
Modeling and Exploiting QoS
Prediction in Cloud and Service

Computing

ZHANG, Yilei

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
September 2013

Thesis/Assessment Committee

Professor Pak Ching LEE (Chair)
Professor Michael R. LYU (Thesis Supervisor)
Professor Fung Yu YOUNG (Committee Member)
Professor Qing LI (External Examiner)

Abstract of thesis entitled:
Modeling and Exploiting QoS Prediction in Cloud and Service

Computing
Submitted by ZHANG, Yilei
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2013

Cloud computing is a new type of Internet-based computing, whereby
shared resources, software, and information are provided as services
to computers and other devices on demand. The architecture of the
software systems involved in the delivery of cloud computing, typi-
cally involves multiple cloud components communicating with each
other over application programming interfaces (API), usually imple-
mented as Web services. Cloud computing has become a scalable
service consumption and delivery platform. Web services are soft-
ware systems designed to support interoperable machine-to-machine
interaction over a network. The technical foundations of cloud com-
puting include Service-Oriented Architecture (SOA), which is be-
coming a popular and major framework for building Web appli-
cations in the era of Web 2.0, whereby Web services offered by
different providers are discovered and integrated over the Internet.
Quality-of-Service (QoS) is usually employed to describe the non-
functional properties of services in cloud and service computing. It
becomes important to evaluate the QoS performance of services to
differentiate the qualities of service candidates.

However, QoS evaluation is time and resource consuming. Con-
ducting real-world evaluation is difficult in practice. Moreover, in
some scenarios, QoS evaluation becomes impossible (e.g., the cloud

i

provider may charge for service invocations, too many services to
be evaluated, etc.). Therefore, it is crucial to study how to build ef-
fective and efficient approaches to predict the QoS performance of
services.

In this thesis, we first propose three QoS prediction methods
which utilize the users’ past usage experiences. The first predic-
tion method employs the information of neighborhoods for making
QoS value prediction and engages matrix factorization techniques to
enhance the prediction accuracy. The second method provides time-
aware personalized QoS value prediction service. The third method
employs time information for efficient online performance predic-
tion.

The predicted QoS values can be employed to a variety of appli-
cations in cloud and service computing. We propose two applica-
tions in this thesis. The first application employs QoS information
to build a Web service search engine, which help users discover ap-
propriate Web services to fulfill both functional and non-functional
requirements. The second application employs dynamic QoS infor-
mation to build a robust Byzantine fault-tolerant cloud systems.

ii

API Web

Web

SOA Web

Web 2.0 Web

QoS

QoS

QoS

QoS

QoS

iii

QoS

QoS QoS

QoS

QoS

QoS Web

Web

iv

Acknowledgement

I would like to express my sincere gratitude and appreciation to my
supervisors, Prof. Michael R. Lyu. I gain too much from their guid-
ance not only on knowledge and attitude in doing research, but also
on the presentation, teaching, and English writing skills. I will al-
ways be grateful for their supervision, encouragement and support
at all levels.

I am grateful to my thesis committee members, Prof. Fung Yu
Young and Prof. Pak Ching Lee for their helpful comments and
suggestions about this thesis. My special thanks to Prof. Qing Li
who kindly served as the external committee for this thesis. I would
like to thank my mentor, Prof. Kishor S. Trivedi , for his guidance,
support, insightful opinions and valuable suggestions when I was
visiting Duke University as a visiting scholar.

I thank Zibin Zheng, Yu Kang and Jieming Zhu for their effort
and constructive discussions in conducting the research work in this
thesis. I also thank my colleagues, Xinyu Chen, Yangfan Zhou, Hao
Ma, Haiqin Yang, Wujie Zheng, Xin Xin, Junjie Xiong, Tom Chao
Zhou, Qirun Zhang, Baichuan Li, Guang Ling, Shouyuan Chen,
Chen Cheng, Hongyi Zhang, Shenglin Zhao and many others.

Last but not least, I want to thank my parents. Without their
deep love and constant support, this thesis would never have been
completed.

v

To my beloved parents.

vi

Contents

Abstract i

Acknowledgement v

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Contributions 4
1.3 Thesis Organization 7

2 Backgound Review 12
2.1 QoS in Cloud and Service Computing 12
2.2 QoS Prediction in Cloud and Service Computing . . 14
2.3 Web Service Searching 16
2.4 Fault-Tolerant Cloud Applications 17

3 Neighborhood-Based QoS Prediction 19
3.1 Overview . 19
3.2 Collaborative Framework in Cloud 22
3.3 Collaborative QoS Prediction 24

3.3.1 Problem Description 25
3.3.2 Latent Features Learning 28
3.3.3 Similarity Computation 30
3.3.4 Missing QoS Value Prediction 31

3.4 Experiments . 33
3.4.1 Dataset Description 34

vii

3.4.2 Metrics . 35
3.4.3 Performance Comparison 36
3.4.4 Impact of Matrix Density 37
3.4.5 Impact of Top-K 40
3.4.6 Impact of Dimensionality 41
3.4.7 Impact of λ 43

3.5 Summary . 44

4 Time-Aware Model-based QoS Prediction 46
4.1 Overview . 46
4.2 Collaborative Framework for Web Services 49
4.3 Time-Aware QoS Prediction 51

4.3.1 Problem Description 52
4.3.2 Latent Features Learning 54
4.3.3 Missing Value Prediction 58
4.3.4 Complexity Analysis 59

4.4 Experiments . 60
4.4.1 Experimental Setup and Dataset Collection . 60
4.4.2 Metrics . 62
4.4.3 Performance Comparisons 63
4.4.4 Impact of Tensor Density 66
4.4.5 Impact of Dimensionality 67

4.5 Summary . 70

5 Online QoS Prediction 71
5.1 Overview . 71
5.2 Preliminaries . 74
5.3 Online Service Level Performance Prediction 77

5.3.1 Problem Description 78
5.3.2 Time-Aware Latent Feature Model 79
5.3.3 Service Performance Prediction 82
5.3.4 Computation Complexity Analysis 86

5.4 System Level Performance Prediction 87

viii

5.5 Experiments . 90
5.5.1 Experimental Setup and Dataset Collection . 90
5.5.2 Metrics . 92
5.5.3 Comparison 93
5.5.4 Impact of Data Density 97
5.5.5 Impact of Dimensionality 98
5.5.6 Impact of α and w 99
5.5.7 Computational Time Comparisons 101
5.5.8 System Level Performance Case Study . . . 101

5.6 Summary . 104

6 QoS-Aware Web Service Searching 106
6.1 Overview . 106
6.2 Motivation . 110
6.3 System Architecture 112
6.4 QoS-Aware Web Service Searching 113

6.4.1 QoS Model 113
6.4.2 Similarity Computation 116
6.4.3 QoS-Aware Web Service Searching 118
6.4.4 Online Ranking 122
6.4.5 Application Scenarios 123

6.5 Experiments . 125
6.5.1 QoS Recommendation Evaluation 125
6.5.2 Functional Matching Evaluation 129
6.5.3 Online Recommendation 130
6.5.4 Impact of λ 133

6.6 Summary . 134

7 QoS-Aware Byzantine Fault Tolerance 136
7.1 Overview . 136
7.2 System Architecture 139
7.3 System Design . 141

7.3.1 System Overview 141

ix

7.3.2 Primary Selection 143
7.3.3 Replica Selection 144
7.3.4 Request Execution 147
7.3.5 Primary updating 148
7.3.6 Replica Updating 149

7.4 Experiments . 150
7.4.1 Experimental Setup 151
7.4.2 Performance Comparison 152

7.5 Summary . 155

8 Conclusion and Future Work 157
8.1 Conclusion . 157
8.2 Future Work . 158

Bibliography 160

x

List of Figures

1.1 System Architecture 2
1.2 Thesis Structure . 8

3.1 System Architecture 23
3.2 A Toy Example for QoS Prediction 25
3.3 Value Distributions 35
3.4 Impact of Matrix Density 39
3.5 Impact of Top-K . 41
3.6 Impact of Dimensionality 42
3.7 Impact of λ . 43

4.1 System Architecture 50
4.2 A Toy Example . 51
4.3 User-Service-Time Tensor 52
4.4 Response-Time of Two Pairs of User-Service 56
4.5 QoS Value Distributions 62
4.6 Impact of Tensor Density 66
4.7 Impact of Dimensionality in Response-Time Dataset 68
4.8 Impact of Dimensionality in Throughput Dataset . . 69

5.1 Service-Oriented System Architecture 75
5.2 Online Performance Prediction Procedures 75
5.3 A Toy Example of Performance Prediction 78
5.4 Basic Compositional Structures 88
5.5 A Performance Composition Example 88
5.6 Response Time Value Distribution 92
5.7 Impact of Data Density 97

xi

5.8 Impact of Dimensionality 98
5.9 Impact of α and w 99
5.10 An Online Shopping System 102
5.11 System Performance Improvement of Dynamically

Service Composition 103

6.1 Service-Oriented System Architecture 107
6.2 Web Service Query Scenario 109
6.3 System Architecture 112
6.4 Value Distributions 126
6.5 NDCG of Top-K Web services 127
6.6 Recall and Precision Performance 130
6.7 QoS Value Distributions of Online Dataset 131
6.8 NDCG of Online Recommendation 132
6.9 Impact of λ . 133

7.1 Architecture of Cloud Applications 139
7.2 Architecture of BFTCloud in Voluntary-Resource Cloud140
7.3 Work Procedures of BFTCloud 141
7.4 Throughput Comparison for 0/0, 4/0, and 0/4 bench-

marks as the number of cloud modules varies 153

xii

List of Tables

3.1 Statistics of WS QoS Dataset 35
3.2 Performance Comparsions (A Smaller MAE or RMSE

Value Means a Better Performance) 38

4.1 Statistics of WS QoS Dataset 62
4.2 Performance Comparsions (A Smaller MAE or RMSE

Value Means a Better Performance) 64

5.1 Calculation of Aggregated Response Time 89
5.2 Statistics of Web Service Response Time Dataset . . 92
5.3 Performance Comparsions (A Smaller MAE or RMSE

Value Means a Better Performance) 94
5.4 Performance Improvement of OPred 96
5.5 Average Computational Time Comparisons 100

6.1 User Query Examples 110
6.2 Web Service Examples 110
6.3 Statistics of WS QoS Dataset 126
6.4 NDCG values (A larger NDCG value means a better

performance) . 128
6.5 Statistics of Online QoS Dataset 131

7.1 Average Sending Times Per Request 154
7.2 Correct Rate of Committed Requests 155

xiii

Chapter 1

Introduction

1.1 Overview

Cloud computing [6, 25] is a new type of Internet-based computing,
whereby shared resources, software, and information are provided to
computers and other devices on demand [44]. With the exponential
growth of cloud computing as a solution for providing flexible com-
puting resources, more and more cloud applications emerge in recent
years. The architecture of the Software-as-a-Service (SaaS) systems
in the delivering of cloud computing, typically involves multiple
cloud components communicating with each other over application
programming interfaces, usually Web services. [110]. Cloud com-
puting has become a scalable service consumption and delivery plat-
form.

Web services are software systems designed to support interop-
erable machine-to-machine interaction over a network [50]. The
technical foundations of cloud computing include Service-Oriented
Architecture (SOA), which is becoming a popular and major frame-
work for building Web applications in the era of Web 2.0 [78], whereby
Web services offered by different providers are discovered and inte-
grated over the Internet. Typically, a service-oriented system con-
sists of multiple Web services interacting with each other over the
Internet in an arbitrary way. In this thesis, service refers to Web ser-
vice in service computing and cloud component which is delivered

1

CHAPTER 1. INTRODUCTION 2

Cloud

Cloud Application 1

QoS Monitor

Collector Predictor

Cloud Application 2 Cloud Application n

Task

Scheduler

SLA

Wrapper

Cloud

Platform

Figure 1.1: System Architecture

as a service in cloud computing.
Figure 1.1 shows the system architecture in cloud computing. In

a cloud environment, the cloud provider holds a large number of dis-
tributed services (e.g. databases, servers, Web services, etc.), which
can be provided to designers for developing various cloud applica-
tions. Designers of cloud applications can choose from a broad pool
of distributed services when composing cloud applications. These
services are usually invoked remotely through communication links
and are dynamically integrated into the applications. The cloud ap-
plication designers are located in different geographic and network
environments. Since the users invoke services via different commu-
nication links, the quality of services they observed are diverse.

Quality-of-Service (QoS) is usually employed to describe the non-
functional characteristics of services. It becomes a major concern
for application designers when making service selection [43]. More-
over, for the existing cloud applications, by replacing low quality

CHAPTER 1. INTRODUCTION 3

services with better ones, the overall quality of cloud applications
can be improved.

In recent year, a number of research tasks have been focused on
optimal service selection [10, 115] and recommendation [128] in
distributed systems or service computing. Typically, evaluations on
the service candidates are required to obtain their QoS values. In
cloud environment, due to their various locations and communica-
tion links, different users will have different QoS experiences when
invoking even the same service. Personalized QoS evaluation is re-
quired for each user at the user-side. However, a service user in
general only invoked a limited number of services in the past and
only received QoS performance information of these invoked ser-
vices. In practice, therefore, conducting real-world evaluations on
services to obtain their QoS information from the users’ perspective
is quite difficult, because: (1) executing invocations for evaluation
purposes becomes too expensive, since cloud providers who main-
tain and host services (e.g., Amazon EC21, Amazon S32, etc.) may
charge for invocations; (2) with the growing number of available
services over the Internet, it is time-consuming and impractical to
conduct QoS evaluations on all accessible services; (3) component
users need to focus on building cloud applications on top of various
services. While conducting evaluation on a large number of service
candidates would introduce extra cost and effort, and sharply slow
down the application development progresses. Therefore, collecting
historical usage records and conducting QoS prediction, which re-
quires no additional invocation, is becoming an attractive approach.
Based on the above analysis, in order to provide QoS information to
application designers, we need to provide comprehensive investiga-
tion on QoS prediction approaches.

Employing the predicted QoS values, a QoS-aware Web service
search engine can be enabled. Traditional Web service searching

1http://aws.amazon.com/ec2
2http://aws.amazon.com/s3

CHAPTER 1. INTRODUCTION 4

approaches only find the Web services to fulfill users’ functionality
requirements. However, Web services sharing similar functionalities
may possess very different non-functionalities (e.g., response time,
throughput, availability, usability, performance, integrity, etc.). Web
services recommended by the traditional searching approach may
not fulfill users’ non-functional requirements. In order to find ap-
propriate Web services which can fulfill both functional and non-
functional requirements of users efficiently, QoS-aware searching
approaches are needed.

Given the predicted QoS information, robust systems can be built
based on redundant services by employing QoS-aware fault toler-
ance framework. Traditional fault tolerance framework [72] usu-
ally requires developing several different version of system services.
However, due to the cost of development, the fault tolerance strate-
gies are usually employed only for critical systems. In cloud com-
puting, however, users can access multiple functional equivalent ser-
vices via Internet at a very low cost. These services are usually de-
veloped and provided by different organizations, and can be dynam-
ically composed to build a fault tolerance systems. Although some
fault tolerance framework [65, 70, 124] have been proposed for tra-
ditional software systems, they cannot adopt to the highly dynamic
cloud environment.

In order to provide accurate QoS prediction approaches, QoS-
aware Web service searching mechanisms, and QoS-aware fault tol-
erant frameworks for cloud systems, we proposed five approaches to
attack these challenges in this thesis.

1.2 Thesis Contributions

The main contributions of this thesis can be described as follows:

(1) Neighborhood-Based QoS Prediction
We formally identify the research problem of QoS value pre-
diction in cloud computing. In order to accurately predict the

CHAPTER 1. INTRODUCTION 5

personalized service QoS values and to efficiently deliver the
QoS information to cloud application designers, we propose a
neighborhood-based approach by employing the historical QoS
data to model the features on both users and services. Our ap-
proach learns the characteristics of users by non-negative matrix
factorization (NMF) and explores QoS experiences from simi-
lar users to achieve high QoS value prediction accuracy. Our
approach requires no additional invocation and can work well
when the user-service matrix is very sparse. We further extend
the approach to adopt the dynamic QoS information in real-
time. Moreover, we conduct large-scale real-world experiments
to study the QoS prediction result of our approach. 339 dis-
tributed users located in 30 countries and 5, 825 openly-accessible
services from 73 countries are involved in the experiments. The
experimental results show that compared with other approaches,
our approach can achieve higher prediction accuracy.

(2) Time-Aware Model-based QoS Prediction
Traditional QoS prediction approaches usually try to predic-
tion the average QoS performance of Web services. However,
QoS performance of Web services is highly related to invoca-
tion time. The dynamic service status and the network envi-
ronment make traditional QoS prediction approaches hard to be
used in practice. To address this critical challenge, we propose
a model-based time-aware personalized approach for Web ser-
vice QoS prediction. The contributions of this chapter are three-
fold: (1) we formally define the critical problem of time-aware
Web service QoS prediction. A user-side light-weight middle-
ware is designed for automatically recording and sharing QoS
experiences; (2) we employ the tensor factorization technique
to systematically analyze the latent features of user, service and
time, which are further utilized to addresses the difference over
time in service computing literature; (3) we conduct large-scale
real-world experiments to study the prediction accuracy and effi-

CHAPTER 1. INTRODUCTION 6

ciency of our approach compared with other state-of-the-art ap-
proaches. The experimental results show that our approach can
predict QoS values more accurate than other approaches. More-
over, we publicly release our large-scale time-stamped Web ser-
vice QoS dataset for future research.

(3) Online QoS Prediction
The service status and network environments are highly vari-
able over time, which requires efficient QoS prediction of Web
services at run-time. In this chapter, we propose an online QoS
prediction approach for Web services. The contributions of this
chapter include: (1) identifying the crucial problem of online
QoS prediction for Web services and proposing a novel predic-
tion framework to provide QoS value estimation at run-time. By
employ time series analysis on feature trends, more accurate and
efficient QoS prediction of Web service can be achieved. The
complexity of our method is linear with the amount of newly
observed performance information, which shows that our ap-
proach can make QoS prediction timely; (2) conducting large-
scale extensive experiments for evaluating the effectiveness and
efficiency of our approach. Moreover, we further develop an
aggregation approach to predict a service-oriented system per-
formance by utilizing the results of Web service QoS prediction.
The experimental results and the system level case study show
the efficiency and effectiveness of our approach.

(4) QoS-Aware Web Service Searching
This chapter aims at improving the current research of Web ser-
vice searching by proposing a brand new Web service search-
ing approach. Our approach systematically fusing the functional
approach and non-functional approach to achieve better perfor-
mance. The contributions of this chapter are three-fold: (1) dif-
ferent from previous approaches which only employ functional
features or non-functional features, we propose the first Web

CHAPTER 1. INTRODUCTION 7

service searching approach which considers both functional and
non-functional qualities of the service candidates; (2) we con-
duct a large-scale distributed experimental evaluation to verify
the proposed approach. Functional and non-functional char-
acters of 3, 738 Web services from 69 countries are studied.
The experimental results demonstrate the effectiveness of our
Web service searching approach; (3) we publicly release the
real-world WSDL files of Web services and corresponding QoS
records. More than 30 institutes have downloaded and utilized
our datasets for extensive Web service research.

(5) QoS-Aware Byzantine Fault Tolerance
Due to the highly dynamic environment, traditional fault toler-
ance cannot tolerate malicious behaviors in cloud computing.
To address this critical challenge, we propose a Byzantine fault
tolerance framework for building robust cloud systems. The
contributiona of this chapter are as following: (1) we identify the
Byzantine fault tolerance problem in voluntary-resource cloud
and propose a Byzantine fault tolerance framework to guaran-
teeing the robustness of cloud application. Our approach uses
dynamical replication techniques to tolerate various types of
faults; (2) we build a prototype system on a voluntary-resource
cloud, which consists of 257 cloud resources from in 26 coun-
tries, to test the fault tolerance middleware we designed; (3) we
conduct large-scale real-world experiments to study the relia-
bility performance of our approahce. The experimental results
indicate that our approach can tolerate various types of faults in
cloud computing.

1.3 Thesis Organization

As shown in Figure 1.2, the rest of this thesis is organized as follows:

• Chapter 2

CHAPTER 1. INTRODUCTION 8

Part 1: QoS Prediction

Part 2: QoS-Aware
Searching

Part 3: QoS-Aware
Fault Tolerance

Chapter 7Chapter 6

Chapter 5Chapter 4Chapter 3

Figure 1.2: Thesis Structure

This chapter briefly reviews some background knowledge and
work related to the main methodology that will be explored in
this thesis.

• Chapter 3
In this chapter, we propose a novel neighborhood-based ap-
proach (CloudPred), which is enhanced by character modeling,
for providing collaborative and personalized QoS prediction of
cloud components. We first present the QoS prediction sce-
nario by a toy example. Then the QoS prediction problem in
cloud computing is formally defined. After that, we present a
latent feature learning algorithm to learn the user-specific and
service-specific latent features. Based on the latent features,
user and service similarity computation approaches are intro-
duced. By identifying similar users and similar services to the
active user-service pair, we formulate the CloudPred predic-
tion Algorithm. We conduct extensive experiments to study
the prediction accuracy of CloudPred and the impact of var-
ious parameters. The experimental results show that Cloud-
Pred achieves higher prediction accuracy than other competing
methods.

• Chapter 4
In this chapter, we present a model-based time-aware collab-

CHAPTER 1. INTRODUCTION 9

orative filtering approach for personalized QoS prediction of
Web services. First, we endow a new understanding of user-
perspective QoS experiences, which is based on the following
observations: (1) during different time intervals, a user has dif-
ferent QoS experiences on the same Web service; (2) in gen-
eral, the differences are limited within a range. Based on these
observations, we formulate the time-aware personalized QoS
prediction problem as the tensor factorization problem, and
propose an optimization formulation with average QoS con-
straint. Second, we propose to predict the missing QoS values
by evaluating how the user, service, and time latent features
are applied to each other. Furthermore, we provide a compre-
hensive complexity analysis of our approach, which indicates
that our approach is efficient and can be applied to large-scale
systems. Extensive experiments are conducted to evaluate the
prediction accuracy and parameter impacts. The experimental
results show the effectiveness and efficiency of our time-aware
QoS prediction approach.

• Chapter 5
In this chapter, we present an online Web service QoS pre-
diction approach by performing time series analysis on user-
specific and service-specific latent features. Our online pre-
diction approach includes four phases. In Phase 1, service
users monitor the performance of Web service and keep the
QoS records in local site. In Phase 2, distributed service users
submit local QoS records to the performance center in order
to obtain a better QoS prediction service from the performance
center. The performance center collects QoS records from dif-
ferent users and generates a set of global QoS matrices. In
Phase 3, a set of time-stamped user latent feature matrices and
service latent feature matrices are learned from the global QoS
matrices. After that, time series analysis are conducted on the
latent matrices to build a QoS model in the performance center.

CHAPTER 1. INTRODUCTION 10

By evaluating how each factor applies to the active user and
the corresponding service in the QoS model, personalized QoS
prediction results can be returned to users on demand. In Phase
4, the system level QoS performance of service-oriented ar-
chitecture is predicted by analyzing the service compositional
structure and utilizing the service QoS prediction results. The
complexity analysis indicates that our approach is efficiency
and can be applied to large-scale online service-oriented sys-
tems. Finally, we conduct a number of experiments to study
the performance of our approach and the impacts of algorithm
parameters. We also study the effects of integrating service
QoS information into the dynamic composition mechanism by
a real-world service-oriented system case.

• Chapter 6
In this chapter, we propose a QoS-aware Web service search-
ing approach to explore the appropriate Web services to fulfill
users’ functional and non-functional requirements. We first de-
scribe the Web service searching scenarios and present the sys-
tem architecture. Then, we present the QoS model to evaluate
the non-functional utility of Web services. After that, func-
tional similarity is introduced to evaluate the functional utility
of Web services. Two QoS-aware Web service searching ap-
proaches are proposed: the score-based combination and the
ranking-based combination. We further extend the ranking-
based approach to online searching scenario. Moreover, three
common application scenarios are introduced. Finally, a num-
ber of experiments are conducted to study the functional and
non-functional performance of our approach. The comprehen-
sive results of experiments show that our approach provides
better Web service searching results.

• Chapter 7
This chapter presents a fault tolerance framework for building

CHAPTER 1. INTRODUCTION 11

robust cloud applications at runtime. Our approach adopt dy-
namic QoS information to enable automatic system reconfig-
uration. We first introduce the architecture of our framework
in voluntary-resource cloud. Then we present the work proce-
dures of our approach in detail, including 5 phases: primary
selection, replicas selection, request execution, primary updat-
ing, and replica updating. After that, we conduct real-world
experiments by deploying the prototype of our approach as a
middleware in a voluntary-resource cloud environment, which
consists of 257 distributed computers located in 26 countries.
The experimental results show that our approach guarantees
high reliability enables good performance of cloud systems.

• Chapter 8
The last chapter summarizes this thesis and provides some fu-
ture directions that can be explored.

In order to make each of these chapters self-contained, some crit-
ical contents, e.g., model definitions or motivations having appeared
in previous chapters, may be briefly reiterated in some chapters.

2 End of chapter.

Chapter 2

Backgound Review

2.1 QoS in Cloud and Service Computing

Cloud computing [6] has been in spotlight recently. Cloud com-
puting has become a scalable services consumption and delivery
platform [118]. The technical foundations of cloud computing in-
clude Service-Oriented Architecture (SOA) [33]. SOA is becom-
ing a popular and major framework for building Web applications
in the era of Web 2.0 [78]. A number of investigations have been
carried out focusing on different kinds of research issues such as
Web service selection [32, 112, 115, 117], Web service composi-
tion [3, 4, 113], SOA failure prediction [9], SOA reliability predic-
tion [125], fault tolerance [65, 121], resiliency quantification [36],
service ranking [128], resource consistency [95], resource alloca-
tion [27], workload balance [104], dynamically resource manage-
ment [56], etc.

Quality-of-Service (QoS) has been widely employed as a quality
measure for evaluating non-functional features of software systems
and services [1, 115, 119]. A lot of research works have utilized
QoS to describe the characteristics of services in cloud and service
computing [51, 76, 79, 80, 87, 103]. Zeng et al. [116] use five QoS
properties to compose Web service dynamically. Ardagna et al [5]
employ five QoS properties to conduct flexible service composition
processes. Alrifai et al [3] consider generic and domain-specific

12

CHAPTER 2. BACKGOUND REVIEW 13

QoS for efficient service composition.
QoS performance of services can be measured either from the

provider’s perspective or from the user’s observation. QoS values
measured at the service provider side (e.g. price, availability, etc.)
are usually identical for different users, such as QoS used in the
Service Level Agreement (SLA) [71] (e.g., IBM [58] and HP [88]).
While QoS values observed by different users may vary significantly
due to the unpredictable communication links and heterogeneous
user environments. In this thesis, we mainly focus on observing
QoS data from users’ perspective and making use of the QoS data
for QoS prediction, service selection, service searching, and fault
tolerant framework building.

Based on the QoS performance of services, several approaches
have been proposed for optimizing service selection [8, 10, 15, 31,
100, 115, 126] in improving the whole quality of web application,
Web service composition [5, 3, 15, 16, 116], Web service recom-
mendation [23, 103, 127], reliability prediction [17, 24, 38, 41, 86,
125], etc. Traditionally, reliability of a software system [73] is an-
alyzed without considering the system performance, which is not
accurate when applied to modern systems. Moreover, several QoS-
aware approaches [28, 75, 87, 111, 115, 116] are proposed in cloud
and service computing.

However, there is few real-world QoS data to verify these QoS-
aware approaches. To collect the QoS data from the user-side, Zheng
et al. [129] proposed a distributed evaluation framework and re-
leased the QoS datasets for further extensive research. Different
from previous work [2, 106], they conduct large-scale real-world
evaluations.

CHAPTER 2. BACKGOUND REVIEW 14

2.2 QoS Prediction in Cloud and Service Comput-
ing

The QoS-aware approaches usually assume that the QoS values are
already known, while in reality a user cannot exhaustively invoke
all the services. Although there existed some QoS evaluation ap-
proaches and publicly released QoS datasets, it is impossible to con-
duct personalized evaluation on all accessible services for all users.
In this chapter, we focus on predicting missing QoS values by col-
laborative filtering approach to enable the QoS-aware approaches.

Collaborative filtering approaches are widely adopted in com-
mercial recommender systems [12, 125]. Generally, traditional rec-
ommendation approaches can be categorized into two classes: memory-
based and model-based. Memory-based approaches, also known as
neighborhood-based approaches, are one of the most popular pre-
diction methods in collaborative filtering systems. Memory-based
methods employ similarity computation with past usage experiences
to find similar users and services for making the performance pre-
diction. The typical example of memory-based collaborative filter-
ing include user-based approaches [11, 22, 45, 55, 97], item-based
approaches [29, 52, 94, 67], and their fusion [40, 107, 125]. Typi-
cally, memory-based approaches employ the PCC algorithm [85] for
similarity computation.

Model-based approaches employ machine learning techniques to
fit a predefined model based on the training datasets. Model-based
approaches include several types: the clustering models [114], the
latent factor models [89], the aspect models [46, 47, 98, 99], etc.
Lee et al. [63] presented an algorithm for non-negative matrix fac-
torization that is able to learn the parts of facial images and semantic
features of text. It is noted that there is only a small number of fac-
tors influencing the service performance in the user-service matri-
ces, and that a user’s factor vector is determined by how much each
factor applies to that user. For a set of user-service matrices data,

CHAPTER 2. BACKGOUND REVIEW 15

three-dimensional tensor factorization techniques are employed for
item recommendation [84].

The memory-based approaches employ the information from sim-
ilar users and services for predicting missing values. When the
number of users or services is too small, similarity computation for
finding similar users or services is not accurate. When the num-
ber of users or services is too large, calculating similarity values
for each pair of users or services is time-consuming. In contrast,
model-based approaches are very efficient for missing value predic-
tion, since they assume that only a small number of factors influence
the service performance.

There is few work of collaborative filtering prediction for QoS
values in cloud and service computing, since there lacks large-scale
real-world QoS datasets for verifying the prediction accuracy. Some
approaches [57, 101] employing a movie rating dataset, MovieLens [85]
for simulation. Shao et al. [96] only conduct a small-scale experi-
ments which involves 20 Web services for evaluating prediction ac-
curacy.

The existing methods in the literature only consider two dimen-
sions (i.e., user and Web service) while time factor is not included.
The periodic features of service QoS values are ignored, which may
improve the prediction accuracy significantly. Moreover, the high
computational complexity makes it difficult to extend memory-based
approaches to handle large amounts of time-aware performance data
for timely prediction. There is a lack of fast algorithms to predict the
QoS values at runtime to adapt the highly dynamic system environ-
ment in cloud and service computing.

In this thesis, we propose three approaches to address the QoS
prediction problems in cloud and service computing, including memory-
based prediction [122], time-aware prediction [120], and online pre-
diction [123] approaches. We also conduct large-scale real-world
experiments to verify the prediction accuracy and release the QoS
datasets for further studies of other researchers.

CHAPTER 2. BACKGOUND REVIEW 16

2.3 Web Service Searching

Web service discovery [83] is a fundamental research area in service
computing. Several papers in the literature conduct investigations on
discovering Web services through syntactic or semantic tag match-
ing in a centralized UDDI repository [81, 105]. However, since
UDDI repository is no longer a popular style for publishing Web
services, these approaches are not practical now.

Text-based matching approaches have been proposed for query-
ing Web service [39, 108]. These works employ term frequency
analysis to perform keywords searching. However, most text de-
scriptions are highly compact, and contain a lot of unrelated infor-
mation to the Web service functionality. The performances of this
approaches are not fine in practice. Plebani et al. [82] extract the
information from WSDL files for Web service matching. By com-
paring with other works [30, 42, 54], it shows better performance in
both recall and precision. However, it also dose not consider non-
functional qualities of Web services. Our searching approach, on
the other hand, take both functional and non-functional features into
consideration.

Alrifai et al. [3], Liu et al. [69] and Tao et al. [115] focus on
efficiently QoS-driven Web service selection. Their works are all
based on the assumption: the Web service candidates which can be
select for composition have already been discovered and all meet
requesters’ functional requirements. Under this assumption these
approaches cannot be directly applied into Web service search en-
gine. In this thesis, we proposed WSExpress [119], a QoS-aware
searching approach which employs both QoS and functionality in-
formation, to search appropriate Web services for users.

CHAPTER 2. BACKGOUND REVIEW 17

2.4 Fault-Tolerant Cloud Applications

Software fault tolerance techniques (e.g., N-Version Programing [7],
distributed recovery block [59], etc.) are widely employed for build-
ing reliable systems [72]. Zhang et al. [119] propose a Web ser-
vice search engine for recommending reliable Web service replicas.
Salas et al. [90] propose an active strategy to tolerate faults in Web
services. Zheng et al. [130] propose a ranking-based fault toler-
ance framework for building reliable applications in cloud. There
are many fault tolerance strategies have been proposed for Web ser-
vices [19, 20, 35, 91]. Typically, the fault tolerance strategies can be
divide into two major types: passive strategies and active strategies.
Passive strategies include FT-CORBA [66], FT-SOAP [65], etc. Ac-
tive strategies include WS-Replication [90], SWS [64], FTWeb [93],
etc.

However, these techniques cannot tolerate Byzantine faults like
malicious behaviors. There are some works focus on Byzantine
fault tolerance for Web services as well as distributed systems. BFT-
WS [124] is a Byzantine fault tolerance framework for Web services.
Based on Castro and Liskov’s practical BFT algorithm [18], BFT-
WS considers client-server application model running in an asyn-
chronous distributed environment with Byzantine faults. 3f + 1
replications are employed in the server-side to tolerate f Byzantine
faults. Thema [77] is a Byzantine Fault Tolerant(BFT) middleware
for Web services. Thema supports three-tiered application model,
where the 3f + 1 Web service replicas need to invoke an external
Web service for accomplishing their executions. SWS [64] is a sur-
vivable Web Service framework that supports continuous operation
in the presence of general failures and security attacks. SWS applies
replication schemes and N-Modular Redundancy concept. Each web
service is replicated into a service group to mask faults.

Different from above approaches, BFTCloud [121] proposed in
this thesis aims to provide Byzantine fault tolerance for voluntary-

CHAPTER 2. BACKGOUND REVIEW 18

resource cloud, in which Byzantine faults are very common. BFT-
Cloud select voluntary nodes based on both their reliability and per-
formance characteristics to adapt to the highly dynamic voluntary-
resource cloud environment.

2 End of chapter.

Chapter 3

Neighborhood-Based QoS
Prediction

3.1 Overview

Cloud computing [6] is Internet-based computing, whereby shared
resources, software, and information are provided to computers and
other devices on demand. With the exponential growth of cloud
computing as a solution for providing flexible computing resources,
more and more cloud applications emerge in recent years. The sys-
tems architecture of the software systems involved in the delivery
of cloud computing (named as cloud applications in this chapter),
typically involves multiple cloud components communicating with
each other over application programming interfaces, usually Web
services [110]. How to build high-quality cloud applications be-
comes an urgent and crucial research problem.

In the cloud environment, designers of cloud applications, de-
noted as component users, can choose from a broad pool of cloud
components when creating cloud applications. These cloud com-
ponents are usually invoked remotely through communication links.
Quality of the cloud applications is greatly influenced by the quality
of communication links and the distributed cloud components. To
build a high-quality cloud application, non-functional Quality-of-
Service (QoS) performance of cloud components becomes an im-

19

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 20

portant factor for application designers when making component se-
lection [43]. Moreover, for the existing cloud applications, by re-
placing low quality components with better ones, the overall quality
of cloud applications can be improved.

In recent year, a number of research tasks have been focused on
optimal component selection [10, 115] and recommendation [128]
in distributed systems or service computing. Typically, evaluations
on the component candidates are required to obtain their QoS values.
In cloud environment, due to their various locations and communica-
tion links, different users will have different QoS experiences when
invoking even the same cloud component. Personalized QoS eval-
uation is required for each user at the user-side. However, a cloud
component user in general only invoked a limited number of cloud
components in the past and only received QoS performance infor-
mation of these invoked cloud components. In practice, therefore,
conducting real-world evaluations on cloud components to obtain
their QoS information from the users’ perspective is quite difficult,
because:

• Executing invocations for evaluation purposes becomes too ex-
pensive, since cloud providers who maintain and host cloud
components (e.g., Amazon EC21, Amazon S32, etc.) may charge
for invocations.

• With the growing number of available cloud components over
the Internet, it is time-consuming and impractical to conduct
QoS evaluations on all accessible cloud components.

• Component users need to focus on building cloud applications
on top of various cloud components. While conducting evalu-
ation on a large number of component candidates would intro-
duce extra cost and effort, and sharply slow down the applica-
tion development progresses.

1http://aws.amazon.com/ec2
2http://aws.amazon.com/s3

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 21

Based on the above analysis, it is crucial for the cloud platform
to deliver a personalized QoS information service to the application
designers for cloud component evaluation. In order to provide per-
sonalized QoS values on m cloud components for n users by evalua-
tion, at least n×m invocations need to be executed, which is almost
impossible when n and m is very large. However, without suffi-
cient and accurate personalized QoS values of cloud components, it
is difficult for the application designers to select optimal cloud com-
ponent for building high-quality cloud applications. It is an urgent
task for the cloud platform providers to develop an efficient and per-
sonalized prediction approach for delivering the QoS information
service to cloud application designers.

To address this critical challenge, we propose a neighborhood-
based approach, called CloudPred, for personalized QoS prediction
of cloud components. CloudPred is enhanced by feature model-
ing on both users and components. The idea of CloudPred is that
users sharing similar characteristics (e.g., location, bandwidth, etc.)
would receive similar QoS usage experiences on the same compo-
nent. The QoS value of cloud component c observed by user u can
be predicted by exploring the QoS experiences from similar users of
u. A user is similar to u if they share similar characteristics. The
characteristics of different users can be extracted from their QoS ex-
periences on different components by performing non-negative ma-
trix factorization (NMF). By sharing local QoS experience among
users, our approach CloudPred can effectively predict the QoS value
of a cloud component c even if the current user u has never invoked
the component c before. The experimental results show that com-
pared with other well-known collaborative prediction approaches,
CloudPred achieves higher QoS prediction accuracy of cloud com-
ponents. Since CloudPred can precisely characterize users features
(will be introduced in Section 3.3.2), even if some users have few
local QoS information, CloudPred can still achieve high prediction
accuracy.

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 22

In summary, this chapter makes the following contributions:

1. We formally identify the research problem of QoS value pre-
diction in cloud computing and propose a novel neighborhood-
based approach, named CloudPred, for personalized QoS value
prediction of cloud components. CloudPred learns the charac-
teristics of users by non-negative matrix factorization (NMF)
and explores QoS experiences from similar users to achieve
high QoS value prediction accuracy. We consider CloudPred
as the first QoS value prediction approach in cloud computing
literature.

2. We conduct large-scale experiments to study the prediction ac-
curacy of our CloudPred compared with other approaches. The
experimental results show the effectiveness of our approach.
Moreover, we also publicly release our large-scale QoS dataset3

for future research.

The remainder of this chapter is organized as follows: Section 3.2
describes the collaborative QoS framework in cloud environment.
Section 3.3 presents our CloudPred approach in detail. Section 3.4
introduces the experimental results. Section 3.5 concludes the chap-
ter.

3.2 Collaborative Framework in Cloud

Figure 3.1 shows the system architecture in cloud computing. In a
cloud environment, the cloud provider holds a large number of dis-
tributed cloud components (e.g. databases, servers, Web services,
etc.), which can be provided to designers for developing various
cloud applications. The cloud application designers, called compo-
nent users in this chapter, are located in different geographic and net-
work environments. Since users invoke cloud components via differ-

3http://www.wsdream.net

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 23

Cloud

Cloud Application 1

QoS Monitor

Collector Predictor

Cloud Application 2 Cloud Application n

Task

Scheduler

SLA

Wrapper

Cloud

Platform

Figure 3.1: System Architecture

ent communication links, their usage experiences on cloud compo-
nents are diverse in several QoS properties including response-time,
throughput, etc. In order to provide personalized quality information
of different components to application designers for optimal com-
ponent selection, personalized QoS value prediction is an essential
service of a cloud provider.

Within the cloud platform provided by a cloud provider, there are
several modules implemented for managing the cloud components.
Examples of management modules include Task Scheduler, which
is responsible for task scheduling, SLA Wrapper, which is responsi-
ble for service level negotiation between cloud provider and users,
etc. In this chapter, we focus on the design of QoS Monitor, which
is responsible for monitoring the QoS performance of cloud compo-
nents from the users’ perspective. The QoS Monitor consists of two
sub-units: Collector, which is used to collect QoS usage information
from various component users, and Predictor, which is supposed to

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 24

provide personalized QoS value prediction for different component
users.

The idea of our approach is to share local cloud component usage
experience from different component users, to combine this local in-
formation to get a global QoS information of all components, and
to make personalized QoS value prediction based on both global
and local information. As shown in Figure 3.1, each component
user keeps local records of QoS usage experiences on cloud com-
ponents. Since cloud applications are running on an identical cloud
platform, QoS information can be collected by an identical interface
on the platform side. If a component user would like to get personal-
ized QoS information service from the cloud provider, authorization
should be given to Collector for accessing its local QoS records.
Collector then collect those local QoS records from different com-
ponent users. Based on the collected QoS information, Predictor
can perform personalized QoS value prediction and forward the pre-
diction results to component users for optimizing the design of cloud
applications. The detailed collaborative prediction approach will be
presented in Section 3.3.

3.3 Collaborative QoS Prediction

We first formally describe the QoS value prediction problem on
cloud components in Section 3.3.1. Then we learn the user-specific
and component-specific features by running latent features learning
algorithm in Section 3.3.2. Based on the latent features, similari-
ties between users and components are calculated in Section 3.3.3.
Finally, the missing QoS values are predicted by applying the pro-
posed algorithm CloudPred in Section 3.3.4.

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 25

5c4c 6c

4u

1c 2c 3c

2u 3u1u

(a) User-Component Invocation Graph

6c5c4c3c2c1c

1u

2u

3u
4u

(b) User-Component Matrix

6c5c4c3c2c1c

1u

2u

3u
4u
(c) Predicted User-Component Matrix

Figure 3.2: A Toy Example for QoS Prediction

3.3.1 Problem Description

Let us first consider a typical toy example in Figure 3.2(a). In this
bipartite graph G = (U ∪ C,E), its vertices are divided into two
disjoint sets U and C such that each edge in E connects a vertex in
U and one in C. Let U = {u1, u2, · · · , u4} be the set of component
users, C = {c1, c2, · · · , c6} denote the set of cloud components,
and E (solid lines) represent the set of invocations between U and
C. This bipartite graph G is modeled as a weighted directed graph.
Given a pair (i, j), ui ∈ U and cj ∈ C, edge eij is included in E if
user ui has invoked component cj before. The weight wij on edge eij
corresponds to the QoS value (e.g., response-time in this example)
of that invocation. Given the set E, our task is to effectively predict
the weight of potential invocations (the broken lines).

The process of cloud component QoS value prediction is illus-

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 26

trated by a user-component matrix as shown in Figure 3.2(b), in
which each entry denotes an observed weight in Figure 3.2(a). The
problem we study in this chapter is then how to precisely predict the
missing entries in the user-component matrix based on the existing
entries. Once the missing entries are accurately predicted, we can
provide users with personalized QoS information, which is valu-
able for automatic component ranking, component selection, task
scheduling, etc.

We observe that although about half of the entries are already
known in Figure 3.2(b), every pair of users still have very few com-
monly invoked components (e.g., u1 and u2 only invoke c1 in com-
mon, u3 and u4 have no commonly invoked components even if to-
gether they invoke all the six components). Since the similarity be-
tween two users are calculated by comparing their obtained QoS val-
ues on common components, the problem of few common compo-
nents observed above makes it extremely difficult to precisely calcu-
late similarity between users. Motivated by latent factor model [89],
we therefore first factorize the sparse user-component matrix and
then use V TH to approximate the original matrix, where the low-
dimensional matrix V denotes the user latent feature space, and the
low-dimensional matrix H represents the low-dimensional item la-
tent feature space. The rows in V and H represent different features.
Each column in V represents an user and each column in H denotes
a component. The value of a entry in the matrices indicates how
the associated feature applies to the corresponding user or compo-
nent. In this example we use four dimensions to perform the matrix
factorization and obtain:

V =

0.32 0.15 0.31 0.33

0.23 0.15 0.26 0.28

0.30 0.20 0.24 0.34

0.47 0.23 0.59 0.21

 ,

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 27

H =

0.73 0.35 0.31 0.26 0.32 0.42

0.60 0.31 0.27 0.22 0.28 0.36

0.69 0.37 0.32 0.27 0.33 0.45

0.95 0.46 0.42 0.35 0.41 0.54

 ,

where columns in V and H denote the latent feature vectors of users
and components respectively.

Note that V and H are dense matrices with all entries available.
Then we calculate the similarity between users and components us-
ing 4-dimensional matrices V and H respectively. Therefore, all the
missing values can be predicted by employing neighborhood-based
collaborative method, as shown in Figure 3.2(c).

Now we formally define the problem of cloud component QoS
value prediction as follows: Given a set of users and a set of compo-
nents, predict the missing QoS value of components when invoked
by users based on existing QoS values. More precisely:

Let U be the set of m users and C be the set of n com-
ponents. A QoS element is a triplet (i, j, qij) representing
the observed quality of component cj by user ui, where
i ∈ {1, · · · ,m}, j ∈ {1, · · · , n} and qij ∈ Rk is a k

dimension vector representing the QoS values of kth cri-
teria. Let Ω be the set of all pairs {i, j} and Λ be the set of
all known pairs (i, j) in Ω. Consider a matrix W ∈ Rm×n

with each entry wij representing the observed kth crite-
rion value of component cj by user ui. Then the missing
entries {wij|(i, j) ∈ Ω−Λ} should be predicted based on
the existing entries {wij|(i, j) ∈ Λ}.

Typically the QoS values can be integers from a given range (e.g.
{0, 1, 2, 3}) or real numbers of a close interval (e.g. [−20, 20]).
Without loss of generality, we can map the QoS values to the in-
terval [0, 1] using the function f(x) = (x − wmin)/(wmax − wmin),
where wmax and wmin are the maximum and minimum QoS values
respectively.

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 28

3.3.2 Latent Features Learning

In order to learn the features of the users and components, we em-
ploy matrix factorization to fit a factor model to the user-component
matrix. This method focuses on filtering the user-component QoS
value matrix using low-rank approximation. In other words, we fac-
torize the QoS matrix into two low-rank matrices V and H . The idea
behind the factor model is to derive a high-quality low-dimensional
feature representation of users and components based on analyzing
the user-component matrix. The premise behind a low-dimensional
factor model is that there is only a small number of factors influenc-
ing QoS usage experiences, and that a user’s QoS usage experience
vector is determined by how each factor applies to that user and the
items.

Consider the matrix W ∈ Rm×n consisting of m users and n
components. Let V ∈ Rl×m and H ∈ Rl×n be the latent user and
component feature matrices. Each column in V represents the l-
dimensional user-specific latent feature vector of a user and each
column in H represents the l-dimensional component-specific latent
feature vector of a component. We employ an approximating matrix
W̃ = V TH to fit the user-item matrix W :

wij ≈ w̃ij =
l∑

k=1

vkihkj, (3.1)

The rank l of the factorization is generally chosen so that (m+n)l <
mn, since V and H are low-rank feature representations [63]. The
product V TH can be regarded as a compressed form of the data in
W .

Note that the low-dimensional matrices V and H are unknown
and need to be learned from the obtained QoS values in user-component
matrix W . In order to optimize the matrix factorization, we first con-
struct a cost function to evaluate the quality of approximation. The
distance between two non-negative matrices is usually employed to

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 29

define the cost function. One useful measure of the matrices’ dis-
tance is the Euclidean distance:

F (W, W̃) = ∥W − W̃∥2F =
∑
ij

(wij − w̃ij)
2, (3.2)

where ∥ · ∥2F denotes the Frobenius norm.
In this chapter, we conduct matrix factorization as solving an op-

timization problem by employing the optimized objective function
in [63]:

min
V,H

f(V,H) =
∑

(i,j)∈Λ

[w̃ij − wij log w̃ij],

s.t. w̃i,j =
l∑

k=1

vkihkj,

V ≥ 0,

H ≥ 0. (3.3)

where V,H ≥ 0 is the non-negativity constraints leading to allow
only additive combination of features.

In order to minimize the objective function in Eq. (3.3), we ap-
ply incremental gradient descent method to find a local minimum
of f(V,H), where one gradient step intends to decrease the square
of prediction error of only one rating, that is, w̃ij − wij log w̃ij. We
update the V and H in the direction opposite of the gradient in each
iteration:

vij = vij
∑
k

wik

w̃ik
hjk, (3.4)

hij = hij

∑
k

wik

w̃ik
vjk, (3.5)

vij =
vij∑
k vkj

, (3.6)

hij =
hij∑
k hkj

. (3.7)

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 30

Algorithm 1 shows the iterative process for latent feature learn-
ing. We first initialize matrices V and H with small random non-
negative values. Iteration of the above update rules converges to a
local minimum of the objective function given in Eq. (3.3).

Algorithm 1: Latent Features Learning Algorithm
Input: W , l
Output: V , H
Initialize V ∈ Rl×m and H ∈ Rl×n with small random numbers;1

repeat2

for all (i, j) ∈ Λ do3

w̃ij =
∑

k vkihkj;4

end5

for all (i, j) ∈ Λ do6

vij ← vij
∑

k
wik

w̃ik
hjk;7

hij ← hij

∑
k

wik

w̃ik
vjk;8

vij =
vij∑
k vkj

;9

hij =
hij∑
k hkj

;10

end11

for all (i, j) ∈ Λ do12

w̃ij =
∑

k vkihkj;13

end14

until Converge ;15

3.3.3 Similarity Computation

Given the latent user and component feature matrices V and H ,
we can calculate the neighborhood similarities between different
users and components by employing Pearson Correlation Coefficient
(PCC) [85]. PCC is widely used in memory-based recommendation
systems for similarity computation. Due to the high accuracy, we
adopt PCC in this chapter for the neighborhood similarity computa-
tion on both sets of users and components. The similarity between
two users ui and uj is defined by performing PCC computation on
their l-dimensional latent feature vectors Vi and Vj with the follow-

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 31

ing equation:

S(ui, uj) =

∑l
k=1(vik − vi)(vjk − vj)√∑l

k=1(vik − vi)2
√∑l

k=1(vjk − vj)2
, (3.8)

where vi = (vi1, vi2, · · · , vil) is the latent feature vector of user ui
and vik is the weight on the kth feature. vi is the average weight
on l-dimensional latent features for user ui. The similarity between
two users S(i, j) falls into the interval [−1, 1], where a larger value
indicates higher similarity.

Similar to the user similarity computation, we also employ PCC
to compute the similarity between component ci and item cj as fol-
lowing:

S(ci, cj) =

∑l
k=1(hik − hi)(hjk − hj)√∑l

k=1(hik − hi)2
√∑l

k=1(hjk − hj)2
, (3.9)

where hi = (hi1, hi2, · · · , hil) is the latent feature vector of compo-
nent ci and hik is the weights on the kth feature. hi is the average
weight on l-dimensional latent features for component ci.

3.3.4 Missing QoS Value Prediction

After computing the similarities between users, we can identify sim-
ilar neighbors to the current user by ordering similarity values. Note
that PCC value falls into the interval [−1, 1], where a positive value
means similar and a negative value denotes dissimilar. In practice,
QoS usage experience of less similar or dissimilar users may greatly
decrease the prediction accuracy. In this chapter, we exclude those
users with negative PCC values from the similar neighbor set and
only employ the QoS usage experiences of users with Top-K largest
PCC values for predicting QoS value of the current user. We refer to
the set of Top-K similar users for user ui as Ψi, which is defined as:

Ψi = {uk|S(ui, uk) > 0, ranki(k) ≤ K, k ̸= i}, (3.10)

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 32

where ranki(k) is the ranking position of user uk in the similarity
list of user ui, and K denotes the size of set Ψi.

Similarly, a set of Top-K similar components for component cj
can be denote as Φj by:

Φj = {ck|S(cj, ck) > 0, rankp(k) ≤ K, k ̸= j}, (3.11)

where rankj(k) is the ranking position of component ck in the sim-
ilarity list of component cj, and K denotes the size of set Φj .

To predict the missing entry wij in the user-component matrix,
user-based approaches employ the values of entries from Top-K sim-
ilar users as follows:

wij = wi +
∑
k∈Ψi

S(ui, uk)∑
a∈Ψi

S(ui, ua)
(wkj − wk), (3.12)

where wi and wk are the average observed QoS values of different
components by users ui and uk respectively.

For component-based approaches, entry values of Top-K similar
components are employed for predicting the missing entry wij in the
similar way:

wij = wj +
∑
k∈Φj

S(ij, ik)∑
a∈Φj

S(ij, ia)
(wik − wk), (3.13)

where wj and wk are the average available QoS values of component
cj and ck by different users respectively.

In user-component-based approaches, the predicted values in Eq. (3.12)
and Eq. (3.13) are both employed for more precise prediction in the
following equation:

w∗ij = λ× wu
ij + (1− λ)× wc

ij, (3.14)

where wu
ij denotes the predicted value by user-based approach and

wc
ij denotes the predicted value by component-based approach. The

parameter λ controls how much the hybrid prediction results rely

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 33

on user-based approach or component-based approach. The proper
value of λ can be trained on a small sample dataset extracted from
the original one. We summarize the proposed algorithm in Algo-
rithm 2.

Algorithm 2: CloudPred Prediction Algorithm
Input: W , l, λ
Output: W ∗

Learn V and H by applying Algorithm 1 on W ;1

for all (ui, uj) ∈ U × U do2

calculate the similarity S(ui, uj) by Eq. (3.8);3

end4

for all (ci, cj) ∈ C × C do5

calculate the similarity S(ci, cj) by Eq. (3.9);6

end7

for all (i, j) ∈ Λ do8

construct similar user set Ψi by Eq. (3.10);9

construct similar component set Φj by Eq. (3.11);10

end11

for all (i, j) ∈ Ω− Λ do12

calculate wu
ij by Eq. (3.12);13

calculate wi
ij by Eq. (3.13);14

w∗
ij = λ× wu

ij + (1− λ)× wc
ij ;15

end16

3.4 Experiments

In this section, in order to show the prediction quality improvements
of our proposed approach, we conduct several experiments to com-
pare our approach with several state-of-the-art collaborative filtering
prediction methods.

In the following, Section 3.4.1 gives the description of our exper-
imental dataset, Section 3.4.2 defines the evaluation metrics, Sec-
tion 3.4.3 compares the prediction quality of our approach with some
other methods, and Section 3.4.4, Section 3.4.5, and Section 3.4.6

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 34

study the impact of training data density, Top-K, and dimensional-
ity, respectively.

3.4.1 Dataset Description

In real world, invoking thousands of commercial cloud components
for large-scale experiments is very expensive. In order to evaluate
the prediction quality of our proposed approach, we conduct exper-
iments on our Web service QoS dataset [129]. Web service, a kind
of cloud component, can be integrated into cloud applications for
accessing information or computing service from a remote system.
The Web service QoS dataset includes QoS performance of 5,825
openly-accessible real-world Web services from 73 countries. The
QoS values are observed by 339 distributed computers located in 30
countries from PlanetLab4, which is a distributed test-bed consisting
of hundreds of computers all over the world. In our experiment, each
of the 339 computers keeps invocation records of all the 5,825 Web
services by sending null operating requests to capture the character-
istics of communication links. Totally 1,974,675 QoS performance
results are collected. Each invocation record is a k dimension vec-
tor representing the QoS values of k criteria. We then extract a set
of 339×5825 user-component matrices, each of which stands for
a particular QoS property, from the QoS invocation records. For
simplicity, we use two matrices, which represent response-time and
throughput QoS criteria respectively, for experimental evaluation in
this chapter. Without loss of generality, our approach can be easily
extended to include more QoS criteria.

The statistics of Web service QoS dataset are summarized in Ta-
ble 3.1. Response-time and throughput are within the range 0-20
seconds and 0-1000 kbps respectively. The means of response-time
and throughput are 0.910 seconds and 47.386 kbps respectively. Fig-
ure 3.3 shows the distributions of response-time and throughput.

4http://www.planet-lab.org

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 35

<0.05 0.05−0.10.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 >1.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Values of Response−Time (seconds)

N
m

ub
er

s

(a)

<2.5 2.5−5 5−10 10−20 20−40 40−80 >80
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Values of Throughput (kbps)

N
m

ub
er

s

(b)

Figure 3.3: Value Distributions

Table 3.1: Statistics of WS QoS Dataset
Statistics Response-Time Throughput

Scale 0-20s 0-1000kbps
Mean 0.910s 47.386kbps

Num. of Users 339 339
Num. of Web Services 5,828 5,828

Num. of Records 1,974,675 1,974,675

Most of the response-time values are between 0.1-0.8 seconds and
most of the throughput values are between 5-40 kbps.

3.4.2 Metrics

We assess the prediction quality of our proposed approach in com-
parison with other methods by computing Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The metric MAE is defined
as:

MAE =

∑
i,j |wij − w∗ij|

N
, (3.15)

and RMSE is defined as:

RMSE =

√∑
i,j(wij − w∗ij)

2

N
, (3.16)

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 36

where wij is the QoS value of Web service cj observed by user ui,
w∗ij denotes the QoS value of Web service cj would be observed by
user ui as predicted by a method, and N is the number of predicted
QoS values.

3.4.3 Performance Comparison

In this section, we compare the prediction accuracy of our proposed
approach CloudPred with some state-of-the-art approaches:

1. UPCC (User-based collaborative filtering method using Pear-
son Correlation Coefficient): this method employs PCC to cal-
culate similarities between users and predicts QoS value based
on similar users [11, 96].

2. IPCC (Item-based collaborative filtering method using Pearson
Correlation Coefficient): this method employs PCC to calcu-
late similarities between Web services and predicts QoS value
based on similar items (item refers to component in this chap-
ter) [85].

3. UIPCC (User-item-based collaborative filtering method using
Pearson Correlation Coefficient): this method is proposed by
Ma et al. in [74]. It combines UPCC and IPCC approaches
and predicts QoS value based on both similar users and similar
Web services.

4. NMF (Non-negative Matrix Factorization): This method is pro-
posed by Lee and Seung in [63]. It applies non-negative matrix
factorization on user-item matrix for missing value prediction.

In this chapter, in order to evaluate the performance of differ-
ent approaches in reality, we randomly remove some entries from
the matrices and compare the values predicted by a method with
the original ones. The matrices with missing values are in different
sparsity. For example, 10% means that we randomly remove 90%

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 37

entries from the original matrix and use the remaining 10% entries
to predict the removed entries. The prediction accuracy is evaluated
using Eq.(3.15) and Eq.(3.16) by comparing the original value and
the predicted value of each removed entry. Our proposed approach
CloudPred performs matrix factorization in Section 3.3.2 and em-
ploys both similar users and similar Web services for predicting the
removed entries. The parameter settings of our approach Cloud-
Pred are Top-K=10, dimensionality=20, λ = 0.5 in the experiments.
Detailed impact of parameters will be studied in Section 3.4.4, Sec-
tion 3.4.5 and Section 3.4.6.

The experimental results are shown in Table 3.2. For each row in
the table, we highlight the best performer among all methods. From
Table 3.2, we can observe that our approach CloudPred obtains bet-
ter prediction accuracy (smaller MAE and RMSE values) than other
methods for both response-time and throughput under different ma-
trix densities. The MAE and RMSE values of dense matrices (e.g.,
matrix density is 80% or 90%) are smaller than those of sparse ma-
trices (e.g., matrix density is 10% or 20%), since a denser matrix
provides more information for predicting the missing values. In gen-
eral, the MAE and RMSE values of throughput are larger than those
of response-time because the scale of throughput is 0-1000 kbps,
while the scale of response-time is 0-20 seconds. Compared with
other methods, the improvements of our approach CloudPred are
significant, which demonstrates that the idea of combining global
and local information for QoS prediction is realistic and reasonable.

3.4.4 Impact of Matrix Density

In Figure 3.4, we compare the prediction accuracy of all the methods
under different matrix densities. We change the matrix density from
10% to 90% with a step value of 10%. The parameter settings in this
experiment are Top-K=10, dimensionality=20, and λ = 0.5.

Figure 3.4(a) and Figure 3.4(b) show the experimental results of

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 38

Table 3.2: Performance Comparsions (A Smaller MAE or RMSE Value Means a
Better Performance)

Matrix Response-Time (seconds)
Density

Metrics
IPCC UPCC UIPCC NMF CloudPred

MAE 0.7596 0.5655 0.5654 0.6754 0.5306
10% RMSE 1.6133 1.3326 1.3309 1.5354 1.2904

MAE 0.7624 0.5516 0.5053 0.6771 0.4745
20% RMSE 1.6257 1.3114 1.2486 1.5241 1.1973

MAE 0.6703 0.4442 0.3873 0.3740 0.3704
80% RMSE 1.4102 1.1514 1.0785 1.1242 1.0597

MAE 0.6687 0.4331 0.3793 0.3649 0.3638
90% RMSE 1.4173 1.1264 1.0592 1.1121 1.0359

Matrix Throughput (kbps)
Density

Metrics
IPCC UPCC UIPCC NMF CloudPred

MAE 31.6722 26.2015 22.6567 19.7700 19.0009
10% RMSE 65.5220 61.9658 57.4653 57.3767 51.8236

MAE 35.1780 21.9313 18.1230 15.7794 15.4203
20% RMSE 66.6028 56.5441 50.0435 50.1402 44.8975

MAE 29.9146 14.5497 12.4880 12.5107 10.7881
80% RMSE 64.3079 44.3738 39.6017 39.2029 36.8506

MAE 29.9404 13.8761 12.0662 11.6960 10.4722
90% RMSE 63.7149 42.5534 38.0763 36.7555 35.9225

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 39

10% 20% 30% 40% 50% 60% 70% 80% 90%
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Matrix Density

M
A

E

Response−Time

IPCC
UPCC
UIPCC
NMF
CloudPred

(a)

10% 20% 30% 40% 50% 60% 70% 80% 90%
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Matrix Density

R
M

S
E

Response−Time

IPCC
UPCC
UIPCC
NMF
CloudPred

(b)

10% 20% 30% 40% 50% 60% 70% 80% 90%
10

15

20

25

30

35

40

Matrix Density

M
A

E

Throughput

IPCC
UPCC
UIPCC
NMF
CloudPred

(c)

10% 20% 30% 40% 50% 60% 70% 80% 90%

40

50

60

70

80

Matrix Density

R
M

S
E

Throughput

IPCC
UPCC
UIPCC
NMF
CloudPred

(d)

Figure 3.4: Impact of Matrix Density

response-time, while Figure 3.4(c) and Figure 3.4(d) show the ex-
perimental results of throughput. The experimental results show
that our approach CloudPred achieves higher prediction accuracy
than other competing methods under different matrix density. In
general, when the matrix density is increased from 10% to 30%, the
prediction accuracy of our approach CloudPred is significantly en-
hanced. When the matrix density is further increased from 30% to
90%, the enhancement of prediction accuracy is quite limited. This
observation indicates that when the matrix is very sparse, collect-
ing more QoS information will greatly enhance the prediction accu-
racy, which further demonstrates that sharing local QoS information
among cloud component users could effectively provide personal-

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 40

ized QoS estimation.
In the experimental results, we observe that the performance of

IPCC is much worse than that of other methods. The reason is that in
our Web service dataset the number of users, which is 339, is much
smaller than the number of components, which is 5258. When some
entries are removed from the user-component matrices, the number
of common users between two components, on average, are very
small, which would greatly impact the accuracy of common user
based similarity computation between components. Therefore, the
prediction accuracy of similar items based method IPCC is greatly
decreased by the inaccuracy similarity computation between com-
ponents.

3.4.5 Impact of Top-K

The parameter Top-K determines the size of similar user and similar
component sets. In Figure 3.5, we study the impact of parameter
Top-K by varying the values of Top-K from 10 to 50 with a step
value of 10. Other parameter settings are dimensionality=10 and
λ = 0.5.

Figure 3.5(a) and Figure 3.5(b) show the MAE and RMSE results
of response-time respectively, while Figure 3.5(c) and Figure 3.5(d)
show the MAE and RMSE results of throughput respectively. The
experimental results show that our approach CloudPred achieves
best prediction accuracy(smallest MAE and RMSE values) when
Top-K is set around 10. Under both sparse matrix, whose density
is 10%, and dense matrix, whose density is 90%, all the prediction
accuracies decreases when we decrease the Top-K value from 10 to
2 or increase from 10 to 18. This is because too small Top-K value
will exclude useful information from some similar users and similar
components, while too large Top-K value will introduce noise from
dissimilar users and dissimilar components, which will impact the
prediction accuracy.

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 41

2 4 6 8 10 12 14 16 18
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Values of Top−K

M
A

E

Response−Time

Matrix Density = 10%
Matrix Density = 90%

(a)

2 4 6 8 10 12 14 16 18
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Values of Top−K

R
M

S
E

Response−Time

Matrix Density = 10%
Matrix Density = 90%

(b)

2 4 6 8 10 12 14 16 18
12

14

16

18

20

22

24

26

28

Values of Top−K

M
A

E

Throughput

Matrix Density = 10%
Matrix Density = 90%

(c)

2 4 6 8 10 12 14 16 18
35

40

45

50

55

60

65

70

Values of Top−K

R
M

S
E

Throughput

Matrix Density = 10%
Matrix Density = 90%

(d)

Figure 3.5: Impact of Top-K

3.4.6 Impact of Dimensionality

The parameter dimensionality determines the number of latent fea-
tures used to characterize user and cloud component. In Figure 3.6,
we study the impact of parameter dimensionality by varying the val-
ues of dimensionality from 10 to 50 with a step value of 10. Other
parameter settings are Top-K=10, and λ = 0.5.

Figure 3.6(e) and Figure 3.6(f) show the MAE and RMSE values
of response-time, while Figure 3.6(g) and Figure 3.6(h) show the
MAE and RMSE values of throughput. When the matrix density is
90%, we observe that our approach CloudPred achieves the best per-
formance when the value of dimensionality is 30, while smaller val-
ues like 10 or larger values like 50 can potentially hurt the prediction

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 42

10 20 30 40 50
0.525

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

Values of Dimensionality

M
A

E

Response−Time

Matrix Density = 10%

(a)

10 20 30 40 50
1.305

1.31

1.315

1.32

1.325

1.33

1.335

1.34

Values of Dimensionality

R
M

S
E

Response−Time

Matrix Density = 10%

(b)

10 20 30 40 50
18.8

18.9

19

19.1

19.2

19.3

Values of Dimensionality

M
A

E

Throughput

Matrix Density = 10%

(c)

10 20 30 40 50
52

52.5

53

53.5

54

54.5

55

Values of Dimensionality

R
M

S
E

Throughput

Matrix Density = 10%

(d)

10 20 30 40 50
0.356

0.358

0.36

0.362

0.364

0.366

0.368

0.37

Values of Dimensionality

M
A

E

Response−Time

Matrix Density = 90%

(e)

10 20 30 40 50
1.066

1.068

1.07

1.072

1.074

1.076

1.078

1.08

1.082

1.084

Values of Dimensionality

R
M

S
E

Response−Time

Matrix Density = 90%

(f)

10 20 30 40 50
10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11

11.1

Values of Dimensionality

M
A

E

Throughput

Matrix Density = 90%

(g)

10 20 30 40 50
34.5

35

35.5

36

36.5

37

Values of Dimensionality

R
M

S
E

Throughput

Matrix Density = 90%

(h)

Figure 3.6: Impact of Dimensionality

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Values of λ

M
A

E

Response−Time

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45

Values of λ

R
M

S
E

Response−Time

(b)

Figure 3.7: Impact of λ

accuracy. This observation indicates that when the user-component
matrices are dense, 10 latent factors are not enough to character-
ize the features of user and component which are mined from the
rich QoS information, while 50 latent factors are too many since it
will cause overfitting problem. When the matrix density is 10%, we
observed that the prediction accuracy of our approach CloudPred
decreases (MAE and RMSE increase) when the value of dimension-
ality is increased from 10 to 50. This observation indicates that when
the user-component matrices are sparse, 10 latent factors are already
enough to characterize the features of user and component which
are mined from the limited user-component QoS information, while
other larger values of dimensionality will cause the overfitting prob-
lem.

3.4.7 Impact of λ

The parameter λ determines how much the final prediction results
rely on user-based approach or component-based approach. A larger
value of λ means user-based approach contributes more to the hybrid
prediction. A smaller value of λ means component-based approach
contributes more to the hybrid prediction. In Figure 3.7, we study
the impact of parameter λ by varying the values of λ from 0 to 1 with
a step value of 0.1. Other parameter settings are dimensionality=10

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 44

and Top-K=10.
Figure 3.7(a) and Figure 3.7(b) show the MAE and RMSE re-

sults of response-time respectively. The experimental results show
that the value of λ impacts the recommendation results significantly,
which demonstrates that hybrid the user-based approach and component-
based approach improves the recommendation accuracy. The pre-
diction accuracies increases when we increase the value of λ at first.
But when λ surpasses a certain threshold, the prediction accuracy
decrease with further increase of the value of λ. This phenomenon
coincides with the intuition that purely using the user-based ap-
proach or purely using the component-based approach cannot gener-
ate better results than hybrid these two approaches. From figure 3.7,
we observed that when λ ∈ [0.4, 0.7], CloudPred achieves the best
performance, while a smaller value or a larger value can potentially
degrade the prediction performance. Moreover, the insensitivity of
the optimal value of λ shows that the parameter of CloudPred is easy
the train.

3.5 Summary

Based on the intuition that a user’s cloud component QoS usage
experiences can be predicted by exploring the past usage experi-
ence from both the user and its similar users, we propose a novel
neighborhood-based approach, which is enhanced by feature mod-
eling on both user and component, called CloudPred, for collabo-
rative and personalized QoS value prediction on cloud components.
Requiring no additional invocation of cloud components, CloudPred
makes the QoS value prediction by taking advantage of both local
usage information from similar users and similar components and
global invocation information shared by all the users. The extensive
experimental results show that our approach CloudPred achieves
higher prediction accuracy than other competing methods.

Since the Internet environment is highly dynamic, the QoS per-

CHAPTER 3. NEIGHBORHOOD-BASED QOS PREDICTION 45

formances of a cloud component may be variable against time (e.g.,
due to the network traffic, server workload, etc.). In our current ap-
proach, the QoS values are observed over a long period, which rep-
resent the average QoS performance of cloud components. Since the
average QoS performance of cloud components is relatively stable,
the predicted QoS values provide valuable information of unused
cloud components for the users. In our future work, we will explore
an online prediction algorithm to handle the dynamically changing
QoS values by fusing with the time information.

Currently, we are collecting QoS information of Web service,
which is a kind of cloud component. In the future, we will conduct
more experiments to evaluate our approach in commercial clouds
which contain multiple kinds of cloud components. For future work,
we will investigate more techniques for improving the similarity
computation (e.g., clustering models, latent factor models, data smooth-
ing, etc.). We will also conduct more investigations on the correla-
tions and combinations of different QoS properties.

2 End of chapter.

Chapter 4

Time-Aware Model-based QoS
Prediction

4.1 Overview

Web services are software systems designed to support interoperable
machine-to-machine interaction over a network [50]. With the expo-
nential growth of Web service as a method of communications be-
tween heterogeneous systems, Service-Oriented Architecture (SOA)
is becoming a popular and major framework for building Web appli-
cations in the era of Web 2.0 [78], whereby Web services offered
by different providers are discovered and integrated over the Inter-
net. Typically, a service-oriented application consists of multiple
Web services interacting with each other in several tiers. How to
build high quality service-oriented applications becomes an urgent
and crucial research problem.

With the growing number of Web services over the Internet, de-
signers of service-oriented applications can choose from a broad
pool of functionally identical or similar Web services when creating
applications. Web services are usually deployed in remote servers
and accessed by users through Internet connections. The quality of
a service-oriented application, therefore, is greatly influenced by the
quality of the invoked Web services. To build high-quality service-
oriented applications, non-functional Quality-of-Service (QoS) per-

46

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 47

formance of Web services becomes a major concern for application
designers when making service selections [32]. However, the QoS
performance of Web services observed from the users’ perspective
is usually quite different from that declared by the service providers
in Service Level Agreement (SLA), due to:

• QoS performance of Web services is highly related to invoca-
tion time, since the service status (e.g., workload, number of
clients, etc.) and the network environment (e.g., congestion,
etc.) change over time.

• Service users are typically distributed in different geographical
locations. The user-observed QoS performance of Web ser-
vices is greatly influenced by the Internet connections between
users and Web services. Different users may observe quite dif-
ferent QoS performance when invoking the same Web service.

Based on the above analysis, providing time-aware personalized QoS
information of Web services is becoming more and more essen-
tial for service-oriented application designers to make service se-
lection [32, 115], service composition [3, 4], and automatically late-
binding at runtime [13].

In reality, a service user usually only invokes a limited number
of Web services in the past and thus only observes QoS values of
these invoked Web services. Without sufficient time-aware person-
alized QoS information, it is difficult for application designers to
select optimal Web services at design time and replace low quality
Web services with better ones at runtime. In practice, invoking Web
services from users’ perspectives for evaluation purpose is quite dif-
ficult, and includes the following critical drawbacks:

• Executing service invocations to obtain QoS information is too
expensive for service users, since service providers may charge
for invocations. At the same time, invocations for evaluation
purpose consume resources of service users and service providers.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 48

• With the growing number of Web services over the Internet, it
is time-consuming to evaluate all the Web services. Moreover,
some potentially appropriate Web services may not be discov-
ered by the current user.

• To monitor the QoS performance of Web services continuously,
service users need to conduct service invocations periodically,
which will introduce a heavy workload to service users.

• Since service users are not experts in service evaluation, it will
take a solid effort from service users to evaluate the Web ser-
vices in-depth. The time-to-market constraints will also limit
the amount of resources for service evaluation.

It becomes an urgent task to explore a time-aware personalized
prediction approach for efficiently estimating missing QoS informa-
tion of Web services for different service users. To address this criti-
cal challenge, we propose a model-based approach, called WSPred,
for time-aware and personalized QoS prediction of Web services.
WSPred collects time-aware QoS information from geographically
distributed service users, and combines the local information to get a
global user-service-time tensor. By performing tensor factorization,
user-specific, service-specific and time-specific latent features are
extracted from the past QoS experiences of different service users.
The unknown QoS values are therefore estimated by analyzing how
the user features are applied to the corresponding service features
and time features. We collect a large-scale real-world Web service
QoS dataset and conduct extensive experiments to compare the QoS
prediction accuracy with several other state-of-the-art approaches.
The experimental results show the effectiveness and efficiency of
our proposed approach WSPred.

In summary, this chapter makes the following contributions:

• We formally identify the critical problem of time-aware Web
service QoS prediction and propose a novel collaborative frame-
work to achieve QoS information sharing among service users.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 49

A user-side light-weight middleware is designed for automati-
cally recording and sharing QoS experiences.

• We propose a novel time-aware personalized QoS prediction
approach WSPred, which analyzes latent features of user, ser-
vice and time by performing tensor factorization. We consider
WSPred as the first QoS prediction approach which addresses
the difference over time in service computing literature.

• We conduct large-scale real-world experiments to study the
prediction accuracy and efficiency of our WSPred compared
with other state-of-the-art approaches. Moreover, we publicly
release our large-scale Web service QoS dataset1 for future re-
search. To the best of our knowledge, it is the first multi-user
QoS dataset with time series information in the Web service
literature.

The remainder of this chapter is organized as follows: Section 4.2
describes the collaborative framework for sharing QoS information
between service users. Section 4.3 presents our WSPred approach in
detail. Section 4.4 introduces the experimental results. Section 4.5
concludes the chapter.

4.2 Collaborative Framework for Web Services

In this section, we present the collaborative framework for QoS pre-
diction of Web services. Figure 4.1 shows the system architecture.
Within a service-oriented Web application, several Web services are
employed to implement complicated functions. These Web services
are connected with each other in multiple tiers. For each tier, an
optimal Web service will be selected from a set of functional equiv-
alent service candidates. Typically the Web service candidates are
provided by different organizations and are distributed in different

1http://www.wsdream.net/

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 50

Web Application 1 Web Application 2 Web Application n

Middleware

Middleware

Middleware

Service

Candidates

Service

Candidates

Service

Candidates

Figure 4.1: System Architecture

geographic locations and time zones. When invoked through com-
munication links, the user-side usage experiences are influenced by
the network environments and the server-side status at invocation
time.

The mechanism proposed in this chapter is to (1) share local Web
service usage experiences from different service users, (2) combine
these pieces of local information together to get global QoS informa-
tion for all service candidates, (3) extract time-specific user features
and service features, and (4) make personalized time-aware QoS
value prediction based on these features. As shown in Figure 4.2,
each service user keeps local records of QoS usage experience on
Web services and is encouraged to contribute its local records to
obtain records from other users. By contributing more individually
observed Web service QoS information, a service user can obtain
more global QoS information from other users, thus obtaining more
accurate Web service QoS prediction values. Given accurate QoS
prediction results, service users could select the potentially optimal
services for composing service-oriented Web applications. The de-
tailed collaborative prediction approach will be presented in Sec-
tion 4.3.

Since most of the service users are not experts in service testing,
to reduce the efforts of service users spent on testing the service QoS

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 51

1u

1s

4s

2s

1t 2t 3t

1t 2t 3t

1t 2t 3t

Figure 4.2: A Toy Example

performance, we design a user-side light-weight middleware for ser-
vice users to automatically record QoS values of invocations and to
contribute the local records to the server for obtaining more invoca-
tion results from other service users. Within the middleware, there
are three management components: Monitor, Collector and Predic-
tor. Monitor is responsible for monitoring the QoS performance of
Web services when users sends invocations. Collector is respon-
sible for contributing local QoS information to other users and for
collecting shared QoS information from other users. Predictor is
responsible for providing time-aware personalized QoS value pre-
diction based on local and other users’ QoS information collected
by Collector.

4.3 Time-Aware QoS Prediction

Previous Web service related techniques such as selection, compo-
sition, and orchestration only employ average QoS performance of
service candidates at design-time. In recent Web service literatures,

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 52

5u
4u
3u
2u
1u

1s 2s 3s 4s 5s

1t
2t

5t
3t 4t

Figure 4.3: User-Service-Time Tensor

most of the state-of-the-art techniques can automatically update cor-
responding Web services with better ones at run-time, which re-
quires time-specific QoS performance of Web services.

In this section, we first formally describe the QoS value pre-
diction problem on Web services in Section 4.3.1. Then we pro-
pose a latent feature learning algorithm to learn the user-specific,
service-specific, and time-specific features in Section 4.3.2. The
missing QoS values are predicted by applying the proposed algo-
rithm WSPred in Section 4.3.3. Finally, the complexity analysis is
conducted in Section 4.3.4.

4.3.1 Problem Description

Figure 4.2 illustrates a toy example of the QoS prediction problem
we study in this chapter. In this figure, user u1 has used three Web
services s1, s2 and s4 in the past. u1 recorded the observed QoS per-
formance of Web services s1, s2 and s4 with specific invocation time
in local site. By integrating all the QoS information from other users,

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 53

we form a three-dimensional user-service-time tensor as shown in
Figure 4.3. In this example, totally there are 5 users (from u1 to u5),
5 services (from s1 to s5) and 5 time intervals (from t1 to t5). The
tensor is split into several slices with each one representing a time
interval. Within a slice, each entry denotes an observed QoS value
of a Web service from a user during the specific time interval. The
problem we study in this chapter is how to efficiently and precisely
predict the missing entries in the user-service-time tensor based on
the existing entries.

Now we formally define the problem of QoS prediction for Web
services as follows: Given a set of users and a set of Web services,
based on the existing QoS values from different users, predict the
missing QoS values of Web services when invoked by users at dif-
ferent time intervals. More precisely:

Let U be the set of m users, S be the set of n Web
services, and T be the set of c time intervals. A QoS el-
ement is a quartet (i, j, k, qijk) representing the observed
quality of Web service sj by user ui at time interval tk,
where i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}, k ∈ {1, · · · , c}
and qijk ∈ Rp is a p-dimensional vector representing the
QoS values of p criteria. Let Ω be the set of all triads
{i, j, k} and Λ be the set of all known triads (i, j, k) in
Ω. Consider a tensor Y ∈ Rm×n×c with each entry Yijk

representing the observed pth criterion value of service sj
by user ui at time interval tk. Then the missing entries
{Yijk|(i, j, k) ∈ Ω− Λ} should be predicted based on the
existing entries {Yijk|(i, j, k) ∈ Λ}.

Typically, the QoS values can be integers from a given range
(e.g., {0, 1, 2, 3}) or real numbers. Without loss of generality, we
can map the QoS values to the interval [0, 1] using the following

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 54

function:

f(x) =

0, if x < Ymin

1, if x > Ymax

x−Ymin

Ymax−Ymin
, otherwise

where Ymax and Ymin are the specified upper bound and lower bound
of QoS values respectively.

4.3.2 Latent Features Learning

In order to learn the latent features of users, services, and time,
we employ tensor factorization technique to fit a factor model to
the user-service-time tensor. The factorized user-specific, service-
specific and time-specific matrices are utilized to make further miss-
ing entries prediction. The idea behind the factor model is to de-
rive a high-quality low-dimensional feature representation of users,
services and time by analyzing the user-service-time tensor. The
premise behind a low-dimensional factor model is that there is only
a small number of factors influencing QoS usage experiences, and
that a user’s QoS usage experience vector is determined by how each
factor applies to that user, the corresponding service and the specific
time interval. Examples of physical feature are network distance
between the user and the server, the workload of the server, etc. La-
tent features are orthogonal representing the decomposed results of
physical factors.

In the chapter, we consider an m × n × c QoS tensor consist-
ing of m users, n services and c time intervals. A low-rank tensor
factorization approach seeks to approximate the QoS tensor Y by a
multiplication of l-rank factors [84],

Y ≈ C ×u U ×s S ×t T, (4.1)

where C ∈ Rl×l×l, U ∈ Rm×l, S ∈ Rn×l and T ∈ Rc×l are latent
feature matrices. l is the number of latent features. Each column in
U , S and T representing a user, a Web service and a time interval,

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 55

respectively. ×u, ×s and ×t are tensor-matrix multiplication opera-
tors with the subscript showing in which direction on the tensor to
multiply the matrix (i.e., C ×u U =

∑l
i=1CijkUij). C is set to the

diagonal tensor:

C =

{
1, if i = j = k

0, otherwise

Typically, l ≪ mnc since in the real world, each user has invoked
only a small portion of Web services, and the tensor Y is usually
very sparse. From the above definition, we can see that the low-
dimensional matrices U , S and T are unkonwn and need to be esti-
mated.

To estimate the quality of tensor approximation, we need to con-
struct a loss function for evaluating the error between the estimated
tensor and the original tensor. The distance between two tensors is
usually employed to define the loss function:

1

2
||Y − Ŷ ||2F , (4.2)

where ||·||2F denotes the Frobenius norm. However, due to the reason
that there are a large number of missing values, we only factorize the
observed entries in tensor Y . Hence, we employ the following loss
function instead:

1

2

m∑
i=1

n∑
j=1

c∑
k=1

Iijk(Yijk − Ŷijk)
2, (4.3)

where Iijk is the indicator function that is equal to 1 if user ui in-
voked service sj during the time interval tk and equal to 0 otherwise.
To avoid the overfitting problem, we add three regularization terms
to Eq. (4.3) to constrain the norms of U , S and T . Hence we con-
duct the tensor factorization as to solve the following optimization

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 56

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Time Intervals

R
es

po
ns

e−
T

im
e

(User 1, Web Service A)
(User 2, Web Service B)

Figure 4.4: Response-Time of Two Pairs of User-Service

problem:

min
U,S,T
L(Y, U, S, T) =

1

2

m∑
i=1

n∑
j=1

c∑
k=1

Iijk(Yijk − Ŷijk)
2

+
λ1

2
||U ||2F +

λ2

2
||S||2F +

λ3

2
||T ||2F ,

(4.4)

where λ1, λ2, λ3 > 0. λ1, λ2 and λ3 defines the importance of regu-
larization terms. In other words, the optimal solution is highly rely
on the error we evaluated in the first term. λ1, λ2 and λ3 defines the
degree of accuracy in the first term to avoid overfitting problem. The
optimization problem in Eq. (4.4) minimizes the sum-of-squared-
errors objective function with quadratic regularization terms.

Figure 4.4 gives a comprehensive illustration of the Web service
response-time observed by different service users. We randomly se-

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 57

lect two service users (User 1 and User 2) and two real-world Web
services (Web Service A and Web Service B) from the experiment
described in Section 4.4. As shown in Figure 4.4, during different
time intervals, a user has different QoS experiences on the same Web
service. In general, the differences are limited within a range (e.g.,
most of the response-time values of (User 1, Web Service A) are
within the range of 0.2-0.6s and most of the response-time values
of (User 2, Web Service B) are within the range of 0.7-0.9s). This
observation indicates that although the QoS values of a particular
user-service are different during different time intervals, they fluctu-
ate around the average QoS value of the user-service pair during all
time intervals. Based on this observation, we further add a regular-
ization term to Eq. (4.4) to prevent the predicted QoS values from
varying a lot against the average QoS value. We define the predic-
tion with average QoS value constraint as the following optimization
problem:

min
U,S,T
LA(Y, U, S, T) =

1

2

m∑
i=1

n∑
j=1

c∑
k=1

Iijk(Yijk − Ŷijk)
2

+
λ1

2
||U ||2F +

λ2

2
||S||2F +

λ3

2
||T ||2F

+
η

2

m∑
i=1

n∑
j=1

c∑
k=1

Iijk(Ŷijk − Ȳij)
2,

(4.5)

where η > 0, and Ȳij denotes the average QoS value of Web service
sj observed by user ui during all the time intervals. η controls how
much the prediction method should engage the information of aver-
age QoS performance. In the extreme case, if we use a very small
value of η, we only perform tensor factorization without considering
the global QoS information. On the other side, if we use a very large
value of η, the average QoS performance will dominate the learning
processes.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 58

A local minimum of the objective function given by Eq. (4.5)
can be found by performing incremental gradient descent in feature
vectors Ui, Sj and Tk:

∂LA
∂Uif

=
n∑

j=1

c∑
k=1

Iijk(Ŷijk − Yijk)S
T
j Tk + λ1Uif

+ η

n∑
j=1

c∑
k=1

Iijk(Ŷijk − Ȳij)S
T
j Tk,

∂LA
∂Sjf

=
m∑
i=1

c∑
k=1

Iijk(Ŷijk − Yijk)U
T
i Tk + λ2Sjf

+ η
m∑
i=1

c∑
k=1

Iijk(Ŷijk − Ȳij)U
T
i Tk,

∂LA
∂Tkf

=
m∑
i=1

n∑
j=1

Iijk(Ŷijk − Yijk)U
T
i Sj + λ3Tkf

+ η
m∑
i=1

n∑
j=1

Iijk(Ŷijk − Ȳij)U
T
i Sj. (4.6)

Algorithm 3 shows the iterative process for latent feature learn-
ing. We first initialize matrices U , S and T with small random non-
negative values. Iteration of the update rules derived from Eq. (4.6)
converges to a local minimum of the objective function given in
Eq. (4.5).

4.3.3 Missing Value Prediction

After the user-specific, service-specific and time-specific latent fea-
ture spaces U , S and T are learned, we can predict the QoS per-
formance of a given service observed by a user during the specific
time interval. For the missing entry Yijk in the QoS tensor, the value

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 59

Algorithm 3: Latent Features Learning Algorithm
Input: Y , l, λ, η
Output: U , S, T
Initialize U ∈ Rl×m, S ∈ Rl×n and T ∈ Rl×c with small random numbers;1

repeat2

for all (i, j, k) ∈ Λ do3

Ŷijk =
∑l

f=1 UifSjfTkf ;4

end5

for all (i, j) do6

Ȳij =
∑c

k=1 IijkYijk∑c
k=1 Iijk

;7

end8

for all (i, j, k) ∈ Λ do9

for (f = 1; f ≤ l; f ++) do10

Uif ← Uif − [(Ŷijk − Yijk)S
T
j Tk + λUif + η(Ŷijk − Ȳij)S

T
j Tk];11

Sjf ← Sjf − [(Ŷijk − Yijk)U
T
i Tk + λSjf + η(Ŷijk − Ȳij)U

T
i Tk];12

Tkf ← Tkf − [(Ŷijk − Yijk)U
T
i Sj + λTkf + η(Ŷijk − Ȳij)U

T
i Sj];13

end14

end15

until Converge ;16

predicted by our method is defined as

Ŷijk = Iijk

l∑
f=1

UifSjfTkf . (4.7)

4.3.4 Complexity Analysis

The main computation of gradient methods is evaluating the objec-
tive function LA and their gradients against variables. The computa-
tional complexity of evaluating the objective function LA is O(ρY l+
ρY c), where ρY is the number of nonzero entries in the tensor Y , l is
the dimensions of the latent features, and c is the number of time
intervals. The computational complexities for the gradients ∂LA

∂U ,
∂LA
∂S and ∂LA

∂T in Eq. (4.6) are O(ρY l + ρY c). Therefore, the total
computational complexity in one iteration is O(ρY l + ρY c), which
indicates that theoretically, the computational time of our method

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 60

is linear with recept to the number of observed QoS values in the
user-service-time tensor Y . Note that because of the sparsity of
Y , ρY << mnc, which indicates that the computation time grows
slowly with respect to the size of Tensor Y . This complexity anal-
ysis shows that our proposed approach is very efficient and can be
applied to large-scale systems.

4.4 Experiments

In this section, we conduct several experiments to compare our ap-
proach with several state-of-the-art collaborative filtering prediction
methods. In the following, Section 4.4.1 introduces the experimen-
tal setup and gives the description of our experimental dataset, Sec-
tion 4.4.2 defines the evaluation metrics, Section 4.4.3 compares the
prediction quality of our approach with other competing methods,
and Section 4.4.4 and Section 4.4.5 study the impact of tensor den-
sity and dimensionality, respectively.

4.4.1 Experimental Setup and Dataset Collection

To evaluate our proposed QoS prediction approach in the real-world,
we implement a tool WSMonitor for monitoring the QoS perfor-
mance of Web service, and collect a large-scale Web service QoS
dataset for conducting various experiments.

WSMonitor is implemented and deployed with JDK 6.0, Eclipse
3.3, Axis 2, and Apache 2.2.17. WSMonitor first crawls a set of
WSDL files from the Internet and generates a list of openly-accessible
Web services. For each Web service in the list, WSMonitor auto-
matically generates a java class for service invocation by employing
the WSDL2Java tool from the Axis package [48]. Totally, 5,871
classes are generated for 5,871 Web services. By calling the func-
tions within a class, null operation requests are sent to the corre-
sponding Web service for capturing the QoS performance.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 61

We deploy the WSMonitor on 142 distributed computers located
in 22 countries from PlanetLab2, which is a distributed test-bed con-
sisting of hundreds of computers all over the world. Totally, 4,532
publicly available real-world Web services from 57 countries are
monitored by each computer continuously. 1,339 of the initially se-
lected Web services are excluded in this experiment due to: 1) au-
thentication required and 2) permanent invocation failure (e.g., the
Web service is shutdown). In our experiment, each of the 142 com-
puters sends null operation requests to all the 4,532 Web services
during every time interval. The experiment lasts for 16 hours with a
time interval lasting for 15 minutes.

By collecting invocation records from all the computers, finally
we include 30,287,611 QoS performance results into the Web ser-
vice QoS dataset. Each invocation record is a k dimension vector
representing the QoS values of k criteria. We then extract a set of
142×4532×64 user-service-time tensors, each of which stands for a
particular QoS property, from the QoS invocation records. For sim-
plicity, we employ two tensors, which represent response-time and
throughput QoS criteria respectively, for experimental evaluation in
this chapter. Without loss of generality, our approach can be easily
extended to include more QoS criteria.

The statistics of Web service QoS dataset are summarized in Ta-
ble 4.1. Response-time and throughput are within the range of 0-20
seconds and 0-1000 kbps respectively. The means of response-time
and throughput are 3.165 seconds and 9.609 kbps respectively. The
distributions of the response-time and throughput values of the user-
service-time tensors are shown in Figure 4.5(a) and Figure 4.5(b)
respectively. Most of the response-time values are between 0.1-0.8
seconds and most of the throughput values are between 0.8-3.2 kbps.

2http://www.planet-lab.org

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 62

Table 4.1: Statistics of WS QoS Dataset
Statistics Response-Time Throughput

Scale 0-20s 0-1000kbps
Mean 3.165s 9.609kbps

Num. of Users 142 142
Num. of Web Services 4,532 4,532
Num. of Time Intervals 64 64

Num. of Records 30,287,611 30,287,611

<0.1 0.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 >1.6
0

1

2

3

4

5

6

7

8

9
x 10

6

Values of Response−Time (seconds)

N
um

be
rs

(a)

<0.4 0.4−0.8 0.8−1.6 1.6−3.2 3.2−6.4 >6.4
0

1

2

3

4

5

6

7
x 10

6

Values of Throughput (kbps)

N
um

be
rs

(b)

Figure 4.5: QoS Value Distributions

4.4.2 Metrics

We assess the prediction quality of our proposed approach in com-
parison with other methods by computing Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The metric MAE is defined
as:

MAE =

∑
ijk |Ŷijk − Yijk|

N
, (4.8)

and RMSE is defined as:

RMSE =

√∑
ijk(Ŷijk − Yijk)2

N
, (4.9)

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 63

where Yijk is the QoS value of Web service sj observed by user ui at
time interval t, Ŷijk denotes the QoS value of Web service sj would
be observed by user ui at time interval tk as predicted by a method,
and N is the number of predicted QoS values.

4.4.3 Performance Comparisons

In this section, in order to show the effectiveness of our proposed
Web service QoS prediction approach, we compare the prediction
accuracy of the following methods:

1. MF1-This method considers the user-service-time tensor as a
set of user-service matrix slices in terms of time. For each slice,
the prediction method proposed by Lee and Seuing in [63] is
employed. It applies non-negative matrix factorization on user-
item matrix for missing value prediction.

2. MF2-This method first compresses the user-service-time ten-
sor into a user-service matrix. For each entry in the matrix, the
value is the average of the specific user-service pair during all
the time intervals. After obtaining the compressed user-service
matrix, it applies the non-negative matrix factorization tech-
nique proposed by Lee and Seuing [63] on user-item matrix for
missing value prediction.

3. TF-This is a tensor factorization-based prediction method. It
applies tensor factorization on user-service-time tensor to ex-
tract user-specific, service-specific and time-specific character-
izes. The missing value is then predicted based on how these
characterized apply to each other.

4. WSPred-This method is proposed in this chapter. It is a tensor
factorization-based recommendation with average QoS value
constraints.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 64

Table 4.2: Performance Comparsions (A Smaller MAE or RMSE Value Means a
Better Performance)

Tensor Response-Time (seconds)
Density

Metrics
MF1 MF2 TF WSPred

MAE 3.4137 2.9187 2.9184 2.5580
5% RMSE 5.3423 5.1024 4.7508 4.3626

MAE 2.8518 2.8421 2.7888 2.4990
10% RMSE 5.0667 4.5563 4.5696 4.2892

MAE 2.4241 2.2679 2.2511 2.1462
45% RMSE 4.3240 4.2541 4.2071 3.9200

MAE 2.3959 2.2596 2.2127 2.1266
50% RMSE 4.2996 4.1490 4.0169 3.8943

Tensor Throughput (kbps)
Density

Metrics
MF1 MF2 TF WSPred

MAE 10.5460 8.8317 8.7997 8.2761
5% RMSE 46.6735 43.4769 39.5133 39.0962

MAE 9.9839 8.7522 8.5080 8.0131
10% RMSE 46.6656 39.7740 39.2792 38.6251

MAE 8.6773 7.9590 7.9471 6.9398
45% RMSE 45.0077 39.9388 38.6964 36.5724

MAE 8.6224 7.8306 7.8045 6.8558
50% RMSE 44.9407 38.9388 38.6964 36.5724

Since memory-based approaches require much more computa-
tion time than model-based approaches, we only compare the above
four model-based approaches. Since the matrix factorization tech-
nique cannot be directly applied to time-aware prediction problem,
we extend the prediction approach [63] in two different ways, which
derive method MF1 and MF2 respectively.

In order to evaluate the performance of different approaches in
reality, we randomly remove some entries from the tensors and com-
pare the values predicted by a method with the original ones. The

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 65

tensors with missing values are in different densities. For example,
10% means that we randomly remove 90% entries from the origi-
nal tensor and use the remaining 10% entries to predict the removed
entries. The prediction accuracy is evaluated using Eq. (4.8) and
Eq. (4.9) by comparing the original value and the predicted value of
each removed entry. The values of λ and η are tuned by perform-
ing cross-validation [49] on the observed QoS data. Without lost of
generality, the parameter settings of all the approaches are l = 20
and λ1 = λ2 = λ3 = η = 0.001 in the experiments conducted in
this chapter. Detailed impact of tensor density and dimensionality is
studied in Section 4.4.4 and Section 4.4.5.

The QoS value prediction accuracies evaluated by MAE and RMSE
are shown in Table 4.2. For each row in the table, we highlight
the best performer among all methods. From Table 4.2, we can ob-
serve that the tensor factorization-based prediction methods (i.e., TF
and WSPred) outperform the matrix factorization-based prediction
methods (i.e., MF1 and MF2), since the tensor factorization-based
methods use the time-specific features as additional information. We
also observe that our approach WSPred constantly performs better
(smaller MAE and RMSE values) than the other approaches, includ-
ing TF, for both response-time and throughput under both dense ten-
sors and sparse tensors. This demonstrates the advantage of time-
aware prediction algorithm with the constraints of average QoS per-
formance. In Table 4.2, the MAE and RMSE values of dense ten-
sors (e.g., tensor density is 45% or 50%) are smaller than those of
sparse tensors (e.g., tensor density is 5% or 10%), since a denser
tensor provides more information for predicting the missing values.
In general, the MAE and RMSE values of throughput are larger than
those of response-time because the scale of throughput is 0-1000
kbps, while the scale of response-time is 0-20 seconds. Compared
with other methods, the improvements of our approach WSPred are
significant, which demonstrates that the idea of considering time in-
formation for QoS prediction is realistic and reasonable.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 66

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
2

2.25

2.5

2.75

3

3.25

3.5

Matrix Density

M
A

E

Response−Time

MF1
MF2
TF
WSPred

(a)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

Matrix Density

R
M

S
E

Response−Time

MF1
MF2
TF
WSPred

(b)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Matrix Density

M
A

E

Throughput

MF1
MF2
TF
WSPred

(c)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
35

37.5

40

42.5

45

47.5

50

Matrix Density

R
M

S
E

Throughput

MF1
MF2
TF
WSPred

(d)

Figure 4.6: Impact of Tensor Density

4.4.4 Impact of Tensor Density

In Figure 4.6, we compare the prediction accuracy of all the methods
under different tensor densities. We change the tensor density from
5% to 50% with a step value of 5%. The parameter settings in this
experiment are l = 20 and λ1 = λ2 = λ3 = η = 0.001.

Figure 4.6(a) and Figure 4.6(b) show the experimental results of
response-time, while Figure 4.6(c) and Figure 4.6(d) show the ex-
perimental results of throughput. The experimental results show that
our approach WSPred achieves higher prediction accuracy (lower
MAE and RMSE values) than other competing methods under dif-
ferent tensor density. In general, when the tensor density is increased

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 67

from 5% to 20%, the prediction accuracy of our approach WSPred
is significantly enhanced. When the tensor density is further in-
creased from 20% to 50%, the enhancement of prediction accuracy
is quite limited. This observation indicates that when the tensor is
very sparse, collecting more QoS information will greatly enhance
the prediction accuracy, which further demonstrates that consider-
ing both the difference between time intervals and the average QoS
performance could effectively provide personalized QoS estimation.

In the experimental results, we observe that the performance of
MF1 is worse than that of other methods. The reason is that MF1
only extracts the user-specific and service-specific features without
considering the relationship between QoS performance in time in-
tervals. In general, MF2 performs better than MF1, since MF2 com-
putes the average QoS performance before performing matrix fac-
torization. Applying the features extracted from the original tensor,
MF2 predicts the average QoS performance for a particular user-
service pair. This observation further demonstrates that the aver-
age QoS performance of a particular user-service pair can provide
valuable information when predicting the missing QoS value of the
user-service pair in a particular time interval.

4.4.5 Impact of Dimensionality

The parameter dimensionality l determines the number of latent fea-
tures applied to characterize user, service and time. In Figure 4.7
and Figure 4.8, we study the impact of parameter dimensionality by
varying the values of l from 5 to 50 with a step value of 5. Other
parameter settings are λ1 = λ2 = λ3 = η = 0.001.

Figure 4.7 and Figure 4.8 show the MAE and RMSE values of
response-time and throughput respectively. We observe that in both
figures, as l increases, the MAE and RMSE decrease (prediction ac-
curacy increases), but when l surpasses a certain threshold like 20,
the MAE and RMSE increase (prediction accuracy decreases) with

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 68

5 10 15 20 25 30 35 40 45 50
2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

Values of Dimensionality

M
A

E

Response−Time

Tensor Density = 5%

(a)

5 10 15 20 25 30 35 40 45 50
3.5

4

4.5

5

5.5

6

6.5

7

Values of Dimensionality

R
M

S
E

Response−Time

Tensor Density = 5%

(b)

5 10 15 20 25 30 35 40 45 50
2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

Values of Dimensionality

M
A

E

Response−Time

Tensor Density = 50%

(c)

5 10 15 20 25 30 35 40 45 50
3.5

4

4.5

5

5.5

6

6.5

7

Values of Dimensionality

R
M

S
E

Response−Time

Tensor Density = 50%

(d)

Figure 4.7: Impact of Dimensionality in Response-Time Dataset

further increase of the value of l. This observation indicates that
too few latent factors are not enough to characterize the features of
user, service and time, while too many latent factors will cause an
overfitting problem. There exists an optimal value of l for charac-
terizing the latent features. In both Figure 4.7 and Figure 4.8, when
the tensor density is 50%, we observe that our approach WSPred
achieves the best performance when the value of dimensionality is
25, while smaller values like 5 or larger values like 50 can poten-
tially reduce the prediction accuracy. When the tensor density is 5%,
we observe that the prediction accuracy of our approach WSPred
achieves the best performance when the value of dimensionality is

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 69

5 10 15 20 25 30 35 40 45 50
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Values of Dimensionality

M
A

E

Throughput

Tensor Density = 5%

(a)

5 10 15 20 25 30 35 40 45 50
38

39

40

41

42

43

44

45

46

Values of Dimensionality

R
M

S
E

Throughput

Tensor Density = 5%

(b)

5 10 15 20 25 30 35 40 45 50
6.5

7

7.5

8

8.5

9

9.5

Values of Dimensionality

M
A

E

Throughput

Tensor Density = 50%

(c)

5 10 15 20 25 30 35 40 45 50
38.5

39

39.5

40

40.5

41

41.5

42

42.5

4343

Values of Dimensionality

R
M

S
E

Throughput

Tensor Density = 50%

(d)

Figure 4.8: Impact of Dimensionality in Throughput Dataset

20, while smaller values like 5 or larger values like 50 can potentially
reduce the prediction accuracy. This observation indicates that when
the user-service-time tensor is sparse, 20 latent factors are already
enough to characterize the features of user, service and time which
are mined from the limited user-service-time QoS information. On
the other hand, when the tensor is dense, more latent factors, like
25, are needed to characterize the latent features since more QoS
information can be obtained from the original tensor.

CHAPTER 4. TIME-AWARE MODEL-BASED QOS PREDICTION 70

4.5 Summary

Based on the intuition that a user’s Web service QoS usage expe-
rience can be predicted by using the past usage experience from
different users, we propose a novel model-based approach, called
WSPred, for time-aware personalized QoS value prediction for Web
services. By employing a collaborative framework, WSPred per-
forms feature modeling on user, Web service and time based on the
QoS usage experience collected from both local and global users.
Requiring no additional invocation of Web services, WSPred makes
the QoS prediction by evaluating how the user-specific, service-
specific and time-specific latent features apply to each other. The
extensive experimental results show that our proposed WSPred out-
performs the state-of-the-art QoS prediction approaches for Web ser-
vices.

For future work, we will investigate more techniques for improv-
ing the prediction accuracy (e.g., data smoothing, utilizing content
information, etc.). Currently, we predict the values of different QoS
properties independently. In the future, we will also conduct more
investigations on the correlations and combinations on the different
QoS properties. WSPred predicts missing QoS values based on the
past QoS experience and the available QoS information in the cur-
rent time interval. If no QoS information is available in the current
time interval, WSPred purely depends on the past experience. In the
future, we will explore an online prediction algorithm to perform
time series analysis for prediction and extend WSPred to handle up-
dated QoS information at run-time.

2 End of chapter.

Chapter 5

Online QoS Prediction

5.1 Overview

Web services are software systems designed to support interoperable
machine-to-machine interaction over a network. With the exponen-
tial growth of Web service as a method of communications between
heterogeneous systems, Service-Oriented Architecture (SOA) is be-
coming a major framework for building Web systems in the era of
Web 2.0 [78]. In service computing, Web services offered by dif-
ferent providers are discovered and integrated to implement com-
plicated functions. Typically, a service-oriented system consists of
multiple Web services interacting with each other over the Internet
in an arbitrary way. How to build high-quality service-oriented sys-
tems becomes an urgent and crucial research problem.

Low response time is one of the most important requirements
of the service-oriented systems, which are widely employed in e-
business and e-government. Typically, the response time perfor-
mance of service-oriented systems involves two parts: local exe-
cution time at the system side and the response time of invoking
remote Web services. While the local execution time is relatively
short, the response time of invoking Web services is usually much
longer, which greatly influences the system performance. The rea-
son is that Web services are usually deployed in different geograph-
ical locations and invoked via Internet connections. Moreover, the

71

CHAPTER 5. ONLINE QOS PREDICTION 72

remote Web services may be running on cheap and poor performing
servers, leading to a decrease of service performance. In order to
build service-oriented systems with good performance, it is impor-
tant to identify Web services with low response time for composi-
tion. Moreover, by identifying the Web services with long response
time at runtime, system designers can replace them with better ones
to enhance the overall system performance.

Typically, Web services are considered as black boxes to service
users. The user-side observed performance is employed to evaluate
the qualities of Web services. Since the service status (e.g., work-
load, CPU allocations, etc.) and the network environment (e.g., con-
gestions, bandwidth, etc.) may change over time, response time of
Web services varies a lot during different time intervals. In order
to identify low response time Web services timely, real-time perfor-
mance of Web services needs to be continuously monitored.

Based on the above analysis, providing real-time performance in-
formation of Web services is becoming more and more essential for
service-oriented system designers to build high-quality systems and
to maintain the performance of the systems at runtime. However,
evaluating the performance of service-orientated systems at runtime
is not an easy task, due to the following reasons:

• Since users (SOA systems) and services are typically distributed
in different geographical locations, the user-observed perfor-
mance of Web services is greatly influenced by the Internet
connections between users and Web services. Different users
may observe quite different performance when invoking the
same Web service.

• Real-time performance evaluation may introduce extra transac-
tion workload, which may impact the user experience of using
the systems.

• The purpose of performance evaluation is to monitor the cur-
rent system performance status and allow designers to make

CHAPTER 5. ONLINE QOS PREDICTION 73

adjustments in order to guarantee the performance in the fu-
ture. This requires frequent performance evaluation, since in-
frequent evaluation cannot provide useful information to de-
signers for choosing appropriate services in the following time.

It becomes an urgent task to explore an online personalized pre-
diction approach for efficiently estimating the performance of Web
services for different service users. Based on the performance in-
formation of Web services, the overall performance of a service-
oriented system can be estimated by aggregating the performance of
services invoked by the system. In this chapter, we propose a service
performance estimation framework for providing personalized per-
formance information to the users. The performance of services is
predicted by collaborative work of users. We collect time-aware per-
formance information from geographically distributed service users.
Due to the fact that a service user usually only invokes a small num-
ber of Web services in the past and thus only observes performance
of these invoked Web services, the collected performance informa-
tion is usually sparse. In order to precisely predict the performance
of Web service when invoked by users, we employ a set of latent
features to characterize the status of Web services and users. Exam-
ples of physical feature are network distance between the user and
the service server, the workload of the server, etc. Latent features are
orthogonal representation of the decomposed results of physical fac-
tors. We extract the latent features of users and services in the past
time slice from the collected service performance information. By
analyzing the trend of the feature changes, we estimate the features
of users and services in the current time. Then the personalized per-
formance of Web service is predicted by evaluating how the features
of users apply to features of services.

In summary, this chapter makes the following contributions:

• We propose an online performance prediction framework for
estimating the user observed performance of service-oriented

CHAPTER 5. ONLINE QOS PREDICTION 74

systems. Our approach employs the past usage experiences of
different users to efficiently predict the performance of service-
oriented systems online.

• We collect a large-scale real-world Web service performance
dataset and conduct extensive experiments for evaluating the
performance of our proposed approach OPred. Totally, 4,532
Web services are monitored by 142 service users and 30,287,611
invocation results are collected. Moreover, we publicly release
our large-scale real-world Web service performance dataset for
future research.

The rest of this chapter is organized as follows: Section 5.2 de-
scribes the service-oriented system architecture and introduces the
online performance prediction procedures. Section 5.3 and Sec-
tion 5.4 present our online service performance prediction approach
OPred in detail. Section 5.5 presents the experimental results. Sec-
tion 5.6 concludes the chapter.

5.2 Preliminaries

Figure 5.1 shows the architecture of a typical service-oriented sys-
tem. Within a service-oriented system, several abstract tasks are
combined to implement complicated functions. For each abstract
task, an optimal Web service is selected from a set of functionally
equivalent service candidates. By composing the selected services,
a service-oriented system instance is implemented for task execu-
tion. The problem of finding functionally equivalent Web service
candidates has been discussed by a lot of previous work [91, 116],
which is outside the scope of this work. Typically the Web service
candidates are provided by different organizations and distributed
in different geographical locations and time zones. When invoked
through communication links, the user-side usage experiences are
influenced by the network environments and the server-side status

CHAPTER 5. ONLINE QOS PREDICTION 75

Figure 5.1: Service-Oriented System Architecture

at invocation time. Since service-oriented systems are increasingly
running on large numbers of dynamic services, users often encounter
highly dynamic and uncertain performance of service-oriented sys-
tems.

Figure 5.2: Online Performance Prediction Procedures

As shown in Figure 5.2, the online performance prediction mech-
anism proposed in this chapter contains four phases. In phase 1,
each service user keeps local performance records of the Web ser-
vices. In phase 2, local Web service usage experiences are uploaded
to the performance center. Each user is encouraged to contribute its
local records to obtain performance prediction service from the per-
formance center. By contributing more individually observed Web
service performance records, a service user can obtain more accu-
rate performance prediction results from the performance center. By

CHAPTER 5. ONLINE QOS PREDICTION 76

combining performance records of several users, the performance
center can obtain global performance information for all services.
In phase 3, by performing time series analysis on the extracted time-
specific user features and service features, a performance model is
built in the performance center for personalized service performance
prediction. The premise behind the performance model is that there
is a small number of latent factors influencing the user observed ser-
vice performance, and that a user’s observed service performance
is determined by how each factor applies to that user and the cor-
responding service at the current time slice. In phase 4, given the
service level performance information, the overall performance of
a service-oriented system is predicted based on the analysis of ser-
vice compositional structures. When the most recent service per-
formance information is available, an online prediction algorithm
is applied for quickly updating the performance model, which re-
quires no effort of recalculation for catching the performance trend.
The detailed online service performance prediction approach is pre-
sented in Section 5.3.

In Figure 5.1, we can observe that the overall execution time of
a service-oriented system mainly contains two parts: local compu-
tation time at the system side and response time of invoking remote
services. The highly dynamic performance of service-oriented sys-
tems is mainly due to the highly dynamic response time of the com-
posed services, while the local execution time is relatively stable.
To improve the performance of systems at runtime, optimal Web
service of each abstract task should be identified timely to replace
the bad ones for composition. The overall performance of systems
with different compositional options can be compared by estimating
the total response time required for invoking all the composed ser-
vices. The detailed system level performance prediction approach
will be presented in Section 5.4.

Since most of the service users are not experts in service testing,
to reduce the efforts of service users spent on testing the service per-

CHAPTER 5. ONLINE QOS PREDICTION 77

formance, we design a light-weight middleware for service users to
automatically record invocation results, contribute the local records
to the performance center, and receive performance prediction re-
sults from the performance center. Within the middleware, there are
three management components: WSMonitor, Collector and Predic-
tor. WSMonitor is deployed on the user side. Collector and Predic-
tor are deployed on the performance center. WSMonitor is respon-
sible for monitoring the performance of Web services and sending
local records to the performance center. Collector is responsible
for collecting shared performance records from users. Predictor is
responsible for providing time-aware personalized performance pre-
diction based on users’ performance information collected by Col-
lector.

5.3 Online Service Level Performance Prediction

In this section, we propose a collaborative method to predict the per-
formance of services. Previous Web service related techniques such
as selection [32, 112, 115, 117], composition [3, 4, 113], and or-
chestration [34] typically only employ average performance of ser-
vice candidates at design-time. In the recent Web service literature,
most of the state-of-the-art techniques can automatically update cor-
responding Web services with better ones at runtime. Therefore,
making personalized time-specific performance prediction of Web
services for different users becomes a critical task.

In this section, we first formally describe the online performance
prediction problem of Web services in Section 5.3.1. Then we pro-
pose a latent feature learning algorithm to learn the time-aware user-
specific and service-specific features in Section 5.3.2. The perfor-
mance of services is predicted by applying the proposed online algo-
rithm in Section 5.3.3. Finally, the complexity analysis is conducted
in Section 5.3.4.

CHAPTER 5. ONLINE QOS PREDICTION 78

5.3.1 Problem Description

1u

1s

4s

2s

1t 2t 3t

1t 2t 3t

1t 2t 3t

4t

4t

4t

(a)

5u
4u
3u
2u
1u

1s 2s 3s 4s 5s

1t
2t

3t

2−ct
1−ct

ct

(b)

Figure 5.3: A Toy Example of Performance Prediction

Figure 5.3(a) illustrates a toy example of the performance predic-
tion problem we study in this chapter. In this figure, service user u1
has used three Web services s1, s2 and s4 in the past. u1 recorded
the observed performance of Web services s1, s2 and s4 with time
stamp in the local site. By integrating all the performance informa-
tion from different users, we can form a set of matrices as shown
in Figure 5.3(b) with each matrix representing a time slice. In this

CHAPTER 5. ONLINE QOS PREDICTION 79

example, there are totally 5 users (from u1 to u5) and 5 services
(from s1 to s5). Within a matrix, each entry denotes the observed
performance (e.g., response time) of a Web service by a user during
a specific time slice. A missing entry denotes that the corresponding
user did not invoke the service in the time slice. The problem we
study in this chapter is how to efficiently and precisely predict per-
formance of services observed by a user in the next time slice based
on the previously collected performance information.

Let U be the set of m users and S be the set of n Web services.
In each time slice t, the observed response time from all users is
represented as a matrix R(t) ∈ Rm×n with each existing entry rui(t)
representing the response time of service i observed by user u in
time slice t. Given the set of matrices Ψ = {R(k)|k < tc}, matrix
R(tc) should be predicted representing the expected response time
of services in time slice tc.

Without loss of generality, we can map the response time values
to the interval [0, 1] using the following function:

f(x) =

0, if x < rmin

1, if x > rmax

x−rmin

rmax−rmin
, otherwise

where rmax and rmin are the upper bound and lower bound of the
response time values, respectively, which can be defined by users.

5.3.2 Time-Aware Latent Feature Model

In order to learn the latent features of users and services, we employ
a matrix factorization technique to fit a feature model to user-service
matrix in each time slice. The factorized user-specific and service-
specific features are utilized to make further performance predic-
tion. The idea behind the feature model is to derive a high-quality
low-dimensional feature representation of users and services by ana-
lyzing the user-service matrices. It is noted that there is only a small

CHAPTER 5. ONLINE QOS PREDICTION 80

number of features influencing performance experiences, and that
a user’s performance experience vector is determined by how each
feature is applied to that user and the corresponding service. Ex-
amples of physical features are network distance between the user
and the server, the workload of the server, etc. Latent features are
orthogonal representation of the decomposed results of physical fea-
tures. Consider the matrix R(t) ∈ Rm×n consisting of m users and n

services. Let p(t) ∈ Rl×m and q(t) ∈ Rl×n be the latent user and ser-
vice feature matrices in time slice t. Each column in p(t) represents
the l-dimensional user-specific latent feature vector of a user and
each column in q(t) represents the l-dimensional service-specific la-
tent feature vector of a service. We employ an approximating matrix
to fit the user-service matrix R(t), in which each entry is approxi-
mated as:

r̂ui(t) = pTu (t)qi(t) (5.1)

where l is the rank of the factorization which is generally chosen
so that (m + n)l < mn, since p(t) and q(t) are low-rank feature
representations [63]. This matrx factorization procedure (i.e., de-
compose the user-service matrix R(t) into two matrices p(t) and
q(t)) has clear physical meanings: Each column of q(t) is a factor
vector including the values of the l factors for a Web service, while
each column of p(t) is the user-specific coefficients for a user. In
Eq. (5.1), the user-observed performance on service i at time t (i.e.,
r̂ui(t)) corresponds to the linear combination of the user-specific co-
efficients and the service factor vector.

In order to optimize the matrix factorization in each time slice,
we first construct a cost function to evaluate the quality of approxi-
mation. The distance between two non-negative matrices is usually
employed to define the cost function. In this chapter, due to the rea-
son that there are a large number of missing values in practice, we
only factorize the observed entries in matrix R(t). Hence we con-
duct the matrix factorization as to solve the following optimization

CHAPTER 5. ONLINE QOS PREDICTION 81

problem:

minL(pu(t), qi(t))

=
1

2

m∑
u=1

n∑
i=1

Iui(rui(t)− g(r̂ui(t)))
2

+
λ1

2
||p(t)||2 + λ2

2
||q(t)||2,

(5.2)

where λ1, λ2 > 0, Iui is the indicator function that is equal to 1 if
user u invoked service i during the time slice t and equal to 0 oth-
erwise. (rui(t) − g(r̂ui(t)))

2 evaluates the error between predicted
value and groundtruth value collect from real-world. To avoid the
overfitting problem, we add two regularization terms to Eq. (5.2) to
constrain the norms of p(t) and q(t) where || · ||2 denotes the Frobe-
nius norm. λ1 and λ2 defines the importance of regularization terms.
In other words, the optimal solution is highly rely on the error we
evaluated in the first term. λ1 and λ2 defines the degree of accuracy
in the first term to avoid overfitting problem. It The optimization
problem in Eq. (5.2) minimizes the sum-of-squared-errors objec-
tive function with quadratic regularization terms. g(x) = 1/(1 +
exp(−x)), which maps r̂ui(t) to the interval [0, 1]. By solving the
optimization problem, we can find the most appropriate latent fea-
ture matrices p(t) and q(t) to characterize the users and services,
respectively.

A local minimum of the objective function given by Eq. (5.2)
can be found by performing incremental gradient descent in feature
vectors p(t) and q(t):

∂L
pu(t)

= Iui(g(r̂ui(t))− rui(t))g
′(r̂ui(t))qi(t)

+λ1pu(t), (5.3)
∂L
qi(t)

= Iui(g(r̂ui(t))− rui(t))g
′(r̂ui(t))pu(t)

+λ2qi(t). (5.4)

CHAPTER 5. ONLINE QOS PREDICTION 82

Algorithm 4 shows the iterative process for time-aware latent fea-
ture learning. We first initialize matrices p(t) and q(t) with small
random non-negative values. Iterations of the update rules derived
from Eq. (5.3) and Eq. (5.4) allow the objective function given in
Eq. (5.2) converge to a local minimum.

Algorithm 4: Time-Aware Latent Features Learning
Input: R(t), l, λ1, λ2

Output: p(t), q(t)
Initialize p(t) ∈ Rl×m and q(t) ∈ Rl×n with small random numbers;1

Load the performance records from matrix R(t);2

Calculate the objective function value L(pu(t), qi(t)) by Eq. (5.1) and3

Eq. (5.2);
repeat4

Calculate the gradient of feature vectors ∂L
pu(t)

and ∂L
qi(t)

according5
Eq. (5.3) and Eq. (5.4), respectively;
Update the latent user and service feature matrices p(t) and q(t);6

pu(t)← pu(t)− ∂L
pu(t)

;7

qi(t)← qi(t)− ∂L
qi(t)

;8

Update the objective function value L(pu(t), pi(t)) by Eq. (5.1) and9

Eq. (5.2);
until Converge ;10

5.3.3 Service Performance Prediction

After the user-specific and service-specific latent feature spaces p(t)
and q(t) are learned in each time slice t, we can predict the per-
formance of a given service observed by a user during the next
time slice. The service performance prediction is conducted in two
phases: offline phase and online phase. In the offline phase, the per-
formance information collected from all the service users is used for
statically modeling the trends of user features and service features.
By employing a time series analysis, the features of users and ser-
vices in the next time slice are calculated based on the evolutionary
algorithm. The predicted features are further applied for calculating

CHAPTER 5. ONLINE QOS PREDICTION 83

the predicted performance of services in the next time slice. In the
online phase, the newly observed service performance information
by users at runtime is integrated into the feature model builded in the
offline phase. By employing the incremental calculation algorithm,
the feature model is updated efficiently to catch the latest trend for
ensuring the prediction accuracy.

Phase 1: Offline Evolutionary Algorithm

Given the latent feature vectors of users and services in time slices
before tc, the latent feature vectors in time slice tc can be predicted
by precisely modeling the trends of features. Intuitively, older fea-
tures are less correlated with a service’s current status or a user’s
current characteristics. To characterize the latent features at time
slice tc, the prediction calculation should rely more on the informa-
tion collected in the latest time slices than that collected in older
time slices. In order to integrate the information from different time
slices, we therefore employ the following temporal relevance func-
tion [68]:

f(k) = e−αk, (5.5)

where k is the amount of time that has passed since the correspond-
ing information was collected. f(k) measures the relevance of in-
formation collect from different time slices for making prediction
on latent features at time tc. Note that f(k) decreases with k. By
employing the temporal relevance function f(k), we can assign a
weight for each latent feature vector depending on the collecting
time when making prediction. In the temporal relevance function, α
controls the decaying rate. By setting α to 0, the evolutionary nature
of the information is ignored. A constant temporal relevance value
of 1 is assigned to latent feature vectors in all the time slices, which
means latent feature vectors in time slice tc are predicted simply by
averaging the vectors before time slice tc. Since e−α is a constant
value, the value of temporal relevance function can be recursively

CHAPTER 5. ONLINE QOS PREDICTION 84

computed: f(k + 1) = e−αf(k), in which e−α denotes the constant
decay rate.

By analyzing the collected performance data, we obtain two im-
portant observations: (1) Within a relatively long time period such
as one day or one week, the service performance observed by a user
may vary significantly due to the highly dynamic service side status
(e.g., workloads of weather forecasting service may increase sharply
when weekends are coming.) and user side environment (e.g., net-
work latency would increase during the office hours). (2) Within a
relatively short time period such as one minute or one hour, a ser-
vice performance observed by a user is relatively stable. The above
two observations indicate that the feature information of latent fea-
ture vectors in time slice tc can be predicted by utilizing the feature
information collected before tc. Moreover, the performance curve in
terms of time should be smooth, which means more recent informa-
tion is placed with more emphasis for predicting the performance in
time slice tc. Therefore, we estimate the feature vectors in time slice
tc by computing the weighted average of feature vectors in the past
time slice:

p̂u(tc) =

∑w
k=1 pu(tc−k)f(k)∑w

k=1 f(k)
, (5.6)

q̂i(tc) =

∑w
k=1 qi(tc−k)f(k)∑w

k=1 f(k)
, (5.7)

where p̂u(tc) and q̂i(tc) are the predicted user feature vector and ser-
vice feature vector in time slice tc, respectively. w controls the infor-
mation of how many past time slices are used for making prediction.
In Eq. (5.6) and Eq. (5.7), large weight values are assigned to the fea-
ture vectors in recent slices while small weight values are assigned
to the feature vectors in old slices.

Given the predicted latent feature vectors p̂u(tc) and q̂i(tc), we
can predict the service performance value observed by a user in time
slice tc. For the user u and the service i, the predicted performance

CHAPTER 5. ONLINE QOS PREDICTION 85

value r̂ui(tc) is defined as

r̂ui(tc) = p̂Tu (tc)q̂i(tc) (5.8)

Phase 2: Online Incremental Algorithm

In this phase, we propose an incremental algorithm for efficiently
updating the feature model built in phase 1 at runtime as new per-
formance data are collected in each time slice. In time slice tc−1,
p̂u(tc−1) and q̂i(tc−1) are predicted based on the data collected dur-
ing the time slice tc−2−w and tc−2. During the time slice tc−1, there
would be some services invoked by several different users. There-
fore, newly observed service performance values are available and
collected from users. The new performance data are stored in a user-
service matrix R(tc−1) representing information in time slice tc−1.
By performing matrix factorization on R(tc−1), latent feature vec-
tors pu(tc−1) and qi(tc−1) in time slice tc−1 are learned from the real
performance data. According to Eq. (5.6) and Eq. (5.7), the feature
vector prediction needs to be recomputed repeatedly at each time
slice using all the vectors in previous w time slices, which is highly
computationally expensive. In order to predict the feature vectors in
time slice tc more efficiently, we rewrite the Eq. (5.6) and Eq. (5.7)
as follows:

p̂u(tc) = e−α(
pu(tc−1)∑w
k=1 f(k)

+ p̂u(tc−1)

−pu(tc−1−w)f(w)∑w
k=1 f(k)

), (5.9)

q̂i(tc) = e−α(
qi(tc−1)∑w
k=1 f(k)

+ q̂i(tc−1)

−qi(tc−1−w)f(w)∑w
k=1 f(k)

), (5.10)

where e−α, f(w) and
∑w

k=1 f(k) are constant values. pu(tc−1−w) and
qi(tc−1−w) are feature vectors calculated in time slice tc−1−w and can

CHAPTER 5. ONLINE QOS PREDICTION 86

be stored with only constant memory space. pu(tc−1) and qi(tc−1)
can be quickly calculated in time slice tc−1 since the computation
complexity of matrix factorization is very low. Note that in Eq. (5.9)
and Eq. (5.10), we obtain a recursive relation between [pu(tc−1),
qi(tc−1)] and [pu(tc), qi(tc)], which means the feature model in time
slice tc−1 can be efficiently updated for predicting the feature vectors
in new time slice tc.

In the online phase, it could be possible that a new user or ser-
vice is found. Since there is no prior information about the user
or the service in the previous time slices, it is difficult to precisely
predict the corresponding features by employing the online Incre-
mental Algorithm. To address the cold start problem, we employ
average performance for prediction. More precisely, the prediction
for a new user or a new service is set as follows:

r̂ui(t) =

r̄i(t), if new user and old service
r̄u(t), if old user and new service
r̄(t), if new user and new service

where r̄i(t) is the average predicted performance of service i ob-
served by all users in time slice t, r̄u(t) is the average predicted
performance of all services observed by user u in time slice t, r̄(t)
is the average predicted performance of all user-service pairs in time
slice t.

5.3.4 Computation Complexity Analysis

The offline phase includes learning latent features in w time slices
and running an evolutionary algorithm. The main computation is
evaluating the objective function L and its gradients against the vari-
ables. Since the matrix R(t) is typically sparse, the computational
complexity for evaluating the objective function L in each time slice
is O(ρrl), where ρr is the number of nonzero entries in the ma-
trix R(t), l is the dimension of the latent features. The computa-

CHAPTER 5. ONLINE QOS PREDICTION 87

tional complexities for the gradients ∂L
∂pu(t)

and ∂L
∂qi(t)

in Eq. (5.3) and
Eq. (5.4) are O(ρrl). Therefore, the total computational complexity
in one iteration is O(ρrlw), where w is the number of time slices. In
the online phase, the main computation is factorizing the new per-
formance matrix in time slice t. The computational complexity of
online incremental algorithm is O(ρrl).

The analysis indicates that theoretically, the computational time
of offline algorithm is linear with respect to the number of observed
performance entries in one time slice and the total number of time
slices whose information is used for prediction. Note that because
of the sparsity of R(t), ρr << mn, which indicates that the com-
putation time grows slowly with respect to the size of matrix R(t).
The computational time of the online algorithm is linear with the
amount of newly observed performance information, which indi-
cates that our proposed approach can efficiently integrate the per-
formance model with new information and make online prediction
timely. This complexity analysis shows that our proposed approach
is very efficient and can be applied to large-scale systems.

5.4 System Level Performance Prediction

In this section, we first present the aggregated response time calcula-
tion methods for basic compositional structures. Then, by analyzing
the service flow, the system level response time can be predicted in
a hierarchical way. The overall performance of a system consists
of service response time and local execution time. Local execution
time refers to the computation time between service invocations in
local system. Since the variance of system performance at runtime
is mainly due to the highly varying service response time, local ex-
ecution time, which is relatively constant at runtime, is not included
in the defined system level performance.

Typically, there are four types of basic compositional structures,
i.e., sequence, branch, loop, and parallel. The response time of each

CHAPTER 5. ONLINE QOS PREDICTION 88

(a) Sequence (b) Branch

(c) Loop (d) Parallel

Figure 5.4: Basic Compositional Structures

structure can be calculated by aggregating the response time of its
sub-tasks as shown in Table 5.1.

Figure 5.5: A Performance Composition Example

For predicting the overall execution time of a service flow, we
first decompose the system structure to a set of basic compositional
structures in a hierarchical way. Then the end-to-end system execu-
tion time is calculated in a bottom up way. Take Figure 5.5 as an
example, first the execution time of basic compositional structures

CHAPTER 5. ONLINE QOS PREDICTION 89

Table 5.1: Calculation of Aggregated Response Time
Calculation

Structure Method Meaning of Notation

n: number of sequential sub-tasks
Sequence r =

n∑
i=1

ri ri: response time of the ith sub-task

n: number of branches
ri: response time of the ith branch

Branch r =
n∑

i=1

piri pi: probability of the ith branch

to be executed
n: maximum looping times

ri: response time of the ith sub-task
Loop r =

n∑
i=1

pirii pi: probability of executing the

sub-task for i times
n: number of branches

Parallel r =
n

max
i=1

ri ri: response time of the ith branch

T1 and T2 is calculated by employing the aggregation methods of se-
quence and loop, respectively. Then the execution time of T3 is cal-
culated by employing aggregation method for branch compositional
structure. Finally, the overall system execution time is calculated by
employing aggregation method for sequence on t1, t2, T3 and t6.

With the aggregation approach, designers of service-oriented sys-
tems can estimate the performance of systems at design-time. At
runtime, the user observed system level performance can be effi-
ciently predicted automatically. Once the system performance is de-
creased at runtime, by analyzing the system structure in a top down
way, bad performance services can be quickly identified. With the
predicted service performance information, dynamical service com-
position techniques can be employed to improve the system perfor-
mance by replacing the long response time services with better ones.

CHAPTER 5. ONLINE QOS PREDICTION 90

5.5 Experiments

In this section, we conduct two experiments to evaluate our on-
line performance prediction approach. In the first experiment, by
comparing with several state-of-the-art service performance predic-
tion methods, we present the effectiveness and efficiency of our ap-
proach. In the second experiment, we study the service flow of a
real-world service-oriented system. We also study the performance
improvement by integrating the predicted performance information
of our approach into the dynamic composition mechanism.

In the following, Section 5.5.1 introduces the experimental setup
and gives the description of the experimental dataset. Section 5.5.2
defines the evaluation metrics. Section 5.5.3 compares the predic-
tion quality of our approach with other competing approaches. Sec-
tion 5.5.4, Section 5.5.5 and Section 5.5.6 study the impact of data
density, dimensionality, and parameter α and w, respectively. Sec-
tion 5.5.7 compare the computational time of different approaches.
Section 5.10 studies the system level performance prediction.

5.5.1 Experimental Setup and Dataset Collection

To evaluate the service level performance prediction quality of our
proposed approach in the real world, we implement a tool WSMoni-
tor for collecting the performance information of Web services. WS-
Monitor is deployed as a middleware on the user-side, which can
continuously monitor the user experienced performance of invoked
services. By sharing the user side observed performance to perfor-
mance center, it can obtain performance prediction service from per-
formance center at runtime.

WSMonitor is implemented and deployed with JDK 6.0, Eclipse
3.3, Axis 2, and Apache 2.2.17. Within WSMonitor there are sev-
eral modules including WSDL Crawler, Code Generator, and Per-
formance Monitor. WSDL Crawler first crawls a set of WSDL files
from the Internet and generates a list of openly-accessible Web ser-

CHAPTER 5. ONLINE QOS PREDICTION 91

vices. For each Web service in the list, Code Generator automat-
ically generates a java class for service invocation by employing
the WSDL2Java tool from the Axis package [48]. Totally, 5,871
classes are generated for 5,871 Web services. By calling the func-
tions generated by Code Generator, Performance Monitor is able to
send operation requests to Web services and record the correspond-
ing response time with time stamps.

We deploy the WSMonitor on 142 distributed computers located
in 22 countries from PlanetLab1, which is a distributed test-bed con-
sisting of hundreds of computers all over the world. Each computer
acts as a service user by invoking the listed Web services from time
to time. Totally, 4,532 publicly available real-world Web services
from 57 countries are monitored by each computer continuously.
1,339 of the initially selected Web services are excluded in this ex-
periment due to: 1) authentication required and 2) permanent invo-
cation failure (e.g., the Web service is shutdown). In our experiment,
each of the 142 computers sends operation requests to all the 4,532
Web services in every time slice. The experiment lasts for 16 hours
with one time slice lasting for 15 minutes.

By collecting performance records from all the computers, finally
30,287,611 performance results are included into the Web service
response time dataset. The response time of all the 4,532 Web ser-
vices observed by all the 142 service users during 64 time slices can
be presented as a set of 142 × 4532 user-service matrices, each of
which stands for a particular time slice.

The statistics of Web service response time dataset are summa-
rized in Table 5.2. Response-time is within the range of 0-20 sec-
onds, whose mean is 3.165 seconds. The distribution of the response-
time values of all the matrices is shown in Figure 5.6(a). From Fig-
ure 5.6(a) we can observe that most of the response-time values are
between 0.1-0.8 seconds.

1http://www.planet-lab.org

CHAPTER 5. ONLINE QOS PREDICTION 92

Table 5.2: Statistics of Web Service Response Time Dataset
Statistics Response Time

Scale 0-20s
Mean 3.165s

Num. of Users 142
Num. of Web Services 4,532
Num. of Time Slices 64

Num. of Records 30,287,611

<0.1 0.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 >1.6
0

1

2

3

4

5

6

7

8

9
x 10

6

Values of Response−Time (seconds)

N
um

be
rs

(a)

Figure 5.6: Response Time Value Distribution

5.5.2 Metrics

We assess the prediction quality of our proposed approach in com-
parison with other methods by computing Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The metric MAE is defined
as:

MAE =

∑
uit |r̂ui(t)− rui(t)|

N
, (5.11)

CHAPTER 5. ONLINE QOS PREDICTION 93

and RMSE is defined as:

RMSE =

√∑
uit(r̂ui(t)− rui(t))2

N
, (5.12)

where rui(t) is the response time value of Web service i observed
by user u in time slice t, r̂ui(t) denotes the predicted response time
value of Web service i would be observed by user u in time slice
t, and N is the number of predicted response time values in the
experiments.

5.5.3 Comparison

In this section, in order to show the effectiveness and efficiency of
our proposed online Web service performance prediction approach,
we compare the service level prediction accuracy of the following
methods:

• UPCC-This is a neighborhood-based method which employs
Pearson Correlation Coefficient to calculate similarities between
users. It predicts response time of services based on the ob-
served performance from similar users [11, 96]. Since UPCC
cannot perform online prediction for the next time slice, we ex-
tend the traditional UPCC by using the average performance
from similar users for prediction.

• IPCC-This is a neighborhood-based method which employs
Pearson Correlation Coefficient to calculate similarities between
services. It predicts response time of services based on the per-
formance of similar services [85]. Similar to UPCC, we make
an extension to IPCC in order to compare the online prediction
quality with other methods.

• MF-This method first compresses the set of user-service matri-
ces into an average user-service matrix. For each entry in the
matrix, the value is the average of the specific user-service pair

CHAPTER 5. ONLINE QOS PREDICTION 94

Table 5.3: Performance Comparsions (A Smaller MAE or RMSE Value Means a
Better Performance)

Data Response Time (seconds)
Density

RMSE
UPCC IPCC MF TF WSPred OPred

Mean 5.312 5.289 5.329 4.751 4.362 4.330
5% Best 5.263 5.276 5.321 4.747 4.358 4.327

Mean 5.043 4.972 5.079 4.567 4.287 4.151
10% Best 4.962 4.946 5.063 4.563 4.283 4.148

Mean 4.425 4.371 4.337 4.208 3.923 3.855
45% Best 4.388 4.342 4.318 4.202 3.918 3.851

Mean 4.352 4.354 4.298 4.016 3.899 3.809
50% Best 4.331 4.336 4.274 4.012 3.894 3.808

Data Response Time (seconds)
Density

MAE
UPCC IPCC MF TF WSPred OPred

Mean 3.720 3.213 3.387 2.915 2.559 2.417
5% Best 3.687 3.207 3.381 2.911 2.555 2.413

Mean 3.264 2.841 2.873 2.786 2.495 2.376
10% Best 3.243 2.812 2.851 2.782 2.488 2.374

Mean 2.627 2.455 2.436 2.253 2.141 2.029
45% Best 2.613 2.431 2.423 2.247 2.137 2.026

Mean 2.619 2.417 2.391 2.211 2.130 2.011
50% Best 2.609 2.404 2.384 2.207 2.125 2.008

CHAPTER 5. ONLINE QOS PREDICTION 95

during all the time slices. After obtaining the compressed user-
service matrix, it applies the non-negative matrix factorization
technique proposed by Lee and Seuing [63] on user-service ma-
trix for missing value prediction. The predicted values are used
as the response time of the corresponding user-service pair in
the next time slice.

• TF-This is a tensor factorization based prediction method. It
combines the set of user-service matrices as a tensor with a
third dimension representing the time. Then it applies tensor
factorization on the user-service-time tensor to extract user-
specific, service-specific and time-specific characteristics. The
missing value is then predicted based on how these character-
istics apply to each other.

• WSPred-This is a tensor factorization-based prediction method [120].
Different from method TF, it adds average performance value
constraints when extracting the latent characteristics.

• OPred-This method is proposed in this chapter. Firstly the user
features and service features are extracted in each time slice by
employing matrix factorization. Then the user features and ser-
vice features in the new time slice are predicted by performing
time analysis on the feature trends. Finally, the response time
of user-service pairs is predicted by evaluating how the pre-
dicted features of users and services are applied to each other.

In order to evaluate the performance of different approaches in
reality, we randomly remove some entries from the performance
matrices to obtain observation matrices and compare the values pre-
dicted by a method with the original ones. The observation matrices
with missing values are in different densities. For example, 10%
means that we randomly remove 90% entries from the original ma-
trices and use the remaining 10% entries for prediction. Note that
under a certain density, we employ different approaches to predict

CHAPTER 5. ONLINE QOS PREDICTION 96

Table 5.4: Performance Improvement of OPred
Competing Approach Performance Improvement of OPred

UPCC 22-36%
IPCC 16-25%
MF 15-28%
TF 9-17%

WSPred 1-6%

the values by using the same observation matrix. The prediction
accuracy is evaluated using Eq. (5.11) and Eq. (5.12) by compar-
ing the original values and the predicted values in the corresponding
matrices. The values of λ1 and λ2 are tuned by performing cross-
validation [49] on the observed performance data. Without lost of
generality, the parameter settings of all the approaches are l = 20,
w = 8, α = 0.2 and λ1 = λ2 = 0.001 in the experiments con-
ducted in this chapter. Detailed impacts of parameters are studied in
Section 5.5.4, Section 5.5.5 and Section 5.5.6, respectively.

The service performance prediction accuracies evaluated by MAE
and RMSE are shown in Table 5.3. A smaller MAE or RMSE value
means a better performance. From Table 5.3, we can observe that
the time-aware prediction methods (i.e., TF and OPred) outperform
the non time-aware prediction methods (i.e., UPCC, IPCC and MF),
since the time-aware methods employ the time-specific features as
additional information for performance prediction. We also observe
that our approach OPred constantly performs better than TF under
both dense data and sparse data. This is because OPred assigns dif-
ferent weights on the performance information collected in differ-
ent time slices. The prediction results rely more on recent user and
service features than older ones. By setting f(x) in Eq. (5.5) to a
constant value (e.g., f(x) = 1), OPred is reduced to TF. WSPred
further improves TF by employing a regularization term to prevent
the predicted values from varying a lot against the average perfor-
mance value. WSPred catches the periodic features of service per-

CHAPTER 5. ONLINE QOS PREDICTION 97

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
2

2.25

2.5

2.75

3

3.25

3.5

3.75

Data Density

M
A

E

UPCC
IPCC
MF
TF
WSPred
OPred

(a)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

Data Density

R
M

S
E

UPCC
IPCC
MF
TF
WSPred
OPred

(b)

Figure 5.7: Impact of Data Density

formance. OPred proposed in this chapter captures not only the pe-
riodic features but also the non-periodic features of service perfor-
mance. Therefore, OPred can predict the performance trend more
precisely than WSPred. Moreover, WSPred is not an online ap-
proach and requires more computational time than OPred. The com-
putational time is compared in Section 5.5.7. In Table 5.3, the MAE
and RMSE values of dense data (e.g., data density is 45% or 50%)
are smaller than those of sparse data (e.g., data density is 5% or
10%), since denser data provide more information for prediction.
Performance improvement of OPred is shown in Table 5.4. Our on-
line approach OPred improves the prediction accuracy by 22-36%,
16-25%, 15-28%, 9-17% and 1-6% relative to UPCC, IPCC, MF, TF
and WSPred, respectively. The improvements are significant, which
indicates the prediction effectiveness of OPred.

5.5.4 Impact of Data Density

In Figure 5.7, we compare the prediction accuracy of all the meth-
ods under different data densities. We change the data density from
5% to 50% with a step value of 5%. The parameter settings in this
experiment are l = 20, w = 8, α = 0.2 and λ1 = λ2 = 0.001.

In Figure 5.7(a) and Figure 5.7(b), the experimental results show

CHAPTER 5. ONLINE QOS PREDICTION 98

5 10 15 20 25 30 35 40 45 50
2

2.25

2.5

2.75

3

3.25

3.5

Values of Dimensionality

M
A

E

Data Density = 5%
Data Density = 50%

(a)

5 10 15 20 25 30 35 40 45 50
3.5

4

4.5

5

5.5

6

6.5

Values of Dimensionality

R
M

S
E

Data Density = 5%
Data Density = 50%

(b)

Figure 5.8: Impact of Dimensionality

that our approach OPred achieves higher prediction accuracy (smaller
MAE and RMSE values) than other competing methods under dif-
ferent data density. In general, when the data density is increased
from 5% to 20%, the prediction accuracy of our approach OPred is
significantly enhanced. When the data density is further increased
from 20% to 50%, the enhancement of prediction accuracy will de-
crease. This observation indicates that when the data are very sparse,
collecting more performance information will greatly enhance the
prediction accuracy.

5.5.5 Impact of Dimensionality

The parameter dimensionality l determines the number of latent fea-
tures applied to characterize users and services. In Figure 5.8, we
study the impact of parameter dimensionality by varying the values
of l from 5 to 50 with a step value of 5. Other parameter settings are
w = 8, α = 0.2 and λ1 = λ2 = 0.001.

In Figure 5.8, we observe that as l increases, the MAE and RMSE
decrease (prediction accuracy increases), but when l surpasses a cer-
tain threshold like 20, the MAE and RMSE increase (prediction ac-
curacy decreases) with further increase of the value of l. This obser-
vation indicates that too few latent factors are not enough to charac-

CHAPTER 5. ONLINE QOS PREDICTION 99

0 2 4 6 8 10 12 14 16 18 20
2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

Values of w

M
A

E

α = 0.1
α = 0.2
α = 0.5
α = 1

(a)

0 2 4 6 8 10 12 14 16 18 20
4

4.5

5

5.5

6

6.5

7

7.5

Values of w

R
M

S
E

α = 0.1
α = 0.2
α = 0.5
α = 1

(b)

Figure 5.9: Impact of α and w

terize the features of user and service, while too many latent factors
will cause an overfitting problem. There exists an optimal value of
l for characterizing the latent features. When the data density is
50%, we observe that our approach OPred achieves the best perfor-
mance when the value of dimensionality is 25, while smaller values
like 5 or larger values like 50 can potentially reduce the prediction
accuracy. When the data density is 5%, we observe that the predic-
tion accuracy of our approach OPred achieves the best performance
when the value of dimensionality is 20, while smaller values like 5
or larger values like 50 can potentially reduce the prediction accu-
racy. This observation indicates that when the service performance
data are sparse, 20 latent factors are already good enough to char-
acterize the features of user and service, which are mined from the
limited performance information. On the other hand, when the data
are dense, more latent factors, like 25, are needed to characterize the
latent features since more performance data are available.

5.5.6 Impact of α and w

The parameter α controls the decaying rates of weights assigned to
different time slices. A larger value of α gives more weights to the
recent time slices. w controls the information of how many past

CHAPTER 5. ONLINE QOS PREDICTION 100

Table 5.5: Average Computational Time Comparisons
Approach Computational Time Percentage of A Time Slice

UPCC 10.095m 67.3%
IPCC 9.735m 64.9%
MF 1.575m 10.5%
TF 1.860m 12.4%

WSPred 2.055m 13.7%
OPred 0.240m 1.6%

time slices are used for making prediction. In Figure 5.9, we vary
the values of w from 1 to 20 with a step value of 1. Other parameter
settings are λ1 = λ2 = 0.001.

Figure 5.9 shows the impacts of α and w on MAE and RMSE. We
observe that as w increases, the values of MAE and RMSE decrease
(prediction accuracy increase) at first, but when w pass a certain
threshold, the MAE and RMSE converge. This phenomenon coin-
cides with the intuition that employing past performance informa-
tion from more time slices can increase prediction accuracy. When
w surpasses a certain threshold, the MAE and RMSE decrease little
with further increase of the value of w. The reason is that when w
is large enough, small weight values are assigned to the information
of older time slices, which contribute little to the prediction accu-
racy. This observation indicates that too large w is unnecessary. The
thresholds are different under different values of α. Since a larger
value of α gives more weights to the recent time slices, the thresh-
old is smaller than those under smaller values of α. In Figure 5.9,
OPred achieves the best performance when α = 0.2. The observa-
tion confirms with the intuition that with a large value of α useful
information from older time slice will be lost, and with a small value
of α noisy data will cause the decrease of prediction accuracy.

CHAPTER 5. ONLINE QOS PREDICTION 101

5.5.7 Computational Time Comparisons

In Section 5.3.4, we theoretically analyze the computation time of
OPred. In this section, we compare the computation efficiencies of
different approaches. In our experiments, one time slice lasts for
15 minutes. We compare the average computational time of a pre-
diction approach with the length of a time slice. The data used for
performance prediction are the same for all approaches. From Ta-
ble 5.5, we observe that the computational time of OPred takes less
than 2% of a time slice. This observation is consistent with the time
complexity analysis in Section 5.3.4 and shows that our proposed
approach OPred is efficient and can be applied to large-scale sys-
tems in real-world. TF and WSPred use more than 10% of a slice
time to conduct prediction, since they are not online approaches and
need to rebuild the model whenever new data are available. TF per-
forms better than WSPred because WSPred contains an extra term
in the objective function representing the average performance con-
straints. MF performs better than TF and WSPred because time
factor is not considered when predicting the performance values.
UPCC and IPCC perform worst since they are neighborhood-based
approaches and take a lot of time to find the relationship between
users and services.

5.5.8 System Level Performance Case Study

In this section, we evaluate our approach OPred by using a sample
service-oriented system. Figure 5.10 shows a typical online shop-
ping system. It allows customers to browse and order products from
the shopping website. In this shopping system, the designer inte-
grates three Web services for providing users access to various prod-
uct suppliers, banks and shippers. This example is taken from the
online services provided by a gift website [37].

The service flow is illustrated in Figure 5.10. By sending product
queries to suppliers, the shopping system can obtain plenty of prod-

CHAPTER 5. ONLINE QOS PREDICTION 102

P

r

o

d

u

c

t

Q

u

e

r

y

Q

u

e

r

y

R

e

s

u

l

t

O

r

d

e

r

R

e

q

u

e

s

t

C

o

n

f

i

r

m

a

t

i

o

n

R

e

q

u

e

s

t

O

r

d

e

r

C

o

n

f

i

r

m

a

t

i

o

n

P

a

y

m

e

n

t

R

e

q

u

e

s

t

O

r

d

e

r

C

o

n

f

i

r

m

a

t

i

o

n

C

r

e

d

i

t

I

n

f

o

r

m

a

t

i

o

n

P

a

y

m

e

n

t

R

e

q

u

e

s

t

O

r

d

e

r

R

e

q

u

e

s

t

P

a

y

m

e

n

t

R

e

s

u

l

t

O

r

d

e

r

R

e

s

u

l

t

S

h

i

p

m

e

n

t

N

o

t

i

f

i

c

a

t

i

o

n

S

h

i

p

m

e

n

t

R

e

q

u

e

s

t

Figure 5.10: An Online Shopping System

uct information, which allows customers to browse various products
on the website. Once a customer decides to buy a product, the shop-
ping system sends an order request with product information to the
corresponding supplier. The supplier then reserves a product for the
customer and replies the shopping system with an order confirma-
tion request. At this point, the shopping system needs to send an
order confirmation to the supplier and an order request to a shipper
service. Once the shopping system receives payment requests from
both the product supplier and a shipper service, it proceeds to launch
a payment transaction via a credit card payment service (e.g., pay-
pal). In the task of paying bills, customer’s credit card information
is transferred to the bank, and an invoice is sent back by the bank.
Finally, the product supplier is notified of an bank invoice to com-
plete the purchase. At the same time, a request is sent to the shipper
to arrange the shipment of the product. Once the product is aboard,
the shipper notifies the shopping system with estimated arrival date
of the shipment.

After we find a set of functional identical Web services from the
performance dataset for each abstract task in the shopping system.

CHAPTER 5. ONLINE QOS PREDICTION 103

20 30 40 50 60
50%

75%

100%

125%

150%

175%

200%

225%

250%

275%

300%

Time Slices

O
ve

ra
ll

S
ys

te
m

 P
er

fo
rm

an
ce

Static Composition
Dynamic Composition

Figure 5.11: System Performance Improvement of Dynamically Service Compo-
sition

The predicted service performance results are used to predicting the
end-to-end performance of shopping system by employing the com-
positional methods in Section 5.4. As discussed before, by calcu-
lating system performance, poor services can be identified in a hi-
erarchical way. Then the identified services can be replaced with
better ones to maintain the overall system performance at runtime.
In Figure 5.11, we compare the system performance of static com-
position and dynamical composition. In static composition, for each
abstract task we randomly choose a service from the set of functional
identical candidates. The set of selected services is fixed in all time
slices. In dynamical composition, the predicted service performance
of OPred is employed to select the optimal services for task execu-
tions in each time slice. In this thesis, we focus on dynamic selecting
atomic services. The comparison begins from time slice 11 since the
performance information of the first 10 time slices is used as train-
ing data for OPred. The system performance of static composition
method in time slice 11 is chosen as baseline. Other performance

CHAPTER 5. ONLINE QOS PREDICTION 104

is compared with baseline in percentage (a smaller number means
better performance). From Figure 5.11 we can observe that the sys-
tem performance of static composition is unstable at runtime. This
is because the performance of some selected services is unstable,
which impacts the system overall performance. For dynamic com-
position, since OPred can precisely predict service performance, the
service-oriented system can be updated by integrating potentially
optimal services at runtime. The system performance of dynamical
composition maintains stable in a good level, which indicates the
effectiveness of OPred.

5.6 Summary

Based on the intuition that a user’s current Web service performance
usage experience can be predicted by using the past usage experi-
ence from different users, we propose a novel online service per-
formance prediction approach, called OPred, for personalized per-
formance prediction at runtime. Using the past Web service usage
experience from different users, OPred builds feature models and
employs time series analysis techniques on feature trends to make
personalized performance prediction for different service users. The
predicted service performance is critical for identifying poor ser-
vices and maintaining the system performance timely. The extensive
experimental results show that our proposed OPred outperforms the
state-of-the-art performance prediction approaches in terms of pre-
diction accuracy. The case study on a typical shopping system shows
the effectiveness of OPred.

For future work, we will investigate more techniques for improv-
ing the prediction accuracy (e.g., data smoothing, utilizing content-
aware information, etc.). We will conduct experiments on more real-
world service-oriented systems to evaluate the effectiveness and ef-
ficiency of OPred when applied to different domains.

CHAPTER 5. ONLINE QOS PREDICTION 105

2 End of chapter.

Chapter 6

QoS-Aware Web Service Searching

6.1 Overview

With a set of standard protocols, i.e., SOAP (Simple Object Ac-
cess Protocol), WSDL (Web Services Description Language), and
UDDI (Universal Description, Discovery and integration), Web ser-
vices provided by different organizations can be discovered and in-
tegrated to develop applications [26]. With the growing number of
Web services in the Internet, many alternative Web services can pro-
vide similar functionalities to fulfill users’ requests. Syntactic or se-
mantic matching approaches based on services’ tags in UDDI repos-
itory are usually employed to discover suitable Web services [105].
However, discovering web services from UDDI repositories suffers
several limitations. First, since UDDI repository is no longer a popu-
lar style for publishing Web services, most of the UDDI repositories
are seldom updated. This means that a significant part of informa-
tion in these repositories is out of date. Second, arbitrary tagging
methods used in different UDDI repositories add to the complexity
of searching Web services of interest.

To address these problems, an automated mechanism is required
to explore existing Web services. Considering that WSDL files are
used for describing Web services and can be obtained in several
ways other than UDDI repositories, several WSDL based Web ser-

106

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 107

Figure 6.1: Service-Oriented System Architecture

vice searching approaches are proposed. Such as Binding Point1,
Grand Central2, Salcentral3, and Web Service List4. However, these
engines only simply exploit keyword-based search techniques which
are obviously insufficient for catching the Web services’ functional-
ities. First, keywords cannot represent Web services’ underlying se-
mantics. Second, since a Web service is supposed to be used as part
of the user’s application, keywords cannot precisely specify the in-
formation user needs and the interface acceptable to the user. In this
chapter, we employ not only keywords but also operation parameters
to comprehensively capture Web service’s functionality.

In addition, Web services sharing similar functionalities may pos-
sess very different non-functionalities (e.g., response time, through-
put, availability, usability, performance, integrity, etc.). In order to
effectively provide personalized Web service ranking, it is requi-

1http://www.bindingpoint.com/
2http://www.grandcentral.com/directory/
3http://www.salcentral.com/
4http://www.webservicelist.com/

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 108

site to consider both functional and non-functional characteristics of
Web services. Unfortunately, the Web service search engines men-
tioned above cannot distinguish the non-functional differences be-
tween Web services.

QoS-driven Web service selection is a popular research prob-
lem [3, 69, 115]. A basic assumption in the field of selection is that
all the Web services in the candidate set share identical function-
ality. Under this assumption, most of the selection approaches can
only differentiate among Web services’s non-functional QoS charac-
teristics, regardless of their functionalities. While these QoS-driven
selection approaches are directly employed to Web service search
engines, several problems will arise. One is that Web services whose
functionalities are not exactly equivalent to the user searching query
are completely excluded from the result list. Another problem is that
Web services in the result list are ordered only according to their
QoS metrics, while combining both functional and non-functional
attributes is a more reasonable method.

To address the above issues, we propose a new Web service dis-
covering approach by paying respect to functional attributes as well
as non-functional features of Web services. A search engine pro-
totype, WSExpress, is built as an implementation of our approach.
Experimental results show that our search engine can successfully
discover user-interested Web services within top results. In particu-
lar, the contributions of this chapter are three-fold:

• Different from all previous work, we propose a brand new Web
service searching approach considering both functional and non-
functional qualities of the service candidates.

• We conduct a large-scale distributed experimental evaluation
on real-world Web services. 3,738 Web services (15,811 oper-
ations) located in 69 countries are evaluated both on their func-
tional and non-functional aspects. The evaluation results show
that we can recommend high quality Web services to the user.

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 109

User

Query

Functionality: QoS:

(Keywords, Input, Output) (Constraint, Weight)

Web service

Candidates

Web service n

Operation 1

Functionality: QoS:

(Description, Input, Output) (Q1, Q2, ...)

Operation 2

Functionality: QoS:

(Description, Input, Output) (Q1, Q2, ...)

… …

Web service 2

Operation 1

Functionality: QoS:

(Description, Input, Output) (Q1, Q2, ...)

Operation 2

Functionality: QoS:

(Description, Input, Output) (Q1, Q2, ...)

… …

Web service 1

Operation 1

Functionality: QoS:

(Description, Input, Output) (Q1, Q2, ...)

Operation 2

Functionality: QoS:

(Description, Input, Output) (Q1, Q2, ...)

… …

Figure 6.2: Web Service Query Scenario

The precision and recall performance of our functional search
is substantially better than the approach in previous work [82].

• We publicly release our large-scale real-world Web service WSDL
files and associated QoS datasets5 for future research. To the
best of our knowledge, our dataset is the first publicly-available
real-world dataset for functional and non-functional Web ser-
vice searching research.

The rest of this chapter is organized as follows: Section 6.2 in-
troduces Web service searching backgrounds. Section 6.3 presents
the system architecture. Section 6.4 presents our QoS-aware search-
ing approach. Section 6.5 describes our experimental results. Sec-
tion 6.6 concludes the chapter.

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 110

Table 6.1: User Query Examples
Functionality QoS

User Query
Keywords Input Output Constraint (C1, C2, C3) Weight (W1, W2, W3)

Query 1 car name, type price (0.5, 0.5, 0.2) (0.4, 0.4, 0.2)
Query 2 weather city, country weather (0.6, 0.3, 0.3) (0.3, 0.4, 0.3)

Table 6.2: Web Service Examples
Service ID Operation Name Input Output QoS (Q1, Q2, Q3)

WS 1 CarPrice name, type price (0.8, 0.6, 0.6)
WS 2 AutomobileInformation name, model price, color, company (0.2, 0.4, 0.6)
WS 3 VehicleRecommend name, model, usage rent, primecost, provider (0.6, 0.8, 0.5)

6.2 Motivation

Figure 6.2 shows a common Web service query scenario. A user
wants to find an appropriate Web service which contains operations
that can be integrated as part of the user’s application. The user
needs to specify the functionality of a suitable operation by filling
the fields of keywords, input and output. Also the user may have
some special requirements on service quality, such as the maximum
price. These personal requirements can be represented by setting the
QoS constraint field. The criticality of different quality criteria for a
user can be defined by setting the QoS weight field.

A lot of Web services can be accessed over the Internet. Each
service candidate provides one or more operations. Generally, these
operations can be described in the structure shown in Figure 6.2.
Each operation includes a name, the parameters of input and output
elements, and the descriptions about the functionality of this opera-
tion as well as the Web services it belongs to in its associated WSDL
document. The service quality associated with this operation is rep-
resented by several criteria values, e.g., Q1, Q2 in Figure 6.2.

Table 6.1 shows Web service query examples. In query 1, a user
wants to find a Web service that can provide appropriate operations
for displaying prices of different types and brands of cars. The input

5http://wiki.cse.cuhk.edu.hk/user/ylzhang/doku.php?id=icwsdata

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 111

information provided by the user for that particular operation is the
types and names of cars. This query is structured into three parts:
keywords, input and output. The keywords part defines in which
domain is the query about. In this example, the user concerns about
the domain “car”. The input part contains “name” and “type” since
they can be provided by the user. The output part is set as “price” to
specify the information the user wants to obtain from an appropriate
operation.

In Table 6.2 we enumerate three possible results for the user’s
search query. Web service 1 provides one operation CarPrice and
this operation’s functionality is almost the same as what the user
specifies in the query. In addition, the service quality meets the
user’s requirements. Web service 2 provides operation Automobile-
Information. Operation AutomobileInformation can provide many
information details including the price of the automobiles after in-
voked with “name” and “model” as input. However, some service
quality criteria, such as the service price (Q1) and the response time
(Q2), are beyond the user’s tolerance. Operation VehicleRecommend
provided by Web service 3 recommends suitable vehicles for the
user to rent. Although its target is to suggest the most suitable vehi-
cle and vehicle rental companies to the user, it can also be invoked
for obtaining the prices of cars due to the prime cost information pro-
vided. Besides, operation VehicleRecommend’s service quality fits
the user’s constraints and preferences quite well. Among these three
Web services, the most suitable one is Web service 1, and another
acceptable one is Web service 3, but Web service 2 is not highly
suggested due to its service quality. Thus, a reasonable order of the
recommendation list for the user’s query is Web service 1, Web ser-
vice 3, and Web service 2.

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 112

WSExpress

User Query

Specification

Non-Functional Evaluation

QoS Utility

Computation

Functional Evaluation

WSDL

Preprocessing

Similarity

Computation

Obtain QoS

Data

QoS-Aware Web

Service Ranking

Ranking List

Web service 1

Web service 2

�

Figure 6.3: System Architecture

6.3 System Architecture

Now we describe the system architecture of our Qos-aware Web ser-
vice search engine. As shown in Figure 6.3, after accepting a user’s
query specification, our search engine should be able to provide a
practical Web service recommendation list. The search engine con-
sists of three components: non-functional evaluation,ki functional
evaluation, and QoS-aware Web service ranking.

There are two phases in the non-functional evaluation compo-
nent. In phase 1, the search engine obtains QoS criteria values of
all the available Web services. In phase 2, the search engine com-
putes the QoS utilities of different Web services according to the
constraints and preferences specified in the QoS part of the user’s
query.

The functional evaluation component contains two phases. In
phase 1, the search engine carries out a preprocessing work on the
WSDL files associated to the Web services. This work aims at re-
moving noise and improving accuracy of functional evaluation. In
phase 2, the search engine evaluates the Web service candidates’
functional features. These features are described by similarities be-
tween the functionality specified in the query and the functionality
of operations provided by those Web services.

Finally, the search engine combines both functional and non-

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 113

functional features of Web services in the QoS-aware Web service
ranking component. A practical and reasonable Web service recom-
mendation list is then provided as a result to the user’s search query.

6.4 QoS-Aware Web Service Searching

6.4.1 QoS Model

In our QoS model we describe the quantitative non-functional prop-
erties of Web services as quality criteria. These criteria include
generic criteria and business specific criteria. Generic criteria are
applicable to all Web services like response time, throughput, avail-
ability and price, while business criteria such as penalty-rate are
specified to certain kinds of Web services.

By assuming m criteria are employed for representing a Web ser-
vice quality, we can describe the service quality using a QoS vector
(qi,1, qi,2, . . . , qi,m), where qi,j represents the jth criterion value of
Web service i.

Some QoS criteria values of Web services, such as penalty rate
and price, can be obtained from the service providers directly. How-
ever, other QoS attributes’ values like response time, availability and
reliability need to be generated from all the users’ invocation records
due to the differences between network environments. In this chap-
ter, we use the approach proposed in [122] to collect QoS perfor-
mance on real-world Web services.

We put all the Web services’ QoS vectors together and form a
QoS matrix Q. Each row in Q represents a Web service, while each
column represents a QoS criterion value.

Q =

q1,1 q1,2 . . . q1,t

q2,1 q2,2 . . . q2,t
...

qs,1 qs,2 . . . qs,t

 (6.1)

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 114

A utility function is used to evaluate the multi-dimensional qual-
ity of a Web service. The utility function maps a QoS vector into
a real value for evaluating the Web service candidates. To repre-
sent user priorities and preferences, three steps are involved into the
utility computation: (1) The QoS criteria values are normalized to
enable a uniform measurement of the multi-dimensional quality of
service independent of their units and ranges. (3) The weighted eval-
uation on criteria are carried out for representing user’s constraints,
preference and special requirements.

Normalization

In this step each criterion value is transformed to a real value be-
tween 0 and 1 by comparing it with the maximum and minimum
values of that particular criterion. For some criterion the possible
absolute value could be very large or infinite. A pair of maximum
and minimum values are specified for every criterion respectively.
Let qi,u be the upper bound value and qi,l be the lower bound value
for the ith criterion, respectively. Every QoS value is transformed
according to the following equations:

f(x) =

rmin, if x < rmin

rmax, if x > rmax

x, otherwise

The normalized value of qi,j can be represented by q′i,j as follows:

q′i,j =
qi,j − qi,0
qi,n − qi,0

(6.2)

Thus, the QoS matrix Q is transformed into a normalized matrix
Q′ as follows:

Q′ =

q′1,1 q′1,2 . . . q′1,t

q′2,1 q′2,2 . . . q′2,t
...

q′s,1 q′s,2 . . . q′s,t

 (6.3)

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 115

Utility Computation

Some Web services need to be excluded from the candidate set due
to their inconsistency with the user’s QoS constraints. The QoS con-
straints set the worst quality user can accept.These constraints are
usually set according to the application developers’ experience or
computed by some QoS driven composition algorithm. Web service
with any QoS criterion grade unsatisfying user constraint may cause
problem while integrated into user’s application. For example, if a
service fails to return the result within a given period of time, an-
other service may exit with a error code time out while waiting for
the result. Assume a user’s constraint vector is C = (c1, c2, . . . , cm),
in which ci sets the minimum normalized ith criterion grade. We
will only consider those Web services whose criteria grades are all
larger than the constraints. In other words, we delete the rows which
fail to satisfy the constraints from Q′ and produce a new matrix Q∗:

Q∗ =

q∗1,1 q∗1,2 . . . q∗1,t

q∗2,1 q∗2,2 . . . q∗2,t
...

q∗s,1 q∗s,2 . . . q∗s,t

 (6.4)

For the sake of simplicity, we only consider positive criteria whose
values need to be maximized (negative criteria can be easily trans-
formed into positive attributes by multiplying -1 to their values).

Finally, a weight vector W = (w1, w2, . . . , wm) is used to repre-
sent user’s priorities on preferences given to different criteria with
wk ∈ R+

0 and
∑m

k=1wk = 1. The final QoS utilities vector U =
(u1, u2, . . .) of Web service candidates are therefore can be com-
puted as follows:

U = Q∗ ∗W T (6.5)

in which ui is the ith Web service QoS utility value within range
[0, 1].

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 116

6.4.2 Similarity Computation

Web services provide reusable functionalities. The functionalities
are described by the input and output parameters defined in WSDL
file.

Now we describe a similarity model for computing similarities
between a user query and Web service operations. In this model,
a vector (Keywords, Input, Output) is used to represent the func-
tionality part of a user query as well as the functionality part of Web
service operations. Particularly, the keywords of a Web service op-
eration are abstracted from the descriptions in its associated WSDL
file. Three phases are involved in the similarity search: WSDL pre-
processing, clustering parameters and similarity computation.

WSDL Preprocessing

In order to improve the accuracy of similarity computation for op-
erations and user query in our approach, we first need to preprocess
the WSDL files. There are two steps as follows:

1. Identify useful terms in WSDL files. Since the descriptions,
operation names and input/output parameters’ names are made
manually by the service provider, there are a lot of misspelled
and abbreviated words in real-world WSDL files. This step
replace such kind of words with normalized forms.

2. Perform word stemming and remove stopwords. A stem is the
basic part of the word that never changes even when morpho-
logically infected. This process can eliminate the difference
between inflectional morphemes. Stopwords are those with lit-
tle substantive meaning.

Similarity Computation

Now we describe how to measure the similarities of Web service
operations to a user’s query. The functionality part a user’s query

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 117

Rf consists of three elements Rf = (rk, rin, rout). The keywords
element is a vector rk = (rk1 , r

k
2 , . . . , r

k
l), where rki is the ith key-

word. Moreover, the input element rin = (rin1 , rin2 , . . . , rinm) and
the output element rout = (rout1 , rout2 , . . . , routn), where rini and routi

are the ith terms of input element and output element respectively.
A Web service operation also consists of three elements OPf =
(K, In,Out). The keywords element of operation i is a vector of
words K i = (ki1, k

i
2, . . . , k

i
l′). The input and the output elements are

vectors Ini = (ini
1, in

i
2, . . . , in

i
m′) and Outi = (outi1, out

i
2, . . . , out

i
n′)

respectively. Thus, users’ queries and Web service operations are
described as sets of terms. By applying the TF/IDF (Term Fre-
quency/Inverse Document Frequency) measure [92] into these sets,
we can measure the cosine similarity si between Web service oper-
ation i and a user’s query.

Vector Similarity (VS) measures the cosine of the angle between
two corresponding vectors and set it as the similarity of the two vec-
tors. In similarity search for Web service, the two vectors measured
are Web service operation and user query:

si =

∑t
i=1 ri · ti√∑t

i=1 r
2
i ·

√∑t
i=1 t

2
i

(6.6)

Pearson Correlation Coefficient (PCC), another popular similar-
ity measurement apporach, was introduced in a number of recom-
mender systems for similarity computation, since it can be easily
implemented and can achieve high accuracy. The similarity between
an operation and a user’s query can be calculated by employing PCC
as follows:

si =

∑t
i=1(ri − r̄) · (ti − t̄)√∑t

i=1(ri − r̄)2 ·
√∑t

i=1(ti − t̄)2
(6.7)

where r̄ is average TF/IDF value of all terms in a operation vector
and t̄ is average TF/IDF value of all terms in a user’s query vector.

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 118

The PCC similarity value si is in the interval of -1 and 1 and a larger
value means indicates a higher similarity.

6.4.3 QoS-Aware Web Service Searching

With an increasing number of Web services being made available in
the Internet, users are able to choose functionally appropriate Web
services with high non-functional qualities in a much larger set of
candidates than ever before. It is highly necessary to recommend
to the user a list of service candidates which fulfill both the user’s
functional and non-functional requirements.

Utility Computation

A final rating score ri is defined to evaluate the conformity of each
Web service i to achieve the search goal.

ri = λ · 1

log(psi + 1)
+ (1− λ) · 1

log(pui
+ 1)

, (6.8)

where psi is the functional rank position and pui
is the non-functional

rank position of Web service i among all the service candidates.
Since the absolute values of similarity and service quality indicate
different features of Web service and include different units and
range, rank positions rather than absolute values is a better choice
to indicate the appropriateness of all candidates. 1

log(p+1) calculates
the appropriateness value of a candidate in position p for a query.
λ ∈ [0, 1] defines how much the functionality factor is more impor-
tant than the non-functionality factor in the final recommendation.

λ can be a constant to allocate a fixed percentage of the two parts’
contributions to the final rating score ri. However, it is more realistic
if λ is expressed as a function of psi:

λ = f(psi) (6.9)

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 119

λ is smaller if the position in similarity rank is lower. This means a
Web service is inappropriate if it cannot provide the required func-
tionality to the users no matter how well it serves. The relationship
between searching accuracy and the formula of λ will be identified
to extend the search engine prototype in our future work.

Rank Aggregation

After receiving the users’ query, the functional component of WS-
Express computes the similarity si in Section 6.4.2 between search
query Rf and operations of Web service i, while the non-functional
component of WSExpress employs Rq to compute the QoS utility ui
in Section 6.4.1 of each Web service i.

Now our goal is to consider user’s preferences on both functional
and non-functional features and provide a rank list by combing eval-
uation results of the two aspects of service candidates. Given the
user’s preference on functional and non-functional aspect, we can
provide a personalized rank list by assigning each service candidate
a certain score based on its positions in similarity ranking and QoS
utility ranking. In other words, we aggregate the rankings of simi-
larity and QoS utility according user defined preference.

We formally describe the optimal rank aggregation problem in
the following. Given a set S = {s1, s2, · · · } of service candidates,
an ranking list l =< l(1), l(2), · · · > is an permutation of all service
candidates, where l(i) denotes the service at position i of l. Given
two ranking lists lp, lq of similarity and QoS utility, respectively, the
optimal rank list lo, which is an aggregation of lp and lq should be
recommended to users.

Given the similarity values or QoS utility scores of candidates,
we assume that there is an uncertainty of ranking list lp or lq. In other
words, any service sj ∈ S is assumed to be possible for ranked in the
top position of l. But different services may have different likelihood
values. Under this assumption, we define the top one probability of

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 120

Web service sj as follows:

P (sj) =
f(rj)∑m
k=1 f(rk)

, (6.10)

where f(x) can be any monotonically increasing and strictly posi-
tive function, P (sj) > 0 and

∑
P (sj) = 1. For simplicity, we take

the exponential function for f(x) [14]. Note that the top one proba-
bilities P (sj) form a probability distribution over the set of services
S. The top one probability indicates the probability of a service be-
ing ranked in the top position of a user’s ranking list. By Eq. (6.10),
a Web service with high similarity value or QoS utility value is as-
signed to a high probability value.

In order to estimate the quality of recommended Web service list,
we need to define the distance between two ranking lists []. Ranking
list distance evaluate the similarity of two lists. A distance value
is smaller if more items are ordered in the similar positions. Given
two ranking list l1 and l2 over the Web service set S, the distance
between l1 and l2 is defined by:

d(l1, l2) = −
m∑
j=1

P (s1j)P (s2j), (6.11)

where s1j is the service in the jth position of l1 and s2j is the service
in the jth position of l2.

We therefore define the Web service recommendation as the fol-
lowing optimization problem:

min
lo
L(lp, lq) = λd(lo, lp) + (1− λ)d(lo, lq), (6.12)

where d(lo, lp) is the distance between the optimal ranking list and
the functionality ranking list, d(lo, lq) is the distance between the
optimal ranking list and the non-functionality ranking list, λ controls
the trade off between functionality and non-functionality.

Intuitively, Web services recommended by the final ranking list
are functional comply with the users’ requirements and with high

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 121

QoS level. Our goal is to find a rank of all candidate in U that min-
imize the objective value function Eq. 6.12. One possible approach
to solve the problem is check all the possible ranking lists in the so-
lution space and select the optimal ranking which minimize the ob-
jective value function Eq. 6.12. The size of solution space is O(n!)
for n candidates. In fact, this is a NP-complete problem, which can
be proved by transforming into a NP-complete problem of finding
minimum cost perfect matching in the bipartite graph. Therefore we
propose a greedy algorithm to find an suboptimal solution as fol-
lows:

Algorithm 5: Greedy Rank Aggregation
Input: a candidate set S, two ranking lists lp and lq
Output: a optimal rank aggregation l∗o
for each service sj in S do1

P1(sj) =
f(uj)∑m

k=1 f(uk)
;2

P2(sj) =
f(simj)∑m

k=1 f(simk)
;3

AP (sj) = λP1sj + (1− λ)P2(sj);4

end5

Generate a ranking list l∗o of all the service candidates according to their AP6

values;
dl∗o ,lp = −

∑m
j=1 P (spj)P (soj);7

dl∗o ,lq = −
∑m

j=1 P (sqj)P (soj);8

L∗(lp, lq) = λd(l∗o, lp) + (1− λ)d(l∗o, lq);9

for each candidate s in S do10

change the position of s higher or lower;11

dlo,lp = −
∑m

j=1 P (spj)P (soj);12

dlo,lq = −
∑m

j=1 P (sqj)P (soj);13

L(lp, lq) = λd(lo, lp) + (1− λ)d(lo, lq);14

if L∗(lp, lq) < L(lp, lq) then15

l∗o = lo;16

end17

end18

return l∗o;19

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 122

6.4.4 Online Ranking

In this section we propose an online service recommendation algo-
rithm. Since the QoS performance of Web services are dynamic
at runtime, the ranking list should adopt the updated QoS informa-
tion. Therefore, the Optimal Rank Algorithm is extended to inte-
grate QoS information dynamically. In our ranking aggregation ap-
proach, a nice property is that before aggregation the functional util-
ity and nonfunctional utility are calculated independently. For func-
tional similarity search, the ranking list remains the same in different
time intervals. The QoS ranking list is changing from time to time.
Therefore, the optimal recommendation list should be adopted to the
new QoS value accordingly. The Online Service Recommendation
Algorithm is described as follows:

Algorithm 6: Online Service Recommendation
Input: a candidate set S, an optimal ranking list lo, functional ranking lists

lp, a new QoS matrix Q
Output: a new optimal rank aggregation l∗o
Conduct normalization on the new QoS matrix Q according to 6.2;1

Compute the QoS utility vector U according to 6.5;2

for each service sj in S do3

P2(sj) =
f(simj)∑m

k=1 f(simk)
;4

end5

l∗o = lo;6

for each candidate s in S do7

change the position of s higher or lower;8

dlo,lp = −
∑m

j=1 P (spj)P (soj);9

dlo,lq = −
∑m

j=1 P (sqj)P (soj);10

L(lp, lq) = λd(lo, lp) + (1− λ)d(lo, lq);11

if L∗(lp, lq) < L(lp, lq) then12

l∗o = lo;13

end14

end15

return l∗o;16

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 123

6.4.5 Application Scenarios

Searching Styles

To attack the above problem, we propose a novel search engine
which can provide the user with brand new searching styles. We de-
fine a user search query in the form of a vector R = (Rf , Rq), which
contains functionality part Rf and non-functionality part Rq for rep-
resenting the user’s ideal Web service candidate. Rq = (C,W) de-
fines the user’s nonfunctional requirements, where C and W set the
user’s constraints and preferences on QoS criteria separately as men-
tioned in Section 6.4.1. Our new searching procedure consists of
three styles in the following discussion.

Keywords Specified In this searching style, the user only needs
to simply enter the keywords vector rk and QoS requirements Rq.
The keywords should capture the main functionality the user re-
quires in the search goal. In Table 6.1 as an example, since the user
needs price information of cars, it is reasonable to specify “car” or
“car, price” as the keywords vector.

Interface Specified In order to improve the searching efficiency,
we design the “interface specified” searching style. In this style, the
user specifies the expected functionality by setting the input vector
rin and/or output vector rout as well as QoS requirements Rq. The
input vector rin represents the largest amount of information the user
can provide to the expected Web service operation, while the output
vector represents the least amount of information that should be re-
turned after invoking the Web service operation.

Similar Operations For a more accurate and advanced Web ser-
vice searching, we design the “similar operation” searching style
by combining above two styles. This style is especially suitable in
the following two situations. In the first situation, the user has al-
ready received a Web service recommendation list by performing
one of the above searching styles. The user decides the Web service
to explore in detail, checks the inputs and outputs of its operations,

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 124

and even tries some of the operations. After carefully inspecting
a Web service the user may find that this Web service is not suit-
able for the applications. However, the user does not want to repeat
the time-consuming inspecting process for other service candidates.
This style enables the user to find similar Web service operations by
only modifying a small part of the previous query to exclude these
inappropriate features. In the second situation, the user already in-
tegrates a Web service into the application for a particular function-
ality. However, due to some reason this web service becomes un-
accessible. Without requesting an extra query process, the search
engine can automatically find other substitutions.

Now we discuss in detail how the functional evaluation compo-
nent operates in different scenarios.

• If only the keywords vector in the functionality part of the user
query is defined, the similarity is computed in Section 6.4.2
using the keywords vector rk of the query and the keywords
vector K extracted from the descriptions, operation names, and
parameter names.

• If the input and output vectors in the functionality part of the
user query are defined, the input similarity and output similar-
ity are computed in Section 6.4.2 using the input/output vector
rin/rout of the query and the input/output vector In/Out of an
operation. The functional similarity is a combination of input
and output similarities.

• If the whole functionality part of a query is available. The
functional similarity of an operation is a combination of the
above two kinds of similarities, which is computed using Rf

and OPf .

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 125

6.5 Experiments

The aim of the experiments is to study the performance of our ap-
proach compared with other approaches (e.g., the one proposed by [82]).
We conduct two experiments in Section 6.5.1 and Section 6.5.2, re-
spectively. Firstly, we show that the top-k Web services returned
by our approach have much more QoS gain than other approaches.
Secondly, we demonstrate that our approach can achieve highly rel-
evant results as good as other similarity based service searching ap-
proaches even there is no available QoS values.

6.5.1 QoS Recommendation Evaluation

In this section, we conduct a large-scale real-world experiment to
study the QoS performance of the top-k Web services returned by
our searching approach.

To obtain real-world WSDL files, we developed a Web crawl-
ing engine to crawl WSDL files from different Web resources (e.g.,
UDDI, Web service portal, and Web service search engine). We ob-
tain totally 3,738 WSDL files from 69 countries. Totally 15,811
operations are contained in these Web services. To measure the
non-functional performance of these Web services, 339 distributed
computers in 30 countries from Planet-lab 6 are employed to mon-
itor these Web services. The detailed non-functional performance
of Web service invocations are recorded by these service users (dis-
tributed computer nodes). Totally 1,267,182 QoS performance re-
sults are collected. Each invocation record is a k dimension vector
representing the QoS values of k criteria. For simplicity, we use two
matrices, which represent response-time and throughput QoS crite-
ria respectively, for experimental evaluation in this chapter. Without
loss of generality, our approach can be easily extended to include
more QoS criteria.

6http://www.planet-lab.org

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 126

<0.05 0.05−0.10.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 >1.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Values of Response−Time (seconds)

N
m

ub
er

s

(a)

<2.5 2.5−5 5−10 10−20 20−40 40−80 >80
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Values of Throughput (kbps)

N
m

ub
er

s

(b)

Figure 6.4: Value Distributions

Table 6.3: Statistics of WS QoS Dataset
Statistics Response-Time Throughput

Scale 0-20s 0-1000kbps
Mean 0.910s 47.386kbps

Num. of Users 339 339
Num. of Web Services 3,738 3,738

Num. of Records 1,267,182 1,267,182

The statistics of Web service QoS dataset are summarized in Ta-
ble 6.3. Response-time and throughput are within the range 0-20
seconds and 0-1000 kbps respectively. The means of response-time
and throughput are 0.910 seconds and 47.386 kbps respectively. Fig-
ure 6.4 shows the distributions of response-time and throughput.
Most of the response-time values are between 0.1-0.8 seconds and
most of the throughput values are between 5-40 kbps.

In most of the searching scenarios, users tend to look at only the
top items of the returned result list. The items in the higher posi-
tion, especially the first position, is more important than the items in
lower positions in the returned result list. To evaluate the qualities
of top-k returned results in a ranked list, we employ the Normalized
Discounted Cumulative Gain (NDCG), a standard IR measure [53]

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 127

Top5 Top10 Top20 Top40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

 V
al

ue
s

Rank Aggregation
Utility Aggregation
URBE

Figure 6.5: NDCG of Top-K Web services

approach as performance evaluation metric. Let s1, s2, . . . , sp be a
ranked list of Web services produced by a searching approach. Let ui
be the associated QoS utility value of Web service si, which ranked
in position pi. Discounted Cumulative Gain (DCG) and NDCG of at
rank k are defined respectively as:

DCGk = ui +
k∑

i=2

ui
log2 pi

, (6.13)

NDCGk =
DCGk

IDCGk
(6.14)

where IDCG is the maximum possible gain value that is obtained
with the optimal re-order of k Web services in the list s1, s2, . . . , sp.
For example, consider the following QoS utility values which are
ordered according to the position of associated Web services in a
ranked Web service list:

u = [0.3, 0.2, 0.3, 0, 0, 0.1, 0.2, 0.2, 0.3, 0]
The perfect ranking would have QoS utility values of each rank of

u = [0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.1, 0, 0, 0]
which would give ideal DCG utility values.

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 128

Table 6.4: NDCG values (A larger NDCG value means a better performance)
Query Top5 Top10 Top20 Top40

Domain
ID URBE WSExpress URBE WSExpress URBE WSExpress URBE WSExpress

1 0.437 0.661 0.444 0.599 0.439 0.633 0.527 0.659
2 0.653 0.653 0.668 0.721 0.657 0.666 0.634 0.645
3 0.402 0.502 0.456 0.512 0.502 0.544 0.574 0.603Business

4 0.200 0.767 0.303 0.697 0.399 0.667 0.496 0.699
5 0.603 0.742 0.604 0.753 0.598 0.664 0.631 0.717
6 0.621 0.732 0.571 0.715 0.574 0.675 0.598 0.696
7 0.645 0.688 0.579 0.671 0.560 0.643 0.632 0.662Education

8 0.509 0.642 0.562 0.642 0.575 0.633 0.600 0.672
9 0.423 0.538 0.478 0.549 0.495 0.572 0.502 0.578
10 0.573 0.731 0.525 0.717 0.546 0.693 0.602 0.702
11 0.632 0.819 0.613 0.823 0.583 0.757 0.628 0.774Science

12 0.622 0.754 0.593 0.728 0.582 0.681 0.597 0.734
13 0.214 0.574 0.245 0.551 0.243 0.559 0.259 0.581
14 0.713 0.825 0.701 0.814 0.687 0.802 0.725 0.824
15 0.431 0.581 0.346 0.566 0.465 0.566 0.530 0.606Weather

16 0.475 0.611 0.485 0.519 0.501 0.529 0.525 0.543
17 0.409 0.516 0.419 0.485 0.403 0.496 0.589 0.530
18 0.393 0.519 0.373 0.488 0.450 0.527 0.532 0.567
19 0.544 0.740 0.554 0.683 0.512 0.642 0.551 0.683Media

20 0.504 0.678 0.473 0.613 0.451 0.559 0.497 0.602

To study the performance of our approach, we compared our
WSExpress Web service searching engine with the URBE [82], a
keywords matching approach, employing our real-world dataset de-
scribed above. Totally 5 query domains are studied in this exper-
iment. Each domain contains 4 user queries. Figure 6.5 shows
the NDCG values of top-k recommended Web services. The top-
k NDCG values of our WSExpress engine are considerably higher
than URBE (i.e., 0.767 of WSExpress compared with 0.200 of URBE
for Top5 and 0.697 of WSExpress compared with 0.303 of URBE
for Top10). This means that, given a query, our search engine can
recommend high quality Web services in the first positions.

Table 6.4 shows the NDCG values of top-k recommended Web
services in the five domains. In most of the queries, NDCG values
of WSExpress are much higher than URBE. In some search scenar-
ios such as query 2, the NDCG values of WSExpress and URBE for
Top5 are identical, since in this particular case the most functional
appropriate Web services have the most appropriate non-functional

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 129

properties. In other words, these Top5 Web services have highest
QoS utilities and similarity values. However, while more top Web
services are considered, such as Top10, the NDCG values of WSEx-
press are becoming much higher than URBE.

6.5.2 Functional Matching Evaluation

In this experiment, we study the relevance of the recommended Web
services to the user’s query without considering non-functional per-
formance of the Web services. By comparing our approach with
URBE, we observe that the top-k Web services in our recommen-
dation list are highly relevant to the user’s query even without any
available QoS values.

The benchmark adopted for evaluating the performance of our
approach is the OWL-S service retrieval test collection OWLS-TC
v2 [60]. This collection consists of more than 570 Web services
and 1,000 operations covering seven application domains (i.e., ed-
ucation, medical care, food, travel, communication, economy, and
weaponry). The benchmark includes WSDL files of the Web ser-
vices, 32 test queries, and a set of relevant Web services associated
to each of the queries. Since the QoS feature is not considered in
this experiment, we set the QoS utility value of each Web service as
1.

Top-k recall (Recallk) and top-k precision (Precisionk) are adopted
as metrics to evaluate the performance of different Web search ap-
proaches. Recallk and Precisionk can be calculated by:

Recallk =
|Rel ∩Retk|
|Rel|

, (6.15)

Precisionk =
|Rel ∩Retk|
|Retk|

, (6.16)

where Rel is the relevant set of Web services for a query, and Retk
is a set of top-k Web services search results.

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 130

3 5 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−K

R
ec

al
l

Rank Aggregation
Utility Aggregation
URBE

(a)

3 5 10 20 30 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−K

P
re

ci
si

on

URBE
Utility Aggregration
Rank Aggregation

(b)

Figure 6.6: Recall and Precision Performance

Since user tends to check only top few Web services in common
search scenario, an approach with high top-k precision values is very
practical in reality. Figure 6.6 shows the experimental results of our
WSExpress approach and the URBE approach. In Figure 6.6(a),
the top-k recall values of WSExpress are higher than URBE. In Fig-
ure 6.6(b), the top-k precision values of WSExpress are considerably
higher than URBE, indicating that more relevant Web services are
recommended in high positions by our approach.

6.5.3 Online Recommendation

In this chapter, we propose an online Web service recommendation
approach. Different from the previous ranking approach, it adopts
the real time QoS information to recommend Web services. In this
section, we evaluate the performance of online recommendation ap-
proaches.

In this experiment we deploy 142 distributed computers located
in 22 countries from PlanetLab. Totally, 4,532 publicly available
real-world Web services from 57 countries are monitored by each
computer continuously. In our experiment, each of the 142 comput-
ers sends null operation requests to all the 4,532 Web services during

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 131

Table 6.5: Statistics of Online QoS Dataset
Statistics Response-Time Throughput

Scale 0-20s 0-1000kbps
Mean 3.165s 9.609kbps

Num. of Users 142 142
Num. of Web Services 4,532 4,532
Num. of Time Intervals 64 64

Num. of Records 30,287,611 30,287,611

every time interval. The experiment lasts for 16 hours with a time in-
terval lasting for 15 minutes. By collecting invocation records from
all the computers, finally we include 30,287,611 QoS performance
results into the Web service QoS dataset. Each invocation record is
a k dimension vector representing the QoS values of k criteria. We
then extract a set of 142× 4532× 64 user-service-time tensors, each
of which stands for a particular QoS property, from the QoS invoca-
tion records. For simplicity, we employ two tensors, which represent
response-time and throughput QoS criteria respectively, for experi-
mental evaluation in this chapter. Without loss of generality, our
approach can be easily extended to include more QoS criteria.

<0.1 0.1−0.2 0.2−0.4 0.4−0.8 0.8−1.6 >1.6
0

1

2

3

4

5

6

7

8

9
x 10

6

Values of Response−Time (seconds)

N
um

be
rs

(a)

<0.4 0.4−0.8 0.8−1.6 1.6−3.2 3.2−6.4 >6.4
0

1

2

3

4

5

6

7
x 10

6

Values of Throughput (kbps)

N
um

be
rs

(b)

Figure 6.7: QoS Value Distributions of Online Dataset

The statistics of Web service QoS dataset are summarized in Ta-

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 132

ble 6.3. Response-time and throughput are within the range of 0-
20 seconds and 0-1000 kbps respectively. The means of response-
time and throughput are 3.165 seconds and 9.609 kbps respectively.
The distributions of the response-time and throughput values of the
user-service-time tensors are shown in Figure 6.5.1 and Figure 6.5.1
respectively. Most of the response-time values are between 0.1-0.8
seconds and most of the throughput values are between 0.8-3.2 kbps.

10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Intervals

N
D

C
G

 V
al

ue
s

URBE
Online Rank Aggregation

Figure 6.8: NDCG of Online Recommendation

The experimental results are shown in Figure 6.8. Each time in-
terval lasts for 15 minutes. The parameter setting is Top-K=5. From
Figure 6.8, we observe that in each time interval, online recom-
mendation approach has a higher NDCG value than URBE, which
means Web services with better QoS performance are recommended
compared with URBE. Since URBE cannot adopt the dynamic QoS
information for recommendation in time, the NDCG values of ap-
proach URBE decreases significantly as the time passed. After about
30 time intervals, the NDCG value is below 0.3 which means QoS
performance of the recommended Web services has a high probabil-
ity that cannot fulfill the users’ non-functional requirements. In our

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

N
D

C
G

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

P
re

ci
si

on

(b)

Figure 6.9: Impact of λ

online rank aggregation approach, we employ the latest QoS infor-
mation of Web services for recommendation. Therefore, the NDCG
values are maintained in a high level, which indicates that we can
always recommend appropriate Web services with high QoS perfor-
mance to the users.

6.5.4 Impact of λ

In our method, the parameter λ controls the user’s preference on
functionality and non-functionality. A larger value of λ means func-
tionality is preferred. In Figure 6.9, we study the impact of λ by
varying the the values of lambda from 0 to 1 with a step value of
0.1. Other parameter settings are Top-K=10.

Figure 6.9(a) shows the NDCG values and Figure 6.9(b) shows
the Precision values. From Figure 6.9(a), we observe that λ impacts
the NDCG performance significantly, which demonstrates that in-
corporating the QoS information greatly improves the non-functional
quality of recommended Web services. In general, when the value
of λ is increased from 0 to 1, the NDCG value is decreased. This
observation indicates that if functionality is preferred, the QoS per-
formance of recommended Web services is decreased. If λ = 0,

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 134

we only employ the QoS information for Web service recommen-
dation, therefore the NDCG value is 1. If λ = 1, we only employ
the functional similarity information for Web service recommenda-
tion, therefore the NDCG value is very small. From Figure 6.9(b),
we observe that λ also impacts the precision significantly, which
demonstrates that incorporating the functional similarity informa-
tion greatly improves the recommendation accuracy. In general,
when the value of λ is increased from 0 to 1, the precision value
is increased. This observation indicates that if functionality is pre-
ferred, the functional requirements can be fulfilled well. If λ = 0,
we only employ the QoS information for Web service recommen-
dation, therefore the precision value is vary small. If λ = 1, we
only employ the functional similarity information for Web service
recommendation, therefore the precision value is 1. In other cases,
we fuse the information of QoS and functionality for Web service
recommendation.

A proper value of λ is highly related to the preference of the
user. The user defines the importance of functionality and non-
functionality. A proper value of λ can be defined by analyzing the
impact of λ on a small sample dataset.

6.6 Summary

In this chapter we present a novel Web service search engine WS-
Express to find the desired Web service. Both functional and non-
functional characteristics of Web services are captured in our ap-
proach. We provide user three searching styles in the WSExpress
to adapt different searching scenarios. A large-scale real-world ex-
periment in distributed environment and a experiment on benchmark
OWLS-TC v2 are conducted to study the performance of our search
engine prototype. The results show that our approach outperforms
related works.

In future work, we will conduct data mining in our dataset to

CHAPTER 6. QOS-AWARE WEB SERVICE SEARCHING 135

identify for which formulas of λ our search approach can achieve op-
timized performance. Clustering algorithms for similarity computa-
tion will be designed for improving functional accuracy of searching
result. Finally, the non-functional evaluation component will be ex-
tended to dynamically collect quality information of Web services.

2 End of chapter.

Chapter 7

QoS-Aware Byzantine Fault
Tolerance

7.1 Overview

Cloud computing [6, 25] is Internet-based computing, whereby shared
resources, software, and information are provided to computers and
other devices on demand [44]. Currently, most of the clouds are
deployed on two kinds of infrastructures. One is well-provisioned
and well-managed infrastructure [102] managed by a large cloud
provider (e.g., Amazon, Google, Microsoft, IBM, etc.). The other
one is voluntary-resource infrastructure which consists of numer-
ous user-contributed computing resources [21]. With the exponen-
tial growth of cloud computing as a solution for providing flexible
computing resource, more and more cloud applications emerge in
recent years. How to build high-reliable cloud applications, which
are usually large-scale and very complex, becomes an urgent and
crucial research problem.

Typically, cloud applications consist of a number of cloud mod-
ules. The reliability of cloud applications is greatly influenced by the
reliability of cloud modules. Therefore, building high-reliable cloud
modules becomes the premise of developing high-reliable cloud ap-
plications. Traditionally, testing schemes [73] are conducted on the
software systems of cloud modules to make sure that the reliability

136

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 137

threshold has been achieved before releasing the software. How-
ever, reliability of a cloud module not only relies on the system it-
self, but also heavily depends on the node it has deployed and the
unpredictable Internet. Traditional testing has limited improvement
on the reliability of a cloud module under voluntary-resource cloud
infrastructure due to:

• Computing resources, denoted as nodes in the cloud, are frangi-
ble. Different from the powerful and performance-guaranteed
nodes managed by large cloud providers, user-contributed nodes
are usually highly dynamic, much cheaper, less powerful, and
less reliable. The reliability of a cloud module deployed on
these nodes is mainly determined by the robustness of nodes
rather than the software implementation.

• Communication links between modules are not reliable. Unlike
nodes in well-provisioned cloud infrastructure, which are con-
nected by high speed cables, nodes in voluntary-resource cloud
infrastructure are usually connected by unpredictable commu-
nication links. Communication faults, such as time out, will
greatly influence the reliability of cloud applications.

Based on the above analysis, in order to build reliable cloud ap-
plications on the voluntary-resource cloud infrastructure, it is ex-
tremely urgent to design a fault tolerance mechanism for handling
different faults. Typically, the reliability of cloud applications is ef-
fected by several types of faults, including: node faults like crashing,
network faults like disconnection, Byzantine faults [62] like mali-
cious behaviors (i.e., sending inconsistent response to a request [109]),
etc. The user-contributed nodes, which are usually cheap and small,
makes malicious behaviors increasingly common in voluntary-resource
cloud infrastructure. However, traditional fault tolerance strategies
cannot tolerate malicious behaviors of nodes.

To address this critical challenge, we propose a novel approach,
called Byzantine Fault Tolerant Cloud (BFTCloud), for tolerating

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 138

different types of failures in voluntary-resource clouds. BFTCloud
uses replication techniques for overcoming failures since a broad
pool of nodes are available in the cloud. Moreover, due to the dif-
ferent geographical locations, operating systems, network environ-
ments and software implementation among nodes, most of the fail-
ures happened in voluntary-resource cloud are independent of each
other, which is the premise of Byzantine fault tolerance mechanism.
BFTCloud can tolerate different types of failures including the ma-
licious behaviors of nodes. By making up a BFT group of one pri-
mary and 3f replicas, BFTCloud can guarantee the robustness of
systems when up to f nodes are faulty at run-time. The experimen-
tal results show that compared with other fault tolerance approaches,
BFTCloud guarantees high reliability of systems built on the top
of voluntary-resource cloud infrastructure and ensures good perfor-
mance of these systems.

In summary, this chapter makes the following contributions:

1. We identify the Byzantine fault tolerance problem in voluntary-
resource cloud and propose a Byzantine fault tolerance frame-
work, named BFTCloud, for guaranteeing the robustness of
cloud application. BFTCloud uses dynamical replication tech-
niques to tolerate various types of faults including Byzantine
faults. We consider BFTCloud as the first Byzantine Fault Tol-
erant Framework in cloud computing literature.

2. We have implemented the BFTCloud system and test it on a
voluntary-resource cloud, Planet-lab 1, which consists of 257
user-contributed computing resources distributed in 26 coun-
tries. The prototype implementation indicates that BFTCloud
can be easily integrated into cloud nodes as a middleware.

3. We conduct large-scale real-world experiments to study the
performance of BFTCloud on reliability improvement com-
pared with other approaches. The experimental results show

1http://www.planet-lab.org

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 139

Cloud Application 1
Cloud Application 2 Cloud Application n

Figure 7.1: Architecture of Cloud Applications

the effectiveness of BFTCloud on tolerating various types of
faults in cloud.

The rest of this chapter is organized as follows: Section 7.2 de-
scribes the system architecture of BFTCloud. Section 7.3 presents
our BFTCloud fault tolerate mechanism in detail. Section 7.4 intro-
duces the experimental results. Section 7.5 concludes the chapter.

7.2 System Architecture

We begin by using a motivating example to show the research prob-
lem in this chapter. As shown in Figure 7.1, cloud applications usu-
ally consist of a number of modules. These modules are deployed
on distributed cloud nodes and connected with each other through
communication links. Each module is supposed to finish a certain
task (e.g., product selection, bill payment, shipping addresses con-
firming, etc.) for a cloud application (e.g., shopping agency, etc.). A
cloud module will form a sequence of requests (e.g., browsing prod-
ucts, choosing products, etc.) for the task (e.g, product selection,
etc.) and send the requests to a group of nodes in the voluntary-
resource cloud for execution.

Figure 7.2 shows the system architecture of BFTCloud in voluntary-

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 140

Figure 7.2: Architecture of BFTCloud in Voluntary-Resource Cloud

resource cloud environment. Under the voluntary-resource cloud
infrastructure, end-users contribute a larger number of computing
resources which can be provided to cloud modules for request ex-
ecution. Typically, computing resources in the voluntary-resource
cloud are heterogeneous and less reliable, and malicious behaviors
of resource providers cannot be prevented. Byzantine faults could
be very common in a user-contributed cloud environment. In order
to guarantee the robustness of the module, the replication technique
is employed for request execution upon the user-contributed nodes.
After a cloud module generated a sequence of requests, it first needs
to choose a BFT group from the pool of cloud nodes for request
execution. Since cloud nodes are located in different geographic lo-
cations with heterogeneous network environments, and the failure
probabilities of nodes are diverse, a monitor is implemented on the
cloud module side as a middleware for monitoring the QoS perfor-
mance and failure probability of nodes. By considering the QoS
performance and failure probability, the cloud module first chooses

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 141

Figure 7.3: Work Procedures of BFTCloud

a node as primary and send the current request to the primary. After
that, a set of replicas are selected according to their failure probabil-
ity and QoS performance to both the cloud module and the primary.
The primary and replicas form a BFT group for executing requests
from the cloud module. After the BFT group returns responses to the
current request, the cloud module will judge whether the responses
can be committed. Then the cloud module will send the next request
or resend the current request to the BFT group. If some nodes of
the BFT group are identified as faulty, the cloud module will up-
date the BFT group to guarantee the system reliability. The detailed
approach will be presented in Section 7.3.

7.3 System Design

In this section, we present BFTCloud, a practical framework for
building robust systems with Byzantine fault tolerance under voluntary-
resource cloud infrastructure. We first give an overview on the work
procedures of BFTCloud in Section 7.3.1. Then we describe the five
phases of BFTCloud in Section 7.3.2 to Section 7.3.6 respectively.

7.3.1 System Overview

Figure 7.3 shows the work procedures of BFTCloud. The input of
BFTCloud is a sequence of requests with specified QoS require-
ments (e.g., preferences on price, capability, bandwidth, workload,
response latency, failure probability, etc.) sent by the cloud mod-

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 142

ule. The output of BFTCloud is a sequence of committed responses
corresponding to the requests. BFTCloud consists of five phases
described as follows:

1. Primary Selection: After accepting a request from the cloud
module, a node is selected from the Cloud as the primary. The
primary is selected by applying the primary selection algorithm
with respect to the QoS requirements of the request.

2. Replica Selection: In this phase, a set of nodes are selected
as replicas by applying a replica selection algorithm with re-
spect to the QoS requirements of the request. The primary then
forwards the request to all replicas for execution. The selected
replicas together with the primary make up a BFT group.

3. Request Execution: In this phase, all members in the BFT
group execute the request locally and send back their responses
to the cloud module. After collecting responses from the BFT
group within a certain period of time, the cloud module will
judge the consistency of responses. If the BFT group respond
consistently, the current request will be committed and the cloud
module will send the next request. If the BFT group responds
inconsistently, the cloud module will trigger a fault tolerance
procedure to tolerate up to f faulty nodes and trigger the pri-
mary updating procedure and/or replica updating procedure to
update the group members. If more than f nodes are identi-
fied as faulty, the cloud module will resend the request to the
refresh BFT group and enter into the request execution phase
again.

4. Primary Updating: In this phase, faulty primary in the BFT
group will be identified and replaced by a newly selected pri-
mary.

5. Replica Updating: In this phase, faulty replicas in the BFT
group will be identified and updated according to the informa-

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 143

tion obtained from the request execution phase. The replica
updating algorithm will be applied to replace the faulty repli-
cas with other suitable nodes in the cloud.

7.3.2 Primary Selection

Under the voluntary-resource cloud infrastructure, a cloud module
will send the request directly to a node which it believes to be the
primary. Therefore, the primary plays a important role in a BFT
group. The responsibilities of primary include: accepting requests
from the cloud module, selecting appropriate replicas to form a BFT
group, forwarding the request to all replicas, and replacing faulty
replicas with newly selected nodes. Since failures happened on pri-
mary will greatly decrease the overall performance of a BFT group,
the requirements on primary attributes (e.g., capability, bandwidth,
workload, etc.) are more strict than those on replicas. In order to se-
lect an optimal primary, we propose a primary selection algorithm.

We model the primary selection problem under voluntary-resource
cloud infrastructure as follows:

Let N be the set of nodes available in the cloud and
Q be the set of m dimension vectors. For each node ni

in N , there is a qi = (qi1, qi2, · · · , qim) in Q represent-
ing the QoS values of m criteria. Given a priority vector
W = (w1, w2, · · · , wm) on the m QoS criteria, the opti-
mal primary should be select from the set N .

Note that wk ∈ R+ and
∑m

k=1wk = 1. Typically the QoS values
of can be integers from a given range (e.g. 0, 1, 2, 3 or real numbers
of a close interval (e.g. [−20, 20]). Without loss of generality, we
can map a QoS value to the interval [0, 1] using the function f(x) =
(x−qmin)/(qmax−qmin), where qmax and qmin are the maximum and
minimum QoS values of the corresponding criterion respectively.

The proposed primary selection algorithm is shown in Algorithm 7.
After accepting the priority vector from the cloud module, a rating

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 144

Algorithm 7: Primary Selection Algorithm
Input: N , Q, W
Output: n∗

n∗ = null;1

rmax = 0;2

for all ni ∈ N do3

ri =
∑m

k=1 qik × wk;4

if ri > rmax then5

n∗ = ni;6

rmax = ri;7

end8

end9

return n∗;10

value ri is computed for each node ni ∈ N as follows:

ri =
m∑
k=1

qik × wk, (7.1)

where ri fall into the interval [0, 1]. The cloud module will choose
the node n∗, which has the highest rating value, as the primary:

n∗ = argmax
ni∈N

ri. (7.2)

7.3.3 Replica Selection

After the primary is selected in Section 7.3.2, a set of replicas should
be chosen to form a BFT group. Since replicas in a BFT group
need to communicate with both the primary and the cloud module,
the QoS performance of a node should be considered from both the
cloud module perspective and the primary perspective. Let qi be
the QoS vector of node ni observed by the cloud module and q′i
be the QoS vector of node ni observed by the primary. Then the
combined QoS vector q′′i is calculated by a set of transformation
rules as follows:

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 145

• minimum: q′′ik = min(qik, q
′
ik), for QoS criterion like band-

width.

• average: q′′ik = avg(qik, q
′
ik), for QoS criterion like response

time.

• equality: q′′ik = qik = q′ik, for QoS criterion like price.

Without loss of generality, the rule set can be easily extended to
include more rules for calculating complex QoS criterion values.

Given the combined QoS vector q′′i , we can evaluate how appro-
priate the node ni is as a replica of the BFT group. A score si is
assigned to each node ni ∈ N as follows:

si =
m∑
k=1

q′′ik × wk, (7.3)

where si falls into the interval [0, 1]. After ordering the scores, we
can select the nodes ranked in high positions as replicas of the BFT
group.

In order to decide the replication degree, we first consider the fail-
ure probability of a BFT group in its entirety. Since the BFTCloud
guarantees the execution correctness when up to f nodes are faulty,
a BFT group is faulty if and only if more than f nodes are faulty.
We define the failure probability of a BFT group σ as follows:

Pσ = P (|F | > f), (7.4)

where F is the set of failure nodes in σ.
In order to reduce the cost of request execution, the replication

degree f should be as small as possible, and the failure probability
of a BFT group σ should be guaranteed under a certain threshold at
the same time. Let P0 be the threshold of Pσ defined by the cloud
module. The replication degree decision problem can be formulated
as an optimization problem:

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 146

Algorithm 8: Replica Selection Algorithm
Input: N , Q, Q′, W , P0

Output: σ
σ = null;1

f = 0;2

Pσ = P ∗;3

for all ni ∈ N do4

q′′i ← (qi, q
′
i) by applying the set of transformation rules;5

si =
∑m

k=1 q
′′
ik × wk;6

end7

Generate a permutation < n′
1, n

′
2, · · · > of the set N such that8

s′1 ≥ s′2 ≥ · · · ;
while Pσ > P0 do9

f = f + 1;10

σ = {n′
1, n

′
2, · · · , n′

3f};11

Pσ = 0;12

for all F ∈ Ω do13

Pσ = Pσ +
∏

ni∈F Pi

∏
nj∈σ\F (1− Pj);14

end15

end16

return σ;17

min
f

f =
|σ| − 1

3
,

Pσ =
∑
F∈Ω

∏
ni∈F

Pi

∏
nj∈σ\F

(1− Pj),

Pσ < P0,

Ω = {F |f < |F |}. (7.5)

where Pi is the failure probability of node ni, and Ω is the set of
events that more than f nodes of the BFT group σ are fault. Note
that a solution to this problem decides the replication degree and the
replicas of BFT group σ at the same time. We summarize the replica
selection algorithm in Algorithm 8.

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 147

7.3.4 Request Execution

After the BFT group members are determined, requests can be sent
to the BFT group for execution. The cloud module first forms a
request sequence and sends the sequence of requests to the primary.
The primary will order the requests and forward the ordered requests
to all the BFT group members. Each member of the BFT group
will execute the sequence of requests and send the corresponding
responses back to the cloud module. The cloud module collects all
the received responses from the BFT group members and make a
judgement on the consistence of responses. A action strategy will
be chose according to the consistence of responses as follows:

• Case 1: The cloud module receives 3f + 1 consist responses
from the BFT group. In this case, the cloud module will com-
mit the current request since there is no fault happens in the
current BFT group.

• Case 2: The cloud module receives between 2f +1 to 3f con-
sist responses. In this case, the cloud module can still commit
the current request since there are less than f + 1 faults hap-
pened. To commit the current request and identify the faulty
nodes, the cloud module assembles a commit certificate and
sends the commit certificate to all the BFT group members.
Each member will acknowledge the cloud module with a local-
commit message once it receives the commit certificate from
the cloud module. If more than 2f + 1 local-commit mes-
sages are received the cloud module will commit the current
request and invokes a replica updating procedure to replace all
the faulty BFT group members with new members. If less than
2f + 1 local-commit messages are received, the cloud module
will resend the commit certificate until it receives local-commit
messages from more than 2f + 1 members.

• Case 3: The cloud module receives less than 2f + 1 response

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 148

messages. In this case, either the primary is faulty or more than
f+1 replicas are faulty. The cloud module will then resend the
current request again but to all members this time. Each replica
forwards the request to the node it believes to be the primary. If
the replica receives a request from the primary within a given
time and the proposed sequence number is consistency with
that sent by the cloud module, the replica will execute the re-
quest and send response to the cloud module. If the replica
does’t receive an ordered request from the primary within a
given time, or the request sequence number isn’t consistency
with the request sent by the cloud module, the primary must be
faulty. The replica will send a primary election proposal to all
replicas to trigger a primary updating procedure.

• Case 4: The cloud module receives more than 2f+1 responses,
but fewer than f + 1 responses are consistency. This indicates
inconsistent ordering of requests by the primary. The cloud
module will send a proof of misbehavior of primary to all the
replicas, and trigger a primary updating procedure.

7.3.5 Primary updating

When the primary is faulty, a primary updating procedures will be
triggered in the Request Execution phase. The procedures of pri-
mary updating phase are as follows:

1. A replica which suspects the primary to be faulty sends an pri-
mary election proposal to all the other replicas. However, it
still participates in the current BFT group as it may be only a
network problem between the replica and the primary. Other
replicas, once receiving a primary election proposal, just store
it since the primary election proposal could arrive from a faulty
replica as well.

2. If a replica receives f + 1 primary election proposals , it in-

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 149

dicates that the primary is really faulty. It will send a primary
selection request to the cloud module. The cloud module then
will start the primary selection phase and return a new primary
which is one of the current replicas. The replica then sends a
primary updating message to all the other replicas, which in-
cludes the new primary name and f + 1 primary election pro-
posals. Other replicas which receive such primary updating
message again confirm that at least f + 1 replicas sent a pri-
mary election proposal, and then resend the primary updating
message together with the proof to the new primary.

3. If the newly selected primary receives 2f +1 primary updating
messages, it sends a new BFT group setup message to all the
replicas, which again includes all the primary updating mes-
sages as proof.

4. A replica which received and confirmed the new BFT group
setup message, will send out a BFT group confirm message to
all replicas.

5. If a replica receives 2f + 1 BFT group confirm messages, it
starts performing as a memeber in the new BFT group.

7.3.6 Replica Updating

In the voluntary-resource cloud environment, nodes are highly dy-
namic and fragile. Different types of faults (e.g., response time out,
unavailable, arbitrary behavior, etc.) may happen to the nodes after
a period of time. Under voluntary-resource cloud infrastructure, the
failure probability of a BFT group increases sharply as the fraction
of faulty nodes increases. The failure probability of a BFT group
under the condition that a set of replicas are already faulty is:

Pσ = P (|F | > f |F ∗)
= P (|F \ F ∗| > f − f ∗), (7.6)

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 150

where F ∗ is the set of replicas which are faulty already.
To ensure the failure probability of a BFT group below a certain

threshold, we need to replace the members once they are identified to
be faulty. Moreover, due to the highly dynamic voluntary-resource
cloud environment, the QoS performance of nodes are changed rapidly.
Updating replicas timely could keep the performance of a BFT group
stable.

Let T be the set of new nodes which will be added to the current
BFT group. F ∗ is the set of nodes which will be removed from
the current BFT group. Let σ′ be the new BFT group with updated
replicas. We have σ′ = σ \F ∗∪T , where T consists of nodes which
are in the top |T | positions ordered by score in Eq. (7.3).

The new BFT group σ′, which can tolerate up to f ′ nodes failure,
should satisfy Pσ′ > P0. Therefore, the replica updating problem
is reduced to a replication degree decision problem, which can be
further formalized as an optimization problem as follows:

min
f ′

f ′ =
|σ′| − 1

3
,

Pσ′ =
∑
F ′∈Λ

∏
ni∈F ′

Pi

∏
nj∈σ′\F ′

(1− Pj),

Pσ′ < P0,

Λ = {F ′|f < |F ′|}. (7.7)

where Λ is the set of events that more than f ′ nodes of the BFT
group σ′ are fault. We summarize the replica updating algorithm in
Algorithm 9.

7.4 Experiments

In this section, in order to study the performance improvements of
our proposed approach, we conduct several experiments to compare
our BFTCloud with several other fault tolerance approaches.

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 151

Algorithm 9: Replica Updating Algorithm
Input: N , Q, Q′, W , P0, σ, F ∗

Output: σ′

σ′ = σ \ F ∗;1

T = null;2

f ′ = ⌈3f−|F ∗|
3
⌉;3

P ′
σ = P ∗;4

for all ni ∈ N \ σ do5

q′′i ← (qi, q
′
i) by applying the set of transformation rules;6

si =
∑m

k=1 q
′′
ik × wk;7

end8

Generate a permutation < n′
1, n

′
2, · · · > of the set N \ σ such that9

s′1 ≥ s′2 ≥ · · · ;
T = {n′

1, n
′
2, · · · , n′

3f ′−|σ′|};10

σ′ = σ′ ∪ T ;11

while P ′
σ > P0 do12

f ′ = f ′ + 1;13

T = {n′
1, n

′
2, · · · , n′

3f ′−|σ′|};14

σ′ = σ′ ∪ T ;15

P ′
σ = 0;16

for all F ∈ Λ do17

P ′
σ = P ′

σ +
∏

ni∈F ′ Pi

∏
nj∈σ′\F ′(1− Pj);18

end19

end20

return σ′;21

In the following, Section 7.4.1 describes the system implementa-
tion of BFTCloud and the experimental settings, and Section 7.4.2
compares the performances of BFTCloud with some other fault tol-
erance methods.

7.4.1 Experimental Setup

We have implemented our BFTCloud approach by Java language
and deployed it as a middleware in a voluntary-resource cloud envi-
ronment. The cloud infrastructure is constructed by 257 distributed
computers located in 26 countries from Planet-lab, which is a dis-

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 152

tributed test-bed consisting of hundreds of computers all over the
world. Each computer, named as node in the cloud infrastructure,
can participate several BFT groups as a primary or replica simulta-
neously.

Based on the voluntary-resource cloud infrastructure, we con-
duct large-scale experiments study the performance improvements
of BFTCloud compared with other approaches. In our experiments,
each node in the cloud is configured with a random malicious failure
probability, which denotes the probability of arbitrary behavior hap-
pens in the node. Note that the failure probability of a node observed
by other nodes is not necessarily equal to the malicious failure prob-
ability since other types of faults (e.g., node crashing, disconnec-
tion, etc.) may also occur. Each node keeps the QoS information
of all the other nodes and updates the information periodically. For
simplicity, we use response-time for QoS evaluation in this chapter.
Without loss of generality, our approach can be easily extended to
include more QoS criteria. We also employed 100 computers from
Planet-lab to perform as cloud modules.

7.4.2 Performance Comparison

In this section, we compare the performance of our approach BFT-
Cloud with other fault tolerance approaches in the voluntary-resource
cloud environment. We have implemented four approaches:

• NoFT: No fault tolerance strategy is employed for task execu-
tion in the voluntary-resource cloud.

• Zyzzyva: A state-of-the-art Byzantine Fault tolerance approach
proposed in [61]. The cloud module sends requests to a fixed
primary and a group of replicas. There is no mechanism de-
signed for adopting the dynamic voluntary-resource cloud en-
vironment.

• BFTCloud: The Byzantine Fault tolerance framework proposed

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 153

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Number of Cloud Modules

R
eq

ue
st

s
/ m

in

BFTCloud
BFTRandom
Zyzzyva
NoFT

(a) Request/Response Size: 0/0 KB

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Number of Cloud Modules

R
eq

ue
st

s
/ m

in

BFTCloud
BFTRandom
Zyzzyva
NoFT

(b) Request/Response Size: 4/0 KB

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Number of Cloud Modules

R
eq

ue
st

s
/ m

in

BFTCloud
BFTRandom
Zyzzyva
NoFT

(c) Request/Response Size: 0/4 KB

Figure 7.4: Throughput Comparison for 0/0, 4/0, and 0/4 benchmarks as the num-
ber of cloud modules varies

in this chapter. The cloud module employs Algorithm 1-3 to
mask faults and adopt the highly dynamic voluntary-resource
environment.

• BFTRandom: The framework is the same with BFTCloud. How-
ever, this approach just randomly selects nodes in primary se-
lection, replica selection, primary updating, and replica updat-
ing phases.

In Figure 7.4, we compare the throughput of all approaches in
terms of different number of cloud modules by executing null oper-
ations. We change the number of cloud module from 0 to 100 with a
step value of 10. The requests are sent by a variable number of cloud
modules in each experiment (0-100). We conducts experiments on

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 154

Table 7.1: Average Sending Times Per Request
Benchmark BFTCloud BFTRandom Zyzzyva NoFT

0/0 KB 1.3428 1.7096 2.9167 1.0725
4/0 KB 1.3035 1.7248 3.1002 1.1042
0/4 KB 1.3820 1.7340 3.2058 1.3055

three benchmarks [61] with different request and response size. The
sizes of request/response messages are 0/0KB, 4/0KB, and 0/4KB in
Figure 7.4(a), Figure 7.4(b), and Figure 7.4(c) respectively. The pa-
rameter settings in this experiment are P0 = 0.5 and timeout =
500ms, where timeout defines the maximum waiting time for a
message. From Figure 7.4, we can observe that our approach BFT-
Cloud can commit more requests per minute than Zyzzyva and BF-
TRandom under different sizes of request/response messages. The
reason is that BFTCloud always choose nodes with low failure prob-
abilities as BFT group members. Therefore, the high reliability of
BFT group guarantees that in most cases a request can be committed
without be resent. Note that NoFT achieves the highest throughput
among all approaches since NoFT employs no fault tolerance mech-
anism. Every request will be committed once the cloud module re-
ceived a reply. However, NoFT cannot guarantee the correctness
of committed requests, which will be discussed in Table 7.2. Ta-
ble 7.1 shows the average sending times of a request by the cloud
module before it is committed. A request can be committed with
much fewer sending times in BFTCloud than request in Zyzzyva,
since BFT group members in BFTCloud are carefully selected and
the probability of successfully executing a request is higher than that
in Zyzzyva. Moreover, BFTCloud always choose nodes with good
QoS performance as BFT group members which makes requests and
responses are transmitted more quickly than other approaches. In
general, BFTCloud achieves high throughput of committed requests
which demonstrates that the idea of considering failure probability
and QoS performance when selecting nodes is realistic and reason-

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 155

Table 7.2: Correct Rate of Committed Requests
size BFTCloud BFTRandom Zyzzyva NoFT

0/0 KB 0.9855 0.9468 0.8726 0.2589
4/0 KB 0.9840 0.9259 0.8925 0.2107
0/4 KB 0.9794 0.9278 0.8621 0.2216

able.
In Table 7.2, we evaluate the correctness of committed requests

of different approaches. The experimental result shows that among
all the committed requests, the percentage of correctly committed
requests is highest in BFTCloud. This is because BFTCloud can
guarantee a low probability P0 that more than f BFT group mem-
bers are faulty. While Zyzzyva cannot guarantee the failure proba-
bility of BFT group since the primary and replicas in Zyzzyva are
fixed. Most of the requests are not correctly committed in NoFT de-
spite high throughput of NoFT, since no fault tolerance mechanism
is employed.

7.5 Summary

In this chapter, we propose BFTCloud, a Byzantine fault tolerance
framework for building reliable systems in voluntary-resource cloud
infrastructure. In BFTCloud, replication techniques are employed
for improving the system reliability of cloud applications. To adapt
to the highly dynamic voluntary-resource cloud environment, BFT-
Cloud select voluntary nodes based on their QoS characteristics and
reliability performance. Faulty voluntary resources will be replaced
with other suitable resources once they are identified. The extensive
experimental results show the effectiveness of our approach BFT-
Cloud on guaranteeing the system reliability in cloud environment.

In the future, we will conduct more experimental analysis on
open-source cloud applications and conduct more investigations on

CHAPTER 7. QOS-AWARE BYZANTINE FAULT TOLERANCE 156

different QoS properties of voluntary resources. We will conduct
more experiments to study the impact of parameters and investigate
the optimal values of parameters in different experimental settings.

2 End of chapter.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis is aiming at advancing quality engineering in cloud and
service computing. This thesis consists of three parts: the first part
deals with service QoS prediction, the second part focuses on QoS-
aware Web service searching, and the third part concentrates on
QoS-aware fault-tolerant systems in cloud computing.

In the first part, we present three QoS prediction approaches for
services. We first propose a neighborhood-based collaborative QoS
prediction approach, which is enhanced by character modeling, for
services. The second method is a model-based time-aware collab-
orative filtering approach which utilize time information to capture
the periodicity features of service QoS values. Finally, we propose
an online QoS prediction approach which employing time series
analysis to adapt to the highly dynamic service computing environ-
ment. The online prediction approach consists of an offline evolu-
tionary algorithm and an online incremental algorithm for precisely
predicting the QoS values of services at runtime. The experimen-
tal results and the system level case study show the efficiency and
effectiveness of our approach.

In the second part, we propose a QoS-aware Web service search
engine. In order to provide better searching results to users for ful-
filling their Web service requirements, we systematically fusing the

157

CHAPTER 8. CONCLUSION AND FUTURE WORK 158

functional approach and non-functional approach to achieve better
performance. Moreover, we conduct experiments on the real-world
Web services. The collected WSDL files and QoS datasets are re-
leased for the Web service research community.

In the third part, we conduct a fault tolerance study on cloud ap-
plications. By taking the advantage of multiple functional equiva-
lent services over the Internet, we design a Byzantine fault tolerance
framework to build robust systems in voluntary-resource cloud en-
vironments. Our fault tolerance framework employs dynamic QoS
information of services to select the most suitable services for sys-
tem integration. The experimental results show the effectiveness of
this framework.

In general, the goal of our work is to predict and utilize the QoS
information in cloud and service computing as accurate and effective
as possible. Our released QoS datasets enable the extensive research
of other researchers.

8.2 Future Work

There are several research directions we can conduct further inves-
tigations in the future.

For the service QoS prediction, we plan to conduct more re-
search on the correlation of multiple QoS characteristics since the
different QoS characteristics are considered independently in cur-
rent stage. The relationship between different QoS properties may
provide some useful information for improving the prediction accu-
racy. Another direction worthy of investigation is how to explore
the relationship between user information and service information
to enhance the prediction accuracy.

For the QoS-aware Web service searching, we plan to design a
clustering algorithm improve the accuracy of functional similarity
computation. Currently, we only use the average QoS performance
of Web services. However, due to the dynamic network environment

CHAPTER 8. CONCLUSION AND FUTURE WORK 159

and service status, we plan to extend the non-functional evaluation
module to adopt dynamic QoS information of Web services.

For the QoS-aware fault-tolerance framework in cloud comput-
ing, we can conduct more studies on the correlation of different
types of failure, since failures may not be independent of each other.
Moreover, failures of different services in the cloud application may
have correlation with each other.

2 End of chapter.

Bibliography

[1] N. Ahmed, M. Linderman, and J. Bryant. Towards Mobile
Data Streaming in Service Oriented Architecture. In Proc. of
SRDS’10, pages 323–327.

[2] E. Al-Masri and Q. H. Mahmoud. Investigating web services
on the world wide web. In Proceedings of the 17th interna-
tional conference on World Wide Web, pages 795–804. ACM,
2008.

[3] M. Alrifai and T. Risse. Combining Global Optimization with
Local Selection for Efficient QoS-Aware Service Composi-
tion. In Proc. of International Conference on World Wide Web
(WWW’09), pages 881–890, 2009.

[4] M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline ser-
vices for qos-based web service composition. In Proc. of
WWW’10, pages 11–20, 2010.

[5] D. Ardagna and B. Pernici. Adaptive service composition in
flexible processes. Software Engineering, IEEE Transactions
on, 33(6):369–384, 2007.

[6] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al.
A view of cloud computing. Communications of the ACM,
53(4):50–58, 2010.

[7] A. Avizienis. The methodology of n-version programming.
Software fault tolerance, pages 23–46, 1995.

160

BIBLIOGRAPHY 161

[8] W. Balke and M. Wagner. Towards personalized selection of
web services. Proc. of WWW’03, 2003.

[9] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu.
Putting it all together: Using socio-technical networks to pre-
dict failures. In Proc. of ISSRE’09, pages 109–119, 2009.

[10] P. Bonatti and P. Festa. On optimal service selection. In Proc.
of WWW’05, pages 530–538, 2005.

[11] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceed-
ings of UAI’98, pages 43–52, 1998.

[12] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. Kim, P. Comp-
ton, and A. Mahidadia. Learning collaborative filtering and
its application to people to people recommendation in social
networks. In Proc. of ICDM’10, pages 743–748, 2010.

[13] G. Canfora, M. Di Penta, R. Esposito, and M. Villani. QoS-
aware replanning of composite Web services. In Proc. of
ICWS’05, pages 121–129, 2005.

[14] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learn-
ing to rank: from pairwise approach to listwise approach.
In Proc. 24th international conference on Machine learning,
pages 129–136, 2007.

[15] V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti.
Flow-based service selection forweb service composition sup-
porting multiple qos classes. In Web Services, 2007. ICWS
2007. IEEE International Conference on, pages 743–750.
IEEE, 2007.

[16] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and
R. Mirandola. Qos-driven runtime adaptation of service ori-
ented architectures. In Proceedings of the the 7th joint meet-

BIBLIOGRAPHY 162

ing of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software
engineering, pages 131–140. ACM, 2009.

[17] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut.
Quality of service for workflows and web service processes.
Web Semantics: Science, Services and Agents on the World
Wide Web, 1(3):281–308, 2004.

[18] M. Castro and B. Liskov. Practical Byzantine fault tolerance.
Operating Systems Review, 33:173–186, 1998.

[19] P. Chan, M. R. Lyu, and M. Malek. Reliableweb services:
Methodology, experiment and modeling. In Web Services,
2007. ICWS 2007. IEEE International Conference on, pages
679–686. IEEE, 2007.

[20] P. P. W. Chan, M. R. Lyu, and M. Malek. Making services
fault tolerant. In Service Availability, pages 43–61. Springer,
2006.

[21] A. Chandra and J. Weissman. Nebulas: using distributed vol-
untary resources to build clouds. In Proc. of HOTCLOUD’09,
2009.

[22] W. Chen, J. Chu, J. Luan, H. Bai, Y. Wang, and E. Chang.
Collaborative filtering for orkut communities: discovery of
user latent behavior. In Proc. of WWW’09, pages 681–690,
2009.

[23] X. Chen, X. Liu, Z. Huang, and H. Sun. Regionknn: A scal-
able hybrid collaborative filtering algorithm for personalized
web service recommendation. In Web Services (ICWS), 2010
IEEE International Conference on, pages 9–16. IEEE, 2010.

BIBLIOGRAPHY 163

[24] R. C. Cheung. A user-oriented software reliability model.
Software Engineering, IEEE Transactions on, (2):118–125,
1980.

[25] M. Creeger. Cloud Computing: An Overview. ACM Queue,
7(5):1–5, 2009.

[26] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the web services web: an intro-
duction to soap, wsdl, and uddi. IEEE Internet Computing,
6(2):86–93, 2002.

[27] A. Danak and S. Mannor. Resource Allocation with Supply
Adjustment in Distributed Computing Systems. In Proc. of
ICDCS’10, pages 498–506, 2010.

[28] V. Deora, J. Shao, W. Gray, and N. Fiddian. A quality of
service management framework based on user expectations.
In Proc. of ICSOC’03, pages 104–114, 2003.

[29] M. Deshpande and G. Karypis. Item-based top-n recommen-
dation algorithms. ACM Transactions on Information Systems
(TOIS), 22(1):143–177, 2004.

[30] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. In Proc. 30th Intl. Conf.
on Very Large Data Bases (VLDB’04), pages 372–383, 2004.

[31] J. El Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz.
Qos-driven selection of web services for transactional compo-
sition. In Web Services, 2008. ICWS’08. IEEE International
Conference on, pages 653–660. IEEE, 2008.

[32] J. El Haddad, M. Manouvrier, and M. Rukoz. Tqos: Trans-
actional and qos-aware selection algorithm for automatic web
service composition. IEEE Transactions on Services Comput-
ing, pages 73–85, 2010.

BIBLIOGRAPHY 164

[33] T. Erl. Service-oriented architecture, volume 8. Prentice Hall
New York, 2005.

[34] D. Fensel, F. Facca, E. Simperl, and I. Toma. Web service
modeling ontology. Semantic Web Services, pages 107–129,
2011.

[35] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In Automated Soft-
ware Engineering, 2003. Proceedings. 18th IEEE Interna-
tional Conference on, pages 152–161. IEEE, 2003.

[36] R. Ghosh, F. Longo, V. Naik, and K. Trivedi. Quantifying
Resiliency of IaaS Cloud. In Proc. of SRDS’10, pages 343–
347, 2010.

[37] Gift Website. http://bjqad.com/yawen/mall/index.asp.

[38] S. S. Gokhale and K. S. Trivedi. Reliability prediction and
sensitivity analysis based on software architecture. In Soft-
ware Reliability Engineering, 2002. ISSRE 2003. Proceed-
ings. 13th International Symposium on, pages 64–75. IEEE,
2002.

[39] K. Gomadam, A. Ranabahu, M. Nagarajan, A. P. Sheth, and
K. Verma. A faceted classification based approach to search
and rank web apis. In Proc. 6th Intl. Conf. on Web Services
(ICWS’08), pages 177–184, 2008.

[40] S. Gong. A collaborative filtering recommendation algorithm
based on user clustering and item clustering. Journal of Soft-
ware, 5(7):745–752, 2010.

[41] V. Grassi and S. Patella. Reliability prediction for service-
oriented computing environments. Internet Computing, IEEE,
10(3):43–49, 2006.

BIBLIOGRAPHY 165

[42] Y. Hao, Y. Zhang, and J. Cao. WSXplorer: Searching for
desired web services. In Proc. 19th Intl. Conf. on Advanced
Information System Engineering (CaiSE’07), pages 173–187,
2007.

[43] B. Hayes. Cloud computing. Communications of the ACM,
51(7):9–11, 2008.

[44] T. Henzinger, A. Singh, V. Singh, T. Wies, and D. Zufferey.
FlexPRICE: Flexible Provisioning of Resources in a Cloud
Environment. In Proc. of CLOUD’10, pages 83–90, 2010.

[45] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algo-
rithmic framework for performing collaborative filtering. In
Proc. of SIGIR’99, pages 230–237, 1999.

[46] T. Hofmann. Collaborative filtering via gaussian probabilistic
latent semantic analysis. In Proc. of SIGIR’03, pages 259–
266, 2003.

[47] T. Hofmann. Latent semantic models for collaborative fil-
tering. ACM Transactions on Information Systems (TOIS),
22(1):89–115, 2004.

[48] http://axis.apache.org/axis2/java/core.

[49] http://en.wikipedia.org/wiki/Cross validation.

[50] http://en.wikipedia.org/wiki/Web service.

[51] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggre-
gation for web service composition using workflow patterns.
In Enterprise distributed object computing conference, 2004.
EDOC 2004. Proceedings. Eighth IEEE International, pages
149–159. IEEE, 2004.

[52] M. Jamali and M. Ester. Trustwalker: a random walk model
for combining trust-based and item-based recommendation.
In Proc. of KDD’09, pages 397–406, 2009.

BIBLIOGRAPHY 166

[53] K. Järvelin and J. Kekäläinen. Cumulated gain-based eval-
uation of ir techniques. ACM Transactions on Information
System, 20(4):422–446, 2002.

[54] Y. Jianjun, G. Shengmin, S. Hao, Z. Hui, and X. Ke. A kernel
based structure matching for web services search. In Proc.
16th Intl. Conf. on World Wide Web (WWW’07), pages 1249–
1250, 2007.

[55] R. Jin, J. Chai, and L. Si. An automatic weighting scheme for
collaborative filtering. In Proc. of SIGIR’04, pages 337–344,
2004.

[56] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu.
Mistral: Dynamically Managing Power, Performance, and
Adaptation Cost in Cloud Infrastructures. In Proc. of
ICDCS’10, pages 62–73, 2010.

[57] K. Karta. An investigation on personalized collaborative fil-
tering for web service selection. Honours Programme thesis,
University of Western Australia, Brisbane, 2005.

[58] A. Keller and H. Ludwig. The wsla framework: Specify-
ing and monitoring service level agreements for web services.
Journal of Network and Systems Management, 11(1):57–81,
2003.

[59] K. Kim and H. Welch. Distributed execution of recovery
blocks: An approach for uniform treatment of hardware and
software faults in real-time applications. IEEE Transactions
on Computers, 38(5):626–636, 2002.

[60] M. Klusch, B. Fries, and K. Sycara. Automated semantic
web service discovery with owls-mx. In Proc. 5th Intl. Conf.
on Autonomous agents and multiagent systems (AAMAS ’06),
pages 915–922, 2006.

BIBLIOGRAPHY 167

[61] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: speculative byzantine fault tolerance. In Proc. of
SOSP’07, pages 45–58, 2007.

[62] L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 4(3):382–401, 1982.

[63] D. Lee and H. Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791,
1999.

[64] W. Li, J. He, Q. Ma, I. Yen, F. Bastani, and R. Paul. A
framework to support survivable web services. In Proc. of
IPDPS’05, page 93b, 2005.

[65] D. Liang, C.-L. Fang, C. Chen, and F. Lin. Fault tolerant web
service. In Software Engineering Conference, 2003. Tenth
Asia-Pacific, pages 310–319. IEEE, 2003.

[66] D. Liang, C.-L. Fang, S.-M. Yuan, C. Chen, and G. E. Jan. A
fault–tolerant object service on corba. Journal of Systems and
Software, 48(3):197–211, 1999.

[67] G. Linden, B. Smith, and J. York. Amazon. com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet
computing, 7(1):76–80, 2003.

[68] N. N. Liu, M. Zhao, E. Xiang, and Q. Yang. Online evolution-
ary collaborative filtering. In Proc. of the fourth conference
on Recommender systems (RecSys’10), pages 95–102, 2010.

[69] Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and
policing in dynamic web service selection. In Proc. 13th Intl.
Conf. on World Wide Web (WWW’04), pages 66–73, 2004.

[70] A. Luckow and B. Schnor. Service replication in grids: en-
suring consistency in a dynamic, failure-prone environment.

BIBLIOGRAPHY 168

In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–7. IEEE, 2008.

[71] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. A
service level agreement language for dynamic electronic ser-
vices. Electronic Commerce Research, 3(1-2):43–59, 2003.

[72] M. Lyu. Software fault tolerance. John Wiley & Sons, 1995.

[73] M. Lyu et al. Handbook of software reliability engineering.
1996.

[74] H. Ma, I. King, and M. Lyu. Effective missing data prediction
for collaborative filtering. In Proc. of SIGIR’07, pages 39–46,
2007.

[75] E. M. Maximilien and M. P. Singh. Conceptual model of web
service reputation. Acm Sigmod Record, 31(4):36–41, 2002.

[76] D. A. Menascé. Qos issues in web services. Internet Comput-
ing, IEEE, 6(6):72–75, 2002.

[77] M. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou,
and P. Narasimhan. Thema: Byzantine-fault-tolerant mid-
dleware for web-service applications. In Proc. of SRDS’05,
pages 131–140, 2005.

[78] T. O reilly. What is Web 2.0: Design patterns and business
models for the next generation of software. Communications
and Strategies, 65:17, 2007.

[79] J. O’Sullivan, D. Edmond, and A. Ter Hofstede. What’s in a
service? Distributed and Parallel Databases, 12(2-3):117–
133, 2002.

[80] M. Ouzzani and A. Bouguettaya. Efficient access to web ser-
vices. Internet Computing, IEEE, 8(2):34–44, 2004.

BIBLIOGRAPHY 169

[81] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara.
Semantic matching of web services capabilities. In Proc. 1st
Intl. Semantic Web Conf. (ISWC’02), pages 333–347, 2002.

[82] P. Plebani and B. Pernici. Urbe: Web service retrieval based
on similarity evaluation. IEEE Transactions on Knowledge
and Data Engineering, 21(11):1629–1642, 2009.

[83] S. Ran. A model for web services discovery with qos. ACM
Sigecom exchanges, 4(1):1–10, 2003.

[84] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor
factorization for personalized tag recommendation. In Proc.
of WSDM’10, pages 81–90, 2010.

[85] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: an open architecture for collaborative filtering
of netnews. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pages 175–186.
ACM, 1994.

[86] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Relia-
bility prediction for component-based software architectures.
Journal of Systems and Software, 66(3):241–252, 2003.

[87] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilis-
tic qos and soft contracts for transaction-based web services
orchestrations. Services Computing, IEEE Transactions on,
1(4):187–200, 2008.

[88] A. Sahai, A. Durante, and V. Machiraju. Towards automated
sla management for web services. Hewlett-Packard Research
Report HPL-2001-310 (R. 1), 2002.

[89] R. Salakhutdinov and A. Mnih. Probabilistic matrix factor-
ization. Advances in neural information processing systems
(NIPS), 20:1257–1264, 2008.

BIBLIOGRAPHY 170

[90] J. Salas, F. Perez-Sorrosal, M. Patiño-Martı́nez, and
R. Jiménez-Peris. Ws-replication: a framework for highly
available web services. In Proceedings of the 15th interna-
tional conference on World Wide Web, pages 357–366. ACM,
2006.

[91] N. Salatge and J. Fabre. Fault Tolerance Connectors for Un-
reliable Web Services. In Proc. of IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07),
pages 51–60, 2007.

[92] G. Salton. The SMART Retrieval System—Experiments in Au-
tomatic Document Processing. Prentice-Hall, Inc., 1971.

[93] G. T. Santos, L. C. Lung, and C. Montez. Ftweb: A fault toler-
ant infrastructure for web services. In EDOC Enterprise Com-
puting Conference, 2005 Ninth IEEE International, pages 95–
105. IEEE, 2005.

[94] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Pro-
ceedings of the 10th international conference on World Wide
Web, pages 285–295. ACM, 2001.

[95] D. Serrano, M. Patiño-Martı́nez, R. Jiménez-Peris, and
B. Kemme. An autonomic approach for replication of
internet-based services. In Proc. of SRDS’08, pages 127–136,
2008.

[96] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-
sonalized qos prediction forweb services via collaborative fil-
tering. In Proc. of ICWS’07, pages 439–446, 2007.

[97] Y. Shi, M. Larson, and A. Hanjalic. Exploiting user similarity
based on rated-item pools for improved user-based collabora-
tive filtering. In Proc. of Recsys’09, pages 125–132, 2009.

BIBLIOGRAPHY 171

[98] L. Si and R. Jin. Flexible mixture model for collaborative
filtering. In ICML, volume 3, pages 704–711, 2003.

[99] P. Singla and M. Richardson. Yes, there is a correlation:-from
social networks to personal behavior on the web. In Proc. of
WWW’08, pages 655–664, 2008.

[100] A. Soydan Bilgin and M. P. Singh. A daml-based repository
for qos-aware semantic web service selection. In Web Ser-
vices, 2004. Proceedings. IEEE International Conference on,
pages 368–375. IEEE, 2004.

[101] R. M. Sreenath and M. P. Singh. Agent-based service selec-
tion. Web Semantics: Science, Services and Agents on the
World Wide Web, 1(3):261–279, 2004.

[102] L. Tang, J. Dong, Y. Zhao, and L. Zhang. Enterprise Cloud
Service Architecture. In Proc. of CLOUD’10, pages 27–34,
2010.

[103] N. Thio and S. Karunasekera. Automatic measurement of a
qos metric for web service recommendation. In Software En-
gineering Conference, 2005. Proceedings. 2005 Australian,
pages 202–211. IEEE, 2005.

[104] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis. Ne-
feli: Hint-Based Execution of Workloads in Clouds. In Proc.
of ICDCS’10, pages 74–85, 2010.

[105] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Ound-
hakar, and J. Miller. Meteor-s wsdi: A scalable p2p infras-
tructure of registries for semantic publication and discovery
of web services. Inf. Technol. and Management, 6(1):17–39,
2005.

[106] M. Vieira, N. Antunes, and H. Madeira. Using web security
scanners to detect vulnerabilities in web services. In Depend-

BIBLIOGRAPHY 172

able Systems & Networks, 2009. DSN’09. IEEE/IFIP Interna-
tional Conference on, pages 566–571. IEEE, 2009.

[107] J. Wang, A. De Vries, and M. Reinders. Unifying user-based
and item-based collaborative filtering approaches by similar-
ity fusion. In Proc. of SIGIR’06, pages 501–508, 2006.

[108] Y. Wang and E. Stroulia. Semantic structure matching for as-
sessing web service similarity. In Proc. 1st Intl. Conf. on Ser-
vice Oriented Computing (ICSOC’03), pages 194–207, 2003.

[109] Wikipedia. http://en.wikipedia.org/wiki/byzantine fault tolerance.

[110] Wikipedia. http://en.wikipedia.org/wiki/cloud computing.

[111] G. Wu, J. Wei, X. Qiao, and L. Li. A bayesian network based
qos assessment model for web services. In Services Com-
puting, 2007. SCC 2007. IEEE International Conference on,
pages 498–505. IEEE, 2007.

[112] P. Xiong, Y. Fan, and M. Zhou. Qos-aware web service con-
figuration. IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and humans, 38(4):888–895, 2008.

[113] P. Xiong, Y. Fan, and M. Zhou. A petri net approach to anal-
ysis and composition of web services. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans,
40(2):376–387, 2010.

[114] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen.
Scalable collaborative filtering using cluster-based smooth-
ing. In Proc. of SIGIR’05, pages 114–121, 2005.

[115] T. Yu, Y. Zhang, and K. Lin. Efficient algorithms for Web ser-
vices selection with end-to-end QoS constraints. ACM Trans-
actions on the Web (TWEB), 1(1):6, 2007.

BIBLIOGRAPHY 173

[116] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. QoS-aware middleware for web services com-
position. IEEE Transactions on Software Engineering (TSE),
30(5):311–327, 2004.

[117] L. Zhang, S. Cheng, C. Chang, and Q. Zhou. A pattern-
recognition-based algorithm and case study for clustering
and selecting business services. IEEE Transactions on Sys-
tems, Man and Cybernetics, Part A: Systems and Humans,
42(1):102–114, 2012.

[118] L.-J. Zhang, J. Zhang, and H. Cai. Services computing.
Springer, 2007.

[119] Y. Zhang, Z. Zheng, and M. Lyu. WSExpress: A QoS-aware
Search Engine for Web Services. In Proc. of ICWS’10, pages
91–98, 2010.

[120] Y. Zhang, Z. Zheng, and M. Lyu. Wspred: A time-aware per-
sonalized qos prediction framework for web services. In Proc.
of IEEE Symposium on Software Reliability Engineering (IS-
SRE’11), pages 210–219, 2011.

[121] Y. Zhang, Z. Zheng, and M. R. Lyu. Bftcloud: A byzantine
fault tolerance framework for voluntary-resource cloud com-
puting. In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 444–451. IEEE, 2011.

[122] Y. Zhang, Z. Zheng, and M. R. Lyu. Exploring latent features
for memory-based qos prediction in cloud computing. In Reli-
able Distributed Systems (SRDS), 2011 30th IEEE Symposium
on, pages 1–10. IEEE, 2011.

[123] Y. Zhang, Z. Zheng, and M. R. Lyu. Real-time
performance prediction for cloud components. In
Object/Component/Service-Oriented Real-Time Distributed

BIBLIOGRAPHY 174

Computing Workshops (ISORCW), 2012 15th IEEE Interna-
tional Symposium on, pages 106–111. IEEE, 2012.

[124] W. Zhao. BFT-WS: A Byzantine fault tolerance framework
for web services. In Proc. of EDOC’07, pages 89–96, 2008.

[125] Z. Zheng and M. Lyu. Collaborative reliability prediction of
service-oriented systems. In Proc. of ICSE’10, pages 35–44,
2010.

[126] Z. Zheng and M. R. Lyu. A distributed replication strategy
evaluation and selection framework for fault tolerant web ser-
vices. In Web Services, 2008. ICWS’08. IEEE International
Conference on, pages 145–152. IEEE, 2008.

[127] Z. Zheng, H. Ma, M. Lyu, and I. King. Wsrec: A collaborative
filtering based web service recommender system. In Proc. of
ICWS’09, pages 437–444, 2009.

[128] Z. Zheng, Y. Zhang, and M. Lyu. CloudRank: A QoS-Driven
Component Ranking Framework for Cloud Computing. In
Proc. of SRDS’10, pages 184–193, 2010.

[129] Z. Zheng, Y. Zhang, and M. Lyu. Distributed QoS Evaluation
for Real-World Web Services. In Proc. of ICWS’10, pages
83–90, 2010.

[130] Z. Zheng, T. Zhou, M. Lyu, and I. King. Ftcloud: A compo-
nent ranking framework for fault-tolerant cloud applications.
In Proc. of ISSRE’10, pages 398–407.

