
On Fault Tolerance, Performance, and
Reliability for Wireless and Sensor Networks

CHEN Xinyu

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science & Engineering

c©The Chinese University of Hong Kong

June 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

On Fault Tolerance, Performance, and
Reliability for Wireless and Sensor

Networks

submitted by

CHEN Xinyu

for the degree of Doctor of Philosophy

at the Chinese University of Hong Kong

Abstract

The emerging mobile wireless environment poses exciting challenges for

distributed fault-tolerant (FT) computing. This thesis develops a message

logging and recovery protocol on the top of Wireless CORBA to complement

FT–CORBA specified for wired networks. It employs the storage available

at access bridge (AB) as the stable storage for logging messages and saving

checkpoints on behalf of mobile hosts (MHs). Our approach engages both

the quasi-sender-based and the receiver-based message logging techniques and

conducts seamless handoff in the presence of failures.

In the proposed FT architecture, AB plays an essential role in relaying,

logging, and redispatching messages, in performing handoffs, and in saving

checkpoints. Messages will be queued at AB in the presence of MH failures and

handoffs, thus AB becomes the performance bottleneck. Combining queueing

model with five message scheduling strategies: the basic queueing model, the

static and the dynamic processor-sharing models, the cyclic polling model, and

the feedback model, we study the message sojourn time at AB under steady

state.

ii

Then we extend the analysis of the program execution time without and

with checkpointing in the presence of MH failures from wired to wireless net-

works. Due to the underlying message-passing communication mechanism,

we employ the number of received computational messages instead of time to

indicate the completion of program execution at an MH. Handoff is another

distinct factor that should be taken into consideration in mobile wireless en-

vironments. Three checkpointing strategies, deterministic, random, and time-

based checkpointing, are investigated. In our approach, failures may occur

during checkpointing and recovery periods.

Furthermore, we extend the traditional reliability analysis. Wireless net-

works inherit the unique handoff characteristic which leads to different com-

munication structures of various types with a number of components and links.

Therefore, the traditional definition of two-terminal reliability is not applicable

anymore. We propose a new term, end-to-end mobile reliability, to integrate

those different communication structures into one metric, which includes not

only failure parameters but also service parameters. Nevertheless, it is still

a monotonically decreasing function of time. With the proposed end-to-end

mobile reliability, we could identify the reliability importance of imperfect

components in wireless networks.

Finally, to obtain a long network lifetime without sacrificing crucial aspects

of quality of service (area coverage, sensing reliability, and network connectiv-

ity) in wireless sensor networks, we present sensibility-based sleeping config-

uration protocols (SSCPs) with two sensing models: Boolean sensing model

(BSM) and collaborative sensing model (CSM). Based on arc-coverage and

Voronoi diagram with BSM, two sleeping candidate conditions to preserve k-

coverage are developed respectively, which can deal with different sensing radii.

As the CSM exploits the cooperation between adjacent sensors, which benefits

iii

to provide FT, we propose neighboring-sensor field sensibility (NSFS) to select

sleeping-eligible sensors. With our protocols, redundant sensors are optionally

identified and scheduled to sleep in order to extend the system lifetime while

maintaining adequate sensor redundancy to tolerate sensor failures, energy de-

pletions, and location error. Simulation results show that there is a tradeoff

among energy saving, area coverage, and FT, which varies between different

sensor configuration protocols and sleeping candidate conditions.

iv

摘要

 本論文討論無線網路和感測器網路的容錯、性能和可

靠性。
在無線 CORBA 規範的基礎上，我們採用消息日誌和

檢查點的機制發展了容錯無線 CORBA 架構。此架構支援

移動單元（MH）的可靠交接（Handoff），能在移動單元

和無線橋接器（AB）發生故障時恢復應用程式使其繼續運

行。我們提出的新架構可做爲 FT－CORBA 規範的補充。
在提出的容錯無線 CORBA 中無線橋接器扮演很重要

的角色。由於移動單元在發生故障或進行交接時不能接收

消息，這些消息將會在無線橋接器中阻塞，所以需要分析

無線橋接器的性能。我們結合排隊論和消息調度理論，構

建出 5 種消息調度模型，推導和模擬在穩定狀態下消息的

平均逗留時間。
隨後我們把在單台機器上程式運行時間的分析擴展到

分布式的無線網路中。在單台機器上，程式運行是否結束

是以無故障運行的時間來衡量的。然而由於網路鏈路和移

動單元交接的影響，此結束條件不能應用於無線網路。我

們將移動單元需要接收的消息個數作爲程式運行結束的條

件。據此我們分析程式在採用 3 種不同的檢查點協議時的

運行時間：確定的、隨機的和基於時間的。
接著我們通過提出的點對點的移動可靠性，將網路可

靠性的分析從傳統的有線網路擴展到無線網路。點對點的

v

移動可靠性考慮無線網路特有的交接特性，集成由此導致

的不同的通信模式。我們可以據此評估無線網路中各個組

件的可靠性的重要程度。
最後，在保證區域覆蓋、感測可靠性和網路連通性的

前提下，通過安排不同的感測器睡眠省電機制來延長感測

器網路的工作時間。我們描述了布爾和協作兩種感測模

型，同時基於弧覆蓋和 Voronoi 圖提出 3 個成爲睡眠候選人

的條件。這些條件可應用於異構的感測器（不同的感測器

可以使用不同的感測半徑），還考慮感測器的位置誤差。

我們建議 3 種構造可靠的感測器網路的途逕：增加覆蓋度

或減小睡眠配置時的通信半徑；適應性地安排各個感測器

的睡眠；利用感測器之間的協作。

vi

Acknowledgment

First of all, I would like to express my sincere gratitude towards my super-

visor, Prof. Michael R. Lyu. My Ph.D. studies could never have been com-

pleted without his exceptional guidance and consistent support. His breadth

of knowledge and his enthusiasm for research amaze and inspire me. Special

thanks go to my thesis committee members, Prof. Jason Yi-Bing Lin, Prof.

John C.S. Liu, and Prof. Jerome Chih-Hung Yen, for their many comments

and feedback on my thesis work and research directions.

Time spent at CUHK would not have been interesting and enjoyable with-

out the friendship provided by my officemates and friends: Hui Chen, Dr.

Yan Ding, Jifu He, Dr. Kaizhu Huang, Mingfei Jiang, Wei Meng, Liang Wan,

Guangyu Wang, and Wen Wu. I extend my gratitude to Xia Cai, Pik-Wah

Chan, Steven Hoi, Xiaoqi Li, Yi Liu, Shi Lu, Cheuk-Han Ngai, Dr. Haixuan

Yang, and Yangfan Zhou for their help and discussion in many aspects of my

research work. It has been a great pleasure working with all of you. I would

especially like to thank Dr. Qirong Deng for all his help in mathematical

formulations. I also express my appreciation to the faculty and staff in the

Department of Computer Science and Engineering.

Finally, this work is dedicated to my family. My parents taught me the

value of knowledge, the joy of love, and the importance of family. They have

stood by me in everything I have done, providing constant support, encour-

agement, and love.

vii

Contents

Abstract ii

Acknowledgement vii

1 Introduction 1

1.1 Wireless Infrastructure Network 2

1.1.1 Architecture of Wireless CORBA 3

1.1.2 Message Logging and Recovery in Wireless CORBA . . . 5

1.1.3 Message Queueing and Scheduling at Access Bridge . . . 6

1.1.4 Program Execution Time at Mobile Host 7

1.1.5 Reliability Analysis for Various Communication Schemes 9

1.2 Wireless Ad Hoc Sensor Network 10

1.2.1 Sensibility-Based Sleeping Configuration 13

1.3 Contributions of this Thesis . 14

1.4 Organization of this Thesis . 16

2 Background and Literature Review 18

2.1 Fault Tolerance in Wireless Infrastructure Networks 18

2.2 Job Queueing and Scheduling 21

2.3 Program Execution Time . 24

2.4 Network Reliability . 28

viii

2.5 Sleeping Configuration in Wireless Ad Hoc Sensor Networks . . 30

2.5.1 Area Coverage . 30

2.5.2 Network Connectivity 33

2.5.3 Area Coverage and Network Connectivity 34

2.5.4 Voronoi Diagram . 35

3 Message Logging and Recovery in Wireless CORBA 36

3.1 Fault Tolerance Model . 36

3.1.1 Data Structures . 38

3.1.2 Message Logging and Checkpointing 39

3.1.3 Mobile Host Handoff . 41

3.1.4 Mobile Host Disconnection 43

3.1.5 Mobile Host Crash . 45

3.1.6 Access Bridge Crash . 47

3.2 Simulations and Evaluation . 48

3.3 Summary . 51

4 Message Queueing and Scheduling at Access Bridge 52

4.1 Mobile Host’s State Transition 53

4.2 Message Sojourn Time . 54

4.2.1 Basic Dispatch Model 55

4.2.2 Static Processor-Sharing Dispatch Model 56

4.2.3 Dynamic Processor-Sharing Dispatch Model 58

4.2.4 Cyclic Polling Dispatch Model 60

4.2.5 Feedback Dispatch Model 61

4.3 Simulations and Discussions . 62

4.4 Summary . 67

ix

5 Program Execution Time at Mobile Host 68

5.1 Assumptions and Notations . 69

5.2 Preliminary Execution Times 72

5.2.1 Handoff Time with Wireless Link Failures 72

5.2.2 Checkpointing Time with Handoffs and Wireless Link

Failures . 74

5.2.3 Recovery Time with Handoffs and MH and Wireless Link

Failures . 75

5.3 Deterministic Checkpointing Strategy 75

5.4 Random Checkpointing Strategy 81

5.5 Time-based Checkpointing Strategy 85

5.6 Comparisons and Discussions 87

5.7 Summary . 94

6 Reliability Analysis for Various Communication Schemes 96

6.1 Definitions and Assumptions . 97

6.2 End-to-end MR and MTTF Analysis 100

6.2.1 The MS (MH-SH) Scheme 100

6.2.2 The SM (SH-MH) Scheme 104

6.2.3 The MM (MH-MH) Scheme 111

6.2.4 General End-to-end MTTF 116

6.3 Summary . 117

7 Sensibility-Based Sleeping Configuration in Sensor Networks119

7.1 Assumptions and Problem Formulation 120

7.1.1 Boolean Sensing Model 121

7.1.2 Collaborative Sensing Model 122

7.1.3 Relations between the BSM and the CSM 124

x

7.1.4 Voronoi Diagram . 125

7.2 Sleeping Candidate Conditions 125

7.2.1 Sleeping Candidate Condition for the BSM with Arc-

Coverage . 126

7.2.2 Sleeping Candidate Condition for the BSM with Voronoi

Diagram . 133

7.2.3 Sleeping Candidate Condition for the CSM 139

7.2.4 Location Error . 141

7.2.5 Network Connectivity 143

7.3 Sensibility-Based Sleeping Configuration Protocol (SSCP) . . . 144

7.3.1 Round-Based Sleeping Configuration Protocol 145

7.3.2 Adaptive Sleeping Configuration Protocol 150

7.4 Simulations and Performance Evaluation 151

7.4.1 Configuration Protocols for Comparison 152

7.4.2 Parameters Setting . 152

7.4.3 Experimental Results and Discussions 153

7.5 Summary . 165

8 Conclusions and Future Directions 167

A List of Acronyms 171

B List of Notations 174

Bibliography 180

xi

List of Figures

1.1 Architecture of wireless CORBA. 3

1.2 A wireless sensor network. 11

1.3 Thesis overview. 15

3.1 Fault-tolerant wireless CORBA architecture. 37

3.2 Normal invocation sequence with message logging. 40

3.3 Handoff procedure. 42

3.4 Access Bridge ORB. 44

3.5 Program execution time with and without checkpointing. 49

3.6 Program execution time vs. handoff. 50

4.1 MH’s state transition. 53

4.2 Basic dispatch model. 55

4.3 Static processor-sharing dispatch model. 56

4.4 Head-of-the-line priority queue for static processor-sharing dis-

patch model. 57

4.5 Dynamic processor-sharing dispatch model. 59

4.6 Cyclic polling dispatch model. 60

4.7 Feedback dispatch model. 61

4.8 Expected message sojourn time vs. number of MHs. 63

4.9 Expected message sojourn time vs. message arrival rate. 64

xii

4.10 Expected message sojourn time vs. MH’s failure rate. 65

4.11 Expected message sojourn time vs. expected message dispatch

requirement. 66

5.1 MH’s state transition with checkpointing. 70

5.2 Average effectiveness vs. message number. 88

5.3 Average effectiveness vs. message arrival rate. 90

5.4 Average effectiveness vs. failure rate. 91

5.5 Average effectiveness vs. checkpoint taking time. 92

5.6 Average effectiveness vs. handoff rate. 93

5.7 Optimal checkpointing frequency. 93

6.1 System states in the MS scheme: (a) normal communication;

(b) handoff procedure. 101

6.2 Markov model for the MS scheme. 101

6.3 State probabilities and reliability of the MS scheme. 102

6.4 End-to-end MTTF of the MS scheme: (a) failure parameters γm

and γa; (b) service parameters ρ and η. 103

6.5 System states in the SM scheme: (c) location-querying; (d) nor-

mal communication; (e) handoff procedure; (f and g) location-

forwarding. 104

6.6 Markov models for the SM scheme. 105

6.7 State probabilities and reliability of the SM scheme. 107

6.8 Reliability with location-forwarding strategies in the SM scheme. 108

6.9 End-to-end MTTF of the SM scheme vs. failure parameters:

(a) γm and γa; (b) γs and γh. 109

6.10 End-to-end MTTF of the SM scheme vs. service parameters:

(a) ρ and η; (b) ρ and ν. 109

xiii

6.11 RI of the SM scheme: (a) same failure rate and high handoff

rate; (b) different failure rates and high handoff rate; (c) same

failure rate and low handoff rate; (d) different failure rates and

low handoff rate. 110

6.12 System states in the MM scheme: (h) location-querying; (i) nor-

mal communication; (j) MH1 in handoff; (k) MH2 in handoff; (l)

both MH1 and MH2 in handoff; (m and q) location-forwarding;

(n) location-querying and MH2 in handoff; (o and r) location-

forwarding and MH1 in handoff; and (p) location-querying and

MH1 in handoff. 112

6.13 Markov models for the MM scheme (transitions to the failure

state z is omitted). 113

6.14 State probabilities and reliability of the MM scheme. 115

6.15 General end-to-end MTTF vs. number of components. 116

7.1 Sponsored sensing region, arc and angle and covered sensing angle127

7.2 Special cases of sponsored sensing region and arc 128

7.3 Derivation of the MPAC ξij sponsored by sensor Nj to sensor Ni 129

7.4 Sponsored sensing arcs in a constrained deployment region . . . 132

7.5 Critical arcs in evaluating N1’s sleeping eligibility 133

7.6 Example of coverage boundary: N1. 135

7.7 Example of sleeping-eligible sensor: N1. 137

7.8 Example of necessary condition: N1. 137

7.9 Scan region for sensor N1. 140

7.10 The coverage relationship between a point and a sensor with

location error. 142

7.11 Probability of coverage with location error. 143

7.12 Sensor status transition in SSCP. 146

xiv

7.13 An example of sleeping eligibility evaluation for the BSM with

arc-coverage. 149

7.14 Percentage of sleeping sensors vs. communication radius cr. . . 154

7.15 Number of working vs. deployed sensors. 156

7.16 Energy consumption for configuration. 157

7.17 Average number of neighbors. 158

7.18 Field sensibility distribution. 159

7.19 Percentage of sleeping sensors vs. sensibility threshold εs. 159

7.20 Percentage of sleeping sensor with SscpAcCa. 160

7.21 Deviation of location. 161

7.22 χ-coverage accumulated time vs. MTTF when ε = 1. 162

7.23 χ-coverage accumulated time vs. MTTF with FT approaches

when ε = 1. 164

7.24 Percentage of live sensors vs. time when the MTTF is 4000s

and ε = 1. 165

xv

Chapter 1

Introduction

Advances in wireless networking technology and portable information appli-

ances have brought about two implementations of wireless networks defined

by IEEE 802.11 : infrastructure network and ad hoc network [10]. In an in-

frastructure network, there are at least one Access Point (AP) connected to the

wired network infrastructure and a set of wireless terminal devices. The AP

acts as a message transceiver for the wireless network, aggregating access for

multiple terminal devices onto the wired network. An ad hoc network is com-

posed solely of wireless terminal devices within mutual communication range

of each other without intermediary devices, such as AP. It is typically created

in a spontaneous manner. If a wireless terminal device has the capability to

measure a physical attribute or detect a physical event in the environment, a

set of such devices forms a wireless ad hoc sensor network. New applications

arise from wireless terminal entities interacting and collaborating towards a

common goal. For example, wireless networks can be designed for supporting

crew-computing tools aboard the International Space Station [7]; the planetary

exploration may also employ mobile wireless networks as its communication

system architecture [6]; in the battlefield, a general can gather real-time infor-

mation from his soldiers and send commands to them; furthermore, the sensing

capability built in wireless devices provides surveillance, reconnaissance, and

1

Chapter 1 Introduction 2

tracking.

Experience reveals that components of wireless infrastructure and ad hoc

networks are subjected to faults. Therefore, non-desired behaviors of networks

can occur while being utilized, which interrupt or fail the delivery of speci-

fied services to network users. We know that reliability is a measure of the

durability of a component or system delivering service over time. In order to

provide reliability despite the presence of network component faults, mecha-

nisms for fault tolerance (FT) must be adopted. FT is the ability of a system

to continue providing its specified service despite component faults [77]. Tol-

erance to fault is generally based on redundancy techniques [48], which are

the effective deployment and utilization of extra resources (time and/or space)

to detect, correct, or mask effects of faults. Assessment of performance and

reliability is a key step in the design, analysis, and tuning of FT computer

systems [111]. Could additional overhead incurred by FT mechanics make the

performance worse? Could we get a performance improvement just by chang-

ing the scheduling of jobs? Would an increase in performance outweigh the

decrease in reliability?

Therefore, this thesis focuses on FT, performance, and reliability for both

types of wireless networks: infrastructure network and ad hoc sensor network.

1.1 Wireless Infrastructure Network

In a wireless infrastructure network, users usually carry wireless terminal de-

vices to move around, thus creating a new paradigm of decentralized comput-

ing, called mobile computing [60]. A mobile computing system is considered

as an extension of traditional distributed systems, in which much of the action

takes place at the middleware level. Middleware is a software layer that con-

nects two otherwise separate applications and aims to resolve heterogeneity

Chapter 1 Introduction 3

and distribution [41]. CORBA (Common Object Request Broker Architec-

ture) [99], which is specified by the Object Management Group (OMG), is one

of the most popular middlewares nowadays. CORBA provides portability, lo-

cation transparency, and interoperability of applications across heterogeneous

platforms (hardware architectures, operating systems, and programming lan-

guages) [92]. To support wireless access and terminal mobility in CORBA,

the OMG has also published Wireless CORBA specification [100], which we

employ in this thesis as a typical prototype for wireless infrastructure net-

works [110, 131] to build a fault-tolerant (FT) 1 wireless system, and then to

conduct performance and reliability analysis and evaluation.

1.1.1 Architecture of Wireless CORBA

Terminal
Bridge

Terminal
Domain

Access
Bridge

Visited Domain

Access
Bridge

GIOP
Tunnel

Static
Host

Static
Host

mh1

Terminal
Bridge

Terminal
Domain

mh1

Access
Bridge

ab1

ab2

Handoff

Home Domain

Home
Location
Agent

Figure 1.1: Architecture of wireless CORBA.

Figure 1.1 shows the wireless CORBA architecture, which identifies three

different domains: Terminal Domain, Visited Domain, and Home Domain, and

four main components excluding links: Terminal Bridge, Access Bridge, Home

1In this thesis, FT stands for both fault tolerance and fault-tolerant, which one is utilized
depends on the context.

Chapter 1 Introduction 4

Location Agent, and Static Host.

• A Terminal Domain is a Mobile Host (MH) which accesses networks

through a wireless network interface, and keeps network connections

while roaming in wireless environments. The hosted Terminal Bridge

(TB) on an MH is an object invocation proxy through which the CORBA

objects on the MH can communicate with other objects.

• The Visited Domain is a wired network environment which contains

many Static Hosts (SHs) and several Access Bridges (ABs). An SH

is a common and stationary network node. An AB is located between

MHs and SHs or other ABs to relay messages for its associated MHs.

It is deployed in a wired network, but contains both wired and wireless

network interfaces;

• The Home Domain is composed of the Home Location Agent (HLA)

which keeps track of the locations of its registered MHs when they move

around, and provides operations to query an MH’s location.

An AB resides on an AP (or mobile support station) providing a con-

strained geographical communication cell, plotted as dashed circle in Fig-

ure 1.1, within which it can communicate with MHs directly. Multiple ABs

provide a connected cells, allowing an MH to roam from one cell to another

while maintaining network connections by a procedure called handoff (or han-

dover) when the MH moves across the borders of the geographical cells. The

handoff procedure occurs between an MH’s new AB and its old AB.

All hosts communicate with each other by messages only. The GIOP (Gen-

eral Inter-ORB Protocol) tunnel is the communication channel between an AB

and a TB, through which the GTP (GIOP Tunneling Protocol) messages are

transmitted. The GTP messages can be classified into two categories: control

Chapter 1 Introduction 5

message and computational message. No messages can be exchanged directly

among MHs, even if they stay in the same cell. All messages to and from an

MH are relayed by its currently associated AB. During handoff, no computa-

tional messages can be transmitted between MHs and ABs.

1.1.2 Message Logging and Recovery in Wireless CORBA

With wireless infrastructure networks, mobile computing enables users or ex-

plorers to access and exchange information while allowing them to roam around

in mobile environments. This flexibility, however, causes more probable phys-

ical damage to MHs [94]. In addition, MHs contain low battery power, and

wireless links suffer limited bandwidth and long transfer delay, which make

transient failures more likely. Moreover, MHs may even disconnect from the

hosting networks intermittently [108]. Finally, wireless systems are more often

subjected to environmental conditions which can cause loss of communications

or data [72]. All these call for a FT mobile computing system, especially to

build a dependable battlefield wireless network as a system failure may cause

loss of human lives.

Recently the OMG have specified FT–CORBA [99] as a standard to pre-

serve the delivery of correct service in the presence of active faults. Based

on entity redundancy, FT–CORBA employs three replication styles: cold pas-

sive, warm passive, and active replications. Logging and checkpointing mech-

anisms record messages and entity states in system logs. However, all these

are intended for wired networks. This thesis proposes a message logging and

recovery protocol on the top of wireless CORBA and FT–CORBA architec-

tures [24]. An MH typically has a slow processor and small memory, and is

commonly battery powered. Therefore, the MH itself cannot be considered

suitable for the kind of stable storage that is usually performed by SHs. As

Chapter 1 Introduction 6

all messages exchanged between an MH and other hosts should be forwarded

by the MH’s associated AB, the storage available at the AB is employed as

the stable storage to log messages and checkpoints (saved states) on behalf of

the MH [1, 94, 103, 105]. Both the quasi-sender-based and the receiver-based

logging techniques are engaged in our approach. During failure-free execution,

an MH takes checkpoints and sends the checkpoints to its currently connected

AB. The AB also logs messages relayed by itself. After an MH failure, its

associated AB has to collect those scattered checkpoints and message logs due

to the movement of the MH, and resends these information to recover the

MH’s state. The AB hides MH disconnection from other network hosts [137]

and makes a seamless handoff when FT properties are called upon. We also

discuss how to tolerate MH disconnection, MH crash, and AB crash. After

that, a simulation model is constructed to evaluate our proposed scheme.

1.1.3 Message Queueing and Scheduling at Access Bridge

From the above description, we learn that AB plays an essential role in provid-

ing FT for wireless CORBA. An AB is a message-relay station which dissem-

inates messages between MHs and SHs. If an MH is in handoff, no computa-

tional messages can be forwarded to it, and messages received during handoff

should be queued and buffered at the AB. The more probable failures also

cause messages to be queued at the AB during the MH’s recovery period. The

AB, thus, becomes a bottleneck in improving the performance of FT in mobile

wireless environments. Therefore, it is essential to study the performance of

the AB, such as the expected message sojourn time, in the presence of failures

and handoffs of MHs. As different message scheduling strategies should demon-

strate various effects on the expected message sojourn time, in this thesis we

consider five message dispatch strategies at AB: the basic queuing model, the

Chapter 1 Introduction 7

static and the dynamic processor-sharing models, the cyclic polling model, and

the feedback model [27]. We derive the expected message sojourn times un-

der steady state for the static and the dynamic processor-sharing models and

simulate all the five models. We perform comparisons among their expected

values, discuss the similarities and differences among these models, and de-

termine whether they are suitable to be engaged as a message distribution

strategy at AB for wireless infrastructure networks.

1.1.4 Program Execution Time at Mobile Host

Analyses of the program execution time with and without checkpointing [40]

in the presence of failures on a stand-alone host have been conducted by many

researchers [39, 74, 96, 125]. In all previous work, it has been assumed that

the required program execution time without failures is specified at first, after

which the actual total program execution time is derived. Utilizing time to

indicate the completion of program execution is feasible for SHs not engaged in

distributed computing. However, mobile computing introduces information ex-

change between hosts; thus, the program execution time is not only controlled

by the host itself, but also affected by other hosts and network conditions, such

as the states of links. Due to the unpredictable nature of these conditions, the

execution time is no longer suitable to be utilized as the given parameter to

indicate the completion of a program. Moreover, mobile wireless environments

introduce some other factors, such as random handoffs, which also interrupt

the program execution at an MH.

With an information processing system built on the top of a mobile wireless

environment, a mobile user can process debit/credit transactions, pay utility

bills, make airline reservations, and carry out other transactions without be-

ing subjected to any geographical constraints [44]. The information processing

Chapter 1 Introduction 8

system is essentially a distributed client/server system where a client at an

MH interacts with a fixed server to complete a transaction. As the underlying

communication mechanism in mobile computing is a message-passing system,

a transaction conducted at an MH will proceed when it receives a specified

message. Usually, a transaction has a dedicated number of phases that are

demarcated by specified messages [129]; therefore, we may employ the number

of specified messages to indicate the completion of transaction execution at an

MH. Another reason to utilize the number of messages is that the computation

at an MH may not be continuous since the transaction is forced to wait for the

arrival of its predefined informative messages to proceed. The computation

is actually determined by the arrival events of messages. We have stated in

Subsection 1.1.1 that messages exchanged between MHs and ABs are GTP

messages, which can be classified as control messages and computational mes-

sages. Control messages carry control commands and instructions, but they

do not enable the computation to proceed. Computational messages, on the

other hand, are the messages that the transaction at an MH should receive

in order to accomplish its assigned task. If the transaction receives its last

expected computational message, all phases in this transaction have been ful-

filled, thus it is accomplished successfully. As a result, we assume here that

if the transaction at an MH continuously receives n computational messages,

it will terminate successfully. From this point on, we will refer to “computa-

tional messages” as simply “messages”, and use “transaction” and “program”

interchangeably.

Failures to an MH cause the current computational state to be corrupted.

To recover the state, the MH should re-receive some or all messages that were

received before the failure; this will prolong the total program execution time.

Chapter 1 Introduction 9

Without checkpointing, the program needs to recover its state from its ini-

tial start point; while with checkpointing, the program may restart from its

most recent checkpoint and only needs to re-receive messages after that check-

point. Therefore, the benefit of checkpointing comes from the reduction in the

amount of rollback [46]. However, checkpointing itself introduces an overhead

as no computational messages can be received during checkpointing, and the

subsequent logged message replaying postpones the program completion. So

there must exist a trade-off between checkpointing effectiveness and overhead,

as well as an optimal checkpoint quantity to minimize the total execution

time. In this thesis, we analyze the program execution time with various

checkpointing strategies: deterministic checkpointing, random checkpointing,

and time-based checkpointing. A checkpointing strategy is a rule that de-

termines when to save the program’s state on stable storage [34]. We derive

the Laplace-Stieltjes Transform (LST) of the cumulative distribution function

(c.d.f.) of the program execution time and its expectation for these three

strategies [25, 28]. Different checkpointing strategies may demonstrate dif-

ferent performance behaviors under different conditions; therefore, variations

of the program execution time with different parameters are demonstrated

through a number of assessments.

1.1.5 Reliability Analysis for Various Communication

Schemes

For a wireless CORBA network to be functional, its engaged components must

be fit for service. Unfortunately, this is not always the case, because these

components may suffer failures, and wired paths and wireless links may not

be reliable as mentioned before. Therefore, we need a mechanism to assess the

reliability of wireless infrastructure networks. Network-reliability analysis has

Chapter 1 Introduction 10

long been an important area of research for wired networks [2, 64, 73, 78, 113]

but not for wireless networks. Furthermore, the reliability issue for wireless

CORBA is quite different from that for wired networks, as wireless CORBA

introduce a unique feature called handoff. The handoff operation causes the ex-

isting communication structure in end-to-end communications to change with

the MH’s movement, i.e., at different time periods, different components are

engaged in node-pair communications. Thus, the traditional two-terminal re-

liability defined in wired networks [118] is not suitable anymore. This thesis

introduces a new concept, end-to-end mobile reliability, to define the reliability

metric in wireless networks [26, 30], which not only keeps the monotonously

decreasing characteristic of reliability but includes the mobility nature in the

system. Different effects imposed by component failure parameters and mo-

bile service parameters are given through numerical examples. To observe the

gain in reliability improvement, the reliability importance (RI) of imperfect

components are also evaluated.

1.2 Wireless Ad Hoc Sensor Network

The second implementation of wireless networks is wireless ad hoc sensor net-

works which are being increasingly deployed to perform certain tasks, such

as sensing, tracking, measurement, and surveillance, as shown in Figure 1.2.

The sensors, serving as the nodes in this kind of network, are tiny power-

constrained devices, which connect together through short-range radio trans-

mission and form an ad hoc network. By intelligently combining each sensor’s

reported data, an end-user can remotely monitors events in the deployment

region. The monitoring and surveillance characteristics of a wireless sensor

network require that every point in the region of interest should be sensed

with given parameters by the cooperation of deployed sensors; otherwise, an

Chapter 1 Introduction 11

Deployment Region

Sensor Nodes

Internet

Task Management Node

End-User

Sink

Figure 1.2: A wireless sensor network.

event occurring at the under-monitored points will not be detected. This is

the coverage issue, one of the fundamental measures for quality of service of a

wireless sensor network.

To preserve the coverage requirement, the network should sustain a long

lifetime without sacrificing the system’s reliability. However, as wireless sensors

are microelectronic devices, the energy source provided for them is usually bat-

tery power, which has not yet reached the stage for sensors to operate for a long

time without recharging or replacement. Furthermore, the unattended nature

of sensors and hostile sensing environments make manual battery recharging

or replacement undesirable or impossible [127]. As a result, finding ways to

prolong the functional lifetime both of individual sensors and of the network

is an important challenge. We know that if a sensor is frequently alternating

between an active and an inactive state, its battery life will be extended [120].

From this observation, sleeping configuration has been proposed as a promis-

ing way to extend network lifetime by alternately activating only a subset of

sensors and scheduling others to sleep according to some heuristic schemes

Chapter 1 Introduction 12

while providing sufficient coverage in a geographic region.

Besides the coverage problem, sensors may fail or be blocked due to physi-

cal damage or environmental interference. The failure of sensors may produce

some void areas that do not satisfy the coverage requirement. Therefore, an-

other important design issue is to sustain sensor network functionality without

any interruption due to sensor failure; this is termed the reliability or FT is-

sue [4, 85]. The checkpointing and message logging mechanisms utilized for

wireless infrastructure networks are not suitable for sensor networks. More-

over, the location error is introduced when the position of sensors cannot be

engineered or predetermined with random deployment. One way to address

these challenging problems is by deploying sensors densely. In a densely dis-

tributed sensor network, the system relies on the collective behavior of sensors

to function reliably [139], i.e., it is the number, not the capability of each

individual sensor, that really matters. But having too many sensors working

at the same time increases the probability of packet collision, thus reducing

the network throughput. Therefore, on the one hand, a sleeping configuration

protocol should find as many sleeping-eligible sensors as possible to prolong

network lifetime and to reduce packet collision; on the other hand, it should

still retain enough redundancy to construct dependable sensor networks.

Finally, there is a scalability challenge associated with a high density of

sensors when achieving the desired area coverage and robustness. Sensor net-

works are constructed with multi-hop communications, because generally using

several short intermediate hops to send data is more energy efficient than using

one longer hop [66, 91]. In addition, communication expends more energy than

computation. This implies that each sensor itself must configure its own op-

erational mode adaptively based on information about its neighborhood, not

on the complete information about the deployment region.

Chapter 1 Introduction 13

1.2.1 Sensibility-Based Sleeping Configuration

In response to all the aforementioned requirements (maintaining area cov-

erage, extending system lifetime, tolerating sensor failures and location error,

and achieving scalability), we present a sensibility-based sleeping configuration

protocol (SSCP) that is fully decentralized and localized with three sleeping

candidate conditions. Two sensing models, Boolean sensing model (BSM) and

collaborative sensing model (CSM), are investigated in our SSCP.

A number of sleeping configuration protocols have been proposed [58, 126,

133, 136, 143] in the literature. They have so far been based on the BSM, which

assumes that each sensor has a certain sensing range, and a sensor can only

detect the occurrences of events within its sensing range; it does not provide

any sensibility out of this range. All these investigations are constructed on the

basis of determining a sensor’s sleeping eligibility with the coverage of sensing

disks [126, 136], the coverage of sensing perimeters [58], or the coverage of in-

tersection points of sensing perimeters [133, 143]. With the BSM, we propose

a sleeping candidate condition called minimum partial arc-coverage (MPAC)

based on the coverage of sensing perimeters. The proposed MPAC can deal

with sensors with different sensing ranges, and can satisfy k-coverage require-

ment which indicates that every point in the deployment region is covered by

at least k nodes. In addition, we develop a sleeping candidate condition with

the property of Voronoi diagram [101].

Although the BSM allows a geometric treatment of the coverage problem,

it misses the attenuation behavior of signals and ignores the collaboration be-

tween adjacent sensors in performing area sensing and monitoring. The CSM

captures the fact that signals emitted by a target of interest decay over the

distance of propagation, which is more realistic. With the CSM, we propose

Chapter 1 Introduction 14

the neighboring-sensor field sensibility (NSFS) to provide dependable configu-

rations for tolerating sensor failures, energy depletions, and location error by

exploiting the cooperation between adjacent sensors.

In order to conserve energy, each sensor autonomously determines its own

status (WORKING or SLEEPING) by utilizing partial sensor distribution in-

formation obtained through communications with its local neighbors. This

property enables the SSCP to scale to large networks.

Simulations with ns-2 [42] show more sensors can be scheduled to sleep in

the BSM than in the CSM, which is beneficial to prolonging system lifetime

and reducing packet transmission collision. However, as too many sleeping

sensors reduces the sensor redundancy which is crucial to tolerating sensor

failures, energy depletions, and location error, the BSM will perform worse

than the CSM with the accumulated coverage time. Therefore, a trade-off

exists between energy conservation, area coverage, and FT. Three effective

approaches to build dependable wireless sensor networks are suggested: in-

creasing the required degree of coverage or reducing the communication radius

during sleeping configuration, configuring sensor sleeping adaptively, and uti-

lizing the cooperation between neighboring sensors.

1.3 Contributions of this Thesis

In this thesis, we conduct some investigations in FT, performance, and relia-

bility issues for wireless infrastructure and ad hoc sensor networks, as shown

in Figure 1.3:

• Build a FT architecture for wireless CORBA through message logging

and recovery. Approaches for support reliable handoff, for hiding MH

disconnection from other hosts, and for tolerating MH and AB crashes are

Chapter 1 Introduction 15

Wireless
Infrastructure Networks

Wireless Ad Hoc
Sensor Networks

Components

SensorStatic
Host

Home Location
Agent

Sink

Program
Execution Time

Mobile Host

Message
Queueing

Access Bridge

Sensor
Sleeping

Components

Reliability
Energy

Conservation

Fault Tolerance
Coverage

Connectivity

Component
Failure

Mobile Host
Handoff

Checkpointing

Locaiton Error

Figure 1.3: Thesis overview.

exploited. It supplements to build FT-CORBA in wireless environments.

• Innovatively combine queueing model with five message scheduling strate-

gies at AB in the presence of MH failures and handoffs, and analyze and

simulate their expected message sojourn times, as AB is a bottleneck of

message dispatching in the proposed FT wireless CORBA.

• Extend the previous analysis work on the program execution time with-

out and with checkpointing from a stand-alone host to an MH by en-

gaging the number of received messages as the program execution termi-

nation condition; Furthermore, three checkpointing strategies are eval-

uated: deterministic checkpointing, random checkpointing, and time-

based checkpointing.

• Integrate the mobility nature (handoff) of a wireless infrastructure net-

work with the reliability evaluation for different communication schemes

by our firstly proposed end-to-end mobile reliability, with which we could

Chapter 1 Introduction 16

identify the reliability importance of imperfect components in wireless

networks.

• Investigate two sensing models, BSM and CSM, in wireless ad hoc sensor

networks, and propose three sleeping candidate conditions with arc cov-

erage and Voronoi diagram to conserve sensor energy while preserving

redundancy to tolerate sensor failures and location error. Two sleeping

configuration protocols, round-based and adaptive sleeping, to configure

distributed sensors are developed.

Overall, components are failure-prone in wireless infrastructure and sensor

networks; therefore, we need to exploit FT in both networks. In addition,

their corresponding performance and reliability issues should be investigated.

However, the roles of these two networks are quite different: One is providing

user mobility in wireless infrastructure networks and the other is monitoring

area events in wireless sensor networks. As a result, the approaches to FT and

the correlative measures for performance and reliability should be discussed in

different ways to meet their corresponding missions.

1.4 Organization of this Thesis

The rest of this thesis is organized as follows: In the next chapter, a detailed

review on FT, performance, and reliability issues in wired, wireless, and sen-

sor networks are given. Chapter 3 builds a FT wireless CORBA with message

logging and recovery. Chapter 4 analyzes the message dispatch strategies and

their corresponding message sojourn times at AB in the presence of MH fail-

ures and handoffs. The program execution times at a failure-prone MH with

three checkpointing strategies are developed in Chapter 5. Chapter 6 gives re-

liability analysis for various communication schemes. Chapter 7 presents the

Chapter 1 Introduction 17

sensibility-based sleeping configuration for wireless sensor networks. Finally,

Chapter 8 summarizes the thesis and discusses future directions.

2 End of chapter.

Chapter 2

Background and Literature

Review

In this chapter, we conduct a detailed review on fault tolerance, performance,

and reliability issues in wireless infrastructure and ad hoc sensor networks.

2.1 Fault Tolerance in Wireless Infrastructure

Networks

Fault tolerance (FT) is the ability of a system to continue providing its spec-

ified service despite component failures. It is carried out via error detection

and system recovery [12]. One technique of system recovery is rollback recovery

which periodically saves system states during failure-free execution on stable

storage and restarts a failed system component from one of its saved states [40].

Each of the saved states is called a checkpoint. In distributed systems, such as

CORBA and wireless CORBA, messages complicate rollback recovery as mes-

sages induce inter-component dependencies. In addition to take a checkpoint,

the messages transmitted may also be logged, thus introducing log-based roll-

back recovery. Checkpointing and message logging for wired networks have

18

Chapter 2 Background and Literature Review 19

been studied extensively [9, 35, 40, 61, 87]. Most recently, some work has been

conducted in providing FT for wireless environments.

Neves and Fuchs [43, 94] developed an adaptive and coordinated check-

pointing protocol by saving consistent global states through local timers or

the number of checkpoints piggybacked in computational messages. The time

to next checkpoint is also piggybacked to approximately synchronize those lo-

cal timers. The protocol logs in-transit messages when taking checkpoints at

the sender. Hard checkpoints are saved on stable storage, and soft checkpoints

are saved locally on MHs. Based on this checkpointing protocol, Ssu [122]

proposed a leasing mechanism to manage storage for checkpoints and to dy-

namically adjust locations used to store checkpoints for reducing checkpoint

transmission overhead. Instead, our protocol (Chapter 3) engages uncoordi-

nated checkpointing to reduce the number and size of messages transmitted

through wireless links. No messages will be logged on MHs to decrease power

consumption and storage utilization.

Pradhan et al. [71, 105] described recovery schemes as a combination of

state saving and handoff strategies. The state saving strategies include no

logging and logging, and the handoff strategies include pessimistic, lazy, and

trickle handoffs. It engages “local” AB (the MH’s currently associated AB

when checkpointing) as the stable storage, which implies that successive check-

points of an MH may be scattered at different ABs due to MH movement. Our

checkpointing and message logging protocol also choose the currently con-

nected AB as the stable storage. In the pessimistic strategy, a checkpoint is

transferred to the new AB during handoff. The lazy strategy creates a linked

list of ABs visited by the MH, instead of transferring checkpoint and message

log in each handoff. This strategy reduces the network overhead during hand-

off; however, upon an MH failure, its most recent checkpoint may be far away

Chapter 2 Background and Literature Review 20

from the current AB, thus increasing the recovery overhead. The trickle strat-

egy adds a distance constraint condition to ensure that the checkpoint and

message log are always at most one-hop from the current AB. In our protocol,

we adopt a handoff strategy like the trickle one, but we employ an adaptive,

dedicated, and separate thread to collect the last checkpoint and the successive

message log.

Park and Yeom [103] developed an asynchronous recovery scheme based

on optimistic message logging, in which the AB performs logging and depen-

dency tracking. The messages exchanged between ABs carry vector clocks for

asynchronous recovery. But traced dependency information may be imprecise

that leads to unnecessary rollback of MHs after a failure. We choose pes-

simistic message logging to avoid large number of control message interchange

and rollback propagation. The authors also proposed a movement scheme for

managing checkpoint and message log [102]. Only when an MH moves out of a

predefined distance range or when the number of handoffs exceeds a threshold,

its corresponding checkpoint and message log are collected to a nearby AB.

Juang [63] employed a matrix in each AB to maintain the dependency

relationship among engaged MHs and SHs, by which an independent check-

pointing protocol was developed. Upon a failure, a host needs to rollback only

once and can immediately resume its operation without waiting for any co-

ordination messages from other hosts. Cao and Singhal [16] introduced the

concept of mutable checkpoint, which need not be saved on stable storage and

can be saved anywhere, such as the main memory or local disk of MHs, so that

avoiding the overhead of transferring large amounts of checkpoint information

to the stable storage at ABs over the wireless network.

Acharya et al. [1] presented a checkpoint scheme in which each MH check-

points its local state whenever it receives a message after sending a message,

Chapter 2 Background and Literature Review 21

performs a handoff operation, or prior to disconnecting from its associated

AB. Yao et al. [137] proposed a proxy-based recovery for applications on MHs.

The proxy transparently monitors an MH’s interactions with other hosts and

maintains a copy of the MH’s state. They also described a receiver-based pes-

simistic message logging protocol in [138]. Higaki and Takizawa [56] described

a hybrid checkpointing protocol in which SHs take coordinated checkpoints,

and MHs take uncoordinated checkpoints. When an MH moves between cells

covered by ABs, it leaves an agent process on each AB to help its recovery upon

failures. Some communication-induced checkpointing protocols have also been

proposed, which allow checkpoints to be taken asynchronously [3, 80, 106].

To tolerate AB failures, Alagra et al. [5] utilized pessimistic and optimistic

replication strategies by allowing MH move to a replicated AB, or by designing

a network to cover each MH with more than one AB. Furthermore, Khan and

Abd-El-Barr [65] utilized fuzzy logic to build a hybrid strategy by evaluating

the best ratio of pessimistic to optimistic replicated ABs.

Ruggaber and Seitz [108, 109] introduced Π2, a proxy platform for CORBA-

based applications in the nomadic environments. It splits the connections

between an MH and an SH by a proxy to avoid suffering from sudden discon-

nections. If an MH detects loss of reply, it will send a retrieval request to its

previous AB for retrieving the reply after handoff. In our approach, the AB

takes the initiative to forward the reply to the MH after handoff.

2.2 Job Queueing and Scheduling

Job queueing model provides a useful tool for predicting the performance of

many service systems including computer systems/networks, telecommunica-

tion systems, and manufacturing systems [97]. Traditional queueing models

predict system performance under the assumption that the service facilities

Chapter 2 Background and Literature Review 22

experience failures and repairs.

Gaver [47] analyzed a single server which is subjected to random inter-

ruptions and gave the Laplace-Stieltjes Transform (LST) of distributions of a

job’s completion time under different interruptions: postponable, preemptive-

resume, preemptive-repeat-identical, and preemptive-repeat-different. It was

stated that interruptions tend to increase the intervals between job departures

from the system; however, interruptions may decrease completion time dura-

tions. In addition, the author also gave the LSTs and moments of busy period

duration, of queue length, and of waiting time.

Nicola et al. [95, 97] utilized an irreducible continuous-time Markov chain to

model the server’s failure and repair behaviors, in which each state is classified

as preemptive-resume or preemptive-repeat-identical. They derived the steady

state probability distribution and the mean of the number of jobs in the system.

Altiok [8] assumed that the service and repair time distributions are a

mixture of generalized Erlang distributions, and no jobs arrive during rollback

recovery period, under which the steady state probability distribution of the

number of jobs was derived.

All the above models assume that the input to a queue follows a Poisson

fashion. In Chapter 4, we conduct queueing analysis for an AB and derive

the expected message sojourn time. However, we assume that the message

dispatch facility (AB) itself is not subjected to failures, and only the message

target, i.e., MH, undergoes failures and handoffs, which cause messages to be

blocked and delayed in the message dispatch queue at AB. The behavior of an

MH is also modeled with a three-state Markov chain but with different states:

normal, handoff, and recovery, in which the handoff state is uniquely provided

by wireless mobile environments.

In addition to server breakdowns, the job processing policy in a service

Chapter 2 Background and Literature Review 23

facility may also affect the job completion time, thus influencing the number

of jobs waiting for processing. Therefore, many papers have been published to

address this problem.

Coffman et al. [32] derived the LST of the job waiting time distribution for a

processor-sharing system, in which the service facility is shared simultaneously

by each job in the system. The derived waiting time distribution is conditioned

on the service requirement and the number of jobs in the system when a job

arrives. Nunez-Queija [98] also gave the LST of the sojourn time distribution

in an M/M/1 queue with the processor-sharing service discipline, in which,

however, the server is subjected to breakdowns. He pointed out that the

expected sojourn time is not proportional to the service requirement.

Rasch [107] derived the distribution of queue size and the average waiting

time for a time-shared system using round-robin scheduling, with and without

switchover overhead. Each job is assigned with a priority based on its length.

In the round-robin scheduling model, the service facility processes each job

for a maximum predetermined time period (or quantum). If a job cannot be

completed during its assigned quantum, the remainder of the job returns to

the end of the single queue for another quantum of service.

Coffman and Kleinrock [33] analyzed two models: the round-robin model

and the feedback model. A feedback system contains multiple queues in which

a new arrived job joins the tail of the first queue. If the job cannot complete

its processing, it joins the tail of the next queue, thus providing rapid ser-

vice for jobs with short service-time requirement. Kleinrock et al. [69] solved

the average response time for jobs conditioned on their service requirement,

in which three scheduling disciplines are incorporated: first-come-first-served,

round-robin, and feedback.

Chapter 2 Background and Literature Review 24

The cyclic polling model has been surveyed in [15, 123, 124], which is a sys-

tem of multiple queues accessed in cyclic order by a single service facility. Four

basic disciplines with respect to the rule by which the service facility leaves a

queue exist: In an exhaustive service system, the service facility continues to

serve each queue until it empties; In a gated service system, the service facility

serves only those jobs that were found in a queue when it visited the queue;

In a k-limited service system, each queue is served until either it empties or k

jobs are served, whichever occurs first; And in a k-decrementing service sys-

tem, each queue is served until either it empties or the queue size decreases to

k less than that found at the polling instant. After each service completion,

the service facility takes a rest before returning for inspection of the queue.

However, most of the aforementioned papers on job processing policy dis-

cussed the system performance in the absence of server failures. The points of

departure of the work in Chapter 4 from others are that we solve and simulate

the message sojourn time at ABs in the presence of failures and handoffs of

MHs for wireless mobile environments.

2.3 Program Execution Time

Many analysis results have been derived about the completion time of a pro-

gram having a finite failure free program execution time executed on a stand-

alone host in the presence of failures. On the basis of the derived program

completion times with checkpointing, the optimal checkpoint rate have also

been investigated.

Duda [39] derived the probability density function of the program execution

time and its expectation with and without checkpointing; however, Duda’s

work assumed that no failures occur during recovery and that the recovery

time is a constant. In Chapter 5, we extend the recovery time to be a random

Chapter 2 Background and Literature Review 25

variable (r.v.) and allow failures during recovery.

Kulkarni et al. [74] carried out the analysis of the program completion time

in which checkpointing is allowed during reprocessing of a program, and they

utilized the derived results to build a queueing model with a Poisson input.

The checkpointing rates to minimize the expected program completion time

and response time were derived individually.

Nicola [96] presented the LST and the expectation of the program execu-

tion time under different checkpointing strategies: equidistant checkpointing,

checkpointing in modular programs, and random checkpointing. The cor-

responding form of equidistant checkpointing in our message-number-based

models is the equi-number checkpointing [25], which is a special case of the

deterministic checkpointing described in this thesis. Nicola’s selected distrib-

ution for random checkpointing was the exponential distribution. As the mes-

sage number demonstrates a discrete characteristic, we engage the geometric

distribution instead of the exponential distribution in our work.

In [39, 74, 96], the authors pointed out that without checkpointing the re-

sulting program execution time is an exponential function of the specified pro-

gram execution time, and with equidistant checkpointing, the function changes

to a linear form. A similar observation with respect to the message number

will be made in this thesis.

Young [142] described a first-order approximation to the optimal check-

pointing interval which minimizes the time lost due to failures. Garg et al. [46]

combined checkpointing and rejuvenation and derived the program execution

time for the resulting two-dimensional optimization problem of finding the

total numbers of equidistant checkpoints and rejuvenations to be performed

during the execution of a program.

Gelenbe and Derochette [50] examined the influence of the checkpointing

Chapter 2 Background and Literature Review 26

interval in a transaction-oriented database system on the system availability

and on the average response time. They employed a three-state Markov chain,

including a normal state, a recovery state, and a checkpointing state, to derive

the condition for the existence of a stationary probability distribution.

Tantawi and Ruschitzka [125] carried out the analysis of an equi-cost check-

pointing strategy, which is failure-dependent yet reprocessing-independent.

With the equi-cost strategy, the expected reprocessing time between any two

successive checkpoints equals the mean of the checkpointing time. They con-

sidered general failure distributions and allowed failures to occur during check-

pointing and error recovery. In our model, besides MH failures in checkpointing

and recovery, wireless link failures and handoffs are also allowed; however, we

restrict the inter-failure time to an exponential distribution.

Chandy et al. [21] presented three models through which the optimal check-

pointing intervals were derived. In the first model, no errors occur during re-

covery, and the job arrival rate is constant. The second model takes into con-

sideration possible errors during checkpointing and recovery. The last model

considers that the job arrival rate varied with time in a cyclic fashion. They

assumed that the recovery time after a failure is proportional to the number

of logged jobs since the most recent checkpoint.

Dimitrov et al. [37] gave an execution time analysis when checkpoints are

placed by a deterministic schedule pre-determined offline, and then investi-

gated an approach for determining the optimal checkpointing schedule.

Gelenbe [49] showed that the optimal checkpointing interval to maximize

system availability is a function of the load of the system, and proved that

in order to maximize the availability the total operating time of the system

between successive checkpoints should be a deterministic quantity.

Grassi et al. [51] evaluated the probability distribution of the overhead

Chapter 2 Background and Literature Review 27

caused by the usage of the checkpointing rollback recovery technique, through

which some checkpointing strategies were developed to minimize the variance

of program execution time under an execution time constraint, to guarantee

maximum system unavailability, or to minimize the cost introduced by check-

pointing.

Krishna et al. [70] suggested that the optimization criteria for checkpoint

placement should be a trade-off between the benefits derived from checkpoint-

ing and the overhead it imposes.

In addition, Ling et al. [81] derived an explicit optimal checkpointing fre-

quency formula which minimizes the total expected cost of checkpointing and

recovery. L’Ecuyer and Malenfant [76] proposed a dynamic programming ap-

proach to find a dynamic decision rule which maximizes the average availabil-

ity for rollback and recovery at the system level. Plank and Thomason [104]

further applied the concept of availability to measure the performance of check-

pointing. Ziv and Bruck [144] designed an online checkpoint placement algo-

rithm which keeps track of the state size of a program and looks for points in

the program where checkpoint placement is the most beneficial.

All the above analysis results are derived for wired networks. Recently a

few investigations have also been conducted for wireless mobile networks. In

Page 19, we have stated that Pradhan et al. [105] had proposed AB-driven re-

covery strategies to achieve FT. Furthermore, they reported the expected cost

incurred during a handoff period with and without failures. They identified

the optimal checkpointing interval, and concluded that the performance of a

recovery scheme depends on the mobility of MH and the bandwidth of wire-

less links. The probability distribution functions of the corresponding recovery

times were addressed in [23] as a failure recoverability problem. In Chapter 5,

we complement their work with the program execution times with different

Chapter 2 Background and Literature Review 28

checkpointing strategies.

2.4 Network Reliability

Two-terminal reliability is a common measure of network reliability, which is

characterized by success of at least one path between two specified nodes [2],

and is dependent on the topological layout of a communication network in

addition to the reliability of individual network components (links and nodes).

More general terms are k- and all-terminal reliability. Much work has been

done in calculating, estimating, or bounding the reliability of a given wired

network. One approach is by employing the combinatorics of network reliabil-

ity to produce lower and upper bounds with failure-prone links (characterized

by link-failure probability), but perfect nodes [38, 78, 140]. The evaluation

algorithm proposed in [38] is one of the most computationally efficient method

to calculate the two-terminal reliability with perfect nodes [128, 141].

Aggarwal et al. [2] developed a concept that the failure of a node implies

the failure of links connecting it, with which a symbolic reliability expression

derived with the assumption of perfect nodes could be directly modified to

incorporate imperfect nodes. Unfortunately, the calculation cost can rise ex-

ponentially with the number of links. Torrieri [128] exploited a relation that

the event of successful communication over a link is equivalent to the event

that both the link and its terminal node are operational. Then he designed

an efficient method to compensate for unreliable nodes in network reliability

computation. The cost of this method increases linearly with the number of

links, and the effect of the unreliable nodes can be directly calculated.

Netes and Filin [93] added the imperfect nodes into paths for decomposing

the network into an event-tree, thus considering nodes and links jointly, not

Chapter 2 Background and Literature Review 29

separately. Ke and Wang [64] partitioned the network into a set of smaller dis-

joint subnetworks by only considering links as if all nodes are perfect to directly

calculate the network reliability expression instead of using any compensating

methods.

Based on previous work, in Chapter 6 we evaluate the reliability of wireless

infrastructure network with node failures by the introduced end-to-end mobile

reliability. However, we focus on various communication schemes due to MH

mobility instead of a static wired network topology. Previous results could be

employed into the end-to-end mobile reliability to provide a more detailed and

complete reliability assessment for wireless infrastructure network systems.

Nevertheless, the reliability issue in wireless infrastructure networks has

been addressed only by a handful of researchers. Reliability and survivabil-

ity issues of wireless infrastructure networks were discussed in [121], which

concluded that each component engaged in the end-to-end connection is a

potential point of failure. However, it did not explicitly state how the user

mobility, which is unique in wireless infrastructure networks, affects the end-

to-end reliability.

Varshney et al. [130] modeled and simulated the reliability and survivabil-

ity of wireless infrastructure networks with a proposed wireless infrastructure

building-block (WIB). By scaling the number of WIB, they evaluated net-

work failures and corresponding impacts under various observation durations,

component failure characteristics, and network sizes. They pointed out that

redundancy and multifunction/multimode devices are two approaches to en-

hance the network reliability.

Chapter 2 Background and Literature Review 30

2.5 Sleeping Configuration in Wireless Ad Hoc

Sensor Networks

2.5.1 Area Coverage

Coverage problems have been formulated in the field of computational geom-

etry as the Art Gallery Problem [115]. A gallery is usually modeled as a

simple polygon on a two-dimensional plane. The Art Gallery Problem tries

to determine the number and locations of observers, which are necessary to

guarantee that every point in the gallery should be monitored by at least one

observer [19].

Boolean Sensing Model

Recently several sleeping configuration protocols have been proposed to ad-

dress the energy conservation and lifetime extension issues in wireless ad

hoc sensor networks operating within a coverage constraint. Based on their

adopted BSM, they identified redundant sensors by means of geometric com-

putations.

Tian et al. [126] proposed an off-duty eligibility rule based on sponsored

sector (SS), which considers only the nodes whose distance is less than or

equal to the sensing radius. This off-duty rule guarantees complete sensing

coverage as long as no void area exists; however, the SS is an underestimation

of sensing coverage provided by neighboring nodes and leads to excess energy

consumption.

Jiang and Dou [59] improved the work of Tian et al.[126] by replacing

the communication neighbor with the sensing neighbor, thus utilizing more

coverage capability provided by neighbors. Nevertheless, their protocol may

not preserve coverage when sensors have different sensing radii.

Chapter 2 Background and Literature Review 31

Yan et al. [136] introduced a differentiated surveillance service for sensor

networks. In their proposed service, a sensor first calculates a time reference

point and the corresponding time duration for each covered grid sampling

point; then the sensor unites all the time durations and takes the result as its

working time. The authors additionally provided FT by periodically broad-

casting a heartbeat message; however, utilizing the heartbeat message to detect

sensor failures is too energy-expensive in sensor networks. In our work, FT is

an intrinsic capability in the CSM.

Huang et al. [58] formulated the coverage problem as a decision problem.

Whether a sensor is eligible to sleep is determined by observing how the perime-

ter of its sensing range is covered by its neighbors. But they did not give

detailed sleeping configuration protocols for distributed sensors.

Ye et al. [139] developed PEAS, a probing mechanism designed to conserve

energy. The PEAS does not require any node to maintain a knowledge of the

states of its neighboring nodes and it distributes node wake-ups randomly over

time. When a sleeping sensor wakes up, it detects whether any working sensor

is present within a certain probing range by broadcasting a probing message

and waiting for a reply. If no reply is received within a time period, it starts

working until it fails or depletes all its energy. In this solution, the application

specified probing range indirectly determines the degree of coverage. However,

this probing-based approach has no guarantee of adequate sensing coverage.

Slijepcevic et al. [120] described a heuristic algorithm to select mutually

exclusive groups of sensors, where members of each of those groups together

cover the interested area completely. Only one such group is working at any

moment. After a specified interval, another group is activated. By maximizing

the cardinality of the group set, the proposed algorithm achieves energy savings

while fully preserving coverage.

Chapter 2 Background and Literature Review 32

All the aforementioned algorithms assume that each node is aware of its

own location. By relaxing the requirement of completely preserving area cov-

erage, Tian et al. [127] presented three location-free sensor scheduling rules:

nearest-neighbor-based, neighbor-number-based, and probability-based, which

compare the distance between a sensor and its nearest-neighbor, the number

of a sensor’s neighbors, and a randomly generated number, with a predefined

corresponding threshold, respectively. We also present a sensor sleeping eli-

gibility condition which estimates the area coverage loss. It still needs node

location information; however, it has the advantage of being able to identify

critical regions in the deployed area.

Collaborative Sensing Model

The CSM has also been exploited in the literature. Megerian et al. [90] defined

exposure as an integral measure of how well a sensor network can observe an

object, moving on an arbitrary path, over a period of time.

Xing et al. [134] exploited a probabilistic distributed detection model with a

Coordinating Grid (Co-Grid) protocol. Utilizing the concept of data fusion and

the majority rule, the fusion center located at the center of each grid decides

which sensors in its fusion group should be in active status and dispatches

its decision to its group members. Then the group members set their status

accordingly. The Co-Grid engages overlapping grids to reduce the boundary

effect that exists when there is no inter-grid coordination between two adjacent

non-overlapping grids. However, this approach is not fully localized, and fixing

the location of the fusion center is not practical when sensors are randomly

deployed. Our approach allows each sensor to decide its status locally, thus

there is no centralized decision. Each sensor can function as a data fusion

center for its neighboring sensors, and no stringent grid is imposed. These two

Chapter 2 Background and Literature Review 33

characteristics simplify the construction of cluster-based protocols.

Liu and Towsley [82] studied the coverage problem from a theoretical per-

spective with three measures: area coverage, node coverage, and detectability.

Both sensing models, the BSM and the CSM, were evaluated in their paper,

and some asymptotic characteristics were developed.

2.5.2 Network Connectivity

To address the problem of providing communication connectivity within an

energy conservation context, topology control protocols have been proposed

that keep awake only the nodes necessary to maintain continuous routing.

SPAN [22] is a randomized algorithm in which nodes make local decisions

on whether to sleep or to join a forwarding backbone network as a coordina-

tor. The coordinators stay awake continuously and perform multi-hop packet

routing, while other nodes remain in sleeping mode and periodically check if

they should wake up and become a coordinator.

GAF [135] employs geographic location information to partition a moni-

tored area into virtual square grids and considers all nodes in a particular grid

square to be equivalent with respect to forwarding packets. It performs leader

rotation among the nodes inside the virtual grid in order to balance energy

consumption.

LEACH [55] divides a network into clusters and randomly rotates the clus-

ter leader in order to distribute the energy consumption evenly among the

sensors. A sensor decides to which cluster-head it belongs by evaluating its

minimum communication energy needed to connect with the cluster-head.

In ASCENT [20], each node adapts its participation in the multi-hop net-

work topology based on a measurement of local connectivity and packet loss

information; therefore, no location information is needed.

Chapter 2 Background and Literature Review 34

2.5.3 Area Coverage and Network Connectivity

Furthermore, some studies have been published on maintaining sensing cover-

age and communication connectivity together. Wang et al. [133] and Zhang et

al. [143] both proved that without location error, the sensor’s communication

radius being at least twice of the sensing radius is the sufficient condition to

ensure that the complete 1-coverage of a convex area implies network connec-

tivity.

Wang et al. [133] designed an approach called Coverage Configuration Pro-

tocol (CCP), which employs the concept that the coverage degree of intersec-

tion points of sensing perimeters indicates that of a convex region. However,

it is not valid with inhomogeneous sensors with different sensing radii. The

protocol developed by Zhang et al. [143] is called Optimal Geographical Den-

sity Control (OGDC), based on a theorem extracted from [52] pages 59 and

181. In the OGDC, a sensor is randomly selected as the starting sensor in each

scheduling round, then other sensors, which are as close to optimal locations as

possible, are selected to be working sensors. Their approaches are built on top

of the BSM, and both approaches assume that each sensor knows its accurate

position; however, this assumption is relaxed in this thesis.

Zou and Chakrabarty [145] proposed a coverage-centric active nodes se-

lection (CCANS) algorithm to maintain coverage and connectivity together

based on a probabilistic sensing model and constrained their evaluation within

one-hop neighbors. The CCANS is a token-based protocol by assigning the

token to exactly one sensor at any time instant, in which only the sensor with

the token evaluates its sleeping eligibility. In this thesis, we integrate the

advantage of one-hop communication into the coverage problem directly by

employing the neighboring-sensor field sensibility. Furthermore, a sensor is a

sleeping candidate when its sleeping does not reduce the original coverage and

Chapter 2 Background and Literature Review 35

does not break its one-hop neighbors into communication partitions.

2.5.4 Voronoi Diagram

Voronoi diagram [11, 101] has also been investigated in the coverage problem

of sensor networks. Based on Voronoi diagram, Meguerdichian et al. [89, 91]

formulated the coverage problem with maximal breach and maximal support

paths to determine the best- and worst-case coverage for agents movement.

The best-case coverage problem was solved by Li et al. [79] with efficient dis-

tributed algorithms. However, the coverage definition in these two papers is

somewhat different with ours. Carbunar et al. [17, 18] utilized Voronoi dia-

gram to detect the coverage boundary, which is a necessary condition in our

developed criterion for selecting sleeping-eligible sensors with the BSM. Wang

et al. [132] developed a sensor movement strategy by adjusting the distance be-

tween a sensor and its farthest Voronoi vertex to maximize the sensor coverage;

however, our work focuses on static sensors.

2 End of chapter.

Chapter 3

Message Logging and Recovery

in Wireless CORBA

The emerging mobile wireless environment poses exciting challenges for dis-

tributed FT computing. This chapter proposes a message logging and recovery

protocol on the top of wireless CORBA and FT-CORBA architectures. It em-

ploys the storage available at the AB as the stable storage to log messages and

checkpoints on behalf of MHs. Our approach engages both the quasi-sender-

based and the receiver-based logging methods and makes seamless handoff in

the presence of failures. The details of how to tolerate MH disconnection, MH

crash, and AB crash are described. The normalized execution time of an MH

engaging our proposed scheme and the handoff effect are evaluated.

3.1 Fault Tolerance Model

Figure 3.1 presents an architectural overview of our FT model. Our approach

is based on message logging and checkpointing. The message logging mecha-

nism in ABs applies different methods for messages received from and sent to

TBs. An AB logs messages after it receives them from an TB (receiver-based),

but logs messages which are received from other hosts (ABs or SHs) before it

36

Chapter 3 Message Logging and Recovery in Wireless CORBA 37

sends them to the TB (quasi-sender-based). The TB may send back an ac-

knowledgement depending on the received message’s type. We checkpoint an

MH’s state periodically by a local timer or when the amount of the received

messages exceeds a predefined threshold.

Client Object

ORB

Terminal Bridge

Platform

Recovery
Mechanism

Logging
Mechanism

Mobile Host

Access Bridge

Mobile Support Station

Mobile
Side

Fixed
Side

Server Replica

GIOP
Tunnel

Platform

Recovery
Mechanism

Logging
Mechanism

ORB

Static Server

Platform

Recovery
Mechanism

Logging
Mechanism

ORB

Object Replica

Multicast
Messages

Figure 3.1: Fault-tolerant wireless CORBA architecture.

An MH may become unavailable due to (i) MH disconnection, (ii) MH

crash, and (iii) AB crash. As mentioned in Subsection 1.1.2, physical dam-

age becomes more probable to an MH than to an SH. It is limited to lower

processing power, lower memory resources, and lower power supply. It can be

disconnected from network intended or unintended. It may often move from

one AB to another. So an MH is not suitable to act as stable storage. But

when it is disconnected and the user still wants to operate continuously using

local information, the FT protocol may save checkpoints in its local disk in

order to recover from some transient faults, such as operating system crash

and battery discharge [94], etc. So we depict the logging mechanism in MH

with dashed lines.

An AB is on the border between wireless and wired networks. In the

Chapter 3 Message Logging and Recovery in Wireless CORBA 38

wireless CORBA architecture, all messages to and from an MH are traversed

through ABs. Every message leaves a local copy in AB automatically. There-

fore, it does not need to send an extra copy of each message elsewhere for

logging purpose to tolerate MH crash. So we choose the storage at AB as

stable storage for the message logging and checkpointing protocol. But the

mobile computing environment does not restrict a user’s location. When a

user moves from one AB to another, the carried MH should change its con-

nected AB. So the location of the stable storage would also be changed during

handoff [105]. It is one of the duties of our recovery protocol to find where

the last checkpoint is located. Finally, an AB contains multiple associated

MHs at the same time, but these MHs utilizes the AB only as a gateway for

transforming and forwarding messages, and there is no dependency between

these MHs from the viewpoint of the AB . So an AB keeps different logs for

its different associated MHs.

The SH and HLA are replicated in passive or active style according to

the FT-CORBA standard (Chapter 23 in [99]). An AB communicates with

SHs and HLAs by a group communication system, which should detect and

suppress duplicate requests and replies, and deliver a single request or reply

to the AB. So there is no single point of failures in our architecture. In this

chapter, we do not discuss this FT strategy in detail as it has already specified

by the FT-CORBA standard.

3.1.1 Data Structures

We employ the following data structures in our message logging and check-

pointing mechanism.

• Sequence Number (SN). Each message exchanged in the GIOP Tunnel

between an AB and a TB has an SN, which identifies the message itself

Chapter 3 Message Logging and Recovery in Wireless CORBA 39

and the order in which the message is sent. An AB ensures that the SN

is distinct for a dedicated TB, but the SNs may be same among different

TBs.

• Message Log Entry (MLE). Two types of MLEs are employed for two

message logging mechanisms (receiver-based and quasi-sender-based).

The first type contains a message received by an AB from a TB and

the status after the AB processes it. The second one is for messages sent

to a TB, which includes an additional SN of the corresponding acknowl-

edgement message. The additional SN indicates the order in which the

message is received by the TB.

• CheckpointData and CheckpointDataReply Messages. When an MH takes

a checkpoint, it utilizes these two messages to reliably save the checkpoint

in the current AB.

• PurgeCheckpoint Message. This message is sent out to clear old check-

points when an AB receives a CheckpointData Message. It needs not be

delivered reliably.

• FetchCheckpoint and FetchCheckpointReply Messages. A FetchCheck-

point Message is initialized when an MH detects a failure and starts to

restore the state before the failure. A FetchCheckpointReply contains the

last checkpoint of the MH.

3.1.2 Message Logging and Checkpointing

The steps in message logging, illustrated in Figure 3.2, are (1) An MH sends a

request message x via a GIOP tunnel to the currently connected AB; (2) The

AB logs x in its local stable storage pessimistically, sends an acknowledgement

Chapter 3 Message Logging and Recovery in Wireless CORBA 40

back to the MH, and relays x to the remote static server, then the AB waits for

a reply; (3) After receiving the reply message y, the AB logs y and dispatches

it to the MH; (4) The MH sends a message back to acknowledge y and delivers

y to the top level; (5) The AB logs the SN in the acknowledgement message

with message y.

Mobile
Host

Current
Access Bridge

Remote
Server

Logging

Logging

Logging

Req.

Req.

Rep.

Ack.

Rep.

Ack.

1

2

3

4

5

Figure 3.2: Normal invocation sequence with message logging.

When a local timer in the MH expires (time-based checkpointing), or the

MH receives a predefined number of messages since its last checkpoint (de-

terministic or random checkpointing), the MH will initialize a checkpointing

procedure. The hosted TB encapsulates the checkpoint in a CheckpointData

message and sends it to the current AB. To save wireless bandwidth, the

checkpoint may not be sent out immediately, and it can be piggybacked with

the next message from the TB to the AB [103]. The AB logs the received

checkpoint on its local stable storage and informs the HLA that a new check-

point of the MH is saved in this AB. This information will be utilized in the

recovery process to fetch the last checkpoint. The checkpointing interval is

determined by the application requirements and the failure rate of the MH.

Chapter 3 Message Logging and Recovery in Wireless CORBA 41

It is also determined by the handoff frequency of the MH. The effect of dif-

ferent checkpointing strategies and checkpointing intervals will be analyzed in

Chapter 5.

If an MH saves a checkpoint in its currently associated AB, all the message

logs and checkpoints prior to this checkpoint can be deleted since they are no

longer necessary for recovery of this MH. So the AB will send a PurgeCheck-

point message to the HLA to delete those obsolete checkpoints and MLEs. This

message needs not be reliably delivered, so long as any future PurgeCheckpoint

message for the same MH will be delivered [61]. After the HLA receives the

purge message, it will forward this request to the ABs in the itinerary track of

the MH so that they can purge the unnecessary checkpoints and messages and

reclaim the stable storage. No MHs and wireless communications are involved

during storage reclamation.

3.1.3 Mobile Host Handoff

In wireless networks which are organized in communication cells, a handoff

is a mechanism for an MH to seamlessly change a connection from one AB

to another. Handoff can be started due to two causes: normal operation

and sudden connectivity loss. In the normal operation, the MH will create a

connection with a new AB. But in the second case, there is another successful

outcome of the handoff procedure: connectivity re-established to the same AB

as before [100]. Therefore, we identify two ABs in a handoff procedure with:

• Old Access Bridge (OAB) that was connected by an MH before the

handoff.

• New Access Bridge (NAB) that would be connected after the handoff,

which may be the same as the OAB.

Chapter 3 Message Logging and Recovery in Wireless CORBA 42

Mobile
Host

Old
Access Bridge

New
Access Bridge

Logging

EstablishTunnelRequest

1

2

3

4

Remote
Server

GetContext

EstablishTunnelReply

ReleaseTunnelRequest

5

6

ReleaseTunnelReply
7

Rep.

Rep.Forward

8

9

Rep.

Ack.

10

Logging

11

Ack.Forward

Figure 3.3: Handoff procedure.

Figure 3.3 depicts the handoff procedure where an MH reestablishes com-

munication connectivity to a new but different AB. First, the MH creates a

network connectivity (in network layer) with the NAB. Then it sends a re-

quest message to establish a tunnel (message 1). The NAB uses information

contained in the request message or acquired by querying the HLA to obtain

the OAB of this MH. The NAB sends a message to the HLA to update this

MH’s location and invokes a handoff operation at the OAB (message 2). The

Chapter 3 Message Logging and Recovery in Wireless CORBA 43

OAB forwards necessary context data, such as Sequence Number, Last Se-

quence Number Received, Connection ID, to reconstruct the execution context

in the NAB (message 3). The NAB sends the tunnel establishment reply to

the MH (message 4) and the MH breaks the connection with the OAB (mes-

sage 5 and 6). Afterwards, the MH sends and receives all messages through

the NAB. The messages received by the OAB during the handoff (message 7),

such as replies to former requests, etc., are forwarded to the NAB (message

8), and the NAB relays them to the MH (message 9). The acknowledgement

messages (message 10) are forwarded to the OAB (message 11) to update the

corresponding message status in the logs to keep the integrity of these MLEs.

The GIOP requires that a reply should be sent in the same GIOP connection

as the request came in [100]. So if a message is a reply for a request that was

received through the OAB before the handoff, this message is encapsulated in

a forward format, and when the NAB receives it, the NAB should relay it to

the OAB. All these forwarded messages are logged in the OAB.

3.1.4 Mobile Host Disconnection

An AB functions as a proxy between an MH and other hosts (SHs and ABs). Its

major function is to forward messages to and from MHs. We construct an AB

with two parts (see Figure 3.4): mobile side and fixed side [100]. The mobile

side connects with an MH by a GIOP Tunnel, while the fixed side creates

normal IIOP (Internet Inter-ORB Protocol) connections to communicate with

remote hosts. The AB keeps different maps between these two parts by the

Connection ID specified in [100] for every associated TB. Using the AB as a

proxy, we can hide sudden MH disconnection from remote hosts [137].

According to the fact that an AB is a proxy for relaying GIOP messages,

we define three status of a message in an AB.

Chapter 3 Message Logging and Recovery in Wireless CORBA 44

GTP

GTP Adaptation Layer

Transport Layer

Connection ID
Mapping

Mobile Side

IIOP

TCP

Fixed Side

Figure 3.4: Access Bridge ORB.

• Received. This is the default status for a message when the AB receives

this message.

• Sent. When a message is relayed to an MH, an SH, or another AB but

before receiving an acknowledgement or a reply, the status of the message

is Sent.

• Processed. After the AB receives an acknowledgement message or a reply,

it changes the corresponding message’s status to Processed.

If the AB receives a message which does not need to be relayed, the status of

this message will be directly changed to Processed after the AB processes this

message.

During a sudden MH disconnection, the last connected AB still keeps IIOP

connections with remote hosts for a predefined time period. When the AB

receives messages from the remote hosts, it logs messages but does not forward

them to the target MH (as message 7 in Figure 3.3). When the AB receives

a notification that the MH reconnects with the network, it forwards these

received-but-not-sent messages to the MH (reconnects with the same AB) or

the MH’s currently associated AB (reconnects with a different AB). If the MH

recovers the connection with the same AB in a predefined time period, the AB

will reuse these IIOP connections for subsequent communications. Otherwise,

Chapter 3 Message Logging and Recovery in Wireless CORBA 45

the AB will terminate all these IIOP connections established for this MH. If

the AB has received all the reply messages (there are no outstanding request

messages), it closes these connections intermediately.

3.1.5 Mobile Host Crash

During disconnection, the state of an MH is kept intact. However, in the case

of MH crash, its local state is lost and needs to be recovered from a checkpoint

and subsequent message logs. The MH is assumed to be fail-stop [14], i.e.,

the associated AB is able to detect the failure of the MH. Each failed MH can

perform handoff and recovery procedure independently, which means that no

other MHs need to roll back together.

First the MH initiates a handoff procedure as depicted in Subsection 3.1.3.

After a successful handoff, it starts a state recovery procedure, which includes

four phases:

1. The HLA finds the location of the last checkpoint and forwards it to the

NAB;

2. The HLA collects all successive MLEs from the itinerary track of the MH

and forwards them to the NAB;

3. The NAB sends the checkpoint, sorts the processed messages by their cor-

responding acknowledgement SNs, forwards these messages sequentially,

and delivers the sent messages sequentially in their own SN order;

4. The MH initializes the application using the checkpoint and then exe-

cutes the application. If a generated message has a counterpart message

in the MLE set, this message is inhibited and will not be sent out.

After applying the recovery procedure, the state of the MH will be restored to

Chapter 3 Message Logging and Recovery in Wireless CORBA 46

the state just before the failure. (We assume that the application is determin-

istic.)

A GIOP tunnel is shared by all GIOP connections to and from the TB [100],

so some messages maybe arrive at the TB earlier than the messages sent before

them. We adopt a quasi-sender-based message logging mechanism for these

messages [61], which means that the AB acts as a message sender from the

viewpoint of the TB. For reconstructing the same sequence of messages arriving

before failures, we employ the SNs of the corresponding acknowledgements in

MLEs to sort these processed messages before sending them out sequentially.

In our approach, if a user moves from one AB to another, the stable storage

for storing checkpoints and messages is changed accordingly. So if the mobile

user traverses many times during a checkpointing period, the logged messages

are scattered in these ABs. If we want to recover an MH from a failure or

to revoke the stable storage for outdated messages, we need a method to find

all these messages. Because the HLAs keep one itinerary track for each MH,

we can employ the tracks to facilitate the messages collection and storage

revocation, as described in Section 3.1.2.

The recovery period is time consuming because visiting different ABs is re-

quired to collect necessary MLEs. The reason is that when a failure occurs, the

messages are scattered. We can improve this recovery procedure by collecting

messages to a stable storage near or in the current AB. A strategy proposed

in [105] ensures that the message logs and the checkpoint corresponding to the

MH are at the “predecessor” AB. To achieve this, during handoff, a message

is sent to the predecessor AB to transfer the checkpoint and logs. But if the

MH moves frequently to another AB, this strategy will still create heavy vol-

ume of data transfer. We improve this strategy by letting the HLA trigger the

transfer of the checkpoint and logs. In the HLA, there is a daemon and an

Chapter 3 Message Logging and Recovery in Wireless CORBA 47

array of timers for each MH. If one timer is expired, the daemon will dispatch

a thread to handle the data transfer for the corresponding MH. The thread

will collect the last checkpoint and successive message logs and save the data

in the current AB of this MH. The timer is adaptive. It will extend the time

period if an MH moves frequently, and it will shorten the time period if the

MH maintains connection with an AB for a long time. If a checkpoint is taken

during this message collection period, the HLA stops the related thread. We

also can use the number of handoffs or the distance between the currently as-

sociated AB and the AB which contains the last checkpoint as the trigger of

message collection.

3.1.6 Access Bridge Crash

An AB facilitates the connection mapping between an MH and an SH, so

the AB is in the critical path. For tolerating AB crash, normal replication

strategies can be adopted [5]. Recognizing the nomadic feature and the handoff

mechanism in the mobile computing environment, we utilize a strategy that

replicates the execution context and messages in an AB to its previous AB

for each MH. A previous AB for an MH is an AB in its movement track

just one hop before its current AB. If there is no movement track for this

MH, we choose the HLA as the “previous” AB. This replication strategy is

passive. Some messages that do not change the status of the AB will not

be replicated. Because each MH has different movement tracks, this strategy

generates different AB replicas for different MHs. After an AB failure, different

MHs can move to different NABs to start the handoff procedures.

If an AB crashes, the MH will detect this failure and then start a handoff

procedure. If there is only one AB covering the current location area, the

mobile user should explicitly move to another location for handoff. The handoff

Chapter 3 Message Logging and Recovery in Wireless CORBA 48

procedure has some differences from the normal handoff. The NAB first queries

the HLA for the location of the replicated message logs and makes a request

to the AB. The AB reconstructs the execution context from the message logs

and sends this context to the NAB. The NAB initializes a new context for this

MH according the received context and resends those messages which have no

acknowledgments or replies and whose SNs are not in the vector which contains

all the SNs of the messages received by this MH after its last checkpoint. After

a successful handoff, the NAB informs the HLA that the recovery procedure

is finished, and the MH continues to work as in normal condition. The HLA

removes the failed AB from the MH track to avoid to select the failed AB as a

previous AB. If the MH moves back to the previous AB, the recovery procedure

will be more efficient because all messages required to recovery are in the local

storage. If the AB restarts after a failure, the MH can create connectivity with

this AB just as a normal handoff from the previous AB.

To avoid re-executing resent messages after an AB crash, a remote server

should do some special work. When the server sends a reply message to the

crashed AB, it learns that the AB is not reachable and then logs this reply

message locally. After a successful handoff, the NAB reissues the same request

through a new GIOP connection, the server identifies this request, retrieves

the corresponding reply from its local log, and sends it back. Therefore, the

server processes the same request only once and keeps the data consistent.

3.2 Simulations and Evaluation

A simulation model is constructed to evaluate our proposed scheme, which

consists of 1 MH, 5 ABs, and 2 SHs. The MH sends request messages to

SHs which are selected randomly, and the time interval between two succes-

sive messages is exponentially distributed with a mean of 0.1. The MH moves

Chapter 3 Message Logging and Recovery in Wireless CORBA 49

around in the mobile computing environment with a handoff rate which follows

a Poisson process with rate ρ. Each AB has a static route to the SHs. The

failure rate of the MH follows a Poisson process with rate 0.0011 . We assume

that a failure is detected as its occurrence, so an MH performs recovery pro-

cedure instantly after a failure. The service rate of an SH is 0.1. Let the ratio

of the average cost transferring an application message or a checkpoint to the

average cost transferring a control message over one hop of the wired network

be 10, and the ratio of the cost transferring a control message over one hop of

the wireless network to the cost over one hop of the wired network be also 10.

The checkpointing rate is τ . Every request has a corresponding reply, and the

MH completes successfully if it receives all the reply messages.

50 75 100 125 150 175 200
1

2

3

4

5

6

7

8

message number

no
rm

al
iz

ed
 e

xe
ct

ui
on

 ti
m

e

without checkpointing
with checkpointing

Figure 3.5: Program execution time with and without checkpointing.

Figure 3.5 shows the execution time of the MH engaging checkpointing or

not. In this measurement, no handoff occurs. The execution time is normal-

ized to the execution time without failures and handoffs. From this figure,

we know that without checkpointing the normalized execution time increases

dramatically as the message number increases. (We will observe that this rela-

tionship is exponential in Chapter 5). After engaging checkpointing, the time

1The unit of all failure and service parameters is 1/s (one per second) in this thesis.

Chapter 3 Message Logging and Recovery in Wireless CORBA 50

curve is plotted nearly horizontally. So the execution time with checkpoint-

ing has a linear relationship with the message number. We also can see that

checkpointing and message logging incurs overheads due to that no applica-

tion message can be sent out during checkpointing and the message logging

mechanism delays the message delivery.

0.00005 0.0001 0.00025 0.0005 0.001
1

1.5

2

2.5

handoff rate

no
rm

al
iz

ed
 e

xe
ct

ui
on

 ti
m

e

without checkpointing
with checkpointing

Figure 3.6: Program execution time vs. handoff.

To demonstrate how the handoff influences the execution time, we let the

MH moves randomly in the ABs. In this simulation, the same parameters

values are utilized, and the message number is 100. Figure 3.6 shows the

results which are also normalized to the execution time without failures and

handoffs. It implies that the execution time increases linearly as the handoff

rate increases. As we described, no application message can be transmitted

to or from the MH during handoff. After a handoff, the OAB has to forward

its received replies during the handoff to the NAB. When a failure occurs,

the checkpoints and message logs may be scattered in several ABs. All these

increase the total execution time.

Chapter 3 Message Logging and Recovery in Wireless CORBA 51

3.3 Summary

This chapter describes a message logging and failure recovery protocol in wire-

less CORBA. It employs both quasi-sender-based and receiver-based message

logging methods. The protocol can tolerate MH disconnection, MH crash, and

AB crash. It chooses the storage available at AB as stable storage to log mes-

sages and checkpoints. To tolerate AB crash, it replicates an AB’s state on the

previous AB for each MH. It also engages the handoff mechanism as an ap-

proach to recover from AB crash. Note that the differences of message logging

and recovery protocols between wireless and wired networks are introduced by

the fact that wireless networks engage handoff operations and the fact that

MH is not stable storage. If messages are logged in the core network, the mes-

sage collection procedure caused by handoff could be removed. However, other

issues, such as MH disconnection, AB crash, etc., still exist. In addition, more

failure-free overload may be introduced as stable storage is far away from MH.

A simulation model is constructed to evaluate the proposed scheme. Af-

ter engaging checkpointing and message logging, the program execution time

increases linearly as the message number increases in the presence of failures.

The handoff affects the execution time by delaying message delivery and by

scattering checkpoints and message logs in multiple ABs.

2 End of chapter.

Chapter 4

Message Queueing and

Scheduling at Access Bridge

The previous chapter shows that AB plays an essential role in FT architectures

for mobile computing environments which engage wireless networks. It is the

performance bottleneck in the presence of failures and handoffs of MHs. Differ-

ent message dispatch strategies impose various effects on the message sojourn

time at AB. In this chapter, we study five dispatch models: the basic queueing

model, the static and the dynamic processor-sharing models, the cyclic polling

model, and the feedback model [27]. We derive the expected message sojourn

times at AB under steady state for the static and the dynamic processor-

sharing models, and simulate all the five models with C-Sim [62]. We observe

that the basic model and the static processor-sharing model demonstrate the

worst performance. The other three models cut down the sojourn time by dy-

namically reducing the probability of message blocking which is introduced by

failures and handoffs of MHs; however, which one is the best dispatch strategy

depends on the specific environments. These analysis and simulation results

can help designers of wireless networks explore better FT features of mobile

systems for their performance and reliability.

52

Chapter 4 Message Queueing and Scheduling at Access Bridge 53

4.1 Mobile Host’s State Transition

0

1 2

ρ γm

η κ

0: normal
1: handoff (H)
2: recovery (U)

Figure 4.1: MH’s state transition.

An MH undergoes handoffs during its application execution and conducts

recoveries after failures; therefore, it experiences three states: the normal (op-

erational) state, the handoff state, and the recovery state. Let Λ(t) be the

state of the MH at time t. {Λ(t), t ≥ 0} is a three-state Markov process

with a state-transition diagram shown in Figure 4.1. State 0 is the normal

state, during which computational messages can be dispatched to the MH. If

a handoff occurs, the MH transits from state 0 to state 1. The time between

two successive handoff events is modelled as an exponentially distributed r.v.

with parameter ρ. The handoff completion time H is also an exponentially

distributed r.v. but with parameter η. The MH may fail and then enters state

2. We assume that the instants of the occurrences of failures to an MH form a

homogeneous Poisson process with parameter γm and that a failure is detected

as soon as it occurs. A recovery process will be conducted in state 2. The

recovery time U is regarded as an exponentially distributed r.v. with para-

meter κ. For simplicity, no failures take place during the handoff or recovery

period. According to the assumptions made before, we get a rate matrix of

Chapter 4 Message Queueing and Scheduling at Access Bridge 54

the three-state Markov process {Λ(t), t ≥ 0} for the MH, which is

Q =




−ρ− γm ρ γm

η −η 0

κ 0 −κ




. (4.1)

The stationary distribution of the Markov process is given by

[p0 p1 p2
] =

[
ηκ

ηκ+κρ+ηγm

κρ
ηκ+κρ+ηγm

ηγm

ηκ+κρ+ηγm

]
, (4.2)

in which pi, i = 0, 1, 2, denotes the probability of an MH in state i in the

stationary situation. Due to the fact that time intervals between failures and

handoffs are relatively large in general, it is usually assumed that the MH

will be in steady state most of the time between successive failures and hand-

offs [54].

4.2 Message Sojourn Time

The message arrival process for each MH used throughout this chapter is as-

sumed as a Poisson process with parameter λ, i.e., the arrival intensity. If

the number of MHs covered by an AB is m > 0, the total message arrival

rate will be mλ for an AB since the combination of Poisson inputs is still a

Poisson input. The message dispatch requirement is assumed to be an expo-

nentially distributed r.v. D with parameter µ if the dispatch facility of an

AB is occupied by one message exclusively, which means that the service rate

of the dispatch facility is the constant µ. The message sojourn time at an

AB, denoted as T , is the duration of a period between the instant when the

message enters the AB and the instant when the message is totally dissem-

inated. If a message starts its dissemination, the target MH should stay in

Chapter 4 Message Queueing and Scheduling at Access Bridge 55

its normal state until the current message’s dispatch is completed. This as-

sumption is reasonable as the message dispatch requirement is relatively small

under common situations. No messages can be distributed to an MH if the

MH is in the handoff or recovery state; therefore, an MH in these two states

is called as an unavailable MH. The traffic intensity ρa for an AB is defined as

ρa = mλE(D) = mλ/µ. With various dispatch strategies, the sojourn times

are different in the presence of failures and handoffs of MHs. In the following

subsections we will consider five dispatch strategies: the basic model, the static

and the dynamic processor-sharing models, the cyclic polling model, and the

feedback model.

4.2.1 Basic Dispatch Model

q0

mλ
µ

λ

λ

λ

mh1

mh2

mhm

Figure 4.2: Basic dispatch model.

In the basic dispatch model, all messages for various MHs share one queue

and are served with the first-come-first-served (FCFS) discipline, as shown in

Figure 4.2. We know that without handoffs and failures of MHs, the queue is

an ordinary M/M/1 queue that the expected message sojourn time E(Tba) is

1/µ(1 − ρa) [53, 67]. However, with handoffs and failures of MHs, the basic

dispatch model evolves as an M/G/1 queue. A message is deliverable when

it is at the head of the queue and its corresponding MH is in the normal

state. When a message is going to be dispatched, the dispatch time is D.

Otherwise, if the message is at the head of the queue and its targeted MH is

Chapter 4 Message Queueing and Scheduling at Access Bridge 56

in the handoff or recovery state, it should be blocked until the MH returns

back to the normal state. We assume that when the MH is available, its

blocked messages can be delivered instantly. With the memoryless property of

the exponential distribution, the residual handoff and recovery times are still

H and U , respectively, perceived by a message entering the dispatch facility.

When the queue is not empty and there is only one MH, i.e., m = 1, every

handoff or failure will impose messages to be blocked. However, when m > 1,

an MH’s handoffs or failures may not impose any effects on message dispatch

as long as its messages are not at the head of the queue. Therefore, those

handoffs and recoveries do not block messages to be dispatched to other MHs.

This feature complicates the analysis of a message’s waiting time in the queue.

4.2.2 Static Processor-Sharing Dispatch Model

q1

λ

q2

λ

qm

λ

µ/m µ/m µ/m

Figure 4.3: Static processor-sharing dispatch model.

In the basic dispatch model, when the message at the head of the queue

is blocked, all subsequent messages will be blocked even though they could be

dispatched if they get a chance to enter the dispatch facility. To solve this

Chapter 4 Message Queueing and Scheduling at Access Bridge 57

problem, we construct different queues for various MHs and come to the static

processor-sharing model, as shown in Figure 4.3. In this model, messages

arriving at an AB will be diverted to one of m queues according to their target

MHs. The dispatch facility is equally and statically shared by these m queues,

which implies that each queue is virtually associated with a dispatch facility

whose service rate is µ/m. Only messages targeted at MH i will be filled

in queue qi. The expected message sojourn time could be analyzed using a

priority queueing model with the head-of-the-line priority [68], as shown in

Figure 4.4.

qi

µ/m
λ

ρ

γm

0 1 2

Priority

Figure 4.4: Head-of-the-line priority queue for static processor-sharing dis-
patch model.

As we have assumed that if a message starts its dissemination, the target

MH should stay in its normal state until the completion of the message dis-

patch. This assumption indicates that the priority model is nonpreemptive.

According to the fact that during an MH’s handoffs and failures, no messages

are served, we model the MH’s handoffs and failures as special messages with

priority 1 and 2, which require service times H and U , respectively. The orig-

inal messages are treated as priority 0. The larger the value of the priority is,

the higher the priority is; that is, messages from priority po are given prefer-

ential treatment over messages from priority (po − 1). Given higher priorities

to handoff and failure events, a normal message will only be dispatched when

Chapter 4 Message Queueing and Scheduling at Access Bridge 58

all its previous handoffs and failures have been processed, and those events

occurred when it is waiting in the queue.

The expected message sojourn time can be directly derived from (3.31) in

[68], which is

E(Tsps) =
m

µ
+

m2λ
µ2 + ρ

η2 + γm

κ2

(1− mλ
µ
− ρ

η
− γm

κ
)(1− ρ

η
− γm

κ
)
. (4.3)

The first term in this expression is the average dispatch time, and the second

term is the average waiting time, whose numerator stands for the mean residual

life of a message dispatch time, a handoff completion time, and a recovery

completion time as observed by a message arrival. The effect of messages,

handoffs, and failures present in the queue when a message arrives is given

by the first term in the denominator, and the effect of handoffs and failures

arriving during the message’s queueing time is given by the second term in the

denominator.

In the case of the static processor-sharing model, some capacities of the

dispatch facility might be wasted when certain queues are empty or contain

undeliverable messages, which means that allocating the dispatch facility only

among queues which contain deliverable messages may improve the perfor-

mance. This introduces the dynamic processor-sharing dispatch model.

4.2.3 Dynamic Processor-Sharing Dispatch Model

The dynamic processor-sharing dispatch model puts messages into m queues

the same way as the static processor-sharing dispatch model does; however,

the dispatch facility is dynamically shared only among the MHs who are in the

normal state and whose corresponding queues are not empty. This condition

can be restated that the dispatch facility is dynamically shared among queues

which contain deliverable messages. Figure 4.5 shows this dispatch model. At

Chapter 4 Message Queueing and Scheduling at Access Bridge 59

q1

λ

q2

λ

qm

λ

µ/L µ/L µ/L

L

Figure 4.5: Dynamic processor-sharing dispatch model.

a specific time, the dispatch facility contains L deliverable messages, in which

each message comes from different queues. As the behaviors of m queues

are the same, without loss of generality, we only analyze the experience of a

message at the head of qi. When the message becomes deliverable and enters

the dispatch facility, there are other (L−1) deliverable messages in the dispatch

facility. Therefore, this message receives dispatch service with rate µ/L, and

the traffic intensity varies with L. Let ρd be the expected traffic intensity for

each queue, then

ρd = λE(L)/µ. (4.4)

Since

Pr(L = l) =

(
m− 1

l − 1

)
(ρd)

l−1(1− ρd)
m−l, 1 ≤ l ≤ m,

thus,

E(L) = 1 + (m− 1)ρd. (4.5)

With (4.4) and (4.5), we have

E(L) =
µ

µ− λ(m− 1)
, (4.6)

Chapter 4 Message Queueing and Scheduling at Access Bridge 60

and

ρd =
λ

µ− λ(m− 1)
. (4.7)

Substituting m in (4.3) with E(L), we get

E(Tdps) =
1

µ− λ(m− 1)
+

λ
(µ−λ(m−1))2

+ ρ
η2 + γm

κ2(
1− λ

µ−λ(m−1)
− ρ

η
− γm

κ

) (
1− ρ

η
− γm

κ

) . (4.8)

We know that the static and the dynamic processor-sharing models are the

same when m = 1 as E(L) = 1. As a consequence, (4.8) equals (4.3) when

m = 1. From (4.6), 1 ≤ E(L) ≤ m, which means that the dynamic processor-

sharing model should improve performance over the static processor-sharing

model.

4.2.4 Cyclic Polling Dispatch Model

q1

λ

q2

λ

qm

λ

µ µ µυ

υ

Figure 4.6: Cyclic polling dispatch model.

For the dynamic processor-sharing model, the dispatch facility is shared

among queues which contain deliverable messages. If we dedicate the facility

exclusively for one queue at a time and make the facility serve each queue

in a sequential and cyclic turn, the cyclic polling dispatch model comes into

Chapter 4 Message Queueing and Scheduling at Access Bridge 61

view [124]. When the dispatch facility visits a message queue, if the queue

contains a deliverable message, it will pick up the message from the head of

the queue and dispatch it to its MH, and then turn to the next message queue

with a switchover time S, an exponentially distributed r.v. with parameter υ.

If there are no deliverable messages in the queue, it will visit the next message

queue also with a switchover time S. With a switchover time, we remove the

infinite loop when no messages are deliverable in all queues. Figure 4.6 shows

this dispatch model. Obviously, when there is only one MH, no performance

improvement will be achieved with the cyclic polling model, as the handoff or

recovery time cannot be hidden by dispatching message for other MHs. Thus

it reduces to the basic dispatch model.

4.2.5 Feedback Dispatch Model

q0

mλ
µ

υ

Figure 4.7: Feedback dispatch model.

Another way to reduce the blocked overhead forced by the message at the

head of the queue in the basic model is to move the blocked message away and

to yield the delivery chance to the subsequent messages. The removed message

should be fed back to the queue, which introduces the feedback dispatch model,

as shown in Figure 4.7. In this model, each removed message is added to the

tail of the queue in its original turn. We also assume that a switchover time

S is associated with the process of loading and unloading messages from the

dispatch facility. Analysis of this model is more difficult due to the fact that

Chapter 4 Message Queueing and Scheduling at Access Bridge 62

the message input to the queue q0 is no longer a Poisson input, since the

message arrivals join the queue via the feedback path [107]. A side-effect of

this model is that it modifies the sequence of messages dispatched to an MH.

4.3 Simulations and Discussions

In this section we compare different dispatch models in order to observe the

relationships among them and to determine which one is the best under dif-

ferent conditions according to our defined performance metric: the expected

message sojourn time. Our experiments are carried out by simulations devel-

oped with C-Sim [62]. Some parameter values are not changed throughout this

section1 , and we give them here: κ = 10−1, η = 1, ρ = 10−3, υ = 10−4. The

handoff operation is a mobile characteristic provided by wireless networks and

only contains some message exchanges, while the recovery procedure includes

an additional state recovery. Therefore, the expected handoff completion time

should be less than the expected recovery time.

Figure 4.8 shows the results of expected message sojourn time at AB when

the number of MHs, m, increases. The simulation results are shown with

solid lines, and analytical results are displayed with dash-dot lines. Different

dispatch models demonstrate various relationships with the increase of the

number of MHs. The sojourn times of the static processor-sharing model

E(Tsps) and the cyclic polling model E(Tcp) exhibit moderate increases while

the basic model E(Tba) experiences sharp increase. The message sojourn times

of the other two models, the dynamic processor-sharing model E(Tdps) and the

feedback model E(Tfb), display almost no increase.

The dispatch capacity dedicated to a certain MH decreases with m in the

1Here we engage exponential distribution for simulation; however, it could be further
extended to general distribution.

Chapter 4 Message Queueing and Scheduling at Access Bridge 63

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

number of MHs m

m
es

sa
ge

 s
oj

ou
rn

 ti
m

e

Simulation
Analysis
E(T

ba
)

E(T
sps

)
E(T

dps
)

E(T
cp

)
E(T

fb
)

 ρ = 10−3

 η = 1
 γ

m
 = 10−4

 κ = 10−1

 λ = 2
 µ = 103

Figure 4.8: Expected message sojourn time vs. number of MHs.

static processor-sharing models, which induces the increase of the sojourn time;

however, dynamic scheduling compensates part of loss of the dispatch capac-

ity. It confirms that the dynamic processor-sharing model can be utilized

advantageously. The cyclic polling model and the feedback model are different

with other models in that they give dispatch opportunities to other deliverable

messages instead of blocking them by yielding the dispatch facility exclusively

to a deliverable message. They hide the unavailable periods by dispatching

messages for other MHs. However, the cyclic polling model serves each MH

only one message in each cycle, thus, the round time to the next dispatch

opportunity may exceed the blocking time, which cancels out the advantage

and thus the expected sojourn time increases. One approach to improve this

model is to allow the dispatch facility to continuously serve each queue until

it empties or an undeliverable message appears at the head of the queue. The

little variation of the message sojourn times of the dynamic processor-sharing

model and the feedback model is due to the small queue traffic intensity, as

even when m = 10, ρa only has 0.14. They should also increase with m. From

this figure, we can see that when m = 1, all models take the same effect on the

Chapter 4 Message Queueing and Scheduling at Access Bridge 64

expected message dispatch time. Actually under this condition, all the other

four models are reduced to the basic model.

0.1 1 10 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

message arrival rate λ

m
es

sa
ge

 s
oj

ou
rn

 ti
m

e

 ρ = 10−3

 η = 1
 γ

m
 = 10−4

 κ = 10−1

 m = 10
 µ = 103

Simulation
Analysis
E(T

ba
)

E(T
sps

)
E(T

dps
)

E(T
cp

)
E(T

fb
)

Figure 4.9: Expected message sojourn time vs. message arrival rate.

The message arrival rate λ produces an increase in message sojourn time

for all the five models, as shown in Figure 4.9. This is obvious as the higher the

message arrival rate is, the queue’s traffic intensity increases, thus increasing

the message waiting time.

We next show how the MH’s failure rate affects the expected sojourn time

in Figure 4.10. The sojourn times of all the five models also increase with the

failure rate γm. The higher the MH’s failure rate is, the greater the undeliver-

able probability for a message is. As the failure rate increases, the performance

of the basic model diverges with those of other four models. Another phenom-

enon is that with a high MH’s failure arrival rate, the analytical results show

larger message sojourn times than the simulation results for the static and

dynamic processor sharing models. This may due to the assumption in the

head-of-the-line priority queue that MH’s failures and handoffs are indepen-

dent event sources with rate γm and ρ, respectively. However, in simulations

Chapter 4 Message Queueing and Scheduling at Access Bridge 65

10
−4

10
−3

10
−2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MH’s failure rate γ
m

m
es

sa
ge

 s
oj

ou
rn

 ti
m

e

 ρ = 10−3

 η = 1
 κ = 10−1

 m = 10
 λ = 2
 µ = 103

Simulation
Analysis
E(T

ba
)

E(T
sps

)
E(T

dps
)

E(T
cp

)
E(T

fb
)

Figure 4.10: Expected message sojourn time vs. MH’s failure rate.

we utilize the Markov model shown in Figure 4.1. Therefore, more failure or

handoff events will be injected into the priority queue, resulting in a larger

message sojourn time. With small γm or ρ, this difference is undiscernable.

In the dynamic processor-sharing model, when the failure arrival rate is high

enough, the dispatch facility is occupied by one message exclusively with a

large probability. These observations can also be made with the handoff rate

ρ. Prolonging the recovery period E(U) or the handoff period E(H) also

apparently increases the message sojourn time.

With different MH’s failure rates, some models exhibit differently relative

behaviors with the expected message dispatch requirement E(D) = 1/µ which

indicates the capacity of the dispatch facility, as shown in Figure 4.11. In-

creasing the dispatch requirement adds the sojourn time in all the five models.

Comparing Figures 4.11(a) and (b), we observe that when the failure rate is

low, increasing the dispatch requirement may even cause the static processor-

sharing model performs worse than the basic model (larger message sojourn

time). While with a high failure rate, it performs better than the basic model.

Chapter 4 Message Queueing and Scheduling at Access Bridge 66

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5

average message dispatch time E(D)=1/µ

m
es

sa
ge

 s
oj

ou
rn

 ti
m

e

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5

3

average message dispatch time E(D)=1/µ

m
es

sa
ge

 s
oj

ou
rn

 ti
m

e

Simulation
Analysis
E(T

ba
)

E(T
sps

)
E(T

dps
)

E(T
cp

)
E(T

fb
)

(a) γ
m

 = 10 −4

(b) γ
m

 = 10 −3

 ρ = 10−3

 η = 1
 κ = 10−1

 m = 10
 λ = 2

Figure 4.11: Expected message sojourn time vs. expected message dispatch
requirement.

From all of the above figures, the basic model demonstrates the worst

performance, and the static processor-sharing model exhibits the second worst

performance. The other three models outperform these two models. We note,

however, that there is only one queue in the basic and the feedback models,

and the dispatch rate is reduced with m in the static processor-sharing model.

When the number of MHs is large, the message arrival rate should be small;

otherwise the queue in these three models will not be stable.

Chapter 4 Message Queueing and Scheduling at Access Bridge 67

4.4 Summary

In this chapter, we perform analyses for message sojourn time at AB in the

presence of MH failures and handoffs in wireless networks. To see how differ-

ent message dispatch strategies influence the sojourn time, we study five dis-

patch models: the basic model, the static and the dynamic processor-sharing

models, the cyclic polling model, and the feedback model. We derive the ex-

pected message sojourn time under steady state for the static and the dynamic

processor-sharing models. Analytical and simulation results show that the ba-

sic model and the static processor-sharing dispatch model demonstrate the

worst performance. The other three models may be suitable for applications

as the dispatch strategy for AB; however, the runtime environment determines

which one should be implemented.

2 End of chapter.

Chapter 5

Program Execution Time at

Mobile Host

Program execution times with and without checkpointing in the presence of

failures have been analyzed by many researchers. The derived execution time

expressions are based on a given time requirement for a program executed on

a stand-alone host without failures. In this chapter, we extend the analysis to

mobile wireless environments. On account of the underlying message-passing

communication mechanism, we employ the number of received computational

messages instead of time to measure the progress of program execution on a

mobile host. Handoff and wireless link failures are other distinct factors that

should be taken into consideration. Three checkpointing strategies, determin-

istic, random, and time-based checkpointing, are exploited. These three check-

pointing strategies have been employed in providing FT for wireless CORBA

(Page 40). In our approach [28], failures may occur during checkpointing and

recovery periods. We derive the LST of the c.d.f. of the program execution

time and its expectation. For all three checkpointing strategies, we address

the trade-off conditions against no checkpointing and the optimal checkpoint-

ing frequencies that maximize the average effectiveness. We also perform a

number of assessments on the derived program execution times, and identify

68

Chapter 5 Program Execution Time at Mobile Host 69

some critical parameters for future investigations.

5.1 Assumptions and Notations

We assume that the program at an MH determines its termination according

to the number of computational messages that it should receive. Let n be the

required number of messages. The AB disseminates computational messages

to the MH with exponentially distributed time intervals. The expected inter-

message arrival time is 1/λ. During the execution of a program, four events

may occur: MH failure, wireless link failure, handoff, and checkpointing, de-

noted as f , l, h, and c, respectively. The instances of the occurrences of MH

and wireless link failures and handoffs form homogeneous Poisson processes

with parameter γm, γl, and ρ, respectively.

Figure 5.1(a) shows the MH’s state transition during program execution,

which extends the state transition diagram in Figure 4.1. States with dashed

circles indicate that wireless communications are engaged in these states. State

0 is the normal (operational) state, in which messages can be received with rate

λ∗ in the presence of wireless link failures. If a handoff occurs, the program

transits to state 1. State 3 is the checkpointing state, and ι is the checkpointing

rate, which will be specified in the following different checkpointing strategies.

The program will enter state 2 if an MH failure occurs when the program in

state 0, 1, or 3. States 3 and 2 are composite states, whose detailed representa-

tions are shown in Figure 5.1(b) and 5.1(c), respectively. Successfully creating

a checkpoint needs two steps: taking a checkpoint first (state 4) and then sav-

ing the checkpoint on stable storage (state 5). The required time for these two

substates are T1 and T2, respectively. We have stated in Chapter 3 that the

MH is not suitable to be treated as stable storage, and that the checkpoint

will be saved on its currently associated AB [24, 44, 94, 105, 138]. Therefore,

Chapter 5 Program Execution Time at Mobile Host 70

λ
0

1 2

ρ

γm

3ι

(a) MH’s state transition

3 4 6ρ

(b) composite checkpointing state

7 8

(c) composite recovery state

2 9

γm

γm

2γl

2γl

5

ι
ι

γm

γmγm γm

γm

γm

γm

γm

10

ρ

2γl

γm

γl

γm

γm γm

γm γm

0 : normal
1, 6, 10 : handoff (H)
2 : recovery
3 : checkpointing
4 : take checkpoint (T1)

5 : save checkpoint (T2)
7 : repair (R)
8 : retrieve checkpoint (T3)

9 : reload checkpoint (T4)

γl

λ*

Figure 5.1: MH’s state transition with checkpointing.

wireless communications are engaged in the checkpoint saving substate. As a

result, a wireless link failure will cause the saving operation to be retried. State

2 means that the MH will undergo repair and rollback processes following an

MH failure. The repair process brings the failed MH back to normal operation

(state 7), and the rollback process retrieves the program status saved in the

most recent checkpoint from a remote storage via wireless link (state 8) and

reloads the status onto the MH, preparing it to receive subsequent messages

(state 9). The required repair time is denoted as R, the required time to re-

trieve a checkpoint as T3, and the required time to reload a checkpoint as T4.

Let H be the handoff time. All these six time requirements, R, H, and Ti,

i = 1, 2, 3, 4, are regarded as independent and random variables with general

distributions. During handoff, the MH should maintain two wireless links: one

with the OAB and the other with the NAB; therefore, the link failure rate

Chapter 5 Program Execution Time at Mobile Host 71

on handoff states (states 1, 6, and 10) is 2γl. For the pessimistic strategy

(Page 19), H includes the time of transferring the most recent checkpoint;

otherwise, this time will be considered as a part of T3.

The MH cannot perform handoffs during the repair state since in this state

the MH is not ready to exchange any information with ABs. Since states 5 and

8 transfer checkpoints via wireless links, these two states are not allowed to be

interrupted by handoffs. If the MH is not in the operational state, i.e., the MH

is in the handoff, checkpointing, or recovery states, no computational messages

will be forwarded to the MH. In the repair state, we take into consideration

the possibility that the MH might be disconnected from the network for a

while when it fails. Failures will occur irrespective of the MH’s state, and

will be assumed immediately detected upon their occurrences, which implies

that the state saved by a checkpoint is always correct, and that a program

always terminates with correct results [76]. After the MH’s rollback period,

its associated AB automatically redistributes logged messages since the most

recent checkpoint. The logged messages may be dispersed in different ABs with

the lazy and trickle strategies (Page 19), and so they need time to be collected

and redispatched; therefore, we assume that after a failure the inter-message

arrival events still follow the same process as before.

Let X(n) be the total program execution time with n messages in the

absence of MH and wireless link failures, handoffs, and checkpointings. We

define that Z(e) represents the total program execution time in the presence

of event e, e = f, l, h, c, with the time requirement Z. Multiple event types

may be presented during the program execution. For example, Z(f,h) denotes

the program execution time if MH failures and handoffs both occur during

the execution. The general cumulative distribution function (c.d.f.) of a r.v.

Z is GZ(t). φZ(s) denotes the Laplace-Stieltjes Transform (LST) of GZ(t),

Chapter 5 Program Execution Time at Mobile Host 72

so φZ(s) =
∫∞
t=0 e−stdGZ(t) = E(e−sZ). Let Z̃ be a r.v. which has the same

probability distribution as Z, then φZ̃(s) = φZ(s). Based on the above assump-

tions, we first derive some preliminary execution times, and then describe three

checkpointing strategies in the following sections.

5.2 Preliminary Execution Times

Without failures, the required execution times for performing handoff, check-

pointing, and recovery are H, T1 +T2, and T3 +T4, respectively. With failures,

the induced execution times are prolonged. In this section, we will derive these

execution times in the presence of MH or wireless link failures.

5.2.1 Handoff Time with Wireless Link Failures

The handoff time requirement is H. If a wireless link failure occurs, the MH

should retry its communication with the corresponding AB – a further attempt

may be successful, because of the intermittent characteristic of wireless link

failures. Thus, the resulting handoff time is H(l).

Lemma 1 The LST of the c.d.f. of H(l), the handoff time in the presence of

wireless link failures with the time requirement H, i.e., the sojourn time in

state 1, 6, or 10, is given by

φH(l)(s) =
(s + 2γl)φH(s + 2γl)

s + 2γlφH(s + 2γl)
, (5.1)

and the expectation of H(l) is

E
[
H(l)

]
=

1− φH(2γl)

2γlφH(2γl)
. (5.2)

Chapter 5 Program Execution Time at Mobile Host 73

Proof: Let Y be the time to the first wireless link failure after starting

handoff, then we have

H(l) =





H : if H < Y

Y + H̃(l) : otherwise

.

If H < Y , the handoff will be successfully completed without link failures, so

the handoff time is H. Otherwise when H ≥ Y , a link failure occurs after

which the MH retries its handoff operation, denoted as H̃(l). Thus the total

handoff time is Y + H̃(l) in this case. Taking the conditional expectation of

H(l), we get

E
[
e−sH(l) |H, Y

]
=





e−sH : if H < Y

e−sY E
[
e−sH̃(l)

]
: otherwise

,

as Y should be independent of H̃(l). Removing the condition on Y , we have

E
[
e−sH(l)|H

]
=

∫ ∞

y=0
E

[
e−sH(l)|H, Y = y

]
· 2γle

−2γlydy

= e−(s+2γl)H +
2γlE

[
e−sH̃(l)

]

s + 2γl

[
1− e−(s+2γl)H

]
.

Removing the condition on H, the result is

φH(l)(s) = φH(s + 2γl) +
2γlφH(l)(s)

s + 2γl

[1− φH(s + 2γl)] . (5.3)

Rearranging the above equation yields (5.1). After engaging the moment gen-

erating property of the Laplace transform, E(Z) = −dφZ(s)/ds|s=0 [112], the

expected handoff time in the presence of wireless link failures is given by (5.1).

With no wireless link failures during handoff, i.e., when γl tends to 0, the

expectation of the handoff time is reduced to

lim
γl→0

E
[
H(l)

]
= E(H) (5.4)

Chapter 5 Program Execution Time at Mobile Host 74

by applying L’Hopital’s rule on (5.1), which confirms the correctness of the

derivation of (5.1).

5.2.2 Checkpointing Time with Handoffs and Wireless

Link Failures

During the period of taking a checkpoint, the MH may undergo handoffs;

however, no handoffs are allowed to be performed in the state of saving a

checkpoint. Therefore, the total checkpointing time, i.e., the sojourn time in

state 3, is T
(h,l)
1 + T

(l)
2 , denoted as C for simplicity.

Lemma 2 The LST of the c.d.f. of C, the sojourn time in state 3, is given by

φC(s) = φ
T

(h,l)
1

(s) · φ
T

(l)
2

(s), (5.5)

in which

φ
T

(h,l)
1

(s) = φT1(s + ρ− ρφH(l)(s)), (5.6)

and

φ
T

(l)
2

(s) =
(s + γl)φT2(s + γl)

s + γlφT2(s + γl)
. (5.7)

Proof: T
(h,l)
1 can be expressed by T

(h,l)
1 = T1 +

∑K
j=1 H

(l)
j , in which

K denotes the number of handoffs in the presence of link failures during a

checkpointing period. With Pr(K = k|T1) = (ρT1)
ke−ρT1/k!, it is easy to

derive the result of φ
T

(h,l)
1

(s), as shown in (5.6). The derivation process of T
(l)
2

is similar as that of (5.1); however, the link failure rate is now γl, instead of

2γl, as only one wireless link is engaged in saving a checkpoint. (5.5) can be

directly derived from the independence between T
(h,l)
1 and T

(l)
2 .

Chapter 5 Program Execution Time at Mobile Host 75

5.2.3 Recovery Time with Handoffs and MH and Wire-

less Link Failures

As checkpoints are saved remotely on ABs, the checkpoint retrieval time

through wireless links after a repair process is also considerable. So the total

time between a failure and the instant that the program is ready to receive

computational messages is [R + T
(l)
3 + T

(h,l)
4](f), denoted as R′ for simplicity.

Lemma 3 The LST of the c.d.f. of R′, the recovery time in the presence of

handoffs and MH and wireless link failures, i.e., the sojourn time in state 2, is

given by

φR′(s) =
(s + γm)φR(s + γm)φ

T
(l)
3

(s + γm)φ
T

(h,l)
4

(s + γm)

s + γmφR(s + γm)φ
T

(l)
3

(s + γm)φ
T

(h,l)
4

(s + γm)
, (5.8)

and the expectation of R′ is

E(R′) =
1− φR(γm)φ

T
(l)
3

(γm)φ
T

(h,l)
4

(γm)

γmφR(γm)φ
T

(l)
3

(γm)φ
T

(h,l)
4

(γm)
. (5.9)

Proof: The recovery time requirement is R + T
(l)
3 + T

(h,l)
4 . If a failure

occurs on the MH, the MH will enter the repair state irrespective of the MH’s

previous state. This is a retry process, similar to the handoff operation in

the presence of link failures; therefore, following the similar derivation steps in

Lemma 1, we can obtain (5.8) and (5.9). Here φ
T

(l)
3

(s) and φ
T

(h,l)
4

(s) have simi-

lar forms to those of (5.7) and (5.6), however, with different time requirements,

T3 and T4, respectively.

5.3 Deterministic Checkpointing Strategy

The first two checkpointing strategies in this chapter, deterministic and ran-

dom checkpointing, are message-number-based checkpointing strategies, which

Chapter 5 Program Execution Time at Mobile Host 76

place checkpoints according to the number of received computational messages.

The difference between these two strategies is how the number of messages in

each checkpointing interval is distributed. By deterministic we mean that

the number of messages in a checkpointing interval is fixed, and we denote

this number as u. If the message arrival rate is λ, the checkpointing rate

ιdc = λ/u. With u chosen in advance, the program execution is broken into

w = max(
⌈

n
u

⌉
, 1) intervals. Each of the first (w − 1) intervals receives u mes-

sages and takes a checkpoint, and the last interval should receive the residual

messages; however, no checkpoints will be taken in the last interval. Conse-

quently, there are a total of (w − 1) checkpoints. The number of messages in

the last interval is denoted as u′ = n− u · (
⌈

n
u

⌉
− 1), 0 < u′ ≤ u.

Without wireless link failures, the AB disseminates computational messages

to the MH with exponentially distributed time intervals at rate λ. Note that

the message arrival rate is still λ in the presence of link failures, due to the

memoryless property of the exponential distribution. Therefore, λ∗ = λ.

We now present a theorem for the program execution time with determin-

istic checkpointing.

Theorem 1 Let

Q1(s) =
λ

s + γm + λ + ρ− ρφH(l)(s + γm)
, (5.10)

and

q1 = Q1(s)|s=0 =
λ

γm + λ + ρ− ρφH(l)(γm)
, (5.11)

then the LST of the c.d.f. of X(dc,f,h,l)(n, u), the program execution time with

deterministic checkpointing, with the checkpointing parameter u, contains the

form

φX(dc,f,h,l)(s, n, u) =

[
(s + γm)φC(s + γm)Qu

1(s)

s + γm − γmφR′(s)(1− φC(s + γm)Qu
1(s))

]w−1

·
[

(s + γm)Qu′
1 (s)

s + γm − γmφR′(s)(1−Qu′
1 (s))

]
, (5.12)

Chapter 5 Program Execution Time at Mobile Host 77

and its expectation is given by

E
[
X(dc,f,h,l)(n, u)

]
=

[
1

γm

+ E(R′)

] [
(w − 1)

(
q−u
1

φC(γm)
− 1

)
+ (q−u′

1 − 1)

]
.

(5.13)

Proof: With deterministic checkpointing, the execution times for the

ith interval, i = 1, 2, . . . , (w − 1), are independent and identically distributed

(i.i.d.) r.v., and each of these intervals contains a checkpoint creation period.

Therefore, we can analyze the execution times for these intervals first. Let Ki

denote the number of handoffs during the normal execution time period and

Yi denote the time to the first MH failure in the ith interval. Then we get

X
(dc,f,h,l)
i (u) =





Xi(u) +
∑Ki

j=1 H
(l)
j + C : if Yi > Xi(u) +

∑Ki
j=1 H

(l)
j + C

Yi + R′ + X̃
(dc,f,h,l)
i (u) : otherwise

.

If Yi > Xi(u)+
∑Ki

j=1 H
(l)
j +C, then the program will successfully complete the

ith interval by creating a checkpoint without undergoing any MH failures. If

Yi ≤ Xi(u)+
∑Ki

j=1 H
(l)
j +C, the MH fails before the program successfully creates

a checkpoint. Then the MH will undergo repairs and rollbacks and the program

should be restarted from the state saved on the most recent checkpoint, af-

ter which the program should receive u computational messages without MH

failure interruption again. The time this takes is another r.v. X̃
(dc,f,h,l)
i (u);

however, it engages the same probability distribution as X
(dc,f,h,l)
i (u). Taking

the conditional expectation of X
(dc,f,h,l)
i (u), we get

E
[
e−sX

(dc,f,h,l)
i (u)|Xi(u), Ki, H

(l)
j , C, Yi

]

=





e−sXi(u) ·∏Ki
j=1 e−sH

(l)
j · e−sC : if Yi > Xi(u) +

∑Ki
j=1 H

(l)
j + C

e−sYiE(e−sR′)E[e−sX̃
(dc,f,h,l)
i (u)] : otherwise

,

Chapter 5 Program Execution Time at Mobile Host 78

in which H
(l)
j , 1 ≤ j ≤ Ki are i.i.d. r.v.s and Xi(u) inherits an u-stage Erlang

distribution with parameter λ. Removing the conditions backwards one by

one and solving the resulting equation, we get

φ
X

(dc,f,h,l)
i

(s, u) =
(s + γm)φC(s + γm)Qu

1(s)

s + γm − γmφR′(s) [1− φC(s + γm)Qu
1(s)]

. (5.14)

After engaging the moment generating property of the Laplace transform, its

expectation is given by

E
[
X

(dc,f,h,l)
i (u)

]
=

[
1

γm

+ E(R′)

] [
q−u
1

φC(γm)
− 1

]
.

The last interval is different from other intervals as no checkpoint will be

established and the required number of messages is u′, instead of u; therefore,

its execution time can be expressed as

X(dc,f,h,l)
w (u′) =





Xw(u′) +
∑Kw

j=1 H
(l)
j : if Yw > Xw(u′) +

∑Kw
j=1 H

(l)
j

Yw + R′ + X̃(dc,f,h,l)
w (u′) : otherwise

.

This is actually the execution time without checkpointing with message re-

quirement u′. Following the same steps, we get the LST

φ
X

(dc,f,h,l)
w

(s, u′) =
(s + γm)Qu′

1 (s)

s + γm − γmφR′(s)
[
1−Qu′

1 (s)
] , (5.15)

and its expectation

E
[
X(dc,f,h,l)

w (u′)
]

=

[
1

γm

+ E(R′)

] [
q−u′
1 − 1

]
.

As the total execution time is the summation of the execution times of w

separate parts,

X(dc,f,h,l)(n, u) =
w−1∑

i=1

X
(dc,f,h,l)
i (u) + X(dc,f,h,l)

w (u′),

then we have

φX(dc,f,h,l)(s, n, u) =
[
φ

X
(dc,f,h,l)
i

(s, u)
]w−1

· φ
X

(dc,f,h,l)
w

(s, u′),

Chapter 5 Program Execution Time at Mobile Host 79

and

E
[
X(dc,f,h,l)(n, u)

]
= (w − 1)E

[
X

(dc,f,h,l)
i (u)

]
+ E

[
X(dc,f,h,l)

w (u′)
]
.

Finally, we obtain (5.12) and (5.13).

The most evident difference between (5.14) and (5.15) is that the former

equation contains the term φC(s+γm) introduced by the checkpointing period.

If we remove this checkpointing period by substituting φC(s + γm) with 1,

(5.14) will be reduced to (5.15). Thus, the program execution time without

checkpointing can be easily derived from Theorem 1, which is given by the

following corollary.

Corollary 1 The LST of the c.d.f. of the program execution time without

checkpointing, X(f,h,l)(n), contains the form

φX(f,h,l)(s, n) =
(s + γm)Qn

1 (s)

s + γm − γmφR′(s)[1−Qn
1 (s)]

, (5.16)

and the expectation of X(f,h)(n) is

E
[
X(f,h,l)(n)

]
=

[
1

γm

+ E(R′)

]
(q−n

1 − 1). (5.17)

Proof: If u ≥ n, the program will be terminated with no checkpoints

established during execution. With u ≥ n, w = 1 and u′ = n. Substituting

these conditions into (5.12) and (5.13), (5.16) and (5.17) will be derived.

From (5.17), we know that the expectation of the program execution time

varies exponentially with respect to the required message number n; however,

(5.13) shows that, after engaging the deterministic checkpointing strategy, the

execution time demonstrates a linear relationship with the number of check-

pointing intervals m. Note that it still exhibits an exponential relationship

Chapter 5 Program Execution Time at Mobile Host 80

with parameter u, the number of messages in a checkpointing interval. This

confirms the results shown in Figure 3.5.

The derivations of Theorem 1 and Corollary 1 implicitly assume that the

initial state of the program is saved remotely on an SH or AB, by which

the time R′ taken to recover the initial state is included in X
(dc,f,h,l)
1 (u) and

X(f,h,l)(n). Therefore, this assumption simplifies our derivations.

With no failures during program execution, i.e., both γm and γl tending to

0, then the expectation of the execution time with deterministic checkpointing

is

lim
γm,γl→0

E
[
X(dc,f,h,l)(n, u)

]
= [1 + ρE(H)]

[
n

λ
+ (w − 1)(E(T1) + E(T2))

]
,

(5.18)

and the expectation of the execution time without checkpointing is

lim
γm,γl→0

E
[
X(f,h,l)(n)

]
= [1 + ρE(H)]

n

λ
. (5.19)

The deterministic checkpointing strategy can be extended to a more general

strategy. Starting with a requirement n, the program continues to receive

messages until the message number reaches u1, at which point the strategy

dictates a checkpoint [34]. The next checkpoint is triggered when a further

u2 messages have been received since the preceding checkpoint. Continuing

in a similar way, this extended strategy specifies (w − 1) checkpoints and

u1, u2, . . . , u(w−1), uw messages in each interval, in which uw = n − u1 − u2 −
. . . − u(w−1). The LST of the c.d.f. of the program’s total execution time is

then given by

φX(edc,f,h,l)(s, n, u) =
(s + γm)Quw

1 (s)

s + γm − γmφR′(s)[1−Quw
1 (s)]

·
w−1∏

i=1

(s + γm)φC(s + γm)Qui
1 (s)

s + γm − γmφR′(s)[1− φC(s + γm)Qui
1 (s)]

,(5.20)

Chapter 5 Program Execution Time at Mobile Host 81

and its expectation is given by

E
[
X(edc,f,h,l)(n, u)

]
=

[
1

γm

+ E(R′)

] [
w−1∑

i=1

(
q−ui
1

φC(γm)
− 1

)
+ (q−uw

1 − 1)

]
.

(5.21)

5.4 Random Checkpointing Strategy

The deterministic checkpointing strategy creates checkpoints according to a

fixed and predefined number of computational messages. It may be too rigid

for adaptation to different conditions. Adjusting the message number in each

checkpointing interval from a constant to a r.v. may afford some performance

advantages. In order to explore this extension, we engage the strategy of ran-

dom checkpointing. The random checkpointing strategy creates checkpoints

when the program has received I messages since its preceding checkpoint, in

which I is a r.v.. If I is generally distributed, it is difficult to get an ana-

lytical solution. Here we assume that I is a r.v. with a geometric distribu-

tion whose parameter is p, and whose probability mass function (p.m.f.) is

Pr(I = i) = p(1 − p)i−1, in which i = 1, 2, Thus the checkpointing rate

ιrc = λp.

Now we derive a theorem for the program execution time with random

checkpointing as follows:

Theorem 2 Let

Q2(s) =
pφC(s + γm)

1− (1− p)Q1(s)
, (5.22)

and

q2 = Q2(s)|s=0 =
pφC(γm)

1− (1− p)q1

, (5.23)

then the LST of the c.d.f. of X(rc,f,h,l)(n, p), the program execution time with

random checkpointing, with the checkpointing parameter p, can be expressed

Chapter 5 Program Execution Time at Mobile Host 82

in the form

φX(rc,f,h,l)(s, n, p)

=
(s + γm)Q1(s)

s + γm − γmφR′(s)[1−Q1(s)]

·
n∏

i=2

{
1 +

[s + γm − γmφR′(s)][(pφC(s + γm)− p + 1)Q1(s)− 1]

s + γm − γmφR′(s)[1−Q2(s)Q1(s) + (Q2(s)− 1)(1− p)i−1Qi
1(s)]

}
,

(5.24)

and its expectation is given by

E
[
X(rc,f,h,l)(n, p)

]
=

[
1

γm

+ E(R′)

] [
q−1
1 − 1 +

n∑

i=2

q−1
1 − pφc(γm) + p− 1

q2 + (1− q2)((1− p)q1)i−1

]
.

(5.25)

Proof: We utilize the difference equation to solve this problem. Let K be

the number of handoffs during the normal execution without checkpointing,

K ′ be the number of handoffs before taking the first checkpoint, and Y be

the time to the first MH failure. Then the conditional execution time can be

expressed by

X(rc,f,h,l)(n, p) =





X(n) +
∑K

j=1 H
(l)
j

: if Y > X(n) +
∑K

j=1 H
(l)
j and I ≥ n

Y + R′ + X̃(rc,f,h,l)(n, p)

: if (Y ≤ X(n) +
∑K

j=1 H
(l)
j and I ≥ n)

or (Y ≤ X(I) +
∑K′

j=1 H
(l)
j + C and I < n)

X(I) +
∑K′

j=1 H
(l)
j + C + X(rc,f,h,l)(n− I, p)

: if Y > X(I) +
∑K′

j=1 H
(l)
j + C and I < n

.

If (Y > X(n) +
∑K

j=1 H
(l)
j and I ≥ n), before taking any checkpoints the

program will terminate successfully without MH failures, so the total execution

time is X(n) +
∑K

j=1 H
(l)
j . If (Y ≤ X(n) +

∑K
j=1 H

(l)
j and I ≥ n), an MH

Chapter 5 Program Execution Time at Mobile Host 83

failure occurs before the program receives n messages and until this failure

time instant no checkpoints have been established; while if (Y ≤ X(I) +
∑K′

j=1 H
(l)
j +C and I < n), an MH failure occurs before the program successfully

creates its first checkpoint. Under both conditions, the MH needs repair and

rollback, after which the program should receive n messages all over again.

If (Y > X(I) +
∑K′

j=1 H
(l)
j + C and I < n), a checkpoint will be created

after receiving I messages and no MH failures have occurred during this stage,

after which (n − I) messages still need to be received. So the total time is

X(I) +
∑K′

j=1 H
(l)
j + C + X(rc,f,h,l)(n − I, p). Taking LST and removing the

conditions on Y, C, H
(l)
j , K,K ′, X(n), and X(I) one by one, we get

φX(rc,f,h,l)(s, n, p)

= (1− p)n−1Qn
1 (s) +

[
B1(s, p)− (1− p)n−1Qn

1 (s)B2(s, p)
]
φX(rc,f,h,l)(s, n, p)

+ pφC(s + γm)
n−1∑

i=1

(1− p)i−1Qi
1(s)φX(rc,f,h,l)(s, n− i, p), (5.26)

in which

B1(s, p) =
γmφR′(s)

s + γm

[
1− pφC(s + γm)Q1(s)

1− (1− p)Q1(s)

]
,

and

B2(s, p) =
γmφR′(s)

s + γm

[
1− pφC(s + γm)

1− (1− p)Q1(s)

]
.

Taking the z-transform with respect to n,

φ∗X(rc,f,h,l)(s, z, p)

=
∞∑

n=0

φX(rc,f,h,l)(s, n, p)

zn

=
z

(1− p)(z − (1− p)Q1(s))
+ B1(s, p)φ∗X(rc,f,h,l)(s, z, p)

− B2(s, p)

1− p
· φ∗X(rc,f,h,l)

(
s,

z

(1− p)Q1(s)
, p

)

+
pφC(s + γm)

1− p

[
z

(1− p)(z − (1− p)Q1(s))
− 1

]
φ∗X(rc,f,h,l)(s, z, p).

Chapter 5 Program Execution Time at Mobile Host 84

After some manipulations and taking the reverse z-transform, we obtain

[(1−B1(s, p))(1− p) + B2(s, p)(1− p)nQ1(s)
n] φX(rc,f,h,l)(s, n, p)

= δ0(n) + φX(rc,f,h,l)(s, n− 1, p)

· [((1−B1(s, p))(1− p) + pφC(s + γm))(1− p)Q1(s) + B2(s, p)(1− p)nQ1(s)
n] ,

(5.27)

in which δ0(n) is the Dirac delta function. As the message requirement n is

always greater than or equal to 1, δ0(n) = 0. Substituting n = 1 to (5.26), we

get

φX(rc,f,h,l)(s, 1, p) =
(1− p)Q1(s)

(1−B1(s, p))(1− p) + B2(s, p)(1− p)Q1(s)
.

Thus, (5.27) can be solved, and with some simplifications, we get (5.24). The

corresponding expectation can also be derived using the moment generating

property.

Note that (5.25) shows that the execution time is linearly related to the

message requirement n. We also note that with no failures during program ex-

ecution, i.e., both γm and γl tending to 0, then the expectation of the execution

time with random checkpointing is

lim
γm,γl→0

E
[
X(rc,f,h,l)(n, p)

]
= [1 + ρE(H)]

[
n

λ
+ p(n− 1)(E(T1) + E(T2))

]
.

(5.28)

From (5.28), it is easily observed that the expected checkpoint number

with the random checkpointing strategy is given by E[Nrc(n, p)] = p(n − 1),

whereas with the deterministic checkpointing strategy, the checkpoint number

is Ndc(n, u) = (w − 1). When u = p−1, E[Nrc(n, p)] ≥ Ndc(n, u), which

indicates that on average the random checkpointing takes more checkpoints

than the deterministic checkpointing with the same checkpointing rate.

It is noted that when p = 0, which means that the random checkpointing

strategy is reduced to the strategy without checkpointing, (5.24) and (5.25)

Chapter 5 Program Execution Time at Mobile Host 85

will contain the same forms as (5.16) and (5.17), respectively. When n = 1,

this random checkpointing strategy is also reduced to the strategy without

checkpointing. This occurs because, when the program receives the one mes-

sage, it terminates successfully; thus no checkpoints will be created, and the

probability of checkpointing before receiving any messages is 0 by definition.

5.5 Time-based Checkpointing Strategy

The above two checkpointing strategies, deterministic and random checkpoint-

ing, place checkpoints with respect to the message arrival events. We know

that the checkpoint placement strategies based on the number of messages

received may lead to a bad distribution of checkpoints with respect to time

for applications in which program states are changed due not only to message

exchanges but also to human interactions. Therefore, time-based strategies

should also be considered and analyzed under the condition of terminating af-

ter receiving a certain number of messages. Let the checkpointing interval be

a constant time v. Then the time-based checkpointing strategy will establish

a checkpoint when the accumulated time in the computational state since the

preceding checkpoint reaches v, where the checkpointing rate ιtc = 1/v.

The following theorem gives the program execution time with time-based

checkpointing.

Theorem 3 Let

Q3(s) = s + γm + λ + ρ− ρφH(l)(s + γm), (5.29)

q3 = Q3(s)|s=0 = γm + λ + ρ− ρφH(l)(γm), (5.30)

and

G(s, n, v) = Qn
1 (s)

[
1− φv(Q3(s))

n−1∑

i=0

(vQ3(s))
i

i!

]
, (5.31)

Chapter 5 Program Execution Time at Mobile Host 86

then the LST of the c.d.f. of X(tc,f,h,l)(n, v), the program execution time with

time-based checkpointing, with the checkpointing parameter v, can be ex-

pressed as

φX(tc,f,h,l)(s, n, v) =
G1(s, n, v)

G2(s, n, v)
, (5.32)

in which

G1(s, n, v)

= (s + γm)

[
G(s, n, v) + φC(s + γm)φv(Q3(s))

n−1∑

i=1

(λv)i

i!
φX(tc,f,h,l)(s, n− i, v)

]

(5.33)

and

G2(s, n, v)

= (s + γm)[1− φC(s + γm)φv(Q3(s))]

− γmφR′(s)

[
1−G(s, n, v)− φC(s + γm)φv(Q3(s))

n−1∑

i=0

(λv)i

i!

]
,

(5.34)

and its expectation is given by

E
[
X(tc,f,h,l)(n, v)

]
=

[
1

γm

+ E(R′)

] 
 1− φC(γm)φv(q3)

G(0, n, v) + φC(γm)φv(q3)
∑n−1

i=1
(λv)i

i!

− 1




+
φC(γm)φv(q3)

∑n−1
i=1

(λv)i

i!
E

[
X(tc,f,h,l)(n− i, v)

]

G(0, n, v) + φC(γm)φv(q3)
∑n−1

i=1
(λv)i

i!

. (5.35)

Proof: We can express the conditional execution time of the time-based

strategy in a similar way to that of the random checkpointing strategy as

Chapter 5 Program Execution Time at Mobile Host 87

follows:

X(tc,f,h,l)(n, v) =





X(n) +
∑K

j=1 H
(l)
j

: if Y > X(n) +
∑K

j=1 H
(l)
j and X(n) ≤ v

Y + R′ + X̃(tc,f,h,l)(n, p)

: if (Y ≤ X(n) +
∑K

j=1 H
(l)
j and X(n) ≤ v)

or (Y ≤ v +
∑K′

j=1 H
(l)
j + C and X(n) > v)

v +
∑K′

j=1 H
(l)
j + C + X(tc,f,h,l)(n−M, v)

: if Y > v +
∑K′

j=1 H
(l)
j + C and X(n) > v

.

Here, M is the number of messages received during time period v. Then

following the similar steps, we get (5.32) and (5.35).

(5.32) and (5.35) are recursive equations. It is difficult to derive the explicit

expressions for the LST and the expectation of X(tc,f,h,l)(n, v); however, these

equations can be analyzed numerically to evaluate the behavior of the time-

based checkpointing strategy.

5.6 Comparisons and Discussions

In this section, we compare these three checkpointing strategies from different

viewpoints. We introduce the average effectiveness, denoted by A, to evaluate

the derived expected program execution times. The average effectiveness is the

ratio between the expected program execution time without and with failures,

handoffs, and checkpoints. It is expressed as

A =
n

λ · E [X(c,f,h,l)(n)]
. (5.36)

The denominator of above equation expresses the expected number of mes-

sages received during program execution. From the average effectiveness, we

Chapter 5 Program Execution Time at Mobile Host 88

can easily observe how much time is wasted due to events that interrupt the

program execution. The parameter values illustrated below are selected for

demonstration purposes [23, 44].

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

message number n

av
er

ag
e

ef
fe

ct
iv

en
es

s

 γ
m

 = 10−3

 γ
l
 = 10−2

 λ = 10−2

 ρ = 10−3

 E(T
1
) = 2

 E(T
2
) = 10

 E(T
3
) = 10

 E(T
4
) = 2

 E(H) = 2
 E(R) = 10

 u = p−1

 v = u / λ

Without checkpointing
Deterministic checkpointing
Random checkpointing
Time−based checkpointing

p = 0.5

p = 0.1

p = 0.05

Figure 5.2: Average effectiveness vs. message number.

Figure 5.2 shows how the average effectiveness varies with the required

number of computational messages1 . The expectation of a r.v. which con-

tains a geometric distribution with parameter p is p−1, and the expected time

to receive u messages with message arrival rate λ is u/λ. For comparison

purposes, we group u−1 = p = (vλ)−1 as a triplet and refer to these three pa-

rameters as checkpointing frequencies. When p tends to 1 (higher checkpoint-

ing frequencies), more checkpoints will be taken. The effectivenesses without

checkpointing and with random checkpointing decrease monotonically with the

message number n; however, the effectivenesses with deterministic and time-

based checkpointing demonstrate fluctuating behaviors. For the deterministic

checkpointing strategy, before n reaches u, its behavior is the same as that

1The average effectiveness is a discrete function of the message number n or u, but for
clarity we plot the figure in continuous curves.

Chapter 5 Program Execution Time at Mobile Host 89

without checkpointing. After taking a checkpoint, the effectiveness may ex-

perience a sudden decrease (which depends on the cost and time to take and

save a checkpoint) but it tends to increase as u′ increases; however, when u′

approaches u, the effectiveness decreases again, indicating that a new check-

point should be introduced. The time-based checkpointing strategy introduces

a more random characteristic with respect to the number of received messages

than the deterministic checkpointing strategy does; therefore, its oscillating

behavior is less obvious than that of the deterministic checkpointing strat-

egy. From the curves for deterministic checkpointing, it is easily observed that

checkpointing prevents the effectiveness from decreasing.

We also observe in Figure 5.2 that the random checkpointing will achieve

higher effectiveness than the other two strategies when the checkpointing fre-

quency decreases. As pointed out before, on average the number of checkpoints

with random checkpointing is not less than that with deterministic checkpoint-

ing with the same checkpointing rate. When the checkpointing frequency is

low, taking more checkpoints will exhibit positive effects on the effectiveness;

on the other hand, when the checkpointing frequency is high, the checkpoint

number is large enough, and no further benefit can be gained from checkpoint-

ing. As the random checkpointing introduces more checkpoints, it decreases

the effectiveness correspondingly. Moreover, from this figure, we see that when

n approaches 1, the average effectiveness with checkpointing may be less than

that without checkpointing. As checkpointing itself brings an overhead, there

should be a trade-off condition at which the expected program execution time

with checkpointing will be less than that without checkpointing.

Figure 5.3 exhibits the variations of effectiveness with the message arrival

rate λ. In this figure, we distinguish two time-based checkpointing strate-

gies: adaptive and fixed. In the adaptive-time-based checkpointing strategy,

Chapter 5 Program Execution Time at Mobile Host 90

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

message arrival rate λ

av
er

ag
e

ef
fe

ct
iv

en
es

s

 γ
m

 = 10−3

 γ
l
 = 10−2

 ρ = 10−3

 n = 30
 E(T

1
) = 2

 E(T
2
) = 10

 E(T
3
) = 10

 E(T
4
) = 2

 E(H) = 2
 E(R) = 10

 p = 10−1

 u = p−1

 v = u / λ

Without checkpointing
Deterministic checkpointing
Random checkpointing
Adaptive−time−based checkpointing
Fixed−time−based checkpointing

v = 2 x 103

Figure 5.3: Average effectiveness vs. message arrival rate.

the checkpointing interval v changes with λ to keep the expected checkpoint-

ing frequency the same as those of deterministic and random checkpointing

strategies. The fixed-time-based checkpointing implies that the interval v is

constant and is independent of λ. Without checkpointing, the effectiveness

increases with λ, as does that of the fixed-time-based checkpointing strategy.

When the message arrival rate is low, checkpointing increases the effective-

ness, especially with fixed-time-based and random checkpointing. However,

the fixed-time-based checkpointing will be reduced to the strategy without

checkpointing if the time to take a checkpoint, v, is greater than the time

to complete the program when the message arrival rate is high. In contrast,

for all the other three checkpointing strategies, the effectiveness increases first

and then decreases. This is because the program will be completed with fewer

failures when the message arrival rate is high. Consequently, checkpointing

incurs too much overhead to offset against the gain it achieves. Under these

conditions, we should take checkpoints less frequently to reduce the overhead.

Chapter 5 Program Execution Time at Mobile Host 91

Another observation is that the random checkpointing achieves better effective-

ness when λ is small; however, as λ increases the deterministic checkpointing

prevails.

10
−4

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

MH’s failure rate γ
m

av
er

ag
e

ef
fe

ct
iv

en
es

s

10
−4

10
−3

10
−2

10
−1

0.2

0.4

0.6

0.8

1

wireless link’s failure rate γ
l

av
er

ag
e

ef
fe

ct
iv

en
es

s

Without checkpointing
Deterministic checkpointing
Random checkpointing
Time−based checkpointing

 λ = 10−2

 ρ = 10−3

 n = 30
 E(T

1
) = 2

 E(T
2
) = 10

 E(T
3
) = 10

 E(T
4
) = 2

 E(H) = 2
 E(R) = 10

 u = p−1

 v = u / λ

p = 0.05

p = 0.1
p = 0.5

(a) γ
l
 = 10−2

p = 0.1

p = 0.5

p = 0.05

(b) γ
m

 = 10−3

Figure 5.4: Average effectiveness vs. failure rate.

The variation of effectiveness with failure rates is shown in Figure 5.4.

Irrespective of the different values of the checkpointing parameters for these

three strategies, the effectiveness always decreases as the MH failure rate γm

increases; however, this effect is much smaller with the wireless link failure rate

Chapter 5 Program Execution Time at Mobile Host 92

0 10 20 30 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

time to take a checkpoint E(T
1
)

av
er

ag
e

ef
fe

ct
iv

en
es

s

 γ
m

 = 10−3

 γ
l
 = 10−2

 λ = 10−2

 ρ = 10−3

 n = 30
 E(T

2
) = 10

 E(T
3
) = 10

 E(T
4
) = 2

 E(H) = 2
 E(R) = 10

 u = p−1

 v = u / λ

Deterministic checkpointing
Random checkpointing
Time−based checkpointing

p = 0.1

p = 0.5

p = 0.05

Figure 5.5: Average effectiveness vs. checkpoint taking time.

γl – in this case, the effectiveness remains almost constant. As seen in Fig-

ure 5.4(a), when γm is small, a higher checkpointing frequency may decrease the

effectiveness; however, when γm is high enough, more frequent checkpointing

affords higher effectiveness. Another phenomenon is that the deterministic and

time-based checkpointing strategies achieve the higher effectivenesses when γm

is small; as γm increases, the random checkpointing becomes the best.

Figure 5.5 shows how the effectiveness decreases as the checkpoint taking

time T1 increases with different checkpointing frequencies in these three check-

pointing strategies, where T1 is the overhead inherited from the checkpointing

operation. This observation is also true for the other checkpointing overheads:

T2, T3, and T4. When T1 is small, the effectiveness benefits from checkpoint-

ing; however, as T1 becomes larger and larger, it brings more overhead, which

eventually surpasses the benefit gained, resulting in less effectiveness. This

figure also shows that the higher the checkpointing frequency, the faster the

effectiveness decreases, which indicates that when it requires more time to

take a checkpoint, the benefit of frequent checkpointing is more likely to be

outweighed by the extra overhead.

Chapter 5 Program Execution Time at Mobile Host 93

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

handoff rate ρ

av
er

ag
e

ef
fe

ct
iv

en
es

s

 γ
m

 = 10−3

 γ
l
 = 10−2

 λ = 10−2

 n = 30
 E(T

1
) = 2

 E(T
2
) = 10

 E(T
3
) = 10

 E(T
4
) = 2

 E(R) = 10

 p = 10−1

 u = p−1

 v = u / λ

Without checkpointing
Deterministic checkpointing
Random checkpointing
Time−based checkpointing E(H) = 2

E(H) = 10

E(H) = 20

Figure 5.6: Average effectiveness vs. handoff rate.

The variations of effectiveness with the handoff rate ρ and the handoff time

H are shown in Figure 5.6. The effectiveness decreases as ρ increases, whether

we engage checkpointing or not. The three checkpointing strategies display

little difference with the same ρ and H. Only when the handoff rate is high

does the time required for handoff affect the average effectiveness significantly.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

checkpointing frequency p

av
er

ag
e

ef
fe

ct
iv

en
es

s

 γ
l
 = 10−2

 λ = 10−2

 ρ = 10−3

 n = 30
 E(T

1
) = 2

 E(T
2
) = 10

 E(T
3
) = 10

 E(T
4
) = 2

 E(H) = 2
 E(R) = 10

 u = p−1

 u = v / λ

Deterministic checkpointing
Random checkpointing
Time−based checkpointing

γ
m

 = 10−4

γ
m

 = 10−3

γ
m

 = 10−2

Figure 5.7: Optimal checkpointing frequency.

Figure 5.7 shows how to achieve the maximum effectiveness under different

Chapter 5 Program Execution Time at Mobile Host 94

MH’s failure rates by adjusting the checkpointing frequency. The shapes of the

curves change dramatically as γm varies. When the MH’s failure rate is high

enough, taking a checkpoint after receiving even single message in message-

number-based checkpointing strategies, i.e., u = p = 1, is a good approach

to assure high effectiveness. When γm is small, however, too high or too low

checkpointing frequencies will result in low effectiveness, and there is an opti-

mal checkpointing frequency that maximizes the effectiveness. Although it is

difficult to derive explicit expressions for the optimal u, p, and v, these opti-

mal values can be obtained by numerically solving the partial differentiation

equations of the expected program execution times with respect to u, p, and v,

respectively. Since u is an integer in the deterministic checkpointing strategy,

we should choose one of the two nearest integers in this solution as the opti-

mal u that yields the larger value of E[X(dc,f,h,l)(n, u)] [117]. If we cannot get

solutions from these equations, the maximum effectiveness can be achieved

by selecting u = 1, p = 1, and v as small as possible. It is also observed

that a smaller γm usually requires fewer checkpoints to attain the maximum

effectiveness.

Finally, from most of these figures, we can observe that the effectiveness

with random checkpointing is more stable under varying parameter conditions

than that with deterministic or time-based checkpointing.

5.7 Summary

In this chapter, we carry out the analyses of the program execution time with

various checkpointing strategies in mobile wireless environments. The ter-

mination requirement for a program at MH is the number of computational

Chapter 5 Program Execution Time at Mobile Host 95

messages received. We assume that MH and wireless link failure intervals, mes-

sage arrival interval, and handoff interval are r.v.s with exponential distribu-

tions. Three checkpointing strategies, deterministic, random, and time-based

checkpointing, are considered. We derive the LST of the c.d.f. of the total

program execution time and its expectation. We show that the performance

of random checkpointing approach is more stable against varying parameter

conditions. Some trade-offs with respect to various parameters are also demon-

strated. Based on our study, different checkpointing strategies, even including

the strategy without checkpointing, can be engaged to achieve optimal perfor-

mance under different mobile wireless network conditions. Nevertheless, the

detailed measurement should be performed in order to deciding which strategy

will be utilized.

2 End of chapter.

Chapter 6

Reliability Analysis for Various

Communication Schemes

For the purpose of designing more reliable networks, we extend the traditional

reliability analysis from wired networks to wireless networks with imperfect

components. Wireless network systems, such as wireless CORBA, inherit the

unique handoff characteristic which leads to different communication struc-

tures with various components and links. Therefore, the traditional definition

of two-terminal reliability is not applicable anymore. We propose a new term,

end-to-end mobile reliability, to integrate those different communication struc-

tures into one reliability metric, which includes not only failure parameters but

also service parameters. Nevertheless, it should still be a monotonously de-

creasing function of time.

The end-to-end mobile reliability and its corresponding mean time to fail-

ure (MTTF) are evaluated quantitatively in different wireless communication

schemes. To observe the gain in overall reliability improvement, the reliability

importance of imperfect components are also evaluated. The results show that

the failure parameters of different components take different effects on MTTF

and reliability importance. With different expected working time of a system,

96

Chapter 6 Reliability Analysis for Various Communication Schemes 97

the focus of reliability improvement should change from one component to an-

other in order to receive the highest reliability gain. Furthermore, the number

of engaged components during a communication state is more critical than the

number of system states.

6.1 Definitions and Assumptions

In general, reliability is defined as the probability that a system performs

its intended functions successfully for a given period of time under specified

environmental conditions [111], and we refer the probability of successful com-

munication between a source node and a target node as two-terminal reliabil-

ity [118]. For two nodes to communicate with each other, there should be at

least one operating path connecting them. An operating path indicates that

all the intermediate nodes and links should be in the operation state: a node is

operational if and only if it functions as intended with respect to specification;

and a link is operational if and only if it allows communication from its source

node to its sink node [128]. Because the two-terminal reliability problem in

wired networks has been studied thoroughly in the literature, we assume that

the intermediate nodes and wired links are always reliable, i.e., there will al-

ways be a reliable wired path between an AB and an SH, or between an AB

and another AB. For the wireless part, an MH constructs only one wireless link

with one AB, and it is associated with only one AB at a time, except during

a handoff operation. Therefore, the communication path built on the top of

wireless links is simple, and we also assume that wireless link failures are negli-

gible. However, all the four components of wireless CORBA are failure-prone,

and they may fail independently.

Chapter 6 Reliability Analysis for Various Communication Schemes 98

Based on the assumptions stated before, a successful communication be-

tween two nodes is defined as the condition when all the engaged nodes, in-

cluding the source node and the target node, are in the operational state. As a

result, the SH-SH reliability is the product of the two individual SHs’ reliabil-

ity. If one or both of the two terminals are MHs, the traditional two-terminal

reliability metric cannot correctly describe the characteristic introduced by the

handoff operation. As MHs move and perform handoff operations, the com-

munication structures will vary with time t. Each communication structure

can be regarded as a serial system composed of different types and numbers

of engaged components. Additionally, the handoff operation induces that an

MH’s published address will be outdated, and a mechanism is needed to resolve

the current location of the MH. Therefore, we propose a new term, end-to-end

Mobile Reliability (MR) [26, 30], to address these unique cases in wireless en-

vironments. We define a system state, x, as the communication structure;

therefore, x changes with time t. Furthermore, state z denotes the failure

state, in which two terminals cannot communicate with each other. As a re-

sult, all communication states are up states. Let πx(t) denote the probability

that the system is in state x at time t. The end-to-end MR at a generic time

t, MR(t), is given by

MR(t) =
∑
x

πx(t). (6.1)

MR(t) is a function composed not only of failure parameters but also of service

parameters introduced by state probability πx(t). The SH-SH reliability can be

treated as a special case in which the system contains only one communication

structure, and MRss(t) = πx(t) = [Rsh(t)]
2. Under the adopted assumptions,

we can say that the MR is a generalization of the traditional two-terminal

reliability. Accordingly, we define the corresponding end-to-end MTTF as

MTTF =
∫ ∞

0
MR(t)dt. (6.2)

Chapter 6 Reliability Analysis for Various Communication Schemes 99

Although the proposed mobile reliability and performability [111] both

combine service and failure parameters, actually they are different. Performa-

bility is utilized to measure gracefully degrading systems which may be able

to survive the failure of one or more of their active components and continue

to provide service at a reduced level. However, mobile reliability is a mere

reliability metric for wireless mobile systems.

Four communication schemes will be generated if random communications

occur between MH and SH, which are the SS scheme, the MS scheme, the

SM scheme, and the MM scheme. In these notations, the former capital letter

denotes the type of the source node, and the latter letter denotes the type of

the target node, where M stands for MH, and S stands for SH.

During communications, an MH associates with an AB and exchanges mes-

sages with other nodes. As the MH moves, it will make handoffs and asso-

ciate with a NAB. The sojourn time with an AB and the handoff completion

time are assumed to be r.v.s which are exponentially distributed with para-

meters ρ and η, respectively. We assume that the component hazard rates

are constant. That is, we model component failures as homogeneous Poisson

processes, resulting in independent and exponential inter-failure arrivals [130].

The constant failure parameters for the four components of wireless CORBA,

MH, AB, SH, and HLA, are γm, γa, γs, and γh, respectively. We utilize the

exponential distribution as the service and failure distributions for modeling

simplicity. As no repair is engaged in our evaluation, from the definition of MR

in (6.1), the MR actually is the sojourn time at system communication states

before the system moves to the failure state z, an absorption state. The de-

rived properties of following discussions are only based on the monotonously

decreasing characteristic of a reliability function with time, which is always

the case; therefore, what the failure distribution really is should not affect the

Chapter 6 Reliability Analysis for Various Communication Schemes 100

conclusions we will derive.

From the above definitions, we note that the end-to-end MR can be easily

extended to include the reliability metrics of wired networks and wireless links

if we add the two-terminal reliability of wired networks and the successful com-

munication probability of wireless links into the calculation of MR. However,

these extensions only trivially decrease the derived value of MR, but do not

change the properties of MR; for simplicity we omit them in this chapter.

6.2 End-to-end MR and MTTF Analysis

Different communication schemes engage various types and numbers of compo-

nents which result in different end-to-end MRs and MTTFs. The SS scheme

is trivial, and its MR has been derived in the last section, i.e., MRss(t) =

[Rsh(t)]
2. Therefore, we will discuss the remaining MS, SM, and MM schemes

in the following three subsections separately.

6.2.1 The MS (MH-SH) Scheme

The MS scheme is a communication scheme in which an MH initiates commu-

nications with an SH. Initially, the MH sends requests over a wireless link, then

the associated AB relays the request messages to the target SH through wired

paths. After a random sojourn time in the current AB, the MH may perform a

handoff during which two ABs are engaged. The system states are thus shown

in Figure 6.1, in which solid lines denote wired paths while dashed lines de-

note wireless links. State a is a normal communication state, and state b is a

handoff state in which the MH moves from AB1 to AB2. The handoff may be

network initiated or terminal initiated [100]; however, the engaged nodes and

links are the same. The MH should create two different wireless links with two

Chapter 6 Reliability Analysis for Various Communication Schemes 101

(a)

MH

SH

AB

(b)

SH

AB1 AB2

MH

HLA

Figure 6.1: System states in the MS scheme: (a) normal communication; (b)
handoff procedure.

a b

ρ

(I)

η

z

γ1 γ2 γ1 = γm+γa+γs
γ2 = γm+2γa+γs+γh

Figure 6.2: Markov model for the MS scheme.

ABs, and these two ABs should inform each other about the handoff progress.

During handoff, the NAB, AB2, should invoke the location update operation

at the MH’s HLA to inform it that the MH has changed its associated AB.

We may exclude the HLA from state b if we employ a simple invocation retry

strategy, and the MH’s location in the HLA will eventually be updated no

matter whether the HLA works or not during the handoff. This is a simple

extension to improve the system’s reliability. After the handoff, the system

returns to state a for normal communications. Figure 6.2(I) shows the Markov

model of the system state transition, where ρ is the handoff rate, η is the

handoff completion rate, and γ1 and γ2 are the failure rates at states a and b,

respectively.

Chapter 6 Reliability Analysis for Various Communication Schemes 102

The Kolmogorov differential equations for this Markov model should be




dπz(t)
dt

= γ1πa(t) + γ2πb(t)

dπa(t)
dt

= −(γ1 + ρ)πa(t) + ηπb(t)

dπb(t)
dt

= ρπa(t)− (γ2 + η)πb(t)

.

From the above equations, the probabilities of the system in states a, b, and

z at time t can be solved; however, the expressions are not very concise, so

we omit them here. But the MTTF for the MS scheme can be shown with a

concise equation as follows:

MTTFms =
γ2 + ρ + η

γ1γ2 + γ1η + γ2ρ
. (6.3)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

st
at

e
pr

ob
ab

ili
ty γ

m
 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

 ρ = 10−2

 η = 10−1

π
a
(t)

π
b
(t)

MR
ms

(t)

Figure 6.3: State probabilities and reliability of the MS scheme.

One realization of the end-to-end MR of the MS scheme, MRms(t), is shown

in Figure 6.3, under the assumption that the initial state of the Markov model

is a. Different types of components experience different levels of failures. SHs

are generally more reliable than MHs or ABs; therefore, we let γm = γa =

10−3 and γs = 10−4 [23, 105]. We select the specific values of parameters

for demonstrating the proposed end-to-end MR, whereas these values are set

at a reasonable and comparable level. As expected, the probability of the

Chapter 6 Reliability Analysis for Various Communication Schemes 103

system in state a is much greater than that in state b as the handoff procedure

is completed very quickly, resulting in a case that the probability of state a

contributes much more to the MR than that of state b. Although πb(t) increases

first and then decreases, the end-to-end MR is still a monotonously decreasing

function of time t.

10
−5

10
−4

10
−3

10
−2

0

500

1000

1500

2000

2500

3000

3500

γ
m

M
T

T
F γ

s
 = 10−4

 γ
h
 = 10−3

 ρ = 10−2

 η = 10−1

γ
a
 = 10−4

γ
a
 = 10−3

γ
a
 = 10−2

10
−4

10
−3

10
−2

10
−1

250

300

350

400

450

500

ρ

M
T

T
F γ

m
 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

η = 1
η = 10−1

η = 10−2

(a) (b)

Figure 6.4: End-to-end MTTF of the MS scheme: (a) failure parameters γm

and γa; (b) service parameters ρ and η.

Figure 6.4 shows the end-to-end MTTF as a function of failure and ser-

vice parameters. The more reliable the components are, the longer the MTTF

is. However, the improvement gain (in terms of the MTTF) is reduced with

the decrease in the failure parameters, γm and γa, beyond a certain threshold,

which can be observed from Figure 6.4(a). Such diminishing gain should be

carefully considered against the cost of increasing component reliabilities be-

yond a limit [130]. This result is also applied to parameter γs. From (6.3), we

see that γm and γs produce the same effect on MRms(t), and little difference

exists between γm and γa when πb(t) is much smaller than πa(t). This means

that these three components are critical to successful system communications.

The change of the failure rate of the HLA, γh, dose not make the MTTF

demonstrate obvious variations, which implies that any gain by improving the

Chapter 6 Reliability Analysis for Various Communication Schemes 104

reliability of the HLA will be small. This is because γh is only taken into con-

sideration in state b, which does not contribute much to the MR. Figure 6.4(b)

shows that when ρ is high, the MTTF increases with η dramatically; however,

when ρ is low, the MTTF varies little with η. This indicates that when the

handoff happens frequently, the time spent in the handoff period is very criti-

cal to the MTTF, because the reliability is clearly lower in the handoff state b

than in the normal state a. When ρ is low, however, the contribution of state

b is small, leading to little change of the MTTF with η. To achieve a higher

MR, then, MHs experiencing high handoff rates should complete the handoff

operation as fast as they can.

6.2.2 The SM (SH-MH) Scheme

SH

(c) (d)

MH MH

SH

AB AB

HLA

SH

AB1 AB2

MH

HLA

(e) (f)

AB1 AB2

MH

SH

(g)

AB1 AB2

MH

SH

HLA

Figure 6.5: System states in the SM scheme: (c) location-querying; (d) normal
communication; (e) handoff procedure; (f and g) location-forwarding.

In the SM scheme, an SH initiates communications with an MH. The char-

acteristic of an MH is its movement, which introduces a mechanism to locate

its current AB. The location-lookup mechanism complicates the system states,

as shown in Figure 6.5. We know that an object on an MH publishes its Mo-

bile Interoperable Object Reference (MIOR) with the address of its resided

MH’s HLA. When an SH first invokes an object on an MH with the originally

Chapter 6 Reliability Analysis for Various Communication Schemes 105

(II) LF_HLA (III) LF_QHLA

c

f

ν

ν

η

d

e

ρ

c d

e

ρ

g

ν

η
ν/2

z

z

(IV) LF_AB

c d

e

ρ

f

ν

η
ν

z

γ1 = γm+γa+γs
γ2 = γm+2γa+γs+γh

γ1

γ2

γ3 = γm+γa+γs+γh
γ4 = γm+2γa+γs

γ3

γ4

γ3 γ1

γ2

γ2

γ3 γ1

γ2

γ4

Figure 6.6: Markov models for the SM scheme.

published MIOR, the request message will be sent to the HLA indicated ac-

cording to the address specified in the MIOR, and the HLA will send back a

GIOP reply message with status LOCATION FORWARD. This reply message

carries a renewed MIOR containing the address of an AB with which the HLA

believes the MH is currently associated [100]. This is state c, in which the solid

line with slash indicates that the SH has not yet created a communication path

with the AB; however, it is tending to construct such path with the AB. The

time spent in this state is also assumed to be an exponentially distributed r.v.

with parameter ν. The received LOCATION FORWARD message directs the

SH to reissue the request to the AB, and then the AB forwards the message to

the MH. This is state d. The system will stay in this normal communication

state until the MH moves out of the coverage area of the current AB. State e is

the handoff state. As the SH does not know whether or not its target MH has

Chapter 6 Reliability Analysis for Various Communication Schemes 106

experienced a handoff, it will still send its subsequent requests to its known AB

as normal despite the movement of the MH. However, when the AB receives

a request and finds that it has broken its link with the targeted MH, it will

reply with a message whose status is also set to be LOCATION FORWARD.

There exist two ways to construct this reply message by replacing the address

part in the IIOP profile of the MIOR with different addresses. One is the ad-

dress of the MH’s HLA, and the other is the address of the MH’s current AB.

We denote the former location-forwarding approach as LF HLA and the lat-

ter as LF QHLA. Figures 6.6(II) and (III) show their corresponding Markov

models, respectively.

In the LF HLA approach, after handoff, the system moves from state e

to state f then to state c, resending the request to the HLA; however, the

LF QHLA approach changes state e to state g during which the AB queries

the current location of the MH from its HLA. With the address of the NAB,

the SH can reissue the request directly to the NAB, which results in the system

transferring from state g directly to state d. The time spent in state f is also

assumed to be an exponentially distributed r.v. with parameter ν because it

functions as location-forwarding the same as state c. However, the transition

rate from state g to state d should be different as state g engages one more

operation than state f does. Here we set it to be ν/2. The specific relationship

between these two rates are not important here, but these two rates should not

be independent. One more location-forwarding approach, denoted as LF AB,

could be engaged. Actually, the OAB knows to which AB the MH moves

away from itself. If the MH does not leave the NAB when the OAB receives a

request on this MH, the information in the OAB about the location of the MH

is up-to-date, and it could be employed to construct the reply message. With

this approach, the SH can still resend the request to the current AB; however,

Chapter 6 Reliability Analysis for Various Communication Schemes 107

the location-querying operation in the LF QHLA approach is removed. Its

corresponding Markov model is shown in Figure 6.6(IV).

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

st
at

e
pr

ob
ab

ili
ty

 γ
m

 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

 ρ = 10−2

 η = 10−1

 ν = 10−1

π
c
(t)

π
d
(t)

π
e
(t)

π
g
(t)

MR
sm

(t)

Figure 6.7: State probabilities and reliability of the SM scheme.

The symbolic expression of the probabilities of the system in different states

at time t are difficult to be derived. Therefore, we utilize a numerical approach

here to express their variations with time t. Figure 6.7 shows one realization

for the LF QHLA approach. The curve shapes of the other two approaches

are similar to this one. We observe that the contribution of state c to the

MR decreases quickly as time moves on, because the probability of state c

diminishes quickly. States d, e, and g exhibit similar behaviors in MR as all

these three states show similar curve shapes in state probability.

Figure 6.8 shows the differences in MR among these three location-forwarding

approaches with various handoff rates. It is observed that the proposed LF AB

approach achieves the highest MR because it engages the least number of

components and finishes the location-forwarding procedure the most quickly.

However, these three approaches tend to behave the same when the handoff

rate decreases. Another observation is that the LF HLA approach is superior

to the LF QHLA approach. Although the LF QHLA combines two states f

Chapter 6 Reliability Analysis for Various Communication Schemes 108

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

M
R

sm

 γ
m

 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

 η = 10−1

 ν = 10−1

LF_HLA
LF_QHLA
LF_AB

ρ = 10−3

ρ = 10−1

ρ = 10−2

Figure 6.8: Reliability with location-forwarding strategies in the SM scheme.

and c into one state g, at the same time it introduces one more component,

the HLA, into state g. This indicates that the number of engaged components

during a communication state is more critical than the number of states.

How the MTTF varies with different parameters are shown in Figures 6.9

and 6.10. We note that γm, γa, and γs produce similar effects on the MTTF of

the SM scheme as those of the MS scheme. In Figure 6.9(b), the decrease of γh

also demonstrates an increase on the MTTF. This implies that the HLA plays

a more important role in the SM scheme than in the MS scheme, although the

improvement on the reliability of the HLA still achieves little increase on the

MTTF compared with the improvement on other components. Finally, the

increase in η with a high handoff rate shows smaller increase in the MTTF

than that produced in the MS scheme. This may be explained as only two

communication states in the MS scheme; however, more communication states

are engaged in the SM scheme. The increase in the communication states

reduces the effect of parameter η due to the introduction of one more parameter

ν, as shown in Figure 6.10(b). It exhibits that the the location-forwarding

process should be done as quickly as possible despite of the value of ρ.

Chapter 6 Reliability Analysis for Various Communication Schemes 109

10
−5

10
−4

10
−3

10
−2

0

500

1000

1500

2000

2500

γ
m

M
T

T
F γ

s
 = 10−4

 γ
h
 = 10−3

 ρ = 10−2

 η = 10−1

 ν = 10−1

γ
a
 = 10−4

γ
a
 = 10−3

γ
a
 = 10−2

10
−5

10
−4

10
−3

10
−2

0

100

200

300

400

500

γ
s

M
T

T
F γ

m
 = 10−3

 γ
a
 = 10−3

 ρ = 10−2

 η = 10−1

 ν = 10−1

γ
h
 = 10−4

γ
h
 = 10−3

γ
h
 = 10−2

(a) (b)

Figure 6.9: End-to-end MTTF of the SM scheme vs. failure parameters: (a)
γm and γa; (b) γs and γh.

10
−4

10
−3

10
−2

10
−1

250

300

350

400

450

500

ρ

M
T

T
F γ

m
 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

 ν = 10−1

η = 1
η = 10−1

η = 10−2

10
−4

10
−3

10
−2

10
−1

250

300

350

400

450

500

ρ

M
T

T
F γ

m
 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

 ν = 10−1

ν = 1
ν = 10−1

ν = 10−2

(a) (b)

Figure 6.10: End-to-end MTTF of the SM scheme vs. service parameters: (a)
ρ and η; (b) ρ and ν.

We have observed that the MH and the AB behave almost the same in

the improvement gain in terms of the MTTF in schemes MS and SM. Now

we evaluate them from another point of view to see whether this result will

be changed or not. We define time-dependent RI with respect to the MR to

identify the relative importance of each component in a system. The time-

dependent RI, IRi
(t), of component i, i = mh, ab, sh, or hla, is given by

IRi
(t) =

∂MR(t)

∂Ri(t)
. (6.4)

Applying (6.4) in the SM scheme, we show the results in Figure 6.11. When

Chapter 6 Reliability Analysis for Various Communication Schemes 110

the handoff rate is relatively high (Figure 6.11(a) and (b)), the RI of the AB

increases first and then decreases, indicating the contribution of state e, f , or g

is high. If the AB and the MH experience the same failure rate (Figure 6.11(a)),

the AB always gets the higher RI than the MH does. On the other hand, if

the AB is more reliable than the MH (Figure 6.11(b)), the AB gets the higher

RI initially, and then the MH gets the higher RI; otherwise, the MH always

gets the higher RI with a lower handoff rate (Figure 6.11(d)).

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

time

R
I

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

1.2

time

R
I

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

R
I

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

R
I

I
mh

(t)
I
ab

(t)
I
sh

(t)
I
hla

(t)

LF_HLA
LF_QHLA
LF_AB

 γ
m

 = 10−3

 γ
a
 = 10−3

 ρ = 10−2

 γ
m

 = 10−3

 γ
a
 = 10−3

 ρ = 10−3

 γ
m

 = 10−3

 γ
a
 = 10−4

 ρ = 10−2

 γ
m

 = 10−3

 γ
a
 = 10−4

 ρ = 10−3

 γ
s
 = 10−5

 γ
h
 = 10−5

 η = 10−1

 ν = 10−1

(a) (b)

(c) (d)

Figure 6.11: RI of the SM scheme: (a) same failure rate and high handoff rate;
(b) different failure rates and high handoff rate; (c) same failure rate and low
handoff rate; (d) different failure rates and low handoff rate.

These observations show that the relative RIs of different components may

vary with the intended working time of the system and with the failure and

service parameters. The RIs of HLA and AB in the LF QHLA approach are

Chapter 6 Reliability Analysis for Various Communication Schemes 111

higher than those in the LF HLA and LF AB approaches. This is due to the

larger sojourn probability in state g which incorporates both AB and HLA.

We compare the difference between Figure 6.11(a) and (c), in which the AB

and the MH inherit the same failure rate; so do the SH and the HLA. We only

show the result of the LF QHLA approach, as the other two behave almost the

same. Even when AB and MH experience the same failure rate, the difference

between their RIs is relatively large when the handoff rate is relatively high;

however, they get almost the same RI when the handoff rate is relatively low.

The SH gets the higher RI than the HLA does despite the handoff rate. All

these are induced by the probabilities of different system states in which each

component engages. When the handoff rate is high, the system achieves greater

probabilities in state e, f , or g, in which two ABs are employed. Therefore,

the RI of the AB will be higher than that of the MH. The SH is present in

each system state, but the HLA does not appear in state c, which is the most

important state. Obviously then, the RI of the SH should always be higher

than that of the HLA.

6.2.3 The MM (MH-MH) Scheme

The system becomes more complicated in the MM scheme as both MHs may

undergo handoffs, and the following location-forwarding approaches also in-

crease the system states. Its system states are shown in Figure 6.12, in which

the failure state z is omitted for simplicity as each system communication

state has a transition to state z. At first, the system is in state h, in which

MH1 is the invocation initiator, and MH2 is the receiver. When MH1 sends a

request with the MIOR of an object on MH2, its associated AB, AB1, needs

a location-forwarding approach to resolve the address of AB2 in which MH2

resides. Note that the renewed MIOR is only kept by AB1, and MH1 still

Chapter 6 Reliability Analysis for Various Communication Schemes 112

(h)

AB1

AB2

MH1

MH2

(i) (j)

AB11

AB2

MH1

MH2

AB12

(k)

HLA

AB1

AB2

MH1

MH2

HLA

AB1

AB21

MH1

MH2

AB22

HLA

(p)

AB11

AB2

MH1

MH2

AB12

HLA

(q)

AB1

AB21

MH1

MH2

AB22

HLA

(r)

AB11

MH1

AB12

HLA

AB21

MH2

AB22

HLA

(n)

AB1

AB21

MH1

MH2

AB22

HLA

(o)

AB11

MH1

AB12

HLA

AB21

MH2

AB22

(l)

AB21

MH2

AB22

HLA

AB11

MH1

AB12

(m)

AB1

AB21

MH1

MH2

AB22

Figure 6.12: System states in the MM scheme: (h) location-querying; (i) nor-
mal communication; (j) MH1 in handoff; (k) MH2 in handoff; (l) both MH1

and MH2 in handoff; (m and q) location-forwarding; (n) location-querying and
MH2 in handoff; (o and r) location-forwarding and MH1 in handoff; and (p)
location-querying and MH1 in handoff.

Chapter 6 Reliability Analysis for Various Communication Schemes 113

h1

p

k1

i h2

l

j n

k2m2

o m1

h3

ρ

η

ρ

ρ η

η η

η ην

ν
ν

ηρ

ρ

ρ ρ

ν
η

ν

ν

(V) LF_HLA

h1

k1

i h2

l

j n

k2m

r q

ρ

ρ η

η η

η ην

ν

ηρ

ρ

ρ ρ

ν
η

ν

(VI) LF_QHLA

ν/2

h1

p

k1

i h2

l

j n

k2m2

o m1

h3

ρ

η

ρ

ρ η

η η

η ην

ν
ν

ηρ

ρ

ρ ρ

ν
η

γa

ν

(VII) LF_AB

ν

Figure 6.13: Markov models for the MM scheme (transitions to the failure
state z is omitted).

keeps the original MIOR. After this step, AB1 creates a communication path

with AB2, and then MH1 sends messages to and receives messages from MH2

through AB1 and AB2, without the interaction with the HLA. This is state i.

States j and k denote the system states in which only one MH is in handoff.

There exists a probability that both MH are in handoff, shown as state l. Here

we assume that these two MHs share one HLA and do not reside within the

same cell of an AB. These assumptions are reasonable because we could regard

Chapter 6 Reliability Analysis for Various Communication Schemes 114

the derived results as the lower bounds, and the difference is small. Following

state j, there are two possible transitions: one is to state l, and the other is to

state h. State j cannot directly transit to state i, because after MH1 moves to

a NAB, this NAB does not contain any information about where MH2 is, and

thus it needs undergo state h to resolve the address of MH2. There are also

three location-forwarding approaches after the handoff completion of MH2 in

the MM scheme, denoted as the same as in the SM scheme. For the LF HLA

approach, state m is the location-forwarding process after the handoff comple-

tion of MH2 in state k. No matter which MH finishes its handoff first in state

l, the system also enters the location-forwarding state, state n or o; however,

entering which location-forwarding state depends on which MH completes its

handoff earlier. From it we know that the location-forwarding approaches after

the handoffs of MH1 and MH2 are different.

The corresponding Markov model for the LF HLA approach is shown as

Figure 6.13(V), in which h1, h2, and h3 represent the same communication

structure as h while they represent different system states, the same denota-

tions for k and m. One more assumption has been made to draw this Markov

model: before an MH makes another handoff, the location-forwarding process

for its last handoff should have been finished. This assumption avoids creating

an AB list in which the MH is moving to the header AB of this list while the

location-forwarding procedure is being processed in the tail AB of this list. It is

also feasible because the handoff rate is much less than the location-forwarding

rate. With the LF QHLA approach (Figure 6.13(VI)), state q replaces state

m, and it transits directly to state i instead of through state h3. Correspond-

ingly, state o is replaced by state r. Figure 6.13(VII) is the Markov model for

the LF AB approach. We could make this approach more reliable by adding a

transition from state m1 to h3 with rate γa. Because AB21 functions as an HLA

Chapter 6 Reliability Analysis for Various Communication Schemes 115

when the system is in state m, the HLA could be treated as a hot standby

component to replace AB21 when AB21 fails, even though the failure rates

may be different between these two components. When AB21 fails to reply to

a request, the AB1 may reissue the request to the HLA to get the up-to-date

MIOR. The wireless CORBA specification requires that only the ORB used

to implement HLA and AB need to know the mobility of MH, therefore this

proposed request-retry could only be employed in the MM scheme while it is

not suitable for the SM scheme, otherwise the ORB in SH needs to be aware

of terminal mobility.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

time

st
at

e
pr

ob
ab

ili
ty

 γ
m

 = 10−3

 γ
a
 = 10−3

 γ
h
 = 10−3

 ρ = 10−2

 η = 10−1

 ν = 10−1

π
h
(t)

π
i
(t)

π
j
(t)

π
k
(t)

π
q
(t)

MR
mm

(t)

Figure 6.14: State probabilities and reliability of the MM scheme.

The variations of the probabilities of system states with time t for the

LF QHLA approach are shown in Figure 6.14 by employing that the system

is initially in state h with probability 1. The probabilities of states j, k, and

q are on one level of magnitude, and the probabilities of states l, m, n, and r

are on another level of magnitude; however, all these states employ the same

curve shape. The effects of different parameters on the MTTF and the RI in

the MM scheme are very similar to those analyzed and presented in the SM

Chapter 6 Reliability Analysis for Various Communication Schemes 116

scheme, and thus are not included here.

6.2.4 General End-to-end MTTF

We have discussed the end-to-end MTTF with specific sender-receiver pairs

in four communication schemes so far. Now we turn our attention to the

general end-to-end MTTF of a wireless communication system which includes

nmh MH and nsh SH. If each MH or SH has the same probability to initiate a

communication, then the general end-to-end MTTF can be expressed as

MTTF =
1

2nmhnsh +
(

nmh

2

)
+

(
nsh

2

) ·
[
nmhnsh ·MTTFms + nshnmh ·MTTFsm

+

(
nmh

2

)
·MTTFmm +

(
nsh

2

)
·MTTFss

]
, (6.5)

in which we assume that all MHs share a common HLA.

10
2

10
3

10
4

10
1

10
2

10
3
0

1000

2000

3000

4000

n
mh

n
sh

M
T

T
F

 γ
m

 = 10−3

 γ
a
 = 10−3

 γ
s
 = 10−4

 γ
h
 = 10−3

 ρ = 10−2

 η = 10−1

 ν = 10−1

Figure 6.15: General end-to-end MTTF vs. number of components.

Figure 6.15 shows how the general end-to-end MTTF varies with the num-

ber of nodes, in which the LF QHLA approach is utilized for the SM and MM

Chapter 6 Reliability Analysis for Various Communication Schemes 117

schemes. As expected, the MTTF decreases with the number of MH; how-

ever, it increases with the number of SH. The MTTFsm or MTTFms is larger

than the MTTFmm under the same parameter values as more components

are engaged in the MM scheme. If the number of SH increases, an MH will

communicate with an SH more probably; then the MTTF will become larger.

The number of AB may also affect the MTTF because the MH needs AB to

relay messages. According to our definition of the general end-to-end MTTF,

however, the number of AB has no effect on it.

6.3 Summary

Four communication schemes have been discussed in this chapter. No handoff

operation is engaged in the SS scheme; as a result MRss(t) is the traditional

two-terminal reliability. For all other three schemes, MS, SM, and MM, the

unique feature of wireless networks, handoff, is integrated into the mobile

reliability. Quantitative measurements reveal that the handoff and location-

forwarding procedures should be completed as soon as possible to improve

the MTTF. Moreover, the RI of different components should be determined

with specific failure and service parameters. Finally, the number of engaged

components during a communication state is more critical than the number of

system states.

For simplicity, we assume that the wired and wireless communication links

are perfect and omit them in the reliability analysis. If these two are engaged

into the proposed end-to-end mobile reliability, it can give a more detailed and

complete reliability assessment of a wireless network system. Our quantitative

measurements are conducted as an example with the assumption that the

failure and service rate are constant; however, in practice, failure and service

processes may follow other distributions. After all, our investigation provides

Chapter 6 Reliability Analysis for Various Communication Schemes 118

an initial yet overall approach to measure the reliability of wireless networks.

Although our analysis is conducted on wireless CORBA platforms, it is easily

extensible to generic wireless network systems.

2 End of chapter.

Chapter 7

Sensibility-Based Sleeping

Configuration in Sensor

Networks

For wireless sensor networks, developing a localized configuration protocol for

sensor sleeping is an effective approach to obtain a long network lifetime with-

out sacrificing crucial aspects of quality of service, such as area coverage, sens-

ing reliability, and network connectivity, etc. Different types of sensors gen-

erally have widely various theoretical and physical characteristics; therefore,

different sensing models should be constructed to capture various sensing char-

acteristics, which depend on the specific sensing device and the deployment

environment. In this chapter, two sensing models are investigated: Boolean

sensing model (BSM) and collaborative sensing model (CSM). Two sleeping

candidate conditions are identified for the BSM. Firstly, we propose minimum

partial arc-coverage (MPAC) to exploit the arc-coverage information provided

by one-hop neighbors. Each sensor engages different sensing radii, and the de-

ployment region preserves its k-coverage requirement. Secondly, a sensor eval-

uates the coverage of Voronoi vertices constructed by its one-hop neighbors,

119

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 120

by which it can decide whether itself is sleeping-eligible. For the CSM, we ex-

ploit the cooperation between neighboring sensors by evaluating the proposed

neighboring-sensor field sensibility (NSFS). After scheduling sleeping-eligible

sensors, the constructed network remains connected in the presence of sensor’s

location error.

7.1 Assumptions and Problem Formulation

To configure a sensor to sleep while preserving area coverage in a decentralized

network environment, we should answer three fundamental questions: when

we can assert that an area is covered by a set of sensors; what each sensor’s re-

sponsibility is in providing area coverage; and whether its sleeping will produce

any reduction on covered area.

Some general assumptions are introduced to help us address these three

questions. We assume that each sensor Ni knows its own location (xi, yi) [126,

133, 136, 143, 145], which can be obtained from the GPS or other localization

systems [57]. Initially, we assume that the obtained location information is

accurate; however, this assumption will be relaxed in Subsection 7.2.4. The

sensors discussed in this chapter are deployed in a two-dimensional constrained

Euclidean plane; however, the argument can be easily extended to a three-

dimensional space. Sensors can communicate directly with their neighboring

sensors within radius cr.

Definition 1 The one-hop communication neighbor set of sensor Ni is defined

by

N(i) = {Nj ∈ Ω | d(Ni, Nj) ≤ cr, j 6= i}, (7.1)

where Ω is the sensor set in a deployment region Φ and d(Ni, Nj) denotes the

Euclidean distance between sensors Ni and Nj.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 121

7.1.1 Boolean Sensing Model

The Boolean sensing model (BSM) assumes that the sensing area of a sensor

Ni is the disk with a radius sri centered at the location of the sensor itself [58,

126, 133, 136, 143], and we call its sensing area the sensing disk, denoted as

Ψi. Thus,

Definition 2 A measuring point y in a constrained deployment region Φ is

defined as being covered if there is at least one sensor Ni whose distance to

point y is less than its sensing radius sri, i.e.,

∃Ni ∈ Ω, d(Ni, y) < sri. (7.2)

In addition, we call the border of a sensor’s sensing disk the sensing perimeter.

If every measuring point in a deployment region is covered, we say that the

deployment region is covered. Note that a sensor’s sensing radius sri is different

with its communication radius cr because different devices are involved [45].

As communication is usually bi-directional, the communication radius of all

sensors are set the same. Although most sensor networks use homogeneous

sensors with the same type [55, 145], sensors may still employ different sensing

radii due to manufacturing deviation.

With the BSM, a sensor can ensure to detect an event occurring in its

sensing disk by itself; however, if an event is outside its sensing radius, it has

no way to perceive the event occurrence. In general, the ability of a sensor

to detect the occurrence of an event of interest at a certain point degrades

as the distance between the sensor and the point increases. To capture such

characteristic, some authors also adopted a collaborative sensing model [79,

82, 90].

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 122

7.1.2 Collaborative Sensing Model

Definition 3 In a collaborative sensing model (CSM), the sensibility of a

sensor Ni for an event occurring at an arbitrary measuring point y is defined

by

s(Ni, y) =
α

[d(Ni, y)]β
, (7.3)

in which d(Ni, y) is the Euclidean distance between sensor Ni and point y, α

is the energy emitted by events occurring at point y, and β is the decaying

factor of the sensing signal. For radio signal sensing, β typically ranges from

2 to 5.

To describe the event sensibility in a region with cooperation of deployed

sensors, it is convenient to introduce the concept of the sensing field [83], a

corresponding concept to that of an electric field with a distribution of charges.

Definition 4 Suppose we have a “background” distribution of |Ω| sensors in

a deployment region, and measure the sensibility on an event occurring at a

point y. The sensing field associated with this sensor distribution is defined

through the relation1

Sc(y) =
∑

i : s(Ni, y) ≥ εn

s(Ni, y), (7.4)

in which εn is the signal threshold due to measurement noise in the sensing

environment, and Sc(y) is called the Collective-Sensor Field Sensibility (CSFS)

at point y.

With a required sensibility threshold εs, if Sc(y) > εs, we say that point y is

covered. If for every point in a deployment region, its CSFS is greater than εs,

we say that the deployment region is covered.

1This relation is only applied to sensing signals that are additive, such as that of omni-
directional acoustic sensors. If not, this equation should be redefined. However, the key
point is that sensors are cooperated to detect an event.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 123

If we determine a point’s coverage based on the CSFS, we need a sink

working as a data fusion center, who collects the signal intensities perceived by

all sensors. Therefore, directly utilizing the CSFS to evaluate whether a point

is covered will produce a heavy network load in multi-hop sensor networks and

pose a single point of failure. Applying the fact that radio transmissions are

non-directional in wireless sensor networks, we treat each sensor as a sensing

fusion center2 and introduce the following concept.

Definition 5 The Neighboring-Sensor Field Sensibility (NSFS) of sensor Ni

at point y is defined by

Si
n(y) = s(Ni, y) +

∑

j : Nj ∈ N(i) ∧ s(Nj , y) ≥ εn

s(Nj, y). (7.5)

When an event occurs at a certain point, the sensors that receive the sig-

nal will broadcast their perceived event sensibility. Each sensor calculates its

NSFS after receiving the broadcast messages from its neighbors. If there is

at least one sensor whose integrated field sensibility is greater than the sensi-

bility threshold εs, then we say this point is covered. Thus we transform the

originally global coverage decision problem into a local decision problem, and

avoid producing a single point of failure.

Definition 6 A point y in a deployment region Φ is covered by a sensor set

Ω when there is at least one sensor whose NSFS at point y is greater than or

equal to a predefined threshold εs. Formally, point y is covered if ∃Ni ∈ Ω,

Si
n(y) > εs. Thus, a deployment region Φ is covered if all measured points in

this region are covered.

The NSFS of sensor Ni considers only the sensibility provided by its one-

hop neighbors and itself. Obviously, it is not greater than the CSFS, i.e.,

2This assumption simplifies the implementation of clustering algorithms [13, 55] as from
the viewpoint of coverage each working sensor has the eligibility to be a cluster-head.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 124

Si
n(y) ≤ Sc(y). Note that the coverage problem is intrinsically global in the

sense that lack of knowledge of the location of any single sensor implies that the

problem may not be solved correctly [91]. But allowing for the possibility of

missing some information in the coverage decision provides some redundancy,

which is beneficial in building dependable sensor networks. We will identify

this property later.

7.1.3 Relations between the BSM and the CSM

With (7.3) and a desired sensibility threshold εs, we can define an ensured-

sensibility radius sre
i for sensor Ni as

sre
i =

(
α

εs

) 1
β

. (7.6)

If an event occurs within the ensured-sensibility radius of a sensor, it should be

detected by this sensor; therefore, the ensured-sensibility radius sre
i is equiv-

alent to the sensing radius sri defined in the BSM. As a result, the CSM will

be reduced to the BSM if we consider only the event detectability in sre
i .

Furthermore, we define a collaborative-sensibility radius src
i on the basis of

(7.3) and a signal threshold εn as

src
i =

(
α

εn

) 1
β

. (7.7)

For all events occurring in the collaborative-sensibility radius of a sensor, this

sensor will contribute its sensibility to this event; however, a sensor does not

perceive any event occurrence out of its collaborative-sensibility radius due to

Gaussian noise.

Usually, εs is much greater than εn. Thus, sre
i is less than src

i . With

the BSM, each sensor can assure whether an event will be detected by itself.

In addition to the event detectability provided by the BSM, the CSM may

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 125

successfully detect an event that is undetected in the BSM by a cooperative

process.

7.1.4 Voronoi Diagram

Voronoi diagram [11, 101], composed of a set of sensors, partitions a con-

strained two-dimensional sensor deployment region into a set of convex poly-

gons such that all points inside a polygon are closest to only one particular

sensor. These polygons are called Voronoi cells with finite areas as sensors are

deployed in a constrained region. The boundary segment of a Voronoi cell is

called the Voronoi edge shared by two sensors, and the intersection point of

two Voronoi edges is called the Voronoi vertex shared by three or more sensors.

The shared Voronoi edge of two sensors is on the perpendicular bisector line

of a segment connecting these two sensors.

7.2 Sleeping Candidate Conditions

A sleeping sensor means its sensing devices and communication transceivers

are turned off to save energy and to reduce packet transmission collision, i.e.,

it does not monitor its environment and does not send or receive messages. As

a result, the network topology will be changed and the field sensibility of some

regions will be reduced. We define the initial covered area to be the percentage

of the deployment region that satisfies the coverage requirement with randomly

scattered sensors. If we can ensure that there is no reduction on covered area

after a sensor goes to sleep and the constructed network backbone is connected,

this sensor is called a sleeping candidate. Otherwise, this sensor should keep

working to provide its sensibility. With different characteristics of different

sensing models, their corresponding sleeping candidate conditions should be

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 126

different. Let us discuss the BSM case first.

7.2.1 Sleeping Candidate Condition for the BSM with

Arc-Coverage

In the BSM, a sensor Ni only provides its sensibility in its sensing radius sri

and it does not provide any sensibility out of this range. Therefore, to evaluate

whether a sensor is a sleeping candidate with the BSM, we can only examine

its sensing disk how it is covered by the sensing disks of its working neigh-

bors. The approaches employed by previous work can be classified into three

categories: by calculating the coverage of the sensing disk directly [126, 136],

by evaluating the coverage of the sensing perimeter indirectly [58], or by in-

vestigating the coverage of the intersection points of the sensing perimeters

indirectly [133, 143]. Directly calculating the coverage of a sensing disk may

time-consuming as all measuring points should be evaluated [136] or may un-

derestimate the coverage provided by neighboring sensors [126]. Indirectly

investigating the coverage of the intersection points of the sensing perimeters

overcomes those disadvantages; however, it cannot estimate the reduced area

when allowing area coverage loss. Therefore, in this subsection, we develop a

sleeping candidate condition based on arc-coverage [29]. Its coverage require-

ment is that when a sensor goes to sleep, all measuring points in its sensing

disk will be still covered by at least k sensors, i.e., the k-coverage requirement.

Some additional definitions are introduced to help us develop the k-coverage

sleeping candidate condition.

Definition 7 Suppose sensors Ni and Nj are one-hop communication neigh-

bors, and their sensing perimeters intersect at points p1
ij and p2

ij which are

arranged in the clockwise order with respect to Ni. As illustrated in Fig. 7.1,

the part of the sensing disk of Ni that is also covered by Nj is the shaded

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 127

Ni

Nj

δ

σij

p1
ij

p2
ij

θij

ωij

x

y

τij

Figure 7.1: Sponsored sensing region, arc and angle and covered sensing angle

region, which is called the Sponsored Sensing Region (SSR) by Nj to Ni and

equals Ψi ∩ Ψj. The arc ̂p1
ijp

2
ij on the sensing perimeter of Nj is defined as

the Sponsored Sensing Arc (SSA), denoted as τij (shown with a heavy arc in

Fig. 7.1), and its corresponding central angle is called the Sponsored Sensing

Angle (SSG), denoted as θij. Note that the points on τij are not covered by

Nj, according to Equation (7.2). The direction of Ni referred to Nj is denoted

as σij; therefore, θij = (σij − δ, σij + δ), in which δ is a half of the central angle

θij. Note that θij expresses the relative position of τij on the perimeter of Ψj.

In addition, we let ωij = 6 p1
ijNip

2
ij, which is called the Covered Sensing Angle

(CSG). Actually, ωij = θji; however, they denote different physical meanings.

θji is a measure of SSA τji, whereas ωij implies which part of the perimeter of

Ψi is covered by Nj.

From geometry calculations, we know

σij =





arctan
(

yj−yi

xj−xi

)
: if xj − xi < 0 ∧ yj − yi < 0

π + arctan
(

yj−yi

xj−xi

)
: if xj − xi > 0

2π + arctan
(

yj−yi

xj−xi

)
: if xj − xi < 0 ∧ yj − yi > 0

(7.8)

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 128

and

δ = arccos

(
sr2

j + d2(Ni, Nj)− sr2
i

2 · srj · d(Ni, Nj)

)
. (7.9)

The above definitions apply to the case in which the sensing perimeters

of two neighboring sensors have intersection points. If the sensing disks of

two sensors are overlapped, each of them is denoted as a coverage sponsor

to another. There are three special cases which all lack intersection points

between two sensor’s sensing perimeters, as shown in Figure 7.2. The first

Ni
Nj

(b) d(Ni,Nj) ≤ sri - srj (c) d(Ni,Nj) ≤ srj - sri

Nj

(a) d(Ni,Nj) ≥ sri + srj

Ni

Ni

Nj

Figure 7.2: Special cases of sponsored sensing region and arc

one is the case when d(Ni, Nj) ≥ sri + srj. In this case, there is no overlap

between the sensing disks of two neighboring sensors and Nj does not provide

any coverage to Ni. For the second case when d(Ni, Nj) ≤ sri − srj, Ψj is

completely covered by Ni; therefore, the SSR is all the sensing disk of Nj, the

SSA τij is the perimeter of Nj, and SSG θij = 2π. However, CSG ωij is not

defined. The last case is when Ψi is completely contained in Ψj, which happens

whenever d(Ni, Nj) ≤ srj − sri holds. In this case, the SSR, the SSA, and the

SSG are not defined; however, the CSG is defined as ωij = 2π. An additional

concept is introduced to deal with this case.

Definition 8 The number of working neighbors whose sensing disks com-

pletely contain the sensing disk of sensor Ni is called the Degree of Complete

Coverage (DCC) sponsored by neighboring sensors, denoted as ζi. These neigh-

boring sensors are called Complete-Coverage Sponsors (CCSs) of Ni, denoted

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 129

as CCS(i), and other working neighbors are called non-CCSs of Ni. There-

fore, the set of CCSs of Ni is denoted as CCS(i) = {Nj ∈ N(i)| d(Ni, Nj) ≤
srj − sri}.

Definition 9 With two sensor nodes Ni and Nj, on SSA τij we find a point y

that is covered by the minimum number of sensors. Then the number of Ni’s

non-CCSs covering the point y is defined as the Minimum Partial Arc-Coverage

(MPAC) sponsored by node Nj to node Ni, denoted as ξij.

p1
ij

Nj

Ni

(a)

Nm

Nn

Nl

p2
ij

p1
jl

p2
jl

p1
jm

p2
jm

0 2π
ξij

θij

ωjl

ωjm

(b)

ωjl

Figure 7.3: Derivation of the MPAC ξij sponsored by sensor Nj to sensor Ni

Fig. 7.3 illustrates a calculation of MPAC ξij. The calculation steps are as

follows [58]:

1. Draw a line segment representing [0, 2π];

2. Calculate SSG θij, and mark this angle accordingly on the line;

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 130

3. For each non-CCS of Ni, calculate its CSG related to Nj and lay out the

derived CSG proportionally on the line;

4. Scan the line segment θij and write down the minimum number that the

points on this line segment are covered by the SSG and CSGs.

The derived minimum number is MPAC ξij. For the case illustrated in Fig. 7.3,

we get ξij = 1. The critical part of SSA τij is ̂p1
jlp

2
jm as this arc is covered by the

minimum number of sensors and determines the MPAC. From the definition

and calculation steps, we know ∀ Ni ∈ Ω, ξij ≥ 1, because all points on SSA

τij are at least covered by Ni itself.

MPAC and DCC Based k-Coverage Sleeping Candidate Condition

The statement “a region is k-covered” means every point inside this region is

covered by at least k sensors. If the coverage degree of the sensing disk of

a sensor is at least (k + 1), then this sensor could fall asleep to save energy

without compromising the network’s overall k-coverage requirement and with-

out reducing area coverage. For sensor Ni, we define its neighboring index set

Ii = {m|Nm ∈ N(i)}, m = 1, 2, 3, Then the general k-coverage sleeping

candidate condition can be expressed as Ψi ⊆ ⋃
j∈In

i
Ψj, in which n = 1, . . . , k,

In
i ⊆ Ii, and ∀ 1 ≤ p, q ≤ k, Ip

i ∩ Iq
i = ∅ when p 6= q. This general sleeping

candidate condition is theoretically accurate under the constraint of only one-

hop neighbors but cannot be directly employed to select sleeping candidates.

We utilize the proposed MPAC and DCC to decide which sensors are sleeping

candidates while preserving k-coverage.

Theorem 4 A sensor Ni is a sleeping candidate while preserving k-coverage

under the constraint of one-hop neighbors, iff its DCC is greater than or equal

to k, or it has at least one non-CCS neighbor and for all its non-CCS neighbors

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 131

Nj ∈ N(i)−CCS(i), the MPAC sponsored by Nj to Ni is greater than k minus

Ni’s DCC. Formally, Ni is sleeping-eligible iff ζi ≥ k, or N(i) − CCS(i) 6= ∅
and ∀ Nj ∈ N(i)− CCS(i), ξij > k − ζi.

Proof: In order for sensor Ni to be a sleeping candidate, all points in its

sensing disk Ψi should be covered by at least (k + 1) nodes including Ni. As

its DCC is ζi, all points in Ψi are already covered by at least (ζi + 1) nodes.

If ζi ≥ k, then obviously Ni is sleeping-eligible. If ζi < k, we should ensure

that its non-empty non-CCS neighbors providing residual (k − ζi)-coverage.

This is equivalent to proving that if Ni is not sleeping-eligible and N(i) −
CCS(i) 6= ∅, there exists a node Nj ∈ N(i) − CCS(i), ξij ≤ k − ζi. In the

sensing disk of a sensor, the minimally covered points are always on SSAs

when N(i) − CCS(i) 6= ∅. As Ni is not sleeping-eligible, some points on the

SSAs are covered by less than (k − ζi) non-CCS neighbors. Without loss of

generality, we assume that one of these SSAs is sponsored by Nj. Then from

Definition 9, we have ξij ≤ k − ζi.

For the “only if” part, we should prove if Ni is sleeping-eligible, then ζi ≥ k,

or N(i) − CCS(i) 6= ∅ and ξij > k − ζi for all sensors Nj ∈ N(i) − CCS(i).

This is equivalent to proving that when ζi < k, and there exists a sensor Nj

whose MPAC to Ni is less than or equal to (k − ζi), i.e., ξij ≤ k − ζi, sensor

Ni is not sleeping-eligible. If ζi < k and ξij < k − ζi, obviously Ni is not

sleeping-eligible. If ζi < k and ξij = k− ζi, some points on SSA τij are covered

by only k sensors. Note that these points are in Ψi; however, they are not in

Ψj. If Ni goes to sleep, these points will be covered by at most (k−1) sensors;

then k-coverage will not be preserved. Therefore, when ζi < k and ξij = k−ζi,

Ni is not sleeping-eligible.

Theorem 4 can be extended to deal with irregular and/or non-uniform

sensing disks as long as the sensing disk of each sensor can be precisely defined.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 132

Extended Sleeping Candidate Condition

Ni

inside deployment region

Nj

p1
ij

p2
ij

p1
j

p2
j

Figure 7.4: Sponsored sensing arcs in a constrained deployment region

When we apply the MPAC and DCC based sleeping candidate condition to

schedule sensors’ sleeping in a restricted two-dimensional deployment region,

more sensors will be identified as sleeping candidates if we take the boundary

case into consideration, illustrated in Figure 7.4. We denote the original sleep-

ing candidate condition as Mpac, and the sleeping candidate condition which

takes the boundary case into consideration as MpacB. To determine whether

sensor Ni is a sleeping candidate, we now need only consider its sensing disk

inside the monitoring area. Therefore, some parts of the original SSA τij are

removed and we must test only arcs p̂1
ijp

1
j . As a result, Ni is not sleeping-

eligible for 1-coverage with Mpac; however, it is a sleeping candidate with

MpacB. With this extension, sleeping-eligible sensors will be identified even in

irregular areas or areas with obstructions.

When each sensor evaluates its sleeping eligibility with MPAC, it identifies

which parts of SSAs on its sensing perimeters are critical arcs. A critical arc is

the part of an SSA and is covered by the minimum number of sensors. These

critical arcs will form some subregions which do not satisfy the required degree

of coverage when the sensor goes to sleep; therefore, we call these subregions

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 133

N1

N2

N3

N5

N4

Figure 7.5: Critical arcs in evaluating N1’s sleeping eligibility

as critical regions. If we could estimate the size a critical region to be smaller

than a predefined threshold, we may opt to omit this region, as the coverage

requirement is still largely satisfied. This may lead to the sensor becoming

sleeping-eligible. With this critical region extension added to the model, more

sensors can sleep at any given time; however, the cost we must pay is the loss

of area coverage. The thick arcs in Figure 7.5 are critical arcs, and they form

a critical region for 1-coverage. This region is small; therefore, even sensor N1

goes to sleep, the loss of area is negligible. Let MpacBCa denote the critical

region extension to MpacB. We utilize the length of critical arc to estimate

the size of its formed critical region. If the length of a critical arc is less than

a threshold, we treat this critical arc as a normal arc; when all critical arcs

bounding a critical region are treated as normal arcs, the region is no longer

considered critical. A special case is when the threshold is 0, MpacBCa is

reduced to MpacB because no critical arcs are treated as normal.

7.2.2 Sleeping Candidate Condition for the BSM with

Voronoi Diagram

All previous work [58, 126, 133, 136, 143] and the proposed sleeping candidate

condition Mpac in Subsection 7.2.1 are based on the geometry calculation of

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 134

the sensing disk. Inspired by the concept of coverage boundary introduced

by Carbunar et al. in [17], in the subsection we develop a sleeping candidate

condition with the property of Voronoi diagram. It evaluates the coverage

of Voronoi vertices instead of the coverage of the sensing perimeters and the

coverage of their intersection points [31].

Definition 10 A sensor Ni is said to be on the boundary of coverage if there

exists a point y on its sensing perimeter such that y is not covered by its

one-hop working neighbors N(i).

This definition considers only a sensor’s one-hop and working neighbors but not

all other sensors, which extends the corresponding concept in [17]. Therefore,

it is more suitable to develop distributed and localized sleeping configuration

algorithms, which is presented Section 7.3.

A theorem to evaluate whether a sensor is on the boundary of coverage or

not is also provided in [17]:

Theorem 5 A sensor Ni is on the boundary of coverage if and only if its

Voronoi cell is not completely covered by its sensing disk.

Figure 7.63 gives an example of coverage boundary. For sensor N1, all other

sensors, Ni, i = 2, . . . , 8, are its one-hop working neighbors. The small squares

represent the locations of sensors, the circles are the sensing perimeters, and

the line segments are the Voronoi diagram constructed by these sensors. The

outer rectangle is the constrained deployment region, thus each Voronoi cell

is finite. As the sensing disk of N1 does not cover its Voronoi cell, N1 is on

the coverage boundary. Obviously, if a sensor is on the coverage boundary, it

is not sleeping-eligible as some parts of its sensing disk are only covered by

3Figures with Voronoi diagrams are generated on the basis of the VoroGlide provided by
Icking et al. at http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 135

Figure 7.6: Example of coverage boundary: N1.

itself and its sleeping will reduce the covered area. Thus, N1 is not a sleeping

candidate.

To facilitate the evaluation process, we provide a corollary that can be

easily derived from Theorem 5:

Corollary 2 A sensor Ni is on the boundary of coverage if and only if there

exists one of its Voronoi vertices that is not in its sensing disk.

In principle, a sensor is a sleeping candidate if its sleeping does not reduce

the covered area when it works. Therefore, if a sensor is on the coverage

boundary, it cannot be sleeping-eligible. However, even if it is not on the

coverage boundary, it may also not be sleeping-eligible. An example is that

a sensor’s sensing perimeter is all covered, but some inner parts of its sensing

disk are only covered by itself. We need to provide a necessary and sufficient

condition to evaluate a sensor’s sleeping eligibility, which is provided as the

following theorem.

Theorem 6 A sensor Ni is a sleeping candidate if and only if (1) it is not on

the coverage boundary; and (2) when constructing another Voronoi diagram

without Ni, all the Voronoi vertices of its one-hop working neighbors in Ni’s

sensing disk are still covered.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 136

Proof: If sensor Ni is not on the coverage boundary, according to The-

orem 5, its Voronoi cell is completely covered by its sensing disk, i.e., its

Voronoi cell is in its sensing disk. As a result, in the regenerated Voronoi di-

agram without Ni, all vertices outside Ni’s sensing disk are not changed, and

no new vertices are generated outside Ni’s sensing disk. This is because when

removing a sensor, all the Voronoi cells of its neighbors will be enlarged. If

all these Voronoi vertices are still covered, its neighbors should not become

sensors on the coverage boundary due to Ni’s sleeping. Thus no covered area

is reduced. Therefore, Ni is a sleeping candidate.

For the “only if” part, if Ni is a sleeping candidate, (1) it is not on the

coverage boundary, and (2) in the regenerated Voronoi diagram without Ni, all

Voronoi vertices of its neighbors in Ni’s sensing disk are still covered. First, let

us assume that Ni is a sleeping candidate and it is on the coverage boundary.

If a sensor is on the coverage boundary, parts of its sensing perimeter are only

covered by itself. As a result, when Ni goes to sleep, these parts of its sensing

perimeter are not covered by its neighbors, thus reducing the covered area.

This leads to a contradiction. Second, let us assume that Ni is a sleeping

candidate and one of those regenerated Voronoi vertices in Ni’s sensing disk

is not covered. As the uncovered Voronoi vertex is in Ni’s sensing disk, this

vertex is covered only by Ni if Ni is working. Therefore, Ni’s sleeping results in

this vertex being uncovered, i.e., Ni’s sleeping reduces the covered area. This

leads to a contradiction again.

Figure 7.7 shows a sleeping-eligible sensor N1. Figure 7.7(a) shows when

N1 is working, it is not on the coverage boundary, and its Voronoi cell is

completely contained in its sensing disk. Figure 7.7(b) shows the regenerated

Voronoi cell when N1 goes to sleep. All the Voronoi vertices in its sensing disk

are still covered by other sensors; therefore, N1 is a sleeping candidate.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 137

Figure 7.7: Example of sleeping-eligible sensor: N1.

Figure 7.8: Example of necessary condition: N1.

The first condition that a sensor is not on the coverage boundary should

be included as a necessary condition for the sensor to be sleeping-eligible, as

illustrated in Figure 7.8. If we evaluate N1’s sleeping eligibility only based on

the second condition, N1 is a sleeping candidate as no Voronoi vertex in its

sensing disk is not covered, as shown in Figure 7.8(b). However, we know that

N1 is not sleeping-eligible from Figure 7.8(a) as it is on the coverage boundary.

The reason is that the first condition ensures that no Voronoi vertex outside a

sensor’s sensing disk would be changed due to the sensor’s presence or absence.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 138

As a result, we can only evaluate the coverage of the Voronoi vertices in its

sensing disk. As N1 does not satisfy the first condition, it is easily observed

from Figure 7.8 that some old vertices, P1 and P2, outside the sensing disk of

N1 disappear, and some new vertices, P3 and P4, are generated. Figure 7.8(a)

also shows that sensor N2 is not on the coverage boundary but it is not sleeping-

eligible.

When a sensor utilizes all its one-hop working neighbors to calculate its

sleeping eligibility, we get a 1-coverage sensor sleeping configuration. To ob-

tain k-coverage, k ≥ 2, we may divide its one-hop working neighbors into k

mutually disjunct subsets. If a sensor satisfies the sleeping candidate condition

(Theorem 6) with each subset of its neighbors, then we can say the sensor is a

sleeping candidate for k-coverage.

The locally constructed Voronoi diagram with only one-hop neighbors may

be an approximation to the Voronoi diagram generated by a centralized com-

putation with the information of all deployed sensors. For simplicity, we denote

the maximum of the sensing radii of all deployed sensors as sr. When the com-

munication radius cr is at least twice of the sensing radius sr, a sensor can

find all other sensors which provide their sensibility to this sensor’s sensing

disk with only one-hop communication [133, 143]. Otherwise, the sensor can

learn those sensors within d2 · sr/cre hops. Our approach ignores the sensi-

bilities contributed by one-hop out-of-reach sensors and so underestimates the

coverage of a sensor’s sensing disk by using partial sensor deployment informa-

tion only. However, this underestimation is beneficial to building dependable

wireless sensor networks, and reduces the overload on the network due to sleep-

ing configuration. Therefore, the major computation incurred in this sleeping

candidate condition is to calculate the Voronoi vertices generated by a sensor’s

one-hop neighbors. It can be solved in O(n log n), where n is the number of

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 139

the sensor’s one-hop neighbors. As this number is usually not very large, the

resulted computational cost is also acceptable.

7.2.3 Sleeping Candidate Condition for the CSM

In the BSM, a sensor Ni confines its sensibility contribution within its sens-

ing radius sri; however, in the CSM, a sensor extends its contribution to its

collaborative-sensibility radius src
i . For a measuring point that is outside a

sensor’s sensing radius while in its collaborative-sensibility radius, the sensor

cannot determine whether this point is covered by itself only; it needs to collect

the sensibility contribution information from its neighbors.

When introducing the concept of the NSFS, we have stated that if an event

occurs at a certain measuring point, the sensors that receive the signal will

broadcast their perceived event sensibility. Therefore, a sensor contributes its

sensibility to and only to its one-hop neighbors. No other sensors will receive

its broadcasting message. After it falls asleep, it becomes invisible to all its

neighbors, thus the Voronoi diagram will be changed and the Voronoi cells of

its neighbors will be enlarged to cover the sleeping sensor’s original Voronoi

cell. According to the definition of a Voronoi diagram, if an event occurs in a

Voronoi cell, its corresponding sensor will receive the strongest signal. Thus

its NSFS will most likely satisfy the coverage requirement. Consequently, we

need only assess the enlarged Voronoi cells of a sensor’s one-hop neighbors when

evaluating its sleeping eligibility. If all these Voronoi cells are still covered with

a sensibility threshold εs, then we can say that it is safe to allow a sensor to

sleep.

For a sensor to exactly learn the Voronoi cells of its one-hop neighbors, the

first approach is for it to know the locations of all deployed sensors that share

the Voronoi edges with its one-hop neighbors. Those sensors, however, may

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 140

be far away and cannot be reached within a few hops. The other approach

is to provide a centralized service that calculates every sensor’s Voronoi cell

and dispatches this information to all sensors. Both of these scenarios are

undesirable. We need to solve this problem based on local information only;

however, computing the neighbors’ Voronoi cells exactly with local information

only may be impossible. Moreover, some redundancy should be kept to tolerate

sensor failures and energy depletion. As a trade-off, here we employ the two-

hop neighbors’ information to produce a sensor’s local view of the Voronoi

diagram composed by its neighbors. In this way, we pessimistically enlarge

the Voronoi cells of some neighbors and augment their responsibilities. But all

these Voronoi cells are confined by a sensor’s collaborative-sensibility radius rc

as a sensor does not contribute its sensibility out of this radius.

Figure 7.9: Scan region for sensor N1.

Figure 7.9 illustrates a deployment of sensors. All sensors are N1’s one-

and two-hop neighbors. A corresponding Voronoi diagram from the viewpoint

of sensor N1 is also given when it goes to sleep. The inner circle represents

N1’s one-hop communication radius, and the outer circle denotes its collab-

orative-sensibility radius. Sensors Ni, i = 2, . . . , 6, are N1’s one-hop neighbors

and sensors Ni, i = 7, . . . , 11, are N1’s two-hop neighbors. The shaded areas

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 141

are the confined Voronoi cells that must be assessed to evaluate N1’s sleeping

eligibility. The N1’s two-hop neighbors do not consider its sensibility; therefore,

even parts of their Voronoi cells are inside N1’s collaborative-sensibility radius,

whose areas do not need to be evaluated. (7.3) shows the nonlinearity in the

sensor sensibility with respect to the signal strength, which prohibits derivation

of a simple geometry computation to determine the coverage of the Voronoi

cells of a sensor’s one-hop neighbors. Therefore, we cover these cells with a

virtual square grid and calculate the sensibility of each sampling point at the

center of each grid [134, 136, 145]. The granularity of this grid depends on the

trade-off between computation efficiency and coverage preservation.

7.2.4 Location Error

In all the aforementioned sleeping candidate conditions, each sensor knows its

accurate location. However, this is not realistic [114, 119]. Here we assume

that a sensor’s obtained location is uniformly distributed in a circle located at

its accurate position with radius εd. We call the ratio of the maximum location

deviation εd to a sensor’s sensing radius the normalized deviation of location

ε, and the ratio of the distance between a point and a sensor to the sensor’s

sensing radius the normalized distance d. Without location error, when the

normalized distance is less than 1, the point is deterministically covered by the

sensor. Nevertheless, with location error, all points in (1 + ε) will be covered

by the sensor with uncertainty.

Figure 7.10 shows the coverage cases with different normalized distances,

and Figure 7.11 depicts the corresponding probability of coverage. In the

former figure, a small solid circle denotes a sensor’s obtained location, a dashed

circle represents its normalized deviation of location ε, and a cross expresses

the evaluated point. All points outside the outermost circle cannot be covered.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 142

(a) 0 ≤ ε ≤ 1

(a.1) d ≤ 1-ε (a.2) 1-ε < d ≤ sqrt(1-ε2) (a.3) sqrt(1-ε2) < d ≤ 1+ε

(b) ε > 1

(b.1) d ≤ ε −1 (b.2) ε−1 < d ≤ ε (b.3) ε < d ≤ 1+ε

Figure 7.10: The coverage relationship between a point and a sensor with
location error.

If the sensor is located in the shaded region, the evaluated point can be covered.

Therefore, the probability of coverage is the ratio of the area of the shaded

region to the area of location deviation πε2. Figure 7.10(a.1) shows when

0 ≤ ε ≤ 1, all points in distance (1 − ε) are still covered with probability 1;

however, when ε > 1, the maximum probability of coverage is 1/ε2, as shown

in Figure 7.10(b.1).

With location error, after sleeping configuration we cannot ensure there

is no loss of area coverage for the BSM; however, we can ensure that the

uncovered area is less than a predefined threshold by reducing the sensing

radii of deployed sensors during evaluation of sleeping eligibility. Given a

normalized deviation of location ε and a predefined coverage probability, a

sensor gets its maximized sensing distance from Figure 7.11 and employs this

sensing distance as its adjusted sensing radius.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 143

0

1

2

0

1

2

3

0

0.2

0.4

0.6

0.8

1

normalized deviation of location
normalized distance

pr
ob

ab
ili

ty
 o

f c
ov

er
ag

e

Figure 7.11: Probability of coverage with location error.

For the CSM, we extend the NSFS defined in (7.5) with location error by

introducing the probability of coverage p(Ni, y) as follows:

Si
n(y) = p(Ni, y)s(Ni, y) +

∑

j : Nj ∈ N(i) ∧ s(Nj , y) ≥ εs

p(Nj, y)s(Nj, y), (7.10)

in which p(Ni, y) denotes the probability of point y covered by sensor Ni.

7.2.5 Network Connectivity

When detecting an event, sensors report this event to data sinks. Therefore,

the network should be connected to successfully perform its sensing and mon-

itoring task. Considering only the sensibility issue when evaluating a sensor’s

sleeping eligibility may produce disconnected subnetworks, and as a result,

even though an event is successfully detected by sensors, this information may

not be delivered to the data sinks. To construct an effective sensor network,

we must take the communication connectivity into consideration.

For the BSM, a theorem has been proved [133, 143]: If the communication

radius cr is at least twice of the maximal sensing radius sr, preserving area

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 144

coverage implies maintaining network connected. However, it is only valid for

accurate location information. Therefore, we evaluate whether a sensor’s one-

hop working neighbors will remain connected through each other when this

sensor is removed. For the CSM, we relax this one-hop connectivity check-

ing to two-hop neighbors as a sensor has collected all its two-hop neighbors.

Then, we say that sensor Ni is sleeping-eligible if all the Voronoi cells, that

are inside its collaborative-sensibility radius, of its one-hop working neighbors

are covered, and its one-hop working neighbors will remain connected through

each other or through its two-hop working neighbors when Ni is removed. As

no location information is engaged in this evaluation, it is valid under loca-

tion error. Obviously, if all Ni’s one-hop neighbors are connected, its two-hop

neighbors also are connected because these two-hop neighbors are connected

with at least one of its one-hop neighbors.

The connectivity check through a sensor’s one- or two-hop neighbors is

heuristic, but simulation results show it performs well in maintaining a con-

nected network.

7.3 Sensibility-Based Sleeping Configuration Pro-

tocol (SSCP)

Until now, we have introduced three sleeping candidate conditions: two for

the BSM and one for the CSM. We can apply these conditions for a sensor to

evaluate whether it is sleeping-eligible or not. However, if we simply schedule

all sleeping-eligible sensors to turn off their sensing devices, a covered area re-

duction may be produced when two compensative sensors go to sleep together.

Two sensors are defined as compensative sensors when, if either of them goes

into sleeping status, no covered area will be reduced; however, if both of them

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 145

are sleeping, covered area must be reduced. Therefore, sensors should be care-

fully coordinated to negotiate which sleeping-eligible sensors go to sleep. We

develop here two decentralized and localized coordination protocols: round-

based and adaptive sleeping, to schedule sensors’ on and off time properly in

order to conserve energy and reduce packet collision whilst preserving area

coverage. Therefore, with a set of deployed sensors Ω, the objective of sleeping

configuration is to find a subset of working sensors with which the covered area

of a deployment region is not reduced to be less than the covered area when

all sensors are working while minimizing the number of working sensors and

maintaining network connectivity. Then other sensors are scheduled to sleep.

7.3.1 Round-Based Sleeping Configuration Protocol

The round-based sleeping configuration protocol divides time into rounds. In

each round, every live sensor is given a chance to be sleeping-eligible to balance

energy depletion between sensors. It requires that sensors should be approxi-

mately synchronized [36, 88, 116]. As negotiating among two-hop neighbors is

more complicated than that among one-hop neighbors, here we only address

the sensibility-based sleeping configuration protocol (SSCP) for the CSM. The

protocol for the BSM can be similarly derived.

In this protocol, six timers are employed. Timers Thello−i and Thello−ii are

backoff timers for reducing the probability of packet collision. Timers Twin−i

and Twin−ii are intended for collecting HELLO-I and HELLO-II messages, re-

spectively. Timer Twait is a window for compensative sensors to negotiate their

cooperative status. Timer Tround divides the sensors’ working time into cycles.

At the start of each cycle, all live sensors compete to enter the sleeping mode.

Because of this timer, a working sensor may get a chance to be sleeping-eligible,

thus balancing the sensor’s energy consumption and prolonging the lifetime of

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 146

the network. Moreover, round-based reconfiguration engages a certain inher-

ent immunity to sensor failures as it will attempt to recover covered area and

network connectivity in the next round’s sleeping configuration.

ready-to-
sleeping

ready-to-
 working

workingsleeping
Tround

eligible

ineligible

ineligible

eligible

Tround

TwaitTwait

uncertain I

uncertain II

Twin-i

eligible ineligible

Figure 7.12: Sensor status transition in SSCP.

The corresponding sensor status transition diagram is shown in Figure 7.12,

and the detail protocol steps will be given in the next paragraph. Initially

all sensors are in the WORKING status. After starting configuration, all

live sensors enter the UNCERTAIN-I status, in which they broadcast their

own information and collect their one-hop neighbors. In the UNCERTAIN-II

status, sensors broadcast their collected one-hop neighbors’ information, and

thus their two-hop neighbors’ information will be obtained. The READY-

TO-SLEEPING status and timer Twait are intended to avoid compensative

sensors entering the SLEEPING status at the same time. Timer Twait ter-

minates one round decision, and all live sensor are scheduled into either the

SLEEPING or WORKING status. A sensor in READY-TO-WORKING may

become sleeping-eligible if it receives a STATUS-I or STATUS-II message from

a sensor who or whose one-hop neighbors will provide the residual field sensi-

bility. After the first eligibility evaluation in each round, if a sensor is not a

sleeping candidate, we set its status directly to WORKING. The reason is that

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 147

even though it may receive subsequent STATUS-I and STATUS-II messages,

it cannot be sleeping-eligible any more.

Initially, every sensor is in the WORKING status and sets a round timer

Tround. When its round timer expires, the sensor sets its status to UNCERTAIN-

I and enters the working-sleeping decision phase, which contains eight steps:

1. Setting a backoff timer Thello−i, a window timer Twin−i, a wait timer

Twait, and the next round timer Tround; then starting to collect HELLO-I

messages from neighbors and creating a neighbor list. The HELLO-I

message conveys a sensor’s ID and location.

2. After Thello−i times out, broadcasting a HELLO-I message to all one-hop

neighbors.

3. After Twin−i expires, the HELLO-I messages sent by its one-hop neigh-

bors have been collected, and it prepares to send out a list of its neigh-

bors. Therefore, its status is changed to UNCERTAIN-II. It sets another

backoff timer Thello−ii and a window time Twin−ii; then it starts to collect

HELLO-II messages, which conveys the information of a sensor’s one-hop

neighbors.

4. After Thello−ii times out, broadcasting a HELLO-II message to all neigh-

bors.

5. After Twin−ii expires, it learns all its one- and two-hop neighbors. Now

it is ready to evaluate its sleeping eligibility according to the sleeping

candidate conditions discussed above. If eligible, its status is set to

READY-TO-SLEEPING and broadcasts a STATUS-I message; other-

wise, its status is set to WORKING. The STATUS-I message contains a

sensor’s ID, current status and its one-hop neighbors information. The

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 148

purpose of this message is to alert other compensative sensors to reeval-

uate their sleeping eligibility as the sender has changed its status.

6. When receiving a STATUS-I message, updating the corresponding infor-

mation in the neighbor list, then

(a) If the sensor’s own status is WORKING, other sensors’ status does

not affect its own status; however, as two-hop information is needed

in our sleeping candidate condition, the sensor should forward the

received STATUS-I message. Therefore, it constructs a STATUS-

II message, which contains the same information as the STATUS-I

message, and broadcasts it.

(b) If the status is READY-TO-SLEEPING or READY-TO-WORKING,

its status may be affected by other sensors; therefore, it reevaluates

its sleeping eligibility and sets it status to READY-TO-SLEEPING

or READY-TO-WORKING accordingly. If its status is not changed,

it sends out a STATUS-II message; otherwise, a STATUS-I message

will be dispatched, and no further STATUS-II message is required,

as a STATUS-I message contains the same information as that of a

STATUS-II message.

7. When receiving a STATUS-II message, also updating its neighbor list,

then

(a) If its own status is WORKING, nothing should be done.

(b) If its status is READY-TO-SLEEPING or READY-TO-WORKING,

it reevaluates its sleeping eligibility and changes its status accord-

ingly. If its status is not changed, no further actions are required;

otherwise, it sends out a STATUS-I message.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 149

8. After Twait times out, if its status is READY-TO-SLEEPING, setting the

status to SLEEPING and entering the power saving mode; if the status is

READY-TO-WORKING, setting the status to WORKING and keeping

sensing.

2

3
4

2
3

3

3 3

32 2

2

3
4

4

4
N1

N2

N3

N5

N6

N4

0 2π
ξ12

θ12

ω24

ω25

ω26

0 2π
ξ13

θ13

ω36 ω34ω32

0 2π
ξ14

θ14

ω42

ω43

ω45

0 2πθ15

ξ15
ω52

ω54

ω56

0 2πθ16

ξ16

ω62

ω63

ω65

Figure 7.13: An example of sleeping eligibility evaluation for the BSM with
arc-coverage.

Fig. 7.13 illustrates a sleeping eligibility evaluation for sensor N1 using the

sleeping candidate condition developed under the BSM with arc-coverage. For

all neighbors of N1, their MPACs are greater than or equal to 2. Therefore N1

is 1-coverage sleeping-eligible. Additionally, we identify all critical regions for

2-coverage in Ψ1, which are the areas whose coverage degree is 2 in this figure.

N2 is also a sleeping candidate; however, if both sensors are scheduled into

sleeping, the part of the shaded area whose coverage degree is 2 will not be

covered by any sensors, thus reducing the covered area. This is the reason why

a sleeping-eligible sensor does not set its status to WORKING or SLEEPING

directly after evaluating its sleeping eligibility. If N2 learns that N1 will be

scheduled into sleeping from a STATUS message sent by N1, it will be not

sleeping-eligible anymore, thus preserving area coverage.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 150

7.3.2 Adaptive Sleeping Configuration Protocol

A sensor may suffer failure or deplete its energy. If either of these events oc-

curs when a sensor in the WORKING status, some parts of its sensing area

may no longer satisfy the required coverage. Therefore, we should provide

a mechanism to detect the loss of area coverage and recover it as soon as

possible. The heartbeat message monitoring approach [136] is not suitable in

a wireless sensor architecture due to low power in sensors and the intrinsic

distributed characteristic of sensor networks. The round-based sleeping con-

figuration protocol will attempt to recover the area loss in the next round of

sleeping scheduling [126]; however, timer Tround is a global parameter and not

adaptive to recover a local area loss. Instead, we employ an adaptive sensor

sleeping scheduling protocol by letting each sensor calculate its sleeping time

locally and adaptively to build dependable sensor networks.

In the initial stage, all sensors are scheduled in the same way as the round-

based protocol. After that, each sleeping sensor calculates its next wake-up

time independently and sets a timer Tsleeping. When Tsleeping times out, the

sleeping sensor Ni wakes up and broadcasts a PROBE message to its neigh-

bors. Each neighbor who is in the WORKING status and receives the PROBE

message will return a STATUS message to the sender. The STATUS message

contains not only a sensor’s ID and status, but also its residual energy. Then

Ni evaluates its sleeping eligibility according to the aforementioned sleeping

candidate conditions. If Ni is not sleeping-eligible, it will set its status to

WORKING and provides its sensibility. If it is sleeping-eligible, it will calcu-

late its sleeping time. To do this, it generates a random sleeping time, compares

this with the minimum remaining working time estimated from residual en-

ergy information collected from its neighbors, and sets the smaller of the two

as its Tsleeping. With this adaptive sleeping protocol, each sensor will wake-up

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 151

randomly and reevaluate its sleeping eligibility. If it is no longer sleeping-

eligible due to its neighbors failing or running out of energy, it will switch to

the WORKING status and recover the uncovered areas partially or completely.

The recovery procedure is gradual, because sensors wake-up one by one. The

PROBE message is constrained to reach one-hop neighbors, as broadcasting

this message beyond one-hop during the sleeping period of neighbors may not

exactly collects the required information while consuming too much energy.

Therefore, the described adaptive sleeping configuration protocol is only ap-

propriate to the sleeping candidate conditions for the BSM.

Note that, if we wish to detect an area coverage loss early, we must schedule

sensors to scan their sensing disks more frequently, thus more energy will be

consumed.

7.4 Simulations and Performance Evaluation

To evaluate and validate the capability of our proposed sleeping candidate

conditions for two sensing models, the BSM and the CSM, and the SSCPs in

coordinating sensors to sleep, we have implemented them in ns-2 [42] and con-

ducted a simulation study. We implemented the sleeping candidate condition

for the BSM with arc-coverage (MpacB) in the round-based SSCP, denoted

as SscpAc, and in the adaptive SSCP, denoted as SscpAcA. We also denote

the round-based SSCP with the sleeping candidate condition for the BSM

with Voronoi diagram as SscpVo and the round-based SSCP with the sleeping

candidate condition for the CSM as SscpCo.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 152

7.4.1 Configuration Protocols for Comparison

According to the survey on coverage problems conducted in [19], we also eval-

uate as a baseline the performance of the sponsored sector (SS) eligibility rule

proposed by Tian et al. [126] and Coverage Configuration Protocol (CCP) pro-

posed by Wang et al. [133]. Both protocols are based on the BSM. The SS

rule considers only the sensors inside the sensing radius of an evaluated sensor.

The CPP determines a sensor’s active eligibility by evaluating how the inter-

section points among sensing perimeters are covered inside the sensing disk of

a considered sensor. The CPP states that when a sensor receives a message, it

evaluates its working eligibility. It returns to the SLEEP state if not eligible.

This is not correct as it will produce covered area reduction as a sensor sleeps

prematurely. In our experiments, we make some corrections to ensure the CPP

to preserve the covered area. A probabilistic distributed detection model which

is similar as the CSM has been exploited by Xing et al. [134] with a Coordi-

nating Grid (Co-Grid) protocol in the sleeping configuration. It divides the

deployment region into grids and assumes there is a data fusion center in each

grid. However, it is not fully localized, and fixing the location of the fusion

center is not practical when sensors are randomly deployed. Therefore, it is

not selected as a protocol for comparison. To evaluate the effectiveness of these

distributed protocols in negotiating compensative sensors, we also construct a

centralized algorithm with global coordination, denoted as Central, in which

the same sleeping candidate condition as that of the SscpCo is implemented.

7.4.2 Parameters Setting

The deployed sensing area is 50m×50m [126, 139, 143]. Sensors are scattered

in this area with a uniform distribution. α = 1 and β = 3. The timer pa-

rameters are set as follows: Tround = 100s; Thello−i and Thello−ii are uniformly

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 153

distributed between 0 and 0.3s; Twin−i and Twin−ii are set to 0.4s; Twait = 2s.

The power consumptions of Tx (transmit), Rx (receive), Idle, and Sleeping

modes are 60mW, 12mW, 12mW, and 0.03mW, respectively [139]. The initial

energy reserved for each sensor is uniformly distributed between 14J and 20J.

As all simulated protocols need sensors’ location information, the energy con-

sumption for the GPS or other localization protocols is omitted. The default

communication radius cr is 20m, the number of deployed sensors is 100, the

coverage degree for the BSM is 1, the coverage requirement εs for the CSM is

0.001 (i.e., the ensured-sensibility radius is 10m), and the normalized deviation

of location error is 0, unless specified. The granularity of the virtual square

grid for the SscpCo is 2m [134, 136]. We also assume that there is no packet

loss during simulation. All the results quoted were obtained from an average

of 20 simulation runs.

7.4.3 Experimental Results and Discussions

In this subsection, we present the experimental results from different aspects:

communication radius, number of deployed sensors, energy consumption, sen-

sor redundancy, sensibility threshold, loss of area coverage, sensitivity to sensor

failures, and network lifetime.

Sleeping Sensor vs. Communication Radius

Since the neighboring information is shared by broadcasting messages, the

communication radius should affect the number of neighbors, and thus impact

the percentage of sleeping sensors. Figure 7.14 shows the variation of the

percentage of sleeping sensors with the communication radius without and

with location error. As the SS, the SscpAc, and the SscpVo utilize one-hop

neighbors, we also implemented the CCP with only one-hop neighbors for

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 154

8 12 16 20 24
0

20

40

60

80

communication radius (m)

sl
ee

pi
ng

 s
en

so
r

(%
)

8 12 16 20 24
0

20

40

60

80

communication radius (m)
sl

ee
pi

ng
 s

en
so

r
(%

)

SscpAc
SscpVo
SscpCo
CCP
SS
Central

(a) ε = 0 (b) ε = 1

Figure 7.14: Percentage of sleeping sensors vs. communication radius cr.

comparison.

When we increase the communication radius, a sensor will identify more

adjacent sensors. If a sensor has more neighbors, its responsible sensing area

is more likely to be covered by its neighbors. As a result, more sensors will be

sleeping-eligible. However, if we increase the communication radius further,

the performance of all the protocols tends to be saturated. In addition, with-

out location error (Figure 7.14(a)), the SS reaches saturation when cr = sr;

for other protocols, the saturation condition is cr = 2 · sr. This is because the

SS only considers the neighbors which are in the sensing radius of a sensor as

its sensing sponsors. Although there are some other sensors providing sensing

sponsorship, it ignores them, leading to lower percentage of sleeping-eligible

sensors. The performance of the SscpAc, the SscpVo, and the CCP are almost

the same. However, the SscpCo achieves some lower performance, especially

when cr is small. We know that a sensor with the CSM takes much more

sensing responsibility than that with the BSM. Hence, in the SscpCo a sen-

sor needs to scan its one-hop neighbors’ Voronoi cells; while in the BSM, a

sensor only needs to evaluate its own sensing disk which is much smaller. A

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 155

larger responsible area implies that a sensor will get a smaller opportunity to

be sleeping-eligible. This effect becomes more significant when the number of

neighbors is small. With location error (Figure 7.14(b)), all distributed proto-

cols identify fewer sleeping-eligible sensors. Although the performance of the

CCP is higher than those of other protocols, the cost it must to pay is higher

loss of area coverage, which is shown in Figure 7.21 later.

Compared with the result achieved by the Central algorithm, all the evalu-

ated distributed protocols cannot identify sleeping candidates efficiently with a

small cr. Even with a large cr, there is still a performance gap between central-

ized and distributed algorithms. The SscpAc performs the same as the SscpVo.

This can be explained by that both are implemented in the round-based SSCP

and they are equivalent in identify sleeping-eligible sensors.

Due to the sharing characteristic of the wireless transmission medium, the

probability of packet collision is also increased when there is a long communi-

cation radius. Consequently, the number of neighbors discovered through the

broadcasting approach may decrease. Linking this with the fact that a long

communication range consumes more energy, we should choose an appropriate

communication radius to enable acquisition of adequate neighboring informa-

tion with as little energy consumption as possible while achieving the maximal

percent of sleeping sensors. Therefore, for the following experiments we set

cr = 20m.

Number of Working vs. Deployed Sensors

Figure 7.15 shows a plot of the number of working sensors as a function of the

number of deployed sensors. A good sleeping configuration protocol should

keep the number of working sensors irrespective of the number of deployed

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 156

40 60 80 100 120
10

20

30

40

50

60

70

80

number of deployed sensors

nu
m

be
r

of
 w

or
ki

ng
 s

en
so

rs

SscpAc
SscpVo
SscpCo
CCP
SS
Central

Figure 7.15: Number of working vs. deployed sensors.

sensors if the deployed sensors have covered the interested area. The sim-

ulation results show that all protocols engage this property except the SS.

The distributed configuration protocol of the SS changes a sensor’s status to

WORKING as long as a sensor evaluates itself to be not sleeping-eligible, and

does not send out a message to remind other sensors. However, other dis-

tributed configuration protocols allow sensors to change their status between

READY-TO-WORKING and READY-TO-SLEEPING for catching each op-

portunity to go into sleeping. Another observation for a constrained deploy-

ment region is that the marginal sensors are almost always in working status

with the SS as it does not deal with this case. The CCP additionally con-

siders the intersection points between a sensing perimeter and the boundary

of a deployment region. In our proposed sleeping candidate conditions, the

SscpAc only employs the SSAs in a deployment region. In the SscpVo and the

SscpCo, as the Voronoi cells are all finite, the boundary effect is automatically

removed.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 157

40 60 80 100 120
5

10

15

20

25

number of deployed sensors

av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n

(m
J) SscpAc

SscpVo
SscpCo
CCP
SS

Figure 7.16: Energy consumption for configuration.

Energy Consumption for Configuration

Scheduling sensors is to conserve energy consumption; however, sleeping config-

uration itself consumes energy in transmission HELLO and other coordination

messages. Therefore, we should also evaluate its energy cost. Figure 7.16 shows

average energy consumption for each sensor in the configuration phase. The

energy cost for the SS is the least, as it omits the fluctuation phase between

READY-TO-WORKING and READY-TO-SLEEPING. The SscpAc and the

SscpVo spends the same energy as they are implemented in the same config-

uration protocol. The SscpCo spends more energy than the SscpAc and the

SscpVo do, which is obvious as the former needs to collect two-hop neighbors’

information. In the CPP, a sensor engages two timers: JOIN and WITH-

DRAW, before sending out messages. As the energy consumptions for Tx, Rx,

and Idle are comparable, the energy consumptions in these idle durations dom-

inate that for configuration, thus it expends more energy than other protocols.

However, one advantage is that its energy consumption does not change with

the number of deployed sensors.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 158

Sensor Redundancy

40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

number of deployed sensors

av
er

ag
e

nu
m

be
r

of
 n

ei
gh

bo
rs

SscpAc
SscpVo
SscpCo
CCP
SS
Central
Original

Figure 7.17: Average number of neighbors.

The average number of each sensor’s communication neighbors and the dis-

tribution of field sensibility are two tractable measures for sensor redundancy,

which are investigated in Figure 7.17 and Figure 7.18, respectively. Figure 7.17

shows how sleeping configuration reduces the average number of neighbors that

each sensor perceives. Here the Original denotes the case that all deployed

sensors are in working with no sleeping configuration. The effects of reducing

the number of neighbors are two-fold. On the one hand, more sensors are

scheduled to sleep thus prolonging system lifetime, and decreasing the oppor-

tunity of packet collision. On the other hand, the redundancy of sensors is

also cut down, which may weaken the ability of FT.

The sensibility distributions for the original deployment and after configu-

ration are shown in Figure 7.18. The sensibility calculations for the BSM and

the CSM are different. In the CSM, the sensibility is additive, while in the

BSM, it is not. Without configuration, the center of the sensibility distribution

is far away from the desired sensibility εs = 0.001, which results in depleting

the energy of sensors too quickly. The CCP, the SscpAc, and the SscpVo makes

most sensibility too close to the sensibility threshold, which positions them on

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 159

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

sensibility

pe
rc

en
ta

ge
 (

%
)

SscpAc
SscpVo
SscpCo
CCP
SS
Central
Original

Figure 7.18: Field sensibility distribution.

a disadvantage situation for FT. Nevertheless, the SscpCo balances these two

requirements: prolonging system lifetime and achieving FT. Therefore, the

center of its sensibility distribution is in a moderate area.

Sleeping Sensors vs. Sensibility Threshold

10
−4

10
−3

10
−2

0

20

40

60

80

100

sensibility threshold ε
s

sl
ee

pi
ng

 s
en

so
r

(%
)

SscpAc
SscpVo
SscpCo
CCP
SS
Central

Figure 7.19: Percentage of sleeping sensors vs. sensibility threshold εs.

Figure 7.19 shows how the percentage of sleeping sensors changes with

the sensibility threshold εs. If we enhance the coverage requirement in the

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 160

CSM (equivalent to decreasing the sensing radius in the BSM), the sleeping

percentage is decreased. The result confirms that, when we demand higher

event sensibility, more sensors must be working and fewer sensors are granted

the opportunity to sleep.

Loss of Area Coverage

0 1 2 3 4 5 6
72

74

76

78

80

82

84

86

critical arc threshould (m)

sl
ee

pi
ng

 s
en

so
r

(%
)

SscpAcCa (120)
SscpAcCa (100)
SscpAcCa (80)

Figure 7.20: Percentage of sleeping sensor with SscpAcCa.

Table 7.1: Percentage of area coverage loss (%) with SscpAcCa.

0 1 2 3 4 5 6

SscpAcCa (80) 0 0 0.1 0.2 0.6 0.8 1.1

SscpAcCa (100) 0 0 0.1 0.2 0.5 0.9 1.4

SscpAcCa (120) 0 0 0.1 0.2 0.5 0.8 1.5

The SscpAcCa is a round-based SSCP with the extension of critical arc

to the sleeping candidate condition for the BSM with arc-coverage. It is a

trade-off between loss of area coverage and an increase of sleeping sensors.

Figure 7.20 shows how the percentage of sleeping sensors vary with the critical

arc threshold when the number of deployed sensors are 80, 100, and 120,

respectively; the corresponding coverage area losses are given in Table 7.1.

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 161

These results confirm that our simplified area loss estimation algorithm keeps

the area loss at a low level while increasing the percentage of sleeping sensors.

0 0.5 1 1.5 2
20

30

40

50

60

70

80

normalized deviation of location ε

nu
m

be
r

of
 w

or
ki

ng
 s

en
so

rs

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

normalized deviation of location ε

lo
ss

 o
f a

re
a

co
ve

ra
ge

 (
%

) SscpAc
SscpVo
SscpCo
CCP
SS

(a) (b)

Figure 7.21: Deviation of location.

Figure 7.21 shows the effect of the location error on the loss of area cover-

age. With large deviations, fewer coverage sponsors are identified; therefore,

the number of WORKING sensors of all sleeping scheduling protocols increase

with the normalized deviation of location. As the SS only considers cover-

age sponsors in a sensor’s sensing disk, it keeps enough redundant sensors to

tolerate location error, and its loss of area coverage is almost 0, as shown in

Figure 7.21(b). The CCP identifies sleeping-eligible sensors effectively; how-

ever, it does not take the location error into consideration. Therefore, although

its number of WORKING sensors is the least when the normalized deviation

of location is not very large, its loss of area coverage is the largest. The SscpAc

and the SscpVo, on the other hand, reduce the loss of area coverage by allow-

ing a few more sensors to work. The SscpCo also performs well in tolerating

location error. One interesting observation is that the loss of area coverage

will be decreased when the normalized deviation of location becomes larger.

This reduction is a result of more working sensors. Even when the number of

WORKING sensors in the SscpAc or the SscpVo is less than that in the CCP,

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 162

the loss of area coverage in the SscpAc or the SscpVo is still less than that in

the CCP with large deviation of location.

Sensitivity to Sensor Failures and Network Lifetime

To simulate failure due to causes other than energy depletion, such as de-

struction, malfunction, etc., we assume failures strike sensors according to an

exponential distribution. The MTTF is set between 1000s and 5000s.

1000 2000 3000 4000 5000
0

200

400

600

800

1000

1200

1400

MTTF (s)

10
0%

−
co

ve
ra

ge
 a

cc
um

ul
at

ed
 ti

m
e

SscpAc
SscpVo
SscpCo
CCP
SS
Original

1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

MTTF (s)

98
%

−
co

ve
ra

ge
 a

cc
um

ul
at

ed
 ti

m
e

(a) (b)

Figure 7.22: χ-coverage accumulated time vs. MTTF when ε = 1.

The simulation results are shown in Figures 7.22 and 7.23 when the nor-

malized deviation of location error ε = 1. The data are given with the χ-

coverage accumulated time, defined as the total time during which χ or more

percentage of the original covered area still satisfies the coverage threshold.

All χ-coverage accumulated times increase with the MTTF. If the original

covered area should supply 100%-coverage as long as possible, the deployment

of sensors should maintain as much redundancy as possible. Thus, the origi-

nal deployment without sleeping configuration achieves the best performance,

shown in Figure 7.22(a). The performance of the SscpCo is quite good as

it exploits the collaboration between neighboring sensors and provides proper

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 163

redundancy. The underestimation of sleeping-eligible sensors in the SS makes

it in an advantage to provide 100%-coverage under location errors and sensor

failures. Although the SscpAc and the SscpVo take the location error into

consideration, they do not provide enough redundancy to tolerate sensor fail-

ures. Therefore, their performance in 100%-coverage is poor. The CCP almost

cannot achieve 100%-coverage due to location error. This confirms the results

of sensibility distribution in Figure 7.18. When we decrease χ a little to 98%,

the advantage of our SscpCo is clearly revealed, shown in Figure 7.22(b). In

this case, even the SscpAc and the SscpVo will perform comparably to the

Original and the SS. This can be explained by the extended system lifetime

by sensor configuration, which are shown in Figure 7.24(a) when the MTTF

is 4000s. However, the CCP still does not provide acceptable performance.

To provide FT for coverage preservation, three approaches are investigated.

The first one is the adaptive sleeping configuration protocol SscpAcA. The ran-

domly generated sleeping time for the SscpAcA follows an exponential distrib-

ution with a mean equal to Tround for comparison with the round-based proto-

col. But all generated variables which are greater than 2Tround will be rounded

down to 2Tround. The second one is that we initially specify (k + 1)-coverage,

which provides one more coverage degree than the design requirement. The

last approach is that we configure the sleeping sensors with short communi-

cation radius to keep sensor redundancy. In this specific simulation the latter

two approaches are denoted as SscpAc/2 and SscpAc/R=12m, respectively.

From Figure 7.23, we observe that all three FT approaches improves the

100%-coverage accumulated time. The SscpAc/2 and the SscpAc/R=12m dis-

play similar performance on 100%-coverage, while the SscpAcA performs worse

than those two. However, due to more energy consumption, their performance

will be comparable to that of the SscpAc on 98%-coverage. Figure 7.24(b)

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 164

1000 2000 3000 4000 5000
0

200

400

600

800

1000

MTTF (s)

10
0%

−
co

ve
ra

ge
 a

cc
um

ul
at

ed
 ti

m
e

SscpAc
SscpAc/2
SscpAc/R=12m
SscpAcA

1000 2000 3000 4000 5000
800

1000

1200

1400

1600

1800

MTTF (s)
98

%
−

co
ve

ra
ge

 a
cc

um
ul

at
ed

 ti
m

e
(a) (b)

Figure 7.23: χ-coverage accumulated time vs. MTTF with FT approaches
when ε = 1.

shows their corresponding lifetime when the MTTF is 4000s.

Figure 7.24 shows the lifetime of sensors with different configuration pro-

tocols. The CPP extends the network lifetime most effectively because it does

not take FT and location error into consideration and keeps the fewest sensors

operating at any given time. The Original and the SS display a quicker de-

crease in the percentage of live sensors with time. The lifetime of the SscpAc,

the SscpVo, and the SscpCo is somewhat less than that of the CCP ; however,

it is still much larger than that of the SS.

Taking the results in Figures 7.22, 7.23, and 7.24 together, we observe that

there are three effective approaches to build a dependable sensor network.

The SscpAc/2 and the SscpAc/R=12m display similar performance; there-

fore, decreasing the communication radius or increasing the coverage degree

is equivalent to providing FT, which is the first approach. Detecting sensor

failures and recovering the area loss as quickly as possible is the second one,

such as the SscpAcA. Exploiting the cooperation between neighboring sensors

is the third one, such as the SscpCo with the CSM. We also observe that the

cost we must pay for FT with the BSM is more energy consumption, thus

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 165

0 500 1000 1500 2000 2500 3000 3500
20

40

60

80

100

time (s)

liv
e

se
ns

or
 (

%
)

SscpAc
SscpVo
SscpCo
CCP
SS
Original

0 500 1000 1500 2000 2500 3000 3500
20

40

60

80

100

time (s)

liv
e

se
ns

or
 (

%
)

SscpAc
SscpAc/2
SscpAc/R=12m
SscpAcA

(a)

(b)

Figure 7.24: Percentage of live sensors vs. time when the MTTF is 4000s and
ε = 1.

shorter area monitoring time.

7.5 Summary

This chapter exploits problems of energy conservation and FT while maintain-

ing desired coverage and network connectivity with location error in wireless

sensor networks. Two sensing models are investigated: the BSM and the CSM.

We develop three sleeping candidate conditions: one for the BSM with arc cov-

erage, one for the BSM with Voronoi diagram, and one for the CSM. After that

Chapter 7 Sensibility-Based Sleeping Configuration in Sensor Networks 166

two distributed and localized sleeping configuration protocols (SSCPs) are de-

veloped, round-based and adaptive sleeping, which effectively identify redun-

dant sensors and coordinates them to sleep for saving energy by exploiting the

cooperation between adjacent sensors. Moreover, an adequate sensor redun-

dancy is still kept to tolerate sensor failures and energy depletions. Finally, our

sleeping candidate conditions integrate the sensing coverage requirement with

the network connectivity, which results in the network still being connected af-

ter sleeping-eligible sensors turn off their communication devices. Our results

show that there exists a trade-off among network lifetime, sensing coverage,

and FT, which varies between different configuration protocols. Three effec-

tive approaches to build dependable wireless sensor networks are suggested:

increasing the required degree of coverage or reducing the communication ra-

dius during sleeping configuration, configuring sensor sleeping adaptively, and

utilizing the cooperation between neighboring sensors.

2 End of chapter.

Chapter 8

Conclusions and Future

Directions

In this thesis, we investigate FT, performance, and reliability in wireless in-

frastructure networks (illustrated by wireless CORBA) and ad hoc sensor net-

works as their components are failure-prone. However, since the missions of

these two types of wireless networks are different, we discuss their FT, perfor-

mance, and reliability in different approaches.

First, on the basis of FT–CORBA and wireless CORBA specifications,

we build a FT wireless CORBA with message logging and checkpointing. It

employs both the quasi-sender-based and the receiver-based message logging

methods. The protocol tolerates MH disconnection, MH crash, and AB crash.

It chooses the storage available at AB as stable storage to log messages and

save checkpoints. To tolerate AB crash, it replicates an AB’s state on the

previous AB for each MH. It also engages the handoff mechanism as a means

to recover from AB crash. An opportunity for further research exists, such

as optimistic message logging for wireless networks to reduce the block time

introduced by pessimistic logging, hybrid checkpointing for wired and wireless

networks to exploit different characteristics, FT broadcast/multicast proto-

cols with MH handoff, mobile database recovery at HLA, fault detectors and

167

Chapter 8 Conclusions and Future Directions 168

consensus problems in malicious environments, etc.

After that, we analyze expected message sojourn time at AB in the pres-

ence of MH failures and handoffs with five message scheduling strategies: the

basic queueing model, the static and the dynamic processor-sharing models,

the cyclic polling model, and the feedback model. The expected message so-

journ times are derived under steady state. Analytical and simulation results

show that the basic model and the static processor-sharing dispatch model

demonstrate the worst performance. The other three models may be suitable

for applications as the dispatch strategy for AB; however, the runtime environ-

ment determines which one should be implemented. It would be interesting to

derive analytical results for the left three models: the basic model, the cyclic

polling model, and the feedback model, to generalize the exponentially distrib-

uted message arrival interval and service time, to examine the performance in

the presence of additional AB failure, to assess the load of AB imposed by FT

protocols, and to evaluate the average recovery time due to scattered message

logs.

Third, we study the program execution time with three checkpointing

strategies in wireless networks: deterministic checkpointing, random check-

pointing, and time-based checkpointing. The termination requirement for a

program at MH is now changed from time used in the literature for single

host to the number of computational messages that it should receive. We

assume that MH and wireless link failure intervals, message arrival interval,

and handoff interval are r.v.s with exponential distributions. We derive the

LST of the c.d.f. of the total program execution time and its expectation. We

show that the performance of random checkpointing approach is more stable

against varying parameter conditions. Based on our study, different check-

pointing strategies, including the absence of checkpointing, can be engaged to

Chapter 8 Conclusions and Future Directions 169

achieve optimal performance under different mobile wireless network condi-

tions. In our performance analysis model, we assume that after a failure the

messages still arrive at MH as that in the normal situation with exponential

distribution. But during the recovery interval (repair and rollback), messages

are queued at AB. So after a failure, there should be a time interval in which

the time between two successive message arrivals is not distributed exponen-

tially. We should take this into consideration to construct a more realistic

analysis model. Another potential area of research is to study the effect of

wireless bandwidth and MH disconnection on program execution time.

Furthermore, we extend traditional reliability analysis of wired networks

to wireless networks with imperfect components. The unique characteristic of

wireless networks is handoff, which leads to different communication structures

in which various types and numbers of components are engaged. Traditional

reliability definition is not suitable to be employed in this situation, so we pro-

pose a new term, end-to-end mobile reliability, to describe reliability scenarios

in wireless networks. We also identify the RI of each component with respect

to the mobile reliability. Under different conditions, different components in

wireless networks should be focused on to receive the highest reliability gain.

Future work should involve development of end-to-end reliability evaluation

for sensor networks, in which one end is composed of a cluster of sensors, thus

the failure of one or more sensors may not cause the failure of event detection.

Along with the reliability issue, message delay due to sensor failures should

also be evaluated.

Finally, this thesis exploits energy conservation and FT while maintaining

area coverage and network connectivity with location error in wireless ad hoc

sensor networks. We investigate two sensing models, the BSM and the CSM,

and develop three sleeping candidate conditions based on arc-coverage and

Appendix Conclusions and Future Directions 170

Voronoi diagram. The sleeping candidate conditions can be applied with het-

erogeneous sensors and with various coverage requirements. Then a distributed

and localized sleeping configuration protocol (SSCP) is presented, which effec-

tively identifies redundant sensors and coordinates them to sleep for saving

energy by collecting one- or two-hop neighbors information. Three effective

approaches to build dependable wireless sensor networks are suggested: in-

creasing the required degree of coverage or reducing the communication radius

during sleeping configuration, coordinating sensor sleeping adaptively, and uti-

lizing the cooperation between neighboring sensors. A number of issues remain

to be studied. We are investigating on relaxing the assumption of known loca-

tion information and no packet loss in transmission. Finding a reliable path to

report event detection to end-user and integrating sleeping configuration proto-

col with routing protocols and data delivery protocols are also very important

to build practical wireless sensor networks.

Appendix A

List of Acronyms

AB Access Bridge

AP Access Point

CORBA Common Object Request Broker Architecture

ba basic dispatch

BSM Boolean Sensing Model

CCS Complete-Coverage Sponsor

c.d.f. cumulative distribution function

cp cyclic polling dispatch

CSM Collaborative Sensing Model

CSFS Collective-Sensor Field Sensibility

CSG Covered Sensing Angle

dc deterministic checkpointing

DOC Degree of Complete Coverage

171

Appendix A List of Acronyms 172

dps dynamic processor-sharing dispatch

edc extended deterministic checkpointing

fb feedback dispatch

FCFS First-Come-First-Served

FT Fault Tolerance or Fault-Tolerant

GIOP General Inter-ORB Protocol

GTP GIOP Tunneling Protocol

HLA Home Location Agent

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object Reference

i.i.d. independent and identically distributed

LST Laplace-Stieltjes Transform

MH Mobile Host

MIOR Mobile IOR

MPAC Minimum Partial Arc-Coverage

MLE Message Log Entry

MR Mobile Reliability

MTTF Mean Time To Failure

NAB New AB

Appendix A List of Acronyms 173

NSFS Neighboring-Sensor Filed Sensibility

OAB Old AB

OMG Object Management Group

ORB Object Request Broker

p.m.f probability mass function

rc random checkpointing

RI Reliability Importance

r.v. random variable

SH Static Host

SN Sequence Number

sps static processor-sharing dispatch

SSCP Sensibility-based Sleeping Configuration Protocol

SSA Sponsored Sensing Arc

SSG Sponsored Sensing Angle

SSR Sponsored Sensing Region

tc time-based checkpointing

Appendix B

List of Notations

α energy emitted by an event occurring at point y

β decaying factor of a sensing signal

γa AB’s failure rate

γh HLA’s failure rate

γl wireless link’s failure rate

γm MH’s failure rate

γs SH’s failure rate

ε normalized deviation of location

εd maximum deviation of location

εs sensibility threshold

εn signal threshold

ζi degree of complete coverage of sensor Ni

η handoff completion rate

174

Appendix B List of Notations 175

θij sponsored sensing angle for sensor Nj to sensor Ni

ι checkpointing rate

κ MH’s recovery rate

Λ(t) MH’s state at time t

λ message arrival rate

λ∗ message arrival rate in the presence of wireless link failures

µ AB’s message service rate

ν location-forwarding rate

ξij minimum partial arc-coverage sponsored by sensor Nj to sensor Ni

πx(t) Pr{state x}, x ∈ {a, b, . . . , r}

ρ MH’s handoff rate

ρa AB’s traffic intensity

ρd expected traffic intensity of a message queue with the dynamic processor-

sharing dispatch model

σij direction of sensor Ni referred to sensor Nj

τij sponsored sensing arc for sensor Nj to sensor Ni

υ switchover rate in the cyclic polling and feedback dispatch models

Φ sensor deployment region

φZ(s) LST of the c.d.f. of a r.v. Z

Ψi sensing disk of sensor Ni

Appendix B List of Notations 176

Ω deployed sensor set in a sensor deployment region Φ

ωij covered sensing angle of sensor Ni by sensor Nj

A average effectiveness which is the ratio between the expected program exe-

cution time without and with failures, handoffs, and checkpoints

C total checkpointing time, i.e., T
(h,l)
1 + T

(l)
2

c event of checkpointing

CCS(i) complete-coverage sponsors of sensor Ni

cr communication radius of a sensor

D time requirement to dispatch a message at AB

d normalized distance

d(Ni, Nj) Euclidean distance between sensors Ni and Nj

E(Z) expectation of a r.v. Z

f event of MH failure

G(s, n, v) Qn
1 (s)

[
1− φv(Q3(s))

∑n−1
i=0

(vQ3(s))i

i!

]

GZ(t) general c.d.f. of a r.v. Z

H MH’s handoff time

h event of handoff

I number of received messages before taking a checkpoint with random check-

pointing

IRi
(t) RI of component i ∈ {mh, ab, sh, hla}

Appendix B List of Notations 177

L number of deliverable messages in the dispatch facility with the dynamic

processor-sharing dispatch model

l event of wireless link failure

MRr(t) end-to-end MR for scheme r ∈ {ss,ms, sm, mm}

m number of MHs covered by an AB

Ndc(n, u) number of checkpoints with deterministic checkpointing

Ni sensor i

N(i) one-hop working neighbors of sensor Ni

Nrc(n, p) number of checkpoints with random checkpointing

n number of computational messages that an MH should receive to complete

its program

nc number of component c ∈ {mh, sh}

p parameter of a geometric distribution

px stationary probability in state x ∈ {0, 1, 2}

p(Ni, y) probability of point y covered by sensor Ni

Q rate matrix of a Markov process

Q1(s)
λ

s+γ1+λ+ρ−ρφ
H(l) (s+γ1)

q1 Q1(s)|s=0

Q2(s)
pφC(s+γ1)

1−(1−p)Q1(s)

q2 Q2(s)|s=0

Appendix B List of Notations 178

Q3(s) s + γ1 + λ + ρ− ρφH(l)(s + γ1)

Q3 Q3(s)|s=0

R repair time

R′ total time between a failure and the instant that the program is ready to

receive computational messages, i.e., [R + T
(l)
3 + T

(h,l)
4](f)

Ri(t) reliability of component i at time t, i ∈ {mh, ab, sh, hla}

S switchover time

Sc(y) collective-sensor field sensibility for an event occurring at point y

Si
n(y) neighboring-sensor field sensibility perceived by sensor Ni for an event

occurring at point p

s s-domain in LST

s(Ni, y) sensibility of sensor Ni for an event occurring at a measuring point y

sri sensing radius of sensor Ni

src
i collaborative-sensing radius of sensor Ni

sre
i ensured-sensing radius of sensor Ni

T1 time to take a checkpoint on an MH

T2 time to save a checkpoint on stable storage

T3 time to retrieve a checkpoint to an MH

T4 time to reload a checkpoint

Appendix B List of Notations 179

Tz message sojourn time with the dispatch strategy z ∈ {ba, sps, dps, cp, fb}
at AB

U MH’s recovery time

u number of received messages before taking a checkpoint with deterministic

checkpointing

u′ number of left messages after taking the last checkpoint interval with de-

terministic checkpointing

v time between two sequential checkpoints with time-based checkpointing

w number of program execution intervals with deterministic checkpointing

X(n) total program execution time with n messages in the absence of MH and

wireless link failures, handoffs, and checkpointings

x system communication state

Y time to the first MH failure

Z(e) total program execution time in the presence of events e ⊆ {f, l, h, c}
with the time requirement Z

z system failure state

Bibliography

[1] A. Acharya, B. Badrinath, and T. Imielinski. Checkpointing distributed

applications on mobile computers. In Proc. of the 3rd International

Conference on Parallel and Distributed Information Systems, pages 73–

80, Austin, Texas, Sept. 1994.

[2] K. K. Aggarwal, J. S. Gupta, and K. B. Misra. A simple method for

reliabiilty evaluation of a communication system. IEEE Transactions on

Communications, 23(5):563–566, May 1975.

[3] J. H. Ahn and C. S. Hwang. Low-cost fault-tolerance for mobile nodes

in mobile ip based systems. In Proc. of the 15th International Parallel

and Distributed Processing Symposium, pages 508–513, San Francisco,

California, Apr. 2001.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey

on sensor networks. IEEE Communications Magazine, pages 102–114,

Aug. 2002.

[5] S. Alagra, R. Rajagopalan, and S. Venkatesan. Tolerating mobile support

station failures. In Proc. of the 1st Conference on Fault Tolerant Systems,

pages 225–231, Madras, India, Dec. 1995.

180

Bibliography 181

[6] R. Alena, D. Evenson, and V. Rundquist. Analysis and testing of mo-

bile wireless networks. In Proc. of 2002 IEEE Aerospace Conference,

volume 3, pages 1131–1144, Big Sky, Montana, Mar. 2002.

[7] R. Alena, E. Yaprak, and S. Lamouri. Modeling a wireless network for

international space station. In Proc. of 2000 IEEE Aerospace Conference,

volume 1, pages 223–228, Big Sky, Montana, Mar. 2000.

[8] T. Altiok. Queueing modeling of a single processor with failures. Per-

formance Evaluation, 9(2):93–102, 1988/89.

[9] L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic,

causal, and optimal. IEEE Transactions on Software Engineering,

24(2):149–159, Feb. 1998.

[10] ANSI/IEEE. ANSI/IEEE std. 802.11, 1999 edition. 1999.

[11] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geo-

metric data structure. ACM Computing Surveys, 23(3):345–405, Sept.

1991.

[12] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions

on Dependable and Secure Computing, 1(1):11–33, Jan.-Mar. 2004.

[13] S. Bandyopadhyay and E. J. Coyle. An energy efficient hierarchical clus-

tering algorithm for wireless sensor networks. In Proc. of IEEE Infocom

2003, volume 3, pages 1713–1723, San Franciso, California, Mar. 2003.

[14] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in

fault-tolerant computing. ACM Computing Surveys, 25(2):171–220, June

1993.

Bibliography 182

[15] G. Bolch, S. Greiner, H. d. Meer, and K. S. Trivedi. Queueing Net-

works and Markov Chains: Modeling and Performance Evaluation with

Computer Science Applications. John Wiely & Sons, New York, 1998.

[16] G. Cao and M. Singhal. Mutable checkpoints: A new checkpointing

approach for mobile computing systems. IEEE Transactions on Parallel

and Distributed Systems, 12(2):157–172, Feb. 2001.

[17] B. Carbunar, A. Grama, and J. Vitek. Distributed and dynamic voronoi

overlays for coverage detection and distributed hash tables in ad-hoc

networks. In Proc. of the 10th International Conference on Parallel and

Distributed Systems, pages 549–555, Newport Beach, California, July

2004.

[18] B. Carbunar, A. Grama, J. Vitek, and O. Carbunar. Coverage preserving

redundancy elimination in sensor networks. In Proc. of the 1st Annual

IEEE Communications Society Conference on Sensor and Ad Hoc Com-

munications and Networks, pages 377–386, Santa Clara, California, Oct.

2004.

[19] M. Cardei and J. Wu. Energy-efficient coverage problems in wireless ad

hoc sensor networks. Journal of Computer Communications on Sensor

Networks, 2005. to be published.

[20] A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sensor

networks topologies. IEEE Transactions on Mobile Computing, 3(3):1–

14, July 2004.

[21] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig. Analytic

models for rollback and recovery strategies in data base systems. IEEE

Transactions on Software Engineering, SE-1(1):100–110, Mar. 1975.

Bibliography 183

[22] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An

energy-efficient coordination algorithm for topology maintenance in ad

hoc wireless networks. Wireless Networks, 8:481–494, 2002.

[23] I.-R. Chen, B. Gu, S. George, and S.-T. Cheng. On failure recoverabil-

ity of client-server applications in mobile wireless environments. IEEE

Transactions on Reliability, 54(1):115–122, Mar. 2005.

[24] X. Chen and M. R. Lyu. Message logging and recovery in wireless

CORBA using access bridge. In Proc. of the 6th International Sympo-

sium on Autonomous Decentralized Systems, pages 107–114, Pisa, Italy,

Apr. 2003.

[25] X. Chen and M. R. Lyu. Performance and effectiveness analysis of check-

pointing in mobile environments. In Proc. of the 22nd Symposium on

Reliable Distributed Systems, pages 131–140, Florence, Italy, Oct. 2003.

[26] X. Chen and M. R. Lyu. Expected-reliability analysis for wireless

CORBA with imperfect components. In Proc. of the 10th International

Symposium Pacific Rim Dependable Computing, pages 207–215, Tahiti,

French Polynesia, Mar. 2004.

[27] X. Chen and M. R. Lyu. Queueing analysis for access points with fail-

ures and handoffs of mobile stations in wireless networks. In Proc. of

2004 IEEE Aerospace Conference, volume 1, pages 1296–1304, Big Sky,

Montana, Mar. 2004.

[28] X. Chen and M. R. Lyu. Analysis of program execution time based on

various checkpointing strategies in mobile wireless environments. IEEE

Transactions on Mobile Computing, 2005. submitted.

Bibliography 184

[29] X. Chen and M. R. Lyu. Ensuring area coverage with node scheduling in

wireless sensor networks. 2005. submitted to the 2nd IEEE International

Conference on Mobile Ad-hoc and Sensor Systems.

[30] X. Chen and M. R. Lyu. Reliability analysis for various communica-

tion schemes in wireless CORBA. IEEE Transactions on Reliability,

54(2):232–242, June 2005.

[31] X. Chen and M. R. Lyu. Sensibility-based sleeping configuration for

wireless sensor networks. 2005. submitted to the 3rd ACM Conference

on Embedded Networked Sensor Systems.

[32] E. G. Coffman. Waiting time distributions for processor-sharing systems.

Journal of the ACM, 17(1):123–130, Jan. 1970.

[33] E. G. Coffman and L. Kleinrock. Feedback queueing models for time-

shared systems. Journal of the ACM, 15(4):549–576, Oct. 1968.

[34] E. G. Coffman Jr and E. N. Gilbert. Optimal strategies for scheduling

checkpoints and preventive maintenance. IEEE Transactions on Relia-

bility, 39(1):9–18, Apr. 1990.

[35] F. Cristian and F. Jahanian. A timestamp-based checkpointing protocol

for long-lived distributed computations. In Proc. of the 10th Symposium

on Reliable Distributed Systems, pages 12–20, Pisa, Italy, Sept. 1991.

[36] H. Dai and R. Han. TSync: A lightweight bidirectional time synchro-

nization service for wireless sensor networks. ACM SIGMOBILE Mobile

Computing and Communications Review, 8(1):125–139, Jan. 2004.

Bibliography 185

[37] B. Dimitrov, Z. Khalil, N. Kolev, and P. Petrov. On the optimal to-

tal processing time using checkpoints. IEEE Transactions on Software

Engineering, 17(5):436–442, May 1991.

[38] W. Dotson and J. Gobien. A new analysis technique for probabilistic

graphs. IEEE Transactions on Circuits and Systems, 26(10):855–865,

Oct. 1979.

[39] A. Duda. The effects of checkpointing on program execution time. In-

formation Processing Letters, 16:221–229, June 1983.

[40] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of

rollback-recovery protocols in message-passing systems. ACM Comput-

ing Surveys, 34(3):375–408, Sept. 2002.

[41] W. Emmerich. Engineering Distributed Objects. John Wiley & Sons,

Ltd, Chichester, 2000.

[42] K. Fall and K. Varadhan. The ns manual, Mar. 2005.

http://www.isi.edu/nsnam/ns.

[43] W. K. Fuchs, N. Neves, and K.-F. Ssu. Dependable distributed and

mobile computing - utilizing time to enhance recovery from failures. In

D. R. Avresky, editor, Dependable Network Computing, chapter 14, pages

315–339. Kluwer Academic, 2000.

[44] S. Gadiraju and V. Kumar. Recovery in the mobile wireless environment

using mobile agents. IEEE Transactions on Mobile Computing, 3(2):180–

191, Apr.–June 2004.

[45] Y. Gao, K. Wu, and F. Li. Analysis on the redundancy of wireless sensor

networks. In Proc. of the 2nd ACM International Workshop on Wireless

Bibliography 186

Sensor Networks and Applications, pages 108–114, San Diego, California,

Sept. 2003.

[46] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi. Minimizing comple-

tion time of a program by checkpointing and rejuvenation. In Proc. of

the 1996 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, pages 252–261, Philadelphia, USA,

May 1996.

[47] D. P. Gaver Jr. A waiting line with interrupted service, including prior-

ities. Journal of the Royal Statistical Society, Series B, 24:73–90, 1962.

[48] J.-C. Geffroy and G. Motet. Design of Dependable Computing Systems.

Kluwer Academic Publisers, Dordrecht, 2002.

[49] E. Gelenbe. On the optimum checkpoint interval. Journal of the ACM,

26(2):259–270, Apr. 1979.

[50] E. Gelenbe and D. Derochette. Performance of rollback recovery systems

under intermittent failures. Communications of the ACM, 21(6):493–499,

June 1978.

[51] V. Grassi, L. Donatiello, and S. Tucci. On the optimal checkpointing of

critical tasks and transaction-oriented systems. IEEE Transactions on

Software Engineering, 18(1):72–77, Jan. 1992.

[52] P. Hall. Introduction to the Theory of Coverage Processes. John Wiley

& Sons, New York, 1988.

[53] B. R. Haverkort. Performance of Computer Communication Systems: A

Model-Based Approach. John Wiely & Sons, Chichester, 1998.

Bibliography 187

[54] B. R. Haverkort, R. Marie, G. Rubino, and K. Trivedi, editors. Performa-

bility Modelling: Techniques and Tools. John Wiely & Sonsy, Chichester,

2001.

[55] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-

efficient communication protocol for wireless microsensor networks. In

Proc. of the 33rd Hawaii International Conference on System Sciences,

pages 1–10, Maui, Hawaii, Jan. 2000.

[56] H. Higaki and M. Takizawa. Checkpoint-recovery protocol for reliable

mobile systems. In Proc. of the 17th Symposium on Reliable Distributed

Systems, pages 93–99, West Lafayette, Indiana, Oct. 1998.

[57] J. Hightower and G. Borriello. Location systems for ubiquitous comput-

ing. IEEE Transactions on Computers, 3(8):57–66, Aug. 2001.

[58] C.-F. Huang and Y.-C. Tseng. The coverage problem in a wireless sensor

network. In Proc. of the 2nd ACM International Workshop on Wireless

Sensor Networks and Applications, pages 115–121, San Diego, California,

Sept. 2003.

[59] J. Jiang and W. Dou. A coverage-preserving density control algorithm for

wireless sensor networks. In Proc. of the 3rd International Conference

on AD-HOC Networks and Wireless, pages 42–55, Vancouver, British

Columbia, July 2004.

[60] J. Jing, A. Helal, and A. Elmagarmid. Client-server computing in mobile

environments. ACM Computing Surveys, 31(2):117–156, June 1999.

[61] D. B. Johoson. Distributed System Fault Tolerance Using Message Log-

ging and Checkpointing. PhD thesis, Rice University, Dec. 1989.

Bibliography 188

[62] R. Jokl and S. Racek. C-Sim version 5.1. Technical Report DCSE/TR-

2003-17, Univ. of Wet Bohemia in Pilsen, May 2003.

[63] T.-Y. Juang. Crash recovery for distributed mobile computing systems.

IEICE Transactions on Fundamentals of Electronic, Communications,

and Computer Science, E84-A(2):668–674, Feb. 2001.

[64] W.-J. Ke and S.-D. Wang. Reliability evaluation for distributed comput-

ing networks with imperfect nodes. IEEE Transactions on Reliability,

46(3):342–349, Sept. 1997.

[65] S. A. Khan and M. I. Abd-El-Barr. On the use of fuzzy logic in a

hybrid scheme for tolerating mobile support station failure. In Proc. of

the IEEE International Conference on Fuzzy Systems, pages 717–722,

Honolulu, Hawaii, May 2002.

[66] G. Khanna, S. Bagchi, and Y.-S. Wu. Fault tolerant energy aware data

dissemination protocol in sensor networks. In Proc. of the 2004 Interna-

tional Conference on Dependable Systems and Networks, pages 739–748,

Florence, Italy, June 2004.

[67] L. Kleinrock. Queueing Systems, Volumn I: Theory. John Wiely & Sons,

New York, 1975.

[68] L. Kleinrock. Queueing Systems, Volumn I: Computer Applications.

John Wiely & Sons, New York, 1976.

[69] L. Kleinrock and R. R. Muntz. Processor sharing queueing models of

mixed scheduling disciplines for time shared systems. Journal of the

ACM, 19:464–482, July 1972.

Bibliography 189

[70] C. M. Krishna, K. G. Shin, and Y.-H. Lee. Optimization criteria for

checkpoint placement. Communications of the ACM, 27(10):1008–1012,

Oct. 1984.

[71] P. Krishna. Performance Issues in Mobile Wireless Networks. PhD

thesis, Texas A&M University, Aug. 1996.

[72] P. Krishna, N. H. Vaidya, and D. K. Pradhan. Recovery in distributed

mobile environments. In Proc. of the IEEE Workshop on Advances in

Parallel and Distributed Systems, pages 83–88, Princeton, New Jersey,

Oct. 1993.

[73] P. Kubat. Estimation of reliability for communication/computer net-

works – simulation/analytic approach. IEEE Transactions on Commu-

nications, 37(9):927–933, Sept. 1989.

[74] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. Effects of checkpointing

and queueing on program performance. Communications in Statistics -

Stochastic Models, 6(4):615–648, 1990.

[75] W. Kuo and M. J. Zuo. Optimal Reliability Modeling: Principles and

Applications. John Wiley & Sons Inc., New Jersey, 2003.

[76] P. L’Ecuyer and J. Malenfant. Computing optimal checkpointing strate-

gies for rollback and recovery systems. IEEE Transactions on Computers,

37(4):491–496, Apr. 1988.

[77] P. A. Lee and T. Anderson. Fault Tolerance – Principles and Prac-

tice, volume 3 of Dependable Computing and Fault-Tolerant Systems.

Springer-Verlag/Wien, New York, second edition, 1990.

Bibliography 190

[78] S. M. Lee and D. H. Park. An efficient method for evaluating network-

reliability with variable link-capacities. IEEE Transactions on Reliabil-

ity, 50(4):374–451, Dec. 2001.

[79] X.-Y. Li, P.-J. Wan, and O. Frieder. Coverage in wireless ad hoc sensor

networks. IEEE Transactions on Computers, 52(6):753–762, June 2003.

[80] C.-M. Lin and C.-R. Dow. Efficient checkpoit-based failure recovery

techniques in mobile computing systems. Journal of Information Science

and Engineering, 17(4):549–573, July 2001.

[81] Y. Ling, J. Mi, and X. Lin. A variational calculus approach to optimal

checkpoint placement. IEEE Transactions on Computers, 50(7):699–708,

July 2001.

[82] B. Liu and D. Towsley. A study of the coverage of large-scale sensor

networks. In Proc. of the 1st IEEE International Conference on Mobile

Ad-hoc and Sensor Systems, pages 475–483, Fort Lauderdale, Florida,

Oct. 2004.

[83] J. Liu, X. Koutsoukos, J. Reich, and F. Zhao. Sensing field: Cover-

age characterization in distributed sensor networks. In Proc. of IEEE

International Conference on Acoustics, Speech, and Signal Processing,

volume 5, pages V–173–176, Hong Kong, Apr. 2003.

[84] M. R. Lyu, editor. Software Fault Tolerance. John Wiley & Sons Ltd.,

1995.

[85] M. R. Lyu, editor. Handbook of Software Reliability Engineering. IEEE

Computer Society Press and McGraw-Hill Book Company, 1996.

Bibliography 191

[86] M. R. Lyu, X. Chen, and T.-Y. Wong. Design and evaluation of a fault-

tolerant mobile-agent system. IEEE Intelligent Systems, 19(5):32–38,

Sept./Oct. 2004.

[87] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Mod-

els, characterization, and classification. IEEE Transactions on Parallel

and Distributed Systems, 10(7):703–713, July 1999.

[88] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time syn-

chronization protocol. In Proc. of the 2nd ACM International Confer-

ence on Embedded Networked Sensor Systems, pages 39–49, Baltimore,

Maryland, Nov. 2004.

[89] S. Megerian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Worst

and best-case coverage in sensor networks. IEEE Transactions on Mobile

Computing, 4(1):84–92, Jan./Feb. 2005.

[90] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak. Expo-

sure in wireless sensor networks: Theory and practical solutions. Wireless

Networks, 8:443–454, 2002.

[91] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava.

Coverage problems in wireless ad-hoc sensor networks. In Proc. of IEEE

Infocom 2001, pages 1380–1387, Anchorage, Alaska, Apr. 2001.

[92] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A fault tolearnce

framework for CORBA. In Proc. of the 29th International Symposium

on Fault-Tolerant Computing, pages 150–157, Madison, Wisconsin, June

1999.

Bibliography 192

[93] V. A. Netes and B. P. Filin. Consideration of node failures in network-

reliability calculation. IEEE Transactions on Reliability, 45(1):127–128,

Mar. 1996.

[94] N. Neves and W. K. Fuchs. Adaptive recovery for mobile environments.

Communications of the ACM, 40(1):68–74, Jan. 1997.

[95] V. F. Nicola. A single server queue with mixed types of interruptions.

Acta Informatica, 23:465–486, 1986.

[96] V. F. Nicola. Checkpointing and the modeling of program execution

time. In M. R. Lyu, editor, Software Fault Tolerance, chapter 7, pages

167–188. John Wiley & Sons Ltd., 1995.

[97] V. F. Nicola, V. G. Kulkarni, and K. S. Trivedi. Queueing analysis of

fault-tolerant computer systems. IEEE Transactions on Software Engi-

neering, 13:363–375, Mar. 1987.

[98] R. Nunez-Queija. Sojourn times in a processor sharing queue with service

interruptions. Queueing Systems, 34:351–386, 2000.

[99] Object Management Group. The Common Object Request Broker: Ar-

chitecture and specification, 3.0.3 edition. OMG Document formal/04-

03-01, Mar. 2004.

[100] Object Management Group. Wireless access and terminal mobility in

CORBA, 1.1 edition. OMG Document formal/04-04-02, Apr. 2004.

[101] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams. John Wiley & Sons,

Ltd, Chichester, 2000.

Bibliography 193

[102] T. Park, N. Woo, and H. Y. Yeom. An efficient recovery scheme for

mobile computing environments. In Proc. of the 8th International Con-

ference on Parallel and Distributed Systems, pages 53–60, KyongJu City,

Korea, June 2001.

[103] T. Park and H. Y. Yeom. An asynchronous recovery scheme based on

optimistic message logging for the mobile computing systems. In Proc.

of the 20th International Conference on Distributed Computing Systems,

pages 436–443, Taipei, Taiwan, Apr. 2000.

[104] J. S. Plank and M. G. Thomason. The average availability of uniprocessor

checkpointing systems, revisited. Technical Report UT-CS-98-400, Univ.

of Tennessee, Aug. 1998.

[105] D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recoverable mobile envi-

ronment: Design and trade-off analysis. In Proc. of the 26th International

Symposium on Fault-Tolerant Computing, pages 16–25, Sendai, Japan,

June 1996.

[106] R. Prakash and M. Singhal. Low-cost checkpointing and failure recov-

ery in mobile computing systems. IEEE Transactions on Parallel and

Distributed Systems, 7(10):1035–1048, Oct. 1996.

[107] P. J. Rasch. A queueing theory study of round-robin scheduling of time-

shared computer systems. Journal of the ACM, 17(1):131–145, Jan. 1970.

[108] R. Ruggaber and J. Seitz. Using CORBA applications in nomadic en-

vironments. In Proc. of the 3rd IEEE Workshop on Mobile Computing

Systems and Applications, pages 161–170, Monterey, California, Dec.

2000.

Bibliography 194

[109] R. Ruggaber and J. Seitz. A transparent network handover for nomadic

CORBA users. In Proc. of the 21st International Conference on Distrib-

uted Computing Systems, pages 499–506, Phoenix, Arizona, Apr. 2001.

[110] H. Rutagemwa and X. Shen. Modeling and analysis of WAP performance

over wireless links. IEEE Transactions on Mobile Computing, 2(3):221–

232, July–Sept. 2003.

[111] R. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliabil-

ity Analysis of Computer Systems: An Example-Based Approach Using

the SHARPE Software Package. Kluwer Acadmedic Publishers, Boston,

1996.

[112] J. L. Schiff. The Laplace Transform: Theory and Applications. Springer,

New York, 1999.

[113] J. Shaio. A family of algorithms for network reliability problems. In Proc.

of 2002 IEEE International Conference on Communications, volume 4,

pages 2167–2173, New York, Apr. 2002.

[114] Y. Shang, H. Shi, and A. A. Ahmed. Performance study of localization

methods for ad-hoc sensor networks. In Proc. of the 1st International

Conference on Mobile Ad-hoc and Sensor Systems, pages 184–193, Fort

Lauderdale, Florida, Oct. 2004.

[115] T. C. Shermer. Recent results in art galleries. Proceedings of the IEEE,

80(9):1384–1399, Sept. 1992.

[116] J.-P. Sheu, C.-M. Chao, and C.-W. Sun. A clock synchronization algo-

rithm for multi-hop wireless ad hoc networks. In Proc. of the 24th Inter-

national Conference on Distributed Computing Systems, pages 574–581,

Tokyo, Japan, Mar. 2004.

Bibliography 195

[117] K. G. Shin, T.-H. Lin, and Y.-H. Lee. Optimal checkpointing of real-

time tasks. IEEE Transactions on Computers, C-36(11):1328–1341, Nov.

1987.

[118] M. L. Shooman. Reliability of Computer Systems and Networks: Fault

Tolerance, Analysis, and Design. John Wiley & Sons Inc., New York,

2002.

[119] M. L. Sichitiu and V. Ramadurai. Localization of wireless sensor net-

works with a mobile beacon. In Proc. of the 1st International Conference

on Mobile Ad-hoc and Sensor Systems, pages 174–183, Fort Lauderdale,

Florida, Oct. 2004.

[120] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless

sensor networks. In Proc. of 2001 IEEE International Conference on

Communications, pages 472–476, Helsinki, Finland, June 2001.

[121] A. P. Snow, U. Varshney, and A. D. Malloy. Reliability and survivability

of wireless and mobile networks. IEEE Computer, 33(7):49–55, July

2000.

[122] K.-F. Ssu. Heterogeneous and Mobile Recovery. PhD thesis, University

of Illinois at Urbana-Champaign, 2000.

[123] H. Takagi. Queuing analysis of polling models. ACM Computing Surveys,

20(1):5–28, Jan. 1988.

[124] H. Takagi. Queueing analysis of polling models: Progress in 1990-1994. In

J. H. Dshalalow, editor, Fronties in Queueuing: Models and Applications

in Science and Engineering, chapter 5, pages 119–146. CRC Press, 1997.

Bibliography 196

[125] A. N. Tantawi and M. Ruschitzka. Performance analysis of checkpointing

strategies. ACM Transactions on Computer Systems, 2(2):123–144, June

1984.

[126] D. Tian and N. D. Georganas. A node scheduling scheme for energy

conservation in large wireless sensor networks. Wireless Communications

and Mobile Computing, 3:271–290, May 2003.

[127] D. Tian and N. D. Georganas. Location and calculation-free node-

scheduling schemes in large wireless sensor networks. Ad Hoc Networks,

2(1):65–85, Jan. 2004.

[128] D. Torrieri. Calculation of node-pair reliability in large networks with

unreliable nodes. IEEE Transactions on Reliability, 43(3):375–377, Sept.

1994.

[129] D. VanderMeer, A. Datta, K. Dutta, K. Ramamritham, and S. B. Na-

vathe. Mobile user recovery in the context of Internet transactions. IEEE

Transactions on Mobile Computing, 2(2):132–146, Apr.–June 2003.

[130] U. Varshney, A. P. Snow, and A. D. Malloy. Measuring the reliability

and survivability of infrastructure-oriented wireless networks. In Proc. of

the 26th Annual IEEE Conference on Local Computer Networks, pages

611–618, Tampa, Florida, Nov. 2001.

[131] U. Varshney and R. Vetter. Emerging mobile and wireless networks.

Communications of the ACM, 43(6):73–81, June 2000.

[132] G. Wang, G. Cao, and T. L. Porta. Movement-assisted sensor deploy-

ment. In Proc. of IEEE Infocom 2004, volume 4, pages 2469–2479, Hong

Kong, Mar. 2004.

Bibliography 197

[133] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated

coverage and connectivity configuration in wireless sensor networks. In

Proc. of the 1st ACM International Conference on Embedded Networked

Sensor Systems, pages 28–39, Los Angeles, California, Nov. 2003.

[134] G. Xing, C. Lu, R. Pless, and J. A. O’Sullivan. Co-Grid: an efficent

coverage maintenance protocol for distributed sensor networks. In Proc.

of the 3rd International Symposium on Information Processing in Sensor

Networks, pages 414 – 423, Berkeley, California, Apr. 2004.

[135] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy con-

servation for ad hoc routing. In Proc. of the 7th ACM International

Conference on Mobile Computing and Networking, pages 70–84, Rome,

Italy, July 2001.

[136] T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for sensor

networks. In Proc. of the 1st ACM International Conference on Embed-

ded Networked Sensor Systems, pages 51–62, Los Angeles, California,

Nov. 2003.

[137] B. Yao and W. K. Fuchs. Proxy-based recovery for applications on wire-

less hand-held devices. In Proc. of the 19th Symposium on Reliable Dis-

tributed Systems, pages 2–10, Nurnberg, Germany, Oct. 2000.

[138] B. Yao, K. F. Ssu, and W. K. Fuchs. Message logging in mobile com-

puting. In Proc. of the 29th International Symposium on Fault-Tolerant

Computing, pages 294–301, Madison, Wisconsin, June 1999.

[139] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust energy

conserving protocol for long-lived sensor networks. In Proc. of the 23rd

Bibliography 198

International Conference on Distributed Computing Systems, pages 28–

37, Providence, Rhode Island, May 2003.

[140] F.-M. Yeh, S.-K. Lu, and S.-Y. Kuo. OBDD-based evaluation of

k-terminal network reliability. IEEE Transactions on Reliability,

51(4):443–451, Dec. 2002.

[141] Y. B. Yoo and N. Deo. A comparison of algorithms for terminal-pair

reliability. IEEE Transactions on Reliability, 37(2):210–215, June 1988.

[142] J. W. Young. A first order approximation to the optimum checkpoint

interval. Communications of the ACM, 16(9):530–531, Sept. 1974.

[143] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectiv-

ity in large sensor networks. Technical Report UIUCDCS-R-2003-2351,

Univ. of Illinois at Urbana Champaign, June 2003.

[144] A. Ziv and J. Bruck. An on-line algorithm for checkpoint placement.

IEEE Transactions on Computers, 46(9):976–985, Sept. 1997.

[145] Y. Zou and K. Chakrabarty. A distributed coverage- and connectivity-

centric technique for selecting active nodes in wireless sensor networks.

IEEE Transactions on Computers, 54(8):978–991, Aug. 2005.

	Abstract
	Acknowledgment
	List of Figures
	1 Introduction
	1.1 Wireless Infrastructure Network
	1.1.1 Architecture of Wireless CORBA
	1.1.2 Message Logging and Recovery in Wireless CORBA
	1.1.3 Message Queueing and Scheduling at Access Bridge
	1.1.4 Program Execution Time at Mobile Host
	1.1.5 Reliability Analysis for Various Communication Schemes

	1.2 Wireless Ad Hoc Sensor Network
	1.2.1 Sensibility-Based Sleeping Configuration

	1.3 Contributions of this Thesis
	1.4 Organization of this Thesis

	2 Background and Literature Review
	2.1 Fault Tolerance in Wireless Infrastructure Networks
	2.2 Job Queueing and Scheduling
	2.3 Program Execution Time
	2.4 Network Reliability
	2.5 Sleeping Configuration in Wireless Ad Hoc Sensor Networks
	2.5.1 Area Coverage
	2.5.2 Network Connectivity
	2.5.3 Area Coverage and Network Connectivity
	2.5.4 Voronoi Diagram

	3 Message Logging and Recovery in Wireless CORBA
	3.1 Fault Tolerance Model
	3.1.1 Data Structures
	3.1.2 Message Logging and Checkpointing
	3.1.3 Mobile Host Handoff
	3.1.4 Mobile Host Disconnection
	3.1.5 Mobile Host Crash
	3.1.6 Access Bridge Crash

	3.2 Simulations and Evaluation
	3.3 Summary

	4 Message Queueing and Scheduling at Access Bridge
	4.1 Mobile Host's State Transition
	4.2 Message Sojourn Time
	4.2.1 Basic Dispatch Model
	4.2.2 Static Processor-Sharing Dispatch Model
	4.2.3 Dynamic Processor-Sharing Dispatch Model
	4.2.4 Cyclic Polling Dispatch Model
	4.2.5 Feedback Dispatch Model

	4.3 Simulations and Discussions
	4.4 Summary

	5 Program Execution Time at Mobile Host
	5.1 Assumptions and Notations
	5.2 Preliminary Execution Times
	5.2.1 Handoff Time with Wireless Link Failures
	5.2.2 Checkpointing Time with Handoffs and Wireless Link Failures
	5.2.3 Recovery Time with Handoffs and MH and Wireless Link Failures

	5.3 Deterministic Checkpointing Strategy
	5.4 Random Checkpointing Strategy
	5.5 Time-based Checkpointing Strategy
	5.6 Comparisons and Discussions
	5.7 Summary

	6 Reliability Analysis for Various Communication Schemes
	6.1 Definitions and Assumptions
	6.2 End-to-end MR and MTTF Analysis
	6.2.1 The MS (MH-SH) Scheme
	6.2.2 The SM (SH-MH) Scheme
	6.2.3 The MM (MH-MH) Scheme
	6.2.4 General End-to-end MTTF

	6.3 Summary

	7 Sensibility-Based Sleeping Configuration in Sensor Networks
	7.1 Assumptions and Problem Formulation
	7.1.1 Boolean Sensing Model
	7.1.2 Collaborative Sensing Model
	7.1.3 Relations between the BSM and the CSM
	7.1.4 Voronoi Diagram

	7.2 Sleeping Candidate Conditions
	7.2.1 Sleeping Candidate Condition for the BSM with Arc-Coverage
	7.2.2 Sleeping Candidate Condition for the BSM with Voronoi Diagram
	7.2.3 Sleeping Candidate Condition for the CSM
	7.2.4 Location Error
	7.2.5 Network Connectivity

	7.3 Sensibility-Based Sleeping Configuration Protocol (SSCP)
	7.3.1 Round-Based Sleeping Configuration Protocol
	7.3.2 Adaptive Sleeping Configuration Protocol

	7.4 Simulations and Performance Evaluation
	7.4.1 Configuration Protocols for Comparison
	7.4.2 Parameters Setting
	7.4.3 Experimental Results and Discussions

	7.5 Summary

	8 Conclusions and Future Directions
	A List of Acronyms
	B List of Notations
	Bibliography

