store it is?
A8: no
Q9: are there any other products in view?
A9: i just see tv's and boxes
Q10: what color is the floor?
A10: blue

Q1: is the picture in color?
A1: yes
Q2: how many people are in the picture?
A2: 2
Q3: how many tv's are in the picture?
A3: 2
Q4: is 1 of the people a worker in the store?
A4: yes, but they are taking a break
Q5: is there an image on the tv that he is pointing 
at?
A5: yes it is an cartoon
Q6: is the man standing or sitting?
A6: standing
Q7: what is the brand of tv?
A7: it's in japanese
Q8: can you tell what store it is?
A8: yes it is a list of rules
Q9: are there any other products in view?
A9: there is papers all over the desk so i would say 
yes
Q10: what color is the floor?
A10: blue

Q1: is the picture in color?
A1: yes
Q2: how many people are in the picture?
A2: 2
Q3: how many tv's are in the picture?
A3: 18 screens on the display but there are some in 
boxes as well
Q4: is 1 of the people a worker in the store?
A4: there are no visible workers
Q5: is there an image on the tv that he is pointing 
at?
A5: yes it is an cartoon
Q6: is the man standing or sitting?
A6: standing
Q7: what is the brand of tv?
A7: it's in japanese
Q8: can you tell what store it is?
A8: no
Q9: are there any other products in view?
A9: i just see tv's and boxes
Q10: what color is the floor?
A10: blue

Q1: is the picture in color?
A1: yes it is
Q2: how many people are in the picture?
A2: 1
Q3: how many tv's are in the picture?
A3: 18 screens on the display but there are some in 
boxes as well
Q4: is 1 of the people a worker in the store?
A4: there are no visible workers
Q5: is there an image on the tv that he is pointing 
at?
A5: yes
Q6: is the man standing or sitting?
A6: standing
Q7: what is the brand of tv?
A7: i can't tell
Q8: can you tell what store it is?
A8: no
Q9: are there any other products in view?
A9: yes
Q10: what color is the floor?
A10: blue

a woman is smiling next to a 
decorated microwave

Q1: is there anyone in the room with the woman?
A1: no
Q2: is she young?
A2: no
Q3: what color is her hair?
A3: black
Q4: is it a big microwave?
A4: yes
Q5: is it sunny?
A5: no
Q6: is there any other appliances in the room?
A6: no
Q7: what is the woman wearing?
A7: a shirt
Q8: is her hair long?
A8: no
Q9: what color is the microwave?
A9: white
Q10: is she wearing glasses?
A10: no

Q1: is there anyone in the room with the woman?
A1: no, she is alone
Q2: is she young?
A2: no about 18
Q3: what color is her hair?
A3: brown
Q4: is it a big microwave?
A4: normal size
Q5: is it sunny?
A5: no
Q6: is there any other appliances in the room?
A6: no
Q7: what is the woman wearing?
A7: brown jacket
Q8: is her hair long?
A8: yes
Q9: what color is the microwave?
A9: silver
Q10: is she wearing glasses?
A10: no

Q1: is there anyone in the room with the woman?
A1: no
Q2: is she young?
A2: yes
Q3: what color is her hair?
A3: brown
Q4: is it a big microwave?
A4: yes
Q5: is it sunny?
A5: no
Q6: is there any other appliances in the room?
A6: no
Q7: what is the woman wearing?
A7: black jeans and a t shirt
Q8: is her hair long?
A8: no
Q9: what color is the microwave?
A9: white
Q10: is she wearing glasses?
A10: no

Q1: is there anyone in the room with the woman?
A1: no
Q2: is she young?
A2: yes
Q3: what color is her hair?
A3: brown
Q4: is it a big microwave?
A4: yes
Q5: is it sunny?
A5: i can't tell
Q6: is there any other appliances in the room?
A6: not that i can see
Q7: what is the woman wearing?
A7: a black jacket
Q8: is her hair long?
A8: no
Q9: what color is the microwave?
A9: white
Q10: is she wearing glasses?
A10: no

an elephant sprays the person on its 
back

Q1: is the elephant large?
A1: yes, but doesn't look full grown
Q2: how many people are on the elephant?
A2: i can only see 1
Q3: are there more elephants in the picture?
A3: no
Q4: what is the person wearing?
A4: i think it's shorts, hard to tell with the spray 
from the elephant
Q5: where is the elephant getting the water from?
A5: it's either a large puddle or maybe a river bank, 
not sure
Q6: is the water clean or dirty?
A6: it looks pretty muddy, so i would say dirty
Q7: is there grass anywhere near the water or 
mainly mud?
A7: mainly mud
Q8: can you see the sky?
A8: no
Q9: are there any trees in the photo?
A9: yes
Q10: can you tell what type of trees?
A10: no

Q1: is the elephant large?
A1: yes
Q2: how many people are on the elephant?
A2: four, 1 in each photo
Q3: are there more elephants in the picture?
A3: no, just the 2 birds
Q4: what is the person wearing?
A4: a green button up
Q5: where is the elephant getting the water from?
A5: it's either a large puddle or maybe a river bank, 
not sure
Q6: is the water clean or dirty?
A6: it looks pretty muddy, so i would say dirty
Q7: is there grass anywhere near the water or 
mainly mud?
A7: there's a bit of grass, and a green reflection on 
the water
Q8: can you see the sky?
A8: a very little part of if through the trees
Q9: are there any trees in the photo?
A9: yes, but there's hardly any leaves
Q10: can you tell what type of trees?
A10: i would think late spring or summer cause all 
the trees are nice and green

Q1: is the elephant large?
A1: yes
Q2: how many people are on the elephant?
A2: 2
Q3: are there more elephants in the picture?
A3: no
Q4: what is the person wearing?
A4: a waterproof swimsuit thing
Q5: where is the elephant getting the water from?
A5: it's either a large puddle or maybe a river bank, 
not sure
Q6: is the water clean or dirty?
A6: it looks pretty muddy, so i would say dirty
Q7: is there grass anywhere near the water or 
mainly mud?
A7: mainly mud
Q8: can you see the sky?
A8: no
Q9: are there any trees in the photo?
A9: yes
Q10: can you tell what type of trees?
A10: no

Q1: is the elephant large?
A1: yes
Q2: how many people are on the elephant?
A2: 1
Q3: are there more elephants in the picture?
A3: no
Q4: what is the person wearing?
A4: he is wearing a jacket
Q5: where is the elephant getting the water from?
A5: cannot tell from the picture
Q6: is the water clean or dirty?
A6: it looks pretty muddy, so i would say dirty
Q7: is there grass anywhere near the water or 
mainly mud?
A7: no, there is 0
Q8: can you see the sky?
A8: no
Q9: are there any trees in the photo?
A9: yes
Q10: can you tell what type of trees?
A10: no i can't

a man wearing a hat holds a small 
white dog

Q1: age of man?
A1: maybe 20s
Q2: type of dog?
A2: a white fluffy dog
Q3: is it small?
A3: yes
Q4: can you see the head?
A4: i can see the dogs head and the man's head
Q5: is the mouth open on the dog?
A5: no
Q6: what else is the man wearing?
A6: eyeglasses
Q7: what color hat is it?
A7: tan hat
Q8: what color is his shirt?
A8: hard to tell, possibly a grey vest
Q9: what color is his pants?
A9: they are not shown
Q10: is the man outside?
A10: no, he is inside

Q1: age of man?
A1: 40s
Q2: type of dog?
A2: a white fluffy dog
Q3: is it small?
A3: average size
Q4: can you see the head?
A4: yes
Q5: is the mouth open on the dog?
A5: yes
Q6: what else is the man wearing?
A6: a jacket and a hat
Q7: what color hat is it?
A7: brown
Q8: what color is his shirt?
A8: black
Q9: what color is his pants?
A9: black
Q10: is the man outside?
A10: no, he is inside

Q1: age of man?
A1: 40s
Q2: type of dog?
A2: a white fluffy dog
Q3: is it small?
A3: yes
Q4: can you see the head?
A4: i can see the dogs head and the man's head
Q5: is the mouth open on the dog?
A5: no
Q6: what else is the man wearing?
A6: a jacket and a hat
Q7: what color hat is it?
A7: tan hat
Q8: what color is his shirt?
A8: white
Q9: what color is his pants?
A9: they are not shown
Q10: is the man outside?
A10: no, he is inside

Q1: age of man?
A1: 40s
Q2: type of dog?
A2: i can't tell
Q3: is it small?
A3: yes
Q4: can you see the head?
A4: yes
Q5: is the mouth open on the dog?
A5: nope
Q6: what else is the man wearing?
A6: eyeglasses
Q7: what color hat is it?
A7: it's brown
Q8: what color is his shirt?
A8: his shirt is white
Q9: what color is his pants?
A9: i can't see it
Q10: is the man outside?
A10: no

a small bedroom with a hall with 
laundry in the background

Q1: do you see any people?
A1: no
Q2: is there a bed in the bedroom?
A2: yes
Q3: is it a big pile of laundry?
A3: no
Q4: what color is the bedspread?
A4: white and light gray
Q5: is it dirty laundry or clean?
A5: clean
Q6: is the hall carpeted or hard floor?
A6: hard floor
Q7: is the laundry hanging or piled or folded?
A7: hanging
Q8: is it a light or dark wood floor?
A8: dark
Q9: is the bedroom a child's room, guest room, or 
adult bedroom?
A9: adult
Q10: is there any other furniture in the bedroom?
A10: yes

Q1: do you see any people?
A1: no
Q2: is there a bed in the bedroom?
A2: no
Q3: is it a big pile of laundry?
A3: yes
Q4: what color is the bedspread?
A4: white and tan blankets
Q5: is it dirty laundry or clean?
A5: it's clean
Q6: is the hall carpeted or hard floor?
A6: wood
Q7: is the laundry hanging or piled or folded?
A7: hanging
Q8: is it a light or dark wood floor?
A8: light
Q9: is the bedroom a child's room, guest room, or 
adult bedroom?
A9: hard to say
Q10: is there any other furniture in the bedroom?
A10: a table and another bed

Q1: do you see any people?
A1: no
Q2: is there a bed in the bedroom?
A2: yes
Q3: is it a big pile of laundry?
A3: no
Q4: what color is the bedspread?
A4: white
Q5: is it dirty laundry or clean?
A5: clean
Q6: is the hall carpeted or hard floor?
A6: hard floor
Q7: is the laundry hanging or piled or folded?
A7: hanging
Q8: is it a light or dark wood floor?
A8: light
Q9: is the bedroom a child's room, guest room, or 
adult bedroom?
A9: adult
Q10: is there any other furniture in the bedroom?
A10: a table and another bed

Q1: do you see any people?
A1: no
Q2: is there a bed in the bedroom?
A2: yes
Q3: is it a big pile of laundry?
A3: yes
Q4: what color is the bedspread?
A4: white and light gray
Q5: is it dirty laundry or clean?
A5: clean
Q6: is the hall carpeted or hard floor?
A6: hard floor
Q7: is the laundry hanging or piled or folded?
A7: hanging
Q8: is it a light or dark wood floor?
A8: light
Q9: is the bedroom a child's room, guest room, or 
adult bedroom?
A9: adult
Q10: is there any other furniture in the bedroom?
A10: yes

Figure 6.7: More qualitative examples in VisDial v1.0 val split for three

model variants: DAN [60], VD-BERT, and VD-BERT with dense annotation

fine-tuning. The second column is for ground truth (GT) dialog.



Chapter 7

Conclusion and Future Work

In this chapter, we first summarize the contributions of this

thesis and present potential future research directions.

7.1 Conclusion

The prominent use of social media platforms results in millions

of user-generated messages produced every day. This thesis

aims to automatically summarize the main content into a set of

succinct keyphrases for a text-only or cross-media post to help

users efficiently capture the core ideas from the massive amount

of social media data. We propose to encode implicit contexts

like latent topics and explicit contexts like user conversations

and accompanying images to enrich features and design various

neural network-based models for them. We conduct extensive

experiments to demonstrate the effectiveness of our proposed

approaches. In particular, we make the following contributions.

In Chapter 3, we propose a topic-aware neural keyphrase gener-

ation approach for social media posts. Our approach consists of

two components: the neural topic model to infer latent topics,

and another one is the seq2seq model to generate keyphrase

144
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sequences. The two components are integrated with carefully

designed connections and can be jointly trained in an end-to-

end manner. Experimental results on three newly constructed

datasets from Twitter, Weibo, and StackExchange show that our

model outperforms previous methods in keyphrase prediction,

meanwhile generating more coherent topics.

In Chapter 4, we propose a sequence generation framework to

predict keyphrases for microblogs. Our approach is able to

generate rare and even new keyphrases compared to previous

methods, which rely on extraction-based or generation-based

models and cannot produce keyphrases out of the source post

or the predefined candidate list. Moreover, we explicitly exploit

user conversations initiated by the target post to enrich contexts

and propose a bi-attention network to better model the inter-

actions between them. Extensive experiments on two datasets

from Twitter and Weibo validate the superiority of our model

over state-of-the-art methods.

In Chapter 5, we propose a unified framework with multi-

modality multi-head attention (M3H-Att) and image wordings

for cross-media keyphrase prediction. Considering the unique

data nature in cross-media posts where images are diverse

in terms of types and have a complicated relationship with

texts, we propose to leverage image wordings distilled from the

image and M3H-Att to better capture the flexible text-image

interactions. Moreover, we design a novel unified framework via

extending the copy mechanism to adaptively aggregate classi-

fication outputs, aiming to couple the advantages of keyphrase

classification and keyphrase generation. Extensive experiments

on a large-scale text-image tweet dataset demonstrate our

model’s effectiveness in predicting more precise keyphrases and
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being able to attend indicative information from various aspects

in both modalities with our multi-head attention.

Finally, in Chapter 6, we explore how to better leverage the

visual cues in a more challenging visual dialog task and propose

VD-BERT to achieve the effective vision and dialog fusion. Via

simple visually grounded training, our VD-BERT captures the

intricate interactions between image and dialog within a single-

stream Transformer encoder. Moreover, our model supports

both answer ranking and answer generation seamlessly through

the same architecture. Our model yields a new state of the art

in discriminative settings and promising results in generative

settings for visual dialog tasks.

7.2 Future Work

In this thesis, we propose a number of neural approaches to

better predict keyphrases for social media posts, which can be

applied or extended to solve other applications with similar

settings. Besides, although the task of keyphrase generation for

social media understandings is receiving growing attention in

the recent decade, it is still a developing area with some critical

issues that are not sufficiently addressed. We summarize the

potential extensions of our approaches and future work about

keyphrase generation for better social media understanding.

• Extending the proposed approaches for other simi-

lar applications. First, our topic-aware keyphrase gen-

eration model is a generic framework of incorporating

latent topics for sequence generation, which can be easily

extended to other text generation tasks where topic infor-

mation could be useful, such as the text summarization,
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question generation, and storytelling [145] tasks. Second,

our idea of leveraging user conversations to enrich contexts

could inspire other methods for tasks where user reviews

or comments are available, such as text summarization for

online forums and news websites. Similarly, [41] also ex-

ploits user comments for helping microblog summarization.

Third, the ideas of encoding image wordings from social me-

dia images and employing multi-head attention to capture

the complex text-image interactions can be borrowed and

improve a lot of existing cross-media applications, such as

multimedia event extraction [87], sarcasm detection [19],

and text-image relation classification [142]. Last but not

least, our VD-BERT can potentially benefit other vision-

grounded language tasks, e.g., the video dialog tasks [75].

• Exploiting vision-language pretraining for better

cross-media understanding. Pretraining models like

BERT with self-supervised objectives have demonstrated

their powerful representation learning capability and es-

tablished state of the arts for numerous applications. In

a more challenging visual dialog task, we have also shown

that vision-language pretraining could help achieve the

effective vision and dialog fusion and dramatically improve

the performance. The straightforward future work would

be to harness the power of vision-language pretraining for

understanding cross-media posts. To the best of our knowl-

edge, despite substantial progress made in vision-language

pretraining recently, there is no prior work on extending it

for cross-media understanding. With the crucial insights

drawn from our cross-media keyphrase prediction work at

hand, we are potentially able to design better cross-media
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pretraining models by taking the unique characteristics of

social media data into consideration.

• Unsupervised learning for keyphrase prediction. All

the neural approaches proposed by this thesis require large-

scale annotated training data. Although we walk around

this challenge by employing the user annotated tags as the

target keyphrases, their amounts might still be insufficient,

e.g., only less than 15% tweets contain at least one hash-

tag [146, 64]. Besides, it would be costly to recruit human

annotators to accomplish tagging tasks. One possible

way is to devise unsupervised or semi-supervised learning

algorithms to ease the need of labeled data. Unsupervised

learning has demonstrated its effectiveness in many NLP

tasks. For example, in neural machine translation, [73, 74]

propose to rely only on monolingual data and employ back-

translation techniques to align both sides, which achieves

promising results. Another example is the unsupervised

keyphrase extraction for scientific articles [13], where they

map the document and extracted keyphrases into a shared

high-dimensional embedding space, and then select the top

related candidates by comparing their sentence embedding

distances. Inspired by their success, it would be an inter-

esting future work to combine both types of unsupervised

learning techniques for social media keyphrase prediction.
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in Natural Language Processing (EMNLP), Long Paper,
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2 End of chapter.
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pages 1571–1581, 2018.

[67] Y. Kim, Y. Jernite, D. A. Sontag, and A. M. Rush.

Character-aware neural language models. In D. Schuur-

mans and M. P. Wellman, editors, Proceedings of the Thir-

tieth AAAI Conference on Artificial Intelligence, February

12-17, 2016, Phoenix, Arizona, USA, pages 2741–2749.

AAAI Press, 2016.

[68] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, 2015.

[69] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

[70] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.

Rush. Opennmt: Open-source toolkit for neural machine

translation. In Association for Computational Linguistics,

2017.

[71] S. Kottur, J. M. F. Moura, D. Parikh, D. Batra, and

M. Rohrbach. Visual coreference resolution in visual dialog

using neural module networks. In Computer Vision -

ECCV 2018 - 15th European Conference, Munich, Ger-



BIBLIOGRAPHY 165

many, September 8-14, 2018, Proceedings, Part XV, pages

160–178, 2018.

[72] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata,

J. Kravitz, S. Chen, Y. Kalantidis, L. Li, D. A. Shamma,

M. S. Bernstein, and L. Fei-Fei. Visual genome: Connect-

ing language and vision using crowdsourced dense image

annotations. Int. J. Comput. Vis., 123(1):32–73, 2017.

[73] G. Lample, A. Conneau, L. Denoyer, and M. Ranzato.

Unsupervised machine translation using monolingual cor-

pora only. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada,

April 30 - May 3, 2018, Conference Track Proceedings.

OpenReview.net, 2018.

[74] G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ran-

zato. Phrase-based & neural unsupervised machine trans-

lation. In E. Riloff, D. Chiang, J. Hockenmaier, and

J. Tsujii, editors, Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, Brus-

sels, Belgium, October 31 - November 4, 2018, pages 5039–

5049. Association for Computational Linguistics, 2018.

[75] H. Le, D. Sahoo, N. F. Chen, and S. C. H. Hoi. Multimodal

transformer networks for end-to-end video-grounded di-

alogue systems. In A. Korhonen, D. R. Traum, and
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