
Coverage-Based Testing Strategies and
Reliability Modeling for Fault-Tolerant

Software Systems

CAI Xia

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

c©The Chinese University of Hong Kong

September 2006

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

Thesis/Assessment Committee

Professor FU Wai Chee Ada (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor YU Xu Jeffrey (Committee Member)

Professor CHEUNG Shing Chi (External Examiner)

Coverage-Based Testing Strategies and
Reliability Modeling for Fault-Tolerant

Software Systems

submitted by

CAI Xia

for the degree of Doctor of Philosophy

at the Chinese University of Hong Kong

Abstract

Software permeates our modern society, and its complexity and criticality

is ever increasing. Thus the capability to tolerate software faults, particularly

for critical applications, is evident. While fault-tolerant software is seen as a

necessity, it also remains as a controversial technique and there is a lack of

conclusive assessment about its effectiveness.

This thesis aims at providing a quantitative assessment scheme for a com-

prehensive evaluation of fault-tolerant software including reliability model com-

parisons and trade-off studies with software testing techniques. First of all,

we propose a comprehensive procedure in assessing fault-tolerant software for

software reliability engineering, which is composed of four tasks: modeling,

experimentation, evaluation and economics. Our ultimate objective is to con-

struct a systematic approach to predicting the achievable reliability based on

the software architecture and testing evidences, through an investigation of

testing and modeling techniques for fault-tolerant software.

Motivated by the lack of real-world project data for investigation on soft-

ware testing and fault tolerance techniques together, we conduct a real-world

ii

project and engage multiple programming teams to independently develop

program versions based on an industry-scale avionics application. Detailed

experimentations are conducted to study the nature, source, type, detectabil-

ity, and effect of faults uncovered in the program versions, and to learn the

relationship among these faults and the correlation of their resulting failures.

Coverage-based testing as well as mutation testing techniques are adopted to

reproduce mutants with real faults, which facilitate the investigation on the

effectiveness of data flow coverage, mutation coverage, and fault coverage for

design diversity.

Then based on the preliminary experimental data, further experimentation

and detailed analyses on the correlations among these faults and the relation

to their resulting failures are studied. The results are further applied to the

current reliability modeling techniques for fault-tolerant software to examine

their effectiveness and accuracy.

Furthermore, to investigate some “variants” as well as “invariants” of fault-

tolerant software, we perform an empirical investigation on evaluating reliabil-

ity features by a comprehensive comparison between two projects: our project

and NASA 4-University project. Based on the same specification for program

development, these two projects encounter some common as well as different

features. The testing results of two comprehensive operational testing proce-

dures involving hundreds of thousands test cases are collected and compared.

Similar as well as dissimilar faults are observed and analyzed, indicating com-

mon problems related to the same application in both projects. The small

number of coincident failures in the two projects, nevertheless, provide a sup-

portive evidence for N-version programming, while the observed reliability im-

provement implies some trends in the software development in the past twenty

years.

iii

Next, we investigate the effect of code coverage on fault detection which

is the underlying intuition of coverage-based testing strategies. From our ex-

perimental data, we find that code coverage is a moderate indicator for the

capability of fault detection on the whole test set. But the effect of code cov-

erage on fault detection varies under different testing profiles. The correlation

between the two measures is high with exceptional test cases, but weak in

normal testing. Moreover, our study shows that code coverage can be used

as a good filter to reduce the size of the effective test set, although it is more

evident for exceptional test cases.

Finally, we formulate the relationship between code coverage and fault de-

tection. Although our two current models are in simple mathematical formats,

they can predict the percentage of fault detected by the code coverage achieved

for a certain test set. We further incorporate such formulation into traditional

reliability growth models, not only for fault-tolerant software, but also for gen-

eral software system. Our empirical evaluations show that our new reliability

model can achieve more accurate reliability assessment than the traditional

Non-homogenous Poisson model.

iv

容錯軟體系統的覆蓋測試策略與可靠性模型

論文摘要

本論文討論容錯軟體系統的基於代碼覆蓋率的測試策略與可靠性模型。
為了給全面地評測容錯軟體，包括可靠性模型的比較，軟體測試與軟體容錯

之間的平衡，提供一個可度量的評價體系，我們首先提出了一套完整的研究方法

與步驟來測量容錯軟體系統的軟體可靠性工程，包括四個過程：建模，實驗，評

測與平衡。我們的最終目標是通過對容錯軟體測試與可靠性度量技術的學習，構

建一個系統化的、根據軟體結構與測試資料來預測容錯軟體系統可達到的可靠性

水準的方法。
首先，基於目前實驗與測試資料的缺乏，我們設計了一個航空應用的程式專

案，最終得到由多個開發小組獨立完成的多組程式。在此基礎上，我們調查了這

多組程式在開發過程中出現錯陷的來源、特點、類型、可測試性與效果，並研究

了這些錯陷與軟體失敗間的關係。我們採用了變異測試技術以生成融入真實缺陷

的變異體，同時也採用了覆蓋測試法來採集資料流程覆蓋率，變異體覆蓋率及缺

陷查找率等數據。
在這些程式資料的基礎上，我們進一步分析了軟體缺陷與軟體失敗之間的關

聯，並將其應用於目前存在的基於容錯軟體的可靠性模型上，以檢測其有效性與

準確度。
同時，為了分析容錯軟體系統的一些“變數”與“非變數”，我們將自己的

實驗資料與ＮＡＳＡ資助的美國四所大學于１９８７年聯合完成的實驗資料做

了完整地比較與研究。這兩個實驗中同時出現於多個版本之間的軟體失敗數很

少，驗證了多版本程式的有效性。同時兩個實驗的對比也顯示了軟體發展在過去

二十年的發展趨勢。
另外，我們還著重研究了代碼覆蓋率對軟體缺陷檢測數目的影響。我們發現

在整個測試集上，代碼覆蓋率能適當地預測測試用例對軟體缺陷的檢測能力。但

是，這種預測作用在不同的測試策略上是不同的，例如，在異常測試用例時很高，

而在正常測試用例時很低。另外，我們的分析顯示代碼覆蓋率是一個很好的用來

減小測試集數目的指標，儘管它對異常測試用例更有效。
最後，我們對代碼覆蓋率與缺陷檢測率之間的關係建模。儘管這兩個模型只

描述了兩者之間的簡單的數學關係，它們卻能較準確地預測兩者之間的關係。這

種覆蓋率之間的關係還能被融合進傳統的基於測試時間的軟體可靠性模型，以提

高容錯軟體系統的可靠性預測。

 v

Acknowledgment

I would like to take this opportunity to express my sincere gratitude to my

supervisor, Prof. Michael R. Lyu. My Ph.D study would never have been

completed without his exceptional guidance and consistent support. I have

learned a lot from his breadth of knowledge, his enthusiasm for research, as

well as his patience and encouragement. His inspiring advice are extremely

essential and valuable in this research work.

I am so appreciated for all the support and help from Prof. Mladen A. Vouk.

He has spent a lot of his precious time to dig out the NASA 4-University project

data for us, and has given us many valuable comments for the comparison of

the two projects. Many thanks go to Prof. Lorenzo Strigini. During his

short visiting at CUHK, he gave us many inspired suggestions and insights for

possible research directions.

I am so grateful to Prof. Ada Fu, Prof. Jeffrey Yu and Prof. Shing-Chi

Cheung for their precious time to serve as my thesis committee, as well as their

valuable comments and feedback on this work.

I would like to thank Dr. Haixuan Yang for his valuable discussions about

the mathematical formulations. Many thanks go to Dr. Xinyu Chen, Prof.

Ping Guo, Mr. Jianke Zhu and Ms. Huiye Ma, for their help, encouragement

and discussions with this research work.

Last but not least, I would like to thank my husband Xuetai Zhang, for his

love, patience, encouragement, and support. I also express my appreciation to

my parents. They not only teach me the meaning of life, the importance of

study, and the significance of love; but also always stand behind me when I

need love, support and help. Particularly, I want to thank my four-year-old

daughter Shitao. Her love, patience and prayers encourage me a lot when I

finalize this thesis.

vi

Contents

Abstract ii

Acknowledgement vi

1 Introduction 1

1.1 The Effectiveness of Software Testing Strategies 3

1.2 Reliability Modeling for Fault-Tolerant Software 4

1.3 Contributions of this Thesis . 6

1.4 Organization of this Thesis . 6

2 Background and Related Work 8

2.1 Fault-Tolerant Software and its Reliability Models 8

2.1.1 Historical Background 9

2.1.2 Fault-Tolerant Software Techniques 14

2.1.3 Modeling Schemes on Design Diversity 24

2.1.4 Applications . 30

2.2 Software Testing Strategies . 32

2.2.1 Current Testing Strategies 32

2.2.2 Code Coverage: Definition and Indication 34

2.2.3 Comparisons of Different Testing Strategies 36

2.3 Summary . 37

vii

3 Research Procedure and Methodology 39

3.1 Modeling . 41

3.2 Experimentation . 43

3.3 Evaluation . 43

3.4 Economics . 44

3.5 Summary . 45

4 Experimental Setup and Data Collection 46

4.1 Project Descriptions and Experimental Procedure 47

4.1.1 RSDIMU Project . 48

4.1.2 Software Development Procedure 50

4.1.3 Mutant Creation . 51

4.1.4 Setup of Evaluation Test 52

4.1.5 Program Metrics . 53

4.2 Static Analysis of Mutants: Fault Classification and Distribution 55

4.2.1 Mutant Defect Type Distribution 55

4.2.2 Mutant Qualifier Distribution 55

4.2.3 Mutant Severity Distribution 56

4.2.4 Fault Distribution over Development Stage 57

4.2.5 Mutant Effect Code Lines 57

4.3 Dynamic Analysis of Mutants: Effects on Software Testing and

Fault Tolerance . 58

4.3.1 Finding Non-redundant Set of Test Cases 59

4.3.2 Relationship between Mutants 59

4.3.3 Relationship between the Programs with Mutants 60

4.4 Threats to Validity . 64

4.5 Summary . 66

viii

5 Evaluations on Reliability Models under Fault Correlation 68

5.1 Evaluation on Popov, Strigini et al’s Reliability Bounds Model . 69

5.1.1 Prediction Results Using Our Data Set 70

5.1.2 Comparison and Discussion 76

5.2 Evaluation on Dugan and Lyu’s System Reliability Model 78

5.3 Summary . 86

6 Cross Project Comparison on Reliability Features 87

6.1 Experimental Background . 88

6.1.1 NASA 4-University Project 88

6.1.2 Our Project Descriptions 89

6.2 Qualitative Comparison with NASA 4-University Project 89

6.2.1 Fault Analysis in Development Phase 91

6.2.2 Fault Analysis in Operational Test 95

6.3 Quantitative Comparison with NASA 4-University Project . . . 97

6.3.1 Failure Probability and Fault Density 98

6.3.2 Reliability Improvement by N-version Programming . . . 100

6.3.3 Comparison with NASA 4-University Project 102

6.4 Discussions . 105

6.5 Summary . 106

7 Effect of Code Coverage on Fault Detection 108

7.1 Research Questions . 109

7.2 Effectiveness of Code Coverage 109

7.3 Effects of Code Coverage under Various Testing Strategies . . . 117

7.3.1 Under Various Partition Subdomains 119

7.3.2 Partition Testing versus Random Testing 120

7.3.3 Normal Operational Testing versus Exceptional Testing . 122

ix

7.4 Combinations of Various Coverage Metrics 124

7.5 Reduction of the Size of the Effective Test Set 126

7.6 Assessment of Various Testing Strategies 130

7.6.1 Comparisons of Partition Testing and Random Testing . 130

7.6.2 Normal Function Testing versus Exceptional Testing . . 131

7.7 Detailed Analysis in Region IV 132

7.8 Discussions . 134

7.8.1 Threats to Validity . 134

7.8.2 Implications of Our Results 135

7.9 Summary . 138

8 Predicting Reliability With Code Coverage 140

8.1 Two Models on Defect Coverage and Test Coverage 142

8.1.1 A Hyperexponential Model 142

8.1.2 A Beta Model . 144

8.1.3 Empirical Evaluation . 145

8.2 A New Software Reliability Model 148

8.2.1 Assumptions . 149

8.2.2 Model Form . 150

8.3 Experimental Setup . 151

8.4 Experimental Evaluation . 152

8.4.1 Exponential coverage estimation 153

8.4.2 Beta coverage estimation 155

8.5 Summary . 157

9 Conclusion and Future Work 159

A Publication List 162

x

Bibliography 165

xi

List of Tables

2.1 Comparison of design diversity techniques 23

4.1 Test case description . 53

4.2 Program metrics for 21 versions 54

4.3 Defect type distribution . 55

4.4 Qualifier distribution . 56

4.5 Severity distribution . 56

4.6 Development stage distribution 57

4.7 Fault effect code lines . 58

4.8 Mutants relationship . 60

4.9 Program versions with similar mutants 62

4.10 Program versions with exact mutants 62

4.11 Summary of program relationship 63

4.12 Exact pair 1: versions 4 and 8 63

4.13 Exact pair 2: versions 12 and 31 63

4.14 Exact pair 3: versions 15 and 33 63

4.15 Exact fault pairs 4, 5, and 6: versions 4, 15 and 17 64

4.16 Exact pair 7: versions 31 and 32 64

5.1 Alternative expressions for the pfd of a 1-out-of-2 system (from

[86]) . 70

xii

5.2 Failure data of mutants passing qualification test 72

5.3 Demand profile . 73

5.4 90 percent confidence upper bounds on mutants’ pfds in subdo-

mains . 73

5.5 Upper bounds on the joint pfds under demand profiles 74

5.6 90 percent confidence lower bounds on mutants’ pfds in subdo-

mains . 74

5.7 90 percent confidence lower bounds on the joint pfds under de-

mand profiles . 75

5.8 Failure characteristics for individual mutants 80

5.9 Failure characteristics for 2-version configurations 80

5.10 Failure characteristics for 3-version configurations 81

5.11 Comparison of independent model with observed data for 3 ver-

sions . 81

5.12 Failure characteristics for 4-version configurations 82

5.13 Comparison of independent model with observed data for 4 ver-

sions . 82

5.14 Summary of parameter values derived from our data 83

6.1 Comparisons between the two projects 90

6.2 Related faults detected in our experiment 92

6.3 Distribution of related faults detected 93

6.4 Fault description during operational test 96

6.5 Failures collected in our project 98

6.6 Coincident failures between versions 99

6.7 Failure bounds for 2-version system 101

6.8 Quantitative comparison in operational test with NASA 4-University

project . 103

xiii

7.1 Fault detection related to changes of test coverage 111

7.2 Percentage of test case coverage 114

7.3 Parameter and fitness of linear models in different test case regions117

7.4 R-squared value in testing profiles 121

7.5 Linear regression fitness for combinations 125

7.6 R-squared value in different code coverage and testing profiles . 125

7.7 Reduction of the size of test set with coverage increase 127

7.8 Test set reduction with normal testing 128

7.9 Test set reduction with exceptional testing 128

7.10 The number of mutants failing in different testing 131

8.1 Estimated Parameters in Hyper-exponential model 145

8.2 Estimated reliability parameters for exponential coverage model 154

8.3 Estimated reliability parameters for Beta coverage model 156

xiv

List of Figures

2.1 The transition of fault, error and failure in a software lifecycle . 11

2.2 Layers of fault tolerance . 13

2.3 Logic of checkpoint and recovery 15

2.4 Logic of exception handling . 17

2.5 The recovery block (RB) model 19

2.6 Operation of recovery block . 20

2.7 The N-version programming (NVP) model 20

2.8 N self-checking programming using acceptance test 21

2.9 N self-checking programming using decision algorithm 22

3.1 Four major tasks . 42

4.1 RSDIMU system data flow diagram 49

4.2 Non-redundant set of test cases 59

5.1 Fault tree models for 2, 3 and 4 version systems (from [25]) . . . 79

5.2 Predicted reliability by different configurations 84

5.3 Predicted reliability by different configurations 84

5.4 Predicted safety by different configurations 85

7.1 Relations between numbers of mutants against effective percent-

age of coverage . 112

xv

7.2 Test case contribution on block coverage 113

7.3 Test case contribution on mutant coverage 113

7.4 Cumulated defect coverage versus block coverage 115

7.5 Cumulated block coverage in the 1200-case sequence 116

7.6 Cumulated defect coverage in the 1200-case sequence 116

7.7 Block coverage and defect coverage 118

7.8 Block coverage and defect coverage in region IV 118

7.9 Block coverage and defect coverage in region VI 119

7.10 Block coverage and defect coverage in normal testing 123

7.11 Block coverage and defect coverage in exceptional testing 123

7.12 Block coverage and defect coverage in exceptional test of region

IV . 133

8.1 NHPP estimation . 146

8.2 Hyper-exponential estimation 147

8.3 Beta estimation . 147

8.4 Comparison of Hyper-exponential and Beta estimation 148

8.5 Reliability modeling with exponential failure rates 154

8.6 Reliability modeling with NHPP time relationship 155

8.7 Reliability modeling with Beta coverage relationship 156

xvi

Chapter 1

Introduction

Having attracted major attentions from academia as well as industry, software

reliability engineering techniques can be classified in the following areas: fault

avoidance, fault removal, fault tolerance, and fault prediction [70]. Tradition-

ally, software reliability is achieved by fault avoidance techniques (including

structure programming, software reuse, and formal methods) to prevent soft-

ware faults, or by fault removal techniques (including testing, verification,

and validation) to detect and eliminate software faults. As the complexity of

software increases, the number of dormant software faults present at system

operation also increases. Therefore, the capability to tolerate software faults,

particularly for critical applications, is evident. These software faults may or

may not be manifested during system operations, but if they do, fault tolerant

software techniques should provide the necessary mechanisms to prevent sys-

tem failure from occurring. Finally, if some software faults or failures cannot

be avoided, removed or tolerated, they are expected to be predictable at least.

Thus fault/failure prediction has been the main focus of software reliability

modeling, which tries to predict the failure behavior under operational profile

on the basis of the failure data collected in testing phases.

In the area of software fault tolerance, on the one hand, fault tolerant soft-

ware is seen as a necessity when the complexity of software increases rapidly;

1

Chapter 1 Introduction 2

on the other hand, it also remains as a controversial technique and there is a

lack of conclusive assessment about its effectiveness. As one of the main tech-

niques for software fault tolerance, design diversity was proposed to achieve

quality and reliability of software systems by detecting and tolerating software

faults during operation. Its basic idea is to employ different development teams

in building different program versions independently according to one single

specification [69]. During program executions, the final consensus output is

either voted by multiple versions, or verified by an acceptance test, which can

be one of the program versions. The multi-version programs are expected to

fail with low probability of coincident failures.

Although many research efforts have been conducted for investigation, ex-

perimentation, modeling and evaluation of software design diversity, it still

remains a debatable approach compared with other software engineering tech-

niques. One main reason is the lack of real world project data on collecting

the features of design diversity; and the other is the failures in diverse ver-

sions may not occur independently, making it difficult to establish justifiable

predictive reliability models. Because of these, although several probability

reliability models have been proposed to estimate the overall reliability under

fault correlation assumptions, more investigations and evaluations are needed.

Furthermore, little research work has been engaged in answering the questions

such as how to test for fault tolerance, and how effective fault tolerant software

can achieve.

The purpose of this research is to assess fault tolerant software for software

reliability engineering. In this thesis, we perform systematic investigation and

evaluation the performance of software fault tolerance techniques. Particu-

larly, we focus our study on testing strategies and reliability modeling for fault

tolerant software.

Chapter 1 Introduction 3

In the following, we will introduce current testing strategies in general and

reliability models for fault-tolerant software briefly. Based on that, we will

highlight the main contributions as well as the organizations of this thesis.

1.1 The Effectiveness of Software Testing Strate-

gies

As the main fault removal technique, software testing is one of the most effort-

intensive activities during software development [7]. The key issue in software

testing is test case selection and evaluation. An effective test set should detect

software faults that do not easily lead to failure by other test cases.

According to the test case design principle, there are two major testing

schemes, they are: subdomain-based testing and random testing. Subdomain-

based testing inherit the feature that the input domain is divided into subsets,

called subdomains, and one or more representatives from each subdomain are

selected to form the final test set [33]. This approach is also referred partition

testing if the subdomains are independent [40, 105]. In contrast to subdomain-

based testing, random testing simply generates test cases within the entire

input domain [26]. With random testing, it is easier to design large numbers

of test cases to perform quantitative reliability analysis of programs.

Within subdomain-based testing, there are Functional testing (so-called

black-box testing) and Structural testing (so-called white-box testing). Mutation

testing is also known as one of subdomain-based testing, although it begins by

creating many “faulty” versions of a program [47].

For various testing strategies, the effectiveness and completeness of the test

sets has remained an active research issue over the past several decades. The

comparison of functional testing, structural testing, and random testing has

Chapter 1 Introduction 4

also drawn a great deal of research interest.

Furthermore, for the purpose of test case selection and evaluation, code

coverage has been proposed as an indicator of testing effectiveness and com-

pleteness in order to improve the test resource allocation [73, 91, 96]. However,

it remains a controversial issue about whether code coverage is a good indi-

cator for fault detection capability of test cases. Some empirical studies have

shown that high code coverage brings high software reliability and low fault

rate [30, 45, 91, 104]. It is also observed that an increase in reliability comes

with an increase in at least one code coverage measures, and a decrease in

reliability is accompanied by a decrease in at least one code coverage measures

[34].

On the other hand, despite the observations of correlation existing in code

coverage and fault coverage, a question is raised: Can this phenomenon of

concurrent growth be attributed to a causal dependency between code coverage

and fault detection, or is it just coincidental due to the cumulative nature of

both measures? A simulation experiment in [13] did not support a causal

dependency between code coverage and defect coverage.

Overall, the relationship between code coverage and fault detection is very

complicated. More empirical data and theoretical insight are needed to explore

the causal dependency between the two measures.

1.2 Reliability Modeling for Fault-Tolerant Soft-

ware

On the fault tolerance side, the main technique is software design diversity,

including recovery blocks [89], N-version programming [4], and N self-checking

programming [61]. Design diversity approach achieves fault-tolerant software

Chapter 1 Introduction 5

systems through the independent development of program versions from a

common specification.

Although many research efforts have been conducted for investigation, ex-

perimentation, modeling and evaluation of software design diversity, it still

remains a debatable approach compared with other software engineering tech-

niques. One main reason is the lack of real world project data on collecting the

features of design diversity; and the other is the failures in diverse versions may

not occur independently, making it difficult to establish justifiable predictive

reliability models.

Nevertheless, to attempt the modeling of reliability and fault correlations

achieved in design diversity, some methods have been proposed. Eckhardt and

Lee [28] proposed the first model of fault correlation for diverse systems. Later

Littlewood and Miller [64] showed a conceptual model in which the reliability

of a pair of versions may even be better than what is under the assumption

of independence. Dugan and Lyu [25] proposed a dependability model for

N-version programming to parameterize the possibility of fault correlations.

Recently, Popov Strigini et al [86] further pointed out that the bounds on the

reliability of multiple-version systems can be estimated by dividing the demand

space of the test cases into disjoint sub-domains.

Among these proposed reliability models, some of them are too theoreti-

cal that they cannot be evaluated in real projects, others are based on strong

assumptions which are not true in practice. Besides, as fault-tolerate soft-

ware costs much more than one version software, the empirical data are rarely

available. In summary, on the reliability models for fault-tolerant software,

theoretical yet practical reliability model, as well as suitable empirical data

with real-world fault-tolerant software systems, are highly demanded.

Chapter 1 Introduction 6

1.3 Contributions of this Thesis

In this thesis, we perform thorough investigations and evaluations on coverage-

based testing strategies and reliability modeling for fault-tolerant software sys-

tems. The major contributions are listed as follows:

• Formulate the relationship between fault detected and test coverage

achieved in testing phase; based on the new formulations, a new reliabil-

ity model is proposed which incorporates the code coverage measurement

on the traditional time-based reliability models.

• Assess the effect of code coverage on fault detection in various testing

strategies; our findings support that code coverage is clearly a good in-

dicator for fault detection capability in exceptional test cases.

• Evaluate current famous reliability models for fault-tolerant software and

compare their effectiveness and accuracy.

• Cross-compare two major fault-tolerant software projects and assess the

“variants” as well as “invariants” features for design diversity.

• Conduct a large-scale multi-version project with real-world application,

perform thorough acceptance and operational testing, generate hundreds

of mutants, and collect valuable faults/failures data for further investiga-

tions and evaluations on software reliability, software testing and software

fault tolerance.

1.4 Organization of this Thesis

The remainder of this thesis is organized as follows. A detailed background

study on fault-tolerant software, its reliability models and software testing is

Chapter 1 Introduction 7

performed in the next chapter. In Chapter 3, we illustrate our research method-

ology which runs through this thesis. The setup and preliminary data of the

large-scale multi-version software project is thoroughly described in Chapter

4. Next, in Chapter 5, two reliability models for fault-tolerant software are

evaluated and compared using our experimental data. Qualitative as well as

quantitative comparisons between two design diversity experiments are con-

ducted in Chapter 6. Then Chapter 7 evaluates the effect of code coverage on

fault detection under various testing strategies and coverage measurements.

A novel reliability model is formulated on the basis of code coverage as an

indicator for fault detection in Chapter 8. Finally, Chapter 9 summarizes this

thesis and illustrates our future work.

2 End of chapter.

Chapter 2

Background and Related Work

In this Chapter, we perform the background study in the two main topics

related to this research effort: fault-tolerant software and its reliability models,

and software testing strategies. We are motivated by this survey and related

work to focus our work on the potential relationship between software fault

tolerance, software testing and software reliability modeling.

2.1 Fault-Tolerant Software and its Reliability

Models

Fault tolerance is the survival attribute of a system or component to continue

operating as required despite the manifestation of hardware or software faults

[49]. Fault-tolerant software is concerned with all the techniques necessary to

enable a software system to tolerate software design faults remaining in the

system after its development [69]. When a fault occurs, fault-tolerant software

provides mechanisms to prevent the system failure from occurring [88].

Fault-tolerant software delivers continuous service complying with the rele-

vant specification in the presence of faults typically by employing either single

version software techniques or multiple version software techniques. We will

8

Chapter 2 Background and Related Work 9

address four key perspectives for fault-tolerant software: historical background,

techniques, modeling schemes and applications.

2.1.1 Historical Background

Most of the fault-tolerant software techniques were introduced and proposed

in 1970s. For example, as one of single version fault-tolerant software tech-

niques, the exception handling approach began to appear in the 1970s, and

a wide range of investigations in this approach led to more mature defini-

tions, terminology and exception mechanisms later on [22]. Another technique,

checkpointing and recovery, was also commonly employed to enhance software

reliability with efficient strategies [80].

In the early 1970s, a research project was conducted at the University of

Newcastle [90]. The idea of the recovery block (RB) evolved from this project

and became one of the methods currently used for safety-critical software.

Recovery block is one of three main approaches in so-called design diversity,

which is also known as multi-version fault-tolerant software techniques. N-

version programming was introduced in 1977 [4], which involved redundancy

of three basic elements in the approach: process, product and environment [3].

N self-checking programming approach was introduced most recently, yet it

was based on the concept of self-checking programming which had long been

introduced [60].

Since then, many other approaches and techniques have been proposed

for fault-tolerant software, and various models and experiments have been

employed to investigate various features of these approaches. We will address

them in the following part of this chapter.

Chapter 2 Background and Related Work 10

Definitions

As fault-tolerant software is capable of providing the expected service despite

the presence of software faults [4, 89], we first introduce the concepts related

to this technique [62].

Failures. A failure occurs when the user perceives that a software program

is unable to deliver the expected service [60]. The expected service is described

by a system specification or a set of user requirements.

Errors. An error is part of the system state which is liable to lead to a

failure. It is an intermediate stage in between faults and failures. An error

may propagate, i.e., produce other errors.

Faults. A fault, sometimes called a bug, is the identified or hypothesized

cause of a software failure. Software faults can be classified as design faults

and operational faults according to the phases of creation. Although the same

classification can be used in hardware faults, we only interpret them in the

sense of software here.

Design faults. A design fault is a fault occurring in software design and

development process. Design faults can be recovered with fault removal ap-

proaches by revising the design documentation and the source code.

Operational faults. An operational fault is a fault occurring in software

operation due to timing, race conditions, workload-related stress and other

environmental conditions. Such a fault can be removed by recovery, i.e., roll-

back to a previously saved state and executed again.

Fault-tolerant software thus attempts to prevent failures by tolerating soft-

ware errors caused by software faults, particularly design faults. The progres-

sion “fault-error-failure” shows their causal relationship in a software lifecycle,

as illustrated in Figure 2.1. Consequently, there are two major groups of ap-

proaches to deal with design faults: 1) fault avoidance (prevention) and fault

Chapter 2 Background and Related Work 11

Figure 2.1: The transition of fault, error and failure in a software lifecycle

removal during the software development process, and 2) fault tolerance and

fault/failure forecasting after the development process. These terms can be

defined as follows:

Fault avoidance (prevention). To avoid or prevent the introduction of faults

by engaging various design methodologies, techniques and technologies, includ-

ing structured programming, object-oriented programming, software reuse, de-

sign patterns and formal methods.

Fault removal. To detect and eliminate software faults by techniques such

as reviews, inspection, testing, verification and validation.

Fault tolerance. To provide a service complying with the specification in

spite of faults, typically by means of single version software techniques or multi-

version software techniques. Note that, although fault tolerance is a design

technique, it handles manifested software faults during software operations.

Although software fault tolerance techniques are proposed to tolerant software

errors, they can help to tolerate hardware faults as well.

Fault/failure prediction (forecasting). To estimate the existence of faults

and the occurrences and consequences of failures by dependability-enhancing

techniques consisting of reliability estimation and reliability prediction.

Chapter 2 Background and Related Work 12

Rationale

The principle of fault-tolerant software is to deal with residual design faults.

For software systems, the major cause of residual design faults can be complex-

ity, difficulty and incompleteness involved in software design, implementation

and testing phases. The aim of fault-tolerant software, thus, is to prevent soft-

ware faults from resulting in incorrect operations, including severe situations

such as hanging or as the worst, crashing the system. To achieve this purpose,

appropriate structuring techniques should be applied for proper error detection

and recovery. Nevertheless, fault tolerance strategies should be simple, coher-

ent and general in their application to all software systems. Moreover, they

should be capable of coping with multiple errors, including the ones detected

during the error recovery process itself, which is usually deemed fault-prone

due to its complexity and lack of thorough testing.

To satisfy these principles, strategies like checkpointing, exception han-

dling and data diversity are designed for single version software, while recovery

block (RB), N-version programming (NVP) and N self-checking programming

(NSCP) have been proposed for multi-version software. The details of these

techniques and their strategies are discussed in Section 3.

Practice

From a user’s point of view, fault tolerance represents two dimensions: avail-

ability and data consistency of the application [48]. Generally, there are four

layers of fault tolerance. The top layer is composed of general fault tolerance

techniques which are applicable to all applications, including checkpointing,

exception handling, recovery block, N-version programming, N-self checking

programming and other approaches. Some of the top-level techniques will be

Chapter 2 Background and Related Work 13

Hardware

Operating / Database Systems

Application Software Systems

Generic Software Systems

duplex, TMR, ...

signals, monitor, watchdog,

mirroring, FT-DBMS, ...

reusable component,

 message logging and recovery, ...

checkpointing, exception handling,

RB, NVP, NSCP, ...

Figure 2.2: Layers of fault tolerance

addressed in the following section. The second layer consists of application-

specific software fault tolerance techniques and approaches such as reusable

component, fault-tolerant library, message logging and recovery, etc. The

next layer involves the techniques deployed on the level of operating and

database systems, e.g., signal, watchdog, mirroring, fault-tolerant database

(FT-DBMS), transaction and group communications. Finally, the underlying

hardware also provides fault-tolerant computing and network communication

services for all the upper layers. These are traditional hardware fault-tolerant

techniques including duplex, triple modular redundancy (TMR), symmetric

multiprocessing (SMP), shared memory and so on. Summary of these differ-

ent layers for fault tolerance techniques and approaches are shown in Figure

2.2.

Technologies and architectures have been proposed to provide fault toler-

ance for some mission-critical applications. These applications include airplane

control systems (e.g., Boeing 777 airplane and AIRBUS A320/A330/A340

/A380 aircraft) [11, 44, 75], aerospace applications [79], nuclear reactors, telecom-

munications products [48], network systems [57], and other critical software

Chapter 2 Background and Related Work 14

systems.

2.1.2 Fault-Tolerant Software Techniques

We examine two different groups of techniques for fault-tolerant software: sin-

gle version and multi-version software techniques [69]. Single version tech-

niques involve improving the fault detection and recovery features of a single

piece of software on top of fault avoidance and removal techniques. The basic

fault-tolerant features include program modularity, system closure, atomicity

of actions, error detection, exception handling, checkpoint and restart, process

pairs, and data diversity [69, 99].

In more advanced architectures, design diversity is employed where multiple

software versions are developed independently by different program teams us-

ing different design methods, yet they provide the equivalent service according

to the same requirement specifications. The main techniques of this multiple

version software approach are recovery blocks, N-version programming, N self-

checking programming, and other variants based on these three fundamental

techniques.

All the fault-tolerant software techniques can be engaged in any artifact

of a software system: procedure, process, software program, or the whole sys-

tem including the operating system. The techniques can also be selectively

applied to those components especially prone to faults because of the design

complexity.

Single Version Software Techniques

Single-version fault tolerance is based on temporal and spacial redundancies

applied to a single version of software to detect and recover from faults. Single-

version fault-tolerant software techniques include a number of approaches. We

Chapter 2 Background and Related Work 15

Execution

Error Detection

Checkpoint

Memory

Output

Input

checkpoint

Retry

Figure 2.3: Logic of checkpoint and recovery

focus our discussions on two main methods: checkpointing and exception han-

dling.

Checkpointing and Recovery

For single-version software, the technique most often mentioned is the

checkpoint and recovery mechanism [87]. Checkpointing is used in (typically

backward) error recovery, by saving the state of a system periodically. When

an error is detected, the previous state is recalled and the whole system is

restored to that particular state. A recovery point is established when the sys-

tem state is saved, and discarded if the process result is acceptable. The basic

idea of checkpointing is shown in Figure 2.3. It has the advantages of being

independent of the damage caused by a fault.

The information saved for each state includes the values of variables in

the process, its environment, control information, register values, and so on.

Checkpoints are snapshots of the state at various points during the execution.

There are two kinds of checkpointing and recovery schemes: single process

systems with a single node, and multiple communicating processes on multiple

Chapter 2 Background and Related Work 16

nodes [88]. For single process recovery, a variety of different strategies is de-

ployed to set the checkpoints. Some strategies use randomly-selected points,

some maintain a specified time interval between checkpoints, and others set a

checkpoint after a certain number of successful transactions have been com-

pleted.

For multiprocess recovery, there are two approaches: asynchronous and

synchronous checkpointing. The difference between the two is that the check-

pointing by the various nodes in the system is coordinated in synchronous

checkpointing, but not coordinated in asynchronous checkpointing. Different

protocols for state saving and restoration have been proposed for the two ap-

proaches [88].

Exception Handling

Ideal fault-tolerant software systems should recognize interactions of a com-

ponent with its environment, provide a means of system structuring that make

it easy to identify what part of the system to use to cope with each kind of

error, and provide normal and abnormal (i.e., exception) responses within a

component and among components’ interfaces [63]. The structure of exception

handling is shown in Figure 2.4.

Exception handling, proposed in the 1970’s [37], is often considered as a

limited approach to fault-tolerant software [21]. Since departure from spec-

ification is likely to occur, exception handling aims at handling abnormal

responses by interrupting normal operations during program execution. In

fault-tolerant software, exceptions are signaled by the error detection mech-

anisms as a request for initiation of an appropriate recovery procedure. The

design of exception handlers requires consideration of possible events that can

trigger the exceptions, prediction of the effects of those events on the system,

and selection of appropriate mitigating actions.

Chapter 2 Background and Related Work 17

normal
 operation

exception
handling

local

exceptions

return

Service

request

Normal

response

Service

request

Normal

response

Interface

exceptions

Failure

exceptions

Interface

exceptions

Failure

exceptions

Figure 2.4: Logic of exception handling

A component generally needs to cope with three kinds of exceptional situ-

ations: interface exceptions, local exceptions and failure exceptions. Interface

exceptions are signaled when a component detects an invalid service request.

This type of exception is triggered by the self-protection mechanisms of the

component and is treated by the component that made the invalid request.

Local exceptions occur when a component’s error detection mechanisms find

an error in its own internal operations. The component returns to normal

operations after exception handling. Failure exceptions are identified by a

component after it has detected an error that its fault processing mechanisms

were unable to handle successfully. In effect, failure exceptions notify the

component making the service request that it has been unable to provide the

requested service.

Multi-version Software Techniques

The multi-version fault-tolerant software technique is the so-called design di-

versity approach. This involves developing two or more versions of a piece of

Chapter 2 Background and Related Work 18

software according to the same requirement specifications. The rationale for

the use of multiple versions is the expectation that components built differ-

ently (i.e., different designers, different algorithms, different design tools, etc)

should fail differently [4]. Therefore, in the case that one version fails in a

particular situation, there is a good chance that at least one of the alternate

versions is able to provide an appropriate output.

These multiple versions are executed either in sequence or in parallel, and

can be used as alternatives (with separate means of error detection), in pairs

(to implement detection by replication checks) or in larger groups (to enable

masking through voting). Three fundamental techniques are known as recovery

block, N-version programming and N self-checking programming.

Recovery Block

The recovery block technique involves multiple software versions imple-

mented differently such that an alternative version is engaged after an error is

detected in the primary version [89, 90]. The question of whether there is an

error in the software result is determined by an acceptance test (AT). Thus the

recovery block uses an acceptance test and backward recovery to achieve fault

tolerance. As the primary version will be executed successfully most of the

time, the most efficient version is often chosen as the primary alternate and

the less efficient versions are placed as secondary alternates. Consequently, the

resulting rank of the versions reflects, in a way, their diminishing performance.

The usual syntax of the recovery block is as follows. First of all, the primary

alternate is executed; if the output of the primary alternate fails the acceptance

test, a backward error recovery is invoked to restore the previous state of the

system, then the second alternate will be activated to produce the output;

similarly, every time an alternate fails the acceptance test, the previous system

state will be restored and a new alternate will be activated. Therefore, the

Chapter 2 Background and Related Work 19

recovery cache

primary version

alternate 1

alternate n

acceptance test

...

Input Output

Figure 2.5: The recovery block (RB) model

system will report failure only when all the alternates fail the acceptance test,

which may happen with a much lower probability than in the single version

situation. The recovery block model is shown in Figure 2.5, while the operation

of the recovery block is shown in Figure 2.6.

The execution of the multiple versions is usually sequential. If all the alter-

nate versions fail in the acceptance test, the module must raise an exception

to inform the rest of the system about its failure.

N-Version Programming

The concept of N-version programming (NVP) was first introduced in 1977

[4]. It is a multi-version technique in which all the versions are typically

executed in parallel and the consensus output is based on the comparison of

the outputs of all the versions [69]. In the event that the program versions

are executed sequentially due to lack of resources, it may require the use of

checkpoints to reload the state before a subsequent version is executed. The

N-version software model is shown in Figure 2.7.

The NVP technique uses a decision algorithm (DA) and forward recovery

to achieve fault tolerance. The use of a generic decision algorithm (usually

a voter) is the fundamental difference of NVP from the RB approach, which

Chapter 2 Background and Related Work 20

establish
checkpoint

execute
alternate

restore
checkpoint

entry

exit

acceptance
test

discard
checkpoint

pass

new alternate
exists &

deadline not
expired

Yes

exception

signals

fail

Figure 2.6: Operation of recovery block

Decision

AlgorithmInput Output

version 1

version 2

version n

...

Figure 2.7: The N-version programming (NVP) model

Chapter 2 Background and Related Work 21

version 1

version 2

version n

Decision

AlgorithmInput Output...

Acceptance test 1

...

Acceptance test 2

Acceptance test n

Figure 2.8: N self-checking programming using acceptance test

requires an application-dependent acceptance test. The complexity of the de-

cision algorithm is generally lower than that of the acceptance test. In NVP,

since all the versions are built to satisfy the same specification, it requires con-

siderable development effort but the complexity (i.e., development difficulty)

is not necessarily much greater than that of building a single version. Much

research has been devoted to the development of methodologies that increase

the likelihood of achieving effective diversity in the final product [3, 9, 27, 58].

N-Self Checking Programming

N self-checking programming (NSCP) was developed in 1987 by Laprie et

al. [60, 61]. It involves the use of multiple software versions combined with

structural variations of the recovery block and N-version programming ap-

proaches. Both acceptance tests and decision algorithms can be employed in

NSCP to validate the outputs of multiple versions.

The N self-checking programming method employing acceptance tests is

shown in Figure 2.8. Same as RB and NVP, the versions and the acceptance

tests are developed independently but each designed to fulfill the requirements.

The main difference of NSCP from the RB approach is in its use of different

acceptance tests for different versions. The execution of the versions and tests

can be done sequentially or in parallel but the output is taken from the highest-

ranking version that passes its acceptance test. Sequential execution requires a

Chapter 2 Background and Related Work 22

version 1-A

version 1-B

version n-A

comparison

comparison

Decision

Algorithm

Input

version n-B

…
…

Output

…
…

Figure 2.9: N self-checking programming using decision algorithm

set of checkpoints, and parallel execution requires input and state consistency

algorithms.

N self-checking programming engaging decision algorithms for error detec-

tion is shown in Figure 2.9. Similar to N-version programming, this model

has the advantage of using an application-independent decision algorithm to

select a correct output. This variation of self-checking programming has the

theoretical vulnerability of encountering situations where multiple pairs pass

their comparisons but the outputs differ between pairs. That case must be

considered and an appropriate decision policy should be selected during the

design phase.

Comparison among RB, NVP and NSCP

Each design diversity technique, recovery block, N-version programming,

and N self-checking programming, has its own advantages and disadvantages

compared with the others. We compare the features of the three and list them

in Table 2.1.

The differences between acceptance test (AT) and decision algorithm (DA)

are: 1) AT is more complex and difficult in implementation, but it can still

Chapter 2 Background and Related Work 23

Table 2.1: Comparison of design diversity techniques

Features recovery block N-version N self-checking

programming programming

Minimum no. 2 3 4

of versions

Output mechanism Acceptance Test Decision Algorithm Decision Algorithm

and Acceptance Test

Execution time primary version slowest version slowest pair

Recovery scheme backward recovery forward recovery forward and backward

recovery

produce correct output when multiple distinct solutions exist in multiple ver-

sions; 2) DA is more simple, efficient and liable to produce correct output since

it is just a voting mechanism; but it is less able to deal with multiple solutions.

Other Techniques

Besides the three fundamental design diversity approaches listed above,

there are some other techniques available, essentially variants of RB, NVP

and NSCP. They include consensus recovery block, distributed recovery block,

hierarchical N-version programming, t/(n-1)-variant programming, and others.

Here we introduce some of these techniques briefly.

Distributed Recovery Block

The distributed recovery block (DRB) technique, developed by Kim in 1984

[56], is adopted in distributed and/or parallel computer systems to realize fault

tolerance in both hardware and software. DRB combines recovery blocks and

a forward recovery scheme to achieve fault tolerance in real-time applications.

The DRB uses a pair of self-checking processing nodes (PSP) together with

both the software-implemented internal audit function and the watchdog timer

to facilitate real-time hardware fault tolerance. The basic DRB technique

consists of a primary node and a shadow node, each cooperating with a recovery

Chapter 2 Background and Related Work 24

block, and the recovery blocks execute on both nodes concurrently.

Consensus Recovery Block

The consensus recovery block approach combines N-version programming

and the recovery block technique to improve software reliability [94]. The ra-

tionale of consensus recovery blocks is that RB and NVP each may suffer from

its specific faults. For example, the RB acceptance tests may be fault-prone,

and the decision algorithm in NVP may not be appropriate in all situations,

especially when multiple correct outputs are possible. The consensus recovery

block approach employs a decision algorithm as the first layer decision. If a

failure is detected in the first layer, a second layer using acceptance tests is

invoked. Obviously having more levels of checking than either RB or NVP,

consensus recovery block is expected to have an improved reliability.

t/(n-1)-Variant Programming

t/(n-1)-variant programming (VP) was proposed by Xu and Randell in

1997 [110]. The main feature of this approach lies in the mechanism engaged in

selecting the output among the multiple versions. The design of the selection

logic is based on the theory of system-level fault diagnosis. The selection

mechanism of t/(n-1)-VP has a complexity of O(n) - less than some other

techniques - and it can tolerate correlated faults in multiple versions.

2.1.3 Modeling Schemes on Design Diversity

There have been numerous investigations, analyses and evaluations of the per-

formance of fault-tolerant software techniques in general and of the reliability

of some specific techniques [88]. Here we list only the main modeling and

analysis schemes that assess the general effectiveness of design diversity.

To evaluate and analyze both the reliability and the safety of various design

Chapter 2 Background and Related Work 25

diversity techniques, different modeling schemes have been proposed to cap-

ture design diversity features, describe the characteristics of fault correlation

between diverse versions, and predict the reliability of the resulting systems.

The following modeling schemes are discussed in chronological order.

Eckhardt and Lee’s Model

Eckhardt and Lee (EL Model) [28] proposed the first probability model that

attempts to capture the nature of failure dependency in N-version program-

ming. The EL model is based on the notion of “variation of difficulty” over

the user demand space. Different parts of the demand space present different

degrees of difficulty, making the program versions built independently more

likely to fail with the same “difficult” parts of the target problem. Therefore,

failure independency between program versions may not be the necessary re-

sult of “independent” development when failure probability is averaged over

all demands. For most situations, in fact, positive correlation between version

failures may be exhibited for a randomly chosen pair of program versions.

Littlewood and Miller’s Model

Littlewood and Miller [64] (LM model) showed that the variation of difficulty

could be turned from a disadvantage into a benefit with forced design diversity

[86]. “Forced” diversity may insist that different teams apply different devel-

opment methods, different testing schemes, and different tools and languages.

With forced diversity, a problem that is more difficult for one team may be

easier for another team (and vice versa). The possibility of negative correlation

between two versions means that the reliability of a 1-out-of-2 system could be

greater than it would be under the assumption of independence. Both EL and

LM models are “conceptual” models because they do not support predictions

Chapter 2 Background and Related Work 26

for specific systems and they depend greatly on the notion of difficulty defined

over the possible demand space.

Dugan and Lyu’s Dependability Model

The dependability model proposed by Dugan and Lyu in [25] provides a relia-

bility and safety model for fault-tolerant hardware and software systems using

a combination of fault tree analysis and the Markov modeling process. The

reliability/safety model is constructed by three parts: a Markov model details

the system structure, and two fault trees represent the causes of unacceptable

results in the initial configuration and in the reconfigured state. Based on

this three-level model, the probability of unrelated and related faults can be

estimated according to experimental data.

In a reliability analysis study [25], the experimental data showed that DRB

and NVP performed better than NSCP. In the safety analysis, NSCP per-

formed better than DRB and NVP. In general, their comparison depends on

the classification of the experimental data.

Tomek and Trivedi’s Stochastic Reward Nets Model

Stochastic reward nets (SRNs) are a variant of stochastic Petri nets. SRNs are

employed in [98] to model three types of fault-tolerant software systems: RB,

NVP and NSCP. Each SRN model is incorporated with the complex depen-

dencies associated with the system, such as correlation failures and separate

failures, detected faults and undetected faults. A Markov reward model un-

derlies the SRN model. Each SRN is automatically converted into a Markov

reward model to obtain the relevant measures. The model has been parame-

terized by experimental data in order to describe the possibility of correlation

faults.

Chapter 2 Background and Related Work 27

Popov and Strigini’s Reliability Bounds Model

Popov and Strigini attempted to bridge the gap between the conceptual models

and the structural models by studying how the conceptual model of failure

generation can be applied to a specific set of versions [86]. This model estimates

the probability of failure on demand given the knowledge of subdomains in

a 1-out-of-2 diverse system. Various alternative estimates are investigated

for the probability of coincident failures on the whole demand space as well

as in subdomains. Upper bounds and likely lower bounds for reliability are

obtained by using data from individual diverse versions. The results show

the effectiveness of the model in different situations having either positive or

negative correlations between version failures.

Experiments and Evaluations

Experiments and evaluations are necessary to determine the effectiveness and

performance of different fault-tolerant software techniques and the correspond-

ing modeling schemes. Various projects have been conducted to investigate and

evaluate the effectiveness of design diversity, including UCLA Six-Language

project [54, 69], NASA 4-University project [27, 86, 103], Knight and Leve-

son’s experiment [58], Lyu-He study [25, 71], etc.

These projects and experiments can be classified into three main categories:

1) evaluations on the effectiveness and cost issues of the final product of diverse

systems [1, 4, 10, 42, 53, 55, 58]; 2) experiments evaluating the design process

of diverse systems [3]; and 3) adoption of design diversity into different aspects

of software engineering practice [71, 74].

To investigate the effectiveness of design diversity, an early experiment [4],

consisting of running sets of student programs as 3-version fault-tolerant pro-

grams, demonstrated that the N-version programming scheme worked well with

Chapter 2 Background and Related Work 28

some sets of programs tested, but not others. The negative results were natural

since inexperienced programmers cannot be expected to produce highly reli-

able programs. Another student-based experiment [58] involved 27 program

versions developed differently. Test cases were conducted on these program

versions in single and multiple version configurations. The results showed that

N-version programming could improve reliability; yet correlated faults existed

in various versions, adversely affecting design diversity. In another study, Kelly

et al. [55] conducted a specification diversity project, using two different spec-

ifications with the same requirements. Anderson et al. [1] studied a medium-

scale naval command and control computer system developed by professional

programmers through the use of the recovery block. The results showed that

74% of the potential failures could be successfully masked. Another experi-

ment evaluating the effectiveness of design diversity is the Project on Diverse

Software (PODS) [10]. This consisted of three diverse teams implementing a

simple nuclear reactor protection system application. There were two diverse

specifications and two programming languages adopted in this project. With

good quality control and experienced programmers, high quality programs and

fault-tolerant software systems were achieved.

For the evaluation of the cost of design diversity, Hatton [42] collected

evidence to indicate that diverse fault-tolerant software techniques are more

reliable than producing one good version, and more cost effective in the long

run. Kanoun [53] analyzed work hours spent on variant design in a real-world

study. The results showed that costs were not doubled by developing a second

variant.

In a follow-up to the work of Avizienis and Chen [4], a six language NVP

project was conducted using a proposed N-version Software Design Paradigm

Chapter 2 Background and Related Work 29

[68]. The NVP paradigm was composed of two categories of activities: stan-

dard software development procedures and concurrent implementation of fault

tolerance techniques. The results verified the effectiveness of the design para-

digm in improving the reliability of the final fault-tolerant software system.

To model the fault correlation and measure the reliability of fault-tolerant

software systems, experiments have been employed to validate different mod-

eling schemes. The NASA 4-University project [103] involved 20 two-person

programming teams. The final twenty programs went through a three-phase

testing process, namely, a set of 75 test cases for acceptance test, 1100 designed

and random test cases for certification test, and over 900,000 test cases for op-

erational test. The same testing data have been widely employed [27, 64, 86]

to validate the effectiveness of different modeling schemes.

The Lyu-He study [71] was derived from an experimental implementation

involving 15 student teams guided by the evolving NVP design paradigm in [3].

Moreover, a comparison was made between the NASA 4-University project, the

Knight-Leveson experiment, the Six-Language project and the Lyu-He exper-

iment in order to further investigate and discuss the effectiveness of design

diversity in improving software reliability. The results were further used in

[25] to evaluate the prediction accuracy of Dugan and Lyu’s Model. Lyu et al

[74] reported a multi-version project on The Redundant Strapped-Down In-

ertial Measurement Unit (RSDIMU), the same specification employed in the

NASA 4-University project. The experiment developed 34 program versions,

from which 21 versions were selected to create mutants. Following a system-

atic rule for the mutant creation process, 426 mutants, each containing a real

program fault identified during the testing phase, were generated for testing

and evaluation. The testing results were subsequently engaged to investigate

the probability of related and unrelated faults using the PS and DL models.

Chapter 2 Background and Related Work 30

Current results indicate that for design diversity techniques, NSCP is the

best candidate to produce a safe result, while DRB and NVP tend to achieve

better reliability than NSCP, although the difference is not significant.

2.1.4 Applications

There are many application-level methodologies for fault-tolerant software

techniques. As we have indicated, the applications include airplane control

systems (e.g., Boeing 777 airplane [44] and AIRBUS A320/A330/A340/A380

aircraft [75, 101]), aerospace applications [79], nuclear reactors, telecommuni-

cations products [48], network systems [57], and other critical software systems

such as wireless network, grid-computing, etc. Most of the applications adopt

single version software techniques for fault tolerance, i.e., reusable component,

checkpointing and recovery, etc. The design diversity approach has only been

applied in some mission-critical applications, e.g., airplane control systems,

aerospace, and nuclear reactor applications. There are also emerging experi-

mental investigations into the adoption of design diversity in practical software

systems, such as SQL database servers [85].

We may summarize the fault-tolerant software applications into four cate-

gories: 1) reusable component library, e.g., [48]; 2) checkpointing and recovery

schemes, e.g., [19, 87]; 3) entity replication and redundancy, e.g., [52, 100];

4) early applications and projects on design diversity, e.g., [44, 85, 101]. An

overview of some of these applications is given below.

Huang and Kintala [48] developed three cost-effective reusable software

components, i.e., watchd, libft, and REPL, to achieve fault tolerance in the

application level based on availability and data consistency. These components

have been applied to a number of telecommunication products.

Chapter 2 Background and Related Work 31

According to [87], the new mobile wireless environment poses many chal-

lenges for fault-tolerant software due to the dynamics of node mobility and

the limited bandwidth. Particular recovery schemes are adopted for the mo-

bile environment. The recovery schemes combine a state-saving strategy and

a handoff strategy, including two approaches (No Logging and Logging) for

state-saving, and three approaches (Pessimistic, Lazy, and Trickle) for hand-

off. Chen and Lyu [19] have proposed a message logging and recovery protocol

on top of the CORBA architecture. This employs the storage available at the

access bridge to log messages and checkpoints of a mobile host in order to

tolerate mobile host disconnection, mobile host crash and access bridge crash.

Entity replication and modular redundancy are also widely used in applica-

tion software and middleware. Townend and Xu [100] proposed a fault-tolerant

approach based on job replication for Grid computing. This approach com-

bines a replication-based fault tolerance approach with both dynamic priori-

tization and dynamic scheduling. Kalbarczyk et al [52] proposed an adaptive

fault-tolerant infrastructure, named Chameleon, which allows different levels

of availability requirements in a networked environment, and enables multi-

ple fault tolerance strategies including dual and TMR application execution

modes.

The approach of design diversity, on the other hand, has mostly been ap-

plied in safety critical applications. The most famous applications of design di-

versity are the Boeing 777 airplane [44] and AIRBUS A320/A330/A340/A380

aircraft [75, 101]. The Boeing 777 primary flight control computer is a triple-

triple configuration of three identical channels, each composed of three redun-

dant computation lanes. Software diversity was achieved by using different

programming languages targeting different lane processors. In the AIRBUS

A320 series flight control computer [101], software systems are designed by

Chapter 2 Background and Related Work 32

independent design teams to reduce common design errors. Forced diversity

rules are adopted in software development to ensure software reliability. In

an experimental exploration of adopting design diversity in practical software

systems, Popov and Strigini [85] implemented diverse off-the-shelf versions

of relational database servers including Oracle, Microsoft SQL and Interbase

databases in various ways. The servers are distributed over multiple computers

on a local network, on similar or diverse operating systems. The early results

support the conjecture that reliability increases with the investment of design

diversity.

2.2 Software Testing Strategies

As the main fault removal technique, software testing is one of the most effort-

intensive activities during software development [7]. The key issue in software

testing is test case design and evaluation. Exhaustive testing, which test all

possible inputs, is generally not applicable as most of the input domain is

very large, even infinite. Thus various testing strategies have been proposed

to design an effective test set in order to detect as many faults as possible.

2.2.1 Current Testing Strategies

Among these strategies, Functional testing (so-called black-box testing) aims

at testing functions which are developed based on either the requirement or

the specification [46], e.g., Specification-based testing [43].

Structural testing (so-called white-box testing) requires certain parts of the

program code to be executed by the test set [51]. For example, branch testing

requires every program branch to be executed at least once in one test set, while

data-flow coverage testing [91] measure the test completeness by executing the

Chapter 2 Background and Related Work 33

test cases and measuring how definition and usage of certain types of variables

are exercised.

Unlike the two testing strategies above, mutation testing begins by creating

many “faulty” versions of a program [47]. The effectiveness of a test case is

evaluated by whether it can cause each faulty version to fail.

Almost all these testing strategies inherit a common feature: the input

domain is divided into subsets, called subdomains, and one or more repre-

sentatives from each subdomain are selected to form the final test set. This

approach is called partition testing [40, 105]. It has more recently been argued

that some of the input subdomains may not be disjoint but overlapping [33],

so these testing strategies were referred as subdomain-based testing.

In contrast to subdomain-based testing, random testing simply generates

test cases within the entire input domain [26]. With random testing, it is

easier to design large numbers of test cases to perform quantitative reliability

analysis of programs.

In terms of the ability to detect faults, various testing strategies have been

evaluated and compared through experiments [32], simulations [26, 40], and

analysis [12, 18, 31, 33, 50, 78, 105]. Furthermore, based on the intuition that

more faults will be revealed if more code is executed during testing, code cover-

age has been proposed as an indicator of testing effectiveness and completeness

for the purpose of test case selection and evaluation [73, 91, 96]. However, as

this remains a controversial issue, more empirical test data with real-world

complicated applications are seriously needed to evaluate the effect of code

coverage on test case evaluation and selection under various testing strategies.

For various testing strategies, the effectiveness and completeness of the

test sets has remained an active research issue over the past several decades.

For structural testing, code coverage is supposed to be an indicator of the

Chapter 2 Background and Related Work 34

fault detection capability in a given test case. Moreover, the comparison of

functional testing, structural testing, and random testing has also drawn a

great deal of research interest.

2.2.2 Code Coverage: Definition and Indication

Structural testing is based on the intuition that more faults will be revealed if

more code is executed during testing. Based on this intuition, code coverage

has been proposed as an indicator of testing effectiveness and completeness for

the purpose of test case selection and evaluation [73, 91, 96]. Code coverage is

measured as the fraction of program code that is executed at least once during

the test. Various code coverage criteria have been suggested [45], including

block coverage, decision coverage, C-use coverage and P-use coverage.

The definitions of these different coverage criteria are given in [45]. We

give brief descriptions of each as follows:

Block coverage is measured as the portion of basic blocks executed. Ba-

sic blocks are maximal code fragments without branching, which contains no

internal control flow change;

Decision coverage is measured as the portion of decisions executed. A

decision is a code fragment associated with a branch predicate.

C-use coverage is measured by computational uses covered. It refers to a

pair of definition and computational use of a variable.

P-use coverage is measured by predicate uses covered. It refers to a pair of

definition and predicate use of a variable.

From the definitions of these four coverage metrics, block coverage and

C-use contain no control flow change while decision coverage and P-use are

related to branch predicates.

However, it remains a controversial issue whether code coverage is a good

Chapter 2 Background and Related Work 35

indicator for fault detection capability of test cases. Some previous studies

have shown that high code coverage brings high software reliability and low

fault rate [30, 45, 91, 104]. Such experimental data indicate that both code

coverage and number of faults detected in programs grow over time, as testing

progresses. For example, [17] observed this correlation between code coverage

and software reliability using experimentation with randomly generated flow

graphs. In [107], it was reported that the correlation between test effectiveness

and block coverage is higher than that between test effectiveness and size of

test set. [34] showed that an increase in reliability comes with an increase in at

least one code coverage measures, and a decrease in reliability is accompanied

by a decrease in at least one code coverage measures.

Furthermore, considering code coverage as a positive indicator for software

reliability and quality, some researchers have tried to model the relationship be-

tween code coverage and code quality by hypergeometric distribution modeling

[106] (under the assumption of a uniform probability and a random distrib-

ution of defects in the unit code, and independence between defects). Some

have suggested code coverage as an additional parameter for the prediction of

software failures in operation [15]. Others have modeled the relation among

testing time, coverage and reliability [76].

On the other hand, despite these observations of correlations between code

coverage and fault coverage, a question is raised [13]: Can this phenomenon of

concurrent growth be attributed to a causal dependency between code coverage

and fault detection, or is it just coincidental due to the cumulative nature of

both measures? A simulation experiment involving Monte Carlo simulation

was conducted with the assumption that there is no causal dependency between

code coverage and fault detection. The testing result on published data did

not support a causal dependency between code coverage and defect coverage.

Chapter 2 Background and Related Work 36

Overall, the relationship between code coverage and fault detection is very

complicated. More empirical data and theoretical insight are needed to explore

the causal dependency between the two measures.

2.2.3 Comparisons of Different Testing Strategies

Considerable research attention has been paid to the comparison of the effec-

tiveness of partition testing versus random testing [12, 18, 26, 33, 40, 81, 105].

Duran and Ntafos [26] began the first comparison through a simulation study.

This showed that the performance of random testing is very close to that

of partition testing, yet the former may be more cost-effective than the lat-

ter. [40] performed a more extensive simulation for further investigation and

showed similar results.

More recently, several analytical studies have been conducted to ascertain

sufficient or necessary conditions under which one strategy performs better

than the other [12, 18, 33, 78, 81, 105]. Particularly, [105] states that, under the

condition that all the partitions have the same size and the same number of test

cases are selected from each subdomain, partition testing has equal or better

performance. This condition was generalized in [18], by stating that partition

testing has at least equal performance to random testing if the allocation of

the test cases to the subdomains is proportional to the size of the subdomains.

This concept of proportional partition testing was challenged by [81] through

simulations. However, all these studies used synthetic data to illustrate their

analytical results. It has also been argued that the factors that affect the

performance between partition testing and random testing need to be studied

through data from real projects.

Formal analysis of the fault detection ability of various testing methods was

performed in [33], by defining several relationships between testing criteria,

Chapter 2 Background and Related Work 37

namely narrows, covers, partitions, properly covers, and properly partitions.

The probability of causing at least one failure is used to measure the different

performances of the methods. Moreover, other analytical comparisons have

been conducted through Majorization and Schur functions [12], and by other

measurements, such as, the expected number of failures caused [78].

As all these simulations and formal analysis have been performed for the

purpose of comparison of testing effectiveness and completeness of different

testing strategies, testing data from real-world applications are needed to com-

plement and validate the current findings or results.

2.3 Summary

In this chapter, we survey the background, current techniques or strategies,

comparisons and evaluations of software fault tolerance and software testing.

Fault-tolerant software enables a system to tolerate software faults remain-

ing in the system after its development. When a fault occurs, fault-tolerant

software techniques provide mechanisms within the software system to prevent

system failure from occurring.

Fault-tolerant software techniques include single version software techniques

and multiple version software techniques. There are two main techniques for

single version software fault tolerance: checkpointing and exception handling.

Three fundamental techniques are available for multi-version fault-tolerant

software: recovery block, N-version programming and N self-checking pro-

gramming. These approaches are also called design diversity.

Various modeling schemes have been proposed to evaluate the effectiveness

of fault-tolerant software. Furthermore, different applications and middleware

Chapter 2 Background and Related Work 38

components have been developed to satisfy performance and reliability de-

mands in various domains employing fault-tolerant software. Fault-tolerant

software is generally accepted as a key technique in achieving highly reliable

software.

On the software testing side, the two major testing strategies are subdomain-

based testing and random testing. Functional testing, structural testing and

mutation testing are all design by different testing principles in subdomain-

based testing. Code coverage has been proposed to be an indicator of testing

effectiveness, but this remains controversial and further empirical validation is

needed.

From this survey, we can see that although formal analysis, simulations and

experiments have been performed for evaluation and comparison of existing

software fault tolerance techniques and software testing strategies, there is a

lacking of real world project data for investigation on software testing and fault

tolerance techniques together, with comprehensive analysis and evaluation.

2 End of chapter.

Chapter 3

Research Procedure and

Methodology

Software reliability engineering techniques can be classified in the following ar-

eas: fault avoidance, fault removal, fault tolerance, and fault prediction. Tradi-

tionally, software reliability is achieved by fault avoidance techniques (includ-

ing structure programming, software reuse, and formal methods) to prevent

software faults or by fault removal techniques (including testing, verification,

and validation) to detect and eliminate software faults. As the complexity of

software increases, the number of dormant software faults present at system

operation also increases. Therefore, the capability to tolerate software faults,

particularly for critical applications, is evident.

While fault-tolerant software is seen as a necessity, it also remains a con-

troversial technique and there is a lack of conclusive assessment about its

effectiveness. Up to date researchers do not know what creditable reliability

models for fault-tolerant software are, how to test for fault tolerance, and how

effective fault-tolerant software can become. In particular, we cannot system-

atically develop models to predict reliability of fault-tolerant software systems,

39

Chapter 3 Research Procedure and Methodology 40

and provide evidences regarding the validity of these models. One difficulty

lies on the fact that there is no proper model to describe the nature and in-

teractions of software faults regarding how they are manifested and how they

are correlated. Several models have been proposed, yet debates among experts

are frequent and heated. Moreover, there is lacking of real world project data

for investigation on software testing and fault tolerance techniques together,

with comprehensive analysis and evaluation. Without new research efforts, it

is doubtful that this impasse can be broken.

Consequently, based on our background study and literature review, we

propose a comprehensive procedure in assessing fault-tolerant software for soft-

ware reliability engineering. We will study the testing and modeling techniques

for fault-tolerant software, and construct a systematic approach to predicting

the achievable reliability based on the software architecture and testing evi-

dences of fault-tolerant software systems.

Although many research efforts have been conducted for investigation, ex-

perimentation, modeling and evaluation of software fault tolerance, it still

remains a debatable approach compared with other software engineering tech-

niques. One main reason is the lack of real world project data on collecting the

features of software fault tolerance; and the other is the failures in software ver-

sions may not occur independently, making it difficult to establish justifiable

predictive reliability models. This thesis aims at expanding our scientific un-

derstanding of software fault tolerance techniques with quantitative assessment

for planning, evaluation, and trade-off study purposes. Specifically, we need to

scrutinize and rationalize the modeling and measurement aspects of software

fault tolerance as an effective software reliability engineering technique.

We will perform four major tasks in modeling, experimentation, evaluation,

and economics of software fault tolerance, as illustrated in Figure 3.1. We

Chapter 3 Research Procedure and Methodology 41

describe them in detail in the following sections.

3.1 Modeling

In the modeling area our objective is to derive a comprehensive reliability model

for fault-tolerant software. We would like to compare various fault-tolerant

software reliability models, establish a new paradigm which can consider the

key attributes of fault-tolerant software systems, and formulate the relationship

between fault tolerance techniques and reliability achievement.

In this task we will investigate modeling techniques for fault-tolerant soft-

ware. We would like to compare various fault-tolerant software reliability mod-

els, establish a new paradigm which can consider the key attributes of diverse

software systems, and formulate the relationship between software testing and

reliability achievement.

In the previous chapter, we have surveyed five historical reliability mod-

els for fault-tolerant software. To evaluate their applicability to real-world

projects and their prediction accuracy, we plan to perform a comprehensive

experimentation to compare these reliability models, as stated in the next sec-

tion. After comparing these five historical models, we plan to propose our own

reliability modeling with the consideration of fault-tolerant architectures, fault

correlations, input domains, and system dependencies. The resulting model

may not be analytically solvable, in which case simulation techniques [36] will

be engaged.

Chapter 3 Research Procedure and Methodology 42

Figure 3.1: Four major tasks

Chapter 3 Research Procedure and Methodology 43

3.2 Experimentation

In the experimentation area our objective is to obtain new real-world data

regarding fault-tolerant software. We plan to conduct fault-tolerant software

experiments, apply coverage-based and mutation-based testing techniques, and

collect data for detailed analysis. We will conduct comprehensive experimen-

tation to study the nature, source, type, detectability, and effect of faults

uncovered in the program versions, and to learn the correlations among these

faults and the relation to their resulting failures.

We have pointed out that there is a lack of experimental data for fault-

tolerant software. Nevertheless, we have surveyed most fault-tolerant software

development experiments, including NASA four-university experiment [27],

UCLA six-language experiment [5], University of Iowa Lyu-He Experiment

[71]. To further explore the fault-failure relationship, test data effectiveness,

fault correlation, etc. for fault-tolerant software, we will conduct a real-world

project as our own experiment with considerable size, complexity and of certain

representativeness. In addition, we would like to conduct a cross-comparison

between our experiment and similar existing ones to investigate some “vari-

ants” as well as “invariants” in fault-tolerant software.

3.3 Evaluation

In the evaluation area our objective is to provide scientific evidences for soft-

ware fault tolerance. We intend to apply statistical techniques to confirm the

validity of the fault-tolerant software reliability model we established, subject

to the evidences from the experimental data. In addition, we will investigate

the effectiveness of data flow coverage, mutation coverage, and design diversity

for fault coverage. We will examine different hypotheses on software testing

Chapter 3 Research Procedure and Methodology 44

and fault tolerance schemes, and establish quantitative evidences regarding the

new testing schemes and reliability models that we establish.

3.4 Economics

Traditionally fault-tolerant software and software testing represent two schools

of researchers with drastically different opinions on how to obtain reliable

software: The former believe software will never be produced free of faults, thus

fault tolerance is inevitable, while the latter consider software testing is more

cost-effective in building reliable software [104], even for critical applications.

Few research efforts were devoted to establish a direct comparison between

these two approaches with scientific arguments and quantitative investigations.

In the economics area our objective is to perform a trade-off study be-

tween the two major software reliability engineering techniques: software fault

tolerance and software testing. We can attempt to establish the relationship

between software fault tolerance and software testing, and determine cost-

effectiveness in these two competing mechanisms. The established relation-

ship between fault tolerance and software testing can be parameterized by the

experimental data we obtained for a quantitative assessment for software re-

liability engineering economics. Other investigations also include impact the

existence of fault-tolerant software to software testing [67], and the testing

techniques for fault-tolerant software systems [69]. Our ultimate goal is to

establish a quantitative relationship between testing techniques and software

fault tolerance techniques for trade-off purposes.

Chapter 3 Research Procedure and Methodology 45

3.5 Summary

In this chapter, we describe the research procedure and methodology which

outlines the whole work in this thesis. As discussed above, we would like to

perform four major procedures regarding software reliability engineering, soft-

ware fault tolerance and software testing, namely, modeling, experimentation,

evaluation, and economics.

The significance of this research is its potential penetration to a long-term

research problem in assessing fault-tolerant software as a validated technique

for software reliability engineering purpose. It will engage a number of other

reliability engineering efforts, including reliability modeling, software testing

strategies, test case development, and feedback control for optimal software

architecture design. The new models, new data, and new evidences obtained

from this research work can promote a systematic approach of fault tolerance

software in modern systems.

In the following chapters, we will present our work on experimentation

(Chapter 4), evaluation (Chapter 6&7) and modeling (Chapter 5&8). The

economics part will be put as our future work (Chapter 9).

2 End of chapter.

Chapter 4

Experimental Setup and Data

Collection

To investigate and evaluate the reliability and fault correlation features of N-

version programming, statistical failure data are highly demanded from exper-

iments or real-world projects. To simulate real environments, the experimental

application should be as complicated as real-world projects to represent actual

software in practice. In such experiments, the population of program versions

should be large enough to provide valid statistical analysis. Furthermore, the

development process should be well-controlled, so that the bug history can be

recorded and real faults can be studied.

Up to now, a number of projects have been conducted to investigate and

evaluate the effectiveness of N-version programming, including UCLA Six-

Language project [54, 69], NASA 4-University project [27, 86, 103], Knight

and Leveson’s experiment [58], and Lyu-He study [25, 71]. Considering the

population of programming versions and the complexity of the application,

NASA 4-University project was a representative and well-controlled experi-

ment for the evaluation of N-version programming.

46

Chapter 4 Experimental Setup and Data Collection 47

Our research is motivated by the lack of real world project data for in-

vestigation on software testing and fault tolerance techniques together, with

comprehensive analysis and evaluation. Subsequently we conducted a real-

world project and engaged multiple programming teams to independently de-

velop program versions based on an industry-scale avionics application. We

conducted detailed experimentation to study the nature, source, type, de-

tectability, and effect of faults uncovered in the program versions, and to learn

the relationship among these faults and the correlation of their resulting fail-

ures. We applied the mutation testing techniques to reproduce mutants with

real faults, and investigated the effectiveness of data flow coverage, mutation

coverage, and design diversity for fault coverage.

In this chapter, we demonstrate the experimental setup and preliminary

data collected. Some of the data and results will be further analyzed in the

following Chapters.

4.1 Project Descriptions and Experimental Pro-

cedure

As stated before, our research is motivated by the lack of real world project

data for the investigation and evaluation of the effect of code coverage on fault

detection capability with current software testing strategies. For the purpose

of evaluation and comparison, mutation testing provides a testing adequacy

criterion in unit testing [82, 83, 109], integration testing [23] and program

analysis [84]. Moreover, this testing adequacy criterion will be more realistic if

real faults rather than hypothetical faults are seeded into the original program

versions.

Chapter 4 Experimental Setup and Data Collection 48

In the spring of 2002, we formed 34 independent programming teams at

the Chinese University of Hong Kong to design, code, test, evaluate, and doc-

ument a critical application taken from industry. Each team was composed

of 4 senior-level undergraduate Computer Science students for a 12-week-long

project in a software engineering course. We portray below the project de-

tails, the software development procedure and the creation of mutants with

the faults discovered during the software testing phase. The setup for the

evaluation test environment and the initial metrics are also described.

4.1.1 RSDIMU Project

The specifications for a critical avionics instrument, Redundant Strapped-

Down Inertial Measurement Unit (RSDIMU), were used in our project investi-

gation. RSDIMU was first engaged in [27] for a NASA-sponsored 4-university

multi-version software experiment. It is part of the navigation system in an

aircraft or spacecraft. In this application, developers are required to estimate

the vehicle acceleration using the eight accelerometers mounted on the four

triangular faces of a semi-octahedron in the vehicle. As the system is fault

tolerant, it allows the calculation of the acceleration when some of the ac-

celerometers fail. The specification allows for the accelerometers to fail before

the beginning of the program or during the execution of the program. Figure

4.1 shows the system data flow diagram.

The accelerometer measures specific force along its associated measurement

axis, where specific force is the difference between the RSDIMU’s inertial linear

acceleration and the acceleration due to gravity. There are two kinds of input

processing. The first type is the information describing the system geometry

(“Geometry Information”). The second type is the accelerometer readings

from the accelerometers, which need to be pre-processed through calibration

Chapter 4 Experimental Setup and Data Collection 49

Figure 4.1: RSDIMU system data flow diagram

(“Calibrate”) and scaling (“Scale”).

The program should perform two major functions. The first is to conduct

a consistency check to detect and isolate failed accelerometers (“Failure De-

tection”). The second is to use the accelerometers found to be good in the

first check to provide estimates of the vehicle’s linear acceleration, expressed

as components along different alignments (“Alignment” and “Estimate Vehicle

State”).

For output processing, the primary outputs are the accelerometer status

vector specifying either a failed or an operational mode (“Failure Detection”),

and a set of estimates for the vehicle’s linear acceleration based on various

subsets of the operational accelerometers (“Estimate Vehicle State”). The

secondary output is the information which drives a display panel and provides

system status (“Display Processor”).

Chapter 4 Experimental Setup and Data Collection 50

4.1.2 Software Development Procedure

The waterfall model [93] was applied in this software development project. Six

phases were conducted in the development process according to the software

engineering requirements.

Phase 1: Initial design document (duration: 3 weeks)

The purpose was to allow the programmers to get familiar with the speci-

fications, so as to design a solution to the problem. At the end of this phase,

each team delivered a preliminary design document, which followed specific

guidelines and formats for documentation.

Phase 2: Final design document (duration: 3 weeks)

The purpose was to let each team obtain some feedback from the coordi-

nator to adjust, consolidate, and complete their final design. Each team was

also requested to conduct at least one design walkthrough. At the end of this

phase, each team delivered (1) a detailed design document, and (2) a design

walkthrough report.

Phase 3: Initial code (duration: 1.5 weeks)

By the end of this phase, programmers finished coding, conducted a code

walkthrough, and delivered the initial, compilable code in the C language.

Each team was required to use the RCS revision control tool for configuration

management of the program modules.

Phase 4: Code passing unit test (duration: 2 weeks)

Each team was supplied with sample test data sets for each module to

check the basic functionalities of the module. They were also required to build

their own test harness for the testing.

Phase 5: Code passing integration test (duration: 1 week)

Several sets of test data were provided to each programming team for inte-

gration testing. This testing phase was aimed at guarantee that the software

Chapter 4 Experimental Setup and Data Collection 51

was suitable for testing as an integrated system.

Phase 6: Code passing acceptance test (duration: 1.5 weeks)

Programmers formally submitted their programs for a stringent acceptance

test, where 1200 test cases were used to validate the final code. At the end of

this phase all 34 teams passed the acceptance test. It is noted that the require-

ment for this acceptance test was the same as the operational test conducted

in [27], which was much tougher than the original acceptance test in [27].

4.1.3 Mutant Creation

A Revision Control System (RCS) [92] was required for source control for

each team. Every code change of each program file at each check-in could

therefore be identified. Software faults found during each stage were also

identified. These faults were then injected into the final program versions to

create mutants, each contain one programming fault. We selected 21 program

versions for detailed investigation, and created 426 mutants. We disqualified

the other 13 versions as their developers did not follow the development and

coding standards which were necessary for generating meaningful mutants from

their projects.

The following rules were applied in the mutant creation process:

1. Low-grade errors, for example compilation errors and core dump excep-

tion, were not created.

2. Some changes only occurred in middle versions. For example, the changes

between v1.1 and v1.2 may not be completely manifested in the final

version. These changes were then ignored.

3. Temporary code changes for debugging purposes were not included.

Chapter 4 Experimental Setup and Data Collection 52

4. Modifications of the function prototypes were excluded.

5. As the specification does not mention memory leaks, mutants were not

created to generate any faults leading to memory leaks.

6. The same programming error may span many blocks of code. For exam-

ple: a variable should be divided by 1000 when it is used. The missing

division may occur everywhere in the source files. This would be counted

as a single fault.

4.1.4 Setup of Evaluation Test

In order to evaluate the effectiveness of data flow testing schemes, we set up

an evaluation test environment. We employed the ATAC (Automatic Test

Analysis for C) [45, 72] tool to analyze and compare code coverage achieved in

testing conducted with the 21 program versions, as well as their 426 mutants.

For each round of evaluation test, all 1200 acceptance test cases were exercised

on these mutants. This was a very intensive testing procedure, as all the

resulting failures from each mutant were analyzed, their coverage measured,

and cross-mutant failure results compared.

60 Sun machines running Solaris were involved in the evaluation test. The

evaluation test script was run on a master host, and distributed each mutant

as a running task to another machine. The execution results were collected

in network file systems (NFS). One cycle of evaluation testing took 30 hours,

and the test results generated around 20GB in total of 1.6 million files.

The test cases conducted in the evaluation test are described in Table

4.1. Based on execution of these test cases over the mutants, we analyzed

the relationship between fault and failure. We examined the effectiveness of

the test cases by their test coverage measures, and by their ability to kill the

Chapter 4 Experimental Setup and Data Collection 53

Table 4.1: Test case description

1 A fundamental test case to test basic functions.

2-7 Test cases checking vote control in different order.

8 General test case based on test case 1 with different display mode.

9-19 Test varying valid and boundary display mode.

20-27 Test cases for lower order bits.

28-52 Test cases for display and sensor failure.

53-85 Test random display mode and noise in calibration.

87-110 Test correct use of variable and sensitivity of the calibration procedure.

86, 111-149 Test on input, noise and edge vector failures.

150-151 Test various and large angle value.

152-392 Test cases checking for the minimal sensor noise levels for failure decla-
ration.

393-800 Test cases with various combinations of sensors failed on input and up
to one additional sensor failed in the edge vector test.

801-1000 Random test cases. Initial random seed for 1st 100 cases is: 777, for 2nd
100 cases is: 1234567890

1001-1200 Random test cases. Initial random seed is: 987654321 for 200 cases.

mutants (a mutant is killed if it gives incorrect outputs compared with the

outputs from a gold version). We also studied the fault detecting capability of

each test case, and obtained the non-redundant set of test cases covering all

mutants.

4.1.5 Program Metrics

Table 4.2 shows the program metrics for the 21 versions engaged in the eval-

uation test, and the mutants each of them generated. It can be noted that

the size of these programs varies from 1455 to 4512 lines of source code. Each

version produced a number of mutants ranging from 9 to 31. The data flow

metrics are also listed in Table 4.2.

Chapter 4 Experimental Setup and Data Collection 54

Table 4.2: Program metrics for 21 versions

Id Lines Modules Functions Blocks Decisions C-Use P-Use Mutants

01 1628 9 0 1327 606 1012 1384 25

02 2361 11 37 1592 809 2022 1714 21

03 2331 8 51 1081 548 899 1070 17

04 1749 7 39 1183 647 646 1339 24

05 2623 7 40 2460 960 2434 1853 26

07 2918 11 35 2686 917 2815 1792 19

08 2154 9 57 1429 585 1470 1293 17

09 2161 9 56 1663 666 2022 1979 20

12 2559 8 46 1308 551 1204 1201 31

15 1849 8 47 1736 732 1645 1448 29

17 1768 9 58 1310 655 1014 1328 17

18 2177 6 69 1635 686 1138 1251 10

20 1807 9 60 1531 782 1512 1735 18

22 3253 7 68 2403 1076 2907 2335 23

24 2131 8 90 1890 706 1586 1805 9

26 4512 20 45 2144 1238 2404 4461 22

27 1455 9 21 1327 622 1114 1364 15

29 1627 8 43 1710 506 1539 833 24

31 1914 12 24 1601 827 1075 1617 23

32 1919 8 41 1807 974 1649 2132 20

33 2022 7 27 1880 1009 2574 2887 16

Average 2234.2 9.0 48.8 1700.1 766.8 1651.5 1753.4 Total: 426

Chapter 4 Experimental Setup and Data Collection 55

Table 4.3: Defect type distribution

Defect types Number Percent

Assign/Init 136 31%

Function/Class/Object 144 33%

Algorithm/Method 81 19%

Checking 60 14%

Interface/OO Messages 5 1%

4.2 Static Analysis of Mutants: Fault Classi-

fication and Distribution

Judging from the number of programming teams involved and the quantify of

mutants generated, this investigation is probably the largest scale experiment

in the literature regarding injecting actual programming faults in real-world

software application for multiple program versions. We first perform static

analysis of the mutants regarding their defect type, qualifier, severity, develop-

ment stage occurrence and effect code lines. Note we use “defect” and “fault”

interchangeably.

4.2.1 Mutant Defect Type Distribution

Each mutant is assigned with a defect type according to [20]. The statistics is

show in Table 4.3.

4.2.2 Mutant Qualifier Distribution

Each mutant is assigned with a qualifier. The statistics is show in Table 4.4,

with the following definitions:

Chapter 4 Experimental Setup and Data Collection 56

Table 4.4: Qualifier distribution

Qualifier Number Percent

Incorrect 267 63%

Missing 141 33%

Extraneous 18 4%

Table 4.5: Severity distribution

Severity Highest Severity First Failure Severity

Level Number Percentage Number Percentage

A Level (Critical) 12 2.8% 3 0.7%

B Level (High) 276 64.8% 317 74.4%

C Level (Low) 95 22.3% 99 23.2%

D Level (Zero) 43 10.1% 7 1.6%

• Incorrect – The defect was a mistake in computing. For example: typo,

wrong algorithm, etc.

• Missing – Something was missing to cause the defect.

• Extraneous – Useless addition caused the error.

4.2.3 Mutant Severity Distribution

The severity distribution according to the following definitions is listed in Table

4.5.

A Level (Critical): If the mutant could not generate final result (in this

project, it’s the acceleration value) due to the fault.

B Level (High): If the mutant generated wrong final result due to the fault.

Chapter 4 Experimental Setup and Data Collection 57

Table 4.6: Development stage distribution

Stage Number Percentage

Init Code 237 55.6%

Unit Test 120 28.2%

Integration Test 31 7.3%

Acceptance Test 38 8.9%

C Level (Low): If the mutant generated the correct final result but pro-

duced some other incorrect output (for example, the display results were erro-

neous.)

D Level (Zero): If the mutant passed all test cases but failed for some

special minor reason (for example, incorrect voting sequence without affecting

out values.)

Note that in Table 4.5, “Highest Severity” records the highest level of

severity among all failed test cases for a mutant, while “First Failure Severity”

records the failure severity at the first time when a failure occurred to the

mutant.

4.2.4 Fault Distribution over Development Stage

The sources of faults came from different stages of the development. This

distribution is shown in Table 4.6.

4.2.5 Mutant Effect Code Lines

The number of code lines span affected by each mutant was measured by

manual inspection. Table 4.7 lists the details. In previous research efforts on

mutation testing, usually the faults were artificially injected which simple code

Chapter 4 Experimental Setup and Data Collection 58

Table 4.7: Fault effect code lines

Lines Number Percent

1 line 116 27.23%

2-5 lines 130 30.52%

6-10 lines 61 14.32%

11-20 lines 43 10.09%

21-50 lines 53 12.44%

51+ lines 23 5.40%

Average 11.39

changes such as the replacement of a logic operator in a conditional statement

or the modification of a operand value, and the code line span was limited

to one or a few lines. It can be seen from Table 4.7 that, in our experiment,

an average of 11.39 code lines were affected by a fault, accurately resembling

genuine faults and showing that artificial mutants are not representative of

real situations.

4.3 Dynamic Analysis of Mutants: Effects on

Software Testing and Fault Tolerance

Based on execution of the 1200 test cases over the mutants, we analyzed fault

and failure relationship. We also studied the fault detecting capability of each

test case, and obtained the non-redundant set of test cases which can cover all

mutants.

Chapter 4 Experimental Setup and Data Collection 59

Figure 4.2: Non-redundant set of test cases

4.3.1 Finding Non-redundant Set of Test Cases

One important issue in software testing is the removal of redundant test cases.

If two test cases kill exactly the same mutants, one of them can be regarded as

redundant. By eliminating all such redundant cases, the remaining test cases

constitute a non-redundant test set.

Figure 4.2 shows the non-redundant test set from the 1200 test cases. The

gray lines indicate redundant cases, while the black blocks indicate the set of

non-redundant test cases. The size of this test set is 698 test cases.

We observe that redundant test case is rare after test case 800. In examining

the generation procedure of the test cases, we note that test cases after 800 are

random test cases. They do not focus on any particular aspect of the program,

thus avoiding redundancy.

4.3.2 Relationship between Mutants

In the interest of software fault tolerance, we also investigated fault similarity

and failure correlation based on the mutant population. The test result of

every success/failure test result can be collected to form a binary string of

1200 bits. Based on comparisons of the binary strings from all 426 mutants,

Chapter 4 Experimental Setup and Data Collection 60

Table 4.8: Mutants relationship

Relationship Number of pairs Percentage

Related mutants 1067 1.18%

Similar mutants 38 0.042%

Exact mutants 13 0.014%

three mutant relations can be defined:

• Related mutants: Two mutants have the same success/failure result on

the 1200-bit binary string.

• Similar mutants: Two mutants have the same binary string and with

the same erroneous output variables.

• Exact mutants: Two mutants have the same binary string with the same

erroneous output variables, and erroneous output values are exactly the

same.

Table 4.8 shows distribution of these mutant relations, and their percentages

out of total combinations (90525).

4.3.3 Relationship between the Programs with Mutants

During the evaluation test, we also determined the correlation among the pro-

gram version based on mutant executions. We defined two types of relation-

ships: program versions with similar mutants, and program versions with exact

mutants. The former includes program versions which generate similar mu-

tants, while the latter includes those generating exact mutants. The results

are shown, respectively, in Table 4.9 and Table 4.10. Each axis in these tables

Chapter 4 Experimental Setup and Data Collection 61

shows the program ID, and the values in the content, if any, indicate the num-

ber of similar or exact mutants between two corresponding program versions.

Note these tables are symmetric.

Table 13 summarizes total program version pairs with similar and exact

mutants. The pairs with exact mutants are interesting and valuable for analysis

in detail. There are seven pairs of exact mutants. All these pairs were due

to five exact faults, in which four exact fault occurs in two versions while one

exact fault span three versions. Table 14 (a)-(e) provide a summary of these

faults.

Here are the descriptions on the causes of these faults:

Pair 1 – Versions 4 and 8

The display mode is incorrectly calculated for a missing operation.

Pair 2 – Versions 12 and 31

Wrong calibration was made due to incorrect alignment access of array

elements.

Pair 3 – Versions 15 and 33

Version 15 missed code to perform mod 4096 in calculating the average

value in calibration. Version 33 missed code to ignore redundant data for

calibration.

Pairs 4, 5, and 6 – Versions 4, 15, and 17

In estimation, all versions missed code to multiply a factor in calculation.

Pair 7 – Versions 31 and 32

Version 31 contained an error in checking when checkout the sensors with

excessive noise. Version 32 committed the same error in marking sensor status.

These exact faults, however, were detected in different testing stages

We note that the amount of exact faults among program versions is very

limited. This implies that design diversity involving multiple program versions

Chapter 4 Experimental Setup and Data Collection 62

Table 4.9: Program versions with similar mutants
ID 01 02 03 04 05 07 08 09 12 15 17 18 20 22 24 26 27 29 31 32 33

01

02 02 02

03

04 02 01 02 01 01 01

05

07 02 02 01 01

08 01 02 04 02 01

09

12 01 01

15 02 02 02 04 03 01

17 01 01 02 01 03

18 01 01

20

22

24

26

27 01 01

29

31 01 01

32 01

33 01

Table 4.10: Program versions with exact mutants
ID 01 02 03 04 05 07 08 09 12 15 17 18 20 22 24 26 27 29 31 32 33

01

02

03

04 01 01 01

05

07

08 01

09

12 01

15 01 01 01

17 01 01

18

20

22

24

26

27

29

31 01 01

32 01

33 01

Chapter 4 Experimental Setup and Data Collection 63

Table 4.11: Summary of program relationship

Relationship Number of pairs Percentage

Programs with Similar Mutants 19 9.05%

Programs with Exact Mutants 7 3.33%

Table 4.12: Exact pair 1: versions 4 and 8

Version 4 Version 8

Module Display Processor Display Processor

Stage Initcode Initcode

Defect Type Assign/Init Assign/Init

Severity C C

Qualifier Missing Missing

Table 4.13: Exact pair 2: versions 12 and 31

Version 12 Version 31

Module Calibrate Calibrate

Stage Initcode Initcode

Defect Type Algorithm/Method Algorithm/Method

Severity B B

Qualifier Incorrect Incorrect

Table 4.14: Exact pair 3: versions 15 and 33

Version 15 Version 33

Module Calibrate Calibrate

Stage Initcode Initcode

Defect Type Algorithm/Method Algorithm/Method

Severity B B

Qualifier Missing Missing

Chapter 4 Experimental Setup and Data Collection 64

Table 4.15: Exact fault pairs 4, 5, and 6: versions 4, 15 and 17

Version 4 Version 15 Version 17

Module Estimate Vehicle State Estimate Vehicle State Estimate Vehicle State

Stage Initcode Initcode Initcode

Defect Type Assign/Init Assign/Init Algorithm/Method

Severity B B B

Qualifier Incorrect Incorrect Incorrect

Table 4.16: Exact pair 7: versions 31 and 32

Version 31 Version 32

Module Calibrate Calibrate

Stage Unit Test Acceptance Test

Defect Type Checking Checking

Severity B B

Qualifier Incorrect Incorrect

can be an effective mechanism for software reliability engineering.

Moreover, the number of programs with exact mutants is very small, in-

dicating the potential benefit of software fault tolerance. On the other hand,

the number of related mutants is not negligible. Thus effective error detection

and recovery schemes play a crucial role in distinguishing faults failing on the

same data but with different results.

4.4 Threats to Validity

Internal as well as external threats to validity may arise in empirical studies.

The former are related to the consistency of the measurement, the appropriate

use of tools and methods, etc. The latter touch on the issue of the extent to

which the present results can be applied to other studies.

Chapter 4 Experimental Setup and Data Collection 65

First of all, a main threat may arise from the representativeness of this

particular application, compared with real projects in business. Although

the RSDIMU application is computational-intensive and contains no graphic

interface or user interactions, unlike most software industry projects nowadays,

it is an important part of the navigation system of spacecraft; it is mission-

critical and computational intensive, which requires extreme high reliability

for the software. We believe it can represent general business projects based

on its complexity, size and well-controlled development process.

Another threat may arise from the development of the multiple versions of

the same program: are they really developed independently? In our project,

the policy prohibits the students from joint work and sharing between teams.

The students can ask questions on the course newsgroup, but only about the

specification. Of course, because of the similar background and programming

experience among the different team members, some common faults exist in

the development and testing phases. However, as identified and analyzed in

this chapter, such common faults are few in number.

A possible question may be related to the developers’ incentives and work

experience. Although all the programs were developed as a course project, the

developers tried their best to pass all the different testing phases as the project

is heavily weighed in the course work. Also we think the work experience of

the developers do not account that much in this application, as it contains

comprehensive computations which are clearly formulated in the specification.

Furthermore, in this study, we use the automated tool ATAC to collect

the code coverage information in testing both the individual coverage for each

test case, and the cumulated coverage for the whole test set. As one of the

most popular coverage collecting tools for the C/C++ programming language,

ATAC has been adopted in various studies for coverage testing and collecting

Chapter 4 Experimental Setup and Data Collection 66

[15, 76, 107]. We use ATAC to obtain the four measures of code coverage:

block, decision, C-use and P-use.

For the external threats to validity, we believe the results can be applied

to other fault-tolerant related studies, especially for mission-critical software

systems with similar features. Moreover, the evaluations on testing strategies

and reliability modeling can also be applied to general software systems, in

case that detailed fault and code coverage data can be collected.

4.5 Summary

We performed an empirical investigation on evaluating fault removal and fault

tolerance issues as software reliability engineering techniques. We conducted a

major experiment engaging multiple programming teams to develop a critical

application whose specifications and test cases were obtained from the avionics

industry. We applied mutation testing techniques with actual faults committed

by programmers, and studied various aspects of the faults, including their

nature, their manifestation process, their detectability, and their correlation.

The evaluation results provided very positive support to current fault removal

and fault tolerance techniques, with quantitative evidences.

Our results implied that design diversity involving multiple program ver-

sions can be an effective solution for software reliability engineering, since the

portion of program versions with exact faults is very small. The quantitative

tradeoff between these two approaches, however, remains a research issue. Cur-

rently we can only generally perceive that software fault removal and software

fault tolerance are complementary rather than competitive.

Chapter 4 Experimental Setup and Data Collection 67

All the data collected in this experiment will be used for further investiga-

tion for various features of design diversity and coverage-based testing strate-

gies in the following chapters.

2 End of chapter.

Chapter 5

Evaluations on Reliability

Models under Fault Correlation

In design diversity, with multiple “independently developed” program versions,

one would expect that failures in a subset of the versions may be masked or

at least detected; coincident failures of all versions will be less frequent than

failures of any single version; and thus a multiple-version system will fail less

often than a single version. One might hope that the different versions fail

“independently”, but in some empirical studies failures of multiple versions

were positively correlated [9, 58].

As coincident failures may exist in diverse systems, and faults between

multiple software versions may correlated with each other, the reliability of

the final diverse systems may not be so good as expected. Some methods have

been proposed to attempt the modeling of reliability and fault correlations

achieved in design diversity, as have surveyed in Chapter 2. The five historical

reliability models try to formulate the reliability of diverse software systems

with respect to single software system, using various mathematical methods

such as probability modeling and fault tree.

68

Chapter 5 Evaluations on Reliability Models under Fault Correlation 69

In this chapter, we evaluate existing reliability models under fault corre-

lation with design diversity using the data collected in our experiment, as

described in Chapter 4. We will apply two main fault correlation models,

i.e., Popov, Strigini et al model and Dugan and Lyu Model, on our generated

mutants and evaluate their effectiveness.

5.1 Evaluation on Popov, Strigini et al’s Reli-

ability Bounds Model

Popov, Strigini et al’s model (PS model) [86] gave the upper and “likely” lower

bounds for probability of failures on demand for a 1-out-of-2 diverse system.

To get these bounds, complete knowledge on the whole demand space should

be provided. As it is hard to obtain such knowledge, the demand space can

be partitioned into some disjoint subsets, which are called subdomains. Given

the knowledge on subdomains, failure probabilities of the whole system can be

estimated as a function of the subdomain to which a demand belongs. The

main idea is as follows.

For each subdomain Si (i = 1, · · · , n), we assume that the following proba-

bilities are known: The probability P (Si) of a random demand during software

operation being drawn from Si and the probabilities of failure (pfds) of A and

B (PA,B|Si
) for demands from Si, PA|Si

and PB|Si
. Then

PA,B|Si
= PA|Si

PB|Si
+ covi(ΩA, ΩB). (5.1)

The upper bound on the probability of system failure is determined as a

weighted sum of upper bounds within subdomains:

P(A,B) ≤
∑

i

min (PA|Si
, PB|Si

)P (Si). (5.2)

Chapter 5 Evaluations on Reliability Models under Fault Correlation 70

Table 5.1: Alternative expressions for the pfd of a 1-out-of-2 system (from [86])
∑

x∈D ωA(x) · ωB(x) · P (x)

PA · PB + cov(ΩA,ΩB)

(would be pfd in
case of indepen-
dence)

(accounts for variation of score between individual demands)

PA · PB + cov(PA|Si
, PB|Si

) + E(covi(ΩA, ΩB))

(term for variation
of pfd between sub-
domains)

(term for variation
of score within each
subdomain)

∑
i PA|Si

PB|Si
P (Si) + E(covi(ΩA, ΩB))

(pfd in case of independence in each subdomain)

PA,Bsub−ind
+ E(covi(ΩA, ΩB))

The “likely” lower bound can be drawn from the assumption of conditional

independence:

PA,Bsub−ind
=

∑

i

PA|Si
PB|Si

P (Si), (5.3)

where PA,Bsub−ind
is the actual probability of coincident failures in each subdo-

main if the versions fail independently.

Alternative expressions for PA,B as the pfd of a 1-out-of-2 version system

are given in Figure 5.1.

This model can be applied to real-world data collected for diverse software.

The upper bound and the lower bound can be estimated for applications using

Point Estimate method or Confidence Bounds method. In our experiment, we

adopt Point Estimate method to illustrate the modeling results.

5.1.1 Prediction Results Using Our Data Set

In our experiment, we created 426 mutants from 21 program versions, where

each mutant was injected with one real fault into the final program versions

passing the qualification test. Note the meaning of a mutant is different from

Chapter 5 Evaluations on Reliability Models under Fault Correlation 71

that of a version, in the sense that a mutant is not a real final version but

with faults injected manually. Here we treat each mutant, which contains only

one real programming fault as a real version. From the analysis of severity of

different faults, we notice that some faults can be more severe or even critical

for the whole program, while others may have little influence on the program

functionality. In this experiment, we only engage those mutants which passed

the first 800 test cases 1 (as a qualification test set) to study the failure

correlation of the diverse versions.

The RSDIMU application receives input values from redundant sensors and

produces a consensus inertial measurement for avionic vehicles. The input

domain for RSDIMU can be represented by various sensor failure conditions.

In order to get the disjoint subdomains on the demand space, we follow the

method described in [27] by dividing the 1200 test cases into 7 categories, i.e.,

S0,0, S0,1, S1,0, S1,1, S2,0, S2,1 and “others.” These categories (or so-called

“states”) denote different situations that the number of faulty sensors prior to

or during the measurement operations. For example, S1,0, indicates the “state”

of the environment with a single faulty sensor prior to testing and no more

sensor failures during the testing. We add the 7th state, i.e., “others” to denote

the situations other than the above 6 operational states. It represents those

test cases in which the whole RSDIMU system would fail under some extreme

circumstances. Although it is indicated in [27] that such situation has little

chance of occurring in mission-critical diverse systems, we still consider it as a

subdomain of the total test cases due to the following reasons: 1) these seven

disjoint subdomains compose the whole demand space which cannot be fully

represented with only six states; 2) for reliable systems, the diverse versions

1Out of the 1200 test cases conducted during qualification test, the first 800 test cases
were designed to test various functionality of the application, while the last 400 test cases
were randomly generated according to real operational scenarios.

Chapter 5 Evaluations on Reliability Models under Fault Correlation 72

Table 5.2: Failure data of mutants passing qualification test

Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0 0 0 0 0 0 3

215 0 0 0 1 0 0 0

223 0 0 0 0 0 0 3

305 2 1 2 0 0 0 0

382 0 0 0 8 0 0 1

403 0 0 0 0 0 0 3

need to react correctly to extreme situations.

As stated, we use the first 800 test cases as the qualification test. All the

mutants which passed the qualification test are adopted in this experiment,

and each mutant is treated as a single version. We apply the remaining 400

test cases on these selected mutants. The number of failures of these mutants

(belonging to different versions) with respect to the states of test case are listed

in Table 5.2. Note that the six mutants are from different initial versions with

injection of different design and programming faults.

To apply PS model, we define the hypothetical demand profiles for cal-

culation and illustrate the effect of the demand profile on the upper bounds

and lower bounds. The adjusted demand profile is shown in Table 5.3. The

former three in Table 5.3 are hypothetical demand files described in [86], while

the last one (DP4) is the real probability distribution in our 400 test cases.

Furthermore, in order to simulate the model more accurately and realistically,

we select mutants belonging to different program versions, e.g., pair (117,305),

(215,382) and (382,403). We adopt Demand Profile 4 in our analysis, which is

the real probability distribution in our experiment.

In [86], Popov, Strigini et al discuss the use of both observed frequencies

and of conservative confidence bounds as estimates of the conditional pfds,

and favor the second alternative. Particularly in our case, according to Table

Chapter 5 Evaluations on Reliability Models under Fault Correlation 73

Table 5.3: Demand profile

DP1 DP2 DP3 DP4

p(s0,0) 0.99 0.4 0.15 0.4

p(s0,1) 0.005 0.2 0.15 0.1175

p(s1,0) 0.003 0.2 0.15 0.14

p(s1,1) 0.001 0.1 0.15 0.085

p(s2,0) 0.0005 0.05 0.15 0.0825

p(s2,1) 0.0003 0.03 0.15 0.0275

pothers 0.0002 0.02 0.10 0.1475

Table 5.4: 90 percent confidence upper bounds on mutants’ pfds in subdomains

Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

215 0.0142 0.0468 0.0396 0.1066 0.0655 0.1746 0.0376

223 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

305 0.0327 0.0786 0.0907 0.0637 0.0655 0.1746 0.0376

382 0.0142 0.0468 0.0396 0.3446 0.0655 0.1746 0.0633

403 0.0142 0.0468 0.0396 0.0637 0.0655 0.1746 0.1080

5.2, no failure was observed in some subdomains. Thus we adopt confidence

bounds method to estimate the joint pfds in our experiment. Table 5.4 shows

the 90% confidence upper bounds on pfds of mutants in subdomains, and Table

5.6 displays the lower bounds. Our testing results for upper bounds and lower

bounds on joint pfds under four demand profiles are listed in Table 5.5 and

Table 5.7, respectively.

Chapter 5 Evaluations on Reliability Models under Fault Correlation 74

Table 5.5: Upper bounds on the joint pfds under demand profiles

Pair P117 90% P305 90% min(P117 90%, P305 90%) P117,305upper90%

DP1 0.0146 0.0332 0.0146 0.0146

(117, DP2 0.0400 0.0626 0.0400 0.0386

305) DP3 0.0715 0.0796 0.0715 0.0644

DP4 0.0483 0.0562 0.0483 0.0379

P215 90% P382 90% min(P215 90%, P382 90%) P215,382upper90%

DP1 0.0146 0.0149 0.0146 0.0146

(215, DP2 0.0429 0.0672 0.0429 0.0429

382) DP3 0.0709 0.1091 0.0709 0.0709

DP4 0.0415 0.0656 0.0415 0.0415

P382 90% P403 90% min(P382 90%, P403 90%) P382,403upper90%

DP1 0.0149 0.0146 0.0146 0.0146

(382, DP2 0.0672 0.0400 0.0400 0.0391

403) DP3 0.1091 0.0715 0.0715 0.0670

DP4 0.0656 0.0483 0.0483 0.0417

Table 5.6: 90 percent confidence lower bounds on mutants’ pfds in subdomains

Mutant ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers

117 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

215 0.00065 0.00219 0.00185 0.01529 0.00309 0.00874 0.00175

223 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

305 0.00686 0.01113 0.01949 0.00301 0.00309 0.00874 0.00175

382 0.00065 0.00219 0.00185 0.16154 0.00309 0.00874 0.00890

403 0.00065 0.00219 0.00185 0.00301 0.00309 0.00874 0.02939

Chapter 5 Evaluations on Reliability Models under Fault Correlation 75

Table 5.7: 90 percent confidence lower bounds on the joint pfds under demand
profiles

Pair P117 P305 cov(S117, S305) P117P305 P117,305sub ind

DP1 6.73 · 10−4 6.91 · 10−3 3.86 · 10−8 4.65 · 10−6 4.69 · 10−6

(117, DP2 2.37 · 10−3 9.62 · 10−3 −4.26 · 10−6 2.28 · 10−5 1.86 · 10−5

305) DP3 5.87 · 10−3 8.02 · 10−3 −1.80 · 10−5 4.71 · 10−5 2.91 · 10−5

DP4 5.87 · 10−3 7.79 · 10−3 −2.47 · 10−5 4.57 · 10−5 2.09 · 10−5

P215 P382 cov(S215, S382) P215P382 P215,382sub ind

DP1 6.80 · 10−4 8.27 · 10−4 2.39 · 10−6 5.26 · 10−7 2.95 · 10−6

(215, DP2 3.05 · 10−3 1.78 · 10−2 1.98 · 10−4 5.43 · 10−5 2.52 · 10−4

382) DP3 4.95 · 10−3 2.76 · 10−2 2.50 · 10−4 1.37 · 10−4 3.86 · 10−4

DP4 2.83 · 10−3 1.63 · 10−2 1.70 · 10−4 4.62 · 10−5 2.16 · 10−4

P382 P403 cov(S382, S403) P215P382 P382,403sub ind

DP1 8.27 · 10−4 6.73 · 10−4 4.62 · 10−7 5.57 · 10−7 1.02 · 10−6

(382, DP2 1.78 · 10−2 2.37 · 10−3 1.61 · 10−5 4.23 · 10−5 5.84 · 10−5

403) DP3 2.76 · 10−2 5.87 · 10−3 −4.86 · 10−5 1.62 · 10−4 1.13 · 10−4

DP4 1.63 · 10−2 5.86 · 10−3 −1.16 · 10−5 9.56 · 10−5 8.40 · 10−5

Chapter 5 Evaluations on Reliability Models under Fault Correlation 76

5.1.2 Comparison and Discussion

The target objects engaged in our experiment and NASA 4-university experi-

ment studied in [86] are different. In the latter, diverse versions are employed

to explore the granularity of failure correlations between different pairs of ver-

sions. But in our experiment, we treat mutants as the target diverse versions,

and we know the exact fault each mutant contains. This is more helpful in

finding realistic features of faults and their coincidence in diverse systems. Fur-

thermore, to make the comparison more reasonable, we only test the mutants

passing the qualification test and then capture their behavior in the subse-

quent operation testing. For better realism, i.e., similarity with real-world

multiple-version systems, we select mutants derived from different program

versions.

The behavior of three pairs of mutants show three different features of

fault coincidence of design diversity. For pair (117, 305), the two mutants

fail differently on the seven subdomains. In this case, P117,305upper is tighter

(smaller) than min(P117, P305) consistently for all demand profiles, although

the difference between the two are insignificant under DP1. The reason behind

is that the subdomains where mutant 117 performs better are those where

mutant 305 performs worse, and vice versa, consistently. As the behavior of

the two mutants are different in all subdomains, the covariance shown in Table

5.7 is a small positive number under DP1, while negative in the other three

demand profiles. Thus the “likely” lower bound P117,305sub ind
is greater than

P117 ∗ P305 under DP1, but smaller under DP2, DP3 and DP4.

For the second pair of mutants (215,382), the covariance is positive under

all demand profiles, indicating that the two mutants have related faults and

may fail at the same subdomains. The upper bound P215,382upper equals to

min(P215, P382) under all demand profiles, since mutant 382 performs worse

Chapter 5 Evaluations on Reliability Models under Fault Correlation 77

than mutant 215 in all subdomains. As the correlation between the two mu-

tants, the lower bounds with 90% confidence are always tighter (greater) than

P215 ∗ P382 under all subdomains. This positive covariance case supports the

concept of “variation of difficulty” between and within different demand sub-

domains.

The third pair (382,403) shows the possibility of negative covariance on

DP3 and DP4. The covariance is a small negative number, and thus the

lower bound is smaller than the probability under independence scenario. It

indicates that with design diversity, the covariance of different versions may

become a benefit instead of a disadvantage. Nevertheless, as in [86], our data

also show that this situation is less likely to happen under DP1. The reason

behind may be that the two mutants have correlations on some subdomains

and no correlation on other subdomains, i.e., they have coincident failures

on Sothers, but no coincident failures on S1,1. In DP1, the probability of the

“independence” subdomain S1,1 is a small number; while in other three demand

profiles, the probability of S1,1 is large enough to affect the overall correlation

and make the reliability even higher than that of assuming “independence”.

In order to assess whether the approach proposed in [86] is useful in prac-

tice, we need to answer the following questions:

1. “Does this method always produce tighter bounds than PA ∗ PB and

min(PA, PB)?” From the analysis and discussion above, we can see that the

confidence bounds are tighter under most circumstances except two situations:

1) one mutant performs worse than the other in all subdomains; and 2) with

negative covariance, the lower bound is smaller than the probability under

independent scenario.

2. “Does this method give tight enough predictions when used in prac-

tice?” To this question, we cannot give answers on the basis of our data, since

Chapter 5 Evaluations on Reliability Models under Fault Correlation 78

in our experiment probabilities of common failure are measured directly from

the number of common failures observed. The original method in [86] is meant

for cases in which one can obtain estimates of failure probabilities (per subdo-

main) for the two versions separately, but does not have a chance of observing

the two versions on the same test cases before making a prediction. Further

experimental data are needed to be explored to answer this question.

Overall, the approach proposed in [86] of analyzing the behaviors of the

versions by subdomains appears to help, with our project data, in revealing

the features of failure correlation among diverse programs.

5.2 Evaluation on Dugan and Lyu’s System

Reliability Model

Dugan and Lyu (DL model) proposed a dependability modeling methodology

for fault-tolerant software and systems [25]. The DL reliability model is con-

structed by three parts: a Markov model details the system structure, and two

fault trees represent the causes of unacceptable results in the initial configu-

ration and in the reconfigured degraded state. Based on this 3-level reliability

model, three parameters can be estimated according to the experimental data:

PV , the probability of an unrelated fault in a version; PRV , the probability of

a related fault between two versions; and PRALL, the probability of a related

fault in all versions. The fault tree models for 2, 3 and 4 version systems are

shown in Figure 5.1. The three parameters are calculated by the following

equations for 3-version systems:

PV =
F1

NF0 + F1

, (5.4)

Chapter 5 Evaluations on Reliability Models under Fault Correlation 79

Figure 5.1: Fault tree models for 2, 3 and 4 version systems (from [25])

PRV =
2F2PV (1− PV)− (N − 1)F1P

2
V

2F2PV (1− PV) + (N − 1)F1(1− P 2
V)

, (5.5)

PRALL =
F3 − PV

3

1− PV
3 , (5.6)

where F1,F2 and F3 represent the observed frequency of a single failure, two

and three coincident failures, respectively, in a 3-version configuration.

In order to verify the effectiveness and consistency of DL model, we apply

new data to this model and compare our results with original results in [25].

In this experiment, we employ the same six mutants passing the qualification

test as the target versions in this fault tree model and their failure character-

istics are investigated. The 400 operational test cases were executed on these

mutants and the failures encounter in each mutant are shown in Table 5.8. We

can see from Table 5.8 that the average failure probability for single version is

0.01, which is much smaller compared with the original experimental data in

[25]. It indicates that the versions we used in this experiment is more reliable.

Moreover, the small failure frequency does not affect the prediction accuracy

in terms of magnitude.

We configure the six mutants in pairs, and compare their outputs for each

test case. Table 5.9 yields an estimate of PV = 0.0084 for the probability

Chapter 5 Evaluations on Reliability Models under Fault Correlation 80

Table 5.8: Failure characteristics for individual mutants
Mutant ID Number of failures Prob. By-case

117 3 0.0075

215 1 0.0025

223 3 0.0075

305 5 0.0125

382 9 0.0225

403 3 0.0075

Average 4 0.01

Table 5.9: Failure characteristics for 2-version configurations

Category Number of cases Frequency

F0 - no failure 5890 0.9817

F1 - single failure 100 0.0167

F2 - two coincident 10 0.0017

Total 6000 1.0000

of raising an unrelated failure in a 2-version configuration, and an estimate

PRV = 0.0016 for the probability of a related failure.

Next, the six mutants are configured in sets of three. Table 5.10 shows

the number of times that 0, 1, 2 and 3 failures occurred in the 3-version

configuration. The data yields an estimate of PV = 0.0071 for the probability of

an independent failure. The comparison between the predicted probability of 0,

1, 2 and 3 failures using independence model and observed frequency are shown

Table 5.11. Unlike the previous experiment reported in [24], our data shows

that the observed frequency for two and three simultaneous failures is higher

than that of the independence model. The data also yields the estimation of

PRV = 0.0013 for the probability of two related failures, and PRALL = 0.0004

for the probability of failures involving all three versions.

The mutants are then analyzed in combinations of four programs. Table

Chapter 5 Evaluations on Reliability Models under Fault Correlation 81

Table 5.10: Failure characteristics for 3-version configurations

Category Number of cases Frequency

F0 - no failure 7797 0.9746

F1 - single failure 169 0.0211

F2 - two coincident 31 0.0039

F3 - three coincident 3 0.0004

Total 8000 1.0000

Table 5.11: Comparison of independent model with observed data for 3 ver-
sions

No. of failures Independent model Observed frequency

0 0.9786 0.9746

1 0.0213 0.0211

2 0.0002 0.0039

3 0 0.0004

5.12 shows the number of times that 0, 1, 2, 3 and 4 failures occurring in the

4-version configuration. The data yields an estimate of PV = 0.0063 for the

probability of an independent failure. The comparison between the predicted

probability of 0, 1, 2, 3 and 4 failures using independence model and observed

frequency are shown in Table 5.13. Just like 3-version configuration, our data

shows that the observed frequency for three and four coincident failures is

higher than that of the independence model. The data also yields the estima-

tion of PRV = 0.0028 for the probability of two related faults, and PRALL = 0

for the probability of coincident failures in all four versions.

Table 5.14 summarizes the parameters estimated from our data. The para-

meters are applied to the fault tree model shown in Figure 5.1. The predicted

system failure probability using derived parameters in the fault tree models

agrees quite well with the observed data, especially with the 2- and 3-version

configurations. For the 4-version configuration, the predicted probability is

Chapter 5 Evaluations on Reliability Models under Fault Correlation 82

Table 5.12: Failure characteristics for 4-version configurations

Category Number of cases Frequency

F0 - no failure 5811 0.9685

F1 - single failure 147 0.0245

F2 - two coincident 33 0.0055

F3 - three coincident 9 0.0015

F4 - four coincident 0 0.0000

Total 6000 1.0000

Table 5.13: Comparison of independent model with observed data for 4 ver-
sions

No. of failures Independent model Observed frequency

0 0.9750 0.9685

1 0.0247 0.0245

2 0.0002 0.0055

3 0 0.0015

4 0 0

Chapter 5 Evaluations on Reliability Models under Fault Correlation 83

Table 5.14: Summary of parameter values derived from our data

2-version model 3-version model 4-version model

PV = 0.0084 PV =0.0072 PV =0.0063

PRV = 0.0016 PRV = 0.0013 PRV =0.0028

PRALL= 0.0004 PRALL= 0

Predicted system failure probability (from the model)

0.0017 0.0045 0.000048

Predicted system failure probability (from the data)

0.0017 0.0043 0.0015

close to zero but the observed frequency is 0.0015. Our experiment shows that

the predicted system failure probability from fault tree model is very close to

the observed values in most situations, except that there is a gap between the

two in 4-version model. This should be further investigated to validate the

effectiveness and accuracy of the fault tree model.

Figure 5.2 compares the predicted reliability of three different configura-

tions, including 2-version configuration for Distributed Recovery Block (DRB)

[89], 3-version configuration for N-Version Programming (NVP) [2, 71], and

4-version configuration for N-Self Checking Programming (NSCP) [59]. We

can see from our experiment that DRB is the most reliable of the three to

produce a correct result, while NSCP is the least reliable. Compared with

the original experimental data in [24], the prediction performance of the three

configurations in our experiment are consistent with those in [24]. However,

if we look into the first hundreds of hours, the three configurations performs

differently, as shown Figure 5.3. Here NSCP depicts higher reliability than

DRB and NVP, although it gives the least reliability in the long run.

Figure 5.4 compares the predicted safety of the three systems. Here we

assume that the decider used in the NVP and NSCP has a failure probability

Chapter 5 Evaluations on Reliability Models under Fault Correlation 84

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (hours)

P
ro

ba
bi

lit
y

of
 U

na
cc

ep
ta

bl
e

R
es

ul
t

DRB
NVP
NSCP

Figure 5.2: Predicted reliability by different configurations

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time (hours)

P
ro

ba
bi

lit
y

of
 U

na
cc

ep
ta

bl
e

R
es

ul
t

DRB
NVP
NSCP

Figure 5.3: Predicted reliability by different configurations

Chapter 5 Evaluations on Reliability Models under Fault Correlation 85

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

time (hours)

P
ro

ba
bi

lit
y

of
 U

ns
af

e
R

es
ul

t

DRB
NVP
NSCP

Figure 5.4: Predicted safety by different configurations

of only 0.0001 and that for DRB has a failure rate of 0.001 [25]. According to

Figure 5.4, NSCP is the most likely to produce a safe result, while DRB are

an order of magnitude less safe than NSCP. This is also consistent with the

original experimental results in [25].

Overall, compared our project with former project in [25], the reliability

and safety performance of DRB, NVP, NSCP shows consistency of DL model

with respect to our experimental data. The discrepancy in the first hundreds

of hours may indicate dependence on operational domains and needs further

investigations. Furthermore, the above predictions are on the basis of our

primary data, some assumptions in [25] and the fault tree modeling. To achieve

more accurate results, the information about the correlation between successive

executions should be included [95].

Chapter 5 Evaluations on Reliability Models under Fault Correlation 86

5.3 Summary

In this chapter, we perform analysis and investigation on reliability and fault

correlation issues for diverse software systems. We apply our RSDIMU project

data to evaluate the effectiveness and prediction accuracy of existing reliability

models for fault tolerant software. In our experiment, mutants with real faults

are engaged. 400 operational test cases were executed on six mutants which

passed a qualification test to investigate the fault correlation features between

any pairs of mutants.

We first apply Popov, Strigini et al’s reliability bounds model to locate the

upper and lower bounds for reliability of diverse programs. The results reveal

that the confidence bounds are tighter with our data in most situations. It

verifies the hypothesis of “variety of difficulties” on different demand subdo-

mains, and supports the effectiveness of design diversity with small fraction of

positive fault correlations and existence of negative correlations.

Furthermore, we adopt Dugan and Lyu’s dependability model to parame-

terize the reliability of different configurations. The analysis shows that NSCP

is the least reliable but most safe approach among the three, while DRB inher-

its the highest reliability but the lowest safety according to our experimental

data in the long run. The discrepancies in the first hundreds of hours may

relate to the operational domain and needs further investigation.

2 End of chapter.

Chapter 6

Cross Project Comparison on

Reliability Features

The main issue with diverse systems is how to predict the final reliability

as well as how to estimate the fault correlation between multiple versions.

To investigate this, theoretical as well as empirical investigations have been

conducted based on experimentation [27, 38, 39, 71, 74], modeling [25, 28,

29, 64, 97], and evaluation [8, 65, 66, 86] for reliability and fault-correlation

features of N-version programming.

In this chapter, we perform comprehensive operational testing on our orig-

inal versions and collect statistical data on coincident failures and faults. We

also conduct comparison with NASA 4-University project [27] and search for

the “variant” as well as “invariant” features in N-version programming be-

tween our project and NASA 4-University project, two projects with the same

application but separated by 17 years. Both qualitative and quantitative com-

parisons are engaged in development process, fault analysis, average failure

rate and reliability improvement of N-version programming.

The terminology used for experimental descriptions and comparisons is

87

Chapter 6 Cross Project Comparison on Reliability Features 88

defined as the following. Coincident failures refer to the failures where two

or more different software versions respond incorrectly (with respect to the

specification) on the same test case, no matter whether they produce similar

or different results. Related faults are defined as the faults which affect two

or more software versions, causing them to produce coincident failures on the

same test cases, although these related faults may not be identical.

6.1 Experimental Background

The experimental procedures of both NASA 4-University project and our

project are described in the following subsections.

6.1.1 NASA 4-University Project

In 1985, NASA Langley Research Center sponsored an experiment to develop

a set of high reliability aerospace application programs to study multi-version

software approaches, involving graduate student programmers from four uni-

versities in 20 program teams [103]. Details of the experimental procedure and

development process can be found in [27, 54, 103].

In this experiment, the development process was controlled to maintain

as much independence as possible between different programming teams. In

addition, the final twenty programs went through a separate three-phase test-

ing process, namely, a set of 75 test cases for acceptance test, 1196 designed

and random test cases for certification test, and over 900,000 test cases for

operational test.

The testing data collected in NASA 4-University project have been widely

investigated to explore the reliability features of N-version programming [27,

64, 86].

Chapter 6 Cross Project Comparison on Reliability Features 89

6.1.2 Our Project Descriptions

In the Spring of 2002 we formed 34 independent programming teams at the

Chinese University of Hong Kong to design, code, test, evaluate, and docu-

ment the RSDIMU application. Each team was composed of four senior-level

undergraduate Computer Science students for a twelve-week project in a soft-

ware engineering course. The project details and the software development

procedure are portrayed in Chapter 4.

The acceptance test set contains 1196 test cases, including 800 functional

test cases and 400 randomly-generated test cases. Another random 100,000 test

cases have been conducted recently in an operational test for a final evaluation

of all the 34 program versions in our project.

6.2 Qualitative Comparison with NASA 4-University

Project

In NASA 4-University project [54, 103], the final 20 versions were written in

Pascal, while developed and tested in a UNIX environment on VAX hardware.

As this project has some similarities and differences with our experiment, in-

teresting observations can be made by comparing these two projects, which

are widely separated both temporally and geographically, to identify possible

“variants” as well as “invariants” of design diversity.

The commonalities and differences of the two experiments are shown in Ta-

ble 6.1. The two experiments engaged the same RSDIMU specification, with

the difference that NASA 4-University project employed the initial version

of the specification which inherited specification incorrectness and ambiguity,

while we employed the latest version of the specification and little specification

Chapter 6 Cross Project Comparison on Reliability Features 90

Table 6.1: Comparisons between the two projects

Features NASA 4-University project Our experiment

Commonality

1. same specification initial version (faults in-
volved)

mature version

2. similar development dura-
tion

10 weeks 12 weeks

3. similar development
process

training, design, coding, test-
ing, preliminary acceptance
test

initial design, final design,
initial code, unit test, integra-
tion test, acceptance test

4. same testing process acceptance test, certification
test, operational test

unit test, integration test,
acceptance test, operational
test

5. same operational test envi-
ronment (i.e., determined by
the same generator)

1196 test cases for certifica-
tion test

1200 test cases for acceptance
test

Difference

1. Time (17 year apart) 1985 2002

2. Programming Team 2-person 4-person

3. Programmer experience graduate students undergraduate students

4. Programmer background U.S. Hong Kong

5.Language Pascal C

Chapter 6 Cross Project Comparison on Reliability Features 91

faults were detected during the development. The development duration were

similar: 10 weeks vs. 12 weeks. The development process and the testing

process are also similar. We engaged 1200 test cases before accepting the pro-

gram versions, which were then subjected to 100,000 cases for operational test.

NASA 4-University project involved the same 1196 test cases in its certifica-

tion test, and other 900,000 test cases as operational test. Note that all test

cases were generated by the same test case generator. The two experiments, on

the other hand, differed in time (which is 17 years apart), programming team

(2-person vs. 4-person), programmer experience and background, as well as

the programming language employed (Pascal vs. C).

6.2.1 Fault Analysis in Development Phase

As the two N-version programming experiments exhibit native commonalities

and differences, it will be interesting to see what remains unchanged in these

two experiments concerning software reliability and fault correlation. As stated

above, the original version of the RSDIMU specification involved some faults

which were fixed during NASA 4-University project development. We first

consider the design and implementation faults detected during the NASA cer-

tification test and our acceptance test. These two testing phases employed the

same set of test cases, and a comparison between them should be reasonable.

In our investigation, we focus our discussion on the related faults, i.e., the

faults which occurred in more than one version, and triggered off coincident

failures of different versions at the same test case.

The classification of the related faults in our experiment is listed in Table

6.2. There are totally 15 categories of related faults. The distribution of the

related faults is listed in Table 6.3. All the faults are design and implementa-

tion faults. Only class F1 is at low severity level; others are at critical severity

Chapter 6 Cross Project Comparison on Reliability Features 92

Table 6.2: Related faults detected in our experiment

Faults Brief Description severity level

F1 Display error low

F1.1 improper initialization and assignment

F1.2 incorrect rounding at Display values

F1.3 DisplayMode assignment error

F2 Misalignment problem critical

F2.1 the misalignment should be in radians

F2.2 the misalignment should be in milliradians

F2.3 wrong frame of reference

F3 Sensor Failure Detection and Isolation problems critical

F3.1 fatal failures due to initialization problem

F3.2 wrongly set of the status of system

F3.3 update problem after failure detection

F3.4 test threshold for Edge Vector Test is miscalculated or
misjudged

F3.5 wrong OFFRAW array order

F3.6 arithmetic and calculation error

F4 Acceleration estimation problem critical

F4.1 specific force recalculated problem after failure detection

F4.2 wrongly calculation with G (should multiply 0.3048)

F5 Input from sensor not properly masked to 12 bits (e.g.,
“mod 4096” missing)

critical

Chapter 6 Cross Project Comparison on Reliability Features 93

Table 6.3: Distribution of related faults detected
Faults Versions Fault Span

F1

F1.1 P2,P4,P9 3

F1.2 P4,P8,P15,P17,P18 5

F1.3 P1,P2,P4,P5,P7,P8,P9,P15,P17,P18,P24,P27,P33 13

F2

F2.1 P3 1

F2.2 P1,P8,P15 3

F2.3 P15 1

F3

F3.1 P3,P4,P5,P7,P8,P22,P27 7

F3.2 P1,P8 2

F3.3 P1,P2 2

F3.4 P31,P32 2

F3.5 P12,P31 2

F3.6 P1,P5 2

F4

F4.1 P2,P18 2

F4.2 P4,P12,P15,P17 4

F5 P12,P17,P15,P33 4

Chapter 6 Cross Project Comparison on Reliability Features 94

level.

Comparing Table 6.2 with the related faults detected in certification testing

of the NASA project [103], we can see that some common faults were generated

during the development of these two projects. They are F1(D4 in [103]),

F2.3(D1.3), F3.1(D3.7), F3.4(D3.1) and F5(D8). F1 faults are related to the

display module of the application. Display algorithm was clearly stated in the

RSDIMU specification, but it encountered related faults most frequently in

both projects. This may be due to the fact that the module was comparatively

simple and less critical in the whole application, and programmers inclined to

overlook it in both development and testing phases. Fault F2.3 is related

to a calculation in the wrong frame of reference, which involved only one

version in both experiments. Fault F3.1 is a fault involved in many program

versions, causing fatal failures due to initialization problems. Fault F3.4 is

similar to fault D3.1, and both were due to misunderstanding of the content of

the specification. Finally, the missing process of masking input from sensors

to 12 bits (e.g., mod 4096) results in fault F5, which involved four teams in

our project and 11 teams in the NASA project.

For the related faults occurring in both projects, some of them (F1, F2.3,

F5) were due to misunderstanding of the specification or inadequate efforts

spent on the difficult part of the problem, and others (F3.1 and F3.4) were

caused by lack of knowledge in the application area or in the programming

language area, e.g., omission or wrong variable initialization.

Some fault types occurred in the NASA project but did not occur in our

experiment, e.g., D5 (division by zero on all failed input sensors), D6 (incorrect

conversion factor) and D7 (Votelinout procedure call placement fault and/or

error in using the returned values). Some of the reasons are: 1) As mentioned

above, the initial specification contained incorrectness and inconsistency. Some

Chapter 6 Cross Project Comparison on Reliability Features 95

design and implementation faults (e.g., D7) may be caused by the ambiguity

or wrong statements in the specification. 2) Certain exception faults, such

as division by zero, did not occur in our experiment. This is an interesting

phenomenon, and the possible reason is that nowadays students learned the

principle of avoiding exception faults as a common practice in the programming

language courses.

From the comparison of the two experiments, we can see that both cause

and effect of some related faults remain the same. As the application can be

decomposed into different subdomains, related faults often occurred in most

difficult parts. Furthermore, no matter which programming language was used,

the common problems with programming remained the same, e.g., the initial-

ization problem. Finally, the most fault-prone part being the easiest part of

the application (i.e., Display module) confirms that a comprehensive testing

and certification procedure towards the easiest module is important.

6.2.2 Fault Analysis in Operational Test

As all the 34 versions have already passed the acceptance test, their failures

revealed in the operational test deserve to be scrutinized. To investigate the

features of these failures, especially those coincident failures occurring in more

than two versions, we identify all the operational faults in each version and

list them in Table 6.4. There are totally six faults detected during operational

test. We denote each individual fault by the version number in which the fault

occurs, followed by a sequence number. For example, version 22 contains one

single fault 22.1, and version 34 is associated with three different faults: 34.1,

34.2, and 34.3. Table 6.4 also shows the input condition where a corresponding

fault is manifested, together with a brief description of the fault.

Since these four versions have already passed the acceptance test, their

Chapter 6 Cross Project Comparison on Reliability Features 96

Table 6.4: Fault description during operational test

Version Fault Input condition Fault description

22 22.1 At least one sensor fail during the
test

Incorrect calculation in sensor fail-
ure detection process

29 29.1 No sensor fail before the test, and
more than two bad faces due to
noise and failure detection, but
at least one sensor pass the fail-
ure detection algorithm

Omission of setting all sensor failure
output to TRUE when the system
status is set to FALSE

32 32.1 Three or four sensors fail in more
than two faces, due to input,
noise, or failure detection algo-
rithm

Incorrectly setting system status to
FALSE when more than five sensors
fail

34
34.1 Sensor failure in the input Wrongly setting the second sensor as

failure when the first sensor in the
same face fails

34.2 No sensor fail due to input and
noise

Incorrect calculation in Edge Vector
Test is wrong

34.3 At most two faces fail due to in-
put and noise, no. of bad faces is
greater than 2, and at least one
more sensor on the third face fail
in failure detection algorithm

Only counting the number of bad
face prior to the Edge Vector Test

faults were detected by some extreme situations. It is noticed that these faults

are all sensor Failure Detection and Isolation problems, i.e., F3 category in

Table 6.2, including wrong setting of system status (F3.2) and arithmetic and

calculation error (F3.6). These faults were triggered only under special com-

binations of individual sensor failures due to input, noise and failure detection

process.

In Table 6.4, versions 22, 29 and 32 exhibit single faults, while version 34

contains multiple faults. There is no related fault or coincident failure among

the former three versions. For version 34, one of its faults (34.2) is related to

the fault in version 22 (22.1), resulting in coincident failures on 25 test cases,

as shown in Table 6.6. The other fault 34.3 is related to the one in version 29

Chapter 6 Cross Project Comparison on Reliability Features 97

(29.1), leading to 32 coincident failures. Although causing coincident failures,

these two fault pairs are quite different by nature.

Compared with other program versions, version 34 shows the lowest quality

in terms of its program logic and design organization. Particularly, hard code is

found in the source code, i.e., some intermediate result was manually assigned

according to specific input data of a particular test case, but not through the

required computational functions. Because of its lack of detailed report and

poor quality, we omitted this version (as well as a number of other versions)

when applying mutation testing in our previous study [74]. Since related faults

and coincident failures exist in this version, we took a pessimistic approach to

include it (and all other program versions) in the following analysis. It is noted

that the overall performance of N-version programming derived from our data

would be much better, if the failures in version 34 are ignored (as no related

faults or coincident failures would then be observed in other versions).

6.3 Quantitative Comparison with NASA 4-

University Project

In this comprehensive testing study, we generate 100,000 test cases randomly to

simulate the operational environment for RSDIMU application. The failures

occurring in all these 34 versions are recorded according to their input and

output domains. Here we adopt the similar partition method described in

[27], i.e., all the normal operations are classified as one of the following six

system states exclusively:

Si,j = {i sensors previously failed and

j of the remaining sensors fail

Chapter 6 Cross Project Comparison on Reliability Features 98

| i = 0, 1, 2; j = 0, 1 }.

In addition, we introduce a new category Sothers to denote all the exceptional

operations which do not belong to any of the above six system states. In the

following analysis, we partition the whole input and output domain into seven

categories for an investigation in software reliability measurement.

6.3.1 Failure Probability and Fault Density

Table 6.5: Failures collected in our project

Version
ID

S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers Total Probability

22 0 210 0 246 0 133 29 618 0.00618

29 0 0 0 0 0 0 2760 2760 0.0276

32 0 0 0 0 0 0 2 2 0.00002

34 0 617 0 407 0 74 253 1351 0.0135

Total no.
of failures

0 827 0 653 0 207 3044 4731 0.0473

Conditional
average

failure
probabil-
ity

0 0.0024 0 0.0017 0 0.0011 0.0023 0.0014

No. of
test cases

9928 10026 11558 11624 12660 5538 38666 100000

Version failures which are detected in operational test are listed in Table

6.5. Most of the 34 versions passed all these 100,000 test cases, while only four

of them exhibited a number of failures, ranging from 2 to 2760. Compared

with the failure data of NASA 4-University project with over 900,000 test

cases described in [27], our data demonstrate some similar as well as different

reliability features with respect to the same RSDIMU application.

Chapter 6 Cross Project Comparison on Reliability Features 99

Table 6.6: Coincident failures between versions
Version pairs S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers Total failures

22 & 34 0 15 0 6 0 4 0 25

29 & 34 0 0 0 0 0 0 32 32

Total no. of
failures

0 827 0 653 0 207 3044 4731

Conditional
frequency

0 0.0005 0 0.0003 0 0.0006 0.0003 0.0004

In both projects, the programs are generally more reliable for the cases

where no sensor failure occurs during operation (i.e., States S0,0, S1,0, and

S2,0) than in the situations where one false sensor occurs during operation

(i.e., States S0,1, S1,1, and S2,1). This is because there are some complicated

computations under the latter situations. Particularly in our project data,

no new failure was detected in the former three states, while all the detected

failures were revealed under the latter three states and the exceptional states

(State Sothers). Especially for version 29, all the 2760 failures occurred under

exceptional system states.

In our operational test, totally 4731 failures were collected for 34 versions,

representing an average 139 failures per 100, 000 executions for each version.

The failure probability is thus 0.00139 for a single version, with highest prob-

ability in state S0,1 (with 0.0825). This indicates on average the programs

inherit high reliability.

We further investigate the coincident failures between version pairs. Here

two or more versions are regarded as correlated if they fail at the same test

case, whether their outputs are identical or not. Two correlated version pairs

were observed, as listed in Table 6.6.

It can be seen that for version pair 22 & 34, there were 25 coincident

failures, thus the percentage of coincident failures versus total failures is 4%

Chapter 6 Cross Project Comparison on Reliability Features 100

for version 22 and 1.85% for version 34. For the other version pair 29 & 34,

32 coincident failures were observed with the percentage 1.16% for version 29

and 2.37% for version 34. The low probability of coincident failures versus

total failures supports the effectiveness of N-version programming, meaning a

more reliable system can be expected by this approach from out project data.

Moreover, as seen in Table 6.4, there are totally six faults identified in four out

of the 34 versions. As noted in [74], the size of these versions varies from 1455

to 4512 source lines of code. We can calculate the average fault density to be

roughly one fault per 10,000 lines. This figure is close to industry-standard for

high quality software systems.

6.3.2 Reliability Improvement by N-version Program-

ming

To estimate the reliability improvement of N-version programming compared

with one single version, we first adopt the simplest statistical method. For

2-version system, there are C(34, 2) = 561 combinations out of 34 versions.

Considering there are 57 coincident failures observed, the average failure is

57/561=0.102 over 100, 000 executions. In a 3-version system there are C(34, 3) =

5984 combinations, so that the average failure probability is 57/5984 = 0.0095

for 100,000 executions, which implies a 11 times higher reliability than that of

a 2-version system. Recall the average failures in single version listed in Ta-

ble 6.5 is 139; therefore, we obtain the reliability improvement from 3-version

system versus one single version of about 15000 (139/0.0095) times. For more

accurate comparisons, failure bound models can be exercised to investigate the

reliability features for N-version programming compared with one single ver-

sion. Consequently, we fit the observed operational test failure data to Popov

Chapter 6 Cross Project Comparison on Reliability Features 101

and Strigini failure bound model [14, 86] and estimate the reliability improve-

ment of N-version programming. The estimated failure bounds for version pair

(22,34) and (29,34) are listed in Table 6.7.

Table 6.7: Failure bounds for 2-version system

Version pair DP1 DP2 DP3

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

(22,34) 0.000007 0.000130 0.000342 0.006721 0.000353 0.008396

(29,34) 0.000000 0.000001 0.000009 0.000131 0.000047 0.000654

Average in our
project

1.25·10−8 2.34·10−7 6.26·10−7 0.000012 7.13·10−7 0.000016

Average in
NASA project

2.32·10−7 0.000007 0.000023 0.000103 0.000072 0.000276

Average in
NASA project
after omitting
version 7

6.15·10−9 0.000006 2.16·10−7 0.000024 5.97·10−7 0.000028

Note that DP1, DP2 and DP3 stand for three different testing profiles with

various probabilities on different input domains, i.e., Si,j [14]. For simplicity,

we denote an insignificant value of the lower bound for version pair (29,34)

under DP1 to be zero, which stands for independence between the versions.

Since only two version pairs show correlations, we add these bounds up, and

then divided by 34, to get the average lower and upper bounds for all 2-

version combinations. The average lower bound and upper bounds for any

2-version system under different profiles are shown in Table 6.7. Compared

with the average failure probability for single version 0.00139, the reliability

improvement of 2-version system versus one single version under DP3 (which

is the closest to the real distribution) is 90 to 2,000 times. As the reliability

of 3-version system is 11 times of that for 2-version system, the reliability

improvement by 3-version system is thus about 900 to 20,000 times over single

Chapter 6 Cross Project Comparison on Reliability Features 102

version system under DP3. Similar improvement can be obtained in DP2, and

DP1 achieves even higher improvement.

Moreover, we apply the same failure bound model on the NASA data and

get the average failure bounds, as shown in Table 6.7. It is surprise to see that

the failure bounds in the NASA project are at least an order of magnitude

larger than those in our project. The experimental data in [27] indicate that

although there were only seven faults identified in 14 versions, they produced

almost 100,000 failures. Particularly, the single fault in version 7 caused more

than half of these failures. The fault was caused by incorrect initialization of

a variable; however, it was not stated that why the initialization problem was

not detected by certification test. We can see that the failure bounds would

have been comparable to our project results, had the fault in version 7 been

detected and removed in the NASA project.

6.3.3 Comparison with NASA 4-University Project

In NASA 4-University operational test involving over 900,000 test cases, only

seven out of 20 versions passed all the test cases. Moreover, a number of

these versions, ranging from 2 to 8, were observed to fail simultaneously on

the same test cases. In addition, seven related faults were identified which

caused the coincident failures. Two of the NASA faults are also related to

sensor failure detection and isolation problem. Other faults, e.g., variable

initialized incorrectly and failure isolation algorithm implemented in wrong

coordinate system, were not observed in our data. In our future research we

will investigate failure coincidences between these two projects.

We compare the failure data collected in operational test in both our project

and NASA 4-University project, and list some of the reliability related features

in Table 6.8. In our experiment, only 2-version coincident failures occurred,

Chapter 6 Cross Project Comparison on Reliability Features 103

Table 6.8: Quantitative comparison in operational test with NASA 4-
University project

Item Our project NASA 4-University project

no. of test cases 100,000 920,746

failure probability 0.00139 0.06881

number of faults 6 7

fault density 1 per 10,000 lines 1.8 per 10,000 lines

2-version coincident failures 57 21173

3 or more version coincident failures 0 372

3-version improvement 900 to 20,000 times 80 to 330 times

and no coincident failures among three or more versions were detected. The

number of failures and coincident failures in the NASA project is much larger

than that in our project, meaning we have achieved a significantly higher

reliability figure in our project. Interestingly, the difference on fault number

and fault density is not significant for these two projects. Note there is a

number of coincident failures in 2- to 8-version combinations in the NASA

project, yet the reliability improvement for 3-version system still achieves 80 to

330 times over the single version. Our project obtains similar improvement for

3-version system (i.e., 900 to 20,000 times) over the single version. Considering

the average failure rate for a single version is already 50 times better than that

in the NASA project, it is understandable that the improvement for 3-version

system in our experiment is 30 to 60 times of that in the NASA project.

Overall, from the above comparison between NASA 4-University project

and our project, we can derive some variances as well as invariances on N-

version programming. The invariances are:

• Both experiments yielded reliable program versions with low failure prob-

ability, i.e., 0.06881 and 0.00139 for single version respectively.

Chapter 6 Cross Project Comparison on Reliability Features 104

• The number of faults identified in the operational test was of similar size,

i.e., 7 versus 6 faults.

• The fault density was of similar size, i.e., 1.8 versus 1 fault detected per

10, 000 lines of code.

• Remarkable reliability improvement was obtained for N-version program-

ming in both experiments, i.e., hundreds to tens of thousands of times

enhancement.

• Related faults were observed in both projects, in both difficult and easy

parts of the application.

Nevertheless, there are some variances between the two projects:

• Some faults identified in the NASA project did not appear in our project,

e.g., divide by zero, wrong coordinate system, and incorrect initialization

problems.

• More failures were observed in the NASA project than in our project,

causing their average failure probability to be an order of magnitude

higher than ours.

• In the NASA project, more coincident failures are observed and the fail-

ure correlation between versions was more significant, especially among

more than three versions. In our project, the fault correlation was re-

duced, especially if we omit version 34, which contains hard code and

poor logic.

• The overall reliability improvement derived from our data is at least an

order of magnitude larger than that from the NASA project. This is true

for both single version system and N-version system.

Chapter 6 Cross Project Comparison on Reliability Features 105

The reasons behind the variance and invariance between the two projects

can be concluded from the following aspects: First, as the first RSDIMU exper-

iment, NASA 4-University project had to deal with some specification-related

faults. Its N-version programming development process became a bit messy,

as faults in the specification would be identified and revised, then distributed

to the developers for further evaluation. In our project, as we employed a

stable version of the specification, such revisions no longer occurred, and pro-

grammers could concentrate on the problem solving process. Secondly, there is

apparently a significant progress on programming course and training to com-

puter science students over the past 20 yeas. Modern programmers are well

disciplined to avoid common programming fault such as divide by zero and

uninitialization problems. Lastly, based on the experience accumulated in all

the former projects and experiments on N-version programming, we were able

to follow a more well-controlled protocol in our experimental procedure. We

believe that the N-version programming design and development process can

keep further improvement as a vital software reliability engineering technique.

6.4 Discussions

In this experimental evaluation, we perform comprehensive testing and com-

pare the two projects addressing N-version programming. The empirical data

show that both similar and dissimilar faults were observed in these two projects.

We analyze the reasons behind their similarities and differences. It is evident

that the program versions in our project are more reliable than those in the

NASA project in the terms of total number of failures and coincident fail-

ures revealed in operational test. Our data show the reliability improvement

by N-version programming is significantly high, i.e., from 900 to 20,000, over

Chapter 6 Cross Project Comparison on Reliability Features 106

single program versions already with very high reliability. The effectiveness

of N-version programming in mission-critical applications is confirmed in our

project data.

Moreover, when we examine the faults identified in our project, especially

for 22.1, 29.1 and 32.1, we can find that these hard-to-detected faults are only

hit by some rare input domains. This means a new strategy should be employed

for such faults. As discussed in our previous study [14, 74], code coverage is

a good estimator for testing effectiveness. Experimental data show that in

our acceptance test, test cases with higher code coverage tend to detect more

faults, especially for exceptional test cases. Nevertheless, in this operational

test, none of these faults can be detected by the code coverage indicator.

6.5 Summary

In this chapter, we perform an empirical investigation on evaluating reliability

features by a comprehensive comparison between two projects. We conduct

operational testing involving 100,000 test cases on our 34 program versions

and analyze their failures and faults. The data collected in this testing process

are compared with those in NASA 4-University project.

Similar as well as dissimilar faults are observed and analyzed, indicating

common problems related to the same application in these projects. Less fail-

ures are detected in our operational test of our project, including a very small

number of coincident failures. This result provides a supportive evidence for

N-version programming, and the improvement is attributed to cleaner devel-

opment protocol, stable specification, experience in N-version programming

experiment, and better programmer training.

Chapter 6 Cross Project Comparison on Reliability Features 107

2 End of chapter.

Chapter 7

Effect of Code Coverage on

Fault Detection

In terms of the ability to detect faults, various testing strategies have been

evaluated and compared through experiments [32], simulations [26, 40], and

analysis [12, 18, 31, 33, 50, 78, 105]. Furthermore, based on the intuition that

more faults will be revealed if more code is executed during testing, code cover-

age has been proposed as an indicator of testing effectiveness and completeness

for the purpose of test case selection and evaluation [73, 91, 96]. However, as

this remains a controversial issue, more empirical test data with real-world

complicated applications are seriously needed to evaluate the effect of code

coverage on test case evaluation and selection under various testing strategies.

In this chapter, we will cover the impact of code coverage on fault detection

capability, the effects under different testing strategies or profiles, and how code

coverage can act as a filter for the design of an effective minimum test set.

108

Chapter 7 Effect of Code Coverage on Fault Detection 109

7.1 Research Questions

Based on all the previous investigations and evaluations on the effect of code

coverage and comparisons of various testing strategies, we focus our empirical

study on the following four research questions:

1) Is code coverage a positive indicator for fault detection capability?

2) Does any such effect vary under different testing strategies and profiles?

3) Does any such effect vary with different code coverage metrics?

4) How does code coverage act as a filter to reduce the size of the effective

test set?

To address all these research questions, we employ the testing data and

results described in Chapter 4 to investigate all the relationships and questions

listed above. As we have seen, coverage testing, as well as mutation testing,

were employed in our experiment. Furthermore, multiple program versions

were developed by different program teams, and each program version spawned

dozens of mutants. This extensive investigation yielded a comprehensive set

of empirical results, which are described here.

7.2 Effectiveness of Code Coverage

In order to answer the question of whether testing coverage is an effective

means of fault detection, we executed the 426 mutants over all test cases

and observed whether additional coverage of the code was achieved when the

mutants were killed by a new test case. In the experiment, we excluded the

mutants which failed upon the first test case (a total of 174 mutants), as

we wanted to take a more conservative view in evaluating test coverage by

analyzing only those mutants which passed at least the first test case and

then failed in later cases. Note that 35 mutants never failed in any of the

Chapter 7 Effect of Code Coverage on Fault Detection 110

1200 test cases. Consequently, there were a total of 217 mutants included in

this analysis. In our experiment, each mutant stands for one real fault in the

software development process. Thus the terms “fault”, “defect”, and “mutant”

are used interchangeably in the following parts.

Effectiveness of testing coverage in revealing faults is shown in Table 7.1.

Here we use the common test coverage measures: block coverage, decision cov-

erage, C-use coverage and P-use coverage [77, 91]. The second to fifth column

of Table 7.1 identify the number of faults in relation to changes of blocks,

decision, C-uses and P-uses, respectively. For example, “6/8” for version ID

“1” under the “Blocks” column means during the evaluation test stage, six

out of eight faults in program version 1 showed the property that when these

faults were detected by a test case, block coverage of the code increased. On

the other hand, two faults of program version 1 were detected by test cases

without increasing the block coverage. The last column “Any” counts the to-

tal number of mutants whose coverage increased in any of the four coverage

measures when the mutants were killed.

The result clearly shows that the increase in coverage is closely related

to achieving more fault detections. Out of the 217 mutants under analysis,

155 of them showed some kinds of coverage increase when they were killed.

This represents an impressive ratio of 71.4%. The range, however, is very

wide (from 33.3% to 90.9%) among different versions. This indicates that the

programmer’s individual capability accounted for a large degree of variation

in the faults they created and the detectability of these faults.

One may hypothesize that when there are more (or fewer) faults in a pro-

gram version, it may be easier (or more difficult) to detect these faults with

coverage-based testing schemes. A plot of the number of mutants against

effective percentage of coverage is therefore shown in Figure 7.1. It can be

Chapter 7 Effect of Code Coverage on Fault Detection 111

Table 7.1: Fault detection related to changes of test coverage

Version ID Blocks Decisions C-Use P-Use Any

1 6/8 6/8 6/8 7/8 7/8(87.5%)

2 9/14 9/14 9/14 10/14 10/14(71.4%)

3 4/7 4/7 3/7 4/7 4/7(57.1%)

4 7/11 8/11 8/11 8/11 8/11(72.7%)

5 7/10 7/10 5/10 7/10 7/10(70%)

7 5/10 5/10 5/10 5/10 5/10(50%)

8 1/5 2/5 2/5 2/5 2/5(40%)

9 7/9 7/9 7/9 7/9 7/9(77.8%)

12 10/20 17/20 11/20 17/20 18/20(90%)

15 6/11 6/11 6/11 6/11 6/11(54.5%)

17 5/7 5/7 5/7 5/7 5/7(71.4%)

18 5/6 5/6 5/6 5/6 5/6(83.3%)

20 9/11 10/11 8/11 10/11 10/11(90.9%)

22 12/13 12/13 12/13 12/13 12/13(92.3%)

24 5/7 5/7 5/7 5/7 5/7(71.4%)

26 2/12 4/12 4/12 4/12 4/12(33.3%)

27 4/7 5/7 4/7 5/7 5/7(71.4%)

29 10/18 10/18 11/18 10/18 12/18(66.7%)

31 7/11 7/11 7/11 7/11 8/11(72.7%)

32 3/7 4/7 5/7 5/7 5/7(71.4%)

33 7/13 7/13 9/13 10/13 10/13(76.9%)

Overall 131/217 145/217 137/217 152/217 155/217

(60.4%) (66.8%) (63.1%) (70%) (71.4%)

Chapter 7 Effect of Code Coverage on Fault Detection 112

Figure 7.1: Relations between numbers of mutants against effective percentage
of coverage

seen that the number of mutants in each version (i.e., the number of faults in

the program) can not indicate one way or the other the effectiveness of test

coverage in exploring the faults (by killing the mutants).

The contribution of each test case in block coverage of the total 426 mu-

tants, measured across all executed mutants, is recorded and depicted in Figure

7.2. The vertical axis indicates the average percentage of block coverage by

each test case. Lines A, B, C, D, E represent the border for test cases 111,

152, 393, 801 and 1001, respectively. They mark the distinct boundaries of the

different test cases described in Table 4.1. Figure 7.2 shows the fault detection

capabilities of different kinds of test cases, as separated by the lines. The total

average block coverage is 45.86%, with a range from 32.42% to 52.25%.

The decision, C-use and P-use coverage measures expose exactly the same

pattern except for their absolute values, and are thus omitted here. The overall

average value of these measures is shown in Table 7.2.

Chapter 7 Effect of Code Coverage on Fault Detection 113

1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191
0

10

20

30

40

50

60

70

80

90

100

Test case id

P
er

ce
nt

ag
e

of
 b

lo
ck

 c
ov

er
ag

e

A B C D E

Figure 7.2: Test case contribution on block coverage

1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121 1191
0

50

100

150

200

250

300

350

400

Test case id

N
um

be
r

of
 F

au
lts

A B C D E

Figure 7.3: Test case contribution on mutant coverage

Chapter 7 Effect of Code Coverage on Fault Detection 114

Table 7.2: Percentage of test case coverage

Percentage of Coverage Blocks Decision C-Use P-Use

Average 45.86% 29.63% 35.86% 25.61%

Maximum 52.25% 35.15% 41.65% 30.45%

Minimum 32.42% 18.90% 23.43% 16.77%

The contribution of each test case in covering (killing) the mutant popula-

tion is shown in Figure 7.3. The vertical axis represents the number of mutants

that could be killed by each test case. Lines A, B, C, D, E represent again

the distinct boundaries of different test cases. As in Figure 7.2, Figure 7.3

also clearly portrays the fault detection profiles of each kind of test case. The

average number of faults detected by a test case is 172, with 92 as minimum

and 263 as maximum.

The comparison between Figure 7.2 and Figure 7.3 offers profound implica-

tions: they reveal both the similarity and the difference between code coverage

and fault coverage. On the one hand, test coverage and mutant coverage show

similar capability of revealing patterns in the test cases, giving credit to code

coverage as a good indicator for test variety. On the other hand, the code

coverage value alone is not a good indicator for test quality in terms of fault

coverage. Higher and more stable code coverage, e.g., that achieved by test

cases 1001-1200, may result in lower and more unstable fault coverage.

Next, if we examine the relationship between cumulated code coverage and

defect coverage for all 1200 test cases, we find high correlation between the

two, with an R2 of 0.945, as shown in Figure 7.4. This also demonstrates that

code coverage is a positive indicator of fault coverage. The cumulated block

coverage and defect coverage according to the 1200-case sequence are shown

in Figure 7.5 and Figure 7.6 respectively. In the test case sequence, there are

49 occurrences of new mutants being killed. Out of these 49 occurrences, 38

Chapter 7 Effect of Code Coverage on Fault Detection 115

Figure 7.4: Cumulated defect coverage versus block coverage

(77.6%) exhibit some kind of cumulated code coverage increase, while 11 of

them (22.4%) show no coverage increase.

Moreover, as shown in Figure 7.2 and Figure 7.3, block coverage and fault

coverage show different patterns in different parts of the whole test set. Thus

we divide the whole test set into six regions according to their patterns (see

Table 7.3). These six clusters also reflect the underlying design principles of

different test cases. After applying a linear regression model on the current

data, we get the parameters and the quality of fit of the linear models in the

various regions as well as in the whole test case space, as illustrated in Table

7.3. The results show that the relationship between block coverage and mutant

coverage can be predicted by a linear model over the whole test case space,

with an R-squared value of 0.781 (see Figure 7.7). But as a measure of the

quality of fit, R2 ranges dramatically from 0.189 (in Region VI) to 0.98 (in

Region IV) in different test case regions, as shown in Figure 7.8 and Figure

Chapter 7 Effect of Code Coverage on Fault Detection 116

Figure 7.5: Cumulated block coverage in the 1200-case sequence

Figure 7.6: Cumulated defect coverage in the 1200-case sequence

Chapter 7 Effect of Code Coverage on Fault Detection 117

Table 7.3: Parameter and fitness of linear models in different test case regions

Test case region R-squared

Overall (1-1200) 0.781

Region I (1-111) 0.634

Region II (112-151) 0.724

Region III (152-392) 0.672

Region IV (393-800) 0.981

Region V (801-1000) 0.778

Region VI (1001-1200) 0.189

7.9.

Overall, our experimental data support the hypothesis that code coverage

is a positive indicator for fault detection. There are three indications of this:

1) 71.4% of the mutants exhibit some kind of coverage increase when they

are killed; 2) the R-squared value of the linear model of block coverage and

defect coverage is 0.781 on the whole test set, but it varies from 0.189 (random

testing) to 0.981 (one of the functional testing regions); 3) when new faults are

detected, 67.3% of the occurrences are associated with an increase in cumulated

code coverage on at least one of the four coverage metrics.

In the next section, we consider the differences in code coverage on fault

detection between test case regions.

7.3 Effects of Code Coverage under Various

Testing Strategies

In the following, we will examine the effect of code coverage on fault detection

capability under various testing strategies: 1) various partition subdomains;

2) partition testing versus random testing; and 3) normal operational testing

Chapter 7 Effect of Code Coverage on Fault Detection 118

Figure 7.7: Block coverage and defect coverage

Figure 7.8: Block coverage and defect coverage in region IV

Chapter 7 Effect of Code Coverage on Fault Detection 119

Figure 7.9: Block coverage and defect coverage in region VI

versus exceptional operational testing.

7.3.1 Under Various Partition Subdomains

As mentioned before, the first 800 test cases were designed to target different

functions of the system, and the last 400 test cases were randomly generated

to simulate the operational environment.

Figure 7.7 indicates that code coverage is a moderate indicator for fault

detection capability of the given test cases. Generally, the more code that a test

case executes, the more mutants it kills in program versions. But a different

phenomenon can be observed if we view the whole figure as a combination of

two clusters: one with block coverage at about 35% and mutant coverage at 90-

150, and the other with block coverage at about 50% and mutant coverage at

150-270. In each cluster, the relationship between block coverage and mutant

Chapter 7 Effect of Code Coverage on Fault Detection 120

coverage is not always a positive correlation. Test cases with larger block

coverage may kill fewer mutants, while test cases with smaller block coverage

may cause more mutants to fail.

However, if we look into the linear regression relations between block cov-

erage and mutant coverage in each of the six regions, we find the best fit in

Region IV and the worst fit in Region VI. Note that the test cases in Region

IV are designed with various combinations of the system status, while the

test cases in Region VI are randomly generated with a single initial random

seed. One of the causes behind this difference in fit quality may be the design

principle of test cases in Region IV, which targets the main control flow of

the program. The more program code they execute, the more likely it is that

program versions fail. This agrees with the traditional assumption and obser-

vation that more code coverage brings better fault coverage. The other cause

is that, for Region VI, all the 200 test cases have very similar block coverage

(from 48% to 52%). This agrees with our earlier observation in two clusters: if

the code coverage is in a small range, the linear correlation between code cov-

erage and fault coverage may be insignificant. Furthermore, as shown in the

following analysis, we believe the strong correlation in Region IV arises from

the fact that large number (277/373) of exceptional test cases are contained

in this region.

7.3.2 Partition Testing versus Random Testing

Partition testing and random testing are two basic test data selection criteria.

In our test set, 800 test cases are partition test cases based on the basic opera-

tional requirements in the specification. The other 400 test cases are randomly

generated with different seeds to simulate the large data set in real operations.

The linear correlation in functional testing and random testing can be seen in

Chapter 7 Effect of Code Coverage on Fault Detection 121

Table 7.4: R-squared value in testing profiles

Testing profile (size) R-squared

Whole test set(1200) 0.781

Functional test(800) 0.837

Random test(400) 0.558

Normal test(827) 0.045

Exceptional test(373) 0.944

Table 7.4. The correlation in partition testing is larger than that in random

testing, but the difference is not significant. In general, partition test cases

are designed to maximize their code coverage (i.e., to cover more code frag-

ments), while random test cases are generated to simulate a real operational

environment and are not likely to improve code coverage. From our results,

some partition test cases inherit the strong linear correlation between code

coverage and fault coverage (e.g., in Region IV), while some random test cases

show little correlation between the two measures (e.g., in Region VI). The

underlying reason may be that there are no exceptional test cases in Region

VI, but a large number of exceptional test cases (277 in Region IV out of 373

in total test set) in Region IV. For another random test region, i.e., Region

V, a positive correlation is also observed, with R2 = 0.778, as there are 56

exceptional test cases in this region.

However, on average, the correlations between code coverage and fault cov-

erage vary from 0.837 in partition testing to 0.558 in random testing. In both

situations, code coverage is a moderate indicator for fault detection capability.

Chapter 7 Effect of Code Coverage on Fault Detection 122

7.3.3 Normal Operational Testing versus Exceptional

Testing

Test cases are designed to detect and remove residual faults in program ver-

sions developed to satisfy the requirements in the software specification. There

are two major system statuses, according to the specification: normal oper-

ation and exception handling. A test set should contain test cases designed

according to these two system operation scenarios to hit all kinds of faults.

The classification of normal and exceptional status is application-dependent

and defined by the specification. In this RSDIMU application, normal opera-

tion refers to those situations where at most two sensors fail during the input

and at most one sensor fails during the test. All other cases, which cause

difficult conditions such that acceleration of the vehicle cannot be estimated,

are viewed as exceptional operations.

As shown in Table 7.4, the linear correlation of code coverage and fault cov-

erage changes dramatically from normal testing (0.045) to exceptional testing

(0.944). This is shown in Figure 7.10 and Figure 7.11, respectively.

This may be explained as follows. In normal testing, the code coverage

range is relatively small (see Figure 7.10), between 48% and 52%. This agrees

with the design principle of normal test cases. The normal operations should

execute the major part of the program versions. In such a situation, although

higher code coverage may be obtained (compared with that of exceptional

testing), it cannot be employed to predict the fault detection capability of a

normal operational test case. Normal test cases with similar code coverage can

be classified into different input/output subdomains, some of which may be

more difficult than others. The program fragments which target more difficult

subdomains are more fault-prone, while the fragments with easier subdomains

are more reliable. So besides code coverage, the difficulty of subdomains may

Chapter 7 Effect of Code Coverage on Fault Detection 123

Figure 7.10: Block coverage and defect coverage in normal testing

Figure 7.11: Block coverage and defect coverage in exceptional testing

Chapter 7 Effect of Code Coverage on Fault Detection 124

be another factor of fault coverage.

Figure 7.11 contains two main clusters. We examine the exceptional test

cases and find that these two clusters are caused by the specific application.

Because of the complexity of the RSDIMU application, some functions such

as acceleration estimation, contain large-scale computational code. In some

exceptional cases, part of these functions can be executed but others can be

skipped (e.g., when four sensors on exactly two faces have failed before the

test, and no additional sensor fails during the test); in other cases, all this

computational code is skipped, as determined by the system status. This

explains why the code coverage shows two different ranges, and why a large

gap exists between the two clusters. Although this phenomenon is application-

specific, the strong correlation pattern provides positive support for the use

of code coverage as a measure of fault coverage. We postulate that, even

in other applications, since different exceptional test cases simulate different

exceptional situations, a variation of code coverage are achieved, although the

ranges of code coverage may be larger or smaller than in our application.

Test cases with higher code coverage are likely to detect more faults, i.e., the

correlation between code coverage and fault coverage may still hold. Of course,

this needs further empirical investigation.

7.4 Combinations of Various Coverage Met-

rics

From the data shown above, we observe that the effect of code coverage on

fault coverage is significant in exceptional testing, but weak in normal testing.

The reason for the difference between functional testing and random testing

Chapter 7 Effect of Code Coverage on Fault Detection 125

Table 7.5: Linear regression fitness for combinations

Testing Combination R-Squared

random & normal 0.045

random & exceptional 0.949

functional & normal 0.076

functional & exceptional 0.950

Table 7.6: R-squared value in different code coverage and testing profiles

Testing profile(size) block decision C-use P-use

coverage coverage

Whole test set(1200) 0.781 0.832 0.774 0.834

Functional test(800) 0.837 0.880 0.830 0.881

Random test(400) 0.558 0.646 0.547 0.648

Normal test(827) 0.045 0.368 0.019 0.398

Exceptional test(373) 0.944 0.952 0.954 0.954

is not obvious, but nonetheless code coverage is a moderate indicator for test

effectiveness. To further illustrate this effect, we examine the correlation pat-

tern in different testing profile combinations. The linear regression fits in the

four combinations are listed in Table 7.5. It is clear that the combinations con-

taining exceptional testing (random/exceptional and functional/ exceptional)

indicate strong correlation, while the combinations containing normal testing

(random/normal and functional/normal) inherit a weak correlation.

To investigate the correlation pattern between different code coverage met-

rics and test effectiveness under various testing profiles, the R-squared values

of linear regression for decision coverage, C-use and P-use are listed in Table

7.6, compared with that for block coverage. The other three coverage metrics

show similar patterns to block coverage. There is an insignificant difference

between block coverage/C-use and decision coverage/P-use under normal test-

ing. One possible reason may be that the variation of decision coverage and

Chapter 7 Effect of Code Coverage on Fault Detection 126

P-use coverage are larger under normal operations, as they are related to the

control flow change in the program code. According to our observations de-

scribed above, larger variation in code coverage implies more correlation in

terms of the relationship among different clusters.

To further investigate the prediction performance of coverage metrics, we

look at the different coverage increase when new mutants are killed. As stated

earlier, there are 49 occurrences of new mutants being killed in the whole test

set, while 33 of them exhibit some kinds of cumulated coverage increase. Out

of these 33 occurrences, three of them do not show block coverage increase,

which implies an inaccuracy of 8.3% with block coverage. Nevertheless, this

figure is not significantly different to other coverage metrics.

Overall, our experimental data show that no significant prediction perfor-

mance difference between block coverage, decision coverage, C-use and P-use.

7.5 Reduction of the Size of the Effective Test

Set

Test set minimization aims to reduce the cost associated with re-testing [108].

The problem is equivalent to the NP-complete minimal set covering problem

[35]. An implicit enumeration algorithm with reductions has been employed

to find the optimal set covering [108], showing that the time cost may be up to

exponential. Several greedy or heuristic methods have been proposed and eval-

uated to obtain approximate solutions [41, 111]. Moreover, tradeoffs between

test set reduction and fault detection capability are also under investigations

[6].

Here we employ a simple method to obtain the effective test set using

Chapter 7 Effect of Code Coverage on Fault Detection 127

coverage increase as a filter. The sizes of the test sets using different coverage

increase criteria on the whole test set are listed in Table 7.7. The original

test set with 1200 test cases can kill 391 out of 426 mutants (although 35

mutants contain real faults, they cannot be detected with any of the 1200 test

cases, reflecting the fact that testing alone is not enough for ensuring software

reliability). If each test case with 0.01% increase in at least one of the four

coverage measurements (block, decision, C-use and P-use) is selected, the size

of final test set is 203, which is only 16.9% of the original set; nevertheless it can

kill 374 mutants, which is 95.7% of the faults detected by the original test set.

Then we randomly select 203 test cases from the original 1200, and investigate

the number of mutants killed by it. The random selection is repeated 100

times, and find that the average number of mutants detected by these 100 test

sets is 371, which is listed in the last column.

Table 7.7: Reduction of the size of test set with coverage increase

Criteria test set size (%) mutants killed (%) mutants killed by random set

original 1200(100%) 391(100%) —

block inc.>0.01% 116 (9.7%) 359 (91.8%) 363

block inc.>0.05% 78 (6.5%) 356 (91.0%) 358

block inc.>0.25% 40 (3.3%) 349 (89.3%) 346

block inc.>1% 18 (1.5%) 328 (83.9%) 323

block inc.>2% 11 (0.9%) 317 (81.1%) 302

Table 7.7 agrees with the intuitive that the test set size will be smaller if

the coverage increase criterion is larger, although the fault detection capability

reduces as well. As illustrated in Figure 7.3, the average number of faults

detected by a test case is 178, with 92 as minimum and 263 as maximum.

Since the differences between the mutants killed by reduced test set and those

by random set are insignificant, as shown in Table 7.7, the data is not evident

to answer the question whether coverage increase is helpful or not for test set

Chapter 7 Effect of Code Coverage on Fault Detection 128

Table 7.8: Test set reduction with normal testing

Criteria test set size mutants killed mutants killed by random set

original 827 371 —

block inc.>0.01% 87 351 353 (100.6%)

block inc.>0.05% 59 346 348 (100.6%)

block inc.> 0.25% 28 341 334 (97.9%)

block inc.>1% 11 308 304 (98.7%)

block inc.>2% 8 303 292 (96.4%)

Table 7.9: Test set reduction with exceptional testing

Criteria test set size mutants killed mutants killed by random set

original 373 355 —

block inc.>0.01% 29 327 298 (91.1%)

block inc.>0.05% 19 316 277 (87.7%)

block inc.>0.25% 12 270 243 (90.0%)

block inc.>1% 7 238 216 (90.8%)

block inc.>2% 3 228 180 (78.9%)

reduction.

To further investigate the difference in performance under normal or excep-

tional test cases, we break up the reduced test set into normal test cases and

exceptional test cases, and select random test sets accordingly. The numbers

are listed in Table 7.8 and Table 7.9 respectively. For example, the test set of

size of 116 (when using block increase greater than 0.01% as a filter) contains

87 normal test cases and 29 exceptional test cases. So in Table 7.8, 87 nor-

mal test cases are selected randomly from the original 827 normal test cases,

and find that the average number of faults detected by 100 such randomly-

generated test sets is 353, slightly more (100.6%) than that of the reduced test

set which is 351. Next in Table 7.9, when we examine the 100 test sets which

contains 29 random exceptional test cases, 298 mutants are killed on average.

Chapter 7 Effect of Code Coverage on Fault Detection 129

This shows fault detection capability of 91.1% of the reduced test set (327

mutants killed).

The following observations can be drawn from Tables 7.7, 7.8 and 7.9:

1. For the whole test set, when coverage increase (whether small or large) is

used as the condition to select the reduced test set, the number of faults

detected is almost the same as that of a random test set of the same size;

thus, we can not conclude coverage is an effective indicator for test set

reduction.

2. For normal test cases, the performance of the random test set is always

similar to that of the coverage-increase test set, except in the case with

the largest coverage increase (where the number of the faults detected by

the random set is 292 versus 303, i.e., 96.4%). So better code coverage

does not imply a sound testing performance for normal test cases.

3. For exceptional test cases, the performance of the reduced test set se-

lected by coverage increase is always better than that of the random test

set. The number of faults detected by the latter ranges from 78.9% to

92.2% of those found by the former. Hence, code coverage is a good filter

for reducing the size of the test set with the smallest concomitant reduc-

tion of the testing effectiveness, especially when the coverage increase

margin is larger, say, 2%.

These observations further verify our finding in the previous sections that

code coverage is a helpful criterion for the design and evaluation of exceptional

test cases.

Chapter 7 Effect of Code Coverage on Fault Detection 130

7.6 Assessment of Various Testing Strategies

7.6.1 Comparisons of Partition Testing and Random

Testing

The effectiveness of random testing has been a controversial issue for some

time [107]. As to whether random testing is an effective testing approach, we

can see some positive signs from our statistical data. First, although random

test cases are not designed to improve code coverage, they can still achieve

similar code coverage to that of functional test cases, e.g., the similar code

coverage (around 50%) obtained in Region VI compared with that in Region

IV. Secondly, random testing can kill mutants whose faults are hard to detect,

i.e., with a small rate of failure occurrence. If we examine the failure details

of mutants that failed in fewer than 20 test cases (which means these mutants

inherit a low failure occurrence), we find that there are 94 random test cases

and 169 functional test cases that can detect these faults. Considering the ratio

of random test case to the whole test set is 33.3% (400
1200

), the percentage 35.7%

(94
94+169

) shows that random test cases are as effective in detecting hard-to-kill

mutants as functional test cases.

The numbers and failure occurrence of mutants that failed in functional

testing only or in random testing only are listed in Table 7.10. The figures

indicate that there are 382 mutants killed in functional testing and 371 mutants

killed in random testing. Among all these mutants, 362 mutants failed in both

modes of testing, 20 mutants (with mean failure number of 4.5) were killed

by functional testing only and nine mutants (with 3.67 failures in average)

failed in random test cases only. This means that random testing may miss

5.2% (20/382) of faults compared with functional testing, but it kills 2.4%

(9/371) additional faults which are not detected by functional testing. These

Chapter 7 Effect of Code Coverage on Fault Detection 131

Table 7.10: The number of mutants failing in different testing

Test case type Mutants Mean failure Std.

killed number deviation

Functional testing 20/382 4.50 3.606

Random testing 9/371 3.67 2.236

Normal testing 36/371 120.00 221.309

Exceptional testing 20/355 55.05 99.518

nine newly-killed mutants inherit rather low failure occurrence.

Overall, these results show that random testing is a necessary complement

to partition testing.

7.6.2 Normal Function Testing versus Exceptional Test-

ing

According to Table 7.10, the mutants killed by exceptional testing only fail less

frequently (with 55 failures on average) than those failing under normal testing

only (with 120 failures in average). Considering that the total numbers of test

cases in normal testing and exceptional testing are 827 and 373, the normalized

failure occurrences of these two classes of mutants are similar (120/827 vs.

55/373). Normal testing can detect more faults than exceptional testing (371

vs. 355), yet it contains larger test set than exceptional testing.

Table 7.10 also reveals that mean failure numbers under functional testing

and random testing are significantly different from those under normal testing

and exceptional testing. This may reflect the different features and relation-

ships among the four testing profiles. Functional testing (which is designed

according to the specification) and random testing (which is designed accord-

ing to operational profile) have a considerable overlap. Most cases under the

Chapter 7 Effect of Code Coverage on Fault Detection 132

two testing profiles can detect similar faults. Only a small number of function-

specific faults or faults occurring under extreme situations can be detected by

functional testing or random testing only. In the meanwhile, the occurrences

of the test cases that can detect such faults are relatively fewer. In contrast,

the profiles of normal testing and exceptional testing are parallel, i.e., they

contain no overlap. A fault occurring only under normal operations may fail

in many normal test cases, but it cannot be detected by exceptional testing,

and vice versa. At the same time, the number of normal or exceptional test

cases that can detect such faults is larger since these test cases may aim at

the same subdomains. The different features and relationships between testing

profiles can also explain the various patterns they inherit in terms of the corre-

lation between code coverage and fault coverage: there is a similarity between

functional testing and random testing, but a major difference between normal

testing and exceptional testing.

In summary, both normal operational testing and exceptional testing are

important for software testing. Code coverage is clearly a good indicator of

fault detection capability of exceptional test cases, but not of normal test cases.

This can give some hints on designing the exceptional test cases: increasing

the code coverage of such test cases will yield better fault detection capability.

7.7 Detailed Analysis in Region IV

As shown in Figure 7.8, a high correlation between code coverage and defect

coverage was observed in Region IV. Moreover, as exceptional testing exhibits

a higher correlation than normal testing, the exceptional test cases in Region

IV should give us more hints about subdomain-based exceptional testing. The

block coverage and defect coverage of all the 277 exceptional test cases in

Chapter 7 Effect of Code Coverage on Fault Detection 133

Figure 7.12: Block coverage and defect coverage in exceptional test of region
IV

Region IV are illustrated in Figure 7.12. Clearly, there are three main clusters,

and a single point which is away from the best-fit line.

In the lowest cluster, which exhibits smallest block coverage and defect

coverage, the 36 test cases belong to two different subdomains: these represent

the failure of either seven or six sensors in the inputs. In this cluster, the range

of block coverage is from 30% to 35%, and the range of defect coverage is from

90 to 100 mutants.

In the middle cluster, the 216 test cases can be classified into three sub-

domains: two, three or four sensors failing in the input, respectively. The block

coverage is in the range of 35% to 40%, and the number of mutants killed is

around 120.

The third cluster, which represents the highest coverage of both code and

defects, contains 24 exceptional test cases from one single subdomain: three

Chapter 7 Effect of Code Coverage on Fault Detection 134

sensors failed before the test, but as two of them are on the same face and

all the other sensors are operational, only two faces are actually completely

operational, but the system status is still operational and the estimation can

still be made. According to the specification, the system status is analytic;

this is a extreme boundary for the normal operational case, in which the ve-

hicle state can be estimated while the channels’ state cannot be estimated as

the available information is limited. Thus this subdomain is regarded as an

exceptional subdomain in the literature [28, 86]. In this case, 45% to 50%

block coverage is covered, and about 200 mutants can be detected.

The only point that lies outside the line is from another subdomain, where

no sensor failed as the input, but three of them were regarded giving only noise

during calibration. As a result, all the sensors are regarded as having failed.

In summary, the high correlation of exceptional testing in Region IV reveals

that the increase of code coverage in subdomain-based testing does affect the

fault detection capability. Moreover, this testing strategy itself can increase

such capability, as can be seen from our data.

7.8 Discussions

7.8.1 Threats to Validity

The discussions to general threats to validity of the whole project can be found

in Chapter 4. Here we just highlight some possible threats to validity related

to coverage data collection.

Although there are many other coverage measurements available, we believe

these four metrics can adequately represent the basic data-flow and control-flow

coverage measurements. Actually, when we examine the various relationships

Chapter 7 Effect of Code Coverage on Fault Detection 135

between these metrics, the patterns are similar to each other. This phenom-

enon has also been observed in previous studies [15, 76]. So we choose block

coverage as the representative code coverage measurement in this study, al-

though all the relationships can be obtained for the other three measurements.

For determining the testing effectiveness, the design strategy of the test

set becomes critical. In this experiment, the first 800 test cases were carefully

defined by the domain experts to address the requirements of the specification.

The test set has been adopted as an acceptance test for some previous empirical

studies.

In our investigation of the effect of code coverage, each mutant is treated

as a single fault. The code coverage of the mutants is regarded as equal to

the code coverage of the final version after removing the corresponding fault.

Although there is a slight discrepancy between the two degrees of coverage,

we think the difference may not be very significant because, on average, each

fault affects only a few lines of code.

7.8.2 Implications of Our Results

Based on our project data, we investigate the effect of different code coverage

metrics under different testing profiles. We focus on the following four ques-

tions: 1) Is code coverage a positive indicator for fault detection capability?

2) Does this relationship vary under different testing profiles? 3) Does it vary

with different code coverage metrics? 4) How well does code coverage act as a

filter to reduce the size of the effective test set?

For the first question, based on the above experimental data, our answer

is positive. Our empirical data show that, in most situations, 71.4% in fact,

there is an increase with code coverage when a test case detect additional new

faults. Furthermore, in some functional and exceptional testing regions (e.g.,

Chapter 7 Effect of Code Coverage on Fault Detection 136

region IV), the correlation between code coverage and fault detection is very

high, which indicates that high code coverage brings high fault coverage under

an exceptional testing profile.

However, we find that the correlation varies under different testing profiles,

which answers the second question. As mentioned above, there is a significant

correlation between code coverage and fault detection capability for excep-

tional test cases. A positive linear correlation holds with an overall R-squared

of 0.944. In contrast, there is no such correlation for normal operational test

cases. The phenomenon of different correlations appearing in different test

case regions can be explained by the ratio of exceptional test cases in these re-

gions. Since high correlation holds for exceptional test cases, the large number

(277/373) of exceptional test cases contained in Region IV leads to the strong

positive correlation in this region.

On the other hand, code coverage is moderately correlated with fault detec-

tion capability in both functional testing and random testing. The difference

in this correlation between the two testing profiles is not obvious.

For the third question, we cannot give a conclusive answer from our data.

The correlation pattern seems similar for all coverage metrics under various

testing profiles. However, there is a small difference between block coverage/C-

use and decision coverage/P-use. This may be caused by the control flow diver-

sion related to the decision predicate. But as the difference is not statistically

significant, we cannot tell whether the coverage metrics have any influences on

the correlation.

As our project data are based on the RSDIMU application, which is compu-

tation intensive, the size of some functions is very large compared with those

in other applications. We find that there is a gap between the coverage of

different exceptional test cases, which is determined by the execution of these

Chapter 7 Effect of Code Coverage on Fault Detection 137

functions. This is the reason behind the two clusters shown in some of the

patterns. As RSDIMU is a real-world critical application from the avionics

industry, the correlations and patterns that are observed in our experiment

should be representative to a certain degree. However, since this is only a

single case study, further real-world empirical data are still needed.

For the last question, our experimental data show that code coverage is a

good filter which can help to greatly reduce the size of the effective test set.

Significantly, there is only a small associated decrease in the fault detection

capability. In particular, coverage increase information is very useful for re-

ducing the size of the exceptional test cases in the effective test set. The result

shows that the performance of the reduced exceptional test set using coverage

information is always better, on average, than that of a random test set of the

same size. This finding will help to guide the design of the effective test set

with an acceptable size, especially for exceptional test cases.

Overall, we can see that using code coverage information to reduce the

test set size is more effective for exceptional test cases than normal test cases,

according to our experimental data. One possible reason may be that, for

normal test cases, they cover the more complicated part of the source code,

where faults are detected not only by being executed at least once, but also

by examining the values of different variables and the various control flow

branches. However, for exceptional test cases, most of the code they cover

is logically simpler, and with less chance of being executed. Therefore, using

code coverage performs better in exceptional test cases than in normal test

cases.

The significance of the clear positive correlation in exceptional testing is

that it can provide guidelines for selection and evaluation of exceptional test

cases. Test cases with high code coverage tend to detect more faults, although

Chapter 7 Effect of Code Coverage on Fault Detection 138

it does not necessarily mean that test cases with low coverage are useless. For

functional testing, test cases with low coverage may detect faults related to

specified operations. For random testing or operational testing, code coverage

can estimate the fault detection capability for exceptional test cases.

As one possible further research direction, a new testing strategy which

combines the concept of domain testing and coverage testing may give more

realistic and effective guidance for software testing.

7.9 Summary

In this chapter, we investigate the effect of code coverage on fault detection

under different testing profiles, using different coverage metrics, and study its

application in reducing test set size.

A unique contribution of our work is an innovative investigation on the

relationship between code coverage and fault detection in terms of different

testing profiles. From our experimental data, code coverage is a moderate

indicator for the capability of fault detection on the whole test set. The effect

of code coverage on fault detection varies under different testing profiles. The

correlation between the two measures is high with exceptional test cases, but

weak in normal testing.

Furthermore, there is little evidence for variation between different coverage

metrics. All the four coverage metrics studied show similar patterns in the

linear relationship between code coverage and fault detection. Moreover, the

data support the effectiveness of random test cases due to their significant

fault detection capability.

Our study also shows that code coverage can be used as a good filter

to reduce the size of the effective test set, although it is more powerful for

Chapter 7 Effect of Code Coverage on Fault Detection 139

exceptional test cases. This reinforces the evidence that code coverage is a

good indicator, and can be usefully applied in test case design and evaluation,

especially for subdomain-based exceptional testing.

In summary, the new finding about the effect of code coverage on fault

detection can be used to guide the selection and evaluation of test cases under

various testing profiles, although this still needs supports and evaluations from

more empirical data.

2 End of chapter.

Chapter 8

Predicting Reliability With

Code Coverage

As the key factor in software quality, software reliability quantifies software

failures. Defined as the probability that a software system does not fail in

a specified period of time in a specified environment, software reliability has

become the most an essential ingredient in customer satisfaction [70]. As

a result, many analytical models have been proposed for software reliability

estimation. The time-domain models, also called software reliability growth

models (SRGM), have been drawn most attention. These software reliability

models use the failures collected in testing phases to predict the failure oc-

currences in the operational environment. There are two classes of basic data

used in traditional SRGMs: 1) failures per time period; or 2) time between fail-

ures. A number of reliability models have been proposed to illustrate various

distributions between failure/time and reliability, including some well-known

models, e.g., Goel-Okumoto and Musa-Okumoto models [70].

140

Chapter 8 Predicting Reliability With Code Coverage 141

Although some of the historical SRGMs have been widely adopted to pre-

dict software reliability, researchers believe they can further improve the pre-

diction accuracy of these models by adding other important factors which

affect the final software quality [15, 76, 102]. As we have discussed in previous

chapters, code coverage that a test set achieves may have certain effect on the

reliability of the software system under test. To incorporate the effect of code

coverage on reliability to traditional software reliability models, [15] proposes

a technique using both time and code coverage measurement for reliability

prediction. Basically, it reduces the execution time by a parameterized factor

when the test case neither increase code coverage nor causes a failure. Experi-

ments show that the adjusted G-O and M-O models with such time reduction

achieve more accurate predictions than the original ones.

In this chapter, we propose a novel method to integrate time and code

coverage measurements together to predict the reliability. Before that, we first

formulate the relationship between the number of failures and the code cover-

age achieved by test cases with two simplified models. The key idea of the new

reliability model is that the reliability of a software system is not only affected

by the execution time it experiences, but also the completeness of the testing.

Thus the reliability prediction is composed of two parts: the estimation from

execution time and from test coverage. For the effect of coverage on reliability,

we propose two models to describe such relationships. For the effect of time

on reliability, distributions from traditional SRGMs can be adopted for the

estimation.

In literature, several models have been proposed to formulate the relation-

ship between the number of failures/faults and test coverage achieved, with

various distributions. [102] suggests that this relation is a variant of Rayleigh

Chapter 8 Predicting Reliability With Code Coverage 142

distribution, while [76] derives that it can be expressed as a logarithmic-

exponential formula, based on the assumption that both defect coverage and

test coverage follow Musa-Okumoto logarithmic growth model with respect to

execution time.

In the following, we formulate such relation from two different aspects

of views. Experimental results will be provided to evaluate the estimation

accuracy. Furthermore, we propose a new software reliability model to estimate

software reliability with both execution time and test coverage information as

two major factors.

8.1 Two Models on Defect Coverage and Test

Coverage

8.1.1 A Hyperexponential Model

According to our previous observations, the relationship between the number

of faults detected and test coverage achieved varies under different testing

strategies. Based on this, we have the following assumptions:

1. There are K classes on the whole test set, showing the different natures

of various testing strategies;

2. Within each class, the fault detection rate with respect to coverage is

proportional to the number of faults remaining undetected;

3. A fault is corrected instantaneously without introducing new faults;

Chapter 8 Predicting Reliability With Code Coverage 143

Following these assumptions, the fault detection rate with respect to cov-

erage within each class is:

dFc

dc
= β · Fr = β · (N − Fc)

where Fc is the current cumulated number of faults detected when coverage

c is achieved, Fr is the residual faults, N is the total number of faults that are

detectable by the current testing strategy, and β is a constant.

Solution of this differential equation in the range of 0 ≤ c ≤ 1, under initial

condition Fc = 0, is as the following:

Fc = N(1− e−βc) (8.1)

From the assumptions, each class follows the nonhomogeneous Poisson

process (NHPP) model with its own parameters [70]. So on the whole test

set, the expected cumulated number of faults detected when coverage c is:

Fc =
K∑

i=1

Ni(1− e−βic) (8.2)

Notice that if K = 1 we have the NHPP model. Moreover, as Ni represents

the expected total number of faults to be eventually detected in each class, the

summation
∑K

i=1 Ni is the total number of faults that will be detected under

various testing strategies.

Since the failure intensity function is the derivative of Fc, we therefore have

λ(c) =
K∑

i=1

Niβie
−βic (8.3)

The two parameters in each class can be estimated using maximum likeli-

hood estimation (MLE) method or least-squares estimation (LSE), using the

failure data and coverage information under that particular testing strategy.

Chapter 8 Predicting Reliability With Code Coverage 144

8.1.2 A Beta Model

Unlike the hyperexponential model presented above, following the well-known

Goel and Okumoto reliability growth model, we assume that both fault cover-

age and test coverage follow the NHPP model with respect to execution time,

i.e.:

Fc(t) = N1(1− e−b1t) (8.4)

where Fc(t) is the number of cumulated faults detected at time t, N1 is the

expected number of faults detected eventually, and b1 is a constant.

Similarly, we have

c(t) = N2(1− e−b2t) (8.5)

where c(t) is the cumulated test coverage achieved at time t, N2 is the ultimate

test coverage that can be achieved by testing, and b1 is a constant.

From (8.5), we can derive the formula for time t,

t = − 1

b1

log(1− c

N2
)

Substitute t in (8.4), we get

Fc = N1[1− (1− c

N2

)α] (8.6)

where α = b1/b2.

From (8.6), the relationship between fault coverage and test coverage fol-

lows a Beta distribution, where c
N2

< 1. Similarly, the parameters N1, N2 and

α can be estimated by MLE or LSE methods using fault and coverage data

collected during our acceptance test and operational test.

Chapter 8 Predicting Reliability With Code Coverage 145

Table 8.1: Estimated Parameters in Hyper-exponential model

Modeling N β SSE

NHPP (1) 1475 0.39 146110

NHPP (2) 5467 0.096 118200

Hyper-exponential 4087 – 23928

Region I 1989 0.256 22195

Region II 476 1.97 133

Region III 411 3.29 1315

Region IV 406 3.75 66

Region V 414 3.77 219

Region VI 391 21.3 1.01e-009

8.1.3 Empirical Evaluation

We apply the failure and coverage data collected in the acceptance test of our

experiment to evaluate the two simplified models above. The LSE method is

used to estimate the parameters in the models.

First of all, we evaluate the NHPP model as well as the hyper-exponential

model. The estimated parameters and the sum of squared errors (SSE) are

listed in Table 8.1. It shows that the NHPP model does not fit the fail-

ure/coverage data very well, although the SSE will be slightly smaller if N

keeps increasing and β keeping decreasing. If hyper-exponential modeling is

applied on the six testing regions as shown in Table 7.3, it can be noted that

the SSEs of Region II to VI are pretty small. This agrees with the fact that

the underlying design strategies of various test cases illustrated in Table 4.1.

For the reason why Region I exhibits such a high diversity, we can also find

the answer in Table 4.1 since Region I combines all the test cases which target

at some basic functions in the programs.

Chapter 8 Predicting Reliability With Code Coverage 146

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
150

200

250

300

350

400
NHPP
Actual

Figure 8.1: NHPP estimation

The NHPP model and hyper-exponential model curves are shown in Figure

8.1 and Figure 8.2 respectively.

For the Beta model, if we assume the ultimate test coverage N2 in (8.6) is

100%, we can get

Fc = N1[1− (1− c)α] (8.7)

Similarly, using LSE method, we can derive the following Beta model:

Fc = 1101× [1− (1− c)0.303]

The estimation result is shown in Figure 8.3. The SSE in this estima-

tion is 38365, which is smaller than the NHPP model, but larger than the

hyper-exponential model. The comparison of the Hyper-exponential and Beta

modeling is shown in Figure 8.4.

Chapter 8 Predicting Reliability With Code Coverage 147

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
150

200

250

300

350

400

coverage

nu
m

be
r

of
 fa

ilu
re

s
Hyper−exponential
Actual

Figure 8.2: Hyper-exponential estimation

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
150

200

250

300

350

400

coverage

nu
m

be
r

of
 fa

ilu
re

s

Beta
Actual

Figure 8.3: Beta estimation

Chapter 8 Predicting Reliability With Code Coverage 148

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
150

200

250

300

350

400

coverage

nu
m

be
r

of
 fa

ilu
re

s

Hyper−exponential
Beta
Actual

Figure 8.4: Comparison of Hyper-exponential and Beta estimation

8.2 A New Software Reliability Model

Most of the software reliability models are based on time domain, i.e., using

either the elapsed time between software failures or the number of failures

occurring over a specified time period [70]. However, when we examine the

testing procedure, we find that execution time should not be the only factor

that affects the failure behavior of the software. For example, if testing se-

quence within a test set is changed, the time between failures or the number of

failures within a certain time period may be different. Under such situation,

although the same test set are executed on the same software system, differ-

ent reliability predictions are made according to the traditional time-domain

reliability growth models.

As have been mentioned above, [15] proposes a technique using both time

and code coverage measurement for reliability prediction. It is based on the

idea that the execution time between failures can be reduced when the test

Chapter 8 Predicting Reliability With Code Coverage 149

case neither increase code coverage nor causes a failure. Using such a reduc-

tion factor, the original G-O and M-O models can be adjusted to achieve more

accurate predictions. Overall, [15] propose a method dealing with the adjust-

ment of the time parameter in existing reliability growth models using coverage

information.

Here we propose a new reliability model which aims to predict the reliability

performance using time between failures and coverage measurement together.

The detailed assumptions and model form are illustrated as the following.

8.2.1 Assumptions

Our new reliability model is based on the following assumptions:

1. The number of failures revealed in testing is related to not only the

execution time, but also the code coverage achieved by the current test

set;

2. The failure rate with respect to time and test coverage together is a

parameterized summation of those with respect to time or coverage alone;

3. The probabilities of failure with respect to time and coverage are not

independent, they affect each other by an exponential rate.

According to these assumptions, the data requirements to implement this

model are: the time between failures, or the actual sequences of test cases that

the software failed, and the cumulated coverage measurement achieved by the

whole test set.

Chapter 8 Predicting Reliability With Code Coverage 150

8.2.2 Model Form

From the assumptions above, we can derive the joint failure intensity function

with respect to both time and coverage as following:

λ(t, c) = α1γ1e
−γ1cλ1(t) + α2γ2e

−γ2tλ2(c) (8.8)

where λ(t, c) is the joint failure intensity function, λ1(t) is the failure inten-

sity function with respect to time, while λ2(c) is the failure intensity function

with respect to coverage. α1, γ1, α2 and γ2 are all parameters with the con-

straint of α1 + α2 = 1.

Since λ1(t) is the failure intensity function with respect to time, any existing

distributions in well-known reliability models can be used, e.g., NHPP, Weibull

model, S-shaped model and logarithmic Poisson models. Similarly, we can use

any form such as the hyperexponential and Beta models proposed before for

the failure intensity function with respect to coverage λ2(c).

To illustrate the detailed format of (8.8), if we use NHPP models for both

time and coverage, we will get this joint failure intensity function:

λ(t, c) = α1γ1e
−γ1cN1β1e

−β1t + α2γ2e
−γ2tN2β2e

−β2c (8.9)

From the integral of the failure intensity function in (8.9), we can get the

expected cumulated number of failures when execution time is t, and cumulated

coverage achieved is c:

F (t, c) = α1(1− e−γ1c)N1(1− e−β1t) +

α2(1− e−γ2t)N2(1− e−β2c) (8.10)

where α1 + α2 = 1.

On the other hand, if we use the Beta model for coverage, the joint failure

intensity function will be :

λ(t, c) = α1γ1e
−γ1cN1β1e

−β1t + α2γ2e
−γ2tN2β2(1− c)β2−1 (8.11)

Chapter 8 Predicting Reliability With Code Coverage 151

The expected cumulated number of failures is:

F (t, c) = α1(1− e−γ1c)N1(1− e−β1t) +

α2(1− e−γ2t)N2[1− (1− c)β2] (8.12)

We can prove the joint density function f(t, c) derived from (8.8) by cal-

culating its theoretical integral with respect to t and c and getting the result

of 1.

∫ ∞

0

∫ ∞

0
f(t, c)dtdc =

∫ ∞

0

∫ ∞

0
α1γ1e

−γ1cf1(t)dtdc +
∫ ∞

0

∫ ∞

0
α2γ2e

−γ2tf2(c)dtdc

=
∫ ∞

0
α1γ1e

−γ1cdc +
∫ ∞

0
α2γ2e

−γ2tdt

= α1 + α2

= 1

8.3 Experimental Setup

To collect the time, coverage and failure data for reliability models with our

own multi-version program versions and mutants, we use a super-program for

testing and evaluation purpose. The concept of super-program is first proposed

in [16] in order to apply the testing data of fault-tolerant software for reliability

estimation.

In our experiment, the super-program is composed of all the 34 program

versions which contain 426 mutants, being treated as 426 faults or failures.

The coverage is measured against the super-program.

The testing procedure is described as follows:

1. Initialize the testing pool which contains the whole acceptance test set

or operational test set;

Chapter 8 Predicting Reliability With Code Coverage 152

2. Select a test case randomly from the testing pool;

3. Run the super-program according to three different testing strategies:

(a) Run all the mutants at the same time, find those failed and delete

them;

(b) Select a program version randomly, run all the mutants within this

version, record the mutants failed, and remove them from the super-

program;

(c) Select one mutant from all the mutants in all versions, remove it if

it fails, otherwise go to 2;

4. Remove the current test case from the testing pool, go to 2;

From the three different selection strategies for program versions and mu-

tants, we will get three different testing results. These testing data can be

applied to this new reliability model for evaluation. Performance compar-

isons with other well-known reliability models, such as G-O, M-O, Musa Basic

model, etc, can also be made based on the experimental data. Meanwhile, the

estimation accuracy under three different selection strategies can be further

investigated..

8.4 Experimental Evaluation

In this experimental evaluation, we adopt the first testing strategies out of the

three stated above, i.e., run all the mutants at the same time and remove those

failed. For the other two testing strategies, we will evaluate and compare their

performance with the first one in our later empirical study.

Chapter 8 Predicting Reliability With Code Coverage 153

To estimate the parameters in our reliability model, we have to deal with

different reliability model with respect to time and coverage separately. To

make our evaluation clearer, we adopt NHPP growth model for execution time,

and exponential/Beta model for test coverage as the different failure rates.

Other failure rates can also be adopted for further evaluations. Moreover,

least-squares estimation (LSE) method is used for parameter estimation in

our experiment.

For each of the evaluations, we use two different methods described as

following:

Method A: first, the parameters in the NHPP model(N1,β1) are estimated

separately, following by the estimation of coverage-related failure rate (N2,β2).

After these four parameters are determined, the other three parameters)α1,

γ1 and γ2) are optimized with the joint failure rate;

Method B : all the seven parameters are optimized altogether to find the

best estimation according to existing experimental data.

In the two estimation methods, method A seems more reasonable, since

it sets the failure rates first and estimate the parameters of dependencies on

the basis of determined failure rates. However, method B is also a necessary

complement, as it tries to capture the dependency between time and coverage

together with their different failure rates according to the current empirical

data. In order to make the results more converge, in our evaluation, we always

set the initial values in method B as the parameters estimated separately

before.

8.4.1 Exponential coverage estimation

Supposing the defect coverage and test coverage follows the exponential rela-

tionship as shown in (8.1), we have the cdf expression as in (8.10). From LSE

Chapter 8 Predicting Reliability With Code Coverage 154

Table 8.2: Estimated reliability parameters for exponential coverage model

Method α1 γ1 N1 β1 γ2 N2 β2 SSE

A -1.3844 3.0819 380 0.87 1.5110 1475 0.39 93849

B 1.7713 0.824 380 11.716 0.121 1475 -0.082 14130

NHPP Model - - 380 0.87 - - - 279230

0.5

0.6

0.7

0.8

0

20

40

60

80

100

120
0

50

100

150

200

250

300

350

400

coveragetime

nu
m

be
r

of
 fa

ilu
re

s

estimation A
estimation B
Actual

Figure 8.5: Reliability modeling with exponential failure rates

estimation for time and coverage separately, we get the parameters N1, β1 for

time, and N2 and β2 for coverage. Using these known parameters and failure

data in the experiment, we get the other three parameters using least-squares

estimation, as listed in Table 8.2 and illustrated in Figure 8.5. The NHPP

SRGM with respect to execution time is shown in Figure 8.6.

Table 8.2 shows that our estimation method A has an improvement com-

pared with NHPP model, while estimation method B improves the estimation

performance significantly. This result supports our previous observation: soft-

ware failure behavior is not only related to testing time, but also test coverage

Chapter 8 Predicting Reliability With Code Coverage 155

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

time

nu
m

be
r

of
 fa

ilu
re

s

NHPP
Actual

Figure 8.6: Reliability modeling with NHPP time relationship

or completeness. Although in our case, α2 is a negative number since α1 is

larger than 1, both time and coverage contribute to the number of failures

detected in the testing, and to the final reliability eventually.

8.4.2 Beta coverage estimation

Supposing the failure/coverage relationship follows the equation (8.7), we have

the cdf expression shown in (8.12). Again, we use two estimation methods

illustrated in previous section and compare their estimation performance in

Table 8.3 and Figure 8.7.

From Figure 8.5 and Figure 8.7, it can be observed that the reliability

estimation using our new reliability modeling is more accurate than that of

NHPP model, especially for method B.

As shown in our evaluation, the advantage of our reliability model is: this

Chapter 8 Predicting Reliability With Code Coverage 156

Table 8.3: Estimated reliability parameters for Beta coverage model

Method α1 γ1 N1 β1 γ2 N2 β2 SSE

A 0.0407 16.097 380 0.87 19.516 1101 0.303 36825

B 0.0565 20.182 380 0.098 21.138 1101 0.305 25712

NHPP Model - - 380 0.87 - - - 279230

0.5

0.6

0.7

0.8

0

20

40

60

80

100

120
150

200

250

300

350

400

coveragetime

nu
m

be
r

of
 fa

ilu
re

s

estimation A
estimation B
Actual

Figure 8.7: Reliability modeling with Beta coverage relationship

Chapter 8 Predicting Reliability With Code Coverage 157

is the first time that test coverage information is introduced into software

reliability modeling. It is based on the consideration that software failure be-

havior is not only related to execution time, but also to the test completeness.

Our experimental results have shown that our reliability estimation is more

accurate than that of NHPP software reliability model based on time domain.

Further comparisons and evaluations with other coverage models, such as

Rayleigh distribution and exponential-logarithmic model, can be investigated.

Moreover, as our future work, we will compare the prediction accuracy under

three different version selection strategies described above.

8.5 Summary

In this chapter, we propose a new reliability model which integrates time and

coverage measurements for reliability prediction. The key idea is that failure

detection is not only related to the time that the software experiences under

testing, but also how much the code fraction has been executed by the testing.

This is the first time that execution time and test coverage are incorporated

together to estimate the reliability achieved.

Our experimental results show that our reliability model gives as accurate

estimation as NHPP model with an obvious improvement. Yet different cov-

erage distributions do not affect the final estimation performance much with

our experimental data.

As our future work, we will incorporate other coverage models into our

reliability model and compare their performance. Furthermore, other SRGMs

like M-O model and Musa Basic models can be adopted for performance com-

parison. Also, the other two testing strategies can be used to collect more

failure data.

Chapter 8 Predicting Reliability With Code Coverage 158

2 End of chapter.

Chapter 9

Conclusion and Future Work

In this thesis, we perform a comprehensive investigation and evaluation of

fault-tolerant software including reliability modeling under fault correlation

and intensive studies with software testing techniques. In order to provide

quantitative assessment scheme for fault-tolerant software, we construct a com-

prehensive procedure in assessing fault-tolerant software for software reliability

engineering, which contains four procedures: modeling, experimentation, eval-

uation and economics.

First, we propose a new software reliability model by introducing the infor-

mation of test coverage achieved by test set. The test coverage measurement

can be integrated into the time-domain reliability modeling, showing that the

software reliability is not only related to testing time, but also to the code

coverage which shows the test completeness.

Second, in order to evaluate such assumptions and other existing reliability

models for fault-tolerant software, and to collect testing evidence for the eval-

uation, we conduct a large-scale, real-world, multiple-version software project.

Software faults that are manifested in development and test are identified and

studied. Coverage testing and mutation testing are executed on the multiple

versions to collect testing data for the evaluation purpose.

159

Chapter 9 Conclusion and Future Work 160

Third, to evaluate the current reliability models for software fault toler-

ance under fault correlation, we apply our experimental data for predication

effectiveness and performance comparison.

Furthermore, we perform comprehensive cross project comparisons on two

large-scale projects: our project and NASA 4-University project, to investigate

the “variants” and “invariants” features of fault-tolerant software. Although

there are some common faults in the two projects because they are based on

the same specification, the small number of coincident failures in both projects,

nevertheless, provide a supportive evidence for N-version programming, while

the observed reliability improvement implies some trends in the software de-

velopment in the past twenty years.

Finally, we use our experimental data to investigate the effect of code cov-

erage on fault detection and find that code coverage is a moderate indicator

for the capability of fault detection on the whole test set. But the effect of

code coverage on fault detection varies under different testing profiles. The

correlation between the two measures is high with exceptional test cases, but

weak in normal testing. Moreover, our study shows that code coverage can be

used as a good filter to reduce the size of the effective test set, although it is

more evident for exceptional test cases. Based on this observation, we are able

to derive the software reliability growth model using the information of test

coverage.

As our future work, the relationship between fault coverage and test cov-

erage can be further formulated to improve the accuracy. The new reliability

model can be further improved by considering other parameters which may

influence the final reliability of fault-tolerant software.

In the meanwhile, although the current data are very comprehensive and

Appendix Conclusion and Future Work 161

valuable for other investigations and evaluations with respect to software reli-

ability, software testing and software fault tolerance, more experiments can be

setup and data can be collected based on current experimental environment.

Moreover, the final task in our research methodology - economics, i.e., the

tradeoffs between software testing and fault tolerance, is still our future work.

This will help us to complete our goal to construct a quantitative assessment

scheme for fault-tolerant software.

2 End of chapter.

Appendix A

Publication List

Journal papers and book chapters

• Xia Cai, Michael R. Lyu and Kam-Fai Wong, A Generic Environment

for COTS Testing and Quality Prediction, Testing Commercial-off-the-

shelf Components and Systems, Sami Beydeda and Volker Gruhn (eds.),

Springer-Verlag, Berlin, 2005, pp.315-347.

• Michael R. Lyu and Xia Cai, Fault-tolerant Software, To appear in En-

cyclopedia on Computer Science and Engineering, Benjamin Wah (ed.),

Wiley. .

• Xia Cai, Michael R. Lyu, An Experimental Evaluation of the Effect of

Code Coverage on Fault Detection, Submitted to IEEE Transactions on

Software Engineering, June 2006.

162

Appendix A Publication List 163

• Xia Cai, Michael R. Lyu, Mladen A. Vouk, Reliability Features for De-

sign Diversity: Cross Project Evaluations and Comparisons, in prepara-

tion.

• Xia Cai, Michael R. Lyu, Predicting Software Reliability with Test Cov-

erage, in preparation.

Conference proceedings

• Xia Cai, Michael R. Lyu and Mladen A. Vouk, An Experimental Evalu-

ation on Reliability Features of N-Version Programming, Proceedings of

the 16th International Symposium on Software Reliability Engineering

(ISSRE2005), Chicago, Illinois, Nov. 8-11, 2005, pp. 161-170.

• Xia Cai and Michael R. Lyu, The Effect of Code Coverage on Fault

Detection under Different Testing Profiles, ICSE 2005 Workshop on Ad-

vances in Model-Based Software Testing (A-MOST), St. Louis, Missouri,

May 2005.

• Xia Cai and Michael R. Lyu, An Empirical Study on Reliability and

Fault Correlation Models for Diverse Software Systems, Proceedings of

the 15th International Symposium on Software Reliability Engineering

(ISSRE2004), Saint-Malo, France, Nov. 2004, pp.125-136.

Appendix A Publication List 164

• Michael R. Lyu, Zubin Huang, Sam K. S. Sze and Xia Cai, An Em-

pirical Study on Testing and Fault Tolerance for Software Reliability

Engineering, Proceedings of the 14th IEEE International Symposium on

Software Reliability Engineering (ISSRE’2003), Denver, Colorado, Nov.

2003, pp.119-130.

This paper received the ISSRE’2003 Best Paper Award.

Bibliography

[1] T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Moulding. Soft-

ware fault tolerance: an evaluation. IEEE Transactions on Software

Engineering, 12(1):1502–1510, January 1985.

[2] A. Avizienis. The n-version approach to fault-tolerant software. IEEE

Transactions on Software Engineering, 11(12):1491–1501, December

1985.

[3] A. Avizienis. The methodology of n-version programming. In M. R. Lyu,

editor, Software Fault Tolerance, pages 23–46. Wiley, New York, 1995.

[4] A. Avizienis and L. Chen. On the implementation of N-version program-

ming for software fault tolerance during execution. In Proceedings of the

Computer Software and Application Conference (COMPSAC77), pages

149–155, Chicago, Illinois, November 1977.

[5] A. Avizienis, M. R. Lyu, and W. Schutz. In search of diversity: a six-

language study of fault-tolerance flight control software. In Proceedings

of FTCS-18, pages 15–22, Tokyo, Japan, 1988.

165

Bibliography 166

[6] B. Baudry, F. Fleurey, and Y. L. Traon. Improveing test suites for

efficient fault localization. In Proceedings 28th International Conference

on Software Engineering (ICSE’2006), pages 82–90, Shanghai, China,

May 2006.

[7] B. Beizer. Software Testing Techniques. Van Nostrande Reinhold Co.,

New York, 1990.

[8] F. Belli and P. Jedrzejowicz. Fault-tolerant programs and their reliability.

IEEE Transactions on Reliability, 29(2):184–192, 1990.

[9] P. G. Bishop. Software fault tolerance by design diversity. In M. R. Lyu,

editor, Software Fault Tolerance. Wiley, New York, 1995.

[10] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll, and

J. Lahti. PODS - a project on diverse software. IEEE Transactions on

Software Reliability, 12(9):929–940, 1986.

[11] R. J. Bleeg. Commercial jet transport fly-by-wire architecture consider-

ations. In AIAA/IEEE 8th Digital Avionics Systems Conference, pages

399–406, October 1988.

[12] P. Boland, H. Singh, and B. Cukic. Comparing partition and random

testing via Majorization and Schur functions. IEEE Transactions on

Software Engineering, 29(1):88–94, January 2003.

Bibliography 167

[13] L. Briand and D. Pfahl. Using simulation for assessing the real impact

of test coverage on defect coverage. IEEE Transactions on Reliability,

49(1):60–70, March 2000.

[14] X. Cai and M. R. Lyu. An empirical study on reliability and fault correla-

tion models for diverse software systems. In Proceedings 15th IEEE Inter-

national Symposium on Software Reliability Engineering (ISSRE’2004),

Saint-Malo, France, November 2004.

[15] M. Chen, M. R. Lyu, and E. Wong. Effect of code coverage on software

reliability measurement. IEEE Transactions on Reliability, 50(2):165–

170, June 2001.

[16] M. H. Chen, M. R. Lyu, and E. Wong. Incorporating code coverage

in the reliability estimation for fault-tolerant software. In Proceedings

16th IEEE Symposium on Reliable Distributed Systems, pages 45–52,

Durham, North Carolina, October 1997.

[17] M. H. Chen, A. P. Mathur, and V. J. Rego. Effect of testing techniques

on software reliability estimates obtained using time domain models.

In Proceedings of the 10th annual software reliability symposium, pages

116–123, Denver, Colorado, June 1992.

[18] T. Y. Chen and Y. T. Yu. On the relationship between partition and

random testing. IEEE Transactions on Software Engineering, 20:977–

980, December 1994.

Bibliography 168

[19] X. Chen and M. R. Lyu. Message logging and recovery in wireless corba

using access bridge. In Proceedings of the 6th International Sympo-

sium on Autonomous Decentralized Systems (ISADS2003), pages 107–

114, Pisa, Italy, April 2003.

[20] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moe-

bus, B. K. Ray, and M. Y. Wong. Orthogonal defect classification – a

concept for in-process measurements. IEEE Transactions on Software

Engineering, 18(19):943–956, November 1992.

[21] F. Cristian. Exception handling and software fault tolerance. In Proceed-

ings of the 10th International Symposium on Fault-Tolerant Computing

(FTCS-10), pages 97–103, 1980.

[22] F. Cristian. Exception handling and tolerance of software faults. In

M. R. Lyu, editor, Software Fault Tolerance, pages 81–107. Wiley, New

York, 1995.

[23] E. Delamaro, C. Maldonado, and A. Mathur. Interface mutation: an

approach for integration testing. IEEE Transactions on Software Engi-

neering, 27(3):228–247, March 2001.

[24] J. B. Dugan and M. R. Lyu. System reliability analysis of an n-version

programming application. IEEE Transactions on Reliability, 43(4):513–

519, December 1994.

Bibliography 169

[25] J. B. Dugan and M. R. Lyu. Dependability modeling for fault-tolerant

software and systems. In M. R. Lyu, editor, Software Fault Tolerance.

Wiley, New York, 1995.

[26] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE

Transactions on Software Engineering, 10:438–444, July 1984.

[27] D. E. Eckhardt, Caglavan, Knight, Lee, McAllister, Vouk, and Kelly. An

experimental evaluation of software redundancy as a strategy for improv-

ing reliability. IEEE Transactions on Software Engineering, 17(7):692–

702, July 1991.

[28] D. E. Eckhardt and L. D. Lee. A theoretical basis for the analysis of

multiversion software subject to coincident errors. IEEE Transactions

on Software Engineering, 11(12):1511–1517, December 1985.

[29] M. Ege, M. A. Eyler, and M. U. Karakas. Reliability analysis in n-version

programming with dependent failures. In Proceedings of 27th Euromicro

Conference, pages 174 –181, Warsaw, Poland, September 2001.

[30] P. Frankl and E. Weyuker. An applicable family of data flow testing

criteria. IEEE Transactions on Software Engineering, 14(10):1483–1498,

October 1988.

[31] P. G. Frankl, D. Hamlet, B. Littlewood, and L. Strigini. Evaluating

testing methods by delivered reliability. IEEE Transactions on Software

Engineering, 24(8):586–601, August 1998.

Bibliography 170

[32] P. G. Frankl and S. N. Weiss. An experimental comparison of the effec-

tiveness of the all-uses and all-edges adequacy criteria. In Proceedings

of the 4th Symposium on Software Testing, Analysis, and Verification,

pages 154–164, October 1991.

[33] P. G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting

ability of testing methods. IEEE Transactions on Software Engineering,

19:202–213, March 1993.

[34] F. D. Frate, P. Garg, A. P. Mathur, and A. Pasquini. On the correlation

between code coverage and software reliability. In Proceedings of the

6th International Symposium on Software Reliability Engineering, pages

124–132, Toulouse, France, October 1995.

[35] M. R. Gary and D. S. Johnson. Computers and Intractability. Freeman,

New York, 1979.

[36] S. Gokhale, M. R. Lyu, and K. S. Trivedi. Incorporating fault debugging

activities into software reliability models: A simulation approach. IEEE

Transactions on Software Engineering, 55(2):281–292, June 2006.

[37] J. B. Goodenough. Exception handling: issues and a proposed notation.

Communications of the ACM, 18(12):683–693, 1975.

Bibliography 171

[38] K. E. Grosspietsch. Optimizing the reliability of the component-based n-

version approaches. In Proceedings of International Parallel and Distrib-

uted Processing Symposium (IPDPS 2002), pages 138–145, Fort Laud-

erdale, Florida, April 2002.

[39] K. E. Grosspietsch and A. Romanovsky. An evolutionary and adaptive

approach for n-version programming. In Proceedings of 27th Euromicro

Conference, pages 182–189, Warsaw, Poland, September 2001.

[40] R. Hamlet and R. Taylor. Partition testing does not inspire confidence.

IEEE Transactions on Software Engineering, 16:1402–1411, December

1990.

[41] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling

the size of a test suite. ACM transactions on Software Engineering and

Methodology, 2(3):270–285, July 1993.

[42] L. Hatton. N-version design versus one good version. IEEE Software,

pages 71–76, Nov/Dec 1997.

[43] J. Hayes. Specification directed module testing. IEEE Transactions on

Software Engineering, 12:124–133, Januray 1986.

[44] A. D. Hills and N. A. Mirza. Fault tolerant avionics. In AIAA/IEEE

8th Digital Avionics Systems Conference, pages 407–414, October 1988.

Bibliography 172

[45] J. Horgan, S. London, and M. Lyu. Achieving software quality with

testing coverage measures. IEEE Computer, 27(9):60–69, September

1994.

[46] W. E. Howden. Functional programming testing. IEEE Transactions on

Software Engineering, 6, 1980.

[47] W. E. Howden. Weak mutation testing and completeness of test sets.

IEEE Transactions on Software Engineering, 8(4):371–379, July 1982.

[48] Y. Huang and C. Kintala. Software fault tolerance in the application

layer. In M. R. Lyu, editor, Software Fault Tolerance, pages 231–248.

Wiley, New York, 1995.

[49] IEEE. IEEE Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries. Institute of Electrical and Electronics

Engineers, New York, 1990.

[50] B. Jeng and E. J. Weyuker. Some observations on partition testing. In

Proceedings of the 3rd Symposium on Software Testing, Analysis, and

Verification, pages 38–47, December 1989.

[51] P. C. Jorgensen. Software Testing: A Craftsmans Approach (2nd edi-

tion). CRC Press, 2002.

[52] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant. Chameleon: a

software infrastructure for adaptive fault tolerance. IEEE Transactions

on Parallel and Distributed Systems, 10(6):560–579, June 1999.

Bibliography 173

[53] K. Kanoun. Real-world design diversity: a case study on cost. IEEE

Software, pages 29–33, July/August 2001.

[54] J. Kelly, D. Eckhardt, M. Vouk, D. McAllister, and A. Caglayan. A

large scale generation experiment in multi-version software:description

and early results. In Proceedings of 18th International Symposium on

Fault-Tolerant Computing, pages 9–14, June 1988.

[55] J. P. Kelly and A. Avizienis. A specification-oriented multi-version soft-

ware experiment. In Proceedings of the 13th Annual International Sympo-

sium on Fault-Tolerant Computing (FTCS-13), pages 120–126, Milano,

June 1983.

[56] K. H. Kim. Distributed execution of recovery blocks: an approach to

uniform treatment of hardware and software faults. In Proceedings of the

4th International Conference on Distributed Computing Systems, pages

526–532, 1984.

[57] K. H. Kim. The distributed recovery block scheme. In M. R. Lyu, editor,

Software Fault Tolerance, pages 189–210. Wiley, New York, 1995.

[58] J. C. Knight and N. G. Leveson. An experimental evaluation of the

assumption of independence in multiversion programming. IEEE Trans-

actions on Software Engineering, 12(1):96–109, January 1986.

Bibliography 174

[59] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Definition and

analysis of hardware- and software- fault-tolerant architectures. IEEE

Computer, 23(7):39–51, July 1990.

[60] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Architectural is-

sues in software fault tolerance. In M. R. Lyu, editor, Software Fault

Tolerance, pages 47–80. Wiley, New York, 1995.

[61] J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, and C. Hourtolle. Hard-

ware and software fault tolerance: definition and analysis of architectural

solutions. In Proceedings of the 17th International Symposium on Fault-

Tolerant Computing (FTCS-17), pages 116–121, Pittsburgh, PA, 1987.

[62] J. C. Laprie and K. Kanoun. Software reliability and system reliability.

In M. R. Lyu, editor, Handbook of Software Reliaiblity Engineering, pages

27–69. McGraw-Hills, New York, 1996.

[63] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice.

Springer-Verlag, New York, 1990.

[64] B. Littlewood and D. Miller. Conceptual modeling of coincident failures

in multiversion software. IEEE Transactions on Software Engineering,

15(12):1596–1614, December 1989.

[65] B. Littlewood, P. Popov, and L. Strigini. Design diversity: an update

from research on reliability modelling. In Proceedings of Safety-Critical

Systems Symposium 21, Bristol, U.K., 2001.

Bibliography 175

[66] B. Littlewood, P. Popov, and L. Strigini. Modelling software design

diversity - a review. ACM Computing Surveys, 33(2):177–208, June 2001.

[67] B. Littlewood, P. Popov, L. Strigini, and N. Shryane. Modelling the

effects of combining diverse software and fault removal techniques. IEEE

Transactions on Software Engineering, 26(12):1157–1167, 2000.

[68] M. R. Lyu. A Design Paradigm for Multi-Version Software. PhD thesis,

UCLA, Los Angeles, May 1988.

[69] M. R. Lyu. Software Fault Tolerance. Wiley, New York, 1995.

[70] M. R. Lyu, editor. Handbook of Software Reliability Engineering.

McGraw-Hill, New York, 1996.

[71] M. R. Lyu and Y. He. Improving the n-version programming process

through the evolution of a design paradigm. IEEE Transactions on Re-

liability, 42(2):179–189, June 1993.

[72] M. R. Lyu, J. R. Horgan, and S. London. A coverage analysis tool for

the effectiveness of software testing. In Proceedings of ISSRE’93, pages

25–34, Denver, November 1993.

[73] M. R. Lyu, J. R. Horgan, and S. London. A coverage analysis tool for

the effectiveness of software testing. IEEE Transactions on Reliability,

43(4):527–535, December 1994.

Bibliography 176

[74] M. R. Lyu, Z. Huang, K. S. Sze, and X. Cai. An empirical study on test-

ing and fault tolerance for software reliability engineering. In Proceedings

14th IEEE International Symposium on Software Reliability Engineering

(ISSRE’2003), pages 119–130, Denver, Colorado, November 2003.

[75] R. Maier, G. Bauer, G. Stoger, and S. Poledna. Time-triggered archi-

tecture: a consistent computing platform. IEEE Micro, 22(4):36–45,

July/August 2002.

[76] Y. K. Malaiya, N. Li, J. M. Bieman, and R. Karcich. Software reliability

growth with test coverage. IEEE Transactions on Reliability, 51(4):420–

426, December 2002.

[77] Y. K. Malaiya, L. Naixin, J. Bieman, R. Karcich, and B. Skibbe. The

relationship between test coverage and reliability. In Proceedings of 5th

International Symposium on Software Reliability Engineering, pages 186

–195, November 1994.

[78] S. Morasca and S. Serra-Capizzano. On the analytical comparison of

testing techniques. In Proceedings of International Symposium on Soft-

ware Testing and Analysis (ISSTA 2004), pages 154–164, Massachusetts,

USA, July 2004.

[79] P. G. Neuman. Computer Related Risks. Addison-Wesley, Boston, 1995.

Bibliography 177

[80] V. F. Nicola. Checkpointing and the modeling of program execution

time. In M. R. Lyu, editor, Software Fault Tolerance, pages 167–188.

Wiley, New York, 1995.

[81] S. C. Ntafos. On comparisons of random, partition, and proportional par-

tition testing. IEEE Transactions on Software Engineering, 27(10):949–

960, October 2001.

[82] A. Offutt and S. Lee. An empirical evaluation of weak mutation. IEEE

Transactions on Software Engineering, 20(5):337–344, May 1994.

[83] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An experi-

mental determination of sufficient mutant operators. ACM Transactions

on Software Engineering Methodology, 5(2):99–118, 1996.

[84] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants

and infeasible paths. The Journal of Software Testing, Verification, and

Reliability, 7(3):165–192, September 1997.

[85] P. Popov and L. Strigini. Diversity with off-the-shelf components: a

study with SQL database servers. In Proceedings of the International

Conference on Dependable Systems and Networks (DSN 2003), pages

B84–B85, 2003.

[86] P. T. Popov, L. Strigini, J. May, and S. Kuball. Estimating bounds

on the reliability of diverse systems. IEEE Transactions on Software

Engineering, 29(4):345–359, April 2003.

Bibliography 178

[87] D. K. Pradhan. Fault Tolerant Computer System Design. Prentice Hall,

New Jersey, 1996.

[88] L. L. Pullum. Software Fault Tolerance Techniques and Implementation.

Artech House, Boston, 2001.

[89] B. Randell. System architecture for software fault tolerance. IEEE

Transaction on Software Engineering, 7(6):220–232, June 1975.

[90] B. Randell and J. Xu. The evolution of the recovery block concept. In

M. R. Lyu, editor, Software Fault Tolerance, pages 1–21. Wiley, New

York, 1995.

[91] S. Rapps and E. J. Weyuker. Selecting software test data using data flow

information. IEEE Transactions on Software Engineering, 11(4):367–

375, April 1985.

[92] RCS. http://www.gnu.org/software/rcs/rcs.html/. GNU project - Free

Software Foundation (FSF), 2006.

[93] W. W. Royce. Managing the development of large software sys-

tems:concepts and techniques. In Proceedings of IEEE WESTCON,

pages 1–9, Los Angeles, 1970.

[94] R. K. Scott, J. W. Gault, and D. F. McAllister. Fault tolerant soft-

ware reliability modeling. IEEE Transactions on Software Engineering,

13(5):582–592, 1987.

Bibliography 179

[95] L. Strigini. On testing process control software for reliability assessment:

the effects of correlation between successive failures. Software Testing

Verification and Reliability, 6(1):33–48, January 1996.

[96] S. K. Sze and M. R. Lyu. ATACOBOL: a COBOL test coverage analysis

tool and its applications. In Proceedings of the 11th International Sympo-

sium on Software Reliability Engineering (ISSRE’2000), pages 327–335,

San Jose, California, October 2000.

[97] X. Teng and H. Pham. A software-reliability growth model for n-version

programming systems. IEEE Transactions on Reliability, 51(3):311–321,

September 2002.

[98] L. A. Tomek. Analyses using stochastic reward nets. In M. R. Lyu,

editor, Software Fault Tolerance. Wiley, New York, 1995.

[99] W. Torres-Pomales. Software fault tolerance: a tutorial. Technical Re-

port TM-2000-210616, NASA Langley Research Center, Hampton, Vir-

ginia, Oct. 2000.

[100] P. Townend and J. Xu. Fault tolerance within a grid environment. In

Proceedings of the UK e-Science All Hands Meeting 2003, pages 272–275,

Nottingham, UK, September 2003.

[101] P. Traverse. Dependability of digital computers on board airplanes. In

Proceedings of the 2nd IFIP Working Conference on Dependable Com-

puting for Critical Applications, pages 133–152, Tucson, Arizona, 1991.

Bibliography 180

[102] M. A. Vouk. Using reliability models during teting with nonoperational

profiles. In Proceedings 2nd Bellcore/Purdue Workshop on Issues in Soft-

ware Reliability Estimation, pages 103–111, October 1992.

[103] M. A. Vouk, A. Caglayan, D. E. Eckhardt, J. Kelly, J. Knight, D. McAl-

lister, and L. Walker. Analysis of faults detected in a large-scale multi-

version software development experiment. In Proceedings of Digital

Avionics Systems Conference, pages 378–385, October 1990.

[104] E. Weyuker. The cost of data flow testing: An empirical study. IEEE

Transactions on Software Engineering, 16(2):121–128, February 1990.

[105] E. J. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE

Transactions on Software Engineering, 17:703–711, July 1991.

[106] T. W. Williams, M. R. Mercer, J. P. Mucha, and R. Kapur. Code

coverage: what does it mean in terms of quality? In Proceedings of

the Annual Reliability and maintainability Symposium, pages 420–424,

Philadelphia, PA, USA, January 2001.

[107] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of

test set size and block coverage on the fault detection effectiveness. In

Proceedings of the 5th International Symposium on Software Reliability

Engineering, pages 230–238, Monterey, CA, November 1994.

Bibliography 181

[108] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test set size

minimization and fault detection effectiveness: a case study in a space

application. Journal of Systems and Software, 1999.

[109] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing:

an empirical study. The Journal of Systems and Software, 31(3):185–196,

December 1995.

[110] J. Xu and B. Randell. Software fault tolerance: t/(n-1)-variant program-

ming. IEEE Transactions on Reliability, 46(1):60–68, March 1997.

[111] H. Zhong, L. Zhang, and H. Mei. An experimental comparison of four test

suite reduction techniques. In Proceedings 28th International Conference

on Software Engineering (ICSE’2006), pages 636–640, shanghai, China,

May 2006.

