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Abstract of thesis entitled:
Neural Keyphrase Generation for Social Media Understand-
ing
Submitted by WANG, Yue
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in January 2021

Social media platforms, such as microblogging services and
online forums, are becoming increasingly popular, profoundly
revolutionizing how people share information and voice opin-
ions. Due to the wide availability of mobile devices and easy
connectivity, millions of user-generated messages are produced
on a daily basis, leading us to the information explosion era. As
a result, the current decade has witnessed a pressing demand
for automatically digesting the large volume of social media
data and discovering its crucial content. To this end, keyphrase
prediction, which aims to summarize a social media post into
a set of succinct keywords (or hashtags), receives growing
attention in the social media research community.

Previous progress made in this field has mainly focused on
either extraction-based or classification-based approaches, which
are limited in that they cannot predict keyphrases absent in the
source text or the predefined candidate list. To overcome this
limitation, in this thesis, we study neural keyphrase generation
methods that enable new keyphrases to be created for social
media posts. In contrast to early methods relying on hand-



crafted features, we take advantage of recent advances in deep
learning and employ neural network-based frameworks that
allow effective representation learning in a data-driven manner.
More importantly, to alleviate the data sparsity issue widely
exhibited in unstructured social media posts, we propose to
enrich contexts via either implicitly exploiting the post-level
latent topics or explicitly leveraging the user replies or the
accompanying images.

First, we propose a novel topic-aware sequence generation
model that leverages implicit latent topics to guide the keyphrase
generation. Specifically, we make use of unsupervised topic
models to induce a topic representation and then incorporate
it into a sequence-to-sequence (seq2seq) model for generating
keyphrases. Our topic models are also built with a neural
architecture and allow end-to-end training of both components.
Experimental results on three datasets from Twitter, Weibo,
and StackExchange show that our model outperforms existing
methods in keyphrase prediction, meanwhile generating more
coherent topics.

Second, we explore how to leverage external knowledge for
keyphrase generation. We propose to ezplicitly exploit user
conversations about the target post to alleviate the data sparsity
issue and design a bi-attention module to better model the inter-
actions between the post and its conversation contexts. Unlike
most prior work using classification models for recommending
keyphrases, our model employs a sequence generation framework
that is able to generate rare and even unseen keyphrases, which
is however not possible for these existing methods. Experiments
on two large-scale datasets from Twitter and Weibo validate the
superiority of our model over traditional methods.
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Third, we focus on predicting keyphrases for cross-media
posts, which additionally contains images to deliver auxiliary in-
formation from authors. Apart from the informal texts, images
in cross-media posts usually cover diverse categories and have a
complex text-image relationship, making it difficult to identify
their core meanings. To cope with this, we propose to exploit
the image wordings (OCR texts and image attributes) to bridge
text-image semantic gap and design a novel Multi-Modality
Multi-head Attention (M?H-Att) to better capture the dense
interactions between them. Moreover, we propose a unified
framework to integrate the outputs of keyphrase classification
and generation and couple their advantages. Experiments on
a dataset of text-image tweets demonstrate the effectiveness of
our model in predicting more precise keyphrases and attending
indicative information from various aspects in both modalities
with our multi-head attention.

Last but not least, to better leverage the visual cues from
multi-modal social media posts, we take a further step to study
how to effectively learn wisual and linguistic representations
in a more general setting. For this study, we focus on the
visual dialog task, one of the most challenging vision-language
tasks, and propose a unified vision-dialog Transformer with
BERT (VD-BERT) for it. Our model captures the intricate
interactions between image and dialog within a single-stream
Transformer and achieves the effective fusion of features from the
two modalities via simple visually grounded training. Besides, it
supports both answer ranking and answer generation seamlessly
through the same architecture. Our model achieves effective
vision and language fusion within a unified Transformer encoder
and yields a new state of the art for visual dialog tasks.
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In summary, the thesis targets keyphrase generation to facil-
itate a quicker understanding of the target information for users
when navigating the massive amount of noisy social media data.
Extensive experiments on real-world datasets show that by
exploring both implicit and explicit approaches to alleviate data
sparsity in social media posts, our proposed models outperform
state-of-the-art methods in keyphrase prediction with better
accuracy for both text-only and cross-media posts. The last pilot
study in visual dialog also points out an interesting future work
of extending vision-language pretraining to benefit multi-modal
social media understanding, which is becoming increasingly
crucial with the advent of the mobile Internet era.
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Chapter 1

Introduction

1.1 Overview

As social media continues its worldwide expansion, the last
decade has witnessed the revolution of interpersonal communica-
tion, shifting from offline “kitchen table conversations” to public
discussions on online platforms. Among them, microblogging
services and online forums have become an essential outlet for
individuals to voice opinions and exchange information. While
empowering individuals with richer and fresher information,
the flourish of social media also results in millions of posts
generated on a daily basis. According to the current statistics
from Twitter!, there are around 500 million tweets generated per
day. Facing a sheer quantity of texts, language understanding
has become a daunting task for human beings. Under this
circumstance, there exists a pressing need to develop automatic
systems capable of digesting massive social media texts and
figuring out what is essential.

In recent decades, numerous machine learning techniques have
been studied towards social media understanding, which cov-

https://twitter.com
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ers a broad set of real-world applications, such as microblog
search [37, 10], sentiment analysis [34, 146], summarization [177,
23], sarcasm detection [19], user profiling [152, 38], stock price
prediction [17, 108], event extraction [87] and categorization [2],
and so forth. In this thesis, we target understanding social media
by generating keyphrases using deep neural networks. In general,
keyphrases are formed with words or phrases and able to convey
the main idea of the target posts quickly, thereby effectively
helping users when navigating a large volume of noisy social
data. Specifically, in microblogs, users employ hashtags (i.e.,
“#DeepLearning”) prefixed with a “#” to represent their key
topics, which are regarded as keyphrases in this thesis following
the common practice [176, 179]. Keyphrase prediction has been
shown to benefit a wide range of downstream tasks, such as
instant detection of trending events [151], summarizing public
opinions [101], and analyzing social behavior [124].

Despite the substantial efforts made in social media keyphrase
prediction, most progress to date has focused on extracting
phrases from source posts [176, 179] or selecting candidates
from a predefined list [45, 175, 178]. However, social media
keyphrases can often appear in neither the target posts nor the
given candidate list mainly due to two reasons. For one thing,
social media platforms allow large freedom for users to write
whatever keyphrases they like and do not set any restrictions to
let them include the keywords in the posts. For another thing,
due to the wide range and rapid change of social media topics,
a wide variety of keyphrases can be created daily, making it
impossible to be covered by a fixed candidate list. Inspired by
the recent advances in neural language generation, we approach
social media keyphrase prediction with a sequence generation
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framework, enabling new keyphrases to be created out of both
the source post and the candidate list. Specifically, we regard the
keyphrase as a short sequence of words (e.g., “#DeepLearning”
to be “deep learning”) instead of a discrete label like previous
work did. Then we build on a sequence-to-sequence (seq2seq)
framework [139] to generate the keyphrases in a word-by-word
manner. The seq2seq learning has been widely adopted for
improving a wide spectrum of language generation tasks, such
as machine translation [8, 96], text summarization [127], dialog
response generation [80, 164], and question generation [82, 42],
so forth.

Recently, seq2seq models have been also applied to generate
keyphrases for scientific articles [100, 24, 26, 27]. However,
their performance would be compromised when directly applied
to noisy social media data. Unlike conventional formal and
well-edited texts in these previous studies, social media content
suffers from the data sparsity issue and poses a unique hurdle
for precisely identifying its main idea. On the one hand, social
media texts are usually short in length and thus contain limited
features for understanding them. For example, microblogging
services like Twitter and Sina Weibo? initially restrict the
content length to be less than 140 characters. Although such
constraints might be relieved (e.g., changed to 280 characters in
tweets) through the development, users still exhibit the habits
of posting short messages. For example, the average length of
a tweet is around 28 characters [1], and some studies further
suggest that shorter posts tend to receive more likes, comments,
and sharing. On the other hand, due to the informal and
colloquial nature of user-generated content, social media posts

’https://weibo.com
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usually contain lots of misspelling words, grammatical errors,
abbreviations, emojis, and even slangs. For example, given the
tweet, “Ok no Bunz by choice. But can I atleast get some head?
Lmao”, it is difficult to understand its meaning based on such a
short sentence, which contains not only typos like “Bunz” and
“atleast”, but also the specific social media domain abbreviation
“Lmao” (laughing my ass off).

To address the data sparsity challenge, we explore to enrich
useful features by encoding either tmplicit contexts like latent
topics (W1) or explicit contexts like user comments (W2) and
accompanying images (W3). In W1, we explore the effects of
latent topics inferred from unsupervised topic models [15, 102] in
aiding keyphrase prediction. Intuitively, the learned topics can
narrow down the search space and serve as auxiliary contexts to
indicate the keyphrases. While latent topics have been shown
to benefit short text classification [174], it is unclear how it can
help keyphrase prediction, which has a much larger vocabulary
space (thousands vs. up to 50 classes in [174]) and the more
complex multi-step decoding process compared to the one-step
classification. Our W1 aims to fill this gap by proposing a topic-
aware keyphrase generation model, which intelligently leverages
topic information to guide keyphrase generation.

In W2 and W3, we resort to explicitly exploiting external knowl-
edge to enhance keyphrase prediction. Social media platforms
like Twitter allow users to form conversations on interests by
retweet with comments or replying to previous messages to voice
their opinions. Table 1.1 shows an example target post and
the corresponding conversation initiated by it. We can hardly
identify its keyphrase as Super Bowl from the target post and
might just know it is a comment for some sports games given
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Target post for hashtag generation

Thank you fox for showing the good sposmanship segment! That’s what
it should always be like. #SuperBowl

Replying messages forming a conversation

[T1] Bet you are happy dancing right about now lol! You are the biggest
Steelers fan I know, so I have been thinking of you tonight.

[T2] Thank you! That’s a huge compliment. They have won a lot this
season. It would have been poetic to end the season that way.

[T3] Yes, just think of all the money you will save, not having to buy all
the SuperBowl champions gear.

Table 1.1: A post and its conversation snippet about “Super Bowl” on
Twitter. “#SuperBowl” is the user tagged keyphrase for the target post.
Words indicative of the keyphrase are in blue and italic type.

such limited information. To deal with this, we leverage the
user conversations to enrich contexts, which has been shown to
benefit the understanding of the original post [23, 81]. As can be
seen from the example, key content words in the conversation are
useful to unveil the reason why it is tagged with “#SuperBowl”,
e.g., “Steelers” in the first reply message is a famous team in a
Super Bowl football game, and even ‘the keyphrase ‘SuperBowl”
directly appears in the third reply message. In W2, we explore
how to make use of the user conversations to better understand
the target post.

Thanks to improved smartphones and the flourish of mobile
Internet, cross-media posts with matching images are becoming
ubiquitous and bring additional difficulties for understanding
them. Traditional keyphrase prediction methods relying only on
the textual information would achieve suboptimal performance
as they neglect the critical clues conveyed from the images.
To illustrate our motivation, we depict two cross-media tweet
examples in Figure 1.1. In the post (a), the text is an
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Post (a): I was watching all the Post (b): Congrats producer of
bees Honeybee collecting pollen the year, non-classical winner -
on the flowers Bouquet #Cats ~ Williams #Grammys

WINNER

PRODUCER OF THE YEAR, NON-CLASSICAL

PHARRELL
WILLIAMS

GRAY i
AHARDS (0%

#GRANMYs

Figure 1.1: Two multimedia posts from Twitter where texts offer limited
help in identifying their keyphrases while images provide essential clues.

anthropomorphic description and hardly unveils the key content
cats, which can be clearly signaled by the image. As for the post
(b), the keyphrase grammys is directly reflected by the optical
characters in the image. Inspired by these examples, in W3,
we explore how to encode matching images for compensating
the limited contexts exhibited in the texts. Notably, studying
the combined effects of text and image in social media is more
challenging than traditional vision-language tasks like image
captioning or visual question answering (VQA) [6], where the
two modalities often have most semantics shared and their
images mostly are natural scene photos. By contrast, texts and
images in cross-media posts are not necessarily connected in
semantic space and can have a variety of relationships. A recent
finding [142] points out there can be four diverse text-image
semantic relations (depending on whether text is represented
in image and whether image adds to semantics in text) on
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Twitter. Besides, social media images tend to have a more
diverse category apart from photos, e.g, the poster with texts in
post (b). To handle these unique challenges, we propose novel
methods for distilling more useful features from the image and
capture its interaction with texts.

So far, while W1 and W2 focus on the single modality (text-
only), W3 explores keyphrase generation in a more challenging
multi-modal setting, where interactions between text and image
should be effectively captured and exploited. To further investi-
gate how to achieve better vision and language fusion, we focus
on a more general vision-language task visual dialog (W4), where
an agent is asked to answer a series of questions conditioned
on an image and previous dialog turns. By pretraining with
visually grounded self-supervised objectives in the visual dialog
task, self-attention in Transformer [141] can capture the cross-
modality interaction more effectively. Such findings provide a
strong indication that vision-language pretraining would benefit
the cross-media understanding for keyphrase generation in W3,
where its proposed model is also built on a Transformer.

To better illustrate the structure of our thesis, we show the
roadmap of our contributions in Figure 1.2. Our thesis targets
at social media keyphrase generation and proposes to encode
implicit contexts like latent topics [148] and explicit contexts
like user conversations [150] and images [149] to alleviate the
data sparsity in social media. To explore better ways for fusing
multi-modal features, we take a further step to study a more
challenging visual dialog task. We extensively investigate the
effects of vision-language pretraining [147] for vision and dialog
fusion, which points out an interesting future work to adapt such
pretraining back to benefit cross-media understanding.
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1.2 Thesis Contributions

In this thesis, we make contributions to neural keyphrase
generation for social media understanding as follows.

e Encoding Implicit Topics for Keyphrase Genera-
tion [148]
To mitigate the data sparsity in social media posts, we
propose a novel topic-aware keyphrase generation model
that leverages tmplicit latent topics to enrich useful fea-
tures.  Specifically, we propose a sequence-to-sequence
(seq2seq) based framework that considers latent topics
for better keyphrase prediction. Instead of employing
traditional topic models, we exploit a neural topic model
that can be seamlessly integrated into our seq2seq model
for the end-to-end joint training. Experimental results on
three newly constructed datasets from Twitter, Weibo, and
StackExchange show that our model outperforms previous
keyphrase prediction methods while generating more coher-
ent topics.

¢ Encoding Explicit Conversation for Keyphrase Gen-
eration [150]
In this work, we propose to explicitly exploit user conver-
sations about the target post to better predict keyphrases
for microblog posts. Unlike most prior work that regards
keyphrase to be inseparable and employs classification mod-
els for keyphrase recommendation, we propose a sequence
generation model to generate keyphrase in a word-by-word
manner, enabling rare and even unseen keyphrases to be
created. Moreover, we design a bi-attention module to



CHAPTER 1. INTRODUCTION 10

model the interactions between the post and its conver-
sation contexts. Extensive experiments on two datasets
from Twitter and Weibo validate our model’s superiority
over traditional methods with more accurate keyphrase
predictions.

e Cross-Media Keyphrase Prediction: A Unified Frame-
work with Multi-Modality Multi-Head Attention
and Image Wordings [149]

We explore another explicit knowledge from the visual
modality, which is the ubiquitous accompanying images
in cross-media tweets. Due to social media’s informal
style, tweet images often have an exceptionally diverse cat-
egory and have a complicated relationship with the target
texts. To distill indicative signals from the noisy cross-
media posts, we propose to exploit the image wordings
to bridge the text-image semantic gap and design a novel
Multi-Modality Multi-head Attention (M3H-Att) to better
capture the dense interactions between them. Moreover,
we propose a unified framework to leverage the outputs
of keyphrase classification and generation and couple their
advantages. Extensive experiments on a dataset of text-
image tweets demonstrate the effectiveness of our model
in predicting more precise keyphrases and being able to

attend information from various aspects in both modalities
with M3H-Att.

e Vision-Language Pretraining for Visual Dialog [147]
To better leverage the visual cues for understanding multi-
modal social media posts, we take a further step to study
how to effectively learn visual and linguistic representations
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in a more general task visual dialog. In this task, an
agent is asked to answer a series of questions based on
the joint understanding of an image and the dialog history.
We propose a unified vision-dialog Transformer with BERT
(VD-BERT). Our model captures the intricate interactions
between image and dialog and achieves the effective fusion
of features from the two modalities via simple visually
grounded training. Besides, it supports both answer rank-
ing and answer generation seamlessly through the same
architecture. Our model yields a new state of the art in
discriminative settings and promising results in generative

settings for visual dialog tasks.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

e Chapter 2

This chapter presents a systematic review of the back-
ground knowledge and related work in neural keyphrase
prediction and social media research. First, we briefly
introduce some basic knowledge of deep neural networks, on
which all the proposed models in the thesis are based. Then
we review existing techniques for keyphrase prediction
tasks, which can be divided into extraction, classification,
and generation methods. Lastly, we review some recent
advances in social media research for both text-only and
multi-modal settings.

e Chapter 3
In this chapter, we present a topic-aware neural keyphrase
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generation model for social media posts. We first define
the keyphrase generation problem and introduce our mo-
tivations in Section 3.1. Then we present the formulation
of our proposed topic-aware keyphrase generation approach
that consists of two components (neural topic model and
keyphrase generation model) in Section 3.2. After that, we
introduce our experiment setup including the collection of
three social media datasets in Section 3.3. We comprehen-
sively analyze the experimental results in Section 3.4 and
conclude this work in Section 3.5.

e Chapter 4

In this chapter, we propose to approach microblog keyphrase
annotation as a sequence generation problem. We first give
an overview of the task in Section 4.1 and introduce our
neural keyphrase generation model for that in Section 3.2.
Then we introduce how to construct the dataset and set up
the experiments in Section 3.3. Lastly, Section 3.4 shows
some empirical results compared to previous methods and
Section 3.5 concludes this work.

e Chapter 5
In this chapter, we propose a unified framework for cross-
media keyphrase prediction. We first briefly introduce
its unique challenges compared to conventional vision-
language tasks and our motivations to address them in
Section 5.1. Then Section 5.2 gives an overview of our
proposed model, which consists of a multi-modality en-
coder to digest features from three modalities, a multi-
modality multi-head attention to capture their complex
interactions, and a unified keyphrase prediction module
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to couple the advantages of keyphrase classification and
generation. After that, we introduce and analyze the
newly-constructed multi-modal tweet dataset together with
experiment setup in Section 5.3. In the end, Section 5.4
shows the experimental results and Section 5.5 concludes
this work.

e Chapter 6

In this chapter, we focus on a more general and challenging
multi-modal task visual dialog. We first introduce the task
and our motivations to improve it in Section 6.1, followed
by a brief review of its related work in Section 6.2. Then
we introduce our VD-BERT model in Section 5.2, which
employs a single-stream vision-dialog Transformer encoder
to encode the image and its multi-turn dialogs and visual
grounded training objectives to encourage their effective
fusion, together with a ranking optimization module to fine-
tune the final predictions. We introduce the experiment
setup in Section 6.4 and show the empirical results in
Section 6.5. Lastly, Section 6.6 concludes this work.

e Chapter 7
The last chapter summarizes the contributions of this thesis
and presents some potential future research directions
about social media keyphrase prediction.

0 End of chapter.



Chapter 2

Background Review

In this chapter, we review the background knowledge and related
work of our research contributions. We first introduce some
basic knowledge of deep neural networks on which our proposed
models are built in Section 2.1. Then we review the related
work of keyphrase prediction in Section 2.2, which can be
categorized into extraction-based methods, classification-based
methods, and generation-based methods. After that, we review
related research for social media understanding with text-only
and multi-modal content in Section 2.3.

2.1 Neural Network Basics

A great number of recent approaches for keyphrase prediction
are based on deep neural network models. These models avoid
the need of feature engineering and allow effective representation
learning via a purely data-driven manner. In this section, we
review some background knowledge for most neural models,
including sequence encoders with building blocks like word
embeddings and Recurrent Neural Networks (RNNs), and the
sequence-to-sequence (seq2seq) models with copy mechanisms

14
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for generation tasks. We also review the recent advances of
the powerful Transformer architecture and its exceptional use
for pretraining. Throughout the thesis, we employ W and b to
respectively denote a trainable projection matrix and a trainable
bias vector in a neural network model.

2.1.1 Neural Sequence Encoders

Given an input sequence, neural sequence encoders aim to
encode the sequential contexts via learning high-dimensional
representations. In recent decades, with the expansion of deep
learning in all kinds of areas, neural networks like RNNs have
been widely adopted as the backbone for modeling a sequence of
inputs. Typically, the encoding procedure consists of two steps:
first, map the discrete input tokens into continuous vectors via
an embedding lookup table; second, RNNs such as LSTMs and
GRUs are employed to derive their contextual representations.

Word Embeddings

Formally, let us define a discrete input sequence as x =
{x1,...,2,}, where n is the number of tokens and each token
x; is in a vocabulary V. Word embedding aims to map each
z; into a distributed vector e; € R% with a lookup table
E € R%*IVl where d, denotes the embedding size. After that,
these embeddings will be integrated into other neural modules
and jointly trained. In general, word embedding is deemed as
the foundation of the successful use of deep learning in NLP.

Apart from training the embedding matrix E from scratch, one
can also load pretrained ones like word2vec [104] and GloVe [114]
as a better start point. These embeddings are trained from
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some large corpus with self-supervised objectives and capture
basic task-agnostic language representations. To further deal
with the out-of-vocabulary problem when handling big corpus,
character-level or sub-word representations are widely employed
in many NLP applications, such as CharCNN [67], FastText [16]
and Byte-Pair Encoding [128].

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [122] have been extensively
adopted as the backbone for encoding sequences due to the
unique recurrent structure. Specifically, as shown in Figure 2.1,
such a unique recurrent module can be unrolled along multiple
time steps, thereby enabling RNNs to encode arbitrarily long
sequences. Moreover, RNNs employ parameter sharing for each
time step and largely reduce the parameter numbers. Formally,
an RNN cell is represented as:

ht = RNN(ht_l,Xt;Q), (21)

where x; and h; are the embeddings of the input token and
hidden state respectively at time step ¢, and 6 is the shared
parameters for all time steps, which will be learned by back
propagating gradients. We omit the 6 for simplicity below.
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Despite its ability to encode arbitrarily long sequences, RNNs
suffer from the long-range dependencies, where gradients propa-
gated over many time steps tend to either vanish or explode [47].
The underlying reason is that training on long-term depen-
dencies will produce exponentially smaller weights (due to the
multiplication of many Jacobians) compared to the short-term
ones. To alleviate such issues, researchers introduce a gating
mechanism to better control the message propagation along
long-term dependencies. Concretely, it dynamically determines
how much of past information will be discarded or kept at each
cell state. Among these methods, LSTMs and GRUs are two
widely adopted RNN variants.

Formally, an LSTM cell employs three gates to update its hidden
state at each time step via:

w; = o(Waux; + Wyhi_y +by),
fi = o(Worxi + Wyshe_y + by),
o, = 0(Wyox; + Wiohy_1 +b,),
¢’y = tanh(Wvx; + Wyehy 1 + by),
ci=foci 1 +uoc],

h; = o, o tanh(c;),

— — — — ~— —

~~ /~~ —~ —~ —~
N O Ot = W N

where o(.) is the sigmoid function and o denotes element-wise
multiplication. ¢; € R% is the current internal cell state with
dimension size to be dj,. w, f;, 0, € R% are the input, forget, and
output gates to decide how much of information will be added to
the cell state, removed from the cell state, and passed to hidden
states, respectively.

Compared to LSTMs, GRUs simplify the gating mechanism with
only two gates, i.e., reset and update gate, and still achieve
comparable performance. Formally, a GRU cell updates the
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hidden state at each time step via:

r; =o(Wyx; + Wphy 1 +b,), (2.8)
7zt = 0o(Wp.x; + Wyp.hy 1 +b,), (2.9)
h; = tanh(W _;x; + W5 (r; o hy 1) + b;), (2.10)
hy =z 0h;;+ (1 —2)o0h,, (2.11)

where r; is the reset gate that controls how much of past
information will be neglected while z; is the update gate that
determines how much of past information will be reserved.
GRUs can achieve comparable performance as LSTMs but
with a simpler architecture and will be adopted in multiple
approaches proposed in the thesis.

To encode more useful contexts, bi-directional RNN encoders
have been widely adopted to model the sequential input from
two directions. Specifically, it employs a forward RNN and a
backward RNN to respectively read input sequence x from x;

to x,, and from x,, to xi:

T, = RNN(x;, 1), (2.12)
Tr: = RNN(x,, o). (2.13)

The forward and backward hidden states ﬁt and tt are
concatenated to form a hidden representation h; = [ﬁt;?t]
for the input x;. As such, H = {hy,....,h,} can be deemed as
the contextual representations for the whole sequence.

After obtaining the sequential representations, one can feed
them for a sequence decoder to generate another sequence
(Section 2.1.2), or directly make a prediction based on them.
For the latter, the representations are usually aggregated into
a vector via max or mean pooling and transformed to v via
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Figure 2.2: Illustration of seq2seq models.

multi-layer perceptron (MLP) for later use. Take the multi-
class classification as an example. A softmax layer can directly
operate on them to yield the probabilities:

softmax(v) = exp(v) (2.14)

B Zk:l eXp(Vk)’

where k is the number of classes and the softmax function

produces a normalized distribution over the class vocabulary.

2.1.2 Sequence to Sequence Models

Apart from making a discriminative prediction, one can also
predict another target sequence based on the learned source
sequence representations H. This is well known as the sequence
to sequence (seq2seq) learning that typically employs an en-
coder and decoder framework (as shown in Figure 2.2). The
seq2seq models have been originally proposed for neural machine
translation task and later widely adopted as the paradigm for
a number of language generation tasks, e.g., dialog response
generation, question generation, text summarization, and also
the keyphrase generation [100, 26, 27, 22, 148]. RNNs are the
most popular backbone for the seq2seq models.

Formally, given the source input sequence x = {xy,...,2,}, an
encoder reads this sequential input and summarizes them into a
context vector ¢ (one popular choice is to employ the h;). Then
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a decoder generates the output sequence y = {y1, ..., ¥} based
on the fixed-size context vector. At each decoding step ¢, the
decoder calculate a hidden state s € R%:

St = RNN(St_l, yt—l)a (215)

where s;_1 is the previous decoder hidden state and y;_; the
embedded word predicted at the last time step. Usually, c
is employed as the initial state sy and a special token <BOS>
(begin of sentence) is inserted as the first token g, to trigger the
decoding process. To ensure the autoregressive property, the
decoder is built on uni-directional RNNs.

Based on the hidden state s;, the decoder employs a MLP with
softmax to derive a probability distribution over words in a
predefined vocabulary V:

P(yt|y<t,x) = softmax(Wys; + by), (2.16)

where y_; refers to {y1,vy2,...,4-1}. The decoding process is
usually terminated when a special token <E0S> (end of sentence)
is emitted.

Attention Mechanism

However, the traditional encoder-decoder frameworks often suf-
fer from the so-called hidden state bottleneck that is caused by
attempting to summarize an arbitrarily long sequence into a
fixed-size vector, which is unrealistic and inevitably restricts the
capability of capturing long-range dependencies. To address this
issue, attention mechanisms have been widely adopted to allow
the decoder to fully make use of all the contexts in the source
sequence.
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As illustrated in Figure 2.3, attention mechanisms add shortcut
connections from each decoder state s; to all the encoder states
in H. Specifically, the decoder computes an attention score o ;
using the following equations:

Qi = vl tanh(Wprh; + Wys; + b,,), (2.17)
G — exp(ay,;)

T X exp(ar)’

where v € R%*! W, ¢ R%xd W, ¢ R%*d b, € Ré%. The
attention weight oy; measures the compatibility score between

(2.18)

the decoder state s; and encoder state h;, which will be used to
compute the context vector c; via:

ct =Y ayh;. (2.19)
i=1
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Figure 2.4: Tlustration of copy mechanism. Figure is from [127]

Here c; is a dynamic context vector depending on the decoding
state and represents the relevant information distilled from the
source sequence. At each time step t, the decoder takes the
context vector into account and predict the output y; via:

P(yi|y <t,x) = softmax(Wy[ss; ¢;] + by), (2.20)

where [; | denotes the concatenation operation. By incorporating
the context vector c;, attentional seq2seq models overcome the
hidden state bottleneck issue and are more capable of capturing
long-range dependencies.

Copy Mechanism

In many language generation tasks, the output sequence often
contains some shared contexts with the source sequence, e.g.,
text summarization and the keyphrase generation. In such cases,
copy mechanism [106, 48, 127] that allows the decoder to directly
extract source words as the predicted outputs has been widely
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employed for improving the overall performance. Another major
advantage of the copy mechanism is to help handle the out-of-
vocabulary (OOV) problem, which is a well-known phenomenon
in NLP, especially when processing large-scale corpus. As it is
impractical to maintain a large vocabulary for all the words,
a common approach is to set a fixed vocabulary size for most
frequent words and regard the rest long-tail words as unknown
words (often marked as <UNK>). Copy mechanism brings an
extra opportunity to recover these words if they directly appear
in the source sequence.

Figure 2.4 illustrates one of the most popular copy mechanisms
proposed by See et al. [127], where they devise a pointer and
generator model for text summarization tasks. Specifically, to
select words from the source sequence, the copy mechanism
often employs the attention scores « in Eq. (2.18) as the
extractive probabilities. Besides, it computes a soft switch pgen
to determine whether to copy from the local source sequence or
generate from the global vocabulary:

Pgen = 0(u§[ct; St; Yi-1]), (2.21)

where o is a sigmoid function that maps to pg, € [0,1]. As
such, the final prediction is computed by linearly combining both
probabilities:

Pfinal(yt) - pgenp(yt) + (1 - pgen) Z Qg (222)

LTi=Yy

where pg., controls the percentage of contribution that each
module makes to final predictions, e.g., pgen, = 1 represents the
original model without a copy mechanism.
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2.1.3 Transformer and Pretraining

Recently, Transformers [141] relying only on attention mech-
anism have received growing attention and revolutionized nu-
merous NLP tasks, including both natural language generation
(NLG) like machine translation and natural language under-
standing (NLU) like the GLUE benchmarks [143]. Compared to
RNNs that employ a recurrent structure to encode sequences,
Transformers get rid of such sequential nature and utilize fully
self-attention networks, thereby enabling better parallelization
and largely improving efficiency. Moreover, they are more
capable of capturing long-range dependencies by adding direct
shortcut connections between any tokens in the sequence. Due
to its strong representation learning and great efficiency, Trans-
formers tend to be the new paradigm for encoding texts, and
even any other types of sequential data, such as speech [31] or
video [138].

Transformer Architecture

Figure 2.5 illustrates the overview of the Transformer architec-
ture, which consists of a Transformer encoder and Transformer
decoder. Formally, let H! be a matrix with rows {h}, ... h}.}
corresponding to the intermediate representations after the [-
layer. Multi-head attention is applied to compute each hl from
the [ — 1 layer’s outputs and each head is defined as:

KT

A; = SOftmaX(Q\/d_Z YV, (2.23)
k

Q; = h'WY K, = h'WE v, = hlmtwY (2.24)

where {Q;, K;, V;}(i € [1,m]) is a set of queries, keys, and values
for computing the i-head A; € d; and m is the number of heads.
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Figure 2.5: Illustration of Transformer and multi-head attention. Figure is
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WZ-Q, WHE and WY are the trainable projection weights. Com-
pared to traditional single-head attention, multi-head attention

is able to attend information from various representation spaces

and hence exhibits better representation learning capability.

Next, outputs from all the heads are concatenated and passed to
a Feed-Forward Network (FFN) with residual connection [52],
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followed by layer normalization [7]:

h! = Concat(A,, ..., A,,)WY, (2.25)
h! = LayerNorm(h!™' + h!), (2.26)
h! = max(0, h!W, 4+ b; )W, + by, (2.27)
h! = LayerNorm(h! + h!), (2.28)

where WO is the projection weights to combine various head’s
outputs, and W1, Wy, by, by are trainable weights and biases in
FFN layer. The outputs H” at the final layer from the encoder
will be based to make a discriminative prediction for NLU tasks
or generate a target sequence with a decoder for NLG tasks.

Pretraining Tasks

To fully unleash the potential of Transformer models, it requires
a large amount of data for sufficient training. As for some
tasks with limited data, one can leverage the large-scale out-
of-domain data for pretraining and then finetune it with small
task datasets. Generally, pretraining aims to learn generic repre-
sentations that can be transferred to downstream tasks. It can
improve generalization especially when the target domain has
scarce data. Such pretrain-then-finetune paradigm (Figure 2.6)
has been ubiquitously applied in numerous applications in NLP,
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CV, and also their intersection.

As it is very expensive to obtain huge annotated data for
pretraining, researchers in NLP resort to applying unsuper-
vised learning (or self-supervised learning) to derive generic
representations from the abundant text data like Wikipedia or
book corpus. Among them, BERT [35], short for bidirectional
encoder representations from Transformers, is one of the most
popular pretrained language models based on a multi-layer
bidirectional Transformer. The BERT model is pretrained on a
large language-corpus in an end-to-end fashion under two tasks:
masked language modelling (MLM) and next sentence prediction
(NSP).

In masked language modelling, tokens in x are randomly masked
out with a probability of 15%. Each of the masked tokens will
be replaced with (1) a special [MASK] token 80% of the time, (2)
a random token 10% of the time, (3) the unchanged one 10%
of the time. Next, the BERT model is teached to recover the
masked tokens based on the observed set with cross entropy loss:

[,MLM(G) = —Lw~D, t~T log P@(wt‘W\t), (229)

where 6 represents all the trainable parameters and w is
sampled from the whole training set D. w\; is defined as
{wy, ..., w1, [MASK], wyy1, ..., wr}, and Pp(w|w) is implemented
by mapping hl (the representation of w; at the final Transformer
layer) to a distribution over the vocabulary with a linear layer.
In next sentence prediction, a pair of sentences (A, B) are
sampled from the input document D, and the model is trained
to predict whether or not sentence B follows sentence A in the
source text. Specifically, the two sentences are passed it into the
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BERT following the format:
{ [CLS] , Wpty ...y WapT, [SEP] , W1, ..., WBT, [SEP] }

A sigmoid classifier operating on the final output representation
for the [CLS] token is trained to minimize a binary cross-entropy
loss:

Lnsp(0) = —Ewg)~plylog(Sy(A,B))
+ (1 —y)log(1 — Sp(A,B))],

where Sp(A,B) is the matching score of the sentences A and

(2.30)

B from the classifier and y € {0,1} indicates the relationship
between the two sentences. Both positive and negative sentence
pairs are sampled with the equivalent probability (i.e., 50%) to
achieve a balanced label distribution.

Inspired by its success in NLP, recent work attempts to extend
pretrained Transformer models to the vision and language
domain. They employ similar pretraining tasks on a language-
vision input and achieve prominent improvements in various
visual and linguistic tasks, such as image/video captioning,
question answering, cross-modal retrieval, etc.

2.2 Keyphrase Prediction

The goal of keyphrase prediction is to predict a set of con-
cise keyphrases that summarize the main ideas of the input
document. It can be considered as a special case of text
summarization but with a different granularity. Formally, given
an input document x, keyphrase prediction aims to output
a set of keyphrases Y = {yW,...,y(¥D} where |Y| is the



CHAPTER 2. BACKGROUND REVIEW 29

number of keyphrases and each keyphrase y) is a phrase
consisting of several words. The document x and a keyphrase
y are formulated as word sequences x = (z1,...,2;,) and
y = .y
in x and y respectively.

), where [, and [, denote the number of words

Generally, keyphrase prediction methods can be divided into
extraction-based methods, classification-based methods (specif-
ically in social media), and generation-based methods. In the
social media domain, hashtags that prefixed with “#” conveying
the main topic are often regarded as the keyphrases for a
post [176]. Apart from regarding each hashtag as a discrete
label, one can employ segmentation rules to split it into several
words, e.g., “DeepLearning” to “Deep” and “Learning”.

2.2.1 Extraction-based Methods

Traditional keyphrase prediction studies mainly focus on hand-
crafted features, which select key words or phrases from the
document as the predicted keyphrases. It typically adopts a two-
step pipeline: candidates are first extracted with handcrafted
features and then ranked by various scoring functions. At
the candidate extraction step, these methods identify a set of
keyphrase candidates based on handcrafted features, such as
Part-of-Speech (POS) tags [90, 144, 76] and TF-IDF scores [99].
At the candidate ranking step, there are mainly two kinds of al-
gorithms: unsupervised and supervised learning. Unsupervised
learning algorithms are primarily built on a text graph, where
they first regard each candidate as a node and then calculate its
importance score in the graph [39, 156, 58, 107, 98, 91, 43]. As
for supervised learning algorithms, they build a binary classifier
to determine whether each candidate is a keyphrase, and then
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the predicted scores are employed to rank the candidates.
These methods also rely on handcrafted features such as phrase
position and length, as well as the TF-IDF scores.

These methods undergo labor-intensive feature engineering and
hence lead to the growing popularity of adopting fully data-
driven methods using deep neural networks. Most efforts are
based on sequence tagging style extraction [95, 44, 176] and
combine the traditional two-step pipeline together into one
step. Specifically, sequence tagging methods predict a label
for each token in the document indicating whether it belongs
to a keyphrase or not. Apart from the binary label, these
methods often employ a more fine-grained categorization, i.e.,
(B) beginning of a keyphrase; (E) ending of keyphrase; (I) inside
a keyphrase; (S) single-word keyphrase; or (O) otherwise. As for
the social media domain, Zhang et al. [176] and Zhang et al. [179]
also employ sequence tagging methods to extract keyphrases.

2.2.2 Classification-based Methods

Classification-based keyphrase prediction methods [54, 153, 126,
45, 57, 175] are mainly employed in the social media domain,
where they usually regard each keyphrase as a discrete label
and build classifier to predict it. Specifically, classification-
based methods first construct a predefined candidate list and
then select some of them based on the classifier’s scores.

As for deep neural classifiers, Gong et al. [45] propose attention-
based convolutional neural networks (CNNs) [77] consisting of
a local attention channel and global channel to recommend
hashtags. Huang et al. [57] employ end-to-end memory net-
works [137, 154] for this task, where they incorporate the
histories of users into the external memory and leverage a hi-
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erarchical attention mechanism to select more related histories.
Recently, due to the wide availability of mobile devices and easy
connectivity, multimedia contents are more prevalent in various
social media platforms. To encoding more contexts, Zhang et
al. [175] incorporate visual signals from the matching images
in Twitter posts and employ co-attention networks [94, 163] to
capture the text-image relationship.

2.2.3 Generation-based Methods

However, both extraction-based methods and classification-
based methods have limitations in that they cannot produce
keyphrases out of the source documents or the predefined
candidate list. Inspired by the recent success of seq2seq learning
in language generation tasks like text summarization, Meng
et al. [100] first introduce sequence generation methods that
predict keyphrase in a word-by-word manner for keyphrase
prediction tasks. Generation-based methods overcome the
drawbacks of the above two types of methods and enable new
keyphrases beyond the source document or predefined list to be
flexibly created. Most generation-based methods are proposed
for predicting keyphrases from scientific articles.

As a pioneer work, Meng et al. [100] employ the pointer and
generator framework [127] to either generate a word from the
global vocabulary or copy it from the source sequence, which
yields remarkable improvements over traditional extraction-
based methods. Inspired by its success, a number of generation-
based models [27, 24, 169, 26, 22, 171] have been proposed for
this task. Chen et al. [27] propose a TG-Net that differentiates
the importance of the title and the document, and explicitly
makes use of the title to guide the understanding of the docu-
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ment, while Chen et al. [24] propose a CorrRNN that applies
the coverage mechanism in [127] to avoid generating repetitive
keyphrases. Chen et al. [26] propose a hybrid approach that inte-
grates keyphrase extraction, keyphrase retrieval, and keyphrase
generation with a merging module and then returns the top-
ranked candidates as the final predictions.

Some of them explore the keyphrase generation from some new
perspectives. Ye et al. [169] investigate a different scenario where
the amount of labeled data is limited and propose to leverage
semi-supervised methods for improving the performance. Yuan
et al. [171] consider to let the model itself determine the
number of keyphrases that should be generated for a document.
Along this line, Chan et al. [22] further introduce reinforcement
learning (RL) to encourages a model to generate both sufficient
and accurate keyphrases with an adaptive reward function.

In this thesis, we are the first to introduce sequence generation
models to predict keyphrases for social media posts. Due to
the informal nature of social media, the posts usually are short
in length and contain lots of misspellings, making it difficult
to process them effectively. To deal with such data sparsity in
social media keyphrase generation, we propose to encode explicit
contexts from user comments [150] or implicit latent topics that
can be learned from a corpus in an unsupervised manner [148].
We further leverage the matching images to enrich the contexts
and propose a unified model to couple the advantages of
keyphrase classification and generation [149]. Similar to this,
Chen et al. [26] also exploits the power of classification for
keyphrase generation but in a separated retrieval manner, where
we elegantly integrate them with a tailored copy mechanism and
allow for the end-to-end joint training.
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2.3 Social Media Understanding

The recent decades witness the flourish of social media, revolu-
tionizing the ways people share information and interact with
others. As a result, millions of user-generated data can be
produced daily, leading us to the era of information explosion.
To effectively process such a large volume of data and distill
useful knowledge, social media understanding with automated
techniques has received growing attention. In this section, we
categorize current approaches for social media understanding
into two groups based on the type of social media data: text-
only and cross-media research.

2.3.1 Text-only Research

The abundance of user-generated texts fertilizes a broad set
of real-world applications, such as microblog search [37, 10],
sentiment analysis [34, 146], summarization [177, 23], user
profiling [152, 38|, stock price prediction [17, 108], and so
forth. Among them, text classification and topic modeling are
popular base approaches for language understanding proven to
be useful in a variety of downstream tasks. Recently, with the
success of seq2seq models for language generation, keyphrase
prediction that summarizes a document into a set of concise
keyphrases receives increasing attention due to its flexibility in
creating multiple keyphrases in a large space. Hence, automatic
keyphrase prediction serves as an important research topic for
social media understanding.

Previous progress made in keyphrase prediction has mainly
focused on either extraction-based or classification-based ap-
proaches, which are limited in that they cannot predict keyphrases
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absent in the source text or the predefined candidate list. To
overcome their shortcomings, in this thesis, we propose neural
keyphrase generation models that enable new keyphrases to
be flexibly created for social media posts. Although seq2seq-
based generation models have demonstrated their effectiveness
in keyphrase generation for scientific articles, their performance
will be inevitably compromised when directly applied to noisy
social media texts. The inferior performance is attributed to the
severe data sparsity widely exhibited in short and informal social
media posts. To deal with this, we propose to enrich contexts
via either implicitly exploiting the post-level latent topics or
explicitly leveraging conservation contexts from other users.
Our first work is also closely related to topic models that discover
latent topics from word co-occurrence at the document level.
They are commonly in the fashion of latent Dirichlet allocation
(LDA) based on Bayesian graphical models [15]. These models,
however, rely on the expertise involvement to customize model
inference algorithms. Our framework exploits the recently
proposed neural topic models [102, 134] to infer latent topics,
which facilitate end-to-end training with other neural models
and do not require model-specific derivation. It has proven
useful for citation recommendation [9] and conversation under-
standing [173]. In particular, Zeng et al. [174] propose to jointly
train topic models and short text classification, which cannot fit
our scenario due to the large diversity of the keyphrases [150].
Different from them, our latent topics are learned together with
language generation, whose effects on keyphrase generation have
never been explored before in existing work.
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2.3.2 Cross-media Research

“A picture is worth a thousand words”. With the improved
bandwidth and smartphones, cross-media posts are becoming
ubiquitous as they can convey more diverse and complex infor-
mation from the authors. For example, Twitter allows users to
create tweets with multiple images and even videos. Some recent
studies also find that tweets with images take up an increasing
faction and receive significantly more engagement than tweets
without images, approximately 22.8% more retweets, favorites,
replies compared to text-only tweets [18]. However, cross-media
posts bring more challenges for automatic understanding as they
contain multi-modal features that involve complex interactions
and require effective fusion.

In recent decades, numerous multi-modal machine learning tech-
niques have been studied towards cross-media understanding,
which covers a broad set of real-world applications, such as per-
sonalized image captioning [111], event extraction [87], sarcasm
detection [19], possession extraction [29], and crisis event cate-
gorization [2]. Closest to our work, [175, 178] study multimedia
hashtag classification and employ co-attention [94, 163] to model
the text-image associations, where a single attention function
is concurrently performed to infer either visual or textual
distributions. We argue that they might be suboptimal to model
intricate text-image associations, as a recent finding [142] points
out there can be four diverse semantic relations held by images
and texts on Twitter.

To allow for better modeling, in our fourth work, we take
advantage of the recent advance of multi-head attention [141]
capable of learning from different representation subspaces and
extend it to capture diverse cross-media interactions. While
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multi-head attention has been widely exploited in many vision-
language (VL) tasks, such as image captioning [181], visual
question answering [140, 92|, and visual dialog [60], its potential
benefit to model flexible cross-media posts has been previously
ignored. Moreover, to well align the images’ semantics to texts’,
we propose to encode image wordings and define two forms for
that — explicit optical characters detected from the optical char-
acter reader (OCR) and implicit image attributes [157], high-
level text labels predicted to summarize the image’s semantic
concepts. Some prior work has pointed out the usefulness of
OCR texts [25] and image attributes [158] to endow images with
higher-level semantics beyond visual features, where we are the
first to study how OCR texts and image attributes work together
to indicate keyphrases.

Cross-media research usually benefits from the development of
more general multi-modal research, where conventional vision-
language (VL) tasks like image captioning, visual question
answering [6], and visual dialog [33] are extensively studied.
Their core goal is to derive a generic visual and linguistic
representation that achieves effective fusion from two modalities.
Differently, cross-media studies can bring unique difficulties
mainly due to the informal style in social media. For one thing,
the text-image relationship in cross-media posts is rather compli-
cated [142], while in conventional VL tasks the two modalities
have most semantics shared. For another thing, social media
images usually exhibit a more diverse distribution and a much
higher probability of containing OCR tokens, thereby posing a
hurdle for effectively processing. In the future, we will explore
how to extend powerful visual and linguistic representation
learning methods for improving cross-media understanding.



Chapter 3

Encoding Implicit Topics for
Keyphrase (Generation

This chapter presents our study in implicitly leveraging latent
topics for social media keyphrase generation. Latent topics
learned from a corpus via unsupervised methods like topic
models can provide additional clues for understanding docu-
ments. While topic information has been proven useful in short
text classification, we are the first to investigate its effects in
keyphrase generation. The main points of this chapter are as fol-
lows. (1) We propose a topic-aware keyphrase generation model
that incorporates corpus-level topics to enrich useful features
for short social media posts. (2) Our topic-aware keyphrase
generation model consists of a seq2seq model and a neural
topic model that are elegantly integrated and jointly trained
in an end-to-end manner. (3) We evaluate our models on three
newly-constructed social media datasets from Twitter, Weibo,
and StackExchange. The results show our model outperforms
existing methods in keyphrase prediction, meanwhile generating
more coherent topics.

37
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Source post with keyphrase “super bowl”:

[S]: Somewhere, a wife that is not paying attention to the game, says "I
want the team in yellow pants to win.”

Relevant tweets:

[T1]: I been a steelers fan way before black & yellow and this super bow!!
[T3]: T will bet you the team with yellow pants wins.

[T3]: Wiz Khalifa song ’black and yellow” to spur the pittsburgh steelers
and Lil Wayne is to sing ” green and yellow’ for the packers.

Table 3.1: Sample tweets tagged with “super bowl” as their keyphrases. Blue
and italic words can indicate the topic of super bowl.

3.1 Introduction

As social media continues its worldwide expansion, the last
decade has witnessed the revolution of interpersonal commu-
nication. While empowering individuals with richer and fresher
information, the flourish of social media also results in millions
of posts generated on a daily basis. Facing a sheer quantity of
texts, language understanding has become a daunting task for
human beings. Under this circumstance, there exists a pressing
need for developing automatic systems capable of absorbing
massive social media texts and figuring out what is important.
In this work, we study the prediction of keyphrases, generally
formed with words or phrases reflecting main topics conveyed
in input texts [179]. Particularly, we focus on producing
keyphrases for social media language, proven to be beneficial to a
broad range of applications, such as instant detection of trending
events [78], summarizing public opinions [101], analyzing social
behavior [124], and so forth.

In spite of the substantial efforts made in social media keyphrase
identification, most progress to date has focused on eztract-
ing words or phrases from source posts, thus failing to yield
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keyphrases containing absent words (i.e., words do not appear
in the post). Such cases are indeed prominent on social media,
mostly attributed to the informal writing styles of users therein.
For example, Table 3.1 shows a tweet S tagged with keyphrase
“super bowl” by its author, though neither “super” nor “bow!l”
appears in it.! In our work, distinguishing from previous studies,
we approach social media keyphrase prediction with a sequence
generation framework, which is able to create absent keyphrases
beyond source posts.

Our work is built on the success of deep keyphrase gener-
ation models based on neural sequence-to-sequence (seq2seq)
framework [100]. However, existing models, though effective on
well-edited documents (e.g., scientific articles), will inevitably
encounter the data sparsity issue when adapted to social media.
It is essentially due to the informal and colloquial nature of social
media language, which results in limited features available in the
noisy data. For instance, only given the words in S (Table 3.1),
it is difficult to figure out why “super bowl” is its keyphrase.
However, by looking at tweets T7 to T3, we can see “yellow pants”
is relevant to “steelers”, a super bowl team. As “yellow” and
“pants” widely appear in tweets tagged with “super bowl’, it
becomes possible to identify “super bowl” as S’s keyphrase.
Here we propose a novel topic-aware neural keyphrase generation
model that leverages latent topics to enrich useful features. Our
model is able to identify topic words, naturally indicative of
keyphrases, via exploring post-level word co-occurrence pat-
terns, such as “yellow” and “pants” in S. Previous work have
shown that corpus-level latent topics can effectively alleviate

Following common practice [176, 179], we consider author-annotated hashtags as
tweets’ keyphrases.
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data sparsity in other tasks [174, 84]. The effects of latent topics,
nevertheless, have never been explored in existing keyphrase
generation research, particularly in the social media domain.
To the best of our knowledge, our work is the first to study
the benefit of leveraging latent topics on social media keyphrase
generation. Also, our model, taking advantage of the recent
advance of neural topic models [102], enables end-to-end training
of latent topic modeling and keyphrase generation.

We experiment on three newly constructed social media datasets.
Two are from English platform Twitter and StackExchange,
and the other from Chinese microblog Weibo. The comparison
results over both extraction and generation methods show that
our model can better produce keyphrases, significantly outper-
forming all the comparison models without exploiting latent
topics. For example, on Weibo dataset, our model achieves
34.99% F1@1 compared with 32.01% yielded by a state-of-the-
art keyphrase generation model [100]. We also probe into our
outputs and find that meaningful latent topics can be learned,
which can usefully indicate keyphrases. At last, a preliminary
study on scientific articles shows that latent topics work better
on text genres with informal language style.

3.2 Topic-Aware Neural Keyphrase Genera-
tion Model

In this section, we describe our framework that leverages latent
topics in neural keyphrase generation. Figure 3.1 shows our
overall architecture consisting of two modules — a neural topic
model for exploring latent topics (Section 3.2.1) and a seq2seq-
based model for keyphrase generation (Section 3.2.2).
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Figure 3.1: Our topic-aware neural keyphrase generation framework.

Before starting with more details, we first introduce the for-
mulations of inputs. Formally, given a collection C with |C|
social media posts {xi,Xy,...,X|c|} as input, we process each
post x into bag-of-words (BoW) term vector Xp,, and word
index sequence vector Xg.,. Xpopw is a V-dim vector over the
vocabulary (V' being the vocabulary size). It is fed into the
neural topic model following the BoW assumption [102]. Xg,
serves as the input for the seq2seq-based keyphrase generation
model.

Below we first introduce our two modules and then describe how
they are jointly trained.

3.2.1 Neural Topic Model

Our neural topic model (NTM) module is inspired by Miao et
al. [102] based on variational auto-encoder [69], which consists
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of an encoder and a decoder to resemble the data reconstruction
process.

Specifically, the input xy,,, is first encoded into a continuous la-
tent variable z (representing x’s topic) by a BoW encoder. Then
the BoW decoder, conditioned on z, attempts to reconstruct
x and outputs a BoW vector x';,,. Particularly, the decoder
simulates topic model’s generation process. We then describe
their division of labor.

BoW Encoder. The BoW encoder is responsible for estimating
prior variables p and o, which will be used to induce intermedi-
ate topic representation z. We adopt the following formula:

n= fu(fe(xbow))v logo = fo(fe(Xbow)), (3.1)

where f.(-) is a neural perceptron with an ReLU-activated
function following Zeng et al. [174].

BoW Decoder. Analogous to LDA-style topic models, it is
assumed that there are K topics underlying the given corpus
C. Each topic k is represented with a topic-word distribution ¢y,
over the vocabulary, and each post x € C has a topic mixture
denoted by 0, a K-dim distributional vector. Specifically in
neural topic model, 6 is constructed by Gaussian softmax [102].
The decoder hence takes the following steps to simulate how
each post x is generated:

e Draw latent topic variable z ~ N (u, 0?)

e Topic mixture 6 = softmaz(fy(z))

e For each word w € x

— Draw w ~ softmax(fs(9))
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Here f.(+) is also a ReLLU-activated neural perceptron for inputs.
In particular, we employ the weight matrix of f,(-) as the topic-
word distributions (¢1, ¢, ..., ¢ ). In the following, we adopt the
topic mixture 6 as the topic representations to guide keyphrase
generation.

3.2.2 Neural Keyphrase Generation Model

Here we describe how we generate keyphrases with a topic-
aware seq2seq model, which incorporates latent topics (learned
by NTM) in its generation process. Below comes more details.

Overview. The keyphrase generation module (KG model) is
fed with source post x in its word sequence form x.,
(wy, wo, ..., wy|) (|x] is the number of words in x). Its target
is to output a word sequence y as x’s keyphrase. Particularly,
for a source post with multiple gold-standard keyphrases, we
follow the practice in [100] to pair its copies with each of the
gold standards to form a training instance.

To generate keyphrases for source posts, the KG model employs
a seq2seq model. The sequence encoder distills indicative
features from an input source post. The decoder then generates
its keyphrase, conditioned on the encoded features and the
latent topics yielded by NTM (henceforth topic-aware sequence
decoder).

Sequence Encoder. We employ a bidirectional gated recurrent
unit (Bi-GRU) [30] to encode the input source sequence. Each
word w; € Xgeq (1 = 1,2,...,]x]|) is first embedded into an em-

bedding vector v;, and then_> mapped into forward and backward
hidden states (denoted as h; and E) with the following defined
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operations: R
hl’ = GRU(VZ, hi—1)7 (32)
h, = GRU(, hisy). (3.3)
%

%
The concatenation of h; and E, [h;; K], serves as w;’s hidden
state in encoder, denoted as h;. Finally, we construct a memory
bank: M = (hy, hy, ..., h), for decoder’s attentive retrieval.

Topic-Aware Sequence Decoder. In general, conditioned on the
memory bank M and latent topic 6 from NTM, we define
the process to generate its keyphrase y with the following
probability:

lyl

Pr(y|x) = [ [ Pr(y;ly<; M.6), (3.4)
j=1

where y; = (y1,y2, ..., yj—1). And Pr(y;|y<;, M, #), denoted as
pj, is a word distribution over vocabulary, reflecting how likely
a word to fill in the j-th slot in target keyphrase. Below we
describe the procedure to obtain p;.
Our sequence decoder employs a unidirectional GRU layer.
Apart from the general state update, the j-th hidden state
s; is further designed to take input x’s topic mixture ¢ into
consideration:

s; = GRU([u;; 0],8j-1), (3.5)

where u; is the j-th embedded decoder input? and Sj_1 1s
the previous hidden state. Here [;] denotes the concatenation
operation.

The decoder also looks at M (learned by sequence encoder) and
puts an attention on it to capture important information. When

2We take the previous word from gold standards in training by teacher forcing and
from the predicted word in test.
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predicting the j-th word in keyphrase, the attention weights on
W; € Xgeq 1s defined as:

_ eXp(fa(hi7Sj70))
S exp(fa(b,s;, 0))

(3.6)

Ckz'j
where
fa(hi;s;,0) = vl tanh(W,[h;;s;; 0] + by). (3.7)

Here v,, W,, and b, are trainable parameters. f,(-) measures
the semantic relations between the i-th word in the source and
the j-th target word to be predicted. Such relations are also
calibrated with the input’s latent topic # in order to explore
and highlight topic words. We hence obtain the topic sensitive
context vector c; with:

|

C;, = Z&ijhi. (38)
1=1

Further, conditioned on c;, we generate the j-th word over the
global vocabulary according to:

pgen - Softmax(wgen[sj; Cj] + bgen)- (39)

In addition, we adopt copy mechanism [127] following Meng et
al. [100], which allows keywords to be directly extracted from the
source input. Specifically, we adopt a soft switcher \; € [0, 1]
to determine whether to copy a word from source as the j-th
target word:

A; = sigmoid(Wi[u,;s;;¢;; 6] + b)), (3.10)

with W), and by being learnable parameters. Topic information
6 is also injected here to guide the switch decision.



CHAPTER 3. TOPIC-AWARE KEYPHRASE GENERATION 46

Finally, we obtain distribution p; for predicting the j-th target
word with the formula below:

|

p; = )‘j * Pgen + (1 — )\]) . Z&ij’ (311)
i=1

. X . . .
where attention scores {aij}L:'l serve as the extractive distribu-
tion over the source input.

3.2.3 Jointly Learning Topics and Keyphrases

Our neural framework allows end-to-end learning of latent topic
modeling and keyphrase generation. We first define objective
functions for the two modules respectively.

For NTM, the objective function is defined based on negative
variational lower bound [14]. Here due to space limitation,
we omit the derivation details already described in [102], and
directly give its loss function:

Lyty = Drr(p(z) || q(z]x)) — Ey(z %) [p(x|2)], (3.12)

where the first term is the Kullback-Leibler divergence loss and
the second term reflects the reconstruction loss. p(z) denotes a
standard normal prior. ¢(z|x) and p(x | z) represent the process
of BoW encoder and BoW decoder respectively.

For KG model, we minimize the cross entropy loss over all
training instances:

N
Lia ==Y log(Pr(yn|xn,6n)), (3.13)

n=1

where N denotes the number of training instances and 6, is x,,’s
latent topics induced from NTM.
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Finally, we define the entire framework’s training objective with
the linear combination of Lyry and Lie:

L=Lnrv+7 Lra, (3.14)

where the hyper-parameter v balances the effects of NTM and
KG model. Our two modules can be jointly trained with their
parameters updated simultaneously. For inference, we adopt
beam search and generate a ranking list of output keyphrases
following Meng et al. [100].

3.3 Experimental Setup

3.3.1 Datasets

We conduct experiments on three social media datasets collected
from two English online platforms, Twitter and StackExchange,
and a Chinese microblog website, Weibo. Twitter and Weibo are
microblogs encouraging users to freely post with a wide range of
topics, while StackExchange, an online Q&A forum, are mainly
for question asking (with a title and a description) and seeking
answers from others.

The Twitter dataset contains tweets from TREC 2011 microblog
track.® For Weibo dataset, we first tracked the real-time
trending hashtags in Jan-Aug 2014,* and then used them as
keywords to search posts with hashtag-search API.> And the
StackExchange dataset is randomly sampled from a publicly

available raw corpus.”

3http://trec.nist.gov/data/tweets/
‘http://open.weibo.com/wiki/Trends/
Shttp://www.open.weibo.com/wiki/2/
Shttps://archive.org/details/stackexchange
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For the target keyphrases, we employ user-annotated hashtags
for Twitter and Weibo following Zhang et al. [176], and author-
assigned tags (e.g., “artificial-intelligence”) for StackExchange.
Posts without such keyphrase tags are hence removed from
the datasets. Particularly, for StackExchange, we concatenate
the question title together with its description as the source
input. For Twitter and Weibo source posts, we retain tokens in
hashtags (without # symbols) for those appearing in the middle
of posts, since they generally act as semantic elements and thus
considered as present keyphrases [176]. For those appearing
before or after a post, we remove the entire hashtags and regard
them as absent keyphrases as is done in [150].

For model training and evaluation, we split the data into three
subsets with 80%, 10%, and 10%, corresponding to training, de-
velopment, and test set. The statistics of the three datasets are
shown in Table 3.2. As can be seen, over 50% of the keyphrases
do not appear in their source posts, thus extractive approaches
will fail in dealing with these posts. We also observe that
StackExchange exhibits different keyphrase statistics compared
to either Twitter or Weibo, with more keyphrases appearing in
one post and more diverse keyphrases.

3.3.2 Preprocessing

For Twitter dataset, we employed Twitter preprocessing toolkit
in [11] for source post and hashtag (keyphrase) tokenization.
Chinese Weibo data was preprocessed with Jieba toolkit” for
word segmentation, and English StackExchange data with nat-
ural language toolkit (NLTK) for tokenization.®

"https://github.com/fxsjy/jieba
Shttps://www.nltk.org/
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# of Avglen # of KP Source

Source posts
posts per post per post  vocab

Twitter 44,113 19.52 1.13 34,010
Weibo 46,296 33.07 1.06 98,310
StackExchange 49,447 87.94 243 99,775

Avg len % of Target
Target KP [KP| per KP  abs KP  vocab
Twitter 4,347 1.92 71.35 4,171
Weibo 2,136 2.55 75.74 2,833
StackExchange 12,114 1.41 54.32 10,852

Table 3.2: Data statistics of source posts (on the top) and target keyphrases
(on the bottom). Avg len: the average number of tokens. KP: keyphrases.
Abs KP: absent keyphrases. |KP|: the number of distinct keyphrases.

We further take the following preprocessing steps for each of
the three datasets: First, posts with meaningless keyphrases
(e.g., single-character ones) were filtered out; also removed were
non-alphabetic (for English data) and retweet-only (e.g., “RT”)
posts. Second, links, mentions (@Qusername), and digits were
replaced with generic tags “URL”, “MENT”, and “DIGIT”
following Wang et al. [150]. Third, a vocabulary was maintained,
with 30K most frequent words for Twitter, and 50K for Weibo
and StackExchange each. For BoW vocabulary of the input x;,
for NTM, stop words and punctuation were removed.

3.3.3 Model Settings

We implement our model based on the pytorch framework
in [113]. For NTM, we implement it following the design® in [174]
and set topic number K to 50. The KG model is set up mostly
based on [100]. For its sequence encoder, we adopt two layers of

‘https://github.com/zengjichuan/TMN
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bidirectional GRU and one layer of unidirectional GRU for its
decoder. The hidden size of the GRU is 300 (for bi-GRU, 150
for each direction). For the embedding, its size is set to 150 and
values are randomly initialized. We apply Adam [68] with initial
learning rate as le — 3. In training, gradient clipping = 1.0 is
conducted to stabilize the training. Early-stopping strategy [21]
is adopted based on the validation loss. Before joint training,
we pretrain NTM for 100 epochs and KG model for 1 epoch
as the convergence speed of NTM is much slower than the KG
model. We empirically set the v = 1.0 for balancing NTM and
KG loss (Eq. (3.14)) and iteratively update the parameters in
each module and then their combination in turn.

3.3.4 Comparisons

In comparison, we first consider a simple baseline selecting
majority keyphrases (henceforth MAJORITY) — the top K
keyphrases ranked by their frequency in training data are used
as the keyphrases for all test instances. We also compare with
the following extractive baselines, where n-grams (n = 1,2, 3)
in source posts are ranked by TF-IDF scores (henceforth TF-
IDF), TextRank algorighm [103] (henceforth TEXTRANK), and
KEA system [156] (henceforth KEA). We also compare with
a neural state-of-the-art keyphrase extraction model based on
sequence tagging [176] (henceforth SEQ-TAG). In addition, we
take the following state-of-the-art keyphrase generation models
into consideration: seq2seq model with copy mechanism [100]
(henceforth SEQ2SEQ-COPY) and its variation SEQ2SEQ with-
out copy mechanism, SEQ2SEQ-CORR [24] exploiting keyphrase
correlations, and TG-NET [27] jointly modeling of titles and
descriptions (thereby only tested on StackExchange).
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3.4 Results and Analysis

In the experiment, we first evaluate our performance on keyphrase
prediction in Section 3.4.1. Then, we study whether jointly
learning keyphrase generation can in turn help produce coherent
topics in Section 3.4.2. At last, further discussions are presented
with an ablation study, a case study, and an analysis for varying
text genres.

3.4.1 Keyphrase Prediction Results

In this subsection, we examine our performance in predicting
keyphrases for social media. We first discuss the main com-
parison results, followed by a discussion for present and absent
keyphrases.

Popular information retrieval metrics macro-average F1QK and
mean average precision (MAP) are adopted for evaluation.
Here for Twitter and Weibo, most posts are tagged with one
keyphrase on average (Table 3.2), thus F1@Q1 and F1@3 are
reported. For StackExchange, we report F1@3 and F1@5,
because on average, posts have 2.4 keyphrases. MAP is mea-
sured over the top 5 predictions for all three datasets. For
keyphrase matching, we consider keyphases after stemmed by
Porter Stemmer following Meng et al. [100].
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Main Comparison Discussion. Table 3.3 shows the main com-
parison results on our three datasets, where higher scores indi-
cate better performance. From all three datasets, we observe:

e Social media keyphrase prediction is challenging. As can be
seen, all simple baselines give poor performance. This indi-
cates that predicting keyphrases for social media language
is a challenging task. It is impossible to rely on simple
statistics or rules to yield good results.

o Seq2seq-based keyphrase generation models are effective.
Compared to the extractive baselines and SEQ-TAG, seq2seq-
based models perform much better. It is because social
media’s informal language style results in a large amount
of absent keyphrases (Table 3.2), which is impossible for
extractive methods to make correct predictions. We also
find SEQ2SEQ-COPY better than SEQ2SEQ, suggesting the
effectiveness to combine source word extraction with word
generation when predicting keyphrases.

e Latent topics are consistently helpful for indicating keyphrases.
It is observed that our model achieves the best results,
significantly outperforming all comparisons by a large mar-
gin. This shows the usefulness of leveraging latent topics
in keyphrase prediction. Interestingly, compared with
StackExchange, we achieve larger improvements for Twitter
and Weibo, both exhibiting more informal nature and
prominent word order misuse. For such text genres, latent
topics, learned under BoW assumption, are more helpful.

Also, the following interesting points can be observed by com-
paring results across datasets:
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e Keyphrase generation is more challenging for StackEz-
change.  When MAP scores of seq2seqg-based methods
are compared over the three datasets, we find that the
scores on StackExchange are generally lower. It is prob-
ably attributed to the data characteristics of more diverse
keyphrases and larger target vocabulary (Table 3.2).

o Twitter and Weibo data is noisier. We notice that TF'-
IDF, TEXTRANK, and KEA perform much worse than
MAJORITY, while the opposite is observed on StackEx-
change. It is because Twitter and Weibo, as microblogs,
contain shorter posts (Table 3.2) and exhibit more informal
language styles. In general, models relying on simple word
statistics would suffer from such noisy data.

Present and Absent Keyphrase Prediction. We further discuss
how our model performs in producing present and absent
keyphrases. The comparison results with all neural-based
models are shown in Figure 3.2. Here F1@Q1 is adopted for
evaluating the prediction of present keyphrases and recall@5 for
absent keyphrases.

The results indicate that our model consistently outperforms
comparison models in predicting either absent or present keyphrases.
Also, interestingly, copy mechanism seems to somehow sacrifice
the performance on absent keyphrase generation for correctly
extracting the present ones. Such side effects, however, are not
observed on our model. It is probably attributed to our ability to
associate posts with corpus-level topics, hence enabling absent
keywords from other posts to be “copied”. This observation
also demonstrates the latent topics can help our model to better
decide whether to copy (Eq. (3.10)).
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Figure 3.2: The prediction results for present (on the top) and absent
keyphrases (on the bottom, R@5: recall@5). For present cases, from left to
right shows the results of SEQ-TAG, SEQ2SEQ, SEQ2SEQ-COPY, SEQ2SEQ-
CORR, TG-NET (only for StackExchange), and our model. For absent cases,
models (except SEQ-TAG) are shown in the same order.

3.4.2 Latent Topic Analysis

We have shown latent topics useful for social media keyphrase
generation above. Here we analyze whether our model can learn
meaningful topics.

Coherence Score Comparison. We first evaluate topic coherence
with an automatic Cy measure. Here we employ Palmetto
toolkit!? [121] on the top 10 words from each latent topic follow-
ing Zeng et al. [174]. The results are only reported on English
Twitter and StackExchange because Palmetto does not support

Ohttps://github.com/dice-group/Palmetto/
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Datasets Twitter StackExchange

LDA 41.12 35.13
BTM 43.12 43.52
NTM 43.82 43.04
Our model  46.28 45.12

Table 3.4: C'y topic coherence score comparison on our two English datasets.
Higher scores indicate better coherence. Our model produces the best scores.

bowl super quote steeler jan watching egypt

LDA ) .

playing glee girl

bowl super anthem national christina aguil-
BTM . .

era fail word brand playing
NTM super bowl eye protester winning watch half-

time ship sport mena

Our model bowl super yellow green packer steeler nom
commercial win winner

Table 3.5: Top 10 terms for latent topics “super bowl”. Red and underlined
words indicate non-topic words.

Chinese. For comparisons, we consider LDA (implemented with
a gensim LdaMulticore package!!), BTM!? [165] (a state-of-the-
art topic model specifically for short texts), and NTM [102]. For
LDA and BTM, we run Gibbs sampling with 1, 000 iterations to
ensure convergence. From the results in Table 3.4, we observe
that our model outperforms all the comparison topic models by
large margins, which implies that jointly exploring keyphrase
generation can in turn help produce coherent topics.

Sample Topics. To further evaluate whether our model can
produce coherent topics qualitatively, we probe into some sample
words (Table 3.5) reflecting the topic “super bowl!” discovered

Uhttps://pypi.org/project/gensim/
2https://github.com/xiaohuiyan/BTM
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Model Twitter Weibo SE
SEQ2SEQ-CoprYy 36.60 32.01 31.53
Our model (separate train) 36.75 32.75  31.78
Our model (w/o topic-attn) 3724 3242 32.34
Our model (w/o topic-state) 3744 3348 31.98
Our full model 38.49 34.99 33.41

Table 3.6: Comparison results of our ablation models on three datasets (SE:
StackExchange) — separate train: our model with pretrained latent topics;
w/o topic-attn: decoder attention without topics (Eq. (3.7)); w/o topic-state:
decoder hidden states without topics (Eq. (3.5)). We report F1@1 for Twitter
and Weibo, F1@Q3 for StackExchange. Best results are in bold.

by various models from Twitter. As can be seen, there are
mixed non-topic words '3 in LDA’s, BTM’s, and NTM’s sample
topic. Compared with them, our inferred topic looks more
coherent. For example, “steeler” and “packer”, names of super
bowl teams, are correctly included into the cluster.

3.4.3 Ablation Study

We compare the results of our full model and its four ablated
variants to analyze the relative contributions of topics on
different components. The results in Table 3.6 indicate the
competitive effect of topics on decoder attention and that on
hidden states, but combining them both help our full model
achieve the best performance. We also observe that pretrained
topics only bring a small boost, indicated by the close scores
yielded by our model (separate train) and SEQ2SEQ-COPY.
This suggests that the joint training is crucial to better absorb
latent topics.

13Non-topic words refer to words that cannot clearly indicate the corresponding topic,
including off-topic words more likely to reflect other topics.
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Figure 3.3: Attention visualization for the sample post in Table 3.1. Only
non-stopwords are selected. The table below shows the top five words for the

1% topic.

3.4.4 Case Study

We feed the tweet S in Table 3.1 into both SEQ2SEQ-COPY
and our model. Eventually our model correctly predicts the
keyphrase as “super bowl” while SEQ2SEQ-COPY gives a wrong
prediction “team follow back” (posted to ask other to follow
back). To analyze the reason behind, we visualize the attention
weights of two models in Figure 3.3. It can be seen that both
models highlight the common word “team”, which frequently
appears in “team follow back”-tagged tweets. By joint modeling
of latent topics, our model additionally emphasizes topic words
“yellow” and “pants”, which are signals indicating a super bowl
team steeler (also reflected in the 1% topic) and thus helpful to
correctly generate “super bowl” as its keyphrase. Without such
topic guidance, SEQ2SEQ-COPY wrongly predicts a common but
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Figure 3.4: Proportion of absent n-gram keyphrases (n: 1,2,3,> 3). The
dashed lines with “*” marks: the five scientific article datasets used in [100].

unrelated term “team follow back”.

3.4.5 Topic-Aware KG for Other Text Genres

We have shown the effectiveness of latent topics on social media
keyphrase generation. To examine how they affect in identifying
keyphrases for well-edited language, we also experiment on the
traditional scientific article datasets [100], but limited improve-
ments are observed. Latent topics can better help keyphrase
generation on social media, probably because there are larger
proportion of keyphrases with absent words (Figure 3.4), where
latent topics can cluster relevant posts and enrich the source
contexts. Another possible reason lies in that social media
language exhibits prominent arbitrary word orders. Thus latent
topics, learned under BoW assumption, can better provide
useful auxiliary features.
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3.5 Summary

In this chapter, we have presented a novel topic-aware keyphrase
generation model for social media language. Unlike prior
methods based on extraction or classification, our keyphrase
generation model can create new keyphrases that do not appear
in the source post. In order to alleviate the data sparsity
issue in social media, we exploit the corpus-level latent topics
to enrich features, thereby benefiting the keyphrase prediction.
Particularly, our model allows the joint learning of latent topic
representations in an end-to-end manner. Experimental results
on three newly constructed social media datasets show that
our model significantly outperforms state-of-the-art methods
in keyphrase prediction, meanwhile producing more coherent
topics. Further analysis interprets our superiority to discover
key information from noisy social media data. We release our
code and datasets to benefit future research on text analysis and
topic modeling in social media.



Chapter 4

Encoding Explicit Conversation
for Keyphrase Generation

Social media platforms like microblogging services allow users
to form conversations on issues of interests by replying to target
posts for voicing their opinions. Such conversation contexts can
enrich the limited features conveyed from the short target posts
and thus are useful for identifying their key ideas. This chapter
explores how to improve keyphrase generation by explicitly
encoding conversation contexts for social media posts. The main
points of this chapter are as follows. (1) Unlike most prior work
relying on classification-based methods, we employ a sequence
generation model that can generate rare and even unseen
keyphrases. (2) We propose to leverage the user conversation
with a bi-attention mechanism to model its interactions with
the target post. (3) Experimental results on English Twitter
and Chinese Weibo datasets validate our model’s superiority
over traditional classification methods.

61
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4.1 Introduction

Microblogs have become an essential outlet for individuals to
voice opinions and exchange information. Millions of user-
generated messages are produced every day, far outpacing the
human being’s reading and understanding capacity. As a result,
the current decade has witnessed the increasing demand for
effectively discovering gist information from large microblog
texts. To identify the key content of a microblog post, hashtags,
user-generated labels prefixed with a “#” (such as “#NAACL”
and “#DeepLearning”), have been widely used to reflect top-
ics [166, 55, 83]. Following the common practice in [176, 179],
we regard hashtags as keyphrases for a social media post. By
tagging keyphrases for social media posts, it can further benefit
downstream applications, such as microblog search [37, 10],
summarization [177, 23], sentiment analysis [34, 146], and so
forth. Despite the widespread use of keyphrases, there are a
significant fraction of microblog messages without any user-
provided keyphrases. For example, less than 15% tweets contain
at least one hashtag [146, 64]. Consequently, for a multitude of
posts without human-annotated hashtags, there exists a pressing
need for automating the keyphrase annotation process for them.
Most previous work in this field focuses on extracting phrases
from target posts [176, 179] or selecting candidates from a
predefined list [45, 57, 175]. However, keyphrases usually appear
in neither the target posts nor the given candidate list. The
reasons are two folds. For one thing, microblogs allow large
freedom for users to write whatever keyphrases they like. For
another, due to the wide range and rapid change of social media
topics, a vast variety of keyphrases can be daily created, making
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Target post for hashtag generation

This Azarenka woman needs a talking to from the umpire her weird
noises are totes inappropes professionally. ZAusOpen

Replying messages forming a conversation

[T1] How annoying is she. I just worked out what she sounds like one of
those turbo charged cars when they change gear or speed.

[T2] On the topic of noises, I was at the NadalTomic game last night
and I loved how quiet Tomic was compared to Nadal.

[T3] He seems to have a shitload of talent and the postmatch press conf.
He showed a lot of maturity and he seems nice.

[T4] Tomic has a fantastic tennis brain...

Table 4.1: A post and its conversation snippet about “Australian Open”
on Twitter. “#AusOpen” is the human-annotated keyphrase for the target
post. Words indicative of the keyphrase are in blue and italic type.

it impossible to be covered by a fixed candidate list. Prior
research from another line employs topic models to generate
topic words as keyphrases [46, 176]. These methods, ascribed
to the limitation of most topic models, are nevertheless incapable
of producing phrase-level keyphrases.

In this work, we approach keyphrase annotation from a novel
sequence generation framework. In doing so, we enable phrase-
level keyphrases beyond the target posts or the given candidates
to be created. Here, keyphrases are first considered as a sequence
of tokens (e.g., “#DeepLearning” as “deep learning”). Then,
built upon the success of sequence to sequence (seq2seq) model
on language generation [139], we present a neural seq2seq model
to generate keyphrases in a word-by-word manner. To the best of
our knowledge, we are the first to deal with keyphrase annotation
in sequence generation architecture.

In processing microblog posts, one major challenge we might face
is the limited features to be encoded. It is mostly caused by the
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data sparsity exhibited in short and informal microblog posts.!
To illustrate such challenge, Table 4.1 displays a sample Twitter
post tagged with “#AusOpen”, referring to Australian Open
tennis tournament. Only given the short post, it is difficult to
understand why it is tagged with “#AusOpen”, not to mention
that neither “aus” nor “open” appear in the target post. In
such a situation, how shall we generate keyphrases for a post
with limited words?

To address the data sparsity challenge, we exploit conversations
initiated by the target posts to enrich their contexts. Our
approach is benefited from the nature that most messages
in a conversation tend to focus on relevant topics. Con-
tent in conversations might hence provide contexts facilitating
the understanding of the original post [23, 81]. The effects
of conversation contexts, useful on topic modeling [83, 85]
and keyphrase extraction [179], have never been explored on
microblog keyphrase generation. To show why conversation
contexts are useful, we display in Table 4.1 a conversation
snippet formed by some replies of the sample target post. As can
be seen, key content words in the conversation (e.g., “Nadal”,
“Tomic”, and “tennis”) are useful to reflect the relevance of
the target post to the keyphrase “#AusOpen”, because Nadal
and Tomic are both professional tennis players. Concretely,
our model employs a dual encoder (i.e., two encoders), one for
the target post and the other for the conversation context, to
capture the representations from the two sources. Furthermore,
to capture their joint effects, we employ a bidirectional attention
(bi-attention) mechanism [129] to explore the interactions
between two encoders’ outputs. Afterward, an attentive decoder

IFor instance, the eligible length of a post on Twitter or Weibo is up to 140 characters.
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is applied to generate the word sequence of the keyphrase.

In experiments, we construct two large-scale datasets, one from
English platform Twitter and the other from Chinese Weibo.
Experimental results based on both information retrieval and
text summarization metrics show that our model generates
keyphrases closer to human-annotated ones than all the compar-
ison models. For example, our model achieves 45.03% ROUGE-
1 F1 on Weibo, compared to 25.34% given by the state-of-
the-art classification-based method. Further comparisons with
classification-based models show that our model, in a sequence
generation framework, can better produce rare and even new
keyphrases.

To summarize, our contributions are three-fold:

e We are the first to approach microblog keyphrase annota-
tion with sequence generation architecture.

e To alleviate data sparsity, we enrich context for short target
posts with their conversations and employ a bi-attention
mechanism for capturing their interactions.

e Our proposed model outperforms state-of-the-art models
by large margins on two large-scale datasets, constructed
as part of this work.

4.2 Conv-aware Neural Keyphrase Genera-
tion Model

In this section, we describe our framework shown in Figure 4.1,
which is a conv-aware (short for conversation-aware) keyphrase
generation model. There are two major modules: a dual encoder



CHAPTER 4. CONV-AWARE KEYPHRASE GENERATION 66

to encode both target posts and their conversations with a bi-
attention module to explore their interactions, and a decoder to
generate keyphrases.

Input and Output Formally, given a target post x? formulated

p
|xP|

as word sequence <x11) ,xg, ., ) and its conversation context
x* formulated as word sequence (21,25, ..., 2. ), where [x”| and
|x¢| denote the number of words in the input target post and
its conversation, respectively, our goal is to output a keyphrase
y represented by a word sequence (y1, %2, ...,yy|). For training
instances tagged with multiple gold-standard keyphrases, we
copy the instances multiple times, each with one gold-standard
keyphrase following Meng et al. [100]. All the input target posts,

conversations, and keyphrases share the same vocabulary V.

4.2.1 Post-Conversation Dual Encoder

To capture representations from both target posts and conver-
sation contexts, we design a dual encoder, composed of a post
encoder and a conversation encoder, each taking the x” and x°
as input, respectively.

For the post encoder, we use a bidirectional gated recurrent unit
(Bi-GRU) [30] to encode the target post x”, where its embed-
dings e(x?) are mapped into hidden states h? = (h{ h}, ... hf "

Specifically, h? = [1?3 h!] is the concatenatlon of forward hidden
state h; and backward hidden state hp for the ¢-th token:

b = GRU(e(x?), B_,), (4.1)

= GRU (e(x}), hfﬂ) (4.2)
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Hashtag decoder <gos>

vP v°
re rP
h? h¢

The Azarenka ... professionally How annoy brain

Post encoder Conversation encoder

Figure 4.1: Our Conv-aware keyphrase generation framework with a dual
encoder, including a post encoder and a conversation encoder, where a bi-
attention (bi-att) module distills their salient features, followed by a merge
layer to fuse them. An attentive decoder generates the keyphrase sequence.

Likewise, the conversation encoder converts conversations into
hidden states h® via another Bi-GRU. The dimensions of both
h? and h¢ are d.

Bi-attention. To further distill useful representations from our
two encoders, we employ the bi-attention module to explore the
interactions between the target posts and their conversations.
The adoption of bi-attention mechanism is inspired by Seo et
al. [129], where the bi-attention was applied to extract query-

aware contexts for machine comprehension. Our intuition is
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that the content concerning the key points in target posts
might have their relevant words frequently appearing in their
conversation contexts, and vice versa. In general, such content
can reflect what the target posts focus on and hence effectively
indicate what keyphrases should be generated. For instance, in
Table 4.1, names of tennis players (e.g., “Azarenka”, “Nadal”,
and “Tomic”) are mentioned many times in both target posts
and their conversations, which reveals why the keyphrase is
“#AusOpen”.

To this end, we first put a post-aware attention on the conver-
sation encoder with coefficients:

of — exp(fscore (h};a h;))
iy x¢ B 9
le’zll eXp(fscore(hf, hj/))

where the alignment score function fyeore(hf, h$) = hi Wy, th

(4.3)

captures the similarity of the i-th word in the target post and the
j-th word in its conversation. Here Wy;_ox € R¥? is a weight
matrix to be learned. Then, we compute a context vector r¢
conveying post-aware conversation representations, where the
i-th value is defined as:

x|
r{ =) afhs. (4.4)
j=1

Analogously, a conversation-aware attention on post encoder is
used to capture the conversation-aware post representations as
r’.

Merge Layer. Next, to further fuse representations distilled by
the bi-attention module on each encoder, we design a merge
layer, a multilayer perceptron (MLP) activated by hyperbolic
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function:

v? = tanh(W,[h?; 1] + b,), (4.5)
v¢ = tanh(W,[h r’] + b,), (4.6)

where W), W, € R??? and b, b. € R? are trainable parame-
ters.

Note that either v? or v¢ conveys the information from both
posts and conversations, but with a different emphasis. Specifi-
cally, v¥ mainly retains the contexts of posts with the auxiliary
information from conversations, while v¢ does the opposite.
Finally, vectors v? and v¢ are concatenated and fed into the
decoder for keyphrase generation.

4.2.2 Sequence Decoder

Given the representations v = [v?;v‘] produced by our dual
encoder with bi-attention, we apply an attention-based GRU
decoder to generate a word sequence y as the keyphrase. The
probability to generate the keyphrase conditioned on a target
post and its conversation is defined as:

|
Pr(lepvxc) = Hpr(yt‘Y<t7Xp7XC)7 (47)

t=1
where y; refers to (y1,y2, ..., Yt—1)-
Concretely, when generating the ¢-th word in keyphrase, the
decoder emits a hidden state vector s, € R? and puts a global
attention over v. The attention aims to exploit indicative
representations from the encoder outputs v and summarizes
them into a context vector c; defined as:

|xP[+]x¢|

C; = Z ozz‘fivi, (4.8)
i=1
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Oélcgli _ eXp(gscore(Sta Vz)) : (49)
|xP [ +[x°|
Zi/zl exp (gscore(sta Vz”)
where gseore(St, Vi) = $tWuuv; is another alignment function

(Wt € R?) to measure the similarity between s; and v;.
Finally, we map the current hidden state s; of the decoder
together with the context vector c; to a word distribution over
the vocabulary V' via:

Pr(ytbktaxp?XC) = SOfthLSU(Wv[St; Ct] + bv)a (4.10)

which reflects how likely a word to be the #-th word in the
generated keyphrase sequence. Here W, € RV*?? and b, € RV
are trainable weights.

4.2.3 Learning and Inferring Keyphrases

During the training stage, we apply stochastic gradient descent

to minimize the loss function of our entire framework, which is

defined as:
N

£O) = = > log(Priy, <, x;;0)).  (411)

n=1

Here N is the number of training instances and © denotes the
set of all the learnable parameters.

In keyphrase inference, based on the produced word distribution
at each time step, word selection is conducted using beam
search. In doing so, we generate a ranking list of output
keyphrases, where the top K keyphrases serve as our final
output.

4.3 Experimental Setup

Here we describe how we set up our experiments.
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#of Avglen Avglen Avglen # of tags

Datasets

posts  of posts of convs of tags  per post
Twitter 44,793 13.27 29.94 1.69 1.14
Weibo 40,171 32.64 70.61 2.70 1.11

Table 4.2: Statistics of our datasets. Avg len of posts, convs, tags refer to the
average number of words in posts, conversations, and hashtags, respectively.

4.3.1 Datasets

Two large-scale experiment datasets are newly collected from
popular microblog platforms: an English Twitter dataset and a
Chinese Weibo dataset. The Twitter dataset was built based on
the TREC 2011 microblog track.? To recover the conversations,
we used Tweet Search API to fetch “in-reply-to” relations
in a recursive way. The Weibo dataset was collected from
January to August 2014 using Weibo Search API via searching
messages with the trending queries® as keywords. For gold-
standard keyphrases, we take the user-annotated keyphrases,
appearing before or after a post, as the reference.* The statistics
of our datasets are shown in Table 4.2. We randomly split
both datasets into three subsets, where 80%, 10%, and 10%
of the data corresponds to training, development, and test sets,
respectively.

To further investigate how challenging our problem is, we
show some statistics of the keyphrases in Table 4.3 and the
distributions of keyphrase frequency in Figure 4.2. In Table
4.3, we observe the large size of keyphrases in both datasets.
Moreover, Figure 4.2 indicates that most keyphrases only appear

’https://trec.nist.gov/data/tweets/

3http://open.weibo.com/wiki/Trends/

4keyphrases in the middle of a post are not considered here as they generally act as
semantic elements [176, 179].
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Datasets |Tagset| P C PUC
Twitter 4,188  2.72% 5.58%  7.69%
Weibo 5,027  8.29% 6.21% 12.52%

Table 4.3: Statistics of the keyphrases. |Tagset|: the number of distinct
keyphrases. P, C, and PUC: the percentage of keyphrases appearing in their
corresponding posts, conversations, and the union set of them, respectively.
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Weibo

o o e
= = N
o « <]

Proportion

o
o
a

- .

e —Y

=4
o
S

5 10 15 20 25 30 35 40 45 50
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Figure 4.2: Distribution of keyphrase frequency. The horizontal axis refers
to the occurrence count of keyphrases (shown with maximum 50 and bin 5)
and the vertical axis denotes the data proportion.

a few times. Given such a large and imbalanced keyphrase space,
keyphrase selection from a candidate list, as many existing
methods do, might not perform well. Table 4.3 also shows that
only a small proportion of keyphrases appearing in their posts,
conversations, and either of them, making it inappropriate to
directly extract words from the two sources to form keyphrases.

4.3.2 Preprocessing

For tokenization and word segmentation, we employed the tweet
preprocessing toolkit [11] for Twitter, and the Jieba toolkit® for
Weibo. Then, for both Twitter and Weibo, we further take the
following preprocessing steps: First, single-character keyphrases
were filtered out for not being meaningful. Second, generic

Shttps://pypi.python.org/pypi/jieba/
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tags, i.e., links, mentions (@Qusername), and numbers, were
replaced with “URL” “MENTION”, and “DIGIT”, respectively.
Third, inappropriate replies (e.g., retweet-only messages) were
removed, and the remainder were chronologically ordered to
form a sequence as conversation contexts. Last, a vocabulary
was maintained with the 30K and 50K most frequent words,
for Twitter and Weibo, respectively.

4.3.3 Comparisons

For experiment comparisons, we first consider a weak baseline
RANDOM that randomly ranks keyphrases seen from training
data. Two unsupervised baselines are also considered, where
words are ranked by latent topics induced with the latent
Dirichlet allocation topic model (henceforth LDA), and by their
TF-IDF scores (henceforth Tr-IDF). Here for TF-IDF scores,
we consider the N-gram TF-IDF (N < 5). Besides, we compare
with supervised models below:

e EXTRACTOR: Following Zhang et al. [179], we extract
phrases from target posts as keyphrases via sequence tag-
ging and encode conversations with memory networks [137].

e CLASSIFIER: We compare with the state-of-the-art model
based on classification [45], where keyphrases are selected
from candidates seen in training data. Here two versions
of their classifier are considered, one only taking a target
post as input (henceforth CLASSIFIER (post only)) and the
other taking the concatenation of a target post and its con-
versation as input (henceforth CLASSIFIER (post+conv)).

e GENERATOR: A seq2seq generator (henceforth SEQ2SEQ) [139]
is applied to generate keyphrases given a target post.
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We also consider its variant augmented with copy mech-
anism [48] (henceforth SEQ2SEQ-COPY), which has proven
effective in keyphrase generation [100] and also takes the
post as input. The proposed seq2seq with the bi-attention
to encode both the post and its conversation is denoted as
OUR MODEL for simplicity.

4.3.4 Model Settings

We conduct model tunings on the development set based on grid
search, where the hyper-parameters that give the lowest objec-
tive loss are selected. For the sequence generation models, the
implementations are based on the OpenNMT framework [70].
The word embeddings, with dimension set to 200, are randomly
initialized. For encoders, we employ two layers of Bi-GRU cells,
and for decoders, one layer of GRU cell is used. The hidden
size of all GRUs is set to 300. In learning, we use the Adam
optimizer [68] with the learning rate initialized to 0.001. We
adopt the early-stop strategy: the learning rate decreases by a
decay rate of 0.5 till either it is below 1le ® or the validation
loss stops decreasing. The norm of gradients is rescaled to 1 if
the L2-norm > 1 is observed. The dropout rate is 0.1 and the
batch size is 64. In inference, we set the beam-size to 20 and
the maximum sequence length of a keyphrase to 10.

For CLASSIFIER and EXTRACTOR, lacking publicly available
codes, we reimplement the models using Keras.® Their results
are reproduced in their original experiment settings. For LDA,
we employ an open source toolkit lda.”

Shttps://keras.io/
"https://pypi.org/project/lda/



CHAPTER 4. CONV-AWARE KEYPHRASE GENERATION 75

Evaluation Metrics. Popular information retrival evaluation
metrics F1 scores at K (F1QK) and mean average precision
(MAP) scores [97] are reported. Here, different K values are
tested on F1QK and result in a similar trend, so only F1@1 and
F1@b5 are reported. MAP scores are also computed given the top
5 outputs. Besides, as we consider a keyphrase as a sequence
of words, ROUGE metrics for summarization evaluation [88]
are also adopted. Here, we use ROUGE F1 for the top-
ranked keyphrase prediction computed by an open source toolkit
pythonrouge,® with Porter stemmer used for English tweets. For
Weibo posts, scores calculated at the Chinese character level
following Li et al. [85]. We report the average scores for multiple
gold-standard keyphrases on ROUGE evaluation.

4.4 Results and Analysis

In this section, we first report the main comparison results
in Section 4.4.1, followed by an in-depth comparative study
between classification and sequence generation models in Sec-
tion 4.4.2. Further discussions are then presented to analyze

our superiority and errors.

8https://github.com/tagucci/pythonrouge



76

CHAPTER 4. CONV-AWARE KEYPHRASE GENERATION

-ouweurIofrod 19339 9)edIPUl son[eA IOUSIH “(1s93-} paired ‘GO () > d) SPPOUW IS0 oY) [[B URL} SHNSII 19930q
ATHreOYTUSIS S9)eDIPUL SI9qUUNU I9)Je . 9], "P[O] Ul 8Ie UWN[0D [Des Ul SHMS.I 159q oY ], ‘A[oA1poadsal F1S-HHNOY
pue [-IHNOY 0} Il -0 pue -5y (9, Ul) sjosejep O(IoA\ PUR I9))IM ], U0 s)msal uostredwo)) :f'§ 9[qr],

x€L'6E xE0'GY 46L°BE 46E€°LT 496°'I€ GV'T 4EL'ET 4«¥V6'ST «6C'8 «6C'CI TdAOW ¥NQO
69°¢¢ 8G°LE €9'1¢ 0rvl 6¢'4¢ 9¢v  G0CI jfad! 189 €9°01 AdOD-DESZOES
L9°CE LELE VL.'CE evvl 00'9¢ 807  ¢S0T 00v1 €L9 7y 0Tl 0daSTOES

SI0jelouor)

60Gc  91'Gc  II'€¢  €0TT  SgLT  Lbe 0000  OU'gl 8¢9 V&8  (auoofysod) gardissvip
66’1z VE'Sc  6cGe  SPOL ¢69T  00F  GL0T 1Ll 989 ¥P6  (fijuo gsod) uandissvi)
S30e 9} JO o3els

0¢'¢ 79°L - - €4'C 710 AN} - - 770 HOLOVHLXH
6CV 70'8 0€'T €L0 g8'0 4NV 740 €00 00 00 Ad]-4.1,
- 68°€ 76°0 98°0 0T°0 - 09°0 Ggeo gco €10 val
e€r'l Ve L6°0 L9°0 evo 91°0 94°0 68°0 €90 LE0 INOANVY
sour[oseq

pOd 1D dVIN ¢old  IDld  ¥DY  I'DY  dVIN DI IDId
oqIoM 103)IM T,

[PPOIN




CHAPTER 4. CONV-AWARE KEYPHRASE GENERATION 7

4.4.1 Main Comparison Results

Table 4.4 reports the main comparison results. For CLASSI-
FIER, their outputs are ranked according to the logits after
a softmax layer. For EXTRACTOR, it is unable to produce
ranked keyphrases and thus no results are reported for F1@5
and MAP. For LDA, as it cannot generate bigram keyphrases,
no results are presented for ROUGE-SU4. In general, we have
the following observations:

e keyphrase annotation is more challenging for Twitter than
Weibo. Generally, all models perform worse on Twitter
measured by different metrics. The intrinsic reason is the
essential language difference between English and Chinese
microblogs.  English allows higher freedom in writing,
resulting in more variety in Twitter keyphrases (e.g., ab-
breviations are prominent like “aus” in “#AusOpen”). For
statistical reasons, Twitter keyphrases are more likely to
be absent in either posts or conversations (Table 4.3), and
have a more severe imbalanced distribution (Figure 4.2).

e Topic models and extractive models are ineffective for keyphrase
annotation. The poor performance of all baseline models
indicates that keyphrase annotation is a challenging prob-
lem. LDA sometimes performs even worse than RANDOM
due to its inability to produce phrase-level keyphrases. For
extractive models, both TF-IDF and EXTRACTOR fail to
achieve good results. It is because most keyphrases are
absent in target posts, as we see in Table 4.3 that only
2.72% keyphrases on Twitter and 8.29% on Weibo appear in
target posts. This confirms that extractive models, relying
on word selection from target posts, cannot well fit the



CHAPTER 4. CONV-AWARE KEYPHRASE GENERATION 78

keyphrase annotation scenario. For the same reason, copy
mechanism fails to bring noticeable improvements for the
seq2seq generator on both datasets.

e Sequence generation models outperform other counterparts.
When comparing GENERATORS with other models, we find
the former uniformly achieve better results, showing the
superiority to produce keyphrases with sequence generation
framework. Classification models, though as the state of
the art, expose their inferiority as they select labels from
the large and imbalanced keyphrase space (reflected in
Table 4.3 and Figure 4.2).

e Conversations are useful for keyphrase generation. Among
the sequence generation models, OUR MODEL achieves the
best performance across all the metrics. The observation
indicates the usefulness of bi-attention in exploiting the
joint effects of target posts and their conversations, which
further helps in identifying indicative features from both
sources for keyphrase generation. However, interestingly,
incorporating conversations fails to boost the classification
performance. The reason why OUR MODEL better exploits
conversations than CLASSIFIER (post+conv) might be that
we can attend the indicative features when decoding each
word in the keyphrase, which is however not possible for

classification models (considering keyphrases to be insepa-
rable).

4.4.2 Classification vs. Generation

From Table 4.4, we observe that the classifiers outperform topic
models and extractive models by a large margin but exhibit
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Figure 4.3: F1@Q1 on Twitter (the left subfigure) and Weibo (the right
subfigure) in inferring keyphrases with varying frequency. In each subfigure,
from left to right shows the results of CLASSIFIER (post only), CLASSIFIER
(post+conv), SEQ2SEQ, and OUR MODEL. Generation models consistently
perform better.

generally worse results than sequence generation models. Here,
we present a thorough study to compare keyphrase classifica-
tion and generation. Four models are selected for compari-
son: two classifiers; CLASSIFIER (post only) and CLASSIFIER
(post+conv), and two sequence generation models, SEQ2SEQ
and OUR MODEL. Below, we explore how they perform to
predict rare and new keyphrases.

Rare keyphrases. According to the keyphrase distributions in
Figure 4.2, we can see a large proportion of keyphrases appearing
only a few times in the data. To study how models perform to
predict such keyphrases, in Figure 4.3, we display their F1Q1
scores in inferring keyphrases with varying frequency. The lower
F1 score on less frequent keyphrases indicates the difficulty to
yield rare keyphrases. The reason probably comes from the
overfitting issue caused by limited data to learn from.

We also observe that sequence generation models achieve consis-
tently better F1@1 scores on keyphrases with varying sparsity
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Model Twitter Weibo
CLASSIFIER (post only) 1.15 1.65
CLASSIFIER (post+conv) 1.13 1.52
SEQ2SEQ 1.33 10.84
OUR MODEL 1.48 12.55

Table 4.5: ROUGE-1 F1 scores (%) in producing unseen keyphrases. Best
results are in bold.

degree, while classification models suffer from the label sparsity
issue and obtain worse results. The better performance of the
former might result from the word-by-word generation manner
in keyphrase generation, which enables the internal structure of
keyphrases (how words form a keyphrase) to be exploited.

New keyphrases. To further explore the extreme situation where
keyphrases are absent in the training set, we experiment to see
how models perform in handling new keyphrases. To this end,
we additionally collect instances tagged with keyphrases absent
in training data and construct an external test set, with the
same size as our original test set. Considering that classifiers will
never predict unseen labels, to ensure comparable performance,
we only adopt summarization metrics here for evaluation and
report ROUGE-1 F1 scores in Table 4.5.

As can be seen, creating unseen keyphrases is a challenging
task, where unsurprisingly, all models perform poorly on this
task. Nevertheless, sequence generation models perform much
better on both datasets, e.g., at least 6.5x improvements over
classification models observed on Weibo dataset. For Twitter
dataset, the improvements are not that large, which confirms
again that keyphrase annotation on Twitter is more difficult
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Model Twitter Weibo
SEQ2SEQ (post only) 1044  26.00
SEQ2SEQ (conv only) 6.27 18.57
SEQ2SEQ (post + conv) 11.24 29.85
OUR MODEL (post-att only) 11.18 28.67
OUR MODEL (conuv-att only) 10.61 28.06
OUR MODEL (full) 12.29 31.96

Table 4.6: F1@1 scores (%) for our variants. Best results are in bold.

due to the noisier data characteristics. In particular, compared
to SEQ2SEQ, OUR MODEL achieves an additional performance
gain in producing new keyphrases by leveraging conversations
with the bi-attention module.

4.4.3 Ablation Study

We report the ablation study results in Table 4.6 to examine the
relative contributions of the target posts and the conversation
contexts. To this end, our model is compared with its five
variants below: SEQ2SEQ (post only), SEQ2SEQ (conv only),
and SEQ2SEQ (post+conv), using standard seq2seq to generate
keyphrases from their target posts, conversation contexts, and
their concatenation, respectively; OUR MODEL (post-att only)
and OUR MODEL (conv-att only), whose decoder only takes v
and v¢ defined in Eq. (4.5) and Eq. (4.6), respectively. The
results show that solely encoding target posts is more effective
than modeling the conversations alone, but exploring their joint
effects can further boost the performance, especially combined
with a bi-attention mechanism over them.
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Model Top five outputs
LDA found; stated; excited; card; apparently
TF-IDF inappropes; umpire; woman need; azarenka

woman; the umpire

CLASSIFIER fail; facebook; just saying; quote; pro choice
SEQ2SEQ fail; jan 25; yr; eastenders; facebook
OUR MODEL  aus open ; bbc football ; bbc aus ; arsenal ;

murray

Table 4.7: Model outputs for the target post in Table 4.1. “aus open”
matches the gold-standard keyphrase.

4.4.4 Case Study

We further present a case study on the target post shown in
Table 4.1, where the top five outputs of some comparison models
are displayed in Table 4.7. As can be seen, only our model suc-
cessfully generates “aus open”, the gold standard. Particularly,
it not only ranks the correct answer as the top prediction, but
also outputs other semantically similar keyphrases, e.g., sport-
related terms like “bbc football”, “arsenal”, and “murray”. On
the contrary, CLASSIFIER and SEQ2SEQ tend to yield frequent
keyphrases, such as “just saying” and “jan 25”. Baseline models
also perform poorly: LDA produces some common single word,
and TF-IDF extracts phrases in the target post, where the
gold-standard keyphrase is however absent.

To analyze why our model obtains superior results in this
case, we display the heatmap in Figure 4.4 to visualize our bi-
attention weight matrix Wy;_,;;. As we can see, the bi-attention
mechanism can identify the indicative word “Azarenka” in
the target post, via highlighting its other pertinent words in
conversations, e.g., “Nadal” and “tennis”. In doing so, salient
words in both the post and its conversations can be unveiled,
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Figure 4.4: Visualization of the bi-attention module given the input case in
Table 4.1. The horizontal axis denotes a snippet of a truncated conversation.
The vertical axis shows the target post. Salient words are highlighted.

facilitating the correct keyphrase “aus open” to be generated.

4.4.5 FError Analysis

Taking a closer look at our outputs, we find that one type
of major errors comes from the unmatched outputs with gold
standards, even as a close guess. For example, our model
predicts “super bowl” for a post tagged with “#steelers”, a team
in super bowl. In future work, the semantic similarity should
be considered in keyphrase evaluation. Another primary type
of error is caused by the non-topic keyphrases, such as “#fb”
(indicating the messages forwarded from Facebook). Such non-
topic keyphrases cannot reflect any content information from
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target posts and should be distinguished from topic keyphrases
in the future.

4.5 Summary

In this chapter, we have presented a novel framework of keyphrase
generation via jointly modeling of target posts and conversation
contexts. To this end, we have proposed a neural seq2seq model
with bi-attention over a dual encoder for capturing indicative
representations from the two sources. Experimental results
on two newly collected datasets have demonstrated that our
proposed model significantly outperforms existing state-of-the-
art models. Further studies have shown that our model can
effectively generate rare and even unseen keyphrases.



Chapter 5

Cross-Media Keyphrase
Prediction: A Unified
Framework with

Multi-Modality Multi-Head
Attention and Image Wordings

With the advent of mobile Internet, more and more social
media posts contain images to convey more diverse and com-
plex information from the authors. Such images can provide
complementary knowledge to the target post and thus should
be exploited for better cross-media understanding. This chap-
ter investigates the combined effects of texts and images for
indicating keyphrases for a multimedia post. The main points
of this chapter are as follows. (1) We propose to exploit image
wordings to bridge the text-image semantic gap and design a
novel M3H-Att to capture the dense interactions between them
better. (2) We propose a unified framework to integrate the
outputs of keyphrase classification and generation and couple
their advantages. (3) Experiments on a text-image Twitter
dataset demonstrate the effectiveness of our model.
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Post (a):
mysteries of life from inside my

Contemplating the

egg carton...®
#cat #cats #CatsOfTwitter

CHAPTER 5. CROSS-MEDIA KEYPHRASE PREDICTION

Post (b): The <mention> have
the slight lead at halftime!

#NBAFinals

& 2019 NBA FINALS
GAME
®

CANBIE
il

GSW eeoo

36

Preseriedby @ YouTubeTV :

Figure 5.1: Two multimedia posts from Twitter, where texts offer limited
help in identifying their keyphrases while images provide essential clues.

5.1 Introduction

The prominent use of social media platforms (such as Twitter)
exposes individuals with an abundance of fresh information
in a wide variety of forms such as texts, images, videos, etc.
Meanwhile, the explosive growth of multimedia data has far
outpaced individuals’ capability to understand them, presenting
a concrete challenge to digest massive amounts of data, distill
the salient contents therein, and provide users with quick access
to the information they need when navigating noisy online data.
To that end, extensive efforts have been made to social media
keyphrase prediction — aiming to produce a sequence of words
that reflect a post’s key concern. Nevertheless, previous work
mostly focuses on the use of textual signals [179, 148, 150], which
sometimes provide limited features as social media language is
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essentially informal and fragmented. To enrich the contexts,
here we resort to exploiting the matching images, which are
widely used in social media posts to deliver auxiliary information
from authors (e.g., opinions, feelings, topics, etc.), primarily due
to the flourish of mobile Internet.

To illustrate our motivation, Figure 5.1 shows the texts and
images of two Twitter posts (tweets). The left is tagged with
a keyphrase “cat”, which can be clearly signaled with its image
while the paired text is an anthropomorphic description and
hardly unveils its real semantics. For the right, the image depicts
a basketball game scene with optical characters “2019 NBA
FINALS”, directly indicating its keyphrase, which is difficult
to identify from the texts. In both examples, images play
a more vital role in reflecting the key information. These
points motivate our cross-media keyphrase prediction study that
examines how the salient contents can be indicated by the
coupled effects of post texts and their matching images.
Previous work [175, 178] employs co-attention networks [94, 163]
to encode multimedia posts, where a single attention function
is concurrently performed to infer either visual or textual
distributions. We argue that they might be suboptimal to model
intricate text-image associations, as a recent finding [142] points
out there can be four diverse semantic relations held by images
and texts on Twitter. To allow for better modeling, in this
work, we take advantage of the recent advance of multi-head
attention [141] capable of learning from different representation
subspaces and extend it to capture diverse cross-media inter-
actions, named as Multi-Modality Multi-Head Attention (M3H-
Att). Moreover, to well align the images’ semantics to texts’, we
adopt image wordings and define two forms for that — explicit
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optical characters (such as “NBA Finals” in post (b)) detected
from the optical character reader (OCR) and implicit image
attributes [157], high-level text labels predicted to summarize
the image’s semantic concepts (such as a “cat” label for post
(a)).

Furthermore, unlike prior work employing either classification
[45] or generation models [148], we propose a unified frame-
work to couple the advantages of keyphrase classification and
generation. Specifically, in addition to the joint training of
both modules, we further extend the copy mechanism [127] to
explicitly aggregate classification outputs together with tokens
from the source input. Empirical results show that integrating
classification outputs not only keeps classification’s superiority
to predict common keyphrases (Figure 5.7(c)) while enables
keyphrase creation beyond a predefined candidate list, but also
largely benefits the keyphrase generation with better absent
keyphrase prediction (Figure 5.7(b)).

For experiments, we collect large-scale tweets with texts and
images, which is presented as part of our work. The empirical
results show that our model significantly outperforms the state-
of-the-art (SOTA) methods using traditional attention mecha-
nisms. For example, we obtain 47.06% F1@Q1 compared with
43.17% by [148] (keyphrase generation from texts only) and
42.12% by [175] (multi-modal keyphrase classification). We
then examine how we perform to handle absent and present
keyphrases, and varying keyphrase frequency and post length.
The results indicate the consistent performance boost brought
by our M3H-Att design in diverse scenarios and the significant
benefit to absent keyphrase prediction offered from our unified
framework (Section. 5.4.2). We further quantify the effects of
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different settings of multi-head attention and image wordings
to see when and how they work the best (Section. 5.4.3). A
qualitative analysis is given at last to interpret why our model
results in superior multimedia understanding (Section. 5.4.4).
In summary, our contributions are three-fold:

e We extensively study the joint effects of texts and images
for social media keyphrase prediction and present a large-
scale Twitter dataset for that.

e A novel design of Multi-Modality Multi-Head Attention
(MPH-Att) and image wordings are proposed to effectively
capture dense interactions between texts and images in
social media styles.

e To the best of our knowledge, we are the first to propose
a unified framework coupling classification and generation
models for keyphrase prediction, which shows promising
empirical results.

5.2 Unified Cross-Media Keyphrase Predic-
tion Model

Given a collection C with |C] text-image post pairs {(x", I ’”‘)}chl1
as input, we aim to predict a keyphrase set ) = {yi}g'1 for

each of them. Following Meng et al. [100], we copy the source
input pair multiple times to allow each paired to have one
keyphrase. We represent each input as a triplet (x, /,y), where
x and y are formulated as word sequences x = (1, ...,2;,) and
y = (Y1, .-, u,) (I and [, denote the number of words).

We show the overview of our proposed cross-media keyphrase
prediction model in Figure 5.2. We first encode a text-image
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Figure 5.2: The overview of our unified cross-media keyphrase prediction
model. Work flow: (1) a text-image post is encoded into text, attribute, and
vision modalities; (2) the encoded features are fused with M?*H-Att; (3) the
output of a keyphrase classifier and generator are aggregated for a unified
prediction.

tweet into three modalities: text, attribute, and wvision (Sec-
tion 5.2.1), and propose a Multi-Modality Multi-Head Attention
(MPH-Att) to capture their intricate interactions (Section 5.2.2).
Then, we feed the learned multi-modality representations for
either keyphrase classification or generation. At last, a tailored
aggregator is devised to combine their outputs (Section 5.2.3)
and the entire framework can be jointly trained in an end-to-end
manner (Section 5.2.4).
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5.2.1 Multi-modality Encoder

Learning Text Representation. We first embed each token z;
from the input sequence into a high-dimensional vector via a
pretrained lookup table, and then employ bidirectional gated
recurrent unit (Bi-GRU) [30] to encode the embedded input
token e(x;):

b, = GRU(e(z;), b 1), (5.1
b, = GRU(e(z,), o). (5.2)

%
Forward hidden state h; and backward one E are later con-

catenated into h; = [E), E] We employ it as the context-aware
representation of x; and pack all of them in the input sequence
into a textual memory bank My.,; = {h;, ..., h; } € Rl+*? where
d denotes the hidden state dimension.

Encoding OCR Text. To detect optical characters from images,
we use an open-source toolkit [133] to extract OCR texts in form
of a word sequence. It is then appended into the post text with a
delimited token (sep) to notify the change of text genres, which
is shown to be a simple yet effective design to combine OCR
features (Table 5.4).

Learning Image Representation. We consider two types of image
representations: grid-level or object-level visual features. For
the former, we apply a pretrained VGG-16 Net [132] to extract
7 X 7 convolutional feature maps for each image I. For the
latter, inspired by bottom-up attention [5], we use the Faster-
RCNN [120] pretrained on Visual Genome [72] to detect the
objects and extract their features. Each feature map is further
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transformed into a new vector v; through a linear projection
layer. As such, we construct a visual memory bank as M,;; =
{vi,..,vi,} € R*4 where [, denotes the number of image
regions or objects.

Encoding Image Attribute. Following Cai et al. [19], we first
train an attribute predictor based on the Resnet-152 [53] fea-
tures on Microsoft COCO 2014 caption dataset [89]. Specifically,
we extract noun and adjective tokens from the image captions
as the attribute labels. Afterwards, the top five attributes of
each image are mapped with another linear layer to produce the
attribute memory bank My, = {ay, ...,as} € R>? which aims
to capture images’ high-level semantic concepts.

5.2.2 Multi-modality Multi-Head Attention

Our design of multi-head attention is inspired by its prototype
in Transformer [141]. We extend it to capture multiple forms
of cross-modality interactions for a multimedia post, which is
therefore named as M3H-Att, short for Multi-Modality Multi-
Head Attention. The three modalities (text, attribute, and vi-
sion) are modeled in a pairwise co-attention manner, compared
with its original form as a self-attention over texts only.

For each co-attention, we perform scaled dot attention A on a

set of { Query, Key, Value}:

Q T
AQ, K, V) :softmax(\/d_
K

AMulti-head ('} V) = [head,; ...; head g |W©, (5.4)
where head, = AQQWY KWE VW), (5.5)

WV, (5.3)
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Wg,WK ,WZ € R are learnable weights to project the
query, key, and value from dimension d to a lower space
of dy-dimension and H is the head number. Outputs from
all the heads are concatenated in AMWHhead and passed to a
feedforward network with residual connections [53] and layer
normalization [7].

Specifically, we employ the text features as a query to at-
tend to the vision/attribute modality and vice versa.! Here
max/average-pooling is adopted to obtain one holistic query
vector for each modality instead of token-level queries consid-
ering the noisy nature of social media data. Moreover, we stack
multiple co-attention layers to empower its modeling capability,
where Lieyt, Lattr, Lyis denote the number of stacked layers for
text, attribute, and vision queries. After that, the outputs from
all co-attention layers are summed up with a linear multi-modal
fusion layer to produce a context vector Cpue € R, Tt will
be fed into a keyphrase classifier and generator for the unified
prediction. Notably, this indicates that our M?H-Att’s great
potential to serve as a generic module for benefiting other cross-
media applications.

5.2.3 Unified Keyphrase Prediction

We describe how we combine the keyphrase classification and
generation for the unified prediction.

Keyphrase Classification. As each keyphrase y usually consists
of only several tokens, it can be considered as a discrete integral
label and predicted it with a keyphrase classifier. Here we

'We also try other combinations, e.g., M®H-Att between the vision and attribute, but
the improvements are negligible.
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Figure 5.3: Overview of M?H-Att to fuse multi-modal features from text,
attribute, and vision modalities.

directly pass the multi-modal context vector cgy into a two-
layer of multi-layer perceptron (MLP) and map it to y in the
label vocabulary space V_:

Pos(y) = softmax(MLP ;5(cruse)).- (5.6)

Keyphrase Generation with Pointer. For keyphrase generation,
we base on a sequence-to-sequence framework to predict the
keyphrase word sequence y = (y1, ..., ¥,), Where the generation
probability is defined as Hi”zl Py | y<t).

Concretely, we use an unidirectional GRU decoder to model
the generation process, which emits the hidden state s; =
GRU(s;_1,us) € R? based on the previous hidden state s;_; and
the embedded decoder input u;. The decoder state is initialized
by the last hidden state h;, of the text encoder. Here an
attention mechanism [8] is adopted to obtain a textual context
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Ciext:

L
Ciext = Z Qt,ihia (57)
=1

ay; = softmax(S(s, hy)), (5.8)
S(s;, hy) = vE tanh(W,[s;; hy] 4+ by), (5.9)

where S(st, h;) is a score function to measure the compatibility
between the t-th word to be decoded and the ¢-th word from the
text encoder. W, € R™>?¢ b, v € R? are trainable weights.
Next, we incorporate the static multi-modal vector ¢y (pro-
duced by M3H-Att and independent of the decoder state) to
construct a context-rich representation c; = [ut; St; Crext D C fuse],
where & denotes the addition operation. Based on it, we apply
another MLP with softmax to produce a word distribution over
token vocabulary Vip:

Pyen(yr) = softmax(MLP g, (cy)). (5.10)

To further allow the decoder to explicitly extract words from the
source post, we apply the copy mechanism [127] by calculating
a soft switch A\, € [0, 1] with a sigmoid-activated MLP on c;.
It indicates whether to generate the word from the vocabulary
Vyen or copy it from the input sequence, where the extractive
distribution is decided by the text attention weights ay; in

Eq. (5.8).

Classification Output Aggregation. We further extend the copy
mechanism to aggregate the classification’s outputs to benefit
keyphrase generation. First, we retrieve the top-K predictions
from the classifier and convert each into the word sequence w =
(wy, ...,wy, ), where [, is the sequence length of the combined
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predictions. Then, we normalize their classification logits using
softmax into a word-level distribution 8 € R, which represents
the extractive probability from the classification output. Finally,
we obtain the unified prediction via:

Pung(ye) =Mt - Poen(ye) + (5.11)
(1 — >\t Z 07 i + b Z ﬁj
RS Jrwi=ys

where a,b (a + b = 1) are hyper-parameters to decide whether
to copy from the input sequence or the classification outputs.
To stabilize the aggregation of classification outputs, we warm
up the classifier for several epochs first by setting a to 1 and b
to 0 and then both to 0.5 for further training.

5.2.4 Joint Training Objective

We employ the standard negative log-likelihood loss and define
the entire framework’s training objective with the linear combi-
nation of the label classification loss and the token-level sequence
generation loss for multitask learning:

ZTL

N

L) =~ log Pus(y") +7- D log Pus(yf)],  (5.12)

t=1

n=l1 Classification Unified

where N is size of the training text-image pairs and ~ is a
hyper-parameter to balance the two losses (empirically set to
1) and € denotes the trainable parameters shared for the whole
framework. Intuitively, jointly training keyphrase classification
would benefit the unified prediction by not only implicitly better
parameter learning, but also explicitly providing more precise
outputs to be copied by the aggregation module.
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5.3 Experimental Setup

5.3.1 Data Collection

Since there are no publicly available datasets for multi-modal
keyphrase annotation, we contribute a new dataset with social
media posts from Twitter. Specifically, we employ the Twitter
advanced search API? to query English tweets that contain
both images and hashtags from January to June 2019. For
keyphrases, we consider to use user-generated hashtags following
common practice [176, 179)].

Data Filtering. We clean the raw data in the following ways:
(1) we only retain tweets with one color image in JPG form;
(2) we remove tweets with less than 4 tokens or more than 5
hashtags to filter out noise data (e.g., #Al, #MachineLearning,
#DeepLearning, #ML, #DL, #Tech, #Artificiallntelligence);
(3) rare hashtags (occurring less than 10 times) and their
corresponding tweets are removed to alleviate sparsity issue; (4)
we remove the duplicate tweets (e.g., retweets) and images and
obtain 53,701 tweets with each containing a distinct tweet text-

image pair.

Preprocessing. We employ an open-source T'witter preprocess-
ing tool® [12] to tokenize the tweets, segment the hashtags,
and apply common spelling corrections. To reduce the errors
introduced by the automatic hashtag segmentation, we manually
check them and construct a complete mapping list. Follow-
ing Wang et al. [148], we retain tokens in hashtags (without

Zhttps://twitter.com/search-advanced
Shttps://github.com/cbaziotis/ekphrasis
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Post  #KP KP % of

lit Post KP b
Split #Pos Len /Post |KP| Voca

Len occ. KP

Train 42,959 27.26 1.33 4,261 1.85 37.14 48,019
Val 5370 26.81 1.34 2544 1.85 36.01 16,892
Test, 5372 27.05 132 2,534 1.86 37.45 17,021

Table 5.1: Data split statistics. KP: keyphrase; |KP|: the size of unique
keyphrase; % of occ. KP: percentage of keyphrases occurring in the source
post.

# prefix) for those occurring in the middle of the posts due
to their inseparable semantic roles. We further remove all the
non-alphabetic tokens and replace links, mentions (Qusername),
digits into special tokens as (url), (mention),and (number)
respectively.

Finally, we obtain 53,701 text-image tweets.. For training and
evaluation, we randomly split the data into 80%, 10%, 10%
corresponding to training, validation, and test set. The data
split statistics of tweet texts are displayed in Table 5.1. We
observe that only around 37% keyphrases appear in the source
posts, making it difficult for extraction methods to perform well.

5.3.2 Dataset Analysis

Tweet Image Analysis. To further analyze the Twitter image
characteristics, we sample 200 text-image tweets and analyze
their distributions over varying types in Figure 5.4. We observe
a rather diverse set of categories: cartoon/drawings (12%),
posters (11%), sports-related images (11%), screenshots (6%),
pure-text images (4%), and others (2%). We also notice that
only around half of the images are natural photos (54%), which
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Figure 5.4: Image type distribution of 200 sampled text-image tweets in our
collected dataset.

differs a lot from other image datasets such as MS-COCO.

Moreover, we conduct a pilot study to categorize the text-image
relations following Vempala et al.[142]. Some example tweets
for four text-image relationships in our sampled set are shown in
Figure 5.5. Post (a) represents text in the image and image adds
to the semantics since it helps to infer that “good girl” refers to
dogs, while in post (b), image represents but does not add to
due to no additional information provided in the image. Post (c)
does not represent text in the image but image adds to semantics
as it reveals the connection between text with “Trump”. As for
post (d), image is just a comment for text and does not have
a direct semantic association with text. We observe there are
(1) 48%: image can represent text and add to more semantics
of the tweet; (2) 25%: image can represent text but does not
add to semantics; (3) 15%: image cannot represent text but add
to semantics; (4) 12%: image cannot represent text and also
does not add to semantics. Namely, 52% of them have either
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Post (a): Sharing is car- Post (b): Waves crash Post (c): “I am declaring Post (d): The whole
ing. Good girl Kit, cause against the North Pier this an emergency that only i of the uk when armadillo

I know how much you love evening at Tynemouth, can fix” and danny say anything
your bed. #Dogs #Kind- River Tyne in  the #BoycottTrumpPrimeTime #Lovelsland
ness UK @david1hirst

#StormHour

)

Figure 5.5: Tweets of four different types of text-image relationship in our
dataset. Post (a): text is represented and image adds to. Post (b): text is

no one cares

represented and image does not add to. Post (¢): text is not represented and
image adds to. Post (d): text is not represented and image does not add to.

texts or images useless to represent semantics. Such diverse
categories of images and complex text-image relationship pose
the challenge to attend essential information from noisy cross-
media data, where our M3H-Att and image wordings may help
alleviate such issue.

Image Wording Analysis. Here we shed light on some interesting
statistics on image wordings. We first visualize the word cloud
of our image attributes in Figure 5.6. The top 5 attributes
predicted from the images in our dataset are {man, shirt,
woman, sign, white}, which shows that most of the images on
Twitter are about people. The top 5 attributes predicted from
the images in our dataset are {man, shirt, woman, sign, white},
which shows that most of the images on Twitter are about people.
For OCR texts, we employ a widely used OCR engine Tesserocr?
to extract optical characters. From all matching images, there

are around 35% of them contain characters, significantly larger

‘https://pypi.org/project/tesserocr/
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Figure 5.6: Word cloud for the image attributes from our dataset, indicating
most tweet images are about people.

than the corresponding number in COCO images (4%), indi-
cating social media users’ preference to post images containing
optical characters. To mitigate the effects of OCR errors, we
only consider tokens present in the vocabulary of tweet texts
and find about 17% images left. We further analyze their
statistics. Their median length is 16 tokens while 32% have
words appearing in their corresponding keyphrases and 13%
contain the entire keyphrases. This suggests the potential help
from OCR texts in keyphrase prediction.

5.3.3 Comparisons

Evaluation Metrics. We mainly evaluate our model with pop-
ular information retrieval metrics macro-average F1QK, where
K is 1 or 3 as there are 1.33 keyphrases on average per tweet
(Table 5.1). To further measure the keyphrase orders (as we can
generate a keyphrase ranking list with beam search), we employ
mean average precision (MAP) for the top five predictions
following Chen et al. [26]. The higher scores from all the metrics
indicate better performance. For word matchings in evaluation,
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we consider the results after processed with Porter Stemmer
following Meng et al. [100].

Comparison Models. We first consider the upper-bound per-
formance of extractive methods, denoted as EXT-ORACLE.
Then, the following baselines are compared:

e Image-only models: we apply max/average pooling on
the grid-level VGG features or object-level BUTD [5] and
aggregate them for classification.

e Text-only models: we consider classification-based (CLS)
or sequence generation-based (GEN) methods. For CLS
models, we consider simple max/average pooling on the
text features learned from Bi-GRU encoder and the Topic
Memory Network (TMN) [174] (a SOTA short text classi-
fication model). For GEN models, we employ the seq2seq
with attention [8], copy mechanism [127], and latent top-
ics [148] (the SOTA topic-aware model for social media
keyphrase generation).

e Text-image models: we consider the SOTA CLS model
for multi-modal hashtag recommendation [175] using co-
attention and its variant with image-attention [168], as
well as Bilinear Attention Networks (BAN) [66] (a SOTA
variant for Visual Question Answering [6]). For our models,
we first adopt the basic variants with M?H-Att separately
applying to either CLS or GEN. Then we additionally
combine image wordings and the joint training strategy
(Eq. (5.12)). Our full model is obtained by further ag-
gregating the CLS and GEN outputs (Eq. (5.11)).
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5.3.4 Model Settings

We maintain a generation vocabulary Vi, of 45K tokens and
the keyphrase classification vocabulary Vs with 4,262 labels.
All the models are pretrained with 200-d Twitter GloVe embed-
ding [114]. We employ two layers of Bi-GRU for the encoder
and a single layer GRU for the decoder with hidden size set
to 300. For visual signals, we extract either 49 grid-level VGG
512-d features or 36 object-level BUTD 2048-d features. We
set up our models on the NVIDIA TITAN Xp GPU with 12G
memory. In training, we set the loss coefficient v = 1 and employ
Adam optimizer [68] with a learning rate as 0.001. We decay
it by 0.5 if validation loss does not drop and apply gradient
clipping with the max gradient norm as 5. Early stop [21] is
adopted via monitoring the change of validation loss. For the
M3H-Att, we employ 4 heads with 64-d subspace, where 4 layers
are stacked for attention to text modality, and 1 layer for vision
or attribute modality. For inference, we employ beam search
with beam size set to 10 to generate a ranking list of keyphrases.
For the baselines, we re-implement CLS-IMG-ATT and CLS-
CO-ATT, and employ the released codes to produce results for
CLS-TMN®, GEN-TOPICS, and CLS-BAN".

5.4 Results and Analysis

5.4.1 Main Comparison Results

We first report the main comparison results in Table 5.2 and
draw the following observations:

Shttps://github.com/zengjichuan/TMN
Shttps://github.com/yuewang-cuhk/TAKG
"https://github.com/jnhwkim/ban-vqa
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Models Fl1@1 F1@3 MAPQ5

EXT-ORACLE 39.50  23.20 39.26
”: . CLS-VGG-MAX 14.2035  12.2004  17.685
S| CLS-VGG-AVG 15.699;  13.6705  19.7040
&) CLS-BUTD-MAX 17.655  15.000;  21.770
£\ CLS-BUTD-AVG 20.0207  16.9706  24.7311
( CLS-AVG 35.961; 27.5905  41.841,
»| CLS-MAX 38.33,7 28.84p9  44.1534
§| cLS-TMN 40.3339  30.07s5  46.2847

*g "GEN-ATT  38.36es 27.8315 43.359
=| GEN-COPY 421079  29.9139  46.9435
| GEN-TOPIC 43175  30.7313  48.07x
( CLS-BAN 38.731s  29.6853  45.03;5
CLS-IMG-ATT 41.4853  31.22,,  47.93s4
CLS-CO-ATT 42.1235  31.5533  48.393,
go CLS-M3*H-ATT (ours) 4411y, 31.47 14 4945,
E + image wording 44.4615  32.8254  50.39;5

g | _ tjoint-train 451609 332710 514811
& | GEN-MPH-ATT (ours) 44.2505  31.58;3  49.3519
+ image wording 44.56p9 31.7793 49.9599
+ joint-train 45.6917  32.78¢9 51.3712

\ " GEN-CLS-MPH-ATT (ours) 47.06¢; 33.11y 52.07p3

Table 5.2: Comparison results (in %) displayed with average scores from 5
random seeds. Our GEN-CLS-M3H-ATT significantly outperforms all the
comparison models (paired t-test p < 0.05). Subscripts denote the standard
deviation (e.g., 47.0604 = 47.06£0.04).
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o Textual features are more important than visual signals. 1t
is seen from the better performance of the text-only models
compared with their counterparts relying solely on images. For
image-only models, we find that object-level BUTD outperforms
grid-level VGG, while for pooling methods, average pooling
works better for visual signals while max pooling is more suitable
for texts.®

o Vision modality can provide complementary information to
the text. Most models considering cross-media signals perform
better than text-only and image-only baselines. An exception is
observed on CLS-CO-ATT, which indicates the limitation of
traditional co-attention to well exploit multi-modality represen-
tations from social media.

e Both M3 H-Att and image wordings are helpful to encode social
media features. We find that both M3H-Att and image wordings
contribute to the performance boost of keyphrase classification
or generation or their joint training results, which showcase their
ability to handle multi-modality data from social media. We will
discuss more in 5.4.3.

e Our output aggregation strateqy is effective. Seq2seq-based
keyphrase generation models (especially armed with the copy
mechanism to enable better extraction capability) perform bet-
ter than most classification models and even upper bound results
of extraction models. It is probably because of the high absent
keyphrase rate and the large size of keyphrase tags (Table 5.1)
exhibited in the noisy social media data. Nevertheless, GEN-
CLS-M3H-ATT, coupling advantages of classification and gen-
eration, obtains the best results (47.06 F1@Q1), drastically

81n experiments, we find that VGG works better than BUTD features for MH-Att in
our variants. Below we show results with the better setting without otherwise specified.
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a) Present keyphrase (b) Absent keyphrase
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15~25(30%) 25~35(17%) >35(27%)

(d) Post length

10~50 (42%) 50~100 (15%) >100 (19%) <15 (26%)

(c) Keyphrase frequency

<10 (24%)

Figure 5.7: Model comparison over: (a) present keyphrases, (b) absent

keyphrases, (c) varying keyphrase frequency, and (d) varying post length.
Striped bars or dashed lines denote previous models while solid ones denote
ours. In (a) and (b), x-axis: various models; y-axis: F1@1 for present and
recall@5 for absent keyphrases. In (c) and (d), x-axis (%): data proportion;
y-axis: F1@Q1. Best viewed in color.

outperforms the SOTA text-only model (43.17) and text-image
one (42.12).

5.4.2 Quantitative Analysis

We examine how our model performs in diverse scenarios:
present vs. absent keyphrases and varying keyphrase frequency
and post length in Figure 5.7.
Present vs. Absent Keyphrases. We report the F1@1 for evalu-
ating present keyphrases and recall@b for absent keyphrases.
As shown in Figure 5.7 (a-b), generation models with copy
mechanism consistently outperform classification models for
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present keyphrase, while the latter works better for absent
keyphrases. Nonetheless, our output aggregation strategy is
able to cover generation models’ inferiority for absent keyphrases
and exhibits better results from GEN-CLS-M?H-ATT than
GEN-M3H-ATT (41.19 vs. 35.83 recall@5 score). Besides,
visual signals are helpful to both generation and classification to
yield either present or absent keyphrases, though larger boost is
observed for the latter probably owing to the inadequate clues
available from texts.

Keyphrase Frequency. From Figure 5.7 (c¢), we observe better
F1@1 from all models to produce more frequent keyphrases, be-
cause common keyphrases allow better representation learning
from more training instances. For extremely rare keyphrases
(occur < 10 times in training), generation models with copy
mechanisms exhibit better capability to handle them than
classification ones.

Post Length. From Figure 5.7 (d), we observe that longer post
length does not guarantee better performance and the best
results are obtained for posts with 15 ~ 35 tokens. It might
be attributed to the noisy nature of social media data — longer
posts provide both richer contents and more noise. For the posts
with < 15 tokens, all multi-modal methods perform better than
the text-only ones, as the image modality enriches the context
for short texts.

5.4.3 Analysis of M*H-Att and Image Wording

We proceed to quantify the effects of different settings in M3H-
Att and image wording.
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2 Head 4 Head 8 Head 12 Head
64-d  128-d 256-d 64-d 128-d 256-d 64-d 128-d 256-d 64-d 128-d 256-d

42.06 43.32 43.01 43.11 4398 43.63 43.75 44.18 4343 4348 43.81 43.53
43.22 4436 44.26 44.27 44.38 44.27 4458 44.59 43.12 45.05 38.16 39.97
43.51 44.23 43.62 44.50 44.25 43.00 44.70 43.27 36.05 44.49 35.70 31.35
44.38 44.42 31.72 4529 36.03 30.47 37.17 32.73 31.69 3785 34.99 3091

# Layer

= W N =

Table 5.3: Analysis of M?H-Att with various stacked layer number, head
number, and subspace dimension.

Model No Image Wording Add OCR Add Attribute
odels

Full OCR Attr Ful A (%) OCR A (%) Ful A (%) Attr A (%)
CLS-MAX 3831 36.11 32.04 3875 +1.1 40.67 +12.6 41.09 +7.3 37.87 +18.2
GEN-COPY 42.01 40.81 3555 42.86 +2.0 4358 +6.8 43.11 +2.6 3810 +7.2

CLS-M*H-ATT 44.19 4293 36.93 4427 +0.2 46,53 +84 4438 +04 3873 +4.9
GEN-M*H-ATT 44.33 4326 3593 4448 +0.3 4631 +7.1 4477 +1.0 3990 +11.0

Table 5.4: F1@1 over three test sets with settings: no image wording, adding
either OCR or attribute. A: the relative improvements over no image
wording.

M?®H-Att Analysis. We investigate how various configurations
(Lyis € {1,2,3,4}, H € {2,4,8,12}, dy € {64,128,256} ) of our
M3H-Att affect the prediction results in Table 5.3. Here we only
show the classification results (and similar trends are observed
from generation). We notice that more complex models do
not always present better results and even render performance
deteriorate in some cases due to the overfitting issue. The best
performance is attained by 4 stacked layers of 4 heads with a
64-d subspace.

Image Wording Analysis. To examine image wording effects, we
compare four models in three settings: no image wording, OCR
(only), and image attributes (only) in Table 5.4. The results
are shown in three test sets: the entire test set (Full), the 889
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Figure 5.8: Attention weight visualization of M?H-Att for two example posts
with image-to-text (top) and text-to-image attention (bottom). Best viewed
in color.

subset instances with OCR tokens (OCR), and the 266 ones
containing keyphrases from ImageNet labels? (Attr) [123]. For
the CLS-MAX and GEN-COPY, we add attributes by using
its max-pooled features to attend the text memory, which is
later used for prediction.

We observe that either OCR texts or image attributes contribute
to better F1@Q1 on the entire test set for all chosen models, while
much more performance gain can be observed on their subsets
with OCR texts or ImageNet keyphrases, indicating that images
with optical characters and natural styles can benefit more from
image wordings.

9Here we assume that posts with ImageNet keyphrases have a higher probability to
contain natural photos drawn from our observations.
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Post (a): Contemplating the Post (b): Epic Texas #sun- Post (c): Your plastic bag
mysteries of life from inside my set from NNE Bastrop County ends up somewhere, and
egg carton...® TX. @TxStormChasers sometimes, it goes to the
#CatsOf Twitter ocean. #WorldOceansDay

-

(cat yellow grey bananas) (sky sun sunset field) (world oceans day June 8)
GEN-COPY: star wars GEN-COPY: storm hour GEN-COPY: plastic fandom
CLS-CO-ATT: cats of twitter CLS-CO-ATT: storm hour CLS-CO-ATT: plastic
Our: cats of twitter Our: sunset Our: world oceans day

Figure 5.9: Tweet image’s effects for keyphrase prediction. Blue tokens are
the top four attributes and purple ones are OCR tokens. Correct predictions
are in bold.

5.4.4 Qualitative Analysis

To explore whether M?H-Att is able to attend different aspects
from the image, we probe into its attention weights via heatmap
visualization in Figure 5.8. Here CLS-M3H-ATT is employed
with a single layer of 12 heads, whose image-to-text and text-to-
image attention are examined. The top figure shows that all its
heads attend to the text based on the visual cues, where some
attend to “turtle” while others attend to “world” and “globe”
with various emphasis. Interestingly, Head 11 highlights the
“happy” token, which also appears in the image. For the text-to-
image attentions (bottom), we find some heads tend to highlight
the specific local objects, such as the two players by Head 0
and 5 and the textual regions by Head 9, while some capture a
more global view of the image like Head 11. We provide more
attention visualizations in Figure 5.10, where our M3H-Att is
able to attend various aspects from both image-to-text or text-
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Post (a): 1 thought Older Post (b): Congrats producer of Post (c): Last year’s high-  Post (f): We need to make sure
Hanzo died after D’Vorah the year, non-classical winner - est rated animated movie spider  the ratings are high
killed  him? @Nether- Williams ~ #Grammys man into the Spider-Verse is now #SaveShadowhunters
Realm  #MortalKombat11 streaming on Netflix! #Spider-
Man
G T SN HARRY SHUM JR MY LOVE OF MY... - 30m
WINNER E Q Wil someane #SaveShadoutuners
ODUCER OF THE YEAR, NON-CLASSICAL O (s} V)
WILLIAMS rophin .
If the ratings are fantastic, that would be
%, iy | the best evidence for the powers that be
S5 €
to do something.
(mortal kombat story all full movie)  (williams at grammy awards) 1 into the spider-verse) (will someone save shadow hunters)
GEN-COPY: quote GEN-COPY: live under par GEN-COPY: spider verse GEN-COPY: teacher goals
CLS-CO-ATT: destiny 2 CLS-CO-ATT: a star is born CLS-CO-ATT: marvel CLS-CO-ATT: brexit
Our: mortal kombat 11 Our: grammys Our: spider man Our: save shadowhunters

Figure 5.11: More qualitative examples showing the effectiveness of encoding
OCR texts. Among various models, only our model that considers OCR
tokens correctly predicts the keyphrases (in bold). Purple tokens are some
of OCR tokens detected by an off-the-shelf OCR engine. We observe that
keyphrases directly appear in these images.

to-image directions with different heads.

We further illustrate how images (visual signals, image at-
tributes, and OCR, tokens) help cross-media keyphrase predic-
tion by analyzing their predictions in Figure 5.9. In post (a), vi-
sual features help both CLS-CO-ATT and our model correctly
predict its keyphrase, where our model precisely attends the
cat’s face (key region reflecting the image’s semantics) . Without
such context, GEN-COPY wrongly predicts “star wars”, which
might be caused by the misleading token “mysterious” in the
texts. Besides, the keyphrase is also revealed in the top
predicted attribute. In post (b-c), only our model with image
wordings makes correct predictions, where we observe that the
ground-truth keyphrases directly appear in the attributes or
OCR texts. More outputs from different models are provided
for demonstrating the effectiveness of OCR texts (Figure 5.11)
and image attributes (Figure 5.12). Among most of these cases,
image wordings help our model to correctly predict keyphrases
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Post (a): Good night, ev- Post (b): Head up, chest Post (c): I was watching all Post (d): For 1970, Ply-
eryone. I hope that you have out! A handsome purple the bees Honeybee collecting mouth intended to make its

had a delightful day and a finch poses for a shot. pollen on the flowers Bou- GTX model a street power-
restful weekend.  #hooray- #birds #wildlife #photogra- quet house.  #MuscleCar #Clas-
fordogs phy sicCar

#CatsOf Twitter

(dog white yellow brown plate)  (branch bird red top small)  (cat white pink grey flowers) — (car roof prk old meter)

GEN-COPY: friday feeling GEN-COPY: gap ol GEN-COPY: photography GEN-COPY: plymouth
CLS-CO-ATT: hooray for CLS-CO-ATT: birding CLS-CO-ATT: springwatch CLS-CO-ATT: mopar
dogs Our: birds; wildlife Our: cats of twitter Our: classic car

Our: hooray for dogs

Figure 5.12: More qualitative examples showing the effectiveness of encoding
image attributes. Our model that considers image attributes correctly
predicts the keyphrases for all these cases (in bold). Blue tokens are the
top five predicted attributes.

while GEN-COPY considering only texts and CLS-CO-ATT
relying on both texts and images fail to so.

5.5 Summary

In this chapter, we extensively study cross-media keyphrase
prediction on social media and present a unified framework to
couple the advantages of generation and classification models for
this task. Moreover, we propose a novel Multi-Modality Multi-
Head Attention to capture the dense interactions between texts
and images, where image wordings explicit in optical characters
and implicit in image attributes are further exploited to bridge
their semantic gap. Experimental results on a large-scale newly-
collected Twitter corpus show that our model significantly
outperforms SOTA either generation or classification models
with traditional attentions. Further discussions show our ability
to attend useful multi-modal features to indicate keyphrases.



CHAPTER 5. CROSS-MEDIA KEYPHRASE PREDICTION 113

(] -0
| -1
[ | -2
-3
|| -4
] -5
e
-7
Post (a) B
-9
| 10
. -1
g1 A
B -0
1
2
] -3
-4
-5
-6
-7
Post (b) s
-9

vs
ajax-

semifinals -
unbelievable -

4
Head 0 Head 1

Figure 5.10: More attention weight visualization for both image-to-text
attention and text-to-image attention.



Chapter 6

Vision-Language Pretraining
for Visual Dialog

In cross-modality learning, the core step is to fuse features from
distinct modalities and derive a joint generic representation for
various downstream applications. In this chapter, we take a
further step to study how to effectively learn visual and linguistic
representations in a more general task: visual dialog. It is one
of the most challenging tasks where an agent is required to
answer a series of questions grounded on an image. We explore
the use of Vision and Language pretraining with Transformers
for this task. The main points of this chapter are as follows.
(1) We propose a unified vision-dialog Transformer with BERT
(VD-BERT) for visual dialog tasks, which captures the intricate
interactions between image and dialog using Transformer and
achieves their effective fusion from the two modalities via simple
visually grounded training. (2) Our VD-BERT supports both
answer ranking and answer generation seamlessly through the
same architecture. (3) Our model achieves effective vision and
language fusion within a unified Transformer encoder and yields
a new state of the art for visual dialog tasks.

114
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6.1 Introduction

Visual Dialog (or VisDial) aims to build an Al agent that can
answer a human’s questions about visual content in a natural
conversational setting [33]. Unlike the traditional single-turn
Visual Question Answering (VQA) [6], the agent in VisDial
requires to answer questions through multiple rounds of inter-
actions together with visual content understanding.

The primary research direction in VisDial has been mostly
focusing on developing various attention mechanisms [8] for a
better fusion of vision and dialog contents. Compared to VQA
that predicts an answer based only on the question about the
image (Figure 6.1 (a)), VisDial needs to additionally consider
the dialog history. Typically, most of previous work [110, 40, 60]
uses the question as a query to attend to relevant image regions
and dialog history, where their interactions are usually further
exploited to obtain better visual-historical cues for predicting
the answer. In other words, the attention flow in these methods
is wunidirectional — from question to the other components
(Figure 6.1 (b)).

By contrast, in this work, we allow for bidirectional attention
flow between all the entities using a unified Transformer [141]
encoder, as shown in Figure 6.1 (c¢). In this way, all the
entities simultaneously play the role of an “information seeker”
(query) and an “information provider’ (key-value), thereby
fully unleashing the potential of attention similar to [125].
We employ the Transformer as the encoding backbone due
to its powerful representation learning capability exhibited in
pretrained language models like BERT [35]. Inspired by its
recent success in vision-language pretraining, we further extend
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¢ €D

(a) Most VQA (b) Most VisDial (c) Our VD-BERT

Figure 6.1: Attention flow direction illustration. V: vision, H: dialog history,
Q: question, A: answer. The arrow denotes the attention flow direction and
the dashed line represents an optional connection.

BERT to achieve simple yet effective fusion of vision and dialog
contents in VisDial tasks.

Recently several emerging works have attempted to adapt
BERT for multimodal tasks [138, 92, 140, 181]. They often
use self-supervised objectives to pretrain BERT-like models on
large-scale external vision-language data and then fine-tune on
downstream tasks. This has led to compelling results in tasks
such as VQA, image captioning, image retrieval [170], and visual
reasoning [136]. However, it is still unclear how visual dialog
may benefit from such vision-language pretraining due to its
unique multi-turn conversational structure. Specifically, each
image in the VisDial dataset is associated with up to 10 dialog
turns, which contain much longer contexts than either VQA or
image captioning.

In this work, we present VD-BERT, a novel unified vision-dialog
Transformer framework for VisDial tasks. Specifically, we first
encode the image into a series of detected objects and feed them
into a Transformer encoder together with the image caption and
multi-turn dialog. We initialize the encoder with BERT for
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better leveraging the pretrained language representations. To
effectively fuse features from the two modalities, we make use
of two visually grounded training objectives — Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). Differ-
ent from the original MLM and NSP in BERT, we additionally
take the visual information into account when predicting the
masked tokens or the next answer.

VisDial models have been trained in one of two settings:
discriminative or generative. In the discriminative setting, the
model ranks a pool of answer candidates, whereas the generative
setting additionally allows the model to generate the answers.
Instead of employing two types of decoders like prior work, we
rely on a unified Transformer architecture with two different self-
attention masks [36] to seamlessly support both settings. During
inference, our VD-BERT either ranks the answer candidates
according to their NSP scores or generates the answer sequence
by recursively applying the MLM operations. We further fine-
tune our model on dense annotations that specify the relevance
score for each answer candidate with a ranking optimization
module.

In summary, we make the following contributions:

e To the best of our knowledge, our work serves as one of
the first attempts to explore pretrained language models
for visual dialog. We showcase that BERT can be effec-
tively adapted to this task with simple visually grounded
training for capturing the intricate vision-dialog interac-
tions. Besides, our VD-BERT is the first unified model
that supports both discriminative and generative training
settings without explicit decoders.
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e We conduct extensive experiments not only to analyze
how our model performs with various training aspects
(Section 6.5.2) and fine-tuning on dense annotations (Sec-
tion 6.5.4), but also to interpret it via attention visual-
ization (Section 6.5.3), shedding light on future transfer
learning research for VisDial tasks.

e Without the need to pretrain on external vision-language
data, our model yields new state-of-the-art results in the
discriminative setting and promising results in the genera-

tive setting on the visual dialog benchmarks (Section 6.5.1).

6.2 Related Work

Visual Dialog. The Visual Dialog task has been recently pro-
posed by Das et al. [33], where a dialog agent needs to answer
a series of questions grounded by an image. It is one of the
most challenging vision-language tasks that require not only to
understand the image content according to texts, but also to
reason through the dialog history. Previous work [93, 130, 159,
71, 59, 167, 51, 110] focuses on developing a variety of attention
mechanisms to model the interactions among entities including
image, question, and dialog history. For example, Kang et
al. [60] proposed DAN, a dual attention module to first refer to
relevant contexts in the dialog history, and then find indicative
image regions. ReDAN, proposed by Gan et al. [40], further
explores the interactions between image and dialog history via
multi-step reasoning.

Different from them, we rely on the self-attention mechanism of
the Transformer model to capture such interactions in a unified
manner and derive a “holistic” contextualized representation
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for all the entities. Similar to this, Schwartz et al. [125]
proposed FGA, a general factor graph attention that can model
interactions between any two entities but in a pairwise manner.
There is recent work [109, 3] also applying the Transformer to
model the interactions among many entities. However, their
model neglects the important early interaction of the answer
entity and cannot naturally leverage the pretrained language
representations from BERT like ours.

Regarding the architecture, our model mainly differs from
previous work in two facets: first, unlike most prior work that
considers answer candidates only at the final similarity compu-
tation layer, our VD-BERT integrates each answer candidate
at the input layer to enable its early and deep fusion with
other entities, similar to [125]; second, existing models adopt an
encoder-decoder framework [139] with two types of decoder for
the discriminative and generative settings separately, where we
instead adopt a unified Transformer encoder with two different
self-attention masks [36] to seamlessly support both settings
without extra decoders.

Pretraining in Vision and Language. Pretrained language mod-
els like ELMo [115], GPT [119], and BERT [35] have boosted
performance greatly in a broad set of NLP tasks. In order to
benefit from the pretraining, there are many recent work on
extending BERT for vision and language pretraining. They
typically employ the Transformer encoder as the backbone with
either a two-stream architecture to encode text and image
independently such as VILBERT [92] and LXMERT [140], or
a single-stream architecture to encode both text and image
together, such as B2T2 [4], Unicoder-VL [79], Visual BERT [86],
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VL-BERT [135], and UNITER [28]. Our VD-BERT belongs to
the second group. These models yield prominent improvements
in a wide spectrum of understanding-based vision-language tasks
including VQA, text-image retrieval [170, 62], visual entail-
ment [162], referring expression [63], visual reasoning [136], and
commonsense reasoning [172].

More recently, Zhou et al. [181] proposed VLP which also
allows generation using a unified Transformer with various self-
attention masks [36]. Their model was proposed for VQA and
image captioning. Our model is inspired by VLP and specifically
tailored for the visual dialog task. Most closely related to
this work is the concurrent work VisDial-BERT by [105], who
also employ vision-language pretrained models (i.e., VILBERT)
for visual dialog. Our work has two major advantages over
VisDial-BERT: first, VD-BERT supports both discriminative
and generative settings while theirs is restricted to only the
discriminative setting; second, we do not require to pretrain on
large-scale external vision-language datasets like theirs and still
yield better performance (Section 6.5.1).

6.3 The VD-BERT Model

We first formally describe the visual dialog task. Given a
question )y grounded on an image I at t-th turn, as well as its
dialog history formulated as H; = {C, (Q1, A1), ..., (Q¢-1, At—1)}
(where C' denotes the image caption), the agent is asked to
predict its answer A; by ranking a list of 100 answer candidates
{Al A2 .. A1} In general, there are two types of decoder
to predict the answer: a discriminative decoder that ranks the
answer candidates and is trained with a cross entropy loss, or
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a generative decoder that synthesizes an answer and is trained
with a maximum log-likelihood loss.

Figure 6.2 shows the overview of our approach. First, we employ
a unified vision-dialog Transformer to encode both the image
and dialog history, where we append an answer candidate A; in
the input to model their interactions in an early fusion manner.
Next, we adopt visually grounded MLM and NSP objectives to
train the model for effective vision and dialog fusion using two
types of self-attention masks — bidirectional and seq2seq. This
allows our unified model to work in both discriminative and
generative settings. Lastly, we devise a ranking optimization
module to further fine-tune on the dense annotations.

6.3.1 Vision-Dialog Transformer Encoder

Vision Features. Following previous work, we employ Faster R-
CNN [120] pretrained on Visual Genome [72] to extract the
object-level vision features. Let O; = {o,...,0r} denote the
vision features for an image I, where each object feature o; is
a 2048-d Region-of-Interest (Rol) feature and k is the number
of the detected objects (fixed to 36 in our setting). As there
is no natural orders among these objects, we adopt normalized
bounding box coordinates as the spatial location. Specifically,
let (z1,y1) and (z9,y2) denote the coordinates of the bottom-
left and top-right corner of the object o;, its location is encoded

into a 5-d vector: p; = (%,%,%,%,%), where W
and H respectively denote the width and height of the input
image, and the last element is the relative area of the object.
We further extend p; with its class id and confidence score for a

richer representation.
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Language Features. We pack all the textual elements (caption
and multi-turn dialog) into a long sequence. ~We employ
WordPiece tokenizer [160] to split it into a word sequence w,
where each word is embedded with an absolute positional code
following Devlin et al. [35].

Cross-Modality Encoding. To feed both image and text into
the Transformer encoder, we integrate the image objects with
language elements into a whole input sequence. Similar to
BERT, we use special tokens like [CLS] to denote the beginning
of the sequence, and [SEP] to separate the two modalities.
Moreover, to inject the multi-turn dialog structure into the
model, we utilize a special token [EOT] to denote end of
turn [155], which informs the model when the dialog turn ends.
As such, we prepare the input sequence into the format as x
— ([CLSI, o1, ...,05, [SEP1, C, [EOT], Q14,, [EOTI, ..., Q:A,,
[SEP]). To notify the model for the answer prediction, we further
insert a [PRED] token between the Qtflt pair. Finally, each input
token embedding is combined with its position embedding and
segment embedding (0 or 1, indicating whether it is image or
text) with layer normalization [7].

Transformer Backbone. We denote the embedded vision-language
inputs as H’ = [ey, ..., €] and then encode them into multiple
levels of contextual representations H' = [h}, ..., hfx|] using L-
stacked Transformer blocks, where the [-th Transformer block
is denoted as H' = Transformer(H'"1),l € [1,L]. Inside each
Transformer block, the previous layer’s output H'=! € R¥Ixdn ig
aggregated using the multi-head self-attention [141]:

Q=H"'"WY K=H"'"WEK V=H"'W/, (6.1)
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0, allow to attend
M;; = (6.2)

—00, prevent from attending

T

Vo,
where WZQ, WE WY € R%*d are learnable weights for comput-
ing the queries, keys, and values respectively, and M € RIX/* /x|

A; = softmax( + M)V, (6.3)

is the self-attention mask that determines whether tokens from
two layers can attend each other. Then A; is passed into a
feedforward layer with a residual connection [52] to compute H’
for next layer. In the following, the self-attention mask M will
be adjusted accordingly to support different training settings.

6.3.2 Visually Grounded Training Objectives

We use two visually grounded training objectives—masked lan-
guage modeling (MLM) and next sentence prediction (NSP)
to train our VD-BERT. Particularly, we aim to capture dense
interactions among both inter-modality (i.e., image-dialog) and
intra-modality (i.e., image-image, dialog-dialog).

Similar to MLM in BERT, 15% tokens in the text segment
(including special tokens like [EQT] and [SEP]) are randomly
masked out and replaced with a special token [MASK]. The
model is then required to recover them based not only on the
surrounding tokens w\,,, but also on the image I:

LMLM = _E(I,w)ND log P(wmlw\m,l), (6.4)

where w,,, refers to the masked token and D denotes the training
set. Following Zhou et al. [181], we do not conduct masked
object /region modeling in the image segment.
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As for NSP, instead of modeling the relationship between two
sentences (as in BERT) or the matching of an image-text pair
(as in other vision-language pretraining models like VILBERT),
VD-BERT aims to predict whether the appended answer can-
didate A; is correct or not based on the joint understanding of
the image and dialog history:

Lysp = —E(1w)~plog P(y|S(I,w)), (6.5)

where y € {0,1} indicates whether A, is correct, and S(-) is a
binary classifier to predict the probability based on the [CLS]
representation Tcrg) at the final layer. Below we introduce the
discriminative and generative settings of VD-BERT.

Discriminative Setting. For training in the discriminative set-
ting, we transform the task of selecting an answer into a point-
wise binary classification problem. Concretely, we sample an
answer A, from the candidate pool and append it to the input
sequence, and ask the NSP head to distinguish whether the
sampled answer is correct or not. We employ the bidirectional
self-attention mask to allow all the tokens to attend to each other
by setting the mask matrix M in Eq. (6.2) to all 0s. To avoid
imbalanced class distribution, we keep the ratio of positive and
negative instances to 1:1 in each epoch. To encourage the model
to penalize more on negative instances, we randomly resample
a negative example from the pool of 99 negatives w.r.t. every
positive one at different epochs. During inference, we rank the

answer candidates according to the positive class score of their
NSP heads.

Generative Setting. In order to autoregressively generate an
answer, we also train VD-BERT with the sequence-to-sequence
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(seq2seq) self-attention mask [36]. For this, we divide the
input sequence to each Transformer block into two subsequences,
context and answer:

x & (I,w) = (I, H,Qy, Ay). (6.6)
context

We allow tokens in the context to be fully visible for attending
by setting the left part of M to all Os. For the answer sequence,
we mask out (by setting —oo in M) the “future” tokens to get
autoregressive attentions (see the red dots in Figure 6.2).

During inference, we rely on the same unified Transformer
encoder with sequential MLM operations without an explicit
decoder. Specifically, we recursively append a [MASK] token to
the end of the sequence to trigger a one-step prediction and
then replace it with the predicted token for the next token
prediction. The decoding process is based on greedy sampling
and terminated when a [SEP] is emitted, and the resulting log-
likelihood scores will be used for ranking the answer candidates.

6.3.3 Fine-tuning with Rank Optimization

As some answer candidates may be semantically similar (e.g.
“brown and tan” vs “brown” in Figure 6.2), VisDial v1.0
additionally provides dense annotations that specify real-valued
relevance scores for the 100 answer candidates, [s1, ..., S190] with
s; € [0,1]. To fine-tune on this, we combine the NSP scores
from the model for all answer candidates together into a vector
[p1; -5 P100]-

As dense annotation fine-tuning is typically a Learning to Rank
(LTR) problem, we can make use of some ranking optimization
methods. After comparing various methods in Table 6.3c, we
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adopt ListNet [20] with the top-1 approximation as the ranking
module for VD-BERT:

N
LristNet = — Z f(si)log(f(pi)), (6.7)
o) — P () —1....N. 6.8
o) =S ey T (0

For training efficiency, we sub-sample the candidate list and use
only NV = 30 answers (out of 100) for each instance. To better
leverage the contrastive signals from the dense annotations, the
sub-sampling method first picks randomly the candidates with
non-zero relevance scores, and then it picks the ones from zero
scores (about 12% of candidates are non-zero on average).

6.4 Experimental Setup

6.4.1 Datasets

We evaluate our model on the VisDial v0.9 and v1.0 datasets! [33].
Specifically, v0.9 contains a training set of 82,783 images and a
validation set of 40,504 images. The v1.0 dataset combines the
training and validation sets of v0.9 into one training set and adds
another 2,064 images for validation and 8,000 images for testing
(hosted blindly in the task organizers’ server). Each image is
associated with one caption and 10 question-answer pairs. For
each question, it is paired with a list of 100 answer candidates,
one of which is regarded as the correct answer.

Apart from these sparse annotations, extra dense annotations
for the answer candidates are provided for the v1.0 validation

! Available at https://visualdialog.org/data
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split and a part of v1.0 train split (2,000 images) to make the
evaluation more reasonable. The dense annotation specifies a
relevance score for each answer candidate based on the fact that
some candidates with similar semantics to the ground truth
answer can also be considered as correct or partially correct,
e.g., “brown and tan” and “brown” in Figure 6.2.

6.4.2 Evaluation Metric

Following Das et al. [33], we evaluate our model using the
ranking metrics like Recall@K (K € {1,5,10}), Mean Reciprocal
Rank (MRR), and Mean Rank, where only one answer is
considered as correct. Since the 2018 VisDial challenge (after the
acquisition of dense annotations), NDCG metric that considers
the relevance degree of each answer candidate, has been adopted
as the main metric; the winner of the challenge is picked based
solely on this metric.

6.4.3 Model Settings

We use BERTgasg as the backbone, which consists of 12
Transformer blocks, each with 12 attention heads and a hidden
state dimensions of 768. We keep the max input sequence length
(including 36 visual objects) to 250. We use Adam [68] with an
initial learning rate of 3e — 5 and a batch size of 32 to train our
model. A linear learning rate decay schedule with a warmup
of 0.1 is employed. We first train VD-BERT for 30 epochs on
a cluster of 4 V100 GPUs with 16G memory using MLM and
NSP losses (with equal coefficients). Here we only utilize one
previous dialog turn for training efficiency. For instances where
the appended answer candidate is incorrect, we do not conduct
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MLM on the answer sequence to reduce the noise introduced by
the negative samples. After that, we train for another 10 epochs
with full dialog history using either NSP in the discriminative
setting or MLM on the answer sequence in the generative setting.
For dense annotation fine-tuning in the discriminative setting,
we train with the ListNet loss for 5 epochs.

6.5 Results and Analysis

In this section, we first compare our VD-BERT with state-of-
the-art baselines on VisDial datasets. Then we conduct exten-
sive ablation studies to examine various aspects of our model.
Further, we interpret how VD-BERT attains the effective fusion
of vision and dialog via visualizing attention weights, followed
by an in-depth analysis of fine-tuning on dense annotations.

6.5.1 Main Results

We report main quantitative comparison results on both VisDial
v1.0 and v0.9 datasets below.

Comparison. We consider state-of-the-art published baselines,
including NMN [56], CorefNMN [71], GNN [180], FGA [125],
DVAN [49], RvA [110], DualVD [59], HACAN [167], Synergis-
tic [51], DAN [60], ReDAN [40], CAG [50], Square [65], MCA [3],
MReal-BDAI and P1.P2 [117]. We further report results from
the leaderboard? for a more up-to-date comparison, where some
can be found in the arXiv, such as MVAN [112], SGLNs [61],
VisDial-BERT [105], and Tohoku-CV [109].

’https://evalai.cloudcv.org/web/challenges/challenge-page/161/
leaderboard/483\#leaderboardrank-1
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Model NDCGt MRR{ R@11 R@51 R@10f Mean |
NMN 58.10 58.80 44.15 76.88  86.88 4.81
CorefNMN 5470  61.50 47.55 78.10  88.80 4.40
GNN 52.82  61.37 47.33 77.98 87.83 457
FGA 5210  63.70 49.58 80.97  88.55 451
DVAN 5470  62.58 48.90 79.35  89.03 4.36
RvA 55.50  63.03 49.03 80.40  89.83 4.18
£ | DualvD 56.32 6323 49.25 80.23  89.70 4.11
2 | HACAN 5717 6422 50.88 80.63  89.45 4.20
= Synergistic 5732 6220 47.90 80.43  89.95 4.17
£ Synergistic! 5788  63.42 49.30 80.77  90.68 3.97
= | pAN 5750 6320 49.63 79.75  89.35 4.30
£ | DAN' 59.36  64.92 51.28 81.60 90.88  3.92
ReDANT 64.47 53.73 4245 64.68  75.68 6.64
CAG 56.64  63.49 49.85 80.63  90.15 411
Square 60.16 61.26 47.15 7873  88.48 4.46
MCA* 7247  37.68 20.67 56.67  72.12 8.89
MReal-BDAT™ 7402 5262 40.03 68.85  79.15 6.76
P1.P2f* 7491  49.13 36.68 62.938 7855 7.03
LF 4531 5542 4095 7245  82.83 5.95
HRE 4546  54.16 39.93 7045  81.50 6.41
2| MN 4750 5549 4098 7230  83.30 5.92
Z | MN-Att 49.58  56.90 4242 7400 8435 5.59
= | LF-Att 49.76  57.07 42.08 7482  85.05 5.41
¢ MS ConvAI 55.35 6327 49.53 80.40  89.60 4.15
£ | UET-VNU' 5740 59.50 4550 76.33  85.82 5.34
2| MVAN 59.37  64.84 5145 81.12  90.65 3.97
S| SGLNs 61.27 59.97 4568 77.12  87.10 4.85
VisDial BERT*  74.47 50.74 37.95 64.13  80.00 6.28
Tohoku-CV'* 74.88 5214 3893 66.60  80.65 6.53
. ( VD-BERT 59.96 65.44 51.63 82.23 90.68  3.90
g{ VD-BERT* 7454  46.72 33.15 61.58  77.15 7.18
VD-BERT'* 75.35 51.17 38.00 62.82  77.98 6.69

Table 6.1: Summary of results on the test-std split of VisDial v1.0 dataset.
The results are reported by the test server. “i” denotes ensemble model and
“x” indicates fine-tuning on dense annotations. The “” denotes higher value
for better performance and “|” is the opposite. The best and second-best
results in each column are in bold and underlined respectively.
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Results on VisDial v1.0 test-std. We report the comparison
results on VisDial v1.0 test-std split in Table 6.1 and make the
following observations.

e New state of the art for both single-model and ensemble
settings. Our single-model VD-BERT significantly outper-
forms all of its single-model counterparts across various
metrics, even including some ensemble variants such as
Synergistic, DAN (except R@10), and ReDAN (except
NDCG). With further fine-tuning on dense annotations, the
NDCG score increases quite sharply, from 59.96 to 74.54
with nearly 15% absolute improvement, setting a new state
of the art in the single-model setting. This indicates that
dense annotation fine-tuning plays a crucial role in boosting
the NDCG scores. Moreover, our designed ensemble version
yields new state-of-the-art results (75.35 NDCG), outper-
forming the 2019 Visual Dialog challenge winner MReal-
BDALI [116] (74.02 NDCG) by over 1.3 absolute points.

e Inconsistency between NDCG and other metrics. While
dense annotation fine-tuning yields huge improvements on
NDCG, we also notice that it has a severe countereffect on
other metrics, e.g., reducing the MRR score from 65.44 to
46.72 for VD-BERT. Such a phenomenon has also been
observed in other recent models, such as MReal-BDAI,
VisDial-BERT, Tohoku-CV Lab, and P1_P2, whose NDCG
scores surpass others without dense annotation fine-tuning
by at least around 10% absolute points while other metrics
drop dramatically. We provide a detailed analysis of this
phenomenon in Section 6.5.4.

e Our VD-BERT is simpler and more effective than VisDial-
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BERT. VisDial-BERT is a concurrent work to ours that
also exploits vision-language pretrained models for visual
dialog. It only reports the single-model performance of
74.47 NDCG. Compare to that, our VD-BERT achieves
slightly better results (74.54 NDCG), however, note that
we did not pretrain on large-scale external vision-language
datasets like Conceptual Captions [131] and VQA [6] as
VisDial-BERT does. Besides, while VisDial-BERT does
not observe improvements by ensembling, we endeavor to

design an effective ensemble strategy to further increase the
NDCG score to 75.35 for VD-BERT (see Table 6.3d).

Results on VisDial v0.9 val. We further show both discrimina-
tive and generative results on v(0.9 val split in Table 6.2. For
comparison, we choose LF, HRE, HREA, MN [33], HCIAE [93],
CoAtt [159], RvA, and DVAN as they contain results in both
settings on the v0.9 val split. Our model continues to yield much
better results in the discriminative setting (e.g., 70.04 MRR
compared to DVAN’s 66.67) and comparable results with the
state of the art in the generative setting (e.g., 55.95 MRR score
vs. DVAN’s 55.94). This validates the effectiveness of our VD-
BERT in both settings using a unified Transformer architecture.
By contrast, VisDial-BERT can only support the discriminative
setting.



133

CHAPTER 6. VD-BERT FOR VISUAL DIALOG

"19sRIRD G'OA [RI(JSIA JO H1[dS [ea oY} UO S[OPOUW SNOLIBA JO S}TISOI SATJRISUSS PUR SAIYRUIWILIISI(] (7’9 9[qR],

STl  G0CL ¢€FVe9 €8'9F 66°9S  T0T 8906 PE'C8 6.8 F00L IUAI-AA
6LF1  GZTIL 0GS9 8GOF F6CS  €6'€  TL06 G878 29€S 1999  [6F] NVAQ
TL°0T  L6°CL LTC9 L&Gh €SS €6'€ €06 16¢S 1.TS  F€99  [0T1) vAYM
CFPT FLTL  69°69 0T'9F  8L°GS  LPF 1888 TL08 6C0¢  86'€9  [6ST) BVOD
€TVl GYIL  8TS9  SeVF L9FS IS8T 69L8  GL'SL  SPSF ¢ze9  [e6] AVIDH
90°LT 8889 G879 6TTF 65TS  9FG  L€S8  TTIL  GGSh  G9'6S [ee] NIN
6L9T  LI'89 €£79 STTF T¥es  99GC  9¢FS  ISTL  ¢8FF 898 [g€] VAUH
LOLT  T6L9  ST'T9  6TCh  L€TS  TLS  TTES 0SFL  L9TR 9F'S¢C [ee] HYH
LOLT  6S°L9 8LT9  €8TF  66'1¢  8LG  L0FS  89FL TSEF  LO'SC [ee] AT
Tuweoy LoIoY oY J1oYd JYYIN Tueely JoToY JsoYd JTod  JHYIN

[PPOIN

SUI))9G SATJRISULY)

BU1199G SATYRUTWLIISI(]




CHAPTER 6. VD-BERT FOR VISUAL DIALOG 134

6.5.2 Ablation Study

We examine the effects of varying training settings and contexts,
ranking optimizations, and ensemble strategies on VD-BERT.
For this, we use VisDial v1.0 dataset in the discriminative
setting.

(a) Training Settings. Table 6.3 (a) demonstrates how different
training settings influence the results. We observe that initial-
izing the model with weights from BERT indeed benefits the
visual dialog task a lot, increasing the NDCG score by about 7%
absolute over the model trained from scratch. Surprisingly, the
model initialized with the weights from VLP that was pretrained
on Conceptual Captions [131], does not work better than the
one initialized from BERT. It might be due to the domain
discrepancy between image captions and multi-turn dialogs, as
well as the slightly different experiment settings (e.g., we extract
36 objects from image compared to their 100 objects). Another
possible reason might be that the VisDial data with more than
one million image-dialog turn pairs (as each image is associated
with 10 dialog turns) can provide adequate contexts to adapt
BERT for effective vision and dialog fusion. We also find that
the visually grounded MLM is crucial for transferring BERT
into the multimodal setting, indicated by a large performance
drop when using only NSP.

(b) Training Contexts. We study the impact of varying the
dialog context used for training (Table 6.3 (b)). With longer
dialog history (“Full history”), our model indeed yields better
results in most of the ranking metrics, while the one without
using any dialog history obtains the highest NDCG score. This
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Model NDCGT MRR1T R@1T R@51T R@101T Mean |
From scratch 56.20  62.25 48.16 79.57  89.01 4.31

(a) Init from VLP 61.79 66.67 53.23 83.60  91.97 3.66
" it from BERT 63.22 67.44 54.02 83.96 92.33 3.53
— only NSP 55.89  63.15 4898 80.45  89.72 4.15

No history 64.70 6293 48.70 80.42  89.73 4.30

(b) One previous turn 63.47  65.30 51.66 82.30  90.97 3.86
Full history 63.22 67.44 54.02 83.96 92.33 3.53

— only text 54.32  62.79 4848 80.12  89.33 4.27

CE 74.47 4494 3223 60.10  76.70 7.57

(©) ListNet 74.54  46.72 33.15 61.58  77.15 7.18
ListMLE 72.96  36.81 20.70 54.60  73.28 8.90
ApproxNDCG 72.45 49.88 37.88 62.90 77.40 7.26
ErocH 74.84 4740 34.30 61.58  77.78 7.12

() LENGTH 75.07 4733 33.88 62.20 78.50 7.01
RANK 75.13  50.00 38.28 60.93  77.28 6.90
DIVERSE 75.35 51.17 38.90 62.82  77.98 6.69

Table 6.3: Extensive ablation studies: (a) various training settings and (b)
training contexts on v1.0 val; (¢) Dense annotation fine-tuning with varying
ranking methods and (d) various ensemble strategies on v1.0 test-std.

indicates that dense relevance scores might be annotated with
less consideration of dialog history. If we remove the visual
cues from the “Full history” model, we see a drop in all
metrics, especially, on NDCG. However, this version still obtains
comparable results to the “No history” variant, revealing that
textual information dominates the VisDial task.

(c) Ranking Optimization. In Table 6.3 (c), we compare Cross
Entropy (CE) training with several other listwise ranking meth-
ods: ListNet [20], ListMLE [161], and approxNDCG [118].?
Among these methods, ListNet yields the best NDCG and Mean

3https://github.com/allegro/allRank
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Rank, while the approxXNDCG achieves the best MRR and
Recall on VisDial v1.0 test-std.

(d) Ensemble Strategy. We also explore ways to achieve the
best ensemble performance with various model selection criteria
in Table 6.3 (d). We consider three criteria, EPOCH, LENGTH,
and RANK that respectively refer to predictions from different
epochs of a single model, from different models trained with
varying context lengths and with different ranking methods in
Table 6.3 (b-c). We use four predictions from each criterion
and combine their diverse predictions (DIVERSE) by summing
up their normalized ranking scores. We observe that EPOCH
contributes the least to the ensemble performance while RANK
models are more helpful than LENGTH models. The diverse set
of them leads to the best ensemble performance.

6.5.3 Attention Visualization of VD-BERT

We proceed to probe into the attention weights of our VD-
BERT, aiming to analyze whether or not and how it achieves
the effective vision and dialog fusion via the wvisually grounded
training. We visualize their heatmaps for a validation example
in Figure 6.3 and progressively dissect them below.

We first investigate whether the attention heads in our VD-
BERT can be used for entity grounding. We visualize the
attention weights on the top 10 detected objects in the image
from its caption in Figure 6.3 (a). We observe that many heads
at different layers can correctly ground some entities like person
and motorcycle in the image, and even reveal some high-level
semantic correlations such as person<motorcycle (at L5H5
and L8H2) and motorcycle<sstreet (at L1H11). On the other
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Figure 6.3: Attention weight visualization in our VD-BERT: (a) some
selected heads at various layers capturing the image-caption alignment via
grounding entities; (b) an attention heatmap showing the fusion of image
and multi-turn dialog; (c) heatmaps of all 144 heads for both image and a
single-turn dialog with some attention patterns.

hand, heads at higher layers tend to have a sharper focus on
specific visual objects like the man and the motorcycles.

Next, we examine how VD-BERT captures the interactions
between image and dialog history. In contrast to other vision-
language tasks, visual dialog has a more complex multi-turn
structure, thereby posing a hurdle for effective fusion. As shown
in Figure 6.3 (b), VD-BERT can ground entities and discover
some object relations, e.g., helmet is precisely related to the
man and the motorcycle in the image (see the rightmost red

box). More interestingly, it can even resolve visual pronoun
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Figure 6.4: Various ranking scores across epochs of fine-tuning on dense
annotations using ListNet.

coreference of he in the question to the man in the image (see
the middle red box).

Finally, we analyze the self-attention weights for all layers and
all heads for both image and dialog segments in Figure 6.3 (c).
Instead of attempting to interpret all the 144 heads (12 layers
and each layer has 12 heads), we analyze them in a holistic
way. Compared to the words in the dialog, visual objects overall
receive much less attention in most cases. This also explains
the reason why relying solely on texts can still yield reasonably
good results (Table 6.3 (b)). We also show three other apparent
attention patterns: attentions that a token puts to its previous
token, to itself, and to the next token. We see that the patterns
for image and text are disparate (where image objects can hardly
learn to attend previous/next tokens) as objects in image lack
explicit orders like tokens in a text. We provide more attention
visualization examples in Figure 6.6.

6.5.4 Fine-tuning on Dense Annotations

In this section, we focus on the effect of dense annotation fine-
tuning. We first show how various metrics change for fine-
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Figure 6.5: Two examples where relevant answer candidates are elevated into
higher ranks after fine-tuning on dense annotations. GT: ground truth.

tuning in Figure 6.4. For this experiment, we randomly sample
200 instances from VisDial v1.0 val as the test data and use
the rest for fine-tuning with the ListNet ranking method. We
observe that NDCG keeps increasing with more epochs of fine-
tuning, while other metrics such as Recall@K and MRR)) drop.
In the following, we explore the reason for this disparity between
NDCG and other ranking metrics in depth.

Case Study. We provide two examples to qualitatively demon-
strate how dense annotation fine-tuning results in better NDCG
scores in Figure 6.5. For the example at the top, fine-tuning
helps our model to assign higher ranks to the answers that
share similar semantics with the ground truth answer and
should also be regarded as correct (“yes, it is” and “yep” vs.
“yes”). In the example at the bottom, we spot a mismatch
between the sparse and dense annotations: the ground truth
answer “no, it’s empty” is only given 0.4 relevance score, while

2

uncertain answers like ‘1 don’t know” are considered to be more
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Relevance Score Question Type
Models AL 10 06~08 02~04 0.0 Yes/no Number Color Others
(31%) (35%)  (25%) (9%) (76%) 3%) (11%) (10%)
DAN 58.28 63.29  61.02 53.29  43.86 59.86 41.03 5755 51.89
Ours 63.55 70.25 65.18 58.40  48.07 65.45 48.98 58.51  58.75

Ours (w/ ft) 89.62 9538  89.76 84.63 82.84 91.05 74.41 84.00 89.12

Table 6.4: NDCG scores in VisDial v1.0 val split broken down into 4 groups
based on either the relevance score or the question type. The % value in the
parentheses denotes the corresponding data proportion.

relevant. In this case, fine-tuning instead makes our model fail to
predict the correct answer despite the increase of NDCG score.
We continue to quantitatively analyze how such annotation
mismatches influence the NDCG results.

Relevance Score and Question Type Analysis. For further anal-
ysis, we classify the 2,064 instances in VisDial v1.0 val set
based on the ground-truth’s relevance score and question type
(Table 6.4). We consider 4 bins {0.0,0.2 ~ 0.4,0.6 ~ 0.8,1.0}
for the relevance score and 4 question types: Yes/no, Number,
Color, and Others. We then analyze the NDCG scores assigned
by DAN [60] and our VD-BERT with and without dense anno-
tation fine-tuning. We choose DAN as it achieves good NDCG
scores (Table 6.1) and provides the source code to reproduce
their predictions.

By examining the distribution of the relevance scores, we
find that only 31% of them are aligned well with the sparse
annotations and 9% are totally misaligned. As the degree of
such mismatch increases (relevance score changes 1.0 — 0.0),
both DAN and our model witness a plunge in NDCG (63.29 —
43.86 and 70.25 — 48.07), while dense annotation fine-tuning
significantly boosts NDCG scores for all groups, especially for
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the most misaligned one (48.07 — 82.84 for our model). These
results validate that the misalignment of the sparse and dense
annotations is the key reason for the inconsistency between
NDCG and other metrics.

In terms of question type, we observe that Yes/no is the major
type (76%) and also the easiest one, while Number is the most
challenging and least frequent one (3%). Our model outperforms
DAN by over 10% in most of the question types except the Color
type. Fine-tuning on dense annotations gives our model huge
improvements across all the question types, especially for Others
with over 30% absolute gain. We provide more qualitative
comparison results in Figure 6.7.

6.6 Summary

In this chapter, we have presented VD-BERT, a unified vision-
dialog Transformer model that exploits the pretrained BERT
language models for visual dialog. VD-BERT is capable of
modeling all the interactions between an image and a multi-
turn dialog within a single-stream Transformer encoder and
enables the effective fusion of features from both modalities
via simple visually grounded training. Besides, it can either
rank or generate answers seamlessly. Without pretraining on
external vision-language datasets, our model establishes new
state-of-the-art performance in the discriminative setting and
shows promising results in the generative setting on the visual
dialog benchmarks. We further conduct thorough experiments
to analyze and interpret our model, providing insights for future
transfer learning research on visual dialog tasks and even other
cross-media understanding tasks.
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Figure 6.6: More attention visualization examples. LxHy: Layer x Head y
(1 <z,y <12). Our VD-BERT pretrained on the visual dialog data achieves
effective fusion of vision and dialog contents, where some of its attention
heads can precisely ground some entities between image and caption/multi-
turn dialog: (a) horse, wild, and giraffe; (b) teenage girl, hair, and

phone; (c) pizza, beer, and table.
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Figure 6.7: More qualitative examples in VisDial v1.0 val split for three
DAN [60], VD-BERT, and VD-BERT with dense annotation
fine-tuning. The second column is for ground truth (GT) dialog.

model variants:



Chapter 7

Conclusion and Future Work

In this chapter, we first summarize the contributions of this
thesis and present potential future research directions.

7.1 Conclusion

The prominent use of social media platforms results in millions
of user-generated messages produced every day. This thesis
aims to automatically summarize the main content into a set of
succinct keyphrases for a text-only or cross-media post to help
users efficiently capture the core ideas from the massive amount
of social media data. We propose to encode implicit contexts
like latent topics and explicit contexts like user conversations
and accompanying images to enrich features and design various
neural network-based models for them. We conduct extensive
experiments to demonstrate the effectiveness of our proposed
approaches. In particular, we make the following contributions.
In Chapter 3, we propose a topic-aware neural keyphrase gener-
ation approach for social media posts. Our approach consists of
two components: the neural topic model to infer latent topics,
and another one is the seq2seq model to generate keyphrase
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sequences. The two components are integrated with carefully
designed connections and can be jointly trained in an end-to-
end manner. Experimental results on three newly constructed
datasets from Twitter, Weibo, and StackExchange show that our
model outperforms previous methods in keyphrase prediction,
meanwhile generating more coherent topics.

In Chapter 4, we propose a sequence generation framework to
predict keyphrases for microblogs. Our approach is able to
generate rare and even new keyphrases compared to previous
methods, which rely on extraction-based or generation-based
models and cannot produce keyphrases out of the source post
or the predefined candidate list. Moreover, we explicitly exploit
user conversations initiated by the target post to enrich contexts
and propose a bi-attention network to better model the inter-
actions between them. Extensive experiments on two datasets
from Twitter and Weibo validate the superiority of our model
over state-of-the-art methods.

In Chapter 5, we propose a unified framework with multi-
modality multi-head attention (M3H-Att) and image wordings
for cross-media keyphrase prediction. Considering the unique
data nature in cross-media posts where images are diverse
in terms of types and have a complicated relationship with
texts, we propose to leverage image wordings distilled from the
image and M3H-Att to better capture the flexible text-image
interactions. Moreover, we design a novel unified framework via
extending the copy mechanism to adaptively aggregate classi-
fication outputs, aiming to couple the advantages of keyphrase
classification and keyphrase generation. Extensive experiments
on a large-scale text-image tweet dataset demonstrate our
model’s effectiveness in predicting more precise keyphrases and
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being able to attend indicative information from various aspects
in both modalities with our multi-head attention.

Finally, in Chapter 6, we explore how to better leverage the
visual cues in a more challenging visual dialog task and propose
VD-BERT to achieve the effective vision and dialog fusion. Via
simple visually grounded training, our VD-BERT captures the
intricate interactions between image and dialog within a single-
stream Transformer encoder. Moreover, our model supports
both answer ranking and answer generation seamlessly through
the same architecture. Our model yields a new state of the art
in discriminative settings and promising results in generative

settings for visual dialog tasks.

7.2 Future Work

In this thesis, we propose a number of neural approaches to
better predict keyphrases for social media posts, which can be
applied or extended to solve other applications with similar
settings. Besides, although the task of keyphrase generation for
social media understandings is receiving growing attention in
the recent decade, it is still a developing area with some critical
issues that are not sufficiently addressed. We summarize the
potential extensions of our approaches and future work about
keyphrase generation for better social media understanding.

¢ Extending the proposed approaches for other simi-
lar applications. First, our topic-aware keyphrase gen-
eration model is a generic framework of incorporating
latent topics for sequence generation, which can be easily
extended to other text generation tasks where topic infor-
mation could be useful, such as the text summarization,
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question generation, and storytelling [145] tasks. Second,
our idea of leveraging user conversations to enrich contexts
could inspire other methods for tasks where user reviews
or comments are available, such as text summarization for
online forums and news websites. Similarly, [41] also ex-
ploits user comments for helping microblog summarization.
Third, the ideas of encoding image wordings from social me-
dia images and employing multi-head attention to capture
the complex text-image interactions can be borrowed and
improve a lot of existing cross-media applications, such as
multimedia event extraction [87], sarcasm detection [19],
and text-image relation classification [142]. Last but not
least, our VD-BERT can potentially benefit other vision-
grounded language tasks, e.g., the video dialog tasks [75].

e Exploiting vision-language pretraining for better
cross-media understanding. Pretraining models like
BERT with self-supervised objectives have demonstrated
their powerful representation learning capability and es-
tablished state of the arts for numerous applications. In
a more challenging visual dialog task, we have also shown
that vision-language pretraining could help achieve the
effective vision and dialog fusion and dramatically improve
the performance. The straightforward future work would
be to harness the power of vision-language pretraining for
understanding cross-media posts. To the best of our knowl-
edge, despite substantial progress made in vision-language
pretraining recently, there is no prior work on extending it
for cross-media understanding. With the crucial insights
drawn from our cross-media keyphrase prediction work at
hand, we are potentially able to design better cross-media
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pretraining models by taking the unique characteristics of
social media data into consideration.

e Unsupervised learning for keyphrase prediction. All
the neural approaches proposed by this thesis require large-
scale annotated training data. Although we walk around
this challenge by employing the user annotated tags as the
target keyphrases, their amounts might still be insufficient,
e.g., only less than 15% tweets contain at least one hash-
tag [146, 64]. Besides, it would be costly to recruit human
annotators to accomplish tagging tasks. Omne possible
way is to devise unsupervised or semi-supervised learning
algorithms to ease the need of labeled data. Unsupervised
learning has demonstrated its effectiveness in many NLP
tasks. For example, in neural machine translation, [73, 74]
propose to rely only on monolingual data and employ back-
translation techniques to align both sides, which achieves
promising results. Another example is the unsupervised
keyphrase extraction for scientific articles [13], where they
map the document and extracted keyphrases into a shared
high-dimensional embedding space, and then select the top
related candidates by comparing their sentence embedding
distances. Inspired by their success, it would be an inter-
esting future work to combine both types of unsupervised
learning techniques for social media keyphrase prediction.
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