
Towards Intelligent Reliable
Code Retrieval based on Code

Semantics Learning

GU, Wenchao

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
February 2024



Thesis Assessment Committee

Professor PAN Jialin (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor KING Kuo Chin Irwin (Committee Member)

Professor ZHANG Hongyu (External Examiner)



Abstract of thesis entitled:
Towards Intelligent Reliable Code Retrieval based on Code

Semantics Learning
Submitted by GU, Wenchao
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in February 2024

With the large-scale application of software in various industries,
the demand for software development has snowballed in recent
decades. Code retrieval, which can retrieve the users’ desired
code snippets from the code database according to their natural
language description, can significantly reduce the workload of
software developers. Therefore, code retrieval is an important
research topic. However, the retrieved code snippets may be
vulnerable and cannot be directly used. Vulnerability detection
for the retrieved code snippets is necessary. In this thesis, we
present our exploration of the task of code retrieval and soft-
ware vulnerability detection. Specifically, we aim to address
several common challenges in effective code retrieval, code re-
trieval acceleration, and software vulnerability detection from
the following four parts.

Firstly, we study the problem of code retrieval. Considering
the highly structured characteristic of source code, we propose
a novel neural network model named CRaDLe. CRaDLe cou-
ples both structural and semantic information of code at the
statement level, where the code structures are extracted based

i



on the program dependency graph. The evaluation results show
that CRaDLe can significantly outperform the state-of-the-art
baseline models.

Secondly, we shift to the problem of code retrieval efficiency.
Current deep learning-based approaches need to rank all the
source code snippets in the corpus during searching, which will
incur a large amount of computational cost. To address this
problem, we propose a novel approach named CoSHC. CoSHC
clusters the representation vectors into different categories and
generates binary hash codes for both source code and queries.
During the retrieval, CoSHC will retrieve the different number
of code candidates for the given query in each category. The
evaluation results show that CoSHC can preserve most of the
performance from the original models while significantly reduc-
ing the retrieval time.

Thirdly, we focus on how to improve the code retrieval effi-
ciency further. Although it is very efficient to calculate the Ham-
ming distance, these Hamming distance-based methods have to
scan the whole database, which leads to a considerable expen-
sive computation cost. To address this problem, we propose a
hash table-based code retrieval framework CSSDH that achieves
advanced performance by replacing the Hamming distance cal-
culation with lookup hash tables. Experimental results indicate
that CSSDH can significantly reduce the retrieval time of cur-
rent state-of-the-art deep hashing approaches, retain compara-
ble performance, or even outperform the previous deep hashing
approaches in the recall step.

Fourthly, we shift to the problem of vulnerability detection.
Previous deep learning-based approaches have struggled to achieve
accurate vulnerability localization, as they do not prioritize the

ii



localization problem during training. Automatically predicting
statement-level vulnerabilities in a supervised manner poses dif-
ficulties, as it necessitates labeled data for model learning. To
address this issue, we propose a novel approach named WILDE
for function-level vulnerability detection with statement-level lo-
calization. WILDE can achieve the statement-level vulnerabil-
ity localization without the statement-level labeled data. The
extensive experimental findings showcase that WILDE achieves
comparable performance in detecting vulnerabilities at the func-
tion level compared, and its ability to localize vulnerabilities
surpasses that of the previous models.

iii



論文題目 ：基於代碼語義學習的智慧程式設計
作者 ：顧文超
學校 ：香港中文大學
學系 ：計算機科學與工程學系
修讀學位 ：哲學博士
摘要 ：
隨著軟體在各行業的大規模應用，近幾十年來軟體發展的需求
快速增長。代碼檢索是一種根據使用者的自然語言描述，從代
碼資料庫中檢索出使用者想要的代碼片段的技術，該技術可以
大大減輕軟體發展人員的工作量。因此，代碼檢索是智慧程式
開發中一個非常重要的研究課題。另外，檢索到的代碼片段可
能存在漏洞問題，無法直接使用，需要對檢索到的代碼片段進
行漏洞檢測。在本文中，我們展示了對代碼檢索和軟體漏洞檢
測任務的探索。具體來說，我們旨在從以下五個部分解決有效
代碼檢索、代碼檢索加速和軟體漏洞檢測方面的幾個常見挑
戰。
首先，我們研究代碼檢索問題。考慮到程式碼高度結構化的特
點，以往的研究提出整合代碼的結構資訊，如抽象語法樹和控
制流圖。然而，抽象語法樹和控制流圖在為語義學習提供代碼
結構資訊方面都有其自身的局限性。為了解決這個問題，我們
提出了一種名為 CRaDLe 的新型神經網路模型。CRaDLe 在
語句級別耦合代碼的結構和語義資訊，其中基於程式依賴圖提
取代碼結構。評估結果表明，CRaDLe 可以顯著優於最先進的
基線模型。
其次，我們轉向代碼檢索效率問題。當前基於深度學習的方法

iv



在搜索時需要對語料庫中的所有原始程式碼片段進行排序，這
將產生大量的計算成本。為了解決這個問題，我們提出了一種
名為 CoSHC 的新方法。CoSHC 將表示向量聚類為不同的類
別，並為程式碼和查詢語句生成二進位雜湊碼。在檢索過程
中，CoSHC 將根據 CoSHC 預測的概率，利用雜湊碼檢索每
個類別中給定不同數量的候選代碼。評估結果表明，CoSHC
可以保留原始模型的大部分性能，同時顯著減少檢索時間。
第三，我們關注如何進一步提高代碼檢索效率。雖然計算漢明
距離非常有效，但它必須掃描整個大型資料庫。為了解決這個
問題，我們提出了一種基於雜湊的代碼檢索框架 CSSDH，該
框架通過用查找雜湊表代替漢明距離計算來實現更高效率。實
驗結果表明，CSSDH 可以顯著減少當前最先進的深度雜湊方
法的檢索時間，並在召回步驟中保持可比的性能，甚至優於以
前的深度雜湊方法。
第四，我們轉向漏洞檢測問題。以前基於深度學習的方法很難
實現準確的漏洞定位，因為它們在訓練過程中沒有優先考慮定
位問題。以監督方式自動預測語句級漏洞會帶來困難，因為它
需要標記資料來進行模型學習。為了解決這個問題，我們提出
了一種名為 WILDE 的新方法，用於具有語句級定位的函數級
漏洞檢測。WILDE 無需語句級標記資料即可實現語句級漏洞
定位。大量的實驗結果表明，WILDE 在功能級別的漏洞檢測
方面取得了可比的性能，並且其定位漏洞的能力超越了以前的
模型。

v



Acknowledgement

First and foremost, I would like to express my heartfelt grat-
itude to Prof. Michael R. Lyu, my dedicated supervisor at
CUHK. From selecting my research topic to the meticulous craft
of technical writing, his unwavering guidance and patience have
greatly facilitated my progress in this challenging research en-
deavor. Throughout my Ph.D. studies, I have not only had the
privilege of imbibing a wealth of knowledge from his exemplary
approach but also learned his enthusiastic attitude to doing re-
search.

I extend my sincere appreciation to the members of my thesis
assessment committee, Prof. Sinno Jialin Pan and Prof. Iwrin
King, for their invaluable feedback and constructive suggestions
on both this thesis and all of my term presentations. I am
equally grateful to Prof. Hongyu Zhang from Chongqing Uni-
versity, who graciously served as the external examiner for this
thesis.

I wish to acknowledge Prof. Cuiyun Gao from the Harbin
Institute of Technology (Shenzhen) and Prof. Yanling Wang
from Sun Yat-Sen University. The insightful discussions I have
had with them immensely helped me complete the research in
this thesis.

My gratitude also goes out to my exceptional group mates, in-
cluding Jen-Tse Huang, Yun Peng, Jianping Zhang, Jinyang Liu,

vi



Yintong Huo, Wenxuan Wang, Yichen Li, Shuqing Li, Wenwei
Gu, Yizhan Huang, Jiaoqiao Zhao, Ziyuan Hu, Shuyao Jiang,
Zhihan Jiang, Jinxi Kuang, and Renyi Zhong.

Lastly, but certainly not least, I would like to thank my fam-
ily. Their profound love and unwavering support have been the
driving force behind my pursuit of a doctorate.

vii



To my family.

viii



Contents

Abstract i

Acknowledgement vi

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . 8
1.3 Thesis Organization . . . . . . . . . . . . . . . . 11

2 Background Review 14
2.1 Neural Network Basic . . . . . . . . . . . . . . . 14

2.1.1 Recurrent Neural Networks . . . . . . . . 15
2.1.2 Transformer and Pre-Training . . . . . . . 16

2.2 Code Retrieval . . . . . . . . . . . . . . . . . . . 18
2.2.1 Non Deep Learning Based Approaches . . 18
2.2.2 Deep Learning Based Approaches . . . . . 19

2.3 Hashing . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Hash table-based approaches . . . . . . . 21
2.3.2 Supervised cross-modal hashing approaches 22
2.3.3 Unsupervised cross-modal hashing approaches 22

2.4 Vulnerability Detection . . . . . . . . . . . . . . . 23
2.4.1 Deep Learning-based Vulnerability Detec-

tion . . . . . . . . . . . . . . . . . . . . . 23

ix



2.4.2 Deep Learning-based Statement-Level Vul-
nerability Detection and Localization . . . 25

3 Deep Code Retrieval Based on Semantic Depen-
dency Learning 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 28
3.2 Methodology . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Overview . . . . . . . . . . . . . . . . . . 31
3.2.2 Code Encoder . . . . . . . . . . . . . . . . 31
3.2.3 Description Encoder . . . . . . . . . . . . 37
3.2.4 Similarity Measurement . . . . . . . . . . 38
3.2.5 Model Training . . . . . . . . . . . . . . . 38

3.3 Experimental Setup . . . . . . . . . . . . . . . . 39
3.3.1 Dataset Collection . . . . . . . . . . . . . 39
3.3.2 Performance Measurement . . . . . . . . . 40
3.3.3 Implementation Details . . . . . . . . . . 42
3.3.4 Baseline Models . . . . . . . . . . . . . . 43

3.4 Experimental Results . . . . . . . . . . . . . . . . 45
3.4.1 Main Results . . . . . . . . . . . . . . . . 45
3.4.2 Parameter Analysis . . . . . . . . . . . . . 46
3.4.3 Ablation Study . . . . . . . . . . . . . . . 50
3.4.4 Case Studies . . . . . . . . . . . . . . . . 52
3.4.5 Error Analysis . . . . . . . . . . . . . . . 53

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Dependency Embedding Approach . . . . 55

3.6 Threats to Validity . . . . . . . . . . . . . . . . . 56
3.6.1 Threats to External Validity . . . . . . . . 56
3.6.2 Threats to Internal Validity . . . . . . . . 57

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . 57

x



4 Accelerating Code Retrieval with Deep Hashing
and Code Classification 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 59
4.2 Methodology . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Offline Stage . . . . . . . . . . . . . . . . 62
4.2.2 Online Stage . . . . . . . . . . . . . . . . 68

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Dataset . . . . . . . . . . . . . . . . . . . 69
4.3.2 Experimental Setup . . . . . . . . . . . . 70
4.3.3 Baselines . . . . . . . . . . . . . . . . . . 71
4.3.4 Evaluation Metric . . . . . . . . . . . . . 72

4.4 Experimental Results . . . . . . . . . . . . . . . . 72
4.4.1 RQ1: How much faster is CoSHC than

the original code retrieval models? . . . . 72
4.4.2 RQ2: How does CoSHC affect the accu-

racy of the original models? . . . . . . . 75
4.4.3 RQ3: Can the classification module help

improve performance? . . . . . . . . . . . 77
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Threats to Validity . . . . . . . . . . . . . . . . . 80

4.6.1 Threats to External Validity . . . . . . . . 81
4.6.2 Threats to Internal Validity . . . . . . . . 81

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . 81

5 Accelerating Code Retrieval via Segmented Deep
Hashing 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 84
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Overview . . . . . . . . . . . . . . . . . . 88
5.2.2 Recall and Re-rank with Deep Hashing . . 90

xi



5.2.3 Initial Hashing Projection Training . . . . 91
5.2.4 Iteration Training Strategy . . . . . . . . 92
5.2.5 Hash Alignment . . . . . . . . . . . . . . 98
5.2.6 Inference of Binary Hash Codes . . . . . . 99

5.3 Experimental Settings . . . . . . . . . . . . . . . 99
5.3.1 Datasets . . . . . . . . . . . . . . . . . . . 99
5.3.2 Baselines . . . . . . . . . . . . . . . . . . 100
5.3.3 Metrics . . . . . . . . . . . . . . . . . . . 102
5.3.4 Implementation Details . . . . . . . . . . 103

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . 104
5.4.1 RQ1: What is the Efficiency of CSSDH? . 104
5.4.2 RQ2: What is the Effectiveness of CSSDH?107
5.4.3 RQ3: What is the Effectiveness of Adap-

tive Bits Relaxing? . . . . . . . . . . . . . 111
5.4.4 RQ4: How Many Error Bits Have Been

Fixed? . . . . . . . . . . . . . . . . . . . . 113
5.5 Threats to Validity . . . . . . . . . . . . . . . . . 115

5.5.1 Threats to External Validity . . . . . . . . 115
5.5.2 Threats to Internal Validity . . . . . . . . 116

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . 116

6 Weakly Supverised Vulnerability Detection and
Localization via Multiple Instance Learning 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 118
6.2 Methodology . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Overview . . . . . . . . . . . . . . . . . . 122
6.2.2 Code Encoding . . . . . . . . . . . . . . . 123
6.2.3 The Design of Code Encoder . . . . . . . 124
6.2.4 Multiple Instance Learning-Based Train-

ing Strategy . . . . . . . . . . . . . . . . . 130

xii



6.2.5 Model Inference . . . . . . . . . . . . . . . 133
6.3 Experimental Setup . . . . . . . . . . . . . . . . . 134

6.3.1 Data Pre-processing . . . . . . . . . . . . 134
6.3.2 Implementation Details . . . . . . . . . . 136
6.3.3 Baselines . . . . . . . . . . . . . . . . . . 137
6.3.4 Evaluation Metrics . . . . . . . . . . . . . 139

6.4 Experimental Results . . . . . . . . . . . . . . . . 142
6.4.1 Comparison on function-level vulnerabil-

ity detection and statement-level vulner-
ability localization . . . . . . . . . . . . . 142

6.4.2 Impact of the top-k statement selection
on the performance of WILDE . . . . . . 146

6.4.3 Impact of different channels on the per-
formance of WILDE . . . . . . . . . . . . 149

6.4.4 The influence of the training data size to
the performance of WILDE . . . . . . . . 152

6.4.5 The detection ability of WILDE for dif-
ferent types of CWE vulnerabilities . . . . 155

6.5 Threats to Validity . . . . . . . . . . . . . . . . . 157
6.5.1 Threats to External Validity . . . . . . . . 157
6.5.2 Threats to Internal Validity . . . . . . . . 157

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . 158

7 Conclusion and Future Work 160
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . 160
7.2 Future Directions . . . . . . . . . . . . . . . . . . 162

7.2.1 Repository-Level Code Generation with
Large Language Model . . . . . . . . . . . 162

7.2.2 Reliable Code Generation with Large Lan-
guage Model . . . . . . . . . . . . . . . . 163

xiii



7.2.3 Vulnerability Detection with Static Anal-
ysis and Large Language Model . . . . . . 164

8 Publications during Ph.D. Study 166

Bibliography 168

xiv



List of Figures

1.1 An illustration of code retrieval . . . . . . . . . . 2
1.2 The roadmap of this thesis. . . . . . . . . . . . . 7
1.3 The organization of this thesis. . . . . . . . . . . 11

2.1 Illustration of RNN. . . . . . . . . . . . . . . . . 15
2.2 Illustration of Transformer. . . . . . . . . . . . . 17

3.1 Overview of the proposed CRaDLe. . . . . . . . . 32
3.2 Overall framework of the proposed CRaDLe. . . . 32
3.3 Workflow for extracting PDG of the code snippet. 37
3.4 Parameter sensitivity study for CodeSearchNet. . 49
3.5 Parameter sensitivity study for Code2Seq. . . . . 50

4.1 Overview of the proposed CoSHC. . . . . . . . . 63
4.2 Architecture of the hashing module. . . . . . . . . 65

5.1 Illustration of recall and re-rank mechanism with
previous deep hashing approaches. . . . . . . . . 88

5.2 Illustration of recall and re-rank mechanism with
the combination of deep hashing approaches and
CSSDH. . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Overall framework of CSSDH. . . . . . . . . . . . 90
5.4 Steps in the iteration training strategy. . . . . . . 93

6.1 An overview architecture of WILDE. . . . . . . . 123

xv



List of Tables

3.1 Statistics of the number of statements in Code-
SearchNet dataset. . . . . . . . . . . . . . . . . . 41

3.2 Statistics of the number of statements in Code2Seq
dataset. . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Statistics of the CodeSearchNet dataset. . . . . . 42
3.4 Statistics of the Code2seq dataset. . . . . . . . . 43
3.5 Comparison results with baseline models on the

CodeSearchNet dataset. . . . . . . . . . . . . . . 47
3.6 Comparison results with baseline models on the

Code2seq dataset. . . . . . . . . . . . . . . . . . . 48
3.7 Ablation study on the CodeSearchNet dataset. . . 51
3.8 Ablation study on the Code2seq dataset. . . . . . 51
3.9 Comparison results with our original models. . . . 56

4.1 Time Efficiency of CoSHC. . . . . . . . . . . . . . 73
4.2 Results of code retrieval performance comparison. 74
4.3 Classification accuracy of the code classification

module in each model. . . . . . . . . . . . . . . . 77

5.1 Dataset statistics. . . . . . . . . . . . . . . . . . . 100
5.2 Results of time efficiency comparison on the re-

call step of different deep hashing approaches with
different code retrieval models. . . . . . . . . . . 105

xvi



5.3 Results of overall performance comparison of dif-
ferent deep hashing approaches with different code
retrieval models. . . . . . . . . . . . . . . . . . . 108

5.4 The comparisons among the six CSSDH variants
with the baseline of CodeBERT. . . . . . . . . . . 110

5.5 The repair ratio of adaptive bits relaxing in both
code hashing model and query hashing model. . . 113

5.6 Average hash bits that both code and query hash-
ing models predicted as unknown in single hash
code segment. . . . . . . . . . . . . . . . . . . . . 114

6.1 Statistics of dataset. . . . . . . . . . . . . . . . . 134
6.2 Comparison results on function-level vulnerability. 143
6.3 Comparison results on function-level vulnerabil-

ity and statement-level vulnerability localization. 144
6.4 Results of the function-level vulnerability detec-

tion performance comparison with different Top-
K selection. . . . . . . . . . . . . . . . . . . . . . 147

6.5 Results of the statement-level vulnerability lo-
calization performance comparison with different
Top-K selection. . . . . . . . . . . . . . . . . . . . 148

6.6 Results of the function-level vulnerability detec-
tion performance comparison with different chan-
nels. . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7 Results of the statement-level vulnerability lo-
calization performance comparison with different
channels. . . . . . . . . . . . . . . . . . . . . . . . 151

6.8 Comparison results on function-level vulnerabil-
ity detection and statement-level vulnerability lo-
calization with different sizes of training data. . . 153

xvii



6.9 Detection results for different CWE vulnerabili-
ties with our proposed WILDE. . . . . . . . . . . 156

xviii



Chapter 1

Introduction

1.1 Overview

In an increasingly information-driven and digital world, software
plays an increasingly important role in current human produc-
tion and economic activities. The current global software mar-
ket size is around 583.47 billion U.S. dollars in 2022, and the
compound annual growth rate of this market from 2023 to 2030
is expected to be 11.5%1. The market’s demand for software
developers is also expected to increase rapidly. According to
the U.S. Bureau of Labor Statistics, the demand for software
developers will be expected to increase by 25% from 2021 to
2031, which is 20% higher than the average growth of all oc-
cupations2. As the market demand for programmers increases
day by day, the cost of hiring programmers is also rising. For
instance, the median hourly wage of software developers in the
U.S. is 61.18 dollars, 2.75 times the median salary for all oc-
cupations3. To reduce the workload of software engineers and

1https://www.grandviewresearch.com/industry-analysis/software-market-report
2https://www.bls.gov/ooh/computer-and-information-technology/software-

developers.htm
3https://www.bls.gov/oes/current/oes_nat.htm

1



CHAPTER 1. INTRODUCTION 2

 public synchronized static String getStackTrace(Exception e) {
      e.fillInStackTrace();
      StringBuffer buffer = new StringBuffer();
      buffer.append(e.getMessage() + "-");
      for (StackTraceElement el: e.getStackTrace()) {
          buffer.append(el.toString() + "-");
      }
      return buffer.toString();
 }

How to convert a string trace to a string in Java?

Figure 1.1: An illustration of code retrieval

shorten the software development cycle, the research of code re-
trieval has attracted attention from academia and industry over
the past few decades.

Code retrieval is the technology that can return the desired
code snippet to users according to their natural language de-
scription of the code functionality. The formal definition of
code retrieval is shown as below:
Definition 1 (Code Retrieval) Suppose we are given a set of
code snippet C = {ci}Ni=1, and a set of natural language queries
Q = {qi}Ni=1, where N is the number of pairs, ci is the i-th
code snippet and qi is its corresponding natural language query.
Our goal is to train a model p(s|c, q; Θ) to measure the degree
of alignment when the code snippet and query are given. Here,
Θ represents the parameters of the model, c denotes the given
code snippet, q denotes the given query, and s represents the
score utilized to describe the degree of alignment between the
code snippet and query. The alignment score of a given query



CHAPTER 1. INTRODUCTION 3

with every code snippet in the set C will be calculated and the
code candidates will be returned to users in descending order of
the alignment score.

Figure 1.1 shows an example of code retrieval. The user in-
puts the query “How to convert a string trace to a string in
Java?” into the code retrieval engine, and the corresponding
code snippet is returned to the user. Code retrieval technology
has the following advantages for software developers. Firstly, it
can shorten the software development cycle. Software engineers
can directly retrieve the existing code snippet according to their
requirements so that programming from scratch can be avoided.
Secondly, it can reduce the difficulty of software development for
software engineers. Some code functionality or algorithms are
hard to achieve and require high professional skill from the soft-
ware engineers. By adopting code retrieval technology, software
engineers only need to inspect if the retrieved code snippets work
correctly in their projects, which lowers the threshold for soft-
ware development. Most current software engineers will utilize
the Internet, including Stack Overflow4 and GitHub5 to search
the relevant code during the software development. Thirdly,
code retrieval technology can help software developers improve
the code reuse rate in their projects. Software engineers can
check whether their desired function has already been achieved
in their project so that duplicate implementations of the same
functionality can be avoided, which ensures the simplicity of the
software structure.

1 pub l i c s t a t i c < S > S d e s e r i a l i z e ( Class c , F i l e xml )
{

4https://www.stackoverflow.com/
5https://www.github.com/



CHAPTER 1. INTRODUCTION 4

2 t ry {
3 JAXBContext context = JAXBContext . newInstance ( c ) ;
4 Unmarshal ler unmarsha l l er = context .

c reateUnmarsha l l e r ( ) ;
5 S d e s e r i a l i z e d = (S) unmarsha l l er . unmarshal ( xml ) ;
6 re turn d e s e r i a l i z e d ;
7 } catch ( JAXBException ex ) {
8 l og . e r r o r ( ” Error−d e s e r i a l i z i n g −object −from−XML” , ex )

;
9 re turn n u l l ;

10 }
11 }

Code Listing 1.1: Implementation for “read an object from an xml”.

However, the semantic gap between the programming lan-
guage and natural language hinders the performance of code
retrieval technology. Conventional approaches [78, 79] have a
limited ability to understand the semantic information inside
the source code. For instance, Listing 1.1 is the implementation
of the query “read an object from an xml”. The only keyword
overlapping between the code snippet and query is “xml” so that
simple approaches like keyword matching will not work well in
this case. How to effectively extract the semantic information
between programming language and natural language becomes
the critical point for code retrieval. Although deep learning-
based code retrieval can perform better than conventional ap-
proaches, the performance is still unsatisfactory. One reason is
that the structural information hidden inside the source code is
not fully utilized during the training.

Meanwhile, the efficiency of code retrieval also needs to be
improved. With the development of the open source commu-
nity, the number of repositories and volume of code retrieval
has snowballed in the past time. For instance, GitHub has over



CHAPTER 1. INTRODUCTION 5

100 million developers and 28 million public repositories in 2023.
The acceleration of code retrieval with guaranteed accuracy is
becoming increasingly important as the number of codes and
visits increases. However, there are still few relevant studies on
this efficiency problem.

Although the retrieved code snippets can greatly reduce the
time of programming, there exists a security problem if we di-
rectly use it. The definition of software vulnerabilities including
security defects [97], security bugs [109], and software weak-
nesses [62] is “software bugs that have security implication” [93].
The retrieved code snippets may contain software vulnerabili-
ties, and hackers can exploit potential vulnerabilities in software
to attack the software, causing huge economic losses to software
users. With the rapid penetration of software in various in-
dustries, the economic losses caused are also increasing rapidly
year by year. Cybercrime losses due to software vulnerabilities
increased by 64% from 2020 to 2021 and further increased by
42% from 2021 to 20226. To avoid involving vulnerabilities into
the software, an automated software vulnerability detection tool
should be employed for the retrieved code snippets. There are
many automated software vulnerability detection approaches for
software inspection. The conventional approaches for vulnera-
bility detection can be classified into three categories which are
static approaches, dynamic approaches, and hybrid approaches.
Static approaches including symbolic execution [4, 11, 90], tem-
plate matching [18,29,118], and code similarity detection [53,56],
often face the problem of high false positives. Dynamic ap-
proaches such as fuzz testing [85,103] and taint analysis [81,87]

6https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-
us.html



CHAPTER 1. INTRODUCTION 6

will meet the problem of low code coverage. Hybrid approaches
that combine static approaches and dynamic approaches are not
efficient enough, so it is impractical to apply them in real sce-
narios. Machine learning-based approaches achieve better per-
formance via learning the latent code patterns. However, these
machine learning approaches still need experts to define the fea-
tures of a software vulnerability, which requires professional do-
main knowledge from experts, and the cost of such a process is
very high [54, 69, 120]. Therefore, the approaches that can au-
tomatically learn the code semantics from the software without
human handcrafted features have become a research hotspot in
the task of vulnerability detection. Here, we define the task of
software vulnerability detection task as follows:
Definition 2 (Vulnerability Detection) Suppose we are given
a set of code snippets C = {ci}Ni=1, where N is the number of
pairs, and ci is the i-th code snippet. Our goal is to train a
model p(d|c; Θ) to detect whether the given code snippet has a
vulnerability problem. Here, Θ represents the parameters of the
model, c denotes the given code snippet, and d represents the
results of vulnerability detection.

To better illustrate the structure of our thesis, we show the
roadmap of our thesis in Figure 1.2. Our thesis targets intel-
ligent reliable code retrieval, which can provide reliable code
snippets to the software developers according to their descrip-
tion of the code functionality. The research of this thesis com-
prises three parts. In the first part, we focus on the effective
code semantic learning approach by involving code syntax in-
formation for code retrieval. Specifically, we propose to extract
both syntax and semantic information from the source code for
better code representation learning. In the second part, we focus



CHAPTER 1. INTRODUCTION 7

Query

Effective Code 
Retrieval

Code Retrieval 
Acceleration Retrieved Code 

Snippets

Vulnerability 
Detection

Reliable Code 
Snippets

1

2

3

Programmer

Figure 1.2: The roadmap of this thesis.

on the acceleration of code retrieval. In particular, we propose
learning-based hash approaches to assist current learning-based
code retrieval approaches with less performance degradation. In
the third part, we focus on the software vulnerability detection
task. Specifically, we propose a weakly supervised code semantic
learning-based approach that can automatically learn the poten-
tial vulnerability patterns and localize the vulnerable statements
without human labeling.

There for two reasons we detect the vulnerability for the re-
trieved code snippets rather than detect every code snippet in-
side the coda database in advance. At first, there are huge
amounts of code snippets stored inside the code database and
only a very small part will be retrieved by users. The code snip-
pets are often updated frequently. Any update of the code snip-
pets will lead to the re-detection. Therefore, it is unnecessary to
detect all of them before the retrieval. Secondly, there are newly
discovered software vulnerabilities every year and the detection



CHAPTER 1. INTRODUCTION 8

tools also need to be updated. Once the tools are updated, the
re-detection of the code is needed. From the consideration of
the detection efficiency, we choose such a process. Besides, such
a code retrieval system will mark the code snippets which have
already been detected. Unless the code snippet or the detection
tools have been updated, the vulnerability detection process will
be skipped when the marked code snippets have been retrieved
again by the users.

1.2 Thesis Contributions

In this thesis, we make contributions to intelligent program de-
velopment in the following ways:
• Deep Code Retrieval Based on Semantic Dependency

Learning
Previous research proposes to integrate the structural infor-
mation of code, such as Abstract Syntax Tree (AST) and
Control Flow Graph (CFG), for representing code semantics.
However, the deep nature of the extracted trees in ASTs ren-
ders it hard for deep learning models to capture the struc-
tural information comprehensively. CFG may contain state-
ment orders that do not contribute to the actual execution
result and may lead to biased code representation learning.
To address this issue, in this thesis, we propose a novel code
retrieval model for Code Retrieval based on statement-level
semantic Dependency Learning (CRaDLe) to encode both
source code and natural language queries into unified vector
representations. CRaDLe is the first code retrieval approach
that integrates the dependency and semantics information at
the statement level for learning code representations. The re-



CHAPTER 1. INTRODUCTION 9

sults demonstrate the superior performance of CRaDLe over
the state-of-the-art baseline models.

• Accelerating Code Retrieval with Deep Hashing and
Code Classification
Current deep learning-based methods of code retrieval have
shown promising results. However, previous methods focused
on retrieval accuracy but lacked attention to the efficiency of
the retrieval process. Hashing is a promising approach to
improve retrieval efficiency. The performance degradation
is still not avoidable during the conversion from representa-
tion vectors to binary hash codes, even when state-of-the-art
hashing models are adopted. To preserve the performance
of the original code retrieval models that adopt bi-encoders
for the code-query encoding as much as possible, we propose
a novel method for accelerating semantic Code Search with
Deep Hashing and Code Classification (CoSHC). CoSHC, in
this thesis. CoSHC is the first approach that adopts the recall
and re-rank mechanism with the integration of code cluster-
ing and deep hashing to improve the retrieval efficiency of
deep learning-based code search models. The results demon-
strate that CoSHC can greatly improve retrieval efficiency
while preserving almost the same performance as the base-
line models.

• Accelerating Code Retrieval via Segmented Deep Hash-
ing
Although it is very efficient for previous deep hashing-based
code retrieval approaches to calculate the Hamming distance,
these Hamming distance-based have to scan the whole large
database. To further improve the efficiency of deep hashing,



CHAPTER 1. INTRODUCTION 10

we propose a novel approach to accelerate Code Search via
Segmented Deep Hashing (CSSDH). CSSDH firstly adopts
hard matching objective optimization with adaptive bits re-
laxing to address the mismatch problem between the hash
codes from different modalities. Then, CSSDH adopts the dy-
namic matching objective adjustment strategy, which allows
the CSSDH to dynamically adjust the ground-truth label of
the matching target to reduce the false positive hash collision
condition. The comprehensive experiments on benchmarks
demonstrate that CSSDH greatly reduces recall computa-
tional complexity while keeping the advanced performances
of previous deep hashing approaches.

• Weakly Supverised Vulnerability Detection and Lo-
calization via Multiple Instance Learning
Training the model for vulnerability localization usually re-
quires ground-truth labels at the statement level, and labeling
vulnerable statements demands expert knowledge, which in-
curs high costs. To tackle this problem, in this thesis, we pro-
pose a novel approach for Weakly supervIsed vuLnerability
Detection lEarning (WILDE) to predict whether a given code
snippet is vulnerable or not and meanwhile offer vulnera-
bility localization ability. WILDE is the first approach to
adopt multiple instance learning for detecting function-level
vulnerabilities and localizing vulnerabilities at the statement
level, all without requiring additional vulnerability labeling
at the statement level. We integrate various pooling modules
capable of capturing code features specific to vulnerabilities
and validate the effectiveness of each pooling module on the
overall performance. Moreover, we have performed compre-



CHAPTER 1. INTRODUCTION 11

Effective Code 
Retrieval

Code Retrieval 
Acceleration

Code Retrieval

Software Vulnerability 
Detection

Reliable Code 
Retrieval

CRaDLe
(Chapter 3)

CoSHC
(Chapter 4)

CSSDH
(Chapter 5)

WILDE
(Chapter 6)

Figure 1.3: The organization of this thesis.

hensive experiments on public benchmarks, and the results
indicate that WILDE achieves comparable performance in
function-level vulnerability detection and outperforms previ-
ous models in statement-level vulnerability localization, show-
casing state-of-the-art performance.

1.3 Thesis Organization

Figure 1.3 shows an overview of this thesis. The remainder of
this thesis is organized as follows.
• Chapter 2

In this chapter, we provide a systematic review of the back-
ground knowledge and related works about intelligent pro-
gram development. Specifically, we first introduce the knowl-
edge of the deep learning approaches utilized in this thesis.
Then, we review the related works of code retrieval, which
can be classified into non-deep learning-based approaches and
deep learning-based approaches. After that, the background
knowledge of hashing, which is adopted for the code retrieval
acceleration, is reviewed. Finally, we review the related works



CHAPTER 1. INTRODUCTION 12

of software vulnerability detection, including function-level
vulnerability detection and statement-level vulnerability lo-
calization.

• Chapter 3
In this chapter, we propose a novel approach named CRaDLe
for the code retrieval task. Section § 3.1 introduces the cur-
rent challenge in the code retrieval task and the motivation of
our approaches. Section § 3.2 gives a general overview of our
approaches, which contains the design of the encoder for both
modality of code and description and the fusion mechanism
for dependency and semantic information. Section § 3.3 de-
scribes the dataset, evaluation metrics, and implementation
detail for our approach and baselines. In Section § 3.4, we
explain the experiment results and analyze the successful and
failed cases in our approach. Section § 3.5 discusses the effect
of different dependency information embedding ways on the
overall performance. Section § 3.7 concludes this chapter.

• Chapter 4
In this chapter, we propose a novel approach named CoSHC
for the task of code retrieval acceleration. Section § 4.1
presents the current efficiency problem of code retrieval and
our motivation. Then we introduce our proposed approach
CoSHC in Section § 4.2. Section § 4.3 describes the datasets,
evaluation metrics, and baseline models. Section § 4.4 dis-
cusses the experiment results, and Section § 4.7 concludes
this chapter.

• Chapter 5
To further improve the code retrieval efficiency, we propose
a novel deep hashing lookup table-based approach named



CHAPTER 1. INTRODUCTION 13

CSSDH. We present the defect of previous deep hashing ap-
proaches and the motivation of our proposed approach in
Section § 5.1. Section § 5.2 presents the overview of our pro-
posed approach, and Section § 5.3 introduces the datasets,
evaluation metrics, and implementation detail. Section § 5.4
explains the experiment results, and we conclude the chapter
in Section § 5.6.

• Chapter 6
We propose a novel approach named WILDE for function-
level vulnerability detection with statement-level localization.
In Section § 6.1, we introduce the task of vulnerability de-
tection and our motivation. Section § 6.2 elaborates the
overview of our proposed approach. Section § 6.3 explains
our experiment settings and implementation details of our
approach and baselines. Section § 6.4 analyze the experi-
ment results, and we make a conclusion for this chapter in
Section § 6.6.

• Chapter 7
In this chapter, we first summarize this thesis in Section § 7.1.
Then, in Section § 7.2, we discuss some potential future direc-
tions for intelligent program development, including repository-
level code generation with large language models, reliable
code generation with large language models, and vulnerabil-
ity detection with static analysis and large language models.

□ End of chapter.



Chapter 2

Background Review

This chapter reviews some background knowledge for our pro-
posed work and related works in the research direction we fo-
cused on. Firstly, we introduce the basic knowledge of neural
networks we adopted in our thesis. Secondly, we review the
related works of code retrieval, which can be classified into non-
deep and deep learning-based approaches. Thirdly, we intro-
duce the related works of hashing techniques, which are adapted
to accelerate the code retrieval approaches. Finally, we review
the related research of vulnerability detection, including both
function-level vulnerability detection methods and statement-
level vulnerability localization methods.

2.1 Neural Network Basic

As deep learning shows its great power in computer vision and
natural language processing, researchers in more and more fields,
including software engineering, have started integrating deep
learning techniques with their research. The deep learning-based
approaches made a significant breakthrough and achieved state-
of-the-art performance in many tasks in software engineering.

14



CHAPTER 2. BACKGROUND REVIEW 15

Figure 2.1: Illustration of RNN [21].

In this section, we first review the background knowledge of se-
quence encoders, including Recurrent Neural Networks (RNNs)
and Transformer. Then, we review the pre-training techniques
with Transformer architecture, which adopts the self-supervised
training manner and can significantly improve the model’s per-
formance on the downstream tasks.

2.1.1 Recurrent Neural Networks

Recurrent neural network (RNN) is one of the popular sequential
models that can encode sequential data into high-level represen-
tation vectors. Figure 2.1 is the illustration of RNN. The output
of one RNN unit relies on the current input and the output of
the last RNN unit. This feature makes RNN widely adopted
in tasks with sequential inputs in software engineering, such
as code retrieval, code summarization generation, commit mes-
sage generation, etc. However, standard RNN suffers from the
problem of long-term dependency learning. To address this is-
sue, Long Short-Term Memory Network (LSTM) [48] and Gated
Recurrent Unit (GRU) [19] were subsequently proposed. Since
LSTM is adopted in the methods in this thesis, we will intro-
duce LSTM in detail. Formally, an LSTM unit consist of a
forget gate f ∈ Rdh, an input gate i ∈ Rdh, a cell state c ∈ Rdh,



CHAPTER 2. BACKGROUND REVIEW 16

and an output state o ∈ Rdh, dh is the dimension of the hidden
state. The function of the forget gate is to decide what infor-
mation to discard from the cell state. The input gate decides
what information will be updated in the cell state. The output
gate decides what information needs to be passed to the hidden
state. The detailed formulations are shown below:

ft = σ(Vf · xt +Wf · ht−1), (2.1)

it = σ(Vi · xt +Wi · ht−1), (2.2)

c̃t = tanh(Vc · xt +Wc · ht−1), (2.3)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (2.4)

ot = σ(Vo · xt +Wi · ht−1), (2.5)

ht = ot · tanh(ct) (2.6)

Since the bi-directional RNN [22] can get the contextual in-
formation during the encoding, it can generate more effective
representation vectors, and its application is more widely used
than RNN.

2.1.2 Transformer and Pre-Training

Transformer [105] is another sequential model that can be uti-
lized for representation learning. Figure 2.2 is the illustration
of Transformer. The vanilla Transformer model contains an en-
coder and a decoder. Both of them are composed of L layers
of Transformer blocks. Each Transformer block includes two
sublayers: multi-head self-attention pooling and a position-wise
feed-forward network. The multi-head self-attention layer cal-
culates the dot-product attention as follows:



CHAPTER 2. BACKGROUND REVIEW 17

Figure 2.2: Illustration of Transformer [105].

Attention(q,K, V ) = softmax(q, k√
d
)V, (2.7)

where d denotes the dimension of vectors, q denotes the query,
K denotes keys and V denotes values. Each attention head is
expected to learn different semantic information from the input
sentence. The attention vectors from all attention heads will
be concatenated into a single vector and fed into the position-
wise feed-forward network. Since Transformer has no assump-
tion on the order of the input sequence during the self-attention
operation, Transformer can effectively capture long-term depen-
dencies in the input sequence. It has been demonstrated that
Transformer can outperform all RNN-based models in many
tasks. What’s more, the pre-training technique greatly improves
the performance of Transformer. Transformer can utilize huge



CHAPTER 2. BACKGROUND REVIEW 18

amounts of data via training in a self-supervised manner. Many
researchers have proposed code-based pre-training models, in-
cluding CodeBERT [33] and GraphCodeBERT [43]. These pre-
training models only need to be finetuned with a small-scale
dataset and achieve state-of-the-art performance in many tasks
such as code summarization generation and commit message
generation.

2.2 Code Retrieval

Code retrieval is a common practice for programmers to reuse
existing code snippets in open-source repositories. Given a user
query (i.e., a natural language description), code retrieval aims
at searching for the most relevant ones from a set of code snip-
pets. By adopting code retrieval approaches, the cost of software
development for programmers can be significantly reduced. This
section divides the current code retrieval approaches into two
categories: non-deep learning-based and deep learning-based ap-
proaches.

2.2.1 Non Deep Learning Based Approaches

Prior works have explored several methods to find the implicit
connections between human language queries and code databases.
Early studies mainly concentrate on extracting valuable fea-
tures from both codes and queries. For example, the work
[98] extracts scattered verbs from queries and applies an action-
oriented identifier graph model to inspect the result graph, which
helps to optimize the queries. Lu et al. [76] reformulate and
extract natural language phrases from source code identifiers
since the synonyms in source codes and NL queries may signif-



CHAPTER 2. BACKGROUND REVIEW 19

icantly affect the code search result. The work [79] proposes
Portfolio which uses random surfer to model the navigation be-
havior of programmers. Then, with an association model based
on Spreading Activation Network [23], functional relevant func-
tions can be set in the same list. Ponzanelli et al. [86] propose to
retrieve pertinent discussions from Stack Overflow when given
a context in the IDE, which saves developers’ time spent on
formulating more standardized queries.

2.2.2 Deep Learning Based Approaches

NCS [94] firstly adopts FastText [7] to embed both queries and
source code into representation vectors and retrieves the target
code by calculating the cosine similarity between the represen-
tation vectors of source codes and queries. UNIF [12] adopts the
bag-of-words model to embed code snippets and queries into a
shared embedding space. CODEnn [41] considers the features of
API sequences, method name tokens, and code tokens and fuses
these features in the final representation of the code snippets.
CoaCor [125] regards code annotation and code search as dual
tasks and adopts the reinforcement learning model to improve
code search performance with the generated code annotations.
Husain et al. [51] validate the effectiveness of different neural
architectures for source code representation on the task of code
retrieval and discover that the self-attention model performs the
best among all the models. To capture the local structural in-
formation, Liu et al. [74] propose GraphSearchNet to construct
graphs and jointly learn the high-level semantics between code
and queries. Zeng et al. [129] propose a novel approach named
deGraphCS, which can model code semantics more precisely by
transferring the code into variable-based flow. CodeBERT [33]



CHAPTER 2. BACKGROUND REVIEW 20

is a bimodal pre-trained model for programming language and
natural language, and its effectiveness on downstream tasks, in-
cluding code retrieval, has also been demonstrated. GraphCode-
BERT [43] is another pre-trained model similar to the Code-
BERT but considers the program’s data flow during the pre-
training. CodeT5 [116] is a unified pre-trained encoder-decoder
Transformer model that is trained with the identifier-aware pre-
training task, and these tasks can help CodeT5 to distinguish
the code tokens belonging to identifiers and recover the masked
identifiers. Similarly, SPT-Code [83] is a sequence-to-sequence
pre-trained model with three pre-training tasks. With these pre-
training tasks, SPT-code can learn knowledge of source code,
the corresponding code structure, and a natural language de-
scription of the code without relying on any bilingual corpus.
SyncoBERT [114] is another pre-trained model with identifier
prediction and AST edge prediction objectives. To address the
problem that the encoder-decoder framework is sub-optimal for
auto-regressive tasks, UniXcoder [42] is a unified cross-modal
pre-trained model that utilizes mask attention matrices with
prefix adapters to control the behavior of the model. Bui et
al. [10] propose a self-supervised contrastive learning framework
named Corder, which can distinguish similar and dissimilar code
snippets via a contrastive learning objective during training. Shi
et al. propose a soft data augmentation approach that dynam-
ically masks tokens to generate positive source code examples
for contrastive learning. Shi et al. [99] propose a soft data aug-
mentation approach that dynamically masks tokens to generate
positive source code examples for contrastive learning. To cap-
ture the local structural information, Liu et al. propose Graph-
SearchNet to construct graphs and jointly learn the high-level



CHAPTER 2. BACKGROUND REVIEW 21

semantics between code and queries.

2.3 Hashing

Hashing is a promising approach to improve retrieval efficiency
and is widely adopted in many retrieval tasks. The hashing tech-
nique can convert high-dimensional vectors into low-dimensional
binary hash code, significantly reducing storage and calcula-
tion costs. In this section, we briefly introduce some repre-
sentative hash table-based hashing approaches and Hamming
distance-based cross-modal hashing approaches, which can be
classified into supervised and unsupervised cross-modal hashing
approaches.

2.3.1 Hash table-based approaches

Locality Sensitive Hashing (LSH) [25] is one of the most popular
approaches for recalling data in high-dimensional space. LSH
maps high dimensional data to hash value by using random hash
functions. Once the data is converted to the hash value, LSH
can build the lookup hash tables for the data recall. There
are several variants of LSH [5, 36, 50]. Most of them need to
build many lookup hash tables to guarantee the recall rate of
data. Semantic Hashing [95] is a learning-based approach and
can also construct the lookup hash table for the data recall.
By Compressing the data point within the Hamming distance
threshold into the same hash bucket, Semantic Hashing does not
need to construct many hash tables to guarantee the recall ratio.
However, the storage cost will dramatically increase since many
duplicated data are inside the hash table. In addition, most of



CHAPTER 2. BACKGROUND REVIEW 22

the above approaches are single-modal and do not consider the
cross-modal problem.

2.3.2 Supervised cross-modal hashing approaches

Bronstein et al. [9] consider the embedding of the input data
from two arbitrary spaces into the Hamming space as a binary
classification problem with positive and negative examples and
adopt boosting algorithms to learn the mapping. SCM [130]
is proposed to reduce the training time complexity of most ex-
isting SMH methods by seamlessly integrating semantic labels
into the hashing learning procedure for large-scale data mod-
eling. SePH [71] converts semantic affinities of training data
into a probability distribution and approximates it with to-
be-learned hash codes via minimizing the Kullback-Leibler di-
vergence. MCSCH [126] sequentially generates the hash code
guided by different scale features through an RNN model with
the scale information to reduce the error caused by the extreme
situation in specific features.

2.3.3 Unsupervised cross-modal hashing approaches

CMFH [26] learns unified hash codes by collective matrix factor-
ization with latent factor model from different modalities of one
instance. UDCMH [119] incorporates Laplacian constraints into
the objective function to preserve not only the nearest neighbors
but also the farthest neighbors of data. DJSRH [101] proposes
to train the hashing model with a joint-semantics affinity matrix
that integrates the original neighborhood information from dif-
ferent modalities to capture the latent intrinsic semantic affinity
for the multi-modal instances. Yang et al. [124] propose DSAH



CHAPTER 2. BACKGROUND REVIEW 23

with a semantic-alignment loss function to align the similarities
between features and also attempt to reconstruct features of one
modality with hash codes of the other one to bridge the modal-
ity gap further. JDSH [73] utilizes Distribution-based Similarity
Decision and Weighting (DSDW) for unsupervised cross-modal
hashing to generate more discriminative hash codes.

2.4 Vulnerability Detection

Software vulnerabilities are flaws in the logical design of soft-
ware or operating systems that can be exploited maliciously by
attackers. By exploiting these vulnerabilities, attackers can im-
plant Trojan horses and viruses over networks, extract crucial
user information, and even inflict severe damage to the system.
In this section, we review the related works about deep learning-
based function-level vulnerability detection and deep learning-
based statement-level vulnerability detection and localization.

2.4.1 Deep Learning-based Vulnerability Detection

With the advent of deep learning technology, significant ad-
vancements have been made in various tasks, such as code re-
trieval and code generation. Consequently, researchers in the
vulnerability detection field have also taken notice. Integrat-
ing deep learning into vulnerability detection approaches has
resulted in a substantial performance improvement compared
to conventional methods. Existing studies in this area can be
broadly categorized into token-based and graph-based approaches,
each utilizing different source code representations. In the fol-
lowing subsections, we provide a brief overview of these two
types of approaches.



CHAPTER 2. BACKGROUND REVIEW 24

Token-based Vulnerability Detection Approaches

Several works [24,68,69] approach source code as flat sequences
and adopt natural language processing techniques to represent
input code and initialize tokenized code tokens with Word2Vec [80].
Li et al. [69] initiate the study of using deep learning for vul-
nerability detection. They transform programs into code gad-
gets consisting of multiple lines of code statements that are se-
mantically related and propose VulDeePecker, a Bidirectional
Long Short Time Memory (BiLSTM) neural network with a
dense layer to learn representations. To further represent pro-
grams into vectors that accommodate the syntax and semantic
information suitable for vulnerability detection, Li et al . [68]
extract code slices according to data dependency and control
dependency and utilize BiLSTM to obtain representation for
detection. Another work [24] leverages Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) to
learn features from source code directly.

Graph-based Vulnerability Detection Approaches

Source code is inherently structured and logical and has hetero-
geneous aspects of representation, such as Abstract Syntax Tree
(AST), Control Flow Graph (CFG), Data Flow Graph (DFG),
and Program Dependency Graph (PDG). Many works [15,17,63,
66,82,111,121,133] represent source code into single code graphs
or composite graphs to improve the syntactic and semantic in-
formation. Zhou et al . [133] construct a heterogeneous joint
graph consisting of AST, CFG, and DFG following [122]. They
connect the neighboring leaf nodes of the AST to preserve the
natural sequential order of the source code and utilize a Gated



CHAPTER 2. BACKGROUND REVIEW 25

Graph Neural Network (GGNN) with the convolution module
for graph-level classification. Chakraborty et al . [15] extract
the information of Code Property Graph (CPG) [122] from the
given function and adopts the technique of Word2Vec [80] to ini-
tialize the embedding vector. They also utilize the GGNN model
to learn graph representation and focus on solving the problem
of dataset imbalance. Li et al . [66] also extract multiple types
of graphs. However, unlike the above two methods, which use
GNN to learn the representation of joint graphs directly, they
leverage Gate Recurrent Unit (GRU) [20] or Tree-LSTM [104]
to learn a single type of graph respectively and aggregate these
vectors through convolution operation. Cheng et al. [17] and
Wu et al . [121] both distill the function semantic information
into a PDG, which contains control-flow and data-flow details of
source code, and they train a GNN model and a Convolutional
Neural Network (CNN) [60] model to detect the vulnerability,
respectively. To address the learning problem of long-distance
node relationships, Wen et al. [117] propose a novel approach
named AMPLE which can reduce the sizes of code structure
graphs.

2.4.2 Deep Learning-based Statement-Level Vulnera-
bility Detection and Localization

Although deep learning-based approaches for function-level vul-
nerability detection have attracted many researchers and achieved
significant progress, there are still limitations in practical appli-
cations. Even if the function-level vulnerability can be success-
fully detected, it still requires considerable effort to locate the
vulnerable statements inside the function if the vulnerable func-
tion contains many statements.



CHAPTER 2. BACKGROUND REVIEW 26

Li et al. [66] leverage GCN for function-level predictions and
GNNExplainer [128] to explore the subgraphs that contribute
most to the predictions. However, it still cannot provide spe-
cific vulnerable statements and many statement-level vulner-
ability detection approaches [27, 35, 47] have been proposed.
Ding et al. [27] and Hin et al. [47] provide labels for vulner-
able statements in the training phase. Ding et al. [27] propose
an ensemble learning approach named VELVET, which com-
bines GGNN and Transformer [106] to capture the local and
global context of the source code. VELVET shows good per-
formance on both vulnerability classification and localization.
Hin et al. [47] formulate statement-level vulnerability detection
as a node classification task. They use CodeBERT [33] to ini-
tialize the embedding of each statement in the function, and
further leverage Graph Attention Network (GAT) [107] to up-
date these statement embeddings according to the control and
data dependency between statements. The performance of these
supervised approaches is sensitive to the quality and quantity of
the annotated data. To solve this issue, Hin et al. [35] propose
an unsupervised approach named LineVul that leverages the at-
tention mechanism of CodeBERT [33] to find the most likely
vulnerable statements. LineVul uses CodeBERT to capture the
statements’ long-term dependencies and semantic context and
aggregate each statement’s attention score for statement-level
vulnerability detection. The experiment results indicate that
unsupervised statement-level vulnerability detection is feasible
and has room for further improvement.



Chapter 3

Deep Code Retrieval Based on
Semantic Dependency Learning

In this chapter, we investigate semantic dependency learning for
code retrieval. Code retrieval is a common practice for program-
mers to reuse existing code snippets in open-source repositories,
and the current main challenge of effective code retrieval lies in
mitigating the semantic gap between natural language descrip-
tions and code snippets. The previous methods only partially in-
volve the code structural information during the learning, which
limits the performance of models. To address this problem, we
propose CRaDLe, a novel approach for code retrieval based on
statement-level semantic dependency learning. We first extract
the program dependency information from the code snippets
and integrate the dependency and semantics information at the
statement level for learning code representations. Then, we con-
duct large-scale experimental evaluations on public benchmarks.
The results demonstrate the superior performance of CRaDLe
over the state-of-the-art baseline models.

27



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 28

3.1 Introduction

Implementing projects from scratch is tedious for programmers.
In most cases, they know what they want to do, but do not
have the capability to implement all the details. For example,
a Python programmer may want to “convert date_string into
datetime format”, but not be able to recognize the proper syn-
tax datetime.strptime(date_string, format) for the real-
ization. To mitigate the impasse, it is common for programmers
to search the web in natural language (NL), find relevant code
snippets, and modify them into the desired form [8]. Many code
retrieval approaches [8,78,79] have been proposed to improve the
recommendation accuracy of the returned code snippets given
a natural language description. The main challenge of effec-
tive code retrieval is the semantic gap between source code and
natural language descriptions since the two sources are hetero-
geneous and share few common lexical tokens, synonyms, or
language structures [41].

Prior efforts have been conducted for effective code retrieval.
The existing research can be divided into two categories accord-
ing to the involved techniques, i.e., Information Retrieval (IR)-
based and Deep Neural Network (DNN)-based. The IR-based
techniques rely on token-wise similarities between source code
and queries. Since the variable and API definitions in code are
generally word combinations or abbreviations in natural lan-
guage, more semantically similar tokens in code and queries can
indicate more relevancy between them. For example, McMillan
et al. propose Portfolio which utilizes keyword matching and
PageRank to return a list of functions [79]. Lv et al. propose
CodeHow to combine API matching for code retrieval [78]. With



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 29

an increasing amount of available source code and the flourishing
development of deep learning techniques, many studies [41, 51]
propose to adopt neural network models for jointly encoding to-
kens of source code and queries into a single and joint vector
space, where one encoder is employed for each input (natural or
programming) sequence. The objective is to map semantically
relevant code and language into vectors that are near each other
in the vector space.

Considering the highly structured characteristic of source code,
recent research proposes to integrate the structural information
of code such as Abstract Syntax Tree (AST) and Control Flow
Graph (CFG) for representing code semantics [110, 127, 131],
demonstrating the effectiveness of involving structural informa-
tion for the task. However, the deep nature of the extracted trees
in ASTs renders it hard for deep learning models to comprehen-
sively capture the structural information [131]. CFG, which
represents all possible execution paths for a program, may con-
tain statement orders that are not contributing to the actual
execution result, probably leading to biased code representation
learning [110]. In this chapter, we propose to utilize statement-
level dependency relations in a code snippet based on the Pro-
gram Dependency Graph (PDG). The PDG is established based
on AST but less deeper than AST in the structure and only re-
tains the execution paths that will affect the execution result.
The dependency relations are then explicitly integrated with the
statement-level semantics to capture the code semantics. Actu-
ally, the effectiveness of incorporating dependency relations for
code representation learning has proven in tasks such as bug
detection [67] and code clone detection [45]; while no prior work
has explored the impact on the code retrieval task so far.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 30

Specifically, we introduce a novel neural network model named
CRaDLe, an abbreviation of Code Retrieval based on semantic
Dependency Learning. CRaDLe couples both structural and se-
mantic information of code at the statement level, where the
code structures are extracted based on PDG. Extensive exper-
iments have been conducted to verify the performance of the
proposed approach. The evaluation results show that CRaDLe
can significantly outperform the state-of-the-art models by at
least 36.38% and 22.34% on two real datasets respectively, in
terms of R@1, one standard metric for validating recommenda-
tion performance.

In summary, the main contributions of this chapter include:
• We propose a novel code retrieval model, CRaDLe, to encode

both source code and natural language queries into unified
vector representations. CRaDLe is the first code retrieval
approach that integrates the dependency and semantics in-
formation at the statement level for learning code represen-
tations.

• We conduct large-scale experimental evaluations on public
benchmarks. The results demonstrate the superior perfor-
mance of CRaDLe over the state-of-the-art and baseline mod-
els.

3.2 Methodology

In this section, we elaborate on the overview and detailed design
of the proposed approach CRaDLe, including the code encoder,
description encoder and the similarity measurement component.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 31

3.2.1 Overview

Figure 3.1 depicts the overview of the proposed approach, CRa-
DLe. The implementation includes both offline and online modes.
During the offline stage, we first collect datasets containing
⟨code, description⟩ pairs. The collected code and descriptions
are then preprocessed and separately encoded into vectors by the
code encoder and query encoder respectively. Unified represen-
tations of code and corresponding descriptions are finally learned
after the offline training process, where semantically similar code
and descriptions are located closely to each other in the same
embedding space. During the online process, when a new nat-
ural language query arrives, the trained model recommends the
most related code snippets to the programmer according to the
semantic distances between the code and the query in the em-
bedding space.

Figure 3.2 illustrates the overall framework of the CRaDLe
approach, which details the design of the code encoder and de-
scription encoder. The code encoder fuses the statement-level
token semantics and distills dependency information to repre-
sent the code semantics. The description encoder also embeds
the token sequences in the descriptions to vectors. Finally, sim-
ilarity matching scores between the code and descriptions are
learned based on their respective vector representations.

3.2.2 Code Encoder

The code encoder aims at embedding code snippets into vector
representations. We propose to integrate the statement-level to-
ken semantics with the dependency information between state-
ments for accurately capturing the code semantics. We first



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 32

Description：
“Sort the array”

Code:

def Sort():

…

<Code, Description>

GitHub 

Repository

Query 

(Description) 

Encoder

Code 

Encoder

CRaDLe

Embedding Space

Programmer

Natural 

Language Query

Ranked Code 

Snippets

Figure 3.1: Overview of the proposed CRaDLe.

Code Description

Statement-Level TokensStatement Dependency

Data Dependency Control Dependency

Dependency Matrix 𝑠1

𝑠𝑙+1

find longest palindrome

Maxpooling

Cosine Distance

Description Vector [𝒅]

Code Vector [𝒄]

𝒏
 𝒕

𝒑

MLP

…
…

…

…Attention

Vector

𝛼1

𝛼𝑙+1

…

……

…

Υ

Bi-LSTM

Bi-LSTM

Figure 3.2: Overall framework of the proposed CRaDLe.

illustrate the process conducted for the dependency information
extraction, and then describe the networks proposed for learning
statement-level dependency and semantic representations.

Algorithm 1 shows the procedures for the code encoder. The
input of the code encoder includes the token matrix E com-
prised by a sequence of token embedding vectors {e1,1, ..., ei,j, ...}
and dependency matrix Υ. First, the dependency embedding
layer encodes the dependency matrix Υ into dependency embed-
dings P . The token embedding layer then represents the token



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 33

matrix E into statement-level representations T comprised by
{t1, ..., ti, ...}. Finally, the token embeddings are concatenated
with the dependency embeddings at the statement level, and the
newly comprised vectors are fed into the Bi-LSTM layer. The
last hidden state vector from the Bi-LSTM layer is treated as
the representation vector of the code.

Algorithm 1: The algorithm of code encoding
input : the token matrix E, the matrix of input dependency: Υ

output: The representation vector of code: C

Function CODEENCODER(E, Υ):
P ← DependencyEmbedding(Υ) ; // corresponding to
Equation 3.1

T ← TokenEmbedding(E);
S ← StatementAttention(T ) ; // corresponding to
Equation 3.2 and Equation 3.3

C ← SemanticDependencyEmbedding([S;P ]) ;
// corresponding to Equation 3.4

return C;

Dependency Information Extraction

We obtain the dependency information between statements by
adopting PDGs of the code snippets. PDG explicitly indicates
the data dependency and control dependency of a program,
where the data dependency can represent the relevant data flow
relationships and control dependency exhibits the essential con-
trol flow relationships [34]. Since there exists no mature tool for
extracting the PDG of one code snippet in interpreted languages
such as Python, we propose to establish the PDG based on the
AST of a code snippet.

For clarifying the PDG establishment process, we use the code
example illustrated in Listing 3.1. Figure 3.3 (a) depicts the



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 34

mark for each statement in the code example, in which we re-
gard the function name and required parameters as two separate
statements. Function name can be treated as a short summary
of the code functionality; while the definitions of the required pa-
rameters generally reflect the semantics of the input data. Treat-
ing function names and parameters separately could be helpful
for capturing their respective semantics. In our approach, the
definition of a statement is a line of the code.

Figure 3.3 (b) demonstrates the simplified AST of the code
example where we construct the AST at the statement level
and hide the details of each statement. The data dependency
of one statement with the other statement can be identified if
the variable used in one statement is (re)defined in the other
statement and the value of the variable is unchanged on the
execution path between these two statements. The control de-
pendency of one statement with the other is determined if the
execution of the statement relies on the execution results of the
other one. The control dependency can be directly captured
by the tree structure in the AST, i.e., statements in child leaf
nodes are considered to possess dependent relations with the
statements in the parent nodes. The extracted PDG is depicted
in Figure 3.3 (c), with red arrowed lines and black arrowed lines
indicating data dependency and control dependency between
the two statements, respectively. Tokens beside each statement
block denote the related variables, in which we use black or
red underlined variables to distinguish whether the variables are
used or (re)defined in the corresponding statement. For exam-
ple, the parent nodes of S10 in the AST include S3, S5, S7, and
S9 (as shown in Figure 3.3 (b)), so the control dependency be-
tween S10 and S3,5,7,9 is marked in the obtained PDG. Also, the



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 35

variable mid in S6, corresponding to line 5 in the Listing 3.1,
is from S4, i.e., line 3 in the code example; so S6 shows a data
dependency relation to S4 in the PDG.

Statement-Level Dependency Embedding

The dependency embedding network is designed to encode the
data dependency and control dependency involved in the PDG
of a code snippet into a vector representation. According to
the extracted PDG (as shown in Figure 3.3 (c)), we can build a
dependency matrix Υ ∈ {0, 1}(l)×(l), where l indicates the num-
ber of statements in the code. The element υij = 1 if the i-th
statement has a data/control dependency on the j-th statement;
otherwise υij = 0. Note that υij ̸= υji. For example, S4 and S6

exhibit a data dependency relation, so υ64 = 1. To embed the
obtained dependency matrix Υ, we employ one layer of multi-
layer perceptron (MLP):

pi = tanh(WΓυi), ∀i = 1, 2, ..., l,

P = [p1, ..., p(l)],
(3.1)

where WΓ is the matrix of trainable parameters in MLP and pi

is the embedding of the dependency information for each state-
ment.

Statement-Level Token Embedding

Since the dependency matrix will be extremely large if we en-
code the code at the token level, here we embed the code tokens
at the statement level and then feed them into the code model.
The token embedding network is designed to capture the se-
mantics of each statement based on the constituted tokens. We



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 36

first tokenize the statements into sequences of tokens following
Gu et al.’s work [41], during which process duplicate tokens and
the keywords in the programming language such as while and
break are removed. Then tokens in each sequence are embed-
ded into vectors individually through an embedding layer. An
attention layer is utilized to compute a weighted average. Given
a sequence of token embedding vectors {ei,1, ..., ei,j, ...} for the i-
th statement, the attention weight αi,j for each ei,j is calculated
as follows:

αi,j =
exp(e⊺i,j)∑
j exp(e⊺i,j)

(3.2)

Each statement is embedded based on the attention weights
αi,j.

ti =
∑
j

αi,je
⊺
i,j, (3.3)

where i indicates the i-th statement.

Semantic Dependency Embedding

We consider both statement-level dependency and semantic in-
formation for learning the vector representation of a code snip-
pet. Specifically, for each statement si, we concatenate its de-
pendency embedding pi and token embedding ti as the repre-
sentation of the statement, i.e., si = [ti; pi]. We finally adopt
bi-LSTM to encode the sequence of the statement embeddings
and use the last hidden state as the vector representation of the
code.

c = BiLSTM(hl, sl), (3.4)



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 37

Mark Statement

𝑆1 binarySearch

𝑆2 arr, l, r, x

if r >= l:

mid = int(l + (r - l)/2)

if arr[mid] == x: 

return mid

elif arr[mid] > x:

return binarySearch(arr, l, mid-1, x)

else:

return binarySearch(arr, mid+1, r, x)

else:

return -1

𝑆3
𝑆4
𝑆5
𝑆6
𝑆7
𝑆8
𝑆9
𝑆10
𝑆11
𝑆12

FunctionDef

name args body

𝑆3

𝑆4 𝑆5 𝑆11

𝑆6 𝑆7 𝑆12

𝑆8 𝑆9

𝑆10

𝑆1 𝑆2

𝑠1

𝑠2

𝑠3

𝑠5𝑠4 𝑠11

𝑠7𝑠6 𝑠12

𝑠9𝑠8

𝑠10

arr, l, r, x

r

mid, l, r
arr, mid, x

mid
arr, mid, x

arr, l, r, x

arr, l, r, x

(a) Marked statements. (b) The simplified AST. (c) The extracted PDG.

Figure 3.3: Workflow for extracting PDG of the code snippet in Listing 3.1.
For the extracted PDG in (c), red and black arrowed lines indicate data
dependency and control dependency respectively. The tokens beside each
statement block denote the variables (re)defined (highlighted in red under-
lined font) or used in the corresponding statement.

where l indicates the number of statements.

1 def binarySearch (arr, l, r, x):
2 if r >= l:
3 mid = int(l + (r - l)/2)
4 if arr[mid] == x:
5 return mid
6 elif arr[mid] > x:
7 return binarySearch(arr, l, mid-1, x)
8 else:
9 return binarySearch(arr, mid+1, r, x)

10 else:
11 return -1

Code Listing 3.1: An example of Python code snippet for illustrating the
semantic dependency learning process.

3.2.3 Description Encoder

The description encoder aims at embedding natural language de-
scriptions into vectors. Given a description D = {w1, ..., wk, ..., wNd

}
comprising a sequence of Nd words, the description encoder em-



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 38

beds it into a vector d using a bi-LSTM model with max-pooling:

hk = BiLSTM(hk−1,wk), ∀k = 1, 2, ..., Nd,

d = maxpooling([h1, ..., hNd
])

(3.5)

The max-pooling layer is used to mitigate the effect of long-
term information loss caused by the LSTM mechanism and catch
the global feature of the whole sentence.

3.2.4 Similarity Measurement

The semantic similarity between the code vector c and descrip-
tion vector d is calculated based on its cosine distance in the
embedding space:

cos(c, d) = c⊺d
||c||||d|| (3.6)

The vector features of the two different embedding models are
trained using the loss function, i.e., Equation 3.6, to maximize
the cosine similarities in the projected space, so aligned code
and descriptions would be close to each other in the space. Such
design is widely adopted in prior code search studies [12,41,94].
The target of the design is to get unified representations for both
code and description, so as to mitigate the problem of semantic
gap between them. The higher the similarity, the more relevant
the code is to the description.

3.2.5 Model Training

We obtain the representation vectors for code snippets and de-
scriptions based on the proposed code encoder and description
encoder, respectively. Following previous studies [12, 41, 94], we



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 39

project the code vectors and description vectors to the same
space and train the vectors for aligned code snippets and de-
scriptions to be close in the space.

Specifically, every single code snippet in the training data T

will be constructed as a triplet < C,D+, D− >. C represents
the code snippet from the training Corpora, D+ indicates the
description that semantically matches the code snippet in the
ground truth, and D− denotes the negative description which
is randomly chosen from the training corpora with the true de-
scription excluded. The loss function is as below:

L(θ) =
∑

<C,D+,D−>∈T

max(0, ϵ− cos(c, d+) + cos(c, d-)), (3.7)

where θ denotes the parameters in the proposed model, c denotes
the code vector of C, d+ and d- denote the description vectors of
D+ and D−, respectively. Based on the training loss function,
we can get unified representations for both code and description,
thus mitigating the semantic gap between them.

3.3 Experimental Setup

In this section, we introduce the collected dataset for experi-
mentation, the evaluation metrics, implementation details, and
baseline models.

3.3.1 Dataset Collection

Two datasets are adopted for our experimental evaluation. One
dataset is obtained from CodeSearchNet [51], a publicly-available
GitHub repository. We focus on the Python program language



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 40

since it is one of the most popular programming languages, ac-
counting for more than 30% of the total market share as PYPL
reported [88]. Detailed statistics of the dataset can be found in
Table 3.3. All the code in the corpus is in Python and with En-
glish descriptions. We have 407,126, 22,302, and 21,902 ⟨code,
description⟩ pairs for training, validating, and testing, respec-
tively. The median and average numbers of the statements in
the code are around 10. We also observe that the statements
contain around three tokens on average, with the minimum at
zero which is because the input parameters beside the method
name are treated as an individual statement and some code snip-
pets may not require any input parameters. Another dataset is
from Code2seq [2], with the statistics illustrated in Table 3.4.
We only select the code written in Python 3 from both datasets
since the PDG extraction tool (introduced in Section § 3.2.2)
is specifically designed for Python 3 and may fail to parse the
code written in Python 2.

Table 3.1 and Table 3.2 illustrate the distribution of statement
numbers of the codes in the two datasets, i.e., CodeSearchNet
and Code2Seq, respectively. We can observe that the long tail
phenomenon occurs in the two datasets. Besides, more than
50% of the code has ≤10 statements and more than 80% has
≤20 statements.

3.3.2 Performance Measurement

Following the evaluation settings in [110], we fix a set of 999
distractor snippets cj for each test pair (ci, di) and calculate the
average ranking score for all the testing pairs as the evaluation
result. We involve two metrics: R@k and MRR, for validating
the ranking performance.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 41

#Statements Training Set Validation Set Test Set

0 ∼ 10 230,183 12,413 12,326
11 ∼ 20 117,060 6,364 6,361
21 ∼ 30 32,904 1,875 1,843
31 ∼ 40 12,834 755 633
41 ∼ 50 5,723 386 326

51 ∼ 8,422 509 413

Table 3.1: Statistics of the number of statements in CodeSearchNet dataset.

#Statements Training Set Validation Set Test Set

0 ∼ 10 218,679 32,429 33,210
11 ∼ 20 73,870 11,301 12,251
21 ∼ 30 2,0956 3,215 3,478
31 ∼ 40 7,957 1,251 1,370
41 ∼ 50 3,540 573 632

51 ∼ 4,326 650 786

Table 3.2: Statistics of the number of statements in Code2Seq dataset.

R@k

R@k is a common metric to evaluate whether an approach can
retrieve the correct answer in the top k returning results. It is
widely used by many studies on the code retrieval task. The
metric is calculated as follows:

R@k =
1

|Q|

|Q|∑
q=1

δ(FRankq < k), (3.8)

where Q denotes the query set and FRankq denotes the rank
of the correct answer for query q. The function δ(Frankq < k)

returns 1 if the rank of the correct answer is within the top
k returning results otherwise the function returns 0. A higher
R@k indicates a better code retrieval performance.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 42

Training Validating Testing

# ⟨code, description⟩ 407,126 22,302 21,902

Statistics of # statements in code
Min. 1 1 1
Med. 7 8 7
Max. 1,385 909 363
Ave. 11.45 11.87 11.24

Statistics of # tokens in the statements
Min. 0 0 0
Med. 3 3 3
Max. 514 155 83
Ave. 3.92 3.87 3.91

Table 3.3: Statistics of the CodeSearchNet dataset.

MRR

Mean Reciprocal Rank (MRR) is the average of the reciprocal
ranks of the correct answers of the query set Q, which is another
popular evaluation metric for the code retrieval task. The metric
MRR is calculated as follows:

MRR =
1

|Q|

|Q|∑
q=1

1

FRankq
(3.9)

The higher the MRR value is, the better performance the
model has.

3.3.3 Implementation Details

In our experiment, we select the top 10,000 words according to
the word frequencies as the vocabularies of code snippets and
descriptions, respectively. All the word embeddings are ran-
domly initialized and adjusted during training. The dimension



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 43

Training Validating Testing

# ⟨code, description⟩ 329,328 49,419 51,727

Statistics of # statements in code
Min. 2 2 2
Med. 7 7 7
Max. 1,463 416 1,463
Ave. 10.17 10.33 10.68

Statistics of # tokens in the statements
Min. 0 0 0
Med. 3 3 3
Max. 682 199 1864
Ave. 3.75 3.73 3.73

Table 3.4: Statistics of the Code2seq dataset.

of word embedding is set as 256. All LSTMs have 1024 hidden
units in each direction. The maximum number of considered
statements in the code and the maximum number of tokens in
each statement are set as 20 and 5, respectively. The sequence
lengths of descriptions are limited to 30 following the work [41].
The CRaDLe model is trained via the AdamW algorithm [58]
and the learning rate is 2.08e-4. To mitigate the over-fitting
issue, we add a dropout layer with a dropout rate of 0.25. We
train our models on a server with one Nvidia GeForce RTX 2080
Ti and 11 GB memory. The training lasts ∼20 hours with 200
epochs and the early stopping strategy [37] is adopted to avoid
overfitting.

3.3.4 Baseline Models

We compare our proposed model with several state-of-the-art
baseline models. CODEnn is one of the state-of-the-art mod-



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 44

els proposed in [41]. This model extracts the method name,
API sequence, and tokens from the code and utilizes a neural
network to learn the unified vector representation of the query
and these code features. UNIF [12] focuses on the semantic
information from the tokens in the code and utilizes embedding
techniques and attention mechanisms to embed the tokens in the
query and code into a single vector respectively. The projection
of the query and code vector in the same space is learned by this
model. NeuralBoW [113] embeds each token in the two input
sequences to a learnable embedding. The token embeddings are
then combined into a sequence embedding using max-pooling
and an attention-like weighted sum mechanism. The RNN
baseline adopts a two-layer bi-directional LSTM model [19] to
encode the input sequences. CONV [57] uses a 1D convolu-
tional neural network over both the input sequences of tokens.
CONVSelf [72] combines a 1D convolutional neural network
and a self-attention layer to embed both input sequences. Self-
Attn [51] utilizes the multi-head attention [105] to encode both
input sequences of tokens, and has proven effective on multiple
types of programming languages such as Python and JavaScript.
The hyper-parameters of the baselines are defined according to
the original papers [12, 41, 51]. During implementing CODEnn,
NeuralBoW, RNN, CONV, CONVSelf, and SelfAttn, we directly
utilized the released code; while for UNIF, we tried our best to
replicate the code according to the paper and will make the
replication publicly available.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 45

3.4 Experimental Results

In this section, we present the evaluation results, including the
main results, parameter analysis, case studies, and error analy-
sis.

3.4.1 Main Results

Involving semantic dependency embeddings increases
the code search performance. Table 3.5 and 3.6 illustrate
the evaluation results compared with the baseline models. As
can be seen, CRaDLe presents the best performance compared
with all the baseline models, increasing the performance of 36.38%
in terms of R@1, 17.13% in terms of R@5, 12.54% in terms of
R@10 and 25.26% in terms of MRR at least on the dataset
of CodeSearchNet. CRaDLe can achieve the improvement of
the performance at least 22.34%, 22.51%, 21.54%, and 21.79%
in R@1, R@5, R@10, and MRR on the dataset of Code2Seq,
respectively. This indicates that CRaDLe can rank the correct
answer at the top more accurately when given a natural language
query. The improvement on R@1 is the most significant among
all the metrics in our proposed model, which is over 20% in both
datasets. R@1 is the metric that concerns most by programmers
since they prefer to use the code search system which can return
the best results first. The higher MRR score further verifies the
effectiveness of CRaDLe. The difference between CRaDLe and
the baseline models is the code representation strategy, which
shows the effectiveness of the semantic dependency embeddings
for code search.

Attention mechanism can be helpful for effective code
search. By comparing CONV with CONVSelf, we can ob-



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 46

serve that with the attention mechanism integrated, CONV
presents a better performance than the pure CONV model on
both datasets. For example, CONVSelf increases the accuracy
of CONV by 20.21% and 15.37% in terms of R@1 and MRR

on the CodeSearchNet dataset, respectively. A similar result
also appears on the Code2Seq dataset. The results imply the ef-
fectiveness of the attention mechanism on the code search task.
We also compared with the performance of the CRaDLemaxpooling
where the attention mechanism is replaced with the max pooling
strategy [61]. As can be seen in Table 3.5 and Table 3.6, CRaDLe
with the attention mechanism involved outperforms the CRa-
DLe with max pooling strategy integrated on both datasets,
which further demonstrates the effectiveness of the attention
mechanism on the task.

CRaDLe shows better generalizability than baseline
models. As can be observed from Table 3.5 and Table 3.6,
one baseline model’s extraordinary performance on a specific
dataset can not transfer to other datasets. For example, Self-
Attn achieves the best performance among all the baselines on
the CodeSearchNet dataset with respect to R@1 but performs
worse than NeuralBoW on the Code2seq dataset. Compared
with the baselines, CRaDLe presents the best performance on
both datasets, which can explicate the good generalizability of
CRaDLe.

3.4.2 Parameter Analysis

In this section, we will discuss how the hyperparameters affect
the performance of CRaDLe. Three hyperparameters are an-
alyzed, including the number of hidden units in LSTMs, the
maximum number of considered statements in the code, and



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 47

Approach R@1 R@5 R@10 MRR

CODEnn 0.367 0.573 0.652 0.465
UNIF 0.379 0.615 0.706 0.490
NeuralBoW 0.521 0.747 0.807 0.622
RNN 0.556 0.772 0.832 0.654
CONV 0.475 0.703 0.776 0.579
CONVSelf 0.571 0.788 0.845 0.668
SelfAttn 0.580 0.786 0.840 0.673

CRaDLemaxpooling 0.777 0.914 0.946 0.838
CRaDLe 0.791 0.923 0.951 0.843

Table 3.5: Comparison results with baseline models on the CodeSearchNet
dataset. The best results are highlighted in bold fonts.

the maximum number of considered tokens in each statement.
Figure 3.4 and Figure 3.5 depict the results of the parameter
analysis.

# Hidden units in LSTMs

As shown in Figure 3.4(a) and Figure 3.5(a), all the metric val-
ues present an increasing trend as the number of hidden units
grows. The phenomenon is understandable since more hidden
units imply that the model has more parameters to learn and
can extract more knowledge from the same input. We can also
observe that for each doubling of the number of hidden units,
the growth rates of the R@1 scores are 1.9%, 0.54%, and 0.41%
respectively on the CodeSearchNet dataset. The trend is iden-
tical for the Code2Seq dataset. So we can summarize that with
an increasing number of the hidden units, the model perfor-
mance would increase but the increasing rates show a declining
tendency. Due to the limitation of the computing source and
the marginal enhancement when the number of hidden units is



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 48

Approach R@1 R@5 R@10 MRR

CODEnn 0.330 0.532 0.617 0.427
UNIF 0.380 0.588 0.668 0.478
NeuralBoW 0.546 0.693 0.738 0.615
RNN 0.438 0.623 0.688 0.526
CONV 0.425 0.584 0.645 0.502
CONVSelf 0.470 0.642 0.700 0.552
SelfAttn 0.525 0.683 0.731 0.599

CRaDLemaxpooling 0.664 0.843 0.892 0.745
CRaDLe 0.668 0.849 0.897 0.749

Table 3.6: Comparison results with baseline models on the Code2seq dataset.
The best results are highlighted in bold fonts.

larger than 1,024, we chose 1,024 as the number of hidden units
for our experiment.

# Maximum statements in code

Figure 3.4(b) and Figure 3.5(b) illustrate the variations of the
model performance as the maximum number of considered state-
ments increases. We can observe that the metrics achieve the
highest values when the number equals 20 and manifest a de-
clining trend as the statement number further increases. As can
be found in Table 3.3 and Table 3.4, the median numbers of the
statements in both CodeSearchNet and Code2seq datasets are
7, with the average at around 10. Thus, more statements con-
sidered would not be beneficial for capturing the code semantics
for most code snippets. In the experiment, we set the maximum
number of considered statements in code as 20.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 49

0.75

0.8

0.85

0.9

0.95

1

128 256 512 1024

R@1 R@5 R@10 MRR

# Hidden Units

S
c
o
re

(a) # hidden units in LSTMs

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40

R@1 R@5 R@10 MRR

# Statements

S
c
o
re

(b) # maximum statements in code

0.75

0.8

0.85

0.9

0.95

1

5 10 15 20

R@1 R@5 R@10 MRR

S
c
o
re

# Tokens

(c) # maximum tokens in statement

Figure 3.4: Parameter sensitivity study for CodeSearchNet.

# Maximum tokens in statement

The impact of different maximum numbers of involved tokens
in a statement is shown in Figure 3.4(c) and Figure 3.5(c). We
can find that when the involved token number increases, the
performance presents a downward trend. According to Table 3.3
and Table 3.4, the average number of tokens in the statements
is ∼3. So with more tokens recognized, the model could not
learn more knowledge of the code snippets. In the experiment,
to balance the model performance with the number of tokens
considered, we define the maximum number of the tokens in a
statement as 5.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 50

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

128 256 512 1024

R@1 R@5 R@10 MRR
S

c
o
re

# Hidden Units

(a) # hidden units in LSTMs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

10 20 30 40

R@1 R@5 R@10 MRR

# Statements

S
c
o
re

(b) # maximum statements in code

0.65

0.7

0.75

0.8

0.85

0.9

0.95

5 10 15 20

R@1 R@5 R@10 MRR

S
c
o
re

# Tokens

(c) # maximum tokens in statement

Figure 3.5: Parameter sensitivity study for Code2Seq.

3.4.3 Ablation Study

In the ablation study, we validate the contribution of data de-
pendency or control dependency to CRaDLe and the effective-
ness of combining both dependency types. Table 3.7 and Ta-
ble 3.8 show the results of the ablation study on the datasets of
CodeSearchNet and Code2seq, respectively. CRaDLeFull repre-
sents the model utilizes both data dependency and control de-
pendency, CRaDLeDataDependency represents the model only em-
ploys data dependency and CRaDLeControlDependency represents
the model only utilizes control dependency.

From the results, we can find that the performance of the
model that only utilizes data dependency is very close to the



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 51

Approach R@1 R@5 R@10 MRR

CRaDLeFull 0.791 0.923 0.951 0.843
CRaDLeDataDependency 0.779 0.910 0.946 0.840
CRaDLeControlDependency 0.785 0.918 0.950 0.845

Table 3.7: Ablation study on the CodeSearchNet dataset.

Approach R@1 R@5 R@10 MRR

CRaDLeFull 0.668 0.849 0.897 0.749
CRaDLeDataDependency 0.645 0.827 0.880 0.724
CRaDLeControlDependency 0.645 0.828 0.882 0.730

Table 3.8: Ablation study on the Code2seq dataset.

performance of the model with only control dependency, which
shows that the importance of data dependency and control de-
pendency is relatively equivalent under our implementation. How-
ever, we can find that the model that contains both data depen-
dency and control dependency outperforms the model that only
contains one dependency type, especially in terms of the R@1
metric. The results indicate that the combination of data de-
pendency and control dependency is beneficial for effective code
search.

1 def logs(self, prefix='worker'):
2 logs = []
3 logs += [('success_rate', np.mean(self.success_history))]
4 if self.compute_Q:
5 logs += [('mean_Q', np.mean(self.Q_history))]
6 logs += [('episode', self.n_episodes)]
7

8 if prefix != '' and not prefix.endswith('/'):
9 return [(prefix + '/' + key, val) for key, val in logs]

10 else:
11 return logs



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 52

Code Listing 3.2: Successful case 1.

1 def tile_images(img_nhwc):
2 img_nhwc = np.asarray(img_nhwc)
3 N, h, w, c = img_nhwc.shape
4 H = int(np.ceil(np.sqrt(N)))
5 W = int(np.ceil(float(N)/H))
6 img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in

range(N, H*W)])↪→

7 img_HWhwc = img_nhwc.reshape(H, W, h, w, c)
8 img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)
9 img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)

10 return img_Hh_Ww_c

Code Listing 3.3: Successful case 2.

3.4.4 Case Studies

Listing 3.2 shows our predicted code snippet for the query “Gen-
erates a dictionary that contains all collected statistics”. We
can find that our predicted result correctly matches the given
query. Although no overlapping words exist between the code
and query, CRaDLe could capture that the code tokens such
as rate and compute are semantically related to the query
word “statistics”. Besides, since the semantically related tokens
mainly appear in lines 3, 4, and 5, and do not span the entire
code, we guess that the involved dependency information helps
establish the relationships among the statements.

Listing 3.3 shows another predicted code snippet that accu-
rately matches the given query “Tile N images into one big PxQ
image (P, Q)”. Clearly, the function name contains the key-
words in the query, e.g., “tile” and “images”. Moreover, the
core idea of this query is to tile N images into one image, essen-
tially related to matrix operations. As shown in the Listing 3.3,



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 53

the code contains tokens associated with matrix transformation
such as reshape and transpose. So with statement-level to-
kens explicitly incorporated, CRaDLe could well catch the code
functionality.

Overall, the above two examples indicate that CRaDLe can
accurately capture the code semantics with the statement-level
dependency and semantic information integrated.

1 def transform_matrix_offset_center(matrix, y, x):
2 o_x = (x - 1) / 2.0
3 o_y = (y - 1) / 2.0
4 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
5 reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
6 transform_matrix = np.dot(np.dot(offset_matrix, matrix),

reset_matrix)↪→

7 return transform_matrix
8

Code Listing 3.4: Failure case 1.

1 def succ_key(self, key, default=_sentinel):
2 item = self.succ_item(key, default)
3 return default if item is default else item[0]

Code Listing 3.5: Failure case 2.

3.4.5 Error Analysis

Although our model returns correct code snippets in most cases,
we still notice that our model fails under the following two par-
ticular circumstances.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 54

Code Containing Complex Mathematical Logic

Listing 3.4 provides a failure case where the code contains com-
plex mathematical logic. The description corresponding to the
code is “Convert directly the matrix from Cartesian coordinates
(the origin in the middle of image) to Image coordinates (the
origin on the top-left of image)”, which includes some mathe-
matical concepts such as “Cartesian coordinates”. Nevertheless,
no words related to the mathematical concepts appear in the
code. Less knowledge learned about the mathematical termi-
nology renders the model harder to capture the semantic rele-
vance between the code and natural language. Future work can
incorporate external knowledge such as API documentation or
Wikipedia to enhance the understanding of the mathematical
concepts.

Code Containing Function Invocation

We also find that the proposed model may fail to capture the
code semantics when the code involves function invocation but
the details of the invoked function are missing. Listing 3.5 il-
lustrates such an example, and the corresponding description is
“Get successor to key, raises KeyError if a key is max key or key
does not exist”. As can be seen in the code example, the execu-
tion results strongly rely on the invoked function succ_item(),
however, the implementation of the invoked function is not de-
tailed. In this case, the code semantics are difficult to be fully
captured by the model, leading to failure.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 55

3.5 Discussion

3.5.1 Dependency Embedding Approach

In this section, we design another method for representing the
dependency information. Specifically, we enrich the dependency
matrix with the semantics of the tokens at the statement level.
The statement-level dependency embedding is calculated as be-
low:

pi =

∑
j tjυij

max (1,
∑

j υij)
, ∀i = 1, 2, ..., l,

P = [p1, ..., p(l)],

(3.10)

where tj represents the statement-level token embedding for j-
th statement, which is calculated via Equation 3.1. υij indicates
whether the i-th statement has a data/control dependency on
the j-th statement and pi is the new dependency embedding.

We evaluated the performance of new dependency embedding
methods on the datasets of CodeSearchNet and Code2seq, as
shown in Table 3.9.

From the table, we can find that the new strategy for encoding
the dependency information outperforms our original approach
in terms of the R@1 and MRR metrics for both datasets. The
results indicate that the new approach for the dependency em-
bedding may be more effective than the original approach for
the task.

Graph neural networks (GNNs) are also a potential way to
represent the dependency between different statements in one
code snippet. However, using GNNs for representing the se-
mantic dependency of code is beyond the scope of the work,
since the assumption of GNNs that adjacent nodes share similar



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 56

Dataset Approach R@1 R@5 R@10 MRR

CodeSearchNet CRaDLeoriginal 0.791 0.923 0.951 0.843

CRaDLenew 0.794 0.920 0.949 0.851

Code2seq CRaDLeoriginal 0.668 0.849 0.897 0.749

CRaDLenew 0.676 0.852 0.899 0.756

Table 3.9: Comparison results with our original models. The best results are
highlighted in bold fonts.

semantics no longer holds for the control dependency informa-
tion, and it would be more challenging to encode the semantic
dependency information through GNNs [64, 115].

3.6 Threats to Validity

After careful analysis, we have identified the following potential
threats to the validity.

3.6.1 Threats to External Validity

Since we have only chosen two public datasets to evaluate the ef-
fectiveness of CRaDLe, the results obtained from these datasets
may not accurately reflect the performance of our approach in
real-world scenarios. Besides, since the tool to extract the pro-
gram dependency graph from the source code varies depending
on the specific programming language, we only implement the
tool for the programming language of Python. The different
programming languages may affect the performance of our pro-
posed approach.



CHAPTER 3. SEMANTIC LEARNING BASED CODE RETRIEVAL 57

3.6.2 Threats to Internal Validity

Although we implemented the tool to extract the program de-
pendency graph for the programming language of Python, we
still cannot guarantee the extracted program dependency graph
is 100% correct. The wrongly extracted program dependency
graph may affect the retrieval performance of our proposed ap-
proach.

3.7 Summary

In this chapter, we have proposed a novel deep neural network
named CRaDLe for code retrieval. According to our knowl-
edge, CRaDLe is the first deep learning model that utilizes the
program dependency information for the task. CRaDLe learns
the code representations with the semantic dependency informa-
tion combined. Specifically, the dependency information and
statement-level tokens are jointly embedded for learning code
semantics. Finally, CRaDLe learns unified representations for
both code and natural language queries. The experiment results
have shown that CRaDLe outperforms the state-of-the-art ap-
proaches and that semantic dependency learning is helpful for
effective code retrieval.

□ End of chapter.



Chapter 4

Accelerating Code Retrieval
with Deep Hashing and Code
Classification

In this chapter, we investigate deep hashing for code retrieval
acceleration. With the development of deep learning, it has be-
come the mainstream to adopt deep learning-based approaches
in the task of code retrieval. However, previous methods focused
on retrieval accuracy but lacked attention to the efficiency of the
retrieval process. To address this problem, we propose a novel
method, CoSHC, to accelerate code retrieval with deep hashing
and code classification, aiming to perform efficient code retrieval
without sacrificing too much accuracy. Specifically, we cluster
the representation vectors into different categories and gener-
ate binary hash codes for both source code and queries. Then,
our proposed model gives the normalized prediction probabil-
ity of each category for the given query. The number of code
candidates for the given query in each category will be decided
according to the probability predicted from our proposed model.
Then, we conduct a comprehensive experimental evaluation on
public benchmarks. The results demonstrate that CoSHC can

58



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 59

significantly improve retrieval efficiency while preserving almost
the same performance as the baseline models.

4.1 Introduction

Code reuse is a common practice during the software develop-
ment process. It improves programming productivity as devel-
opers’ time and energy can be saved by reusing existing code.
According to previous studies [8, 78], many developers tend to
use natural language to describe the functionality of desired code
snippets and search the Internet/code corpus for code reuse.

Many code retrieval approaches [8, 28, 78, 79] have been pro-
posed over the years. With the rapid growth of open source
code bases and the development of deep learning technology, re-
cently deep learning-based approaches have become popular for
tackling the code retrieval problem [39, 41, 51]. Some of these
approaches adopt neural network models to encode source code
and query descriptions into representation vectors in the same
embedding space. The distance between the representation vec-
tors whose original code or description is semantically similar
should be small. Other approaches [28, 33, 43] regard the code
retrieval task as a binary classification task and calculate the
probability of code matching the query.

In the past, deep learning-based methods focused on retrieval
accuracy but lacked attention to the efficiency of retrieval on
large-scale code corpus. However, both types of these deep
learning-based approaches directly rank all the source code snip-
pets in the corpus during searching, which will incur a large
amount of computational cost. For the approaches that sepa-
rately encode code and description representation vectors, the



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 60

similarity of the target query vector with all code representa-
tion vectors in the corpus needs to be calculated for every single
retrieval. In order to pursue high retrieval accuracy, a high di-
mension is often set for the representation vectors. For example,
in CodeBERT, the dimension of the final representation vector is
768. The similarity calculation between a pair of code and query
vectors will take 768 multiplications and 768 additions between
two variables with the double data type. The total calculation of
a single linear scan for the whole code corpus containing around
1 million code snippets is extremely large - around 1 billion times
multiplications and additions. As for the approaches adopting
binary classification, there are no representation vectors stored
in advance and the inference of the target token sequence with
all the description token sequences needs to be done in real-time
for every single retrieval. Due to the large number of parameters
in the current deep learning models, the computation cost will
be significant.

Hashing is a promising approach to improve retrieval effi-
ciency and is widely adopted in other retrieval tasks such as
image-text search and image-image search. Hashing techniques
can convert high dimensional vectors into low dimensional bi-
nary hash code, which greatly reduces the cost of storage and
calculation [77]. Hamming distance between two binary hash
codes can also be calculated in a very efficient way by running
XOR instruction on the modern computer architectures [112].
However, the performance degradation is still not avoidable dur-
ing the conversion from representation vectors to binary hash
codes even the state-of-the-art hashing models are adopted. The
tolerance of performance degradation from most users is quite
low and many of them are willing to sweep the performance with



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 61

efficiency. In order to preserve the performance of the original
code retrieval models that adopt bi-encoders for the code-query
encoding as much as possible, we integrate deep hashing tech-
niques with code classification, which could mitigate the perfor-
mance degradation of the hashing model in the recall stage by
filtering out the irrelevant data.

Specifically, in this chapter, we propose a novel approach
CoSHC (Accelerating Semantic Code Search with Deep Hashing
and Code Classification) for accelerating the retrieval efficiency
of deep learning-based code retrieval approaches. CoSHC firstly
clusters the representation vectors into different categories. It
then generates binary hash codes for both source code and queries
according to the representation vectors from the original mod-
els. Finally, CoSHC gives the normalized prediction probability
of each category for the given query, and then CoSHC will de-
cide the number of code candidates for the given query in each
category according to the probability. Comprehensive experi-
ments have been conducted to validate the performance of the
proposed approach. The evaluation results show that CoSHC
can preserve more than 99% performance of most baseline mod-
els. We summarize the main contributions of this chapter as
follows:

• We propose a novel approach, CoSHC, to improve the retrieval
efficiency of previous deep learning-based approaches. CoSHC
is the first approach that adopts the recall and re-rank mecha-
nism with the integration of code clustering and deep hashing
to improve the retrieval efficiency of deep learning-based code
retrieval models.

• We conduct comprehensive experimental evaluations on public
benchmarks. The results demonstrate that CoSHC can greatly



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 62

improve the retrieval efficiency meanwhile preserving almost
the same performance as the baseline models.

4.2 Methodology

We propose a general framework to accelerate existing Deep
code retrieval models by decoupling the search procedure into
a recall stage and a re-rank stage. Our main technical contri-
bution lies in the recall stage. Figure 4.1 illustrates the overall
framework of the proposed approach. CoSHC consists of two
components, i.e., Offline and Online. In the Offline stage, we
take the code and description embeddings learned in the given
code retrieval model as input and learn the corresponding hash
codes by preserving the relations between the code and descrip-
tion embeddings. In the Online stage, we recall a candidate set
of code snippets according to the Hamming distance between
the query and code, and then we use the original code retrieval
model to re-rank the candidates.

4.2.1 Offline Stage
Multiple Code Hashing Design with Code Classification Module

Since the capacity of binary hashing space is very limited com-
pared to Euclidean space, the Hamming distance between sim-
ilar code snippets will be too small to be distinguishable if we
adopt a single Hashing model. To be specific, we cluster the
codebase using the K-Means algorithm with the code embed-
dings learned from the given code retrieval model. The source
code whose representation vectors are close to each other will
be classified into the same category after the clustering.



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 63

Embedding Space

Code

Description

Embedding Space

Hashing Space

Offline Stage

Recall
Embedding Space

Online Stage

<Code, Description>

Hashing Space

Re-rank

Query

Category 
Prediction

Hashing Clustering

Figure 4.1: Overview of the proposed CoSHC. 1⃝ Encoding the code token
sequence and description token sequence via original code retrieval models.
2⃝ Clustering the code representation vectors into several categories. 3⃝
Converting the original code representation vectors into binary hash codes. 5⃝
6⃝ Predicting the category of the query given by users and set the number of
code candidates for different categories. 7⃝ Converting the input query into
binary hash code. 8⃝ Recall the code candidates according to the Hamming
distance and the number of code candidates for each category. 9⃝ Re-ranking
all the code candidates according to the cosine similarity between the input
query description vectors and code candidates’ representation vectors and
return the results to the user.

Deep Hashing Module

The deep hashing module aims at generating the corresponding
binary hash codes for the embeddings of code and description
from the original code retrieval model. Figure 4.2 illustrates the
framework of the deep hashing module. To be specific, three
fully connected (FC) layers with tanh(·) activation function are
adopted to replace the output layer in the original code retrieval
model to convert the original representation vectors into a soft



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 64

binary hash code.
The objective of the deep hashing module is to force the Ham-

ming distance between hashing representations of code pairs and
description pairs approaching the Euclidean distance between
the corresponding embeddings. Thus, we need to calculate the
ground truth similarity matrix between code pairs and descrip-
tion pairs first. For performance consideration, we calculate the
similarity matrix within a mini-batch.

To construct such a matrix, we first define the code repre-
sentation vectors and the description representation vectors in
the original code retrieval model as VC = {v(1)c , ..., v

(n)
c } and

VD = {v(1)d , ..., v
(n)
d } , respectively. VC and VD represent the rep-

resentation vectors matrix for the entire batch, while v(i)c and v
(i)
d

represent the representation vector for the single code snippet
or query. After normalizing VC , VD to V̂C , V̂D with l2-norm, we
can calculate the code similarity matrices SC = V̂CV̂

T
C and sum-

mary similarity matrices SD = V̂DV̂
T
D to describe the similarity

among code representation vectors and summary representation
vectors, respectively. In order to integrate the similarity infor-
mation in both SC and SD, we combine them with a weighted
sum:

S̃ = βSC + (1− β)SD, β ∈ [0, 1], (4.1)

where β is the weight parameter. Since the pairwise similarity
among the code representation vectors and description repre-
sentation vectors still cannot comprehensively present the dis-
tribution condition of them in the whole embedding space, we
involve a matrix S̃S̃T to describe a high order neighborhood sim-
ilarity that two vectors with high similarity should also have the
close similarity to other vectors. Finally, we utilize a weighted



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 65

C
o

d
e
 E

m
b

e
d

d
in

g
 S

p
ac

e

D
e
sc

ri
p

ti
o

n
 E

m
b

e
d

d
in

g
 S

p
ac

e

1
0
.4

0
.3

0
.4

1
0
.2

0
.3

0
.2

1

𝑐 1
𝑐 2

𝑐 3

𝑐 1 𝑐 2 𝑐 3

C
o

d
e
 S

im
il
ar

it
y 

M
a
tr

ix
 𝑆
𝐶

1
0
.3

0
.1

0
.3

1
0
.6

0
.1

0
.6

1

𝑠 1
𝑠 2

𝑠 3

𝑠 1 𝑠 2 𝑠 3

D
e
sc

ri
p

ti
o

n
 

S
im

il
ar

it
y 

M
a
tr

ix
 𝑆
𝐶

1
0
.3

0
.2

0
.3

1
0
.5

0
.2

0
.5

1

𝑠 1
𝑠 2

𝑠 3

𝑐 1 𝑐 2 𝑐 3 Jo
in

t-
S
im

il
ar

it
y 

M
at

ri
x 
𝑆

O
ri

g
in

a
l 

C
o

d
e
 

M
o

d
e
l

O
ri

g
in

al
 

D
e
sc

ri
p

ti
o

n
 

M
o

d
e
l

H
a
sh

in
g

 L
ay

e
r

1
1

1

1
-1

-1

-1
-1

-1

𝑠 1 𝑠 2 𝑠 3 D
e
sc

ri
p

ti
o

n
 B

in
a
ry

 
H

a
sh

 C
o

d
e

1
1

1

1
-1

-1

-1
-1

-1

𝑐 1 𝑐 2 𝑐 3 C
o

d
e
 B

in
a
ry

 H
a
sh

 
C

o
d

e

1
0
.6

0
.3

0
.6

1
0
.6

0
.3

0
.6

1

𝑠 1
𝑠 2

𝑠 3

𝑐 1 𝑐 2 𝑐 3 H
a
m

m
in

g
 D

is
ta

n
ce

 
S
im

il
ar

it
y 

M
a
tr

ix

A
li
g

n
m

e
n

t

Fi
gu

re
4.

2:
A

rc
hi

te
ct

ur
e

of
th

e
ha

sh
in

g
m

od
ul

e.
T

he
or

ig
in

al
re

pr
es

en
ta

tio
n

ve
ct

or
s

w
ill

be
ut

ili
ze

d
fo

r
th

e
jo

in
t-

sim
ila

rit
y

m
at

rix
co

ns
tr

uc
tio

n
at

fir
st

.T
he

n
th

ej
oi

nt
-s

im
ila

rit
y

m
at

rix
w

ill
be

ut
ili

ze
d

as
th

el
ab

el
sf

or
tr

ai
ni

ng
bi

na
ry

ha
sh

co
de

s
ge

ne
ra

tio
n.

T
he

tr
ai

ni
ng

ob
je

ct
iv

e
is

to
m

ak
e

th
e

H
am

m
in

g
di

st
an

ce
sim

ila
rit

y
m

at
rix

to
be

id
en

tic
al

as
th

e
jo

in
t-

sim
ila

rit
y

m
at

rix
.



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 66

equation to combine both of these two matrices as follows:

S = (1− η)S̃ + η
S̃S̃T

m
, (4.2)

where η is a hyper-parameter and m is the batch size which is
utilized to normalize the second term in the equation. Since
we hope the binary hash codes of the source code and its cor-
responding description are the same, we replace the diagonal
elements in the similarity matrix with one. The final high-order
similarity matrix is:

SFij
=

{
1, i = j

Sij, otherwise
(4.3)

Binary Hash Code Training

We propose to replace the output layer of the original code re-
trieval model with three FC layers with tanh(·) activate func-
tion. We define the trained binary hash code for code and de-
scription as BC = {b(1)c , ..., b

(n)
c } and BD = {b(1)d , ..., b

(n)
d }, respec-

tively. To ensure that the relative distribution of binary hash
codes is similar to the distribution of representation vectors in
the original embedding space, the following equation is utilized
as the loss function of the deep hashing module:

L (θ) = min
BC ,BD

∥min(µSF , 1)−
BCB

T
D

d
∥2F

+ λ1∥min(µSF , 1)−
BCB

T
C

d
∥2F

+ λ2∥min(µSF , 1)−
BDB

T
D

d
∥2F ,

s.t. BC , BD ∈ {−1,+1}m×d,

(4.4)



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 67

where θ are model parameters, µ is the weighted parameters
to adjust the similarity score between different pairs of code
and description, λ1, λ2 are the trade-off parameters to weight
different terms in the loss function, and d is the dimension of
the binary hash code generated by this deep hashing module.
These three terms in the loss function are adopted to restrict
the similarity among binary hash codes of the source codes, the
similarity among binary hash codes of the descriptions, and the
similarity between the binary hash codes of the source code and
description, respectively.

Note that we adopt BCB
T
D/d to replace cos(BC , BD) because

cos(BC , BD) only measures the angle between two vectors but
neglects the length of the vectors, which makes cos(BC , BD) can
still be a very large value even the value of every hash bits is
close to zero. Unlike cos(BC , BD), BCB

T
D/d can only achieve a

high value when every bit of the binary hash code is 1 or -1 since
the value of BCB

T
D/d will be close to zero if the value of every

hash bits is close to zero.
Since it is impractical to impose on the output of the neural

network to be discrete values like 1 and -1, we adopt the follow-
ing equation to convert the output of the deep hashing module
to be strict binary hash code:

B = sgn(H) ∈ {−1,+1}m×d, (4.5)

where H is the output of the last hidden layer without the ac-
tivation function in the deep hashing module and sgn(·) is the
sign function and the output of this function is 1 if the input is
positive and the output is -1 otherwise.

However, the gradient of the sign function will be zero in
backward propagation which will induce the vanishing gradi-
ents problem and affect model convergence. To address this



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 68

problem, we follow the previous research [13, 49] and adopt a
scaling function:

B = tanh(αH) ∈ {−1,+1}m×d, (4.6)

where α is the parameter that is increased during the training.
The function of tanh(αH) is an approximate equation of sgn(H)

when α is large enough. Therefore, the output of Eq. 4.6 will
finally be converged to 1 or -1 with the increasing of α during
the training and the above problem is addressed.

4.2.2 Online Stage
Recall and Re-rank Mechanism

The incoming query from users will be fed into the description
category prediction module to calculate the normalized prob-
ability distribution of categories at first. Then the number of
code candidates Ri for each category i will be determined ac-
cording to this probability distribution. The Hamming distance
between the hash code of the given query and all the code inside
the database will be calculated. Then code candidates will be
sorted by Hamming distance in ascending order and the top Ri

code candidates in each category i will be recalled. In the re-
rank step, the original representation vectors of these recalled
code candidates will be retrieved and utilized for the cosine sim-
ilarity calculation. Finally, code snippets will be returned to
users in descending order of cosine similarity.

Description Category Prediction Module

The description category prediction module aims to predict the
category of source code that meets the user’s requirement ac-
cording to the given natural language description. The model



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 69

adopted for category prediction is the same as the original code
retrieval model, except that the output layer is replaced with a
one-hot category prediction layer and the cross-entropy function
is adopted as the loss function of the model.

Since the accuracy of the description category prediction mod-
ule is not perfect, we use the probability distribution of each cat-
egory instead of the category with the highest predicted proba-
bility as the recall strategy for code retrieval. We define the to-
tal recall number of source code as N , the normalized predicted
probability for each code category as P = {p1, ..., pk}, where k

is the number of categories. The recall number of source code
in each category is:

Ri = min(⌊pi · (N − k)⌋, 1), i ∈ 1, ..., k, (4.7)

where Ri is the recall number of source code in category i. To
ensure that the proposed approach can recall at least one source
code from each category, we set the minimum recall number for
a single category to 1.

4.3 Experiments

4.3.1 Dataset

We use two datasets (Python and Java) provided by Code-
BERT [33] to evaluate the performance of CoSHC. CodeBERT
selects the data from the CodeSearchNet [41] dataset and cre-
ates both positive and negative examples of <description, code>
pairs. Since all the baselines in our experiments are bi-encoder
models, we do not need to predict the relevance score for the
mismatched pairs so we remove all the negative examples from
the dataset. Finally, we get 412,178 ⟨code, description⟩ pairs as



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 70

the training set, 23,107 ⟨code, description⟩ pairs as the valida-
tion set, and 22,176 ⟨code, description⟩ pairs as the test set in
the Python dataset. We get 454,451 ⟨code, description⟩ pairs as
the training set, 15,328 ⟨code, description⟩ pairs as the valida-
tion set, and 26,909 ⟨code, description⟩ pairs as the test set in
the Java dataset.

4.3.2 Experimental Setup

In the code classification module, we set the number of clusters
to 10. In the deep hashing module, we add three fully connected
(FC) layers in all the baselines, the hidden size of each FC layer is
the same as the dimension of the original representation vectors.
Specifically, the hidden size of the FC layer for CodeBERTa,
CodeBERT, and GraphCodeBERT is 768. The hidden size of
the FC layer for UNIF is 512 and for RNN is 2048. The size
of the output binary hash code for all the baselines is 128. The
hyperparameters β, η, µ, λ1, λ2 are 0.6, 0.4, 1.5, 0.1, and 0.1,
respectively. The parameter α is the epoch number and will be
linearly increased during the training. In the query category
prediction module, a cross-entropy function is adopted as the
loss function and the total recall number is 100.

The learning rate for CodeBERTa, CodeBERT, and Graph-
CodeBERT is 1e-5 and the learning rate for UNIF, and RNN
is 1.34e-4. All the models are trained via the AdamW algo-
rithm [58].

We train our models on a server with four 4x Tesla V100 w/N-
VLink and 32GB memory. Each module based on CodeBERT,
GraphCodeBERT, and CodeBERTa is trained with 10 epochs
and Each module based on RNN and UNIF is trained with 50
epochs. The early stopping strategy is adopted to avoid over-



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 71

fitting for all the baselines. The time efficiency experiment is
conducted on the server with Intel Xeon E5-2698v4 2.2Ghz 20-
core. The programming for evaluation is written in C++ and
the program is allowed to use a single thread of CPU.

4.3.3 Baselines

We apply CoSHC on several state-of-the-art and representative
baseline models. UNIF [12] regards the code as the sequence of
tokens and embeds the sequence of code tokens and descrip-
tion tokens into representation vectors via a fully connected
layer with the attention mechanism, respectively. RNN baseline
adopts a two-layer bi-directional LSTM [19] to encode the input
sequences. CodeBERTa1 is a 6-layer, Transformer-based model
pre-trained on the CodeSearchNet dataset. CodeBERT [33]
is a pre-trained model based on Transformer with 12 layers.
Similar to CodeBERT, GraphCodeBERT [43] is a pre-trained
Transformer-based model with not only token information but
also dataflow of the code snippets. As we introduced, the in-
ference efficiency of cross-encoder-based models like CodeBERT
is quite low and the purpose of our approach is to improve the
calculation efficiency between the representation vectors of code
and queries. Here we slightly change the model structure of
CodeBERTa, CodeBERT, and GraphCodeBERT. Rather than
concatenating code and query together and inputting them into
a single encoder to predict the relevance score of the pair, we
adopt the bi-encoder architecture for the baselines, which uti-
lize the independent encoder to encode the code and queries
into representation vectors, respectively. Also, cosine similarity
between the given representation vector pairs is adopted as the

1https://huggingface.co/huggingface/CodeBERTa-small-v1

https://huggingface.co/huggingface/CodeBERTa-small-v1


CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 72

training loss function to replace the cross entropy function of
the output relevance score.

4.3.4 Evaluation Metric

SuccessRate@k is widely used by many previous studies [32,44,
46, 100]. The metric is calculated as follows:

SuccessRate@k =
1

|Q|

Q∑
q=1

δ(FRankq ≤ k), (4.8)

where Q denotes the query set and FRankq is the rank of the
correct answer for query q. If the correct result is within the
top k returning results, δ(FRankq ≤ k) returns 1, otherwise it
returns 0. A higher R@k indicates better performance.

4.4 Experimental Results

In this section, we present the experimental results and eval-
uate the performance of CoSHC from the aspects of retrieval
efficiency, overall retrieval performance, and the effectiveness of
the internal classification module.

4.4.1 RQ1: How much faster is CoSHC than the orig-
inal code retrieval models?

Table 4.1 illustrates the results of the efficiency comparison be-
tween the original code retrieval models and CoSHC. Once the
representation vectors of code and description are stored in the
memory, the retrieval efficiency mainly depends on the dimen-
sion of representation vectors rather than the complexity of the
original retrieval model. Therefore, we select CodeBERT as the
baseline model to illustrate efficiency comparison. Since the



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 73

Python Java

Total Time

CodeBERT 572.97s 247.78s
CoSHC 33.87s (↓94.09%) 15.78s (↓93.51%)

(1) Vector Similarity Calculation

CodeBERT 531.95s 234.08s
CoSHC 14.43s (↓97.29%) 7.25s (↓96.90%)

(2) Array Sorting

CodeBERT 41.02s 13.70s
CoSHC 19.44s (↓53.61%) 8.53s (↓37.74%)

Table 4.1: Time Efficiency of CoSHC.

code retrieval process in both approaches contains vector simi-
larity calculation and array sorting, we split the retrieval process
into these two steps to calculate the time cost.

In the vector similarity calculation step, CoSHC reduces 97.29%
and 96.90% of time cost in the dataset of Python and Java re-
spectively, which demonstrates that the utilization of binary
hash code can effectively reduce vector similarity calculation
cost in the code retrieval process.

In the array sorting step, CoSHC reduces 53.61% and 37.74%
of time cost in the dataset of Python and Java, respectively.
The classification module makes the main contribution to the
improvement of sorting efficiency. The sorting algorithm ap-
plied in both the original code retrieval model and CoSHC is
quick sort, whose time complexity is O(nlogn). The classifi-
cation module divides a large code dataset into several small
code datasets, reducing the average time complexity of sorting
to O(nlog n

m). The reason why the improvement of sorting in
the Java dataset is not as significant as in the Python dataset is



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 74
M

od
el

P
yt

ho
n

Ja
va

R
@

1
R

@
5

R
@

10
R

@
1

R
@

5
R

@
10

U
N

IF
0.

07
1

0.
17

3
0.

23
6

0.
08

4
0.

19
3

0.
25

4
C

oS
H

C
U

N
IF

0.
07

2
(↑

1.
4%

)
0.

17
7

(↑
2.

3%
)

0.
24

1
(↑

2.
1%

)
0.

08
6

(↑
2.

4%
)

0.
19

8
(↑

2.
6%

)
0.

26
4

(↑
3.

9%
)

−
w
/o

cl
as

sif
ic

at
io

n
0.

07
1

(0
.0

%
)

0.
17

4
(↑

0.
6%

)
0.

23
6

(0
.0

%
)

0.
08

5
(↑

1.
2%

)
0.

19
3

(0
.0

%
)

0.
25

4
(0

.0
%

)
−

on
e

cl
as

sif
ic

at
io

n
0.

06
9

(↓
2.

8%
)

0.
16

3
(↓

5.
8%

)
0.

21
6

(↓
8.

5%
)

0.
08

3
(↓

1.
2%

)
0.

18
3

(↓
5.

2%
)

0.
23

6
(↓

7.
1%

)
−

id
ea

lc
la

ss
ifi

ca
tio

n
0.

07
7

(↑
6.

9%
)

0.
20

2
(↑

16
.8

%
)

0.
27

7
(↑

17
.4

%
)

0.
09

3
(↑

10
.7

%
)

0.
22

2
(↑

15
.0

%
)

0.
29

6
(↑

16
.5

%
)

R
N

N
0.

11
1

0.
25

3
0.

33
3

0.
07

3
0.

18
4

0.
25

0
C

oS
H

C
R

N
N

0.
11

2
(↑

0.
9%

)
0.

25
9

(↑
2.

4%
)

0.
34

3
(↑

5.
0%

)
0.

07
6

(↑
4.

1%
)

0.
19

4
(↑

5.
4%

)
0.

26
5

(↑
6.

0%
)

−
w
/o

cl
as

sif
ic

at
io

n
0.

11
2

(↑
0.

9%
)

0.
25

4
(↑

0.
4%

)
0.

33
5

(↑
0.

6%
)

0.
07

3
(0

.0
%

)
0.

18
6

(↑
1.

1%
)

0.
25

3
(↑

1.
2%

)
−

on
e

cl
as

sif
ic

at
io

n
0.

11
2

(↑
0.

9%
)

0.
24

3
(↓

4.
0%

)
0.

31
1

(↓
6.

6%
)

0.
07

5
(↑

2.
7%

)
0.

18
2

(↓
1.

1%
)

0.
24

0
(↓

4.
0%

)
−

id
ea

lc
la

ss
ifi

ca
tio

n
0.

12
3

(↑
10

.8
%

)
0.

28
9

(↑
14

.2
%

)
0.

38
5

(↑
15

.6
%

)
0.

08
4

(↑
15

.1
%

)
0.

22
1

(↑
20

.1
%

)
0.

30
2

(↑
20

.8
%

)

C
od

eB
ER

T
a

0.
12

4
0.

25
0

0.
31

4
0.

08
9

0.
20

3
0.

26
4

C
oS

H
C

C
od

eB
E

R
T

a
0.

12
3

(↓
0.

8%
)

0.
24

7
(↓

1.
2%

)
0.

30
9

(↓
1.

6%
)

0.
09

0
(↑

1.
1%

)
0.

21
0

(↑
3.

4%
)

0.
27

2
((
↑3

.0
%

)
−

w
/o

cl
as

sif
ic

at
io

n
0.

12
2

(↓
1.

6%
)

0.
24

2
(↓

3.
2%

)
0.

30
2

(↓
3.

8%
)

0.
08

9
(0

.0
%

)
0.

20
1

(↓
1.

0%
)

0.
25

8
(↓

2.
3%

)
−

on
e

cl
as

sif
ic

at
io

n
0.

11
6

(↓
6.

5%
)

0.
22

1
(↓

11
.6

%
)

0.
27

1
(↓

13
.7

%
)

0.
08

5
(↓

4.
5%

)
0.

18
9

(↓
6.

9%
)

0.
23

8
(↓

9.
8%

)
−

id
ea

lc
la

ss
ifi

ca
tio

n
0.

13
5

(↑
8.

9%
)

0.
27

6
(↑

10
.4

%
)

0.
34

6
(↑

10
.2

%
)

0.
10

0
(↑

12
.4

%
)

0.
23

5
(↑

15
.8

%
)

0.
30

5
(↑

15
.5

%
)

C
od

eB
ER

T
0.

45
1

0.
68

3
0.

75
9

0.
31

9
0.

53
7

0.
60

8
C

oS
H

C
C

od
eB

E
R

T
0.

45
1

(0
.0

%
)

0.
67

9
(↓

0.
6%

)
0.

75
0

(↓
1.

2%
)

0.
31

8
(↓

0.
3%

)
0.

53
3

(↓
0.

7%
)

0.
60

2
(↓

1.
0%

)
−

w
/o

cl
as

sif
ic

at
io

n
0.

44
9

(↓
0.

4%
)

0.
67

3
(↓

1.
5%

)
0.

74
2

(↓
2.

2%
)

0.
31

6
(↓

0.
9%

)
0.

52
7

(↓
1.

9%
)

0.
59

3
(↓

2.
5%

)
−

on
e

cl
as

sif
ic

at
io

n
0.

42
5

(↓
5.

8%
)

0.
61

3
(↓

10
.2

%
)

0.
66

5
(↓

12
.4

%
)

0.
30

4
(↓

4.
7%

)
0.

48
3

(↓
10

.1
%

)
0.

53
2

(↓
12

.5
%

)
−

id
ea

lc
la

ss
ifi

ca
tio

n
0.

46
0

(↑
2.

0%
)

0.
70

3
(↑

2.
9%

)
0.

77
5

(↑
2.

1%
)

0.
32

9
(↑

3.
1%

)
0.

55
5

(↑
3.

4%
)

0.
62

7
(↑

3.
1%

)

G
ra

ph
C

od
eB

ER
T

0.
48

5
0.

72
6

0.
79

2
0.

35
3

0.
57

1
0.

64
0

C
oS

H
C

G
ra

ph
C

od
eB

E
R

T
0.

48
3

(↓
0.

4%
)

0.
71

9
(↓

1.
0%

)
0.

78
2

(↓
1.

3%
)

0.
35

0
(↓

0.
8%

)
0.

56
1

(↓
1.

8%
)

0.
62

5
(↓

2.
3%

)
−

w
/o

cl
as

sif
ic

at
io

n
0.

48
1

(↓
0.

8%
)

0.
71

3
(↓

1.
8%

)
0.

77
4

(↓
2.

3%
)

0.
34

7
(↓

1.
7%

)
0.

55
3

(↓
3.

2%
)

0.
61

6
(↓

3.
7%

)
−

on
e

cl
as

sif
ic

at
io

n
0.

45
9

(↓
5.

4%
)

0.
65

3
(↓

10
.1

%
)

0.
69

8
(↓

11
.9

%
)

0.
32

9
(↓

7.
8%

)
0.

50
5

(↓
11

.6
%

)
0.

55
1

(↓
13

.9
%

)
−

id
ea

lc
la

ss
ifi

ca
tio

n
0.

49
4

(↑
1.

9%
)

0.
74

1
(↑

2.
1%

)
0.

80
3

(↑
1.

4%
)

0.
36

1
(↑

2.
3%

)
0.

58
5

(↑
2.

5%
)

0.
64

9
(↑

1.
4%

)

Ta
bl

e
4.

2:
R

es
ul

ts
of

co
de

re
tr

ie
va

lp
er

fo
rm

an
ce

co
m

pa
ris

on
.

T
he

be
st

re
su

lts
am

on
g

th
e

th
re

e
C

oS
H

C
va

ria
nt

s
ar

e
hi

gh
lig

ht
ed

in
bo

ld
fo

nt
.



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 75

that the size of the Java dataset is much smaller than the size of
the Python dataset. However, the combination of the algorithm
of divide and conquer and max-heap, rather than quick sort, is
widely applied in big data sorting, which can greatly shrink the
retrieval efficiency gap between these two approaches. There-
fore, the improvement of efficiency in the sorting process will
not be as large as what is shown in Table 4.1.

In the overall code retrieval process, the cost time is reduced
by 94.09% and 93.51% in the dataset of Python and Java, re-
spectively. Since the vector similarity calculation takes most
of the cost time in the code retrieval process, CoSHC still can
reduce at least 90% of cost time, which demonstrates the ef-
fectiveness of the efficiency improvement in the code retrieval
task.

4.4.2 RQ2: How does CoSHC affect the accuracy of
the original models?

Table 4.2 illustrates the retrieval performance comparison be-
tween the original code retrieval models and CoSHC. We have
noticed that the performance of the conventional approaches
like BM25 [91] is not good enough. For example, we set the
token length for both code and queries as 50, which is the same
as the setting in CodeBERT, and apply BM25 to recall the top
100 code candidates for the re-rank step on the Python dataset.
BM25 can only retain 99.3%, 95.6%, and 92.4% retrieval accu-
racy of CodeBERT in terms of R@1, R@5 and R@10 on the
Python dataset. Here we only compare the performance of our
approach with the original code retrieval models since the pur-
pose of our approach is to preserve the performance of the orig-
inal code retrieval models. As can be observed, CoSHC can



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 76

retain at least 99.5%, 99.0%, and 98.4% retrieval accuracy of
most original code retrieval models in terms of R@1, R@5 and
R@10 on the Python dataset. CoSHC can also retain 99.2%,
98.2%, and 97.7% of the retrieval accuracy as all original code
retrieval baselines in terms of R@1, R@5, and R@10 on the Java
dataset, respectively. We can find that CoSHC can retain more
than 97.7% of performance in all metrics. R@1 is the most im-
portant and useful metric among these metrics since most users
hope that the first returned answer is the correct answer during
the search. CoSHC can retain at least 99.2% of performance on
R@1 in both datasets, which demonstrates that CoSHC can re-
tain almost the same performance as the original code retrieval
model.

It is interesting that CoSHC presents a relatively better per-
formance when the performance of the original code retrieval
models is worse. CoSHCCodeBERTa even outperforms the original
baseline model in the Java dataset. CoSHCRNN and CoSHCUNIF
outperform the original model in both Python and Java datasets.
The integration of deep learning and code classification with re-
call makes a contribution to this result. The worse performance
indicates more misalignment between the code representation
vectors and description representation vectors. Since the code
classification and deep hashing will filter out most of the irrel-
evant codes in the recall stage, some irrelevant code represen-
tation vectors that have high cosine similarity with the target
description representation vectors are filtered, which leads the
improvement in the final retrieval performance.



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 77

Model Python Java
Acc. Acc.

CoSHCUNIF 0.558 0.545
CoSHCRNN 0.610 0.535
CoSHCCodeBERTa 0.591 0.571
CoSHCCodeBERT 0.694 0.657
CoSHCGraphCodeBERT 0.713 0.653

Table 4.3: Classification accuracy of the code classification module in each
model.

4.4.3 RQ3: Can the classification module help improve
performance?

Table 4.2 illustrates the performance comparison between the
CoSHC variants which adopt different recall strategies with query
category prediction results. CoSHCw/o classification represents CoSHC
without code classification and description prediction module.
CoSHCone classification represents the CoSHC variant that recalls
N − k + 1 candidates in the code category with the highest
prediction probability and one in each of the rest categories.
CoSHCideal classification is an ideal classification situation we set.
Assuming the correct description category is known, N − k + 1

candidates are recalled in the correct category, and one candi-
date is recalled in each of the rest categories. Note that the dis-
play of CoSHCideal classification is only to explore the upper thresh-
old of performance improvement of the category prediction mod-
ule and will not be counted as a variant of CoSHC we compare.

By comparing the performance between CoSHCideal classification
and CoSHCw/o classification, we can find that correct classification
can significantly improve retrieval performance. With the ideal
category labels, CoSHC can even outperform all baseline mod-
els. As mentioned in Section § 4.4.2, code classification can



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 78

mitigate the problem of vector pairs misalignment by filtering
out wrong candidates whose representation vectors have high
cosine similarity with the target representation vectors in the
recall stage. The more serious the misalignment problem, the
more effective the code classification. That is the reason why
the improvement of CoSHC with ground-truth labels on UNIF,
RNN, and CodeBERTa is more significant than the improve-
ment of it on CodeBERT and GraphCodeBERT since the re-
trieval accuracy of former models is much lower than the latter
ones. Similar conclusions can also be drawn at the aspect of bi-
nary hash code distribution via the comparison between CoSHC
and CoSHCideal classification since CoSHC utilizes the distribution
of the original representation vectors as the guidance for model
training. Therefore, the distribution of binary hash codes will
be similar to the distribution of original representation vectors.

Since we have explored the theoretical upper limit of the ef-
fectiveness of code classification for code retrieval, the effective-
ness of code classification for code retrieval in real applications
will be validated. By comparing the experimental results be-
tween CoSHCw/o classification and CoSHCone classification, we can find
that the performance of CoSHC with predicted labels is even
worse than the performance of CoSHC without code classifica-
tion module. The reason is that the accuracy of description
category prediction is far from satisfactory. Table 4.3 illustrates
the accuracy of the description category prediction module in
all baseline models. We regard the category with the highest
probability as the predicted category from the description cat-
egory prediction module and check whether the module could
give a correct prediction. It can be seen that the classification
accuracy is not very high (less than 75%). By observing the ex-



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 79

perimental results of CoSHC in GraphCodeBERT on the Java
dataset, we can also find that low accuracy greatly affects the
performance of CoSHConeclassification, which makes 7.8%, 11.6%,
and 13.9% performance drop in terms of R@1, R@5, and R@10,
respectively.

Fortunately, although the description category prediction mod-
ule cannot accurately tell the exact category to which this de-
scription belongs, the module still can give a relatively high
predicted probability of the correct category. By comparing the
experimental results among all the variants of CoSHC, we can
find the performance is increased significantly once the recall
strategy is replaced so that the number of code candidates for
each category is determined by the normalized prediction prob-
ability. CoSHC with the new recall strategy almost achieved
the best performance in all metrics on all baseline models. Even
on RNN in the Python dataset, CoSHC still achieves the same
performance as CoSHC without classification under R@1 and
achieves similar performance in other metrics. The above ex-
perimental results have demonstrated the effectiveness of the
adoption of code classification in code retrieval.

4.5 Discussion

In this section, we will discuss the difference between the deep
hashing approaches we adopted in our framework and previ-
ous deep hashing approaches. Here we select four previous
deep hashing approaches, which are DBRC, UGACH, UDCMH,
and DJRSH, for the comparison. DBRC utilizes the adaptive
Tanh activation function to binarize the representations from
the cross-modality and is trained to minimize the reconstruc-



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 80

tion error based on these binary representations, which is quite
different from our proposed approaches. UGACH is a genera-
tive adversarial network that utilizes a generative model to fit
the distribution for the given data in one modality and select
the data of another modality to challenge the discriminative
model. In our deep hashing approach, we didn’t adopt such a
framework, either. UDCMH combines deep learning technolo-
gies with matrix factorization to preserve not only the data point
of nearest neighbors but also the data point of farthest neigh-
bors. However, UDCMH doesn’t consider the information of
high-order neighbors, which hinders its performance. Different
from UDCMH, DJSRH involves the high-order neighbors’ infor-
mation to construct a joint-semantics affinity matrix for model
learning. Inspired by DJSRH, we modify their model by ad-
justing the training objective of the positive pairs in the matrix,
which can achieve better performance in our experiment.

We are the first to adopt deep hashing approaches into the
code retrieval task and we found that the selection of deep hash-
ing approaches can greatly affect the overall performance of our
framework. Therefore, how to further improve the performance
of deep hashing approaches can be one of the potential research
directions in the future.

4.6 Threats to Validity

In this chapter, we have identified the following threats to va-
lidity.



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 81

4.6.1 Threats to External Validity

At first, we only select one Python dataset and one Java dataset
in our evaluation. The limited number and size of the dataset
may not accurately reflect the performance and efficiency of
CoSHC.

Secondly, we only select five code retrieval models. Accord-
ing to our experiment results, the performance of our proposed
framework will be dropped when the performance of the baseline
is better. Therefore, the performance of our proposed framework
may be not as good as the results shown in the chapter when a
powerful code retrieval model is adopted in the real application.

At last, we only evaluate the proposed framework with the
metrics of R@k in the overall performance experiment. However,
these metrics may not sufficiently reveal the performance gap
between CoSHC and original code retrieval models.

4.6.2 Threats to Internal Validity

In our experiment, we didn’t show the inference time of our
hashing model and category prediction models. Although the
time cost of these two models is fixed and it will not change the
conclusion shown in this chapter, the efficiency improvement
may be not as large as the results shown in this chapter if the
size of the code database is not large enough.

4.7 Summary

In this chapter, we proposed CoSHC, a general method that
incorporates deep hashing techniques and code classification, to
accelerate code retrieval. We leverage the two-staged recall and



CHAPTER 4. CODE RETRIEVAL WITH DEEP HASHING 82

re-rank paradigm in the information retrieval field and apply
deep hashing techniques for fast recall. Furthermore, we propose
to utilize a code classification module to retrieve better-quality
code snippets. Experiments on five code retrieval models show
that compared with the original code search models, CoSHC
can greatly improve the retrieval efficiency meanwhile preserving
almost the same performance.

□ End of chapter.



Chapter 5

Accelerating Code Retrieval via
Segmented Deep Hashing

In this chapter, we continue to investigate the deep hashing for
the code retrieval acceleration. Although previous deep hashing-
based approaches can significantly reduce the code retrieval time,
it still needs to scan the entire database during the search due
to its Hamming distance calculation mechanism. Therefore, to
further improve the efficiency of deep hashing, we propose a
novel approach, CSSDH, to improve the retrieval efficiency of
previous deep learning-based approaches. Specifically, CSSDH
can convert the long hash code from previous deep hashing-
based approaches into several segmented hash codes and con-
struct the look-up hash table for these segmented hash codes.
The scan of the entire code database can be avoided by utilizing
these look-up hash tables, which leads to efficiency improve-
ment. The comprehensive experiments on benchmarks demon-
strate that CSSDH significantly reduces recall computational
complexity while keeping the advanced performances of previ-
ous deep hashing approaches.

83



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 84

5.1 Introduction

Code retrieval is the approach that retrieves appropriate code
snippets from a code base according to natural language queries.
Such a technique can help software developers find target code
snippets from millions of lines of code in a short time, thereby
improving developer productivity. For novice developers, code
retrieval can provide code samples for them to learn.

Since code retrieval is a very useful tool for developers, many
code retrieval approaches [8, 78, 79] have been proposed in the
past decades. The rapid development of open-source communi-
ties such as GitHub and Stack Overflow provides a huge amount
of open-source code with natural language descriptions (com-
ments). The big code data make it possible to adopt deep
learning-based models for code retrieval [39, 41, 51].

The paradigms of existing deep learning-based approaches can
be classified into two categories: cross-encoder and bi-encoder
paradigms, both of which suffer from efficiency problems. (1)
For cross-encoder approaches [28, 33], the model takes a pair of
the source code and query together into a neural network and
determines whether or not the given source code and query are
matched by generating a match probability. However, in this
way, the retrieval efficiency is extremely low since the model
needs to pair the given query with every source code in the
database and feed it into the neural network for inference. (2)
For bi-encoder approaches [12, 39, 41], they use two neural net-
works to encode source code and queries separately into repre-
sentation vectors. After the encoding, dense retrieval is adopted
to retrieve the representation vectors of the source code, which
have a large similarity (e.g., inner product) with the given rep-



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 85

resentation vector of the query [12,84]. Recently, ColBERT [55]
introduced a late interaction architecture to save the dense vec-
tors offline and adopt representation retrieval to improve the
retrieval efficiency for cross-encoder approaches.

However, the efficiency of code retrieval remains a problem
even with the offline dense vectors [40]. To achieve high pre-
cision, code retrieval models usually use high dimensional rep-
resentation vectors of source code and queries. The similarity
calculation cost between such high dimensional representation
vectors is high. Since dense retrieval requires a linear scan of
the whole code database, the calculation cost of the retrieval for
a single query will be extremely high. For example, the calcula-
tion cost for a single code retrieval with a d-dimensional vector
in a code database with n code snippets will be O(dn).

Deep hashing is a promising technique to address the effi-
ciency problem of dense retrieval and has been widely adopted in
other retrieval tasks such as image-text search [101,119,132] and
image-image search [123, 134]. By converting high-dimensional
dense vectors into low-dimensional binary hash codes, the deep
hashing technique can greatly reduce storage and calculation
cost [77]. In addition, the calculation of the Hamming distance
between two binary hash codes can also be achieved by running
the XOR instruction on modern computer architectures [112], fur-
ther improving computation efficiency. Gu et al. [40] firstly
adopted the deep hashing techniques for the generation of bi-
nary hash codes to improve the retrieval efficiency in the task
of code retrieval. Their framework adopts a ”search-rerank”
pipeline that searches code candidates with Hamming distance
of hash code and reranks them with semantic similarity with the
query.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 86

Most existing deep hashing approaches focus on generating
binary hash codes that preserve the semantic similarity of orig-
inal representation vectors. However, they target embedding
projection to the binary hash embedding space, while less focus
on multi-modal alignment between code and query. Thus, the
mismatch between the hash codes of the code and query makes
building an accurate lookup hash table hard. Although it is
very efficient to calculate the Hamming distance with the XOR
instruction [112], these Hamming distance-based methods have
efficiency issues as they have to scan the whole large database.
To address this, we propose a hash-based code retrieval frame-
work CSSDH that achieves advanced performance by replacing
the Hamming distance calculation with lookup hash tables.

In this chapter, we propose CSSDH, a deep hashing lookup
table-based approach for code retrieval. Unlike CoSHC which
utilizes the deep hashing approach to generate the hash code and
adopt Hamming distance calculation for the retrieval, CSSDH
can be integrated with previous deep hashing methods to fine-
tune their outputted hash code. And Hamming distance cal-
culation can be replaced with the hash table looking up, which
leads to the further improvement of retrieval efficiency. Specif-
ically, in CSSDH, we adopt an adaptive bit relaxing strategy
and dynamic matching objective strategy to address the above-
mentioned issues. Specifically, the adaptive bit relaxing strategy
allows CSSDH to predict the hash bit with high error probability
as “unknown”. The dynamic matching objective strategy allows
CSSDH to dynamically adjust the alignment target of hash code
for each pair of the code snippet and query during the training,
which aims to reduce the hash collision between the unmatched
code snippets and queries.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 87

Extensive experiments have been conducted to validate the
performance of the proposed approach. Experimental results
indicate that CSSDH can reduce at least 95% of the retrieval
time of current state-of-the-art deep hashing approaches, which
sort the candidates by calculating the Hamming distance. Mean-
while, CSSDH can retain the comparable performance or even
outperform the previous deep hashing approaches in the recall
step.

We summarize the main contributions of this chapter as fol-
lows:
• We propose a novel approach, CSSDH, to improve the re-

trieval efficiency of previous deep learning-based approaches.
CSSDH is the first approach that adopts hard matching ob-
jective optimization with adaptive bits relaxing to address
the mismatch problem between the hash codes from different
modalities.

• CSSDH adopts the dynamic matching objective adjustment
strategy, which allows the CSSDH to dynamically adjust the
ground-truth label of the matching target to reduce the false
positive hash collision condition.

• The comprehensive experiments on benchmarks demonstrate
that CSSDH greatly reduces recall computational complexity
while keeping advanced performances of previous deep hash-
ing approaches, and improved efficiency brought by adaptive
bits relaxing strategy and dynamic matching objective ad-
justment strategy.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 88

User

Query

Query 
Encoder

Query Hashing 
Encoder

Hashing Space

Code 
Database

Embedding Space

Selected Code 
Candidates

Code Hashing 
Encoder

Code 
Encoder

Figure 5.1: Illustration of recall and re-rank mechanism with previous deep
hashing approaches.

5.2 Method

5.2.1 Overview

To improve searching efficiency, deep hashing approaches en-
code code snippets and queries into binary hash codes rather
than high dimensional vectors. With these hash codes, the sim-
ilarity between code snippets and queries can be measured by
the Hamming distance between them. By adopting deep hash-
ing approaches as the recall strategy, code candidates can be
determined in a short time. In the previous deep hashing frame-
work [40], the time complexity can be divided into two parts,
which are the Hamming distance calculation and sorting. In the
Hamming distance calculation part, it needs to calculate the
Hamming distance between the given query and an arbitrary
code snippet in the code database, whose time complexity is
O(n). In the sorting part, it needs to sort all the code snip-
pets according to the previously calculated Hamming distance,



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 89

User

Query

Query 
Encoder

Query Hashing 
Encoder

Hashing Tables

Code 
Database

Embedding Space

Selected Code 
Candidates

Code Hashing 
Encoder

Code 
Encoder

Table 1 Table 2 Table 3

Figure 5.2: Illustration of recall and re-rank mechanism with the combination
of deep hashing approaches and CSSDH.

whose time complexity is O(nlogn). To further improve the ef-
ficiency of previous deep hashing approaches in the recall stage,
we propose a general deep code hashing framework (as shown
in Figure 5.3) to accelerate the Hamming distance calculation
part.

Since keeping the hash codes of queries and their correspond-
ing code snippets identical is not the optimization objective of
previous deep hashing methods, the construction of lookup hash
tables suffers from a severe hash bit mismatching problem. To
alleviate the mismatching problem, we propose a novel iteration
training strategy to tune the initial hashing codes. After ob-
taining the final code hashing representations, we introduce a
retrieval algorithm based on our learned hashing model to effi-
ciently recall a code candidate set.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 90

Initial Hashing Projection Traning

Code Hashing 
Model

Query Hashing 
Model

Query Embedding 
Space

Code Embedding 
Space

Iteration Training Strategy

Code Hashing 
Model

Query Hashing 
Model (Fixed)

Code Hash 
Alignment

Code Hashing 
Model (Fixed)

Query Hashing 
Model 

Query Hash 
Alignment

Figure 5.3: Overall framework of CSSDH. Initial Hashing Project Training:
train the code hashing model and query hashing model; Iteration Training
Strategy: fix the query/code hashing model and utilize the hash codes from
the hashing model to construct the suitable matching objective for the hash-
ing model.

5.2.2 Recall and Re-rank with Deep Hashing

Figure 5.1 illustrates the recall and re-rank mechanism with deep
hashing techniques in code retrieval [40]. Firstly, the represen-
tation vectors and the corresponding binary hash codes of code
snippets will be encoded via the bi-encoder code retrieval model
and the deep hashing model, respectively. Once the system re-
ceives queries from the users, the representation vectors and the
corresponding binary hash codes will also be generated. During
the searching process, the binary hash codes will be utilized to
recall the code candidates and the ranking of the returned results
will be determined by the calculation of the similarity between



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 91

the representation vectors. As illustrated in Figure 5.2, unlike
previous deep hashing approaches [40] that calculate the Ham-
ming distance between the binary hash code of given query with
the binary hash codes of the entire code database, CSSDH could
reduce the time complexity for the Hamming distance calcula-
tion part in previous approaches from O(n) to O(1) via building
up lookup hash tables according to the binary hash codes gen-
erated by the deep hashing approach.

5.2.3 Initial Hashing Projection Training

We leverage the existing deep hashing works for image-text
search to design our initial hashing method for code-text search.
It is worth noting that our following alignment and retrieval
techniques do not depend on the specific image-text hashing
method, we will introduce our design based on the typical gen-
eral framework of deep hashing works for image-text search. The
typical image-text hashing models include an image encoder, a
query encoder, a soft binary transformation module (e.g. Tanh
activation), and a contrastive loss based on positive and neg-
ative sample pairs. Our adaptation method is to replace the
image encoder with a pre-trained code encoder. We employ
CodeBERT [33] and GraphCodeBERT [43] as the code encoder
in our experiments, separately. The loss function remains the
same as the original image hashing method, which has the fol-
lowing mathematical form:

L =
n∑
i

f
(
sim(c(i), q(i))

)
+ κ · E(j,k)∼Pn

[
g(sim(c(j), q(k)))

]
,

(5.1)



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 92

where n is the number of positive training pairs, c(i) is the i-th
code hashing representation, q(i) is the i-th query hashing repre-
sentation, sim(·, ·) is a similarity function (e.g., cosine similarity
or dot production), f(·) is a monotonically decreasing function
to rescale the similarity, g(·) a monotonically increasing function
correlated to f(·), Pn is a negative sampling distribution from
which we can sample a negative pair (i, j), and κ is the number
of negative samples. After optimization, we will discretize the
learned vectors, i.e., if a value is greater than 0, it will be set as
1 otherwise it will be set as 0.

We can find that the loss is actually based on a continuous
similarity function and hence the discretized vectors are hard to
exactly match even for the actual positive pairs. It prevents us
from using hash tables for fast index lookup. In the following
subsection, we will show how our method addresses the hash
code mismatch problem.

5.2.4 Iteration Training Strategy

To build the efficient hash table, we need to assign a suitable
hash code for every code and query so that the hash code from
the matched code and query should be the same and there should
be at least one hash bit difference between the hash codes from
the unmatched code and query. However, there is no natural
ground-truth label, which means the hash code, for each pair
of the code snippet and query during the training. To address
this problem, we adopt a novel training strategy named itera-
tion training strategy for hash training. In the iteration training
strategy, only the model for one modality will be trained and
the other one will be fixed. The fixed model and the updated
model will be alternated with certain training epochs. Specifi-



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 93

0.
3

0.
1

-0
.7

0.
6

0.
8

-0
.9

H
as

h 
Se

gm
en

ta
tio

n

0.
3

0.
1

-0
.7

0.
6

0.
8

-0
.9

1
1

-1

①
②

D
yn

am
ic

 M
at

ch
in

g 
O

bj
ec

tiv
e 

A
dj

us
tm

en
t

③

0.
2

-0
.7

-0
.4

-0
.6

0.
1

0.
9

0.
5

0.
1

-0
.7

0
1

1

0
0

0

0
2.

0
1.

5

1.
2

2.
0

1.
5

� 
� 

0
0

0

1.
8

1.
1

2.
5

� 
� 

1
1

-1

0.
5

1.
1

2.
0

0.
5

1.
1

-2
.0

��
� 

∙ 

1
1

-1

N
eg

at
iv

e 
Sa

m
pl

es

� 
� 

Po
si

tiv
e 

Sa
m

pl
e

1
-1

1

A
da

pt
iv

e 
B

its
 R

el
ax

in
g

1
-1

0

1
-1

1
1

1
-1

0.
3

0.
1

-0
.7

0.
3

0.
1

0.
7

0.
6

0.
8

-0
.9

0.
6

0.
8

0.
9

N
o 

C
ha

ng
e

D
is

cr
et

e 
O

ut
pu

t

C
on

tin
ou

s 
O

ut
pu

t

M
at

ch
ed

 S
am

pl
e

U
nm

at
ch

ed
 S

am
pl

e

 �
 

 �
 

Fi
na

l M
at

ch
in

g 
O

bj
ec

tiv
e

Fi
gu

re
5.

4:
St

ep
si

n
th

ei
te

ra
tio

n
tr

ai
ni

ng
st

ra
te

gy
.H

as
h

Se
gm

en
ta

tio
n:

sp
lit

th
el

on
g

ha
sh

co
de

in
to

se
ve

ra
ls

eg
m

en
te

d
ha

sh
co

de
s

an
d

co
nv

er
t

of
co

nt
in

uo
us

ou
tp

ut
va

lu
e

in
to

th
e

di
sc

re
te

va
lu

e;
Ad

ap
tiv

e
Bi

ts
Re

la
xi

ng
:

se
le

ct
th

e
ha

sh
bi

ts
fro

m
ea

ch
se

gm
en

te
d

ha
sh

co
de

ac
co

rd
in

g
to

th
e

ab
so

lu
te

ou
tp

ut
va

lu
e

fro
m

th
e

m
od

el
an

d
ov

er
w

rit
e

th
e

ha
sh

va
lu

e
as

“u
nk

no
w

n”
on

th
es

e
ha

sh
bi

ts
,w

hi
ch

re
pr

es
en

te
d

as
0;

D
yn

am
ic

M
at

ch
in

g
O

bj
ec

tiv
e

Ad
ju

st
m

en
t:

A
ss

ig
n

th
e

su
ita

bl
e

m
at

ch
in

g
ob

je
ct

iv
e

fo
re

ac
h

pa
ir

of
qu

er
y

an
d

co
de

sn
ip

pe
t.

T
he

ha
sh

co
de

fro
m

th
e

po
sit

iv
e

sa
m

pl
e

w
ill

be
ut

ili
ze

d
as

th
e

gr
ou

nd
-t

ru
th

la
be

la
nd

ad
ju

st
ed

ac
co

rd
in

g
to

th
e

ha
sh

co
lli

sio
n

co
nd

iti
on

w
ith

th
e

ne
ga

tiv
e

sa
m

pl
es

fro
m

th
e

sa
m

e
ba

tc
h.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 94

cally, the iteration training strategy contains three steps: hash
segmentation, adaptive bits relaxing, and dynamic matching ob-
jective adjustment. In the step of hash segmentation, the long
hash code will be split into several short hash segments. In the
step of adaptive bits relaxing, the hash bits that may have a
high error probability will be relaxed to increase the probability
of hash collision. In the step of dynamic matching objective ad-
justment, the output from the fixed model will be regarded as
the temporary ground-truth label and will be adjusted accord-
ing to the hash collision condition with the hash codes from the
negative samples in the same training batch. Figure 5.4 shows
the steps in the iteration training strategy and the detail will be
introduced in the following sections.

Hash Segmentation

Precious deep hashing techniques utilize the Hamming distance
as the metric to measure the similarity between two hash codes.
The need for high precision drives these deep hashing techniques
to generate long hash codes. However, it is very hard to achieve
the hash collision between two long hash codes. Besides, the
recall ratio will be very low for the hash collision approaches
if only one hash table is constructed. To address the above
problem, we split the initial binary hash code from the initial
hashing projection into several segments and construct a lookup
hash table for each segment. The segmented hash code is

Hi = {hi1, ..., hik}, (5.2)
where Hi is the i-th segmented hash code of the code or query,
which is composed of k hash bits from the initial hash code. The
j-th hash bit in the i-th segmented hash code is determined by



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 95

hij = sgn(o(i−1)∗k+j), (5.3)
where o(i−1)∗k+j is the output value of the ((i−1)∗k+j)-th hash
bit from the neural network and sgn(·) is the sign function. For
a more concise representation, o(i−1)∗k+j will be replaced by oij
in the following section.

Adaptive Bits Relaxing

Although we have already split the long hash codes into sev-
eral short hash segments, it is still hard to keep the hash codes
from the same pair of the code snippet and its query to be the
same. To address this mismatch problem, we propose the strat-
egy named adaptive bits relaxing. The target hash code in the
training is a discrete value, which is +1 and -1. The closer the
output of the model to the target value is, the better the con-
vergence of the model is. So there is a high probability that the
output with a low absolute value is incorrect. To mitigate the
mismatching problems brought by these hash bits, we give up
the prediction on these uncertain hash bits and overwrite the
output on these hash bits as both +1 and -1.

To achieve the adaptive bits relaxing, we first select the hash
bits with top k smallest absolute value as the uncertain bits in
each hash segment, which is shown below:

Si = {j| |oij| is top k smallest in Oi}, (5.4)

where Si is the set that contains the hash bits with the top k

smallest absolute value. k is the maximum number of relaxing
bits allowed in a single segmented hash code. For these relaxing
bits in each hash segment, we replace the initial hash value with



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 96

0 as the intermediate value, which is shown below:

h̃ij =

{
0, j ∈ Si and |oij| ≤ t

hi, otherwise
, (5.5)

where h̃ij is the hash code on the i-th hash bit after the relaxing.
Since the convergence condition of the model may be good on all
the hash bits, we pre-define a threshold value t for the relaxing.
Only the hash bits whose absolute value is lower than t are
allowed to be relaxed.

Dynamic Matching Objective Adjustment

To build the perfect hash table, we hope that the hash code
from the matched code and query are identical and the hash
codes from the unmatched code and query have at least a one-
bit difference. The determination of the suitable hash code for
each pair of the code and query becomes the key problem. To
assign the suitable hash code from each pair of code and query,
we first get the hash codes from the fixed model as the ground-
truth label and then check the hash collision condition of this
hash code with the negative samples from the batch. Finally,
this ground-truth label will be adjusted according to the hash
collision condition with the negative samples and utilized in the
training.

In the first step, we need to check whether the hash code of
the negative samples in the batch is the same as the hash code
we retrieved from the fixed model. Equation 5.6 is the matching
results for every bit in the hash code:

cij = h̃−ij · h̃+
ij, (5.6)

where h̃−ij is the j-th hash bit in the i-th segmented negative hash
codes from the modality which needs to be updated and h̃+

ij is



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 97

the j-th hash bit in the i-th segmented positive hash codes from
the fixed model. cij indicates whether the j-th hash bit between
the i-th segmented positive hash code and the i-th segmented
negative hash code is matched. Since we know that h̃−ij, h̃

+
ij ∈

{+1, 0,−1}, then we can get that cij ∈ {+1, 0,−1}. cij = +1

indicates that the two hash bits are identical, cij = 0 indicates
that there is at least one hash bit is relaxed, and cij = −1
indicates that the two hash bits are unmatched. Then we define
the Ci as follows:

Ci = min{ci1, ..., cik}, (5.7)

where Ci = −1 indicates that there exists at least one hash
bit unmatched between two segmented hash codes. otherwise,
these two segmented hash codes can be regarded as identical.
For convenient calculation, we define C̃i to indicate whether the
negative segmented hash code has the hash collision with the
positive segmented hash code as

C̃i =

{
0, Ci = −1
1, otherwise

, (5.8)

where C̃i = 1 indicates that the i-th segmented negative sam-
ple has the hash collision with the segmented positive sample,
otherwise does not.

Since we have checked the hash collision condition with nega-
tive samples, then we can adjust the ground-truth label we get
from the fixed model for the hash alignment with such infor-
mation. The adjusted ground-truth label can be determined as
follows:

lij = h+
ij · e

γ·|o+ij| −
m∑
n=1

Cin · h̃−ij · e
γ·|o−ijn|, (5.9)



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 98

where lij is the j-th hash bit in the ground-truth label for the
i-th segmented hash code. m is the negative sample number in
the batch. γ is the constant parameter. Since the value range
of oij is [1,+1], γ can be utilized to amplify the value range so
that there is less probability for the hash bits with good conver-
gence conditions to change their sign. For the positive sample,
hash bits before the adaptive bits relaxing are selected in the
above equation since we still need to offer a clear optimization
target for the neural network and the output of these hash bits
may get out of the ill convergence condition in the following
training epochs. For the negative samples, the hash bits after
the adaptive bits relaxing are selected since the hash collision
with the negative samples cannot be avoided by changing the
output on these relaxed hash bits. Finally, we need to discrete
the ground-truth label for the hash code bit as

l̃ij = sgn(lij), (5.10)

where l̃ij is the j-th hash bit in the i-th final segmented hash code
template. The final ground-truth label of the i-th segmented
hash code for the hash alignment is

L̃i = {l̃i1, ..., l̃ik} (5.11)

5.2.5 Hash Alignment

Since we get the alignment template for every pair of code and
query, we can align the hash code with the following cross-
entropy loss:

L = −(1− l̃ij) ∗ log(1− oij)− (1 + l̃ij) ∗ log(1 + oij), (5.12)

where l̃ij is the j-th hash bit in the final ground-truth label for
the i-th segmented hash code. oij is the output of j-th hash



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 99

bit in the i-th segmented hash code from the neural network.
The reason why the loss function of Mean Squared Error (MSE)
is not adopted is that the output of the model can hardly be
changed when it is close to 1 or -1.

5.2.6 Inference of Binary Hash Codes

In the inference stage of binary hash codes, binary hash codes of
source code and queries will be generated by the corresponding
hashing model. Firstly, the hashing model will output the con-
tinuous hashing value. Then hash code will be split into several
segmented hash codes with adaptive bits relaxing strategy as we
introduced in Section § 5.2.4. The unknown state for the hash
bit will only be treated as an intermediate state in the infer-
ence and finally, it will be converted into both 1 and -1. The
hash value of the rest hash bits where be converted into 1 or -1
according to the output hash value as a positive number or a
negative number.

During searching with lookup hash tables, all the hit code
snippets will be added to the recall candidate set. If the users
want to set the maximum size of the recall candidate set, we will
use a hash table to count the matched times and then apply a
Bucket sort to re-rank these candidates.

5.3 Experimental Settings

5.3.1 Datasets

We follow the same data processing approach described in Sec-
tion § 4.3.1 for the dataset of CodeSearchNet [51]. As Ta-
ble 5.3.1 shows, we finally get 412,178 ⟨code, query⟩ pairs as



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 100

Dataset Training Validation Test

Python 412,178 23,107 22,176
Java 454,451 15,328 26,909

Table 5.1: Dataset statistics.

the training set, 23,107 ⟨code, query⟩ pairs as the validation set,
and 22,176 ⟨code, query⟩ pairs as the test set in the Python
dataset. We get 454,451 ⟨code, query⟩ pairs as the training
set, 15,328 ⟨code, query⟩ pairs as the validation set, and 26,909
⟨code, query⟩ pairs as the test set in the Java dataset.

5.3.2 Baselines

We select two state-of-the-art deep learning-based code retrieval
models with four deep hashing approaches and a non-learning-
based approach as our baselines.

Code Retrieval Baselines

We select CodeBERT [33] and GraphCodeBERT [43] as our base
code retrieval models. Both of them are state-of-the-art models
in the code retrieval task.
• CodeBERT is a bi-modal pre-trained model based on a

Transformer with 12 layers for programming languages and
natural languages. CodeBERT utilizes the last hidden vector
of the special [CLS] token as the embedding of source code or
description to predict whether the given pair of source code
and description are matched.

• GraphCodeBERT is another pre-trained Transformer-based
model. Unlike previous pre-trained models which only utilize
the sequence of code tokens as the features, GraphCodeBERT



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 101

additionally considers the data flow of code snippets in the
pre-training stage. Similar to CodeBERT, GraphCodeBERT
utilizes the last hidden vector of the [CLS] token as the rep-
resentation vector.

Deep Hashing Baselines

We select four state-of-the-art baseline models of deep hash-
ing, which are CoSHC [40], DJSRH [101], DSAH [124], and
JDSH [73]. We also select a hash table-based approach LSH [25].
• CoSHC is the first approach that combines the deep hashing

techniques with the module of code classification to accelerate
code retrieval. For the sake of fairness of the experiment, we
only adopt the deep hashing parts from this approach.

• DJRSH constructs a novel joint-semantic affinity matrix
that contains specific similarity values instead of similarity
order as in previous approaches. DJRSH can generate bi-
nary codes that are capable of preserving the neighborhood
structure of the original data.

• DSAH designs a semantic-alignment loss function to align
the similarity between input features and generated binary
hash codes. To bridge the gap between different modalities,
DSAH also utilizes an additional fully connected layer to re-
construct features of one modality with the generated hash
codes of the other.

• JDSH is a deep hashing approach that jointly trains the
model for different modalities with a joint-modal similarity
matrix, which can fully preserve cross-modal semantic corre-
lations. JDSH employs distribution-based similarity decision



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 102

and weighting (DSDW) to generate more discriminative hash
codes.

• LSH is one of the most popular approaches that can map
high dimensional data to hash value by using random hash
functions and constructing the lookup hash tables for the
data searching. It is widely applied in data recall for a single
modality.

5.3.3 Metrics

We use R@k (recall at k) and MRR (mean reciprocal rank) as
the evaluation metrics in this chapter. R@k is the metric widely
used to evaluate the performance of the code retrieval models
by many previous studies [32, 44, 46, 100]. It is defined as

R@k =
1

|Q|

Q∑
q=1

δ(FRankq ≤ k), (5.13)

where Q denotes the query set and FRankq is the rank of the
correct answer for query q. δ(Frankq ≤ k) returns 1 if the
correct result is within the top k returning results, otherwise it
returns 0. A higher R@k indicates better performance.

MRR is another metric widely used in the code retrieval task
to evaluate the performance [33, 43]:

MRR =
1

|Q|

Q∑
q=1

1

FRankq
(5.14)

A higher MRR indicates better performance.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 103

5.3.4 Implementation Details

Since the target of CSSDH is to accelerate the recall efficiency
with deep hashing techniques for dense retrieval, we slightly
modify the model structure in our experiment. We use the bi-
encoder paradigm to use two CodeBERT or GraphCodeBERT
to encode the source codes and queries into representation vec-
tors. We apply a mean pooling function on the last hidden layer
of both CodeBERT and GraphCodeBERT to get the represen-
tation vectors. The dimension of the representation vectors is
768.

The network architectures of CoSHC, DJSRH, DSAH, and
JDSH are very similar. All of them replace the output layer
of the initial retrieval model with three fully connected layers.
However, the computation cost of training is high since we adopt
CodeBERT and GraphCodeBERT as the initial retrieval model.
To accelerate the training process, we directly apply three fully
connected layers as the hashing model and utilize the repre-
sentation vectors from the initial retrieval model as the input
feature of the hashing model. We follow the hyperparameter
settings of deep hashing baselines described in their original pa-
pers. We experiment on 128-bit and 256-bit for the generated
binary hash codes. The hidden size of all deep hashing mod-
els is 1,536, which is twice the dimension of the representation
vectors for the source codes and queries. We set the size of the
binary hash code segment to 16 bits and we allow the deep hash
model to predict no more than three unknown bits in each seg-
ment. Due to the low recall ratio of LSH, we reduce the length
of the hash segment to 8 bits. In addition, we set the threshold
value t as 0.5. In the experiment of overall performance com-
parison in Section § 5.4.2, deep hashing models retrieve the top



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 104

300 candidates of code snippets at first. Then the code retrieval
models including CodeBERT and GraphCodeBERT determine
the final ranking order of these candidates. In the experiment
of time efficiency in Section§ 5.4.1, we only compare the time
cost for the top 300 candidates retrieved by the deep hashing
approaches since our focus is on the retrieval efficiency of the
recall step.

The learning rate of the code retrieval models including Code-
BERT and GraphCodeBERT is 1e-5 and the learning rate for all
the deep hashing baselines is 1e-4. All the models are optimized
via the AdamW algorithm [58].

We train our models on a server with a Tesla V100. We train
CodeBERT or GraphCodeBERT for 10 epochs to get represen-
tation vectors for both code snippets and queries. The training
epoch number for either initial hashing projection or iteration
training is 100. An early stopping strategy is adopted to avoid
over-fitting for all models. We evaluate the retrieval efficiency
of the proposed approach on a server with Intel Xeon E5-2698v4
2.2Ghz 20-core. The code for efficiency evaluation is written in
C++ and the program is only allowed to use a single thread of
CPU for fair comparison.

5.4 Evaluation

5.4.1 RQ1: What is the Efficiency of CSSDH?

Table 5.2 shows the experiment results of time efficiency com-
parison in the recall step of different approaches with different
sizes of the Python dataset. To compare the recall efficiency of
the previous deep hashing approaches with and without CSSDH,
only the time cost in the recall step is recorded and the time cost



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 105

50
,0

00
10

0,
00

0
20

0,
00

0
40

0,
00

0

12
8b

it
25

6b
it

12
8b

it
25

6b
it

12
8b

it
25

6b
it

12
8b

it
25

6b
it

CodeBERTLS
H

3.
8s

7.
5s

8.
1s

16
.4

s
16

.7
s

37
.6

s
38

.8
s

82
.8

s

C
oS

H
C

31
.9

s
43

.7
s

66
.4

s
90

.1
s

13
7.

7s
18

4.
8s

28
0.

1s
37

5.
7s

C
oS

H
C

C
SS

D
H

1.
2s

(↓
96

.2
%

)
2.

2s
(↓

95
.0

%
)

2.
1s

(↓
96

.8
%

)
3.

8s
(↓

95
.8

%
)

4.
0s

(↓
97

.1
%

)
7.

1s
(↓

96
.2

%
)

7.
8s

(↓
97

.2
%

)
14

.2
s

(↓
96

.2
%

)

D
JS

R
H

31
.2

s
43

.1
s

65
.2

s
88

.7
s

13
5.

1s
18

5.
8s

27
4.

5s
36

7.
8s

D
JS

R
H

C
SS

D
H

1.
2s

(↓
96

.2
%

)
1.

4s
(↓

96
.8

%
)

2.
1s

(↓
96

.8
%

)
2.

5s
(↓

97
.1

%
)

3.
9s

(↓
97

.1
%

)
4.

4s
(↓

97
.6

%
)

7.
9s

(↓
97

.1
%

)
8.

4s
(↓

97
.6

%
)

D
SA

H
31

.2
s

44
.0

s
65

.3
s

90
.5

s
13

5.
0s

18
6.

0s
27

5.
5s

37
6.

8s
D

SA
H

C
SS

D
H

1.
0s

(↓
96

.8
%

)
1.

4s
(↓

96
.8

%
)

1.
9s

(↓
97

.1
%

)
2.

5s
(↓

97
.2

%
)

3.
5s

(↓
97

.4
%

)
4.

5s
(↓

97
.6

%
)

6.
8s

(↓
97

.5
%

)
8.

4s
(↓

97
.8

%
)

JD
SH

31
.1

s
44

.0
s

65
.2

s
90

.6
s

13
5.

0s
18

5.
7s

27
4.

4s
36

8.
6s

JD
SH

C
SS

D
H

1.
2s

(↓
96

.1
%

)
1.

5s
(↓

96
.6

%
)

2.
0s

(↓
96

.9
%

)
2.

6s
(↓

97
.1

%
)

3.
8s

(↓
97

.2
%

)
4.

6s
(↓

97
.5

%
)

7.
5s

(↓
97

.3
%

)
8.

6s
(↓

97
.7

%
)

GraphCodeBERTLS
H

3.
7s

7.
3s

7.
7s

15
.5

s
16

.9
s

34
.9

s
38

.2
s

82
.2

s

C
oS

H
C

31
.9

s
43

.7
s

66
.5

s
90

.1
s

13
7.

6s
18

4.
9s

28
0.

0s
37

5.
9s

C
oS

H
C

C
SS

D
H

1.
1s

(↓
96

.6
%

)
2.

2s
(↓

95
.0

%
)

2.
0s

(↓
97

.0
%

)
3.

8s
(↓

95
.8

%
)

3.
8s

(↓
97

.2
%

)
7.

0s
(↓

96
.2

%
)

7.
4s

(↓
97

.4
%

)
13

.8
s

(↓
96

.3
%

)

D
JS

R
H

31
.2

s
43

.0
s

65
.2

s
88

.5
s

13
4.

9s
18

1.
7s

27
4.

5s
36

7.
8s

D
JS

R
H

C
SS

D
H

1.
1s

(↓
96

.5
%

)
1.

5s
(↓

96
.5

%
)

2.
0s

(↓
96

.9
%

)
2.

6s
(↓

97
.1

%
)

3.
8s

(↓
97

.2
%

)
4.

6s
(↓

97
.5

%
)

7.
6s

(↓
97

.2
%

)
8.

8s
(↓

97
.6

%
)

D
SA

H
31

.1
s

43
.9

s
65

.2
s

90
.4

s
13

4.
9s

18
5.

7s
27

4.
7s

37
7.

4s
D

SA
H

C
SS

D
H

1.
0s

(↓
96

.7
%

)
1.

5s
(↓

96
.6

%
)

1.
8s

(↓
97

.2
%

)
2.

6s
(↓

97
.1

%
)

3.
4s

(↓
97

.5
%

)
4.

7s
(↓

97
.5

%
)

6.
6s

(↓
97

.6
%

)
8.

8s
(↓

97
.7

%
)

JD
SH

31
.1

s
43

.8
s

65
.1

s
90

.3
s

13
4.

9s
18

5.
6s

27
5.

2s
37

6.
3s

JD
SH

C
SS

D
H

1.
1s

(↓
96

.5
%

)
1.

5s
(↓

96
.6

%
)

2.
0s

(↓
96

.9
%

)
2.

6s
(↓

97
.1

%
)

3.
7s

(↓
97

.3
%

)
4.

9s
(↓

97
.3

%
)

7.
2s

(↓
97

.4
%

)
9.

1s
(↓

97
.6

%
)

Ta
bl

e
5.

2:
R

es
ul

ts
of

tim
e

effi
ci

en
cy

co
m

pa
ris

on
on

th
e

re
ca

ll
st

ep
of

di
ffe

re
nt

de
ep

ha
sh

in
g

ap
pr

oa
ch

es
w

ith
di

ffe
re

nt
co

de
re

tr
ie

va
lm

od
el

s
on

th
e

Py
th

on
da

ta
se

t
w

ith
th

e
siz

e
50

,0
00

,1
00

,0
00

,2
00

,0
00

an
d

40
0,

00
0.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 106

of re-ranking is neglected in this experiment.
First of all, we can find that CSSDH can reduce more than

95% of the searching time for all sizes of the dataset and hash
bits compared to previous deep Hamming distance-based hash-
ing approaches. What’s more, the efficiency of CSSDH is also
higher than the conventional LSH approach, which demonstrates
the effectiveness of CSSDH in the improvement of recall effi-
ciency.

According to Table 5.2, we can find that the retrieval time
of different hashing approaches with the same hash code length
in the same database is almost the same while the time cost of
CSSDH is not as stable as the deep hashing approaches, which
has a small variation among different deep hashing approaches
even with the same set of hash code length. The reason for this
result is the difference in the retrieval mechanism of CSSDH. Un-
like calculating the Hamming distance between the fixed num-
ber of hash codes, CSSDH will search with the given hash code
segments in every lookup hash table, count the appearance fre-
quency of every hash code, and sort the candidates of source
code according to their appearance frequency of them in all the
lookup hash tables. Since the hash collision condition in each
lookup hash table will be varied depending on the different deep
hashing approaches, the search time will also be varied.

From Table 5.2, we can find that the time cost of the deep
hashing approaches with CSSDH has sublinear growth while the
time cost of the deep hashing approaches has superlinear growth
as the size of the dataset grows, which demonstrates that the
deep hashing approach with CSSDH is more efficient than the
deep hashing approach without CSSDH with the larger dataset.
However, we can notice that although the increasing tendency of



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 107

time cost of CSSDH with the increase of dataset size is sublinear,
it still does not meet the O(1) complexity. The reason for this is
that CSSDH contains both searching and sorting processes in the
recall step. Although the time complexity of the searching pro-
cess with the lookup hash tables is O(1), we still need to count
the appearance times of the hit candidates in each lookup hash
table and sort these candidates to determine the list of recall
candidates according to preset the recall number. The reason
why we set the maximum recall number for the single retrieval
is that the matched binary hash codes in each hash table will be
increased while the increasing of dataset size. Too many recall
candidates will harm the efficiency of the re-ranking step, which
is more than the sorting cost in the recall step. It is unnecessary
to worry whether the sorting process will harm the effectiveness
of CSSDH since the previous deep hashing approaches also con-
tain the sorting process with the time complexity of O(nlogn)
for the entire dataset in the recall step. Since CSSDH cannot
recall the code candidates more than the dataset has, the upper
bound of the time complexity of the sorting process in CSSDH is
O(nlogn) with the dataset containing n code snippets, which is
no large than the time complexity of the sorting process in pre-
vious deep hashing approaches. The efficiency of deep hashing
approaches with CSSDH will keep increasing with the increase of
the dataset compared to the previous deep hashing approaches.

5.4.2 RQ2: What is the Effectiveness of CSSDH?

Table 5.3 illustrates the results of the overall performance com-
parison of different approaches with different code retrieval mod-
els. First of all, we can find that CSSDH can preserve at least
98.0%, and 97.0% of the performance in terms of R@1, MRR



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 108

M
od

el
P

yt
ho

n
Ja

va

12
8b

it
25

6b
it

12
8b

it
25

6b
it

R
@

1
M

R
R

R
@

1
M

R
R

R
@

1
M

R
R

R
@

1
M

R
R

CodeBERT

O
rig

in
al

0.
45

5
0.

56
2

0.
45

5
0.

56
3

0.
32

1
0.

41
9

0.
32

2
0.

42
0

LS
H

0.
39

0
0.

46
0

0.
43

8
0.

53
1

0.
26

4
0.

33
0

0.
30

2
0.

38
6

C
oS

H
C

0.
45

5
0.

56
2

0.
45

5
0.

56
3

0.
32

1
0.

41
9

0.
32

2
0.

42
0

C
oS

H
C

C
SS

D
H

0.
44

7
(↓

1.
8%

)
0.

54
7

(↓
2.

7%
)

0.
45

2
(↓

0.
7%

)
0.

55
4

(↓
1.

6%
)

0.
31

6
(↓

1.
6%

)
0.

40
8

(↓
2.

6%
)

0.
31

9
(↓

0.
9%

)
0.

41
5

(↓
1.

2%
)

D
JS

R
H

0.
45

4
0.

56
1

0.
45

5
0.

56
3

0.
32

1
0.

41
8

0.
32

2
0.

42
0

D
JS

R
H

C
SS

D
H

0.
44

6
(↓

1.
8%

)
0.

54
6

(↓
2.

7%
)

0.
45

1
(↓

0.
9%

)
0.

55
3

(↓
1.

8%
)

0.
31

6
(↓

1.
6%

)
0.

40
9

(↓
2.

2%
)

0.
31

9
(↓

0.
9%

)
0.

41
4

(↓
1.

4%
)

D
SA

H
0.

45
0

0.
55

2
0.

45
1

0.
55

4
0.

31
7

0.
41

1
0.

31
9

0.
41

4
D

SA
H

C
SS

D
H

0.
44

7
(↓

0.
7%

)
0.

54
7

(↓
0.

9%
)

0.
45

2
(↑

0.
2%

)
0.

55
4

(0
.0

%
)

0.
31

6
(↓

0.
3%

)
0.

40
9

(↓
0.

5%
)

0.
31

9
(0

.0
%

)
0.

41
5

(↑
0.

2%
)

JD
SH

0.
44

8
0.

54
9

0.
45

0
0.

55
2

0.
31

7
0.

41
0

0.
31

8
0.

41
2

JD
SH

C
SS

D
H

0.
44

7
(↓

0.
2%

)
0.

54
7

(↓
0.

4%
)

0.
45

2
(↑

0.
4%

)
0.

55
4

(↑
0.

4%
)

0.
31

6
(↓

0.
3%

)
0.

40
9

(↓
0.

2%
)

0.
31

9
(↑

0.
3%

)
0.

41
5

(↑
0.

7%
)

GraphCodeBERT

O
rig

in
al

0.
48

9
0.

59
8

0.
48

9
0.

59
8

0.
35

5
0.

45
7

0.
35

5
0.

45
7

LS
H

0.
41

2
0.

48
0

0.
47

1
0.

56
5

0.
27

9
0.

34
0

0.
33

4
0.

42
0

C
oS

H
C

0.
48

9
0.

59
7

0.
48

9
0.

59
8

0.
35

5
0.

45
5

0.
35

5
0.

45
7

C
oS

H
C

C
SS

D
H

0.
47

9
(↓

2.
0%

)
0.

58
0

(↓
2.

8%
)

0.
48

4
(↓

1.
0%

)
0.

58
7

(↓
1.

8%
)

0.
34

8
(↓

2.
0%

)
0.

44
3

(↓
2.

6%
)

0.
35

3
(↓

0.
6%

)
0.

45
1

(↓
1.

3%
)

D
JS

R
H

0.
48

9
0.

59
7

0.
48

9
0.

59
8

0.
35

4
0.

45
4

0.
35

5
0.

45
7

D
JS

R
H

C
SS

D
H

0.
47

9
(↓

2.
0%

)
0.

57
9

(↓
3.

0%
)

0.
48

2
(↓

1.
4%

)
0.

58
6

(↓
2.

0%
)

0.
34

8
(↓

1.
7%

)
0.

44
4

(↓
2.

2%
)

0.
35

3
(↓

0.
6%

)
0.

45
0

(↓
1.

5%
)

D
SA

H
0.

48
2

0.
58

6
0.

48
4

0.
58

9
0.

35
1

0.
44

7
0.

35
2

0.
44

9
D

SA
H

C
SS

D
H

0.
48

0
(↓

0.
4%

)
0.

58
0

(↓
1.

0%
)

0.
48

4
(0

.0
%

)
0.

58
7

(↓
0.

3%
)

0.
34

9
(↓

0.
6%

)
0.

44
4

(↓
0.

7%
)

0.
35

3
(↑

0.
3%

)
0.

45
0

(↑
0.

2%
)

JD
SH

0.
48

2
0.

58
5

0.
48

3
0.

58
7

0.
35

0
0.

44
6

0.
35

1
0.

44
8

JD
SH

C
SS

D
H

0.
47

8
(↓

0.
8%

)
0.

57
9

(↓
1.

0%
)

0.
48

3
(0

.0
%

)
0.

58
6

(↓
0.

2%
)

0.
34

9
(↓

0.
3%

)
0.

44
3

(↓
0.

7%
)

0.
35

3
(↑

0.
6%

)
0.

45
0

(↑
0.

4%
)

Ta
bl

e5
.3

:R
es

ul
ts

of
ov

er
al

lp
er

fo
rm

an
ce

co
m

pa
ris

on
of

di
ffe

re
nt

de
ep

ha
sh

in
g

ap
pr

oa
ch

es
w

ith
di

ffe
re

nt
co

de
re

tr
ie

va
l

m
od

el
s.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 109

with all the deep hashing-based code retrieval baselines in all
the datasets, respectively. In addition, CSSDH also outper-
forms the conventional LSH baselines in all the metrics. These
results demonstrate that CSSDH can retain most of the retrieval
performance.

What’s more interesting, we can find that the performance
gap between the deep hashing approaches with and without
CSSDH shrinks when the hash codes have more bits. DASH
and JDSH with CSSDH even outperform the baselines with 256
hash bits. The reason for this performance improvement is the
mechanism of CSSDH. The increase of the hash code length will
directly increase the number of lookup hash tables under the
setting of CSSDH, which can effectively increase the possibility
of the recall for the corresponding code. Since the hash codes
are very space-efficient and the extra space cost for the increase
of the hash code’s length can be almost neglected. This phe-
nomenon indicates that the problem of the performance drop
with CSSDH can be addressed by the increasing hash code’s
length, which further demonstrates the potential of CSSDH.

Secondly, we can find that the performance of CSSDH is
stable under different deep hashing approaches, which demon-
strates the generalizability of CSSDH. However, we can still
find that there is a small performance difference under differ-
ent deep hashing approaches. The reason for this phenomenon
is the hashing projection distribution, which will be discussed in
Section § 5.4.3.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 110

M
od

el
P

yt
ho

n
Ja

va

12
8b

it
25

6b
it

12
8b

it
25

6b
it

R
@

1
M

R
R

R
@

1
M

R
R

R
@

1
M

R
R

R
@

1
M

R
R

C
oS

H
C

N
A

_
N

R
0.

27
0

0.
31

2
0.

33
4

0.
39

0
0.

21
4

0.
26

3
0.

25
1

0.
31

3
C

oS
H

C
A

_
N

R
0.

38
3

0.
45

9
0.

41
0

0.
49

3
0.

26
7

0.
33

8
0.

29
0

0.
37

0
C

oS
H

C
N

A
_

SR
0.

41
7

0.
49

9
0.

44
0

0.
53

3
0.

30
1

0.
38

4
0.

31
1

0.
40

0
C

oS
H

C
A

_
SR

0.
43

5
0.

52
7

0.
44

5
0.

54
2

0.
30

4
0.

39
1

0.
31

3
0.

40
6

C
oS

H
C

N
A

_
B

R
0.

44
5

0.
54

3
0.

45
1

0.
55

4
0.

31
5

0.
40

5
0.

31
9

0.
41

4
C

oS
H

C
A

_
BR

0.
44

7
0.

54
7

0.
45

2
0.

55
4

0.
31

6
0.

40
8

0.
31

9
0.

41
5

D
JS

R
H

N
A

_
N

R
0.

07
8

0.
08

6
0.

12
5

0.
14

0
0.

06
1

0.
07

2
0.

11
0

0.
13

2
D

JS
R

H
A

_
N

R
0.

38
4

0.
46

0
0.

41
4

0.
50

0
0.

26
8

0.
33

8
0.

28
9

0.
36

8
D

JS
R

H
N

A
_

SR
0.

25
0

0.
28

9
0.

31
9

0.
37

5
0.

18
3

0.
22

6
0.

24
9

0.
31

2
D

JS
R

H
A

_
SR

0.
43

2
0.

52
4

0.
44

5
0.

54
1

0.
30

5
0.

39
2

0.
31

3
0.

40
4

D
JS

R
H

N
A

_
B

R
0.

39
6

0.
47

2
0.

41
4

0.
49

7
0.

27
3

0.
34

5
0.

29
7

0.
37

9
D

JS
R

H
A

_
BR

0.
44

6
0.

54
6

0.
45

1
0.

55
3

0.
31

6
0.

40
9

0.
31

9
0.

41
4

D
SA

H
N

A
_

N
R

0.
31

3
0.

36
5

0.
37

4
0.

44
4

0.
23

2
0.

28
8

0.
27

1
0.

34
1

D
SA

H
A

_
N

R
0.

38
8

0.
46

6
0.

41
7

0.
50

2
0.

26
8

0.
33

9
0.

29
2

0.
37

1
D

SA
H

N
A

_
SR

0.
42

1
0.

50
9

0.
43

8
0.

53
3

0.
29

9
0.

38
3

0.
31

0
0.

39
8

D
SA

H
A

_
SR

0.
43

6
0.

52
9

0.
44

3
0.

54
0

0.
30

5
0.

39
2

0.
31

4
0.

40
5

D
SA

H
N

A
_

B
R

0.
44

1
0.

53
7

0.
44

9
0.

55
0

0.
31

2
0.

40
2

0.
31

7
0.

41
0

D
SA

H
A

_
BR

0.
44

7
0.

54
7

0.
45

2
0.

55
4

0.
31

6
0.

40
9

0.
31

9
0.

41
5

JD
SH

N
A

_
N

R
0.

32
6

0.
38

4
0.

38
4

0.
45

9
0.

24
6

0.
30

7
0.

28
0

0.
35

4
JD

SH
A

_
N

R
0.

38
8

0.
46

5
0.

41
6

0.
50

2
0.

26
9

0.
34

0
0.

29
0

0.
37

0
JD

SH
N

A
_

SR
0.

42
5

0.
51

3
0.

43
8

0.
53

3
0.

30
4

0.
38

8
0.

31
1

0.
40

0
JD

SH
A

_
SR

0.
43

6
0.

52
9

0.
44

5
0.

54
3

0.
30

8
0.

39
6

0.
31

4
0.

40
5

JD
SH

N
A

_
B

R
0.

44
1

0.
53

7
0.

44
8

0.
54

9
0.

31
4

0.
40

4
0.

31
8

0.
41

1
JD

SH
A

_
BR

0.
44

7
0.

54
7

0.
45

2
0.

55
4

0.
31

6
0.

40
9

0.
31

9
0.

41
5

Ta
bl

e
5.

4:
T

he
co

m
pa

ris
on

s
am

on
g

th
e

six
C

SS
D

H
va

ria
nt

s
w

ith
th

e
ba

se
lin

e
of

C
od

eB
ER

T
.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 111

5.4.3 RQ3: What is the Effectiveness of Adaptive Bits
Relaxing?

Table 5.4 illustrates the performance comparison of the six vari-
ants of CSSDH with the baseline of CodeBERT. The perfor-
mance of CSSDH with both baselines of GraphCodeBERT is
very similar to CodeBERT. There are five types of subscripts in
Table 5.4, which are NA, A, NR, SR, and BR. NA represents the
model that only splits the long hash code into several segmented
hash codes without iteration training. A represents the model
that splits the long hash code into several segmented hash codes
with iteration training. NR represents the model doesn’t adopt
the adaptive bits relaxing strategy. SR represents the model
that only adopts the adaptive bits relaxing strategy on the code
hash model. BR represents the model that adopts the adaptive
bits relaxing strategy on both the code hash model and query
hash model. The strategy of NA or A can be combined with the
strategy of NR, SR, or BR arbitrary, For example, ModelA_BR
represents the model splits the long hash code into several seg-
mented hash codes with both iteration training strategy and
adaptive relaxing strategy.

As shown in Table 5.4, ModelA_BR achieves the best perfor-
mance among six variants, which demonstrates the effectiveness
of the combination of iteration strategy and adaptive bits relax-
ing strategy. Besides, we can find that either iteration strategy
or adaptive bits relaxing strategy can greatly improve the model
performance from the results. By comparing the performance
between ModelNA and ModelA, we can find the performance for
all the settings is improved. The performance of ModelA can
be greatly improved when the performance of ModelNA is low.
For example, we can find the performance of ModelNA_NR is



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 112

far from the performance of the baselines, and the performance
of ModelA_NR improved a lot. By comparing the performance
among ModelNR, ModelSR, and ModelBR, we can also get simi-
lar results as above. What’s more, we can find the performance
improvement brought by the adaptive bits relaxing strategy is
higher than the improvement brought by the iteration train-
ing strategy. ModelNA_BR can preserve more than 98% perfor-
mance of ModelA_BR for, CoSHC, DSAH, and JDSH baselines.
However, the adaptive relaxing strategy does not always work
well alone. By comparing the performance of DJSRHNA_BR and
DJSRHA_BR, we can find the performance serious declines when
only the adaptive bits relaxing strategy is adopted. This result
also indicates the necessity of the combination of the iteration
training strategy and the adaptive bits relaxing strategy.

Interestingly, we can find that the performance of DJSRHNA
is much worse than the rest models. The hashing projection dis-
tribution is the reason for this phenomenon. Good deep hashing
approaches should not only shorten the Hamming distance be-
tween the positive pairs but also enlarge the Hamming distance
between the negative pairs. Since the Hamming distance be-
tween the positive pairs in DJSRH is not short enough, the ini-
tial hashing projection from DJSRH leads to poor performance
of the hash collision. Fortunately, the combination of iteration
training strategy and adaptive bit relaxing strategy can make
up for such bad initial projection and the final performance
of DJSRH is just slightly worse than other deep hashing ap-
proaches, which also further demonstrates the effectiveness and
generalizability of CSSDH.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 113

Model Python Java

128bit 256bit 128bit 256bit
C

od
eB

ER
T

CoSHCCode 0.356 0.358 0.359 0.370
CoSHCQuery 0.356 0.358 0.357 0.369

DJSRHCode 0.356 0.377 0.365 0.387
DJSRHQuery 0.356 0.378 0.362 0.384

DSAHCode 0.353 0.374 0.360 0.382
DSAHQuery 0.355 0.374 0.358 0.382

JDSHCode 0.353 0.374 0.360 0.385
JDSHQuery 0.350 0.374 0.357 0.386

G
ra

ph
C

od
eB

ER
T

CoSHCCode 0.353 0.358 0.359 0.375
CoSHCQuery 0.355 0.359 0.356 0.374

DJSRHCode 0.356 0.377 0.365 0.387
DJSRHQuery 0.356 0.378 0.362 0.384

DSAHCode 0.350 0.376 0.357 0.385
DSAHQuery 0.348 0.376 0.355 0.384

JDSHCode 0.349 0.374 0.354 0.382
JDSHQuery 0.350 0.374 0.351 0.381

Table 5.5: The repair ratio of adaptive bits relaxing in both code hashing
model and query hashing model.

5.4.4 RQ4: How Many Error Bits Have Been Fixed?

Table 5.5 illustrates the repair ratio of the adaptive bits relaxing
in both the code hashing model and the query hashing model.
ModelCode and ModelQuery are the repair ratio of the adaptive bits
relaxing in the code hashing model and query hashing model,
respectively. The definition of the repair ratio is the ratio of
whether the bits predicted as unknown are the misaligned bits
of the binary hash codes generated from the two hashing models
in the initial hashing projection training process. Note that hash
bits that are relaxed by both sides of the hashing model are not



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 114

Model Python Java

128bit 256bit 128bit 256bit

CodeBERT

CoSHCCSSDH 1.10 1.10 1.07 1.04
DJSRHCSSDH 1.10 1.02 1.06 1.00
DSAHCSSDH 1.11 1.04 1.07 1.01
JDSHCSSDH 1.11 1.03 1.07 0.99

GraphCodeBERT

CoSHCCSSDH 1.11 1.09 1.08 1.01
DJSRHCSSDH 1.12 1.01 1.08 1.01
DSAHCSSDH 1.13 1.03 1.09 1.01
JDSHCSSDH 1.13 1.03 1.09 1.01

Table 5.6: Average hash bits that both code and query hashing models pre-
dicted as unknown in single hash code segment.

counted.
As shown in Table 5.5, the repair ratio of all the baselines with

CSSDH is very close. Another finding is that the repair ratio
of DJSRH is slightly higher than the other two baselines. As
shown in Section 5.4.3, the initial hash projection of DJSRH is
much worse than others, which provides more space for CSSDH
to play its advantages. In addition, we can find the repair ratio
with 256 bits higher than that with 128 bits. The reason is that
the relatively minimum resolution of the hash codes increases
when the hash codes get longer, making it easier for CSSDH to
distinguish which hash bits have a higher probability of making
mistakes.

Table 5.6 illustrates the average hash bits which both code
and query hashing models predicted as unknown bits in the sin-
gle hash code segment. It is unnecessary to predict as unknown
in the same bit from both the hashing models since the two hash
code segments can be matched as long as the misaligned hash
bit is predicted as unknown in either the code hashing model or



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 115

query hashing model. On the contrary, the prediction of uncer-
tainty in one hash bit will also reduce the hamming distance of
unrelated hash codes, which may bring false positives. There-
fore, the average number of unknown predictions in both code
and query hashing models is smaller, and the performance of
our proposed approach will be better. As shown in Table 5.6,
all the baselines with CSSDH have similar performance. Similar
to the condition in repair ratio, DJSRH has fewer average hash
bits which both hashing models predicted as unknown. Besides,
we can find the average hash bits predicted as unknown from
both hashing models with 256 bits is less than the average hash
bits with 128 bits. The reason for this phenomenon is similar to
the condition in repair ratio.

5.5 Threats to Validity

In this chapter, we have identified the following threats to va-
lidity.

5.5.1 Threats to External Validity

From the consideration of the experiment cost, we only select
one Python dataset and one Java dataset in our evaluation. Such
an amount of data size may not be sufficient to demonstrate the
performance and efficiency of CSSDH under huge databases.

From the consideration of experiment cost, we only select two
code retrieval models with three deep hashing baselines. How-
ever, it is possible that when applying CSSDH to other models,
there is no significant time boost or the accuracy may be well
preserved.



CHAPTER 5. CODE RETRIEVAL WITH SEGMENTED HASHING 116

At last, we only evaluate the proposed approach with the met-
ric of R@1 and MRR in the overall performance experiment.
However, these two metrics may not sufficiently reveal the per-
formance gap between CSSDH and deep hashing baselines.

5.5.2 Threats to Internal Validity

Due to the mechanism difference between the Hash table-based
approaches and Hamming distance-based approaches, our pro-
posed approach requires a relatively large recall number, which
is set as 300 in our experiment. The performance of our pro-
posed approach may be dropped if there is a strict requirement
on the recall number.

5.6 Summary

In this chapter, we have explored the efficiency aspect of code
retrieval, which has received little attention in the existing liter-
ature. We propose a novel hashing approach based on existing
deep hashing methods. By adopting our approach, the long
hash codes from the existing deep hashing methods can be con-
verted into several segmented hash codes and these segmented
hash codes can be utilized for the construction of hash tables,
which are used for the recall of code candidates. Experimental
results show that CSSDH can significantly reduce the retrieval
time while achieving comparable or even higher performance
than previous deep hashing approaches.

□ End of chapter.



Chapter 6

Weakly Supverised
Vulnerability Detection and
Localization via Multiple
Instance Learning

In this chapter, we investigate weakly supervised learning for
vulnerability detection. Most previous approaches focus on coarse-
grained vulnerability detection, such as at the function or file
level. However, the developers would still encounter the chal-
lenge of manually inspecting a large volume of code to iden-
tify the specific vulnerable statements. Training the model for
vulnerability localization usually requires ground-truth labels at
the statement level, and labeling vulnerable statements demands
expert knowledge. To tackle this problem, we propose a novel
approach called WILDE for weakly supervised vulnerability de-
tection learning, which does not need additional statement-level
labels during the training. Specifically, WILDE converts the
ground-truth label at the function level into pseudo labels for in-
dividual statements, eliminating the need for additional statement-
level labeling. These pseudo labels are utilized to train the clas-

117



CHAPTER 6. VULNERABILITY LOCALIZATION 118

sifiers for the function-level representation vectors. Extensive
experimentation on three popular benchmark datasets demon-
strates that, in comparison to previous baselines, our approach
achieves comparable performance in vulnerability detection and
state-of-the-art performance in statement-level vulnerability lo-
calization.

6.1 Introduction

Software vulnerabilities are flaws in the logical design of soft-
ware or operating systems that can be exploited maliciously by
attackers. By exploiting these vulnerabilities, attackers can im-
plant Trojan horses and viruses over networks, extract crucial
user information, and even inflict severe damage to the sys-
tem [38]. The detection of software vulnerabilities has emerged
as a crucial issue in the realm of software security, garnering
considerable interest from researchers and developers in recent
decades.

Most traditional vulnerability detection tools [30,52,102,108,
118], such as Flawfinder [118], employ static analysis techniques
to identify vulnerabilities in programs. These tools typically
rely on predefined vulnerability patterns to determine whether
the target programs are vulnerable. Although these tools can
effectively detect well-defined vulnerabilities such as use-after-
free issues, they often struggle to identify vulnerabilities that
are not easily defined, such as incorrect business logic. Fur-
thermore, the manual definition of vulnerability patterns is a
time-consuming process that can hinder the efficiency of these
methods. Moreover, these tools often generate a large number
of false positives/negatives in their reported vulnerabilities [17],



CHAPTER 6. VULNERABILITY LOCALIZATION 119

further diminishing their utility.
With the advancement of deep learning techniques, there has

been a growing interest in using these methods for vulnerabil-
ity detection in recent years. Various deep learning-based ap-
proaches have been proposed by researchers, leveraging neural
networks like Convolutional Neural Networks (CNNs) [92], Re-
current Neural Networks (RNNs)) [48], and Graph Neural Net-
works (GNNs) [15,133]. These approaches enable the automatic
acquisition of vulnerability features or patterns from training
data. Notably, these techniques have demonstrated their effec-
tiveness in detecting unreported or unknown vulnerabilities [68].

However, most current deep learning-based approaches for
vulnerability detection only offer predictions at the function
level. This falls short of developers’ needs because the major-
ity of vulnerable statements within the code tend to be rela-
tively concealed and challenging to uncover. Even with function-
level predictions, developers still face the time-consuming task
of locating these vulnerable statements. Some previous ap-
proaches have aimed to enhance the interpretability of mod-
els to help developers identify vulnerable statements. However,
these methods have struggled to achieve accurate localization,
as they do not prioritize the localization problem during training
and solely rely on attention scores or GNN explainers [128] to
explain the model’s behavior after training. Automatically pre-
dicting statement-level vulnerabilities in a supervised manner
poses difficulties, as it necessitates labeled data for model learn-
ing. Therefore, there is an urgent demand for unsupervised or
weakly supervised approaches for statement-level vulnerability
localization.

Multiple instance learning (MIL) is a weakly supervised learn-



CHAPTER 6. VULNERABILITY LOCALIZATION 120

ing that has been widely applied in various tasks such as drug
activity prediction [6], image retrieval [3, 89], and text classifi-
cation [59]. MIL handles training data arranged in sets called
bags, where each bag contains multiple instances. It enables
the construction of pseudo-labels for individual instances based
on the ground-truth label of the entire bag. While multiple in-
stance learning has been applied successfully in many fields, its
application in vulnerability detection and localization tasks has
not been explored. There are two main challenges to the appli-
cation of multiple instance learning in this task. Firstly, when
using deep learning models for code learning, the smallest unit
of input is typically variable names or subtokens, rather than
entire statements. Effectively generating statement-level repre-
sentation vectors to capture vulnerability information becomes
problematic. Secondly, conventional MIL approaches assume
independence among instances within the same bag, whereas
many software vulnerabilities are caused by incorrect control
flow or data flow across multiple statements, necessitating inter-
actions between different statements. To tackle these challenges,
we propose a Transformer-based model within the framework of
multiple instance learning. This model can effectively capture
local and global vulnerability information for each statement and
allows statements within the same function to interact during
the training. Additionally, it retains the core concept of generat-
ing pseudo instance labels from the bag label. By adopting this
approach, we can construct pseudo-labeled training instances,
reducing the labor-intensive task of manually labeling vulnera-
bilities at the statement level.

In this chapter, we propose a novel approach named WILDE
for function-level vulnerability detection with statement-level lo-



CHAPTER 6. VULNERABILITY LOCALIZATION 121

calization. WILDE first converts an input code snippet into a
token sequence and feeds it into a Transformer-based encoder.
During the encoding process, tokens from the same or different
statements interact freely, enabling the model to learn contex-
tual information for each statement. There are two channels
aiming to capture local and global features separately. The
statement-level classifier for each channel is then trained individ-
ually to determine whether the statement-level representation
vectors are vulnerable or not. The results from these two clas-
sifiers are combined to produce a single prediction for a single
statement. The evaluation of WILDE is conducted using three
widely used datasets, and extensive experimental findings show-
case that WILDE achieves comparable performance in detecting
vulnerabilities at the function level compared to previous mod-
els. Furthermore, its ability to localize vulnerabilities surpasses
that of the previous models.

We summarize the main contributions of this chapter as fol-
lows:
• We propose a novel approach, WILDE, to predict whether a

given code snippet is vulnerable or not and meanwhile offer
the vulnerability localization ability. To our best knowledge,
WILDE is the first approach to adopt multiple instance learn-
ing for detecting function-level vulnerabilities and localizing
vulnerabilities at the statement level, all without requiring
additional vulnerability labeling at the statement level.

• We integrate various pooling modules capable of capturing
code features specific to vulnerabilities. We also validate the
effectiveness of each pooling module on the overall perfor-
mance.



CHAPTER 6. VULNERABILITY LOCALIZATION 122

• We have performed comprehensive experiments on public bench-
marks, and the results indicate that WILDE achieves com-
parable performance in function-level vulnerability detection
and outperforms previous models in statement-level vulnera-
bility localization, showcasing state-of-the-art performance.

6.2 Methodology

In this section, we propose a novel deep learning-based vulnera-
bility detection approach that can achieve function-level detec-
tion and statement-level localization simultaneously with weakly
supervised learning. Specifically, we present the overview and
detailed design of the proposed approach WILDE, including
model design, model training strategy, and inference strategy.

6.2.1 Overview

Figure 6.1 illustrates an overview of the proposed approach WILDE.
Our approach consists of three steps: code encoding, multiple in-
stance learning-based training strategy, and model inference. In
the step of code encoding, the Transformer-based encoder learns
to generate representation vectors for each statement within
the given function. Two linear classifiers are trained to clas-
sify whether these statement-level representation vectors indi-
cate vulnerability or not. In the multiple instance learning-based
training strategy, we convert function-level ground-truth labels
for vulnerability detection into statement-level pseudo labels and
utilize these pseudo labels for the model training. During the
inference step, the model also generates representation vectors
for each statement and employs the previous two trained lin-
ear classifiers to determine their vulnerability status. Addition-



CHAPTER 6. VULNERABILITY LOCALIZATION 123

ally, the overall vulnerability prediction for the entire function is
determined by considering the vulnerability predictions of each
statement within the function. Further details about these three
steps will be presented in the following sections.

Transformer Encoder

Input Function

12 x

Multi-Head 
Attention

Add & Norm

Feed 
Forward

Add & Norm

Linear 
Classifier

Score 
Weighted 

Sum

Ground Truth 
Label 

Top-k Score

Alignment

Line 1: 0.40
Line 2: 0.35
Line 3: 0.58

No
No
Yes

③ Model Inference

Statement-level 
Localization

Yes function-level 
DetectionMean Pooling

Max Pooling

Statement-level representation vector fusion and 
classification

Linear 
Classifier

0.8
+

0.6
Line 1: 0.40
Line 2: 0.35
Line 3: 0.58

Statement-level 
Prediction Results

② Multiple Instance Learning-based 
Training Strategy

Code Encoder

① Code Encoding

Line 3: 0.58
Line 1: 0.40
Line 2: 0.35

Figure 6.1: An overview architecture of WILDE, containing three main steps.
1⃝ Code Encoding: The target function will first be transformed into a token
sequence and then fed into a Transformer-based Encoder. Subsequently, the
token vectors will be integrated into statement-level vectors, and two linear
classifiers will be employed to classify them. 2⃝ Multiple Instance Learning-
based Training Strategy: The statements will be ranked in descending or-
der based on the statement-level predicted results. The top-k statements
will then be assigned pseudo labels identical to the function label for model
training purposes. 3⃝ Model Inference: The results obtained in Step 1 will be
utilized to predict the vulnerability of each statement. The prediction results
from all the statements will then be used to determine the vulnerability of
the entire function.

6.2.2 Code Encoding

The given code snippet will be converted into a token sequence
and each token will be split into subwords by the tokenizer.
We adopt the Byte Pair Encoding (BPE) approach [96] from
Roberta as our tokenizer to tokenize the word. To incorpo-
rate the positional relationships between the subwords into the



CHAPTER 6. VULNERABILITY LOCALIZATION 124

model, positional embedding vectors are encoded to represent
the token’s position within the token sequence. The token em-
bedding vector and the positional embedding vector are then
combined into a unified representation vector, which represents
the corresponding token within the input sequence.

It is necessary to record the location information of each to-
ken for the generation of statement-level representation vectors
in subsequent stages. In order to capture this information, we
create a binary statement indicative matrix. The matrix, de-
noted as S, is defined as follows:

S = {s11, ..., s1n, ..., sm1, ..., smn}, (6.1)

where n is the token number, m is the statement number, and
sij indicates whether the i-th token belongs to the j-th statement
in the given function. The value of sij will be 1 if the i-th token
belongs to the j-th statement in the given function; otherwise,
sij will be zero.

In the subsequent sections, we will introduce the design of the
code encoder, which takes both the token embedding sequence
and the binary statement indicative matrix as inputs and gen-
erates statement-level prediction scores.

6.2.3 The Design of Code Encoder

In this subsection, we present the code encoder of our proposed
approach WILDE. The code encoder consists of a Transformer-
based encoder, as well as linear classifiers for both the max pool-
ing channel and the mean pooling channel.



CHAPTER 6. VULNERABILITY LOCALIZATION 125

Transformer Encoder with Self-attention

In our approach WILDE, we utilize a Transformer-based en-
coder. The encoder comprises 12 stacked Transformer blocks,
each consisting of a multi-head self-attention layer and a fully
connected feed-forward neural network. The multi-head self-
attention layer’s purpose is to generate the attention vector
based on the attention score assigned to each code token. To
accomplish this, the dot product between the query vector of
the current code token and the key vectors of the other tokens
is computed. Subsequently, the dot product is normalized to
probabilities via the Softmax function. Finally, the attention
vector is obtained by taking the dot product between the value
vectors and previous normalized probabilities. The equation for
calculating the attention score is provided below:

Attention(Q,K, V ) = Softmax(QKT

√
dk

V ), (6.2)

where Q, K , V is the query vector, key vector, and value vector,
respectively.

The multi-head mechanism enables the model to create sev-
eral subspaces, each dedicated to different aspects of the input
sequence. This allows the model to effectively capture diverse
semantic information from the input. Initially, the multi-head
mechanism divides the input vectors into h heads, with each
head having a dimension of d

h . Following the self-attention op-
eration on each head, these heads are then concatenated back
together as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O, (6.3)



CHAPTER 6. VULNERABILITY LOCALIZATION 126

where headi = Attention(QWQ
i , KWK

i , V W V
i ) and WO is the

projection matrix for the concatenated vectors.
Finally, the concatenated vectors will be fed into a fully con-

nected feed-forward neural network. This neural network com-
prises two linear layers, with a ReLU activation function sand-
wiched between them.

Statement-level Representation Vector Fusion

After the encoding of the input token sequence from the previ-
ous Transformer-based encoder, we obtained the representation
vector for each token from the last hidden states in the model.
Since the number of tokens in each statement varies, it is nec-
essary to merge the embedding vectors of tokens belonging to
the same statement into a single statement-level representation
vector. To achieve efficient fusion of these vectors, we establish
two channels for vector fusion: max pooling and mean pooling.
These channels effectively capture informative features from dif-
ferent perspectives.



CHAPTER 6. VULNERABILITY LOCALIZATION 127

1 char ∗ tr imTra i l ingWhitespace ( char ∗ strMessage , i n t
l ength ) {

2 char ∗ retMessage ;
3 char ∗message = mal loc ( s i z e o f ( char ) ∗( l ength +1) ) ;
4

5 // copy input s t r i n g to a temporary s t r i n g
6 char message [ l ength +1] ;
7 i n t index ;
8 f o r ( index = 0 ; index < length ; index++) {
9 message [ index ] = strMessage [ index ] ;

10 }
11 message [ index ] = ' \0 ' ;
12

13 // trim t r a i l i n g whitespace
14 i n t l en = index −1;
15 whi le ( i s s p a c e ( message [ l en ] ) ) {
16 message [ l en ] = ' \0 ' ;
17 len −−;
18 }
19

20 // return s t r i n g without t r a i l i n g whitespace
21 retMessage = message ;
22 re turn retMessage ;
23 }
24 . . .
25 }

Code Listing 6.1: A motivating example for max pooling. The code is
simplified due to the space limit.

Max Pooling Channel: Max pooling is a down-sampling tech-
nique commonly employed in deep learning to effectively retain
local features from the original feature. This characteristic holds
significant importance in vulnerability detection, as numerous
software vulnerabilities arise from variable or API misuse. An
illustrative example is provided in Listing 6.1 from CWE-787,
demonstrating the Out-of-bounds Write vulnerability. In line 16



CHAPTER 6. VULNERABILITY LOCALIZATION 128

of the code snippet, the variable len is employed as an array in-
dex, potentially leading to a buffer underwrite issue if the input
consists solely of whitespaces. Consequently, the while state-
ment may traverse beyond the beginning of the string, thereby
invoking the isspace() API on an address outside the limits of
the local buffer on certain systems. To resolve this vulnerability,
it is necessary to validate the value of the variable len before
utilizing it as an array index. By employing the max pooling
function, it becomes possible to detect improper variable usage
within the statement by capturing the local features from the
vector of the improper variable.

The operation of max pooling is illustrated as follows:

vmax_j = max(h1 · s1j, ..., hn · snj), (6.4)

where vmax_j is the representation vector for the locality infor-
mation in the j-th statement, hi is the hidden vector for the i-th
token from the encoder, and sij is the indicator to show whether
the i-th token belongs to the j-th statement. hi · sij can remove
the irrelevant token vectors during the operation of max pooling.

1 #d e f i n e JAN 1
2 #d e f i n e FEB 2
3 #d e f i n e MAR 3
4

5 shor t getMonthlySales ( i n t month) { . . . }
6

7 f l o a t ca lcu lateRevenueForQuarter ( shor t quar te rSo ld )
{ . . . }

8

9 i n t determineFirstQuarterRevenue ( ) {
10

11 // Var iab le f o r s a l e s revenue f o r the quarte r
12 f l o a t quarterRevenue = 0 .0 f ;
13



CHAPTER 6. VULNERABILITY LOCALIZATION 129

14 shor t JanSold = getMonthlySales (JAN) ; /∗ Get s a l e s
in January ∗/

15 shor t FebSold = getMonthlySales (FEB) ; /∗ Get s a l e s
in February ∗/

16 shor t MarSold = getMonthlySales (MAR) ; /∗ Get s a l e s
in March ∗/

17

18 // Ca lcu la t e qua r t e r l y t o t a l
19 shor t quar te rSo ld = JanSold + FebSold + MarSold ;
20

21 // Ca lcu la t e the t o t a l revenue f o r the quarte r
22 quarterRevenue = calculateRevenueForQuarter (

quarte rSo ld ) ;
23

24 saveFirstQuarterRevenue ( quarterRevenue ) ;
25

26 re turn 0 ;
27 }

Code Listing 6.2: A motivating example for mean pooling.

Mean Pooling Channel: Mean pooling is a down-sampling
technique commonly used in deep learning to effectively preserve
global features from the original input. This technique is partic-
ularly useful for identifying some software vulnerabilities caused
by overflow. An illustrative example from CWE-190, specifi-
cally ”Integer Overflow” or ”Wraparound,” is presented in List-
ing 6.2. In line 19, the values of variables JanSold, FebSold, and
MarSold are summed and assigned to the variable quarterSold.
However, there exists a potential risk of integer overflow if the
sum exceeds the maximum value allowed for the short int prim-
itive type. Integer overflow can result in severe consequences
such as data corruption, unexpected behavior, infinite loops, or
system crashes. To mitigate this issue, it is necessary to validate
the sum before performing the assignment.



CHAPTER 6. VULNERABILITY LOCALIZATION 130

The operation of mean pooling is shown as follows:

vmean_j =

∑n
i=1 hi · sij∑n

i=1 sij
, (6.5)

where vmean_j is the representation vector for the global infor-
mation in the i-th statement, hi is the hidden vector for the
i-th token from the encoder, and sij is the indicator to show
whether the i-th token belongs to the j-th statement. hi · sij
can remove the irrelevant token vectors during the operation of
mean pooling.

Representation Vector Classification and Fusion

Upon combining the original embedding vectors of the tokens
within a statement, we generate two representation vectors that
encompass both local and global information. Then we employ
two linear classifiers to classify these two representation vectors
as the binary classification task, respectively. Each classifier
consists of a fully connected layer followed by a softmax activa-
tion function. The scores produced by these classifiers are then
combined through a weighted sum, resulting in a single score
that serves as the final prediction for the statement.

6.2.4 Multiple Instance Learning-Based Training Strat-
egy

Despite generating the representation vector and utilizing the
classifier for individual statements, the absence of statement-
level labels poses an ongoing challenge. Inspired by the concept
from multiple instance learning, we convert the label of the en-
tire function into pseudo labels for each statement within the



CHAPTER 6. VULNERABILITY LOCALIZATION 131

target function to tackle this issue. These pseudo-labels serve
as the supervised signal during training.

It is known that a vulnerable function must contain at least
one vulnerable statement, whereas a non-vulnerable function
has no vulnerable statements. In a given code snippet, the la-
bel yi represents the vulnerability status of the i-th statement,
where yi is 0 for non-vulnerable statements and 1 for vulnerable
statements. The label Y indicates whether the code snippet as
a whole is vulnerable or not. Thus, we can determine the label
of the entire code snippet as follows:

Y = max{y1, ..., yn}, (6.6)

where n is the number of statements in the code snippet.
By referring to Equation 6.6, it becomes evident that the label

of every statement within a function labeled as 0 will also be 0.
However, there are two challenges in determining the statement
labels within a function labeled as 1. Firstly, the vulnerable
function contains only a few vulnerable statements, while the
majority of statements inside the function are non-vulnerable.
This raises the issue of how to assign labels to these statements.
Secondly, even if we solve the problem of label assignment for
the vulnerable function, we encounter another challenge with the
label ratio. In non-vulnerable functions, the statement labels
will be predominantly 0, and the same applies to most of the
statement labels in the vulnerable function. The ratio of pseudo-
positive/negative labels becomes much smaller than the ratio of
the original positive/negative labels in the dataset. The sample
ratio imbalance will lead the model to favor predicting functions
as non-vulnerable, impacting its overall performance [70].

We address the first issue based on the assumption that the



CHAPTER 6. VULNERABILITY LOCALIZATION 132

non-vulnerable statements exhibit a distinct pattern that differs
from the vulnerable statement. This pattern can be detected
and distinguished by the classifier model. Specifically, we sort
the statements within the function in descending order, based on
their previous classification prediction scores. Next, we generate
pseudo labels for the top k statements, assigning them the same
label as the entire function for training purposes. The value of
k can be determined as the average number of vulnerable state-
ments, as indicated by the dataset statistics. It is important to
note that the pseudo labels for the vulnerable statements are not
accurate at the beginning of the training. However, the pseudo
labels for the non-vulnerable statements must be accurate be-
cause all the statements in the non-vulnerable statements are
non-vulnerable. As negative samples are incorporated into the
training process, the prediction scores for statements that are
semantically similar to non-vulnerable statements will progres-
sively decrease. The pseudo labels for vulnerable statements
will gradually become more relatively accurate as training pro-
gresses [14].

To address the second issue, we set the training objective ex-
clusively for the top-k statement within the given function, re-
gardless of whether the function is vulnerable or non-vulnerable.
This operation can effectively address the issue of imbalanced
sample ratios resulting from the conversion of pseudo labels.
From the experiment results, we find that the selection of hyper-
parameter k will have a slight effect on the overall performance,
which will be discussed in Section § 6.4.2

In summary, the loss function used in WILDE is cross-entropy
loss, which is defined as follows:



CHAPTER 6. VULNERABILITY LOCALIZATION 133

loss =
1

N · k
∑
i

k∑
j

−[Yilog(pij) + (1− Yi)log(1− pij)], (6.7)

where N is the number of the function, Yi is the label for the
function i, pij is the vulnerability probability for the j-th state-
ment in the function i, and k is the pre-defined parameter.

6.2.5 Model Inference

During the inference stage, WILDE does not provide a direct
prediction of the vulnerability of the entire function. Instead,
WILDE focuses on predicting vulnerable conditions for each
statement within the function. The determination of the function-
level prediction relies on the results obtained at the statement
level. If at least one statement within the function is predicted as
vulnerable, the function is considered vulnerable as well. Con-
versely, if no statements are predicted as vulnerable, the func-
tion is deemed non-vulnerable.

Two methods for localizing vulnerabilities are employed: abso-
lute label prediction and relative score ranking. In the absolute
label prediction method, the model identifies and reports only
the statements it predicts as vulnerable. On the other hand, the
relative score ranking method involves evaluating the statements
within the function based on their prediction scores and sorting
them in descending order. The top k statements are then se-
lected as potential candidates for vulnerable statements, which
are presented to the users. However, it is important to note that
the absolute label prediction might not be accurate enough since
there is no ground-truth label provided for training. Therefore,
we recommend utilizing the relative scores ranking method as



CHAPTER 6. VULNERABILITY LOCALIZATION 134

Fan et al. Reveal FFMPeg+Qemu

Train Valid Test Train Valid Test Train Valid Test

Vul function 4,993 624 626 801 98 104 7,078 887 879
Non-vul function 142,188 17,774 17,774 10,371 1,256 1,296 8,526 1,058 1,024
Avg stat num 20.12 20.69 20.41 N/A N/A N/A N/A N/A N/A
Avg vul stat num 3.03 3.27 3.28 N/A N/A N/A N/A N/A N/A

Table 6.1: Statistics of dataset.

the preferred approach for vulnerability localization. The perfor-
mance of both methods will be further discussed in the following
section.

6.3 Experimental Setup

In this section, we provide an overview of the statistics infor-
mation for the dataset used in our study, the steps taken for
data pre-processing, the baseline models employed, the evalua-
tion metrics utilized, and the implementation details concerning
both our proposed tool and the other baseline models included
in our experiment.

6.3.1 Data Pre-processing

In our experiment, we evaluate the performance of vulnera-
bility detection and localization using three datasets: FFM-
Peg+Qemu [133], Reveal [15], and Fan et al. [31]. The FFM-
Peg+Qemu dataset, collected by Devign, comprises data from
two open-source C projects and has been labeled by experts. It
consists of approximately 10,000 vulnerable functions and 12,000
non-vulnerable functions. The Reveal dataset is obtained from
Linux Debian Kernel and Chromium, containing about 2,000
vulnerable functions and 20,000 non-vulnerable functions. Fan



CHAPTER 6. VULNERABILITY LOCALIZATION 135

et al. dataset, a C/C++ dataset, is gathered from over 300
open-source GitHub projects, covering 91 different Common
Vulnerabilities and Exposures (CVE) databases from 2002 to
2019. This dataset includes around 10,000 vulnerable functions
and 177,000 non-vulnerable functions. Although the purpose of
vulnerability detection in this thesis is to ensure whether the
retrieved code is vulnerable or not, here we split the workflow of
this thesis into code retrieval and vulnerability detection sepa-
rately for evaluation. Therefore, we only utilize the datasets for
vulnerability detection in this chapter.

The FFMPeg+Qemu and Reveal datasets only provide labels
indicating whether a given function is vulnerable or not. There-
fore, we solely assess the performance of function-level vulner-
ability detection using these two datasets. In contrast, Fan et
al. [31] not only offer function-level labels but also provide the
fixed version of the vulnerable function. This allows us to pin-
point the vulnerable statements by comparing the function be-
fore and after fixing. Therefore, we can evaluate both function-
level vulnerability detection and statement-level vulnerability
localization on this dataset.

We have imposed a length limitation on the input token se-
quence to accommodate the fixed-length input requirement of
Transformer. Any token exceeding the maximum input length is
discarded. However, the vulnerable statements in the code snip-
pets may be contained in the discarded tokens, which means that
the input statements are not vulnerable although the label for
the entire function is vulnerable. To address this label conflict,
we remove code snippets whose function-level label is vulnerable
but do not contain any vulnerable statements in the input to our
model. Additionally, different baseline models used in our ex-



CHAPTER 6. VULNERABILITY LOCALIZATION 136

periments necessitate different data pre-processing tools. Some
of the data in our dataset cannot be processed correctly by all
of these tools. In the interest of experimental fairness, we only
retain the data that can be processed by all data pre-processing
tools.

Within Table 6.1, “Vul function” denotes the number of vul-
nerable functions in the dataset, while “Non-vul function” rep-
resents the number of non-vulnerable functions. “Avg stat num”
indicates the average number of statements in a single function
within the dataset, and “Avg vul stat num” signifies the average
number of vulnerable statements in a single function. As pre-
viously mentioned, Reveal and FFMPeg+Qemu do not provide
information regarding vulnerable statements, thus preventing
us from offering statistics on the average statement number and
average vulnerable statement number for these two datasets.

6.3.2 Implementation Details

In our proposed WILDE, we set the number of encoder layers
to 12, the number of attention headers to 12, and the hidden
size to 768. The batch size and learning rate were set to 16 and
2e-5, respectively. Our model supports a maximum input token
length of 512. As the hyperparameter top-k is sensitive to the
average number of vulnerable statements in the target dataset,
which can vary between datasets, we experimented with values
of 1, 3, and 5 for top-k and selected the best performance for
each dataset. For optimization, we utilized the AdamW [75]
optimizer. We set a maximum of 50 epochs for the training
with 10-step patience for early stopping.

We replicated all the baselines, except for Devign, using pub-
licly released source code and adopted the same hyperparameter



CHAPTER 6. VULNERABILITY LOCALIZATION 137

settings as described in their original paper. For Devign, since
they did not make their code public, we reproduced it based
on the code provided by Chakraborty et al [15]. In the case
of the baseline model called IVDetect, it requires the training
dataset to have an equal ratio of vulnerable and non-vulnerable
functions. Since none of the datasets we used had this ratio,
we retained all the vulnerable functions and randomly selected
an equal number of non-vulnerable functions from each training
dataset to create a new training dataset for IVDetect. There
are two versions of the baseline model named LineVul, which
are LineVul with pre-training and LineVul without pre-training.
We observed that LineVul with pre-training performed excep-
tionally well on the dataset of Fan et al, while there was no
significant difference between LineVul with and without pre-
training on the other two datasets. This led us to suspect the
presence of a data leakage problem specifically in the Fan et
al dataset so we excluded the pre-training model from our ex-
periments. All the models were trained on a server equipped
with NVIDIA A100-SXM4. The training process for WILDE
consumed approximately 10 GPU hours.

6.3.3 Baselines

We compare WILDE with six state-of-the-art vulnerability de-
tection methods, including two token-based methods [68, 69],
three structure-based methods [15, 66, 133], and one unsuper-
vised statement-level detection method [35]. Here, we provide a
brief description of these baseline methods:

(1) VulDeePecker [69]: VulDeePecker extracts code gad-
gets from the given code snippet, which are several lines of code
that are semantically related to each other, and adopts the bi-



CHAPTER 6. VULNERABILITY LOCALIZATION 138

directional LSTM-based neural network with an attention mech-
anism for vulnerability detection.

(2) SySeVR [68]: SySeVR extracts the vulnerability syn-
tax characteristics (SyVCs) from the given function at first and
then transforms these SyVCs into semantics-based vulnerability
candidates (SeVCs) which contain the statements related to the
given SyVCs via the program slicing technique. Finally, a bi-
directional recurrent neural network is employed to encode these
SeVCs into vectors, facilitating the detection of vulnerable code
snippets.

(3) Devign [133]: Devign extracts the information of ab-
stract syntax tree (AST), control flow graph (CFG), data flow
graph (DFG), and code token sequence from the given function
to construct the graph which can represent the given functions
and generate the embedding vector for each node inside the
graph. Subsequently, the graph is inputted into a Gated Graph
Neural Network (GGNN) for classification training.

(4) Reveal [15]: Reveal extracts the information of Code
Property Graph (CPG) from the given function to construct
the representation graph and adopts the technique of Word2Vec
to generate the embedding vector for each node. The resulting
graph is then inputted into GGNN, where all the vectors from
the representation graph are combined into a single vector. This
fused vector serves as the representation for the entire graph,
facilitating vulnerability detection.

(5) IVDetect [66]: IVDetect is a code analysis tool that
divides the code into multiple statements and extracts various
features from each statement. These features encompass sub-
token sequences, AST sub-trees, variable names, variable types,
data dependency context, and control dependency context. To



CHAPTER 6. VULNERABILITY LOCALIZATION 139

capture these features, they are embedded into representation
vectors. Subsequently, these vectors are combined into a uni-
fied representation vector for each statement using an attention-
based bi-directional GRU. These statement-level representation
vectors serve as node embedding features, which are then fed
into a Graph Convolutional Network (GCN) to acquire a com-
prehensive graph representation for detection purposes.

(6) LineVul [35]: LineVul adopts the Byte Pair Encoder
(BPE) technique to tokenize the given code into a sub-token
sequence and utilize a 12-layer Transformer based model for
vulnerability detection. Not only predicting the function-level
vulnerability, LineVul can also localize the vulnerable statement
by calculating the attention scores for each sub-token.

6.3.4 Evaluation Metrics

In our experiment, we adopt four metrics, which are Acc, P,
R, and F1, to evaluate the performance of all the models in
function-level vulnerability detection. Additionally, we utilized
nine metrics, which are Top-1, Top-5, Top-10, MFR, MAR,
IFA, P, R, F1, to evaluate the performance of all the models
in statement-level vulnerability localization.

The metric employed to determine the accuracy of the model
is denoted as Acc. It quantifies the ratio of accurately classified
samples to the total number of samples. The definition of Acc
is presented below:

Acc =
Sc

S
, (6.8)

where Sc represents the number of samples correctly labeled by
the model, while S denotes the total number of samples. A



CHAPTER 6. VULNERABILITY LOCALIZATION 140

higher value of Acc indicates a better performance of the model.
P is the metric used to assess the accuracy of the model’s

detection of vulnerable samples. The definition of P is provided
below:

P =
TP

TP + FP
, (6.9)

where TP represents the count of samples where both the label
and the model’s prediction are true, while FP refers to the count
of samples where the label is true but the model’s prediction is
incorrect. A higher value for P signifies improved performance
of the model.

R is a metric used to assess the percentage of vulnerable sam-
ples correctly detected out of all the vulnerable samples pre-
dicted by the model. The specific definition of this metric is
provided below:

R =
TP

TP + FN
, (6.10)

where TP represents the count of samples with true labels that
the model correctly predicts, while FN represents the count of
samples with false labels that the model incorrectly predicts. A
higher value of R signifies superior performance of the model.

F1 is a metric that represents the harmonic mean of precision
and recall. It is commonly employed to assess a model’s per-
formance by taking into account both precision and recall. The
formula for calculating F1 is as follows:

F1 = 2× P ×R

P +R
, (6.11)

where P represents the precision of the model, and R denotes
the recall of the model. A higher F1 score indicates superior



CHAPTER 6. VULNERABILITY LOCALIZATION 141

performance of the model.
Top-k is a metric used to assess the model’s ability to identify

vulnerable statements among the top k results it returns. The
definition of Top-k is as follows:

Top− k =
1

|Sv|

Sv∑
s=1

δ(FRanks ≤ k), (6.12)

where Sv represents the count of vulnerable functions, and FRanks,
denotes the ranking assigned to the first vulnerable statement in
the statement set. A higher value for Top-k signifies improved
performance in vulnerability localization.

MFR (Mean First Ranking) is calculated as the average of
the rankings assigned to the first vulnerable statement among
the returned statements. The formula for calculating MFR is
provided below:

MFR =
1

|Sv|

Sv∑
s=1

FRanks (6.13)

A lower value of MFR indicates superior performance in vul-
nerability localization.

MAR (Mean Average Ranking) is calculated as the average
ranking across all vulnerable statements present in the returned
statements. The formula for MAR is provided below:

MAR =
1

|Sv|

Sv∑
s=1

1

|N |

N∑
i=1

Ranksi, (6.14)

where Ranksi represents the ranking of the i-th vulnerable state-
ment within the returned statements of the s-th vulnerable func-
tion. A lower MAR value indicates superior performance in
terms of vulnerability localization.



CHAPTER 6. VULNERABILITY LOCALIZATION 142

IFA (Initial False Alarm) is a metric that quantifies the num-
ber of statements that are erroneously predicted as vulnerable
by the models before correctly identifying the first vulnerable
statement. The definition of this metric is provided below:

IFA =
1

|Sv|

Sv∑
s=1

(FRanks − 1) (6.15)

A lower value of IFA indicates superior performance in vul-
nerability localization.

6.4 Experimental Results

In this section, we first present the experimental results and
assess the performance of WILDE in terms of function-level
vulnerability detection and statement-level vulnerability local-
ization. Secondly, we evaluate the impact of Top-K statement
selection on the overall performance. Thirdly, we investigate
the contribution of each channel to the overall performance.
Fourthly, we examine the influence of data size on both function-
level vulnerability detection and statement-level vulnerability
localization abilities. Lastly, we evaluate the ability of WILDE
to detect different types of vulnerability.

6.4.1 Comparison on function-level vulnerability de-
tection and statement-level vulnerability local-
ization

Table 6.2 illustrates the comparison results of function-level vul-
nerability detection performance. In the datasets of Fan et al.
and Reveal, where there is an imbalance in the proportion of



CHAPTER 6. VULNERABILITY LOCALIZATION 143

M
od

el
Fa

n
et

al
.

R
ev

ea
l

FF
M

P
eg

+
Q

em
u

A
cc

P
R

F1
A

cc
P

R
F1

A
cc

P
R

F1

V
ul

D
ee

Pe
ck

er
0.

91
3

0.
15

5
0.

14
6

0.
15

0
0.

76
3

0.
21

1
0.

13
1

0.
16

2
0.

49
6

0.
46

1
0.

32
6

0.
38

1
Sy

Se
V

R
0.

90
4

0.
12

9
0.

19
4

0.
15

5
0.

74
3

0.
40

1
0.

24
9

0.
30

7
0.

47
9

0.
46

1
0.

58
8

0.
51

7
D

ev
ig

n
0.

95
7

0.
25

7
0.

14
3

0.
18

4
0.

87
5

0.
31

6
0.

36
7

0.
33

9
0.

56
9

0.
52

5
0.

64
7

0.
58

0
R

ev
ea

l
0.

92
8

0.
27

0
0.

66
1

0.
38

3
0.

81
8

0.
31

6
0.

61
1

0.
41

6
0.

61
1

0.
55

5
0.

70
7

0.
62

2
IV

D
et

ec
t

0.
69

6
0.

07
3

0.
60

0
0.

13
0

0.
80

8
0.

27
6

0.
55

6
0.

36
9

0.
57

3
0.

52
4

0.
57

6
0.

54
8

Li
ne

V
ul

0.
97

2
0.

63
2

0.
43

6
0.

51
6

0.
84

7
0.

24
8

0.
51

9
0.

33
5

0.
54

1
0.

49
6

0.
90

9
0.

64
2

W
IL

D
E

0.
97

7
0.

72
4

0.
52

2
0.

60
7

0.
92

2
0.

47
1

0.
39

4
0.

42
9

0.
58

9
0.

53
0

0.
81

2
0.

64
1

Ta
bl

e
6.

2:
C

om
pa

ris
on

re
su

lts
on

fu
nc

tio
n-

le
ve

lv
ul

ne
ra

bi
lit

y.
T

he
be

st
re

su
lts

ar
e

hi
gh

lig
ht

ed
in

bo
ld

fo
nt

.



CHAPTER 6. VULNERABILITY LOCALIZATION 144

Model Acc P R F1 MAR MFR IFA Top-1 Top-3 Top-5

LineVul N/A N/A N/A N/A 9.49 7.17 6.17 0.005 0.252 0.375

WILDE 0.983 0.183 0.338 0.237 9.08 6.46 5.46 0.283 0.484 0.609

Table 6.3: Comparison results on function-level vulnerability and statement-
level vulnerability localization. The best results are highlighted in bold font.

positive and negative examples, the F1 metric holds more sig-
nificance compared to other metrics. The results reveal that
WILDE outperforms other approaches and achieves state-of-
the-art performance in terms of F1 on both the Fan et al. and
Reveal datasets. Notably, WILDE demonstrates a relative im-
provement of 17.6% and 3.1% in F1 on the Fan et al. and Reveal
datasets, respectively. Regarding the FFMPeg+Qemu dataset,
while WILDE does not surpass all the baselines, its performance
is closely aligned with the state-of-the-art baseline, with only a
0.2% difference in F1. These findings demonstrate that WILDE
can attain performance comparable to the current state-of-the-
art baselines for function-level vulnerability detection.

Table 6.3 presents the results of statement-level vulnerabil-
ity localization performance for our proposed approach and the
baselines. Due to the availability of sentence-level annotation
labels in the dataset by Fan et al., we exclusively display the
experimental results for this dataset. To evaluate accuracy, pre-
cision, recall, and F1, we employ the first method outlined in
Section § 6.2.5, which utilizes absolute label prediction. For the
remaining metrics, we utilize the second method introduced in
Section § 6.2.5, employing relative scores to ensure a fair com-
parison between WILDE and the baseline.

LineVul employs the attention score for each statement to esti-
mate the likelihood of a statement being vulnerable, rather than



CHAPTER 6. VULNERABILITY LOCALIZATION 145

directly determining its vulnerability. The metrics such as accu-
racy, precision, recall, and F1 are not applicable to this baseline.
Instead, we present the results of our proposed WILDE. A com-
parison between the results in Table 6.2 and Table 6.3 reveals
that the ability of WILDE to detect vulnerabilities at the state-
ment level is inferior to its ability to detect vulnerabilities at
the function level. Therefore, relying solely on the statement-
level predictions from WILDE may not be advisable. It can be
easily understood that it is quite hard to localize the vulnerable
statement since there is no explicit ground-truth label for the
training. Moreover, the recall of WILDE is significantly higher
than its precision according to the results from Table 6.3, indi-
cating that WILDE tends to predict statements as vulnerable at
the cost of a higher false alarm rate. Comparing the performance
of WILDE and the baselines on the other metrics in Table 6.3,
we observe that our proposed WILDE achieves state-of-the-art
performance in statement-level vulnerability localization across
all metrics. Notably, there is a substantial improvement in the
Top-1 metric and significant improvements in the Top-3 and
Top-5 metrics. Unlike previous approaches that lack supervised
signals in the attention score, our mechanism enhances vulner-
ability localization by providing pseudo labels during training,
resulting in improved localization ability. Furthermore, the ac-
curacy of the top 5 predictions from WILDE is considerably
higher than the F1 score, suggesting that our proposed WILDE
can effectively notify users about vulnerable statements by rank-
ing their relative scores when the target function is predicted to
be vulnerable.

In conclusion, the comprehensive experiment results show that
WILDE can achieve a comparable function-level vulnerability



CHAPTER 6. VULNERABILITY LOCALIZATION 146

detection performance and state-of-the-art statement-level vul-
nerability localization performance compared to previous base-
lines, which demonstrates the effectiveness of our proposed WILDE.

6.4.2 Impact of the top-k statement selection on the
performance of WILDE

Table 6.4 presents the impact of the Top-K hyperparameter on
the performance of function-level vulnerability detection models.
It is evident that there is no universally optimal fixed value for
top-k that guarantees optimal performance across all datasets.
This is primarily due to the variation in the average number
of vulnerable statements within functions in each dataset. Our
proposed WILDE employs pseudo statement-level labels as su-
pervised signals for vulnerability localization during training.
However, if the predefined top-k hyperparameter does not align
with the actual number of vulnerable statements in a function,
incorrect pseudo labels may be assigned. Setting a larger or
smaller value of k can result in misclassifying non-vulnerable
statements as vulnerable or missing some vulnerable statements,
introducing noise into the model and adversely affecting perfor-
mance. The results from Section Table 6.1 reveal that the aver-
age number of vulnerable statements in the Fan et al. dataset
is approximately 3, which explains why the best performance
is achieved when k is set to 3 in this dataset. As we lack in-
formation about the number of vulnerable statements in other
datasets, we cannot determine if similar patterns exist in those
cases.

Table 6.5 illustrates how the hyperparameter of Top-K in-
fluences the model performance of statement-level vulnerability
localization. We observed an interesting phenomenon: different



CHAPTER 6. VULNERABILITY LOCALIZATION 147

M
od

el
Fa

n
et

al
.

R
ev

ea
l

FF
M

P
eg

+
Q

em
u

A
cc

P
R

F1
A

cc
P

R
F1

A
cc

P
R

F1

W
IL

D
E t

op
−

1
0.

97
6

0.
72

4
0.

48
1

0.
57

8
0.

91
3

0.
41

5
0.

42
3

0.
41

9
0.

58
9

0.
53

0
0.

81
2

0.
64

1
W

IL
D

E t
op

−
3

0.
97

7
0.

72
4

0.
52

2
0.

60
7

0.
89

4
0.

36
5

0.
47

1
0.

39
7

0.
57

5
0.

51
9

0.
82

4
0.

63
7

W
IL

D
E t

op
−

5
0.

97
4

0.
65

3
0.

52
4

0.
58

2
0.

92
2

0.
47

1
0.

39
4

0.
42

9
0.

57
6

0.
52

0
0.

82
4

0.
63

8

Ta
bl

e6
.4

:R
es

ul
ts

of
th

ef
un

ct
io

n-
le

ve
lv

ul
ne

ra
bi

lit
y

de
te

ct
io

n
pe

rfo
rm

an
ce

co
m

pa
ris

on
w

ith
di

ffe
re

nt
To

p-
K

se
le

ct
io

n.
T

he
be

st
re

su
lts

am
on

g
th

e
th

re
e

va
ria

nt
s

of
W

IL
D

E
ar

e
hi

gh
lig

ht
ed

in
bo

ld
fo

nt
.



CHAPTER 6. VULNERABILITY LOCALIZATION 148

Model Acc P R F1 MAR MFR IFA Top-1 Top-3 Top-5

WILDEtop−1 0.987 0.155 0.142 0.148 9.24 6.53 5.53 0.219 0.446 0.577
WILDEtop−3 0.983 0.183 0.338 0.237 9.08 6.46 5.46 0.283 0.484 0.609
WILDEtop−5 0.979 0.164 0.380 0.229 9.02 6.43 5.43 0.294 0.497 0.605

Table 6.5: Results of the statement-level vulnerability localization perfor-
mance comparison with different Top-K selection. The best results among
the three variants of WILDE are highlighted in bold font.

hyperparameter values for top K lead to varying tendencies in
metrics for absolute label prediction (accuracy, precision, recall,
and F1) and relative scoring (MFR, MAR, IFA, Top-1, Top-3,
and Top-5), as described in Section § 6.2.5. Specifically, the
model with a k value of 1 performs the worst across all met-
rics (Due to the imbalance proportion of the positive examples
and negative examples, the metric of accuracy is meaningless
under this setting). The mislabeling of the statements can be
the reason leading to these results. During training, a signifi-
cant number of vulnerable statements are incorrectly labeled as
non-vulnerable. Unfortunately, the model learns this bias and
it ultimately results in a decline in performance. Interestingly,
the model with a k value of 3 performs better in absolute label
prediction metrics compared to the model with a k value of 5,
but worse in relative scoring metrics. A higher k value indi-
cates that fewer vulnerable statements are mistakenly labeled
as non-vulnerable, but more non-vulnerable statements are in-
correctly labeled as vulnerable during training. This bias causes
the model to be more inclined to predict the target sentence
as vulnerable, resulting in a higher recall score but lower pre-
cision. The experimental results from Table 6.4 and Table 6.5
support this interpretation. While a higher k value may mislabel
more non-vulnerable statements as vulnerable, the mislabeled



CHAPTER 6. VULNERABILITY LOCALIZATION 149

non-vulnerable statements still exhibit a similar pattern to non-
vulnerable statements in non-vulnerable functions, whereas real
vulnerable statements differ from non-vulnerable statements in
non-vulnerable functions. This characteristic causes the model
to predict those mislabeled non-vulnerable statements as vulner-
able, but their relative score will be lower than truly vulnerable
statements. As a result, the model achieves a more accurate rel-
ative ranking of vulnerable statements. These findings suggest
that a higher k value may be more appropriate if we intend to use
WILDE as a tool to prompt users about vulnerable statements
through relative ranking when the target function is predicted
as vulnerable.

In conclusion, the comprehensive experimental results demon-
strate that the choice of top-k significantly impacts the perfor-
mance of WILDE in both function-level vulnerability detection
and statement-level vulnerability localization.

6.4.3 Impact of different channels on the performance
of WILDE

In this experiment, we conducted an analysis of the channels
utilized in our model to determine their contribution to the per-
formance of WILDE. The results of the function-level vulner-
ability detection experiment using different channels are pre-
sented in Table 6.6. It is observed that the model combin-
ing max pooling and mean pooling achieves the best perfor-
mance across all datasets, except for the Reveal dataset. This
outcome highlights the effectiveness of fusing max pooling and
mean pooling. There are two potential explanations for why the
model with only max pooling performs best in terms of the F1
metric in the dataset of Reveal. Firstly, the size of the train-



CHAPTER 6. VULNERABILITY LOCALIZATION 150

M
od

el
Fa

n
et

al
.

R
ev

ea
l

FF
M

P
eg

+
Q

em
u

A
cc

P
R

F1
A

cc
P

R
F1

A
cc

P
R

F1

W
IL

D
E m

ax
0.

97
6

0.
72

1
0.

50
0

0.
59

1
0.

93
3

0.
57

4
0.

37
5

0.
45

3
0.

56
7

0.
51

3
0.

81
6

0.
63

0
W

IL
D

E m
ea

n
0.

97
3

0.
66

0
0.

44
6

0.
53

2
0.

92
2

0.
47

0
0.

38
5

0.
42

3
0.

56
0

0.
50

9
0.

75
2

0.
60

8
W

IL
D

E
0.

97
7

0.
72

4
0.

52
2

0.
60

7
0.

92
2

0.
47

1
0.

39
4

0.
42

9
0.

58
9

0.
53

0
0.

81
2

0.
64

1

Ta
bl

e
6.

6:
R

es
ul

ts
of

th
e

fu
nc

tio
n-

le
ve

lv
ul

ne
ra

bi
lit

y
de

te
ct

io
n

pe
rfo

rm
an

ce
co

m
pa

ris
on

w
ith

di
ffe

re
nt

ch
an

ne
ls.

T
he

be
st

re
su

lts
ar

e
hi

gh
lig

ht
ed

in
bo

ld
fo

nt
.



CHAPTER 6. VULNERABILITY LOCALIZATION 151

Model Acc P R F1 MAR MFR IFA Top-1 Top-3 Top-5

WILDEmax 0.984 0.188 0.299 0.231 9.17 6.66 5.66 0.268 0.481 0.617
WILDEmean 0.977 0.155 0.416 0.226 9.78 7.27 6.27 0.224 0.443 0.586
WILDE 0.983 0.183 0.338 0.237 9.08 6.46 5.46 0.283 0.484 0.609

Table 6.7: Results of the statement-level vulnerability localization perfor-
mance comparison with different channels. The best results are highlighted
in bold font.

ing data could be a factor. Since the Reveal training dataset
contains only around 800 vulnerable functions, the training of
the model becomes unstable. As WILDE has a more complex
structure compared to WILDEmax, overfitting occurs. Secondly,
the specific vulnerability type prevalent in the Reveal dataset
might play a role. As explained in Section § 6.2.3, the design
of max pooling and mean pooling aims to capture features as-
sociated with different vulnerability types. It is possible that
most vulnerabilities in the Reveal dataset align closely with the
vulnerability type effectively captured by max pooling. Conse-
quently, mean pooling may have limited contribution or even
adversely affect the overall model performance. Another note-
worthy finding is that WILDEmax performs very similarly to
WILDE, while WILDEmean exhibits considerably worse perfor-
mance than WILDEmax. This discrepancy may be attributed to
the fact that most vulnerabilities are related to specific keywords
within statements, and these features are effectively captured
by the max pooling mechanism. Mean pooling, on the other
hand, averages the information from each token in the state-
ment, potentially diluting these keyword features and thereby
diminishing the model’s performance.

Table 6.7 presents the experimental results for statement-level
vulnerability localization using different channels. The results



CHAPTER 6. VULNERABILITY LOCALIZATION 152

demonstrate that our WILDE performs the best across almost
all metrics, showcasing the effectiveness of the fusion of max
pooling and mean pooling. Similar to the findings in Table 6.6
for function-level vulnerability detection, the performance of
WILDEmean is significantly lower compared to WILDEmax. How-
ever, WILDEmax exhibits performance levels very close to WILDE
in terms of relative scores metrics discussed in Section § 6.4.1.
Additionally, the fusion of max pooling and mean pooling helps
the model accurately identify vulnerable statements, resulting in
improved rankings. This fusion particularly enhances the Top-1
metric performance, with diminishing improvements as the top-
k value increases. Regarding absolute label prediction metrics,
the performance gap is not as substantial as that observed in rel-
ative scores metrics. This suggests that WILDEmean possesses
a similar ability to predict individual statements within a given
function, as WILDEmax. Interestingly, WILDEmean achieves the
best performance in terms of recall, indicating its capability to
detect more vulnerable statements, albeit with a higher number
of false positives.

In conclusion, the comprehensive experimental results val-
idate the effectiveness of both max pooling and mean pool-
ing in the proposed WILDE. This combination significantly en-
hances the ability of function-level vulnerability detection and
statement-level vulnerability localization.

6.4.4 The influence of the training data size to the per-
formance of WILDE

In this experiment, we assess the impact of training data size
on the performance of our proposed WILDE for function-level
vulnerability detection and statement-level vulnerability local-



CHAPTER 6. VULNERABILITY LOCALIZATION 153

M
od

el
Fu

nc
ti

on
-le

ve
lD

et
ec

ti
on

St
at

em
en

t-
le

ve
lL

oc
al

iz
at

io
n

A
cc

P
R

F1
A

cc
P

R
F1

M
A

R
M

FR
IF

A
To

p-
1

To
p-

3
To

p-
5

W
IL

D
E 1

0%
0.

96
9

0.
58

0
0.

26
5

0.
36

4
0.

99
1

0.
07

4
0.

01
4

0.
02

4
9.

33
6.

73
5.

73
0.

23
5

0.
44

4
0.

58
5

W
IL

D
E 2

0%
0.

97
1

0.
61

0
0.

39
8

0.
48

2
0.

98
7

0.
13

7
0.

11
8

0.
12

7
9.

07
6.

48
5.

48
0.

22
7

0.
43

1
0.

58
3

W
IL

D
E 5

0%
0.

97
1

0.
59

1
0.

52
1

0.
55

4
0.

98
5

0.
17

0
0.

21
7

0.
19

1
9.

33
6.

64
5.

64
0.

26
0

0.
46

0
0.

59
3

W
IL

D
E

0.
97

7
0.

72
4

0.
52

2
0.

60
7

0.
98

3
0.

18
3

0.
33

8
0.

23
7

9.
08

6.
46

5.
46

0.
28

3
0.

48
4

0.
60

9

Ta
bl

e
6.

8:
C

om
pa

ris
on

re
su

lts
on

fu
nc

tio
n-

le
ve

lv
ul

ne
ra

bi
lit

y
de

te
ct

io
n

an
d

st
at

em
en

t-
le

ve
lv

ul
ne

ra
bi

lit
y

lo
ca

liz
at

io
n

w
ith

di
ffe

re
nt

siz
es

of
tr

ai
ni

ng
da

ta
in

th
e

da
ta

se
t

of
Fa

n
et

al
..

T
he

be
st

re
su

lts
ar

e
hi

gh
lig

ht
ed

in
bo

ld
fo

nt
.



CHAPTER 6. VULNERABILITY LOCALIZATION 154

ization. Since only the dataset of Fan et al. includes statement-
level labels, we exclusively evaluate our WILDE using this dataset.
To thoroughly examine the influence of training data size on
model performance, we randomly select 10%, 20%, 50%, and
100% of the data from the training dataset to construct new
training datasets. Table 6.8 presents the experimental results for
function-level vulnerability detection and statement-level vul-
nerability localization across different training data sizes. As
expected, the model’s performance in function-level vulnerabil-
ity detection consistently improves as the training data size in-
creases. Interestingly, even though the data lacks statement-
level labels, the model’s performance in statement-level vulner-
ability localization also improves as the training data size in-
creases. These findings demonstrate that our proposed WILDE
becomes more proficient at locating vulnerability statements
as the training data size grows, even without explicit annota-
tions. However, the performance improvement of WILDE on
absolute label prediction and relative scores, as introduced in
Section § 6.2.5, varies with the increase in training data size.
Specifically, the performance improvement in absolute label pre-
diction, measured by accuracy, precision, recall, and F1, is sub-
stantial with larger training data sizes. Conversely, WILDE
maintains most of its performance in relative scores metrics even
with limited training data, and the performance improvement
in relative scores is not as rapid as the improvement in absolute
label prediction with increasing training data size.

In summary, increasing the size of the training data can en-
hance the performance of function-level vulnerability detection
and statement-level vulnerability localization, even without any
additional information about the vulnerable statements in the



CHAPTER 6. VULNERABILITY LOCALIZATION 155

data.

6.4.5 The detection ability of WILDE for different types
of CWE vulnerabilities

Table 6.9 presents the detection results of our proposed WILDE
for different types of vulnerabilities from CWE. To ensure mean-
ingful data analysis, we have filtered out vulnerability types with
a small number of occurrences and retained only those with at
least five instances. The CWE has released the 2023 Top 25
Most Dangerous Software Weaknesses on their website [1]. The
rank metric in the table indicates the CWE’s ranking in their
list. In cases where the vulnerability types in our test dataset
are not included in the Top 25 list, we denote them as “N/A”
in the rank metric. Additionally, the TPR metric in the table
represents the true positive rate, indicating the percentage of
vulnerabilities successfully detected by the model.

The results reveal an interesting finding: the detection ability
of WILDE does not vary significantly between different types of
CWE vulnerability, with a TPR of approximately 56% for most
CWE types. However, certain vulnerabilities, such as CWE-415
and CWE-284, exhibit notably high or low TPRs. It is impor-
tant to note that the limited number of vulnerabilities makes
it difficult to conclusively determine whether WILDE performs
well or poorly in these specific types. Nevertheless, some excep-
tions stand out. Notably, WILDE demonstrates a strong detec-
tion ability for vulnerabilities classified as CWE-119, success-
fully identifying almost all instances of this type. Conversely,
WILDE displays a poor detection ability for vulnerabilities cat-
egorized as CWE-200 and CWE-399, as it only identifies less
than half of the vulnerabilities within these types.



CHAPTER 6. VULNERABILITY LOCALIZATION 156

C
W

E
-I

D
D

es
cr

ip
ti

on
R

an
k

T
P

R
P

ro
po

rt
io

n

C
W

E-
78

7
O

ut
-o

f-b
ou

nd
s

W
rit

e
1

50
.0

%
7/

14
C

W
E-

41
6

U
se

A
fte

r
Fr

ee
4

61
.5

%
8/

13
C

W
E-

20
Im

pr
op

er
In

pu
t

Va
lid

at
io

n
6

56
.6

%
61

/1
08

C
W

E-
12

5
O

ut
-o

f-b
ou

nd
s

R
ea

d
7

54
.2

%
13

/2
4

C
W

E-
47

6
N

U
LL

Po
in

te
r

D
er

ef
er

en
ce

12
55

.6
%

5/
9

C
W

E-
19

0
In

te
ge

r
O

ve
rfl

ow
or

W
ra

pa
ro

un
d

14
77

.8
%

14
/1

8
C

W
E-

11
9

Im
pr

op
er

R
es

tr
ic

tio
n

of
O

pe
ra

tio
ns

w
ith

in
th

e
Bo

un
ds

of
17

56
.0

%
70

/1
25

a
M

em
or

y
Bu

ffe
r

C
W

E-
36

2
C

on
cu

rr
en

t
Ex

ec
ut

io
n

us
in

g
Sh

ar
ed

R
es

ou
rc

e
w

ith
Im

pr
op

er
21

52
.4

%
11

/2
1

Sy
nc

hr
on

iz
at

io
n

(’R
ac

e
C

on
di

tio
n’

)
C

W
E-

28
4

Im
pr

op
er

A
cc

es
s

C
on

tr
ol

N
/A

37
.5

%
3/

8
C

W
E-

18
9

N
um

er
ic

Er
ro

rs
N

/A
52

.6
%

10
/1

9
C

W
E-

73
2

In
co

rr
ec

t
Pe

rm
iss

io
n

A
ss

ig
nm

en
t

fo
r

C
rit

ic
al

R
es

ou
rc

e
N

/A
57

.1
%

4/
7

C
W

E-
25

4
7P

K
-S

ec
ur

ity
Fe

at
ur

es
N

/A
44

.4
%

4/
9

C
W

E-
20

0
Ex

po
su

re
of

Se
ns

iti
ve

In
fo

rm
at

io
n

to
an

U
na

ut
ho

riz
ed

A
ct

or
N

/A
42

.9
%

12
/2

8
C

W
E-

41
5

D
ou

bl
e

Fr
ee

N
/A

71
.4

%
5/

7
C

W
E-

39
9

R
es

ou
rc

e
M

an
ag

em
en

t
Er

ro
rs

N
/A

48
.7

%
19

/3
9

To
ta

l
54

.8
%

24
6/

44
9

Ta
bl

e
6.

9:
D

et
ec

tio
n

re
su

lts
fo

r
di

ffe
re

nt
C

W
E

vu
ln

er
ab

ili
tie

s
w

ith
ou

r
pr

op
os

ed
W

IL
D

E.



CHAPTER 6. VULNERABILITY LOCALIZATION 157

In conclusion, WILDE demonstrates comparable detection
abilities for most types of vulnerabilities. Nevertheless, it ex-
hibits superior performance in detecting vulnerabilities related
to Integer Overflow or Wraparound, while its effectiveness is rel-
atively weaker in identifying vulnerabilities associated with Ex-
posure of Sensitive Information to an Unauthorized Actor and
Resource Management Errors.

6.5 Threats to Validity

After careful analysis, we have identified several potential threats
to the validity of our study.

6.5.1 Threats to External Validity

While we have chosen three commonly used datasets to assess
the effectiveness of our vulnerability detection approach, it is
important to note that these datasets have limited size. Con-
sequently, the results obtained from these datasets may not ac-
curately reflect the performance of our approach in real-world
scenarios.

6.5.2 Threats to Internal Validity

In this chapter, we adopt the hyperparameters from LineVul [35]
to maintain consistency. While we acknowledge the potential
impact of hyperparameters on the performance of our proposed
WILDE, we did not investigate their influence due to the con-
siderable cost associated with model training. However, it is
important to note that different hyperparameter settings may
indeed affect WILDE’s performance. Among these settings, the



CHAPTER 6. VULNERABILITY LOCALIZATION 158

maximum input token length holds particular significance. Cur-
rently, in WILDE, we have set the maximum input token length
to 512, discarding any additional tokens. The performance of
WILDE for longer code samples has not been thoroughly ex-
plored under this constraint.

Moreover, it is worth mentioning that certain vulnerabilities
may be closely tied to the context of the code, such as use-after-
free vulnerabilities. In some cases, the division of code segments
could lead to the disappearance of existing vulnerabilities or
even the emergence of new ones, potentially altering the label
of the target function. Therefore, we need to carefully consider
the implications of code segmentation on WILDE’s effectiveness
in identifying such vulnerabilities. Further investigations into
the impact of these factors are necessary for a comprehensive
understanding of WILDE’s performance.

Furthermore, the vulnerability labels at the statement level
are determined by checking whether the statements have been
modified in the commit. Consequently, all the modified state-
ments are considered vulnerable. However, simply altering a
statement does not guarantee the presence of an actual vul-
nerability. This data pre-processing approach could potentially
introduce biases into the vulnerable statement labels.

6.6 Summary

In this chapter, we proposed a novel approach named WILDE
for vulnerability detection. WILDE incorporates the multiple
instance learning framework to predict whether a given function
is vulnerable or not, while also offering precise localization in-
formation about the vulnerable statements within the function.



CHAPTER 6. VULNERABILITY LOCALIZATION 159

Through experiments conducted on public datasets, we have
demonstrated that WILDE achieves comparable performance to
previous baselines in function-level vulnerability detection, and
outperforms state-of-the-art baselines in statement-level vulner-
ability localization.

□ End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

With the large-scale application of software, how to reduce the
workload of software developers has gradually become a research
hotspot in software engineering. This thesis aims at intelligent
reliable code retrieval. Specifically, we propose effective code
retrieval approaches and code retrieval acceleration approaches
to efficiently retrieve the users’ desired code snippets from the
large-scale code database. Then, we propose the vulnerability
detection approaches to check whether our retrieved code snip-
pets contain the vulnerability problems. Extensive experiment
results in this thesis demonstrate the effectiveness of our pro-
posed approaches. Specifically, we make the contributions as
follows:

In Chapter 3, we introduce a novel neural network model
named CRaDLe. CRaDLe couples both structural and seman-
tic information of code at the statement level, where the code
structures are extracted based on PDG. Extensive experiments
have been conducted to verify the performance of the proposed
approach. The evaluation results show that CRaDLe can signif-

160



CHAPTER 7. CONCLUSION AND FUTURE WORK 161

icantly outperform the state-of-the-art models.
In Chapter 4, we propose a novel approach, CoSHC, for ac-

celerating the retrieval efficiency of deep learning-based code
search approaches. CoSHC first clusters the representation vec-
tors into different categories and then generates binary hash
codes for both source code and queries. Finally, CoSHC gives
the normalized prediction probability of each category for the
given query. Then, CoSHC will decide the number of code can-
didates for the given query in each category according to the
probability. Comprehensive experiments have been conducted
to validate the performance of the proposed approach. The eval-
uation results show that CoSHC can preserve more than 99%
performance of most baseline models

In Chapter 5, we propose CSSDH, a deep hashing lookup
table-based approach for code retrieval. CSSDH adopts an adap-
tive bit relaxing strategy and dynamic matching objective strat-
egy to convert the long hash code from previous deep hashing
approaches into segmented hash code. These short hash codes
will be utilized to construct the lookup hash tables for code re-
trieval. Experimental results indicate that CSSDH can reduce
at least 95% of the retrieval time of current state-of-the-art deep
hashing approaches, which sort the candidates by calculating the
Hamming distance. Meanwhile, CSSDH can retain the compa-
rable performance or even outperform the previous deep hashing
approaches in the recall step.

In Chapter 6, we propose a novel approach named WILDE for
function-level vulnerability detection with the statement-level
localization. WILDE first converts an input code snippet into a
token sequence and feeds it into a Transformer-based encoder.
Two channels aim to capture local and global features separately.



CHAPTER 7. CONCLUSION AND FUTURE WORK 162

The results from these two channels will be combined to pro-
duce a single prediction for a single statement. The extensive
experimental findings showcase that WILDE achieves compa-
rable performance in detecting vulnerabilities at the function
level compared to previous models. Furthermore, its ability to
localize vulnerabilities surpasses that of the earlier models.

In summary, this thesis studies reliable code retrieval, includ-
ing effective code retrieval, code retrieval acceleration, and vul-
nerability detection. Extensive experiments on public datasets
confirm the efficiency and effectiveness of our proposed approaches.

7.2 Future Directions

Reliable code retrieval with code semantic learning has gar-
nered significant attention in recent years, and it is a promis-
ing research topic. Although we have proposed several novel
approaches that achieve state-of-the-art performance, there are
still many exciting research topics that can be considered as
future work.

7.2.1 Repository-Level Code Generation with Large Lan-
guage Model

Automated code generation, which can automatically generate
code snippets based on natural language descriptions provided
by users, is one of the potential technologies that can replace
code retrieval. Since this technology can significantly shorten
the software development period and reduce the workload of
software engineers, it has emerged as a critical research priority
in the realm of automated program development.



CHAPTER 7. CONCLUSION AND FUTURE WORK 163

With the emergence of large language models, the ability of
deep learning for code generation has been dramatically im-
proved. For example, DeepMind proposes a large language model
named AlphaCode [65]. According to their experiment results,
AlphaCode can achieve the average (54% percentile) level of
human programmers in real-world programming competitions.
Codex [16] is another large language model proposed by Ope-
nAI. The famous real-time code suggestions tool Copilot is em-
powered by this large language model. Later, OpenAI pro-
posed a next-generation large language model named ChatGPT.
ChapGPT exhibits the unique zero-shot code generation ability.

While large language models have demonstrated impressive
code generation capabilities, a gap exists in their real-world ap-
plication within software development scenarios. In practical
software development, engineers often need to write code spe-
cific to their projects, frequently relying on self-defined functions
or classes and third-party libraries. Although large language
models can accept input containing over 30,000 tokens, modern
software projects often consist of hundreds, or even thousands,
of files. Thus, accommodating such extensive source code as
input remains a significant challenge for current large language
models, and it can be one potential research topic.

7.2.2 Reliable Code Generation with Large Language
Model

Although the current large language model has demonstrated
unique code generation ability, code security issues have yet to
receive enough attention. The generated code may contain a
vulnerability problem, and hackers can utilize such vulnerabil-
ities to implant Trojans or steal data, which causes users to



CHAPTER 7. CONCLUSION AND FUTURE WORK 164

suffer huge losses. Although vulnerability detection tools can
be adapted to detect whether the generated code from the large
language model contains the vulnerability problem, current vul-
nerability detection tools are still far from perfect, and they
still cannot completely solve the vulnerability issues. In addi-
tion, simply connecting vulnerability detection tools with large
language models will reduce the model’s efficiency. It will be
better to make a large language model to generate reliable code
directly.

Reinforcement Learning from Human Feedback (RLHF) is the
technology that can align model output to human preferences
and avoid generating harmful content. Such technology has been
adopted in the training of ChatGPT. It is a promising research
direction if we adopt RLHF in the code large language model
training to avoid generating vulnerable code.

7.2.3 Vulnerability Detection with Static Analysis and
Large Language Model

Static analysis-based approaches are widely used to detect soft-
ware vulnerabilities in the industry. Since the static analysis
approaches utilize the pattern defined by human experts to de-
tect the vulnerability problem, it has better interpretability than
current deep learning approaches. However, these approaches
suffer the problem of a high false positive ratio, which means
these approaches will wrongly report the non-vulnerable code
as vulnerable. Such kind of detection error will make the pro-
grammer inspect the code without any problem, which leads to
the unnecessary waste of labor and seriously weakens the use-
fulness of these static analysis tools.

The large language model has shown its impressive ability in



CHAPTER 7. CONCLUSION AND FUTURE WORK 165

code generation and analysis. Combining static analysis tech-
nology with a large language model for vulnerability detection
can be a promising research topic. By inputting the static anal-
ysis result of the given code and designing the suitable chain of
thought template, we can utilize the large language model to
give its judgment about whether the detection is false positive
and generate the corresponding reasons for this judgment. It
can help current static analysis tools to reduce the false positive
ratio and increase the practicality of these tools.

□ End of chapter.



Chapter 8

Publications during Ph.D.
Study

(i) Ensheng Shi, Yanlin Wang, Wenchao Gu, Lun Du, Hongyu
Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun. Co-
CoSoDa: Effective Contrastive Learning for Code Search. In
2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE) (pp. 2198-2210). IEEE.

(ii) WeiZhe Zhang∗, Wenchao Gu∗, Cuiyun Gao, and Michael
R. Lyu. A transformer‐based approach for improving app
review response generation. Software: Practice and Experi-
ence, 53(2), 438-454.

(iii) Wenchao Gu, Yanlin Wang, Lun Du, Hongyu Zhang, Shi
Han, Dongmei Zhang, and Michael R. Lyu. Accelerating
Code Search with Deep Hashing and Code Classification. In
Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (pp.
2534-2544).

(iv) Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu, Yun
Peng, Zenglin Xu, Source code summarization with struc-

166



CHAPTER 8. PUBLICATIONS DURING PH.D. STUDY 167

tural relative position guided transformer. In 2022 IEEE In-
ternational Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 13-24). IEEE.

(v) Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng Wang,
Hongyu Zhang, Zenglin Xu, and Michael R. Lyu. CRaDLe:
Deep code retrieval based on semantic dependency learning.
Neural Networks, 141, 385-394.

(vi) (In submission) Wenchao Gu, Zongyi Li, Yanlin Wang,
Hongyu Zhang, Cuiyun Gao, Michael Lyu. A Framework
with Self-adaptive Model Distillation for Efficient Code Re-
trieval

(vii) (In submission) Wenchao Gu, yupan Chen, Yanlin Wang,
Hongyu Zhang, Cuiyun Gao, Michael R. Lyu. Weakly Supverised
Vulnerability Detection and Localization via Multiple Instance
Learning

(viii) (In submission) Wenchao Gu, Ensheng Shi, Yanlin Wang,
Lun Du, Shi Han, Hongyu Zhang, Meidong Zhang, Michael
R. Lyu. Accelerating Code Search via Segmented Deep Hash-
ing

□ End of chapter.



Bibliography

[1] 2023 cwe top 25 most dangerous software weak-
nesses. https://cwe.mitre.org/top25/archive/2023/
2023_top25_list.html, 20123.

[2] U. Alon, S. Brody, O. Levy, and E. Yahav. code2seq:
Generating sequences from structured representations of
code. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

[3] S. Andrews, I. Tsochantaridis, and T. Hofmann. Sup-
port vector machines for multiple-instance learning. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15 [Neural In-
formation Processing Systems, NIPS 2002, December 9-
14, 2002, Vancouver, British Columbia, Canada], pages
561–568. MIT Press, 2002.

[4] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brum-
ley. AEG: automatic exploit generation. In Proceedings of
the Network and Distributed System Security Symposium,
NDSS 2011, San Diego, California, USA, 6th February -
9th February 2011. The Internet Society, 2011.

168

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html


BIBLIOGRAPHY 169

[5] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-
tuning indexes for similarity search. In A. Ellis and
T. Hagino, editors, Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba,
Japan, May 10-14, 2005, pages 651–660. ACM, 2005.

[6] C. Bergeron, G. M. Moore, J. Zaretzki, C. M. Breneman,
and K. P. Bennett. Fast bundle algorithm for multiple-
instance learning. IEEE Trans. Pattern Anal. Mach. In-
tell., 34(6):1068–1079, 2012.

[7] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. En-
riching word vectors with subword information. Trans.
Assoc. Comput. Linguistics, 5:135–146, 2017.

[8] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and
S. R. Klemmer. Two studies of opportunistic program-
ming: interleaving web foraging, learning, and writing
code. In D. R. O. Jr., R. B. Arthur, K. Hinckley, M. R.
Morris, S. E. Hudson, and S. Greenberg, editors, Proceed-
ings of the 27th International Conference on Human Fac-
tors in Computing Systems, CHI 2009, Boston, MA, USA,
April 4-9, 2009, pages 1589–1598. ACM, 2009.

[9] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Para-
gios. Data fusion through cross-modality metric learning
using similarity-sensitive hashing. In The Twenty-Third
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2010, San Francisco, CA, USA, 13-18 June
2010, pages 3594–3601. IEEE Computer Society, 2010.

[10] N. D. Q. Bui, Y. Yu, and L. Jiang. Self-supervised con-
trastive learning for code retrieval and summarization via



BIBLIOGRAPHY 170

semantic-preserving transformations. In F. Diaz, C. Shah,
T. Suel, P. Castells, R. Jones, and T. Sakai, editors, SI-
GIR ’21: The 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
Virtual Event, Canada, July 11-15, 2021, pages 511–521.
ACM, 2021.

[11] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unas-
sisted and automatic generation of high-coverage tests for
complex systems programs. In R. Draves and R. van
Renesse, editors, 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, Decem-
ber 8-10, 2008, San Diego, California, USA, Proceedings,
pages 209–224. USENIX Association, 2008.

[12] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chan-
dra. When deep learning met code search. In M. Dumas,
D. Pfahl, S. Apel, and A. Russo, editors, Proceedings of
the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019, pages 964–974. ACM, 2019.

[13] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep
learning to hash by continuation. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 5609–5618. IEEE Com-
puter Society, 2017.

[14] M. Carbonneau, V. Cheplygina, E. Granger, and
G. Gagnon. Multiple instance learning: A survey of prob-



BIBLIOGRAPHY 171

lem characteristics and applications. Pattern Recognit.,
77:329–353, 2018.

[15] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray. Deep
learning based vulnerability detection: Are we there yet?
IEEE Trans. Software Eng., 48(9):3280–3296, 2022.

[16] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cum-
mings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. Mc-
Candlish, I. Sutskever, and W. Zaremba. Evaluating large
language models trained on code. CoRR, abs/2107.03374,
2021.

[17] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui. Deep-
wukong: Statically detecting software vulnerabilities us-
ing deep graph neural network. ACM Trans. Softw. Eng.
Methodol., 30(3):38:1–38:33, 2021.

[18] B. Chess and M. Gerschefske. Rough auditing tool
for security. https://code.google.com/archive/p/
rough-auditing-tool-for-security/, 2019.

https://code.google.com/archive/ p/rough-auditing-tool-for-security/
https://code.google.com/archive/ p/rough-auditing-tool-for-security/


BIBLIOGRAPHY 172

[19] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio.
On the properties of neural machine translation: Encoder-
decoder approaches. In D. Wu, M. Carpuat, X. Carreras,
and E. M. Vecchi, editors, Proceedings of SSST@EMNLP
2014, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, Doha, Qatar, 25 October
2014, pages 103–111. Association for Computational Lin-
guistics, 2014.

[20] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014.

[21] Colah. Understanding lstm networks. https://colah.
github.io/posts/2015-08-Understanding-LSTMs/,
2020.

[22] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and
A. Bordes. Supervised learning of universal sentence rep-
resentations from natural language inference data. In
M. Palmer, R. Hwa, and S. Riedel, editors, Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Den-
mark, September 9-11, 2017, pages 670–680. Association
for Computational Linguistics, 2017.

[23] F. Crestani. Application of spreading activation tech-
niques in information retrieval. Artif. Intell. Rev.,
11(6):453–482, 1997.

[24] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and
A. Ghose. Automatic feature learning for vulnerability
prediction. CoRR, abs/1708.02368, 2017.

https://colah. github.io/posts/2015-08-Understanding-LSTMs/
https://colah. github.io/posts/2015-08-Understanding-LSTMs/


BIBLIOGRAPHY 173

[25] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In J. Snoeyink and J. Boissonnat, editors, Pro-
ceedings of the 20th ACM Symposium on Computational
Geometry, Brooklyn, New York, USA, June 8-11, 2004,
pages 253–262. ACM, 2004.

[26] G. Ding, Y. Guo, and J. Zhou. Collective matrix factoriza-
tion hashing for multimodal data. In 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014, pages 2083–
2090. IEEE Computer Society, 2014.

[27] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. E.
Kaiser, and B. Ray. VELVET: a novel ensemble learning
approach to automatically locate vulnerable statements.
In IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2022, Honolulu, HI,
USA, March 15-18, 2022, pages 959–970. IEEE, 2022.

[28] L. Du, X. Shi, Y. Wang, E. Shi, S. Han, and D. Zhang. Is
a single model enough? mucos: A multi-model ensemble
learning approach for semantic code search. In G. Demar-
tini, G. Zuccon, J. S. Culpepper, Z. Huang, and H. Tong,
editors, CIKM ’21: The 30th ACM International Confer-
ence on Information and Knowledge Management, Virtual
Event, Queensland, Australia, November 1 - 5, 2021, pages
2994–2998. ACM, 2021.

[29] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as deviant
behavior: A general approach to inferring errors in systems
code. In K. Marzullo and M. Satyanarayanan, editors, Pro-



BIBLIOGRAPHY 174

ceedings of the 18th ACM Symposium on Operating System
Principles, SOSP 2001, Chateau Lake Louise, Banff, Al-
berta, Canada, October 21-24, 2001, pages 57–72. ACM,
2001.

[30] Facebook. Infer. https://fbinfer.com/., 2021.

[31] J. Fan, Y. Li, S. Wang, and T. N. Nguyen. A C/C++
code vulnerability dataset with code changes and CVE
summaries. In MSR ’20: 17th International Conference
on Mining Software Repositories, Seoul, Republic of Korea,
29-30 June, 2020, pages 508–512. ACM, 2020.

[32] S. Fang, Y. Tan, T. Zhang, and Y. Liu. Self-attention
networks for code search. Inf. Softw. Technol., 134:106542,
2021.

[33] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou. Code-
bert: A pre-trained model for programming and natu-
ral languages. In T. Cohn, Y. He, and Y. Liu, editors,
Findings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020, vol-
ume EMNLP 2020 of Findings of ACL, pages 1536–1547.
Association for Computational Linguistics, 2020.

[34] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The pro-
gram dependence graph and its use in optimization. ACM
Trans. Program. Lang. Syst., 9(3):319–349, 1987.

[35] M. Fu and C. Tantithamthavorn. Linevul: A transformer-
based line-level vulnerability prediction. In 19th
IEEE/ACM International Conference on Mining Software

https://fbinfer.com/.


BIBLIOGRAPHY 175

Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-
24, 2022, pages 608–620. ACM, 2022.

[36] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive
hashing scheme based on dynamic collision counting. In
K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and
A. Fuxman, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIG-
MOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages
541–552. ACM, 2012.

[37] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[38] D. Goodin. An nsa-derived ransomware worm is shutting
down computers worldwide (2017).

[39] W. Gu, Z. Li, C. Gao, C. Wang, H. Zhang, Z. Xu, and
M. R. Lyu. Cradle: Deep code retrieval based on semantic
dependency learning. Neural Networks, 141:385–394, 2021.

[40] W. Gu, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang,
and M. R. Lyu. Accelerating code search with deep hash-
ing and code classification. In S. Muresan, P. Nakov, and
A. Villavicencio, editors, Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 2534–2544. Association for Com-
putational Linguistics, 2022.

[41] X. Gu, H. Zhang, and S. Kim. Deep code search. In
M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman,
editors, Proceedings of the 40th International Conference



BIBLIOGRAPHY 176

on Software Engineering, ICSE 2018, Gothenburg, Swe-
den, May 27 - June 03, 2018, pages 933–944. ACM, 2018.

[42] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin.
Unixcoder: Unified cross-modal pre-training for code rep-
resentation. In S. Muresan, P. Nakov, and A. Villavi-
cencio, editors, Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May 22-
27, 2022, pages 7212–7225. Association for Computational
Linguistics, 2022.

[43] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng,
C. B. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang,
and M. Zhou. Graphcodebert: Pre-training code represen-
tations with data flow. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

[44] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier. A
multi-perspective architecture for semantic code search.
In D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault,
editors, Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 8563–8568. Association for
Computational Linguistics, 2020.

[45] T. A. D. Henderson and A. Podgurski. Sampling code
clones from program dependence graphs with GRAPLE.
In Proceedings of the 2nd International Workshop on Soft-



BIBLIOGRAPHY 177

ware Analytics, SWAN@SIGSOFT FSE 2016, Seattle,
WA, USA, November 13, 2016, pages 47–53, 2016.

[46] G. Heyman and T. V. Cutsem. Neural code search re-
visited: Enhancing code snippet retrieval through natural
language intent. CoRR, abs/2008.12193, 2020.

[47] D. Hin, A. Kan, H. Chen, and M. A. Babar. Linevd:
Statement-level vulnerability detection using graph neural
networks. In 19th IEEE/ACM International Conference
on Mining Software Repositories, MSR 2022, Pittsburgh,
PA, USA, May 23-24, 2022, pages 596–607. ACM, 2022.

[48] S. Hochreiter and J. Schmidhuber. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, 1997.

[49] D. Hu, F. Nie, and X. Li. Deep binary reconstruction for
cross-modal hashing. IEEE Trans. Multim., 21(4):973–
985, 2019.

[50] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-
aware locality-sensitive hashing for approximate nearest
neighbor search. Proc. VLDB Endow., 9(1):1–12, 2015.

[51] H. Husain, H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt. Codesearchnet challenge: Evaluating
the state of semantic code search. CoRR, abs/1909.09436,
2019.

[52] Israel. Checkmarx. https://checkmarx.com/., 2021.

[53] J. Jang, M. Woo, and D. Brumley. Redebug: Finding
unpatched code clones in entire OS distributions. login
Usenix Mag., 37(6), 2012.

https://checkmarx.com/.


BIBLIOGRAPHY 178

[54] J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou. Iden-
tifying propagation sources in networks: State-of-the-art
and comparative studies. IEEE Commun. Surv. Tutorials,
19(1):465–481, 2017.

[55] O. Khattab and M. Zaharia. Colbert: Efficient and ef-
fective passage search via contextualized late interaction
over BERT. In J. Huang, Y. Chang, X. Cheng, J. Kamps,
V. Murdock, J. Wen, and Y. Liu, editors, Proceedings
of the 43rd International ACM SIGIR conference on re-
search and development in Information Retrieval, SIGIR
2020, Virtual Event, China, July 25-30, 2020, pages 39–
48. ACM, 2020.

[56] S. Kim, S. Woo, H. Lee, and H. Oh. VUDDY: A scal-
able approach for vulnerable code clone discovery. In 2017
IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 595–614. IEEE
Computer Society, 2017.

[57] Y. Kim. Convolutional neural networks for sentence clas-
sification. In A. Moschitti, B. Pang, and W. Daelemans,
editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1746–1751.
ACL, 2014.

[58] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In Y. Bengio and Y. LeCun, editors, 3rd
International Conference on Learning Representations,



BIBLIOGRAPHY 179

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015.

[59] D. Kotzias, M. Denil, N. de Freitas, and P. Smyth. From
group to individual labels using deep features. In L. Cao,
C. Zhang, T. Joachims, G. I. Webb, D. D. Margineantu,
and G. Williams, editors, Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Sydney, NSW, Australia, August
10-13, 2015, pages 597–606. ACM, 2015.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012. Proceed-
ings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, pages 1106–1114, 2012.

[61] C.-Y. Lee, P. W. Gallagher, and Z. Tu. Generalizing pool-
ing functions in convolutional neural networks: Mixed,
gated, and tree. In Artificial intelligence and statistics,
pages 464–472, 2016.

[62] Y. J. Lee, S.-H. Choi, C. W. Kim, S. Lim, and K.-W.
Park. Learning binary code with deep learning to detect
software weakness. 2017.

[63] M. Li, C. Li, S. Li, Y. Wu, B. Zhang, and Y. Wen.
ACGVD: vulnerability detection based on comprehensive
graph via graph neural network with attention. In D. Gao,
Q. Li, X. Guan, and X. Liao, editors, Information and



BIBLIOGRAPHY 180

Communications Security - 23rd International Confer-
ence, ICICS 2021, Chongqing, China, November 19-21,
2021, Proceedings, Part I, volume 12918 of Lecture Notes
in Computer Science, pages 243–259. Springer, 2021.

[64] M. Li, Z. Ma, Y. G. Wang, and X. Zhuang. Fast haar
transforms for graph neural networks. Neural Networks,
128:188–198, 2020.

[65] Y. Li, D. H. Choi, J. Chung, N. Kushman, J. Schrit-
twieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. D. Lago, T. Hubert, P. Choy, C. de Masson d’Autume,
I. Babuschkin, X. Chen, P. Huang, J. Welbl, S. Gowal,
A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson,
P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals.
Competition-level code generation with alphacode. CoRR,
abs/2203.07814, 2022.

[66] Y. Li, S. Wang, and T. N. Nguyen. Vulnerability detec-
tion with fine-grained interpretations. In ESEC/FSE ’21:
29th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software En-
gineering, Athens, Greece, August 23-28, 2021, pages 292–
303. ACM, 2021.

[67] Y. Li, S. Wang, T. N. Nguyen, and S. V. Nguyen. Improv-
ing bug detection via context-based code representation
learning and attention-based neural networks. Proc. ACM
Program. Lang., 3(OOPSLA):162:1–162:30, 2019.

[68] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen. Sysevr:
A framework for using deep learning to detect software



BIBLIOGRAPHY 181

vulnerabilities. IEEE Trans. Dependable Secur. Comput.,
19(4):2244–2258, 2022.

[69] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and
Y. Zhong. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681,
2018.

[70] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár.
Focal loss for dense object detection. IEEE Trans. Pattern
Anal. Mach. Intell., 42(2):318–327, 2020.

[71] Z. Lin, G. Ding, M. Hu, and J. Wang. Semantics-
preserving hashing for cross-view retrieval. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
3864–3872. IEEE Computer Society, 2015.

[72] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang,
B. Zhou, and Y. Bengio. A structured self-attentive sen-
tence embedding. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

[73] S. Liu, S. Qian, Y. Guan, J. Zhan, and L. Ying. Joint-
modal distribution-based similarity hashing for large-scale
unsupervised deep cross-modal retrieval. In J. Huang,
Y. Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen,
and Y. Liu, editors, Proceedings of the 43rd International
ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event, China,
July 25-30, 2020, pages 1379–1388. ACM, 2020.



BIBLIOGRAPHY 182

[74] S. Liu, X. Xie, J. K. Siow, L. Ma, G. Meng, and Y. Liu.
Graphsearchnet: Enhancing gnns via capturing global de-
pendencies for semantic code search. IEEE Trans. Soft-
ware Eng., 49(4):2839–2855, 2023.

[75] I. Loshchilov and F. Hutter. Fixing weight decay regular-
ization in adam. CoRR, abs/1711.05101, 2017.

[76] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan. Query
expansion via wordnet for effective code search. In
Y. Guéhéneuc, B. Adams, and A. Serebrenik, editors, 22nd
IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015, pages 545–549. IEEE Computer
Society, 2015.

[77] X. Luo, C. Chen, H. Zhong, H. Zhang, M. Deng, J. Huang,
and X. Hua. A survey on deep hashing methods. CoRR,
abs/2003.03369, 2020.

[78] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao.
Codehow: Effective code search based on API understand-
ing and extended boolean model (E). In M. B. Cohen,
L. Grunske, and M. Whalen, editors, 30th IEEE/ACM In-
ternational Conference on Automated Software Engineer-
ing, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
pages 260–270. IEEE Computer Society, 2015.

[79] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and
C. Fu. Portfolio: finding relevant functions and their us-
age. In R. N. Taylor, H. C. Gall, and N. Medvidovic,
editors, Proceedings of the 33rd International Conference



BIBLIOGRAPHY 183

on Software Engineering, ICSE 2011, Waikiki, Honolulu ,
HI, USA, May 21-28, 2011, pages 111–120. ACM, 2011.

[80] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. In
1st International Conference on Learning Representations,
ICLR 2013, 2013.

[81] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signaturegeneration of
exploits on commodity software. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS
2005, San Diego, California, USA. The Internet Society,
2005.

[82] V. Nguyen, D. Q. Nguyen, V. Nguyen, T. Le, Q. H. Tran,
and D. Phung. Regvd: Revisiting graph neural networks
for vulnerability detection. In 44th IEEE/ACM Inter-
national Conference on Software Engineering: Compan-
ion Proceedings, ICSE Companion 2022, Pittsburgh, PA,
USA, May 22-24, 2022, pages 178–182. ACM/IEEE, 2022.

[83] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo.
Spt-code: Sequence-to-sequence pre-training for learning
source code representations. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 1–13.
ACM, 2022.

[84] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray,
and K. Chang. Retrieval augmented code generation and
summarization. In M. Moens, X. Huang, L. Specia, and



BIBLIOGRAPHY 184

S. W. Yih, editors, Findings of the Association for Com-
putational Linguistics: EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 16-20 November, 2021,
pages 2719–2734. Association for Computational Linguis-
tics, 2021.

[85] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and
C. Rossow. Leveraging semantic signatures for bug search
in binary programs. In C. N. P. Jr., A. Hahn, K. R. B.
Butler, and M. Sherr, editors, Proceedings of the 30th An-
nual Computer Security Applications Conference, ACSAC
2014, New Orleans, LA, USA, December 8-12, 2014, pages
406–415. ACM, 2014.

[86] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and
M. Lanza. Mining stackoverflow to turn the IDE into a
self-confident programming prompter. In P. T. Devanbu,
S. Kim, and M. Pinzger, editors, 11th Working Conference
on Mining Software Repositories, MSR 2014, Proceedings,
May 31 - June 1, 2014, Hyderabad, India, pages 102–111.
ACM, 2014.

[87] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emu-
lator for fingerprinting zero-day attacks for advertised hon-
eypots with automatic signature generation. In Y. Berbers
and W. Zwaenepoel, editors, Proceedings of the 2006 Eu-
roSys Conference, Leuven, Belgium, April 18-21, 2006,
pages 15–27. ACM, 2006.

[88] Pypl popularity of programming language. http://pypl.
github.io/PYPL.html, 2020.

http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html


BIBLIOGRAPHY 185

[89] R. Rahmani and S. A. Goldman. MISSL: multiple-
instance semi-supervised learning. In W. W. Cohen and
A. W. Moore, editors, Machine Learning, Proceedings of
the Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume
148 of ACM International Conference Proceeding Series,
pages 705–712. ACM, 2006.

[90] D. A. Ramos and D. R. Engler. Under-constrained sym-
bolic execution: Correctness checking for real code. In
J. Jung and T. Holz, editors, 24th USENIX Security Sym-
posium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, pages 49–64. USENIX Association,
2015.

[91] S. E. Robertson and H. Zaragoza. The probabilistic rele-
vance framework: BM25 and beyond. Found. Trends Inf.
Retr., 3(4):333–389, 2009.

[92] R. L. Russell, L. Y. Kim, L. H. Hamilton, T. Lazovich,
J. Harer, O. Ozdemir, P. M. Ellingwood, and M. W. Mc-
Conley. Automated vulnerability detection in source code
using deep representation learning. In M. A. Wani, M. M.
Kantardzic, M. S. Mouchaweh, J. Gama, and E. Lughofer,
editors, 17th IEEE International Conference on Machine
Learning and Applications, ICMLA 2018, Orlando, FL,
USA, December 17-20, 2018, pages 757–762. IEEE, 2018.

[93] C. Sabottke, O. Suciu, and T. Dumitras. Vulnerability
disclosure in the age of social media: Exploiting twitter
for predicting real-world exploits. In J. Jung and T. Holz,
editors, 24th USENIX Security Symposium, USENIX Se-



BIBLIOGRAPHY 186

curity 15, Washington, D.C., USA, August 12-14, 2015,
pages 1041–1056. USENIX Association, 2015.

[94] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chan-
dra. Retrieval on source code: a neural code search. In
J. Gottschlich and A. Cheung, editors, Proceedings of the
2nd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL@PLDI
2018, Philadelphia, PA, USA, June 18-22, 2018, pages
31–41. ACM, 2018.

[95] R. Salakhutdinov and G. E. Hinton. Semantic hashing.
Int. J. Approx. Reason., 50(7):969–978, 2009.

[96] R. Sennrich, B. Haddow, and A. Birch. Neural machine
translation of rare words with subword units. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Associa-
tion for Computer Linguistics, 2016.

[97] C. D. Sestili, W. S. Snavely, and N. M. VanHoud-
nos. Towards security defect prediction with AI. CoRR,
abs/1808.09897, 2018.

[98] D. C. Shepherd, Z. P. Fry, E. Hill, L. L. Pollock, and
K. Vijay-Shanker. Using natural language program anal-
ysis to locate and understand action-oriented concerns. In
B. M. Barry and O. de Moor, editors, Proceedings of the
6th International Conference on Aspect-Oriented Software
Development, AOSD 2007, Vancouver, British Columbia,
Canada, March 12-16, 2007, volume 208 of ACM Interna-



BIBLIOGRAPHY 187

tional Conference Proceeding Series, pages 212–224. ACM,
2007.

[99] E. Shi, Y. Wang, W. Gu, L. Du, H. Zhang, S. Han,
D. Zhang, and H. Sun. Cocosoda: Effective contrastive
learning for code search. In 45th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023, pages 2198–2210.
IEEE, 2023.

[100] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei. Im-
proving code search with co-attentive representation learn-
ing. In ICPC ’20: 28th International Conference on Pro-
gram Comprehension, Seoul, Republic of Korea, July 13-
15, 2020, pages 196–207. ACM, 2020.

[101] S. Su, Z. Zhong, and C. Zhang. Deep joint-semantics
reconstructing hashing for large-scale unsupervised cross-
modal retrieval. In 2019 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, pages 3027–3035.
IEEE, 2019.

[102] Y. Sui and J. Xue. SVF: interprocedural static value-flow
analysis in LLVM. In A. Zaks and M. V. Hermenegildo,
editors, Proceedings of the 25th International Conference
on Compiler Construction, CC 2016, Barcelona, Spain,
March 12-18, 2016, pages 265–266. ACM, 2016.

[103] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force
Vulnerability Discovery. London, U.K.:Pearson Education,
2007.



BIBLIOGRAPHY 188

[104] K. S. Tai, R. Socher, and C. D. Manning. Improved seman-
tic representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers, pages 1556–1566. The As-
sociation for Computer Linguistics, 2015.

[105] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. In I. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 5998–6008, 2017.

[106] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention
is all you need. In I. Guyon, U. von Luxburg, S. Ben-
gio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008, 2017.

[107] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio. Graph attention networks. In
6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May



BIBLIOGRAPHY 189

3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[108] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4:
A static vulnerability scanner for C and C++ code. In
16th Annual Computer Security Applications Conference
(ACSAC 2000), 11-15 December 2000, New Orleans,
Louisiana, USA, page 257. IEEE Computer Society, 2000.

[109] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L.
Mazurek. Hackers vs. testers: A comparison of software
vulnerability discovery processes. In 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings, 21-
23 May 2018, San Francisco, California, USA, pages 374–
391. IEEE Computer Society, 2018.

[110] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and
P. S. Yu. Multi-modal attention network learning for se-
mantic source code retrieval. In 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering,
ASE 2019, San Diego, CA, USA, November 11-15, 2019,
pages 13–25. IEEE, 2019.

[111] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang,
Y. Feng, L. Bian, and Z. Wang. Combining graph-based
learning with automated data collection for code vulner-
ability detection. IEEE Trans. Inf. Forensics Secur.,
16:1943–1958, 2021.

[112] J. Wang, W. Liu, S. Kumar, and S. Chang. Learning
to hash for indexing big data - A survey. Proc. IEEE,
104(1):34–57, 2016.



BIBLIOGRAPHY 190

[113] S. I. Wang and C. D. Manning. Baselines and bigrams:
Simple, good sentiment and topic classification. In The
50th Annual Meeting of the Association for Computa-
tional Linguistics, Proceedings of the Conference, July 8-
14, 2012, Jeju Island, Korea - Volume 2: Short Papers,
pages 90–94. The Association for Computer Linguistics,
2012.

[114] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li,
H. Wu, J. Liu, and X. Jiang. Syncobert: Syntax-guided
multi-modal contrastive pre-training for code representa-
tion. arXiv preprint arXiv:2108.04556, 2021.

[115] Y. Wang, M. Li, Z. Ma, G. Montúfar, X. Zhuang, and
Y. Fan. Haar graph pooling. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 9952–9962. PMLR,
2020.

[116] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In M. Moens,
X. Huang, L. Specia, and S. W. Yih, editors, Proceedings
of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November, 2021,
pages 8696–8708. Association for Computational Linguis-
tics, 2021.

[117] X. Wen, Y. Chen, C. Gao, H. Zhang, J. M. Zhang, and
Q. Liao. Vulnerability detection with graph simplifica-



BIBLIOGRAPHY 191

tion and enhanced graph representation learning. In 45th
IEEE/ACM International Conference on Software Engi-
neering, ICSE 2023, Melbourne, Australia, May 14-20,
2023, pages 2275–2286. IEEE, 2023.

[118] D. A. Wheeler. Flawfinder. https://dwheeler.com/
flawfinder/, title = Flawfinder., 2021.

[119] G. Wu, Z. Lin, J. Han, L. Liu, G. Ding, B. Zhang, and
J. Shen. Unsupervised deep hashing via binary latent fac-
tor models for large-scale cross-modal retrieval. In J. Lang,
editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 2854–2860.
ijcai.org, 2018.

[120] T. Wu, S. Wen, Y. Xiang, and W. Zhou. Twitter spam de-
tection: Survey of new approaches and comparative study.
Comput. Secur., 76:265–284, 2018.

[121] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin.
Vulcnn: An image-inspired scalable vulnerability detec-
tion system. In 44th IEEE/ACM 44th International Con-
ference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, pages 2365–2376. ACM, 2022.

[122] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling
and discovering vulnerabilities with code property graphs.
In 2014 IEEE Symposium on Security and Privacy, SP
2014, pages 590–604. IEEE Computer Society, 2014.

[123] C. Yan, B. Gong, Y. Wei, and Y. Gao. Deep multi-view
enhancement hashing for image retrieval. IEEE Trans.
Pattern Anal. Mach. Intell., 43(4):1445–1451, 2021.

https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/


BIBLIOGRAPHY 192

[124] D. Yang, D. Wu, W. Zhang, H. Zhang, B. Li, and
W. Wang. Deep semantic-alignment hashing for un-
supervised cross-modal retrieval. In C. Gurrin, B. Þ.
Jónsson, N. Kando, K. Schöffmann, Y. P. Chen, and N. E.
O’Connor, editors, Proceedings of the 2020 on Interna-
tional Conference on Multimedia Retrieval, ICMR 2020,
Dublin, Ireland, June 8-11, 2020, pages 44–52. ACM, 2020.

[125] Z. Yao, J. R. Peddamail, and H. Sun. Coacor: Code
annotation for code retrieval with reinforcement learning.
In L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J.
McAuley, R. Baeza-Yates, and L. Zia, editors, The World
Wide Web Conference, WWW 2019, San Francisco, CA,
USA, May 13-17, 2019, pages 2203–2214. ACM, 2019.

[126] Z. Ye and Y. Peng. Multi-scale correlation for sequential
cross-modal hashing learning. In S. Boll, K. M. Lee, J. Luo,
W. Zhu, H. Byun, C. W. Chen, R. Lienhart, and T. Mei,
editors, 2018 ACM Multimedia Conference on Multimedia
Conference, MM 2018, Seoul, Republic of Korea, October
22-26, 2018, pages 852–860. ACM, 2018.

[127] P. Yin and G. Neubig. A syntactic neural model for
general-purpose code generation. In R. Barzilay and
M. Kan, editors, Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 440–450. Association for Computa-
tional Linguistics, 2017.

[128] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec.
Gnnexplainer: Generating explanations for graph neural



BIBLIOGRAPHY 193

networks. In H. M. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 9240–9251, 2019.

[129] C. Zeng, Y. Yu, S. Li, X. Xia, Z. Wang, M. Geng, L. Bai,
W. Dong, and X. Liao. degraphcs: Embedding variable-
based flow graph for neural code search. ACM Trans.
Softw. Eng. Methodol., 32(2):34:1–34:27, 2023.

[130] D. Zhang and W. Li. Large-scale supervised multimodal
hashing with semantic correlation maximization. In C. E.
Brodley and P. Stone, editors, Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27
-31, 2014, Québec City, Québec, Canada, pages 2177–2183.
AAAI Press, 2014.

[131] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu. A novel neural source code representation based
on abstract syntax tree. In J. M. Atlee, T. Bultan, and
J. Whittle, editors, Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Mon-
treal, QC, Canada, May 25-31, 2019, pages 783–794. IEEE
/ ACM, 2019.

[132] P. Zhang, Y. Luo, Z. Huang, X. Xu, and J. Song. High-
order nonlocal hashing for unsupervised cross-modal re-
trieval. World Wide Web, 24(2):563–583, 2021.

[133] Y. Zhou, S. Liu, J. K. Siow, X. Du, and Y. Liu. Devign:
Effective vulnerability identification by learning compre-



BIBLIOGRAPHY 194

hensive program semantics via graph neural networks. In
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, pages 10197–10207, 2019.

[134] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing
network for efficient similarity retrieval. In D. Schuurmans
and M. P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA, pages 2415–2421. AAAI
Press, 2016.


	Abstract
	Acknowledgement
	Introduction
	Overview
	Thesis Contributions
	Thesis Organization

	Background Review
	Neural Network Basic
	Recurrent Neural Networks
	Transformer and Pre-Training

	Code Retrieval
	Non Deep Learning Based Approaches
	Deep Learning Based Approaches

	Hashing
	Hash table-based approaches
	Supervised cross-modal hashing approaches
	Unsupervised cross-modal hashing approaches

	Vulnerability Detection
	Deep Learning-based Vulnerability Detection
	Deep Learning-based Statement-Level Vulnerability Detection and Localization


	Deep Code Retrieval Based on Semantic Dependency Learning
	Introduction
	Methodology
	Overview
	Code Encoder
	Description Encoder
	Similarity Measurement
	Model Training

	Experimental Setup 
	Dataset Collection
	Performance Measurement
	Implementation Details
	Baseline Models

	Experimental Results
	Main Results
	Parameter Analysis
	Ablation Study
	Case Studies
	Error Analysis

	Discussion
	Dependency Embedding Approach

	Threats to Validity
	Threats to External Validity
	Threats to Internal Validity

	Summary

	Accelerating Code Retrieval with Deep Hashing and Code Classification
	Introduction
	Methodology
	Offline Stage
	Online Stage

	Experiments
	Dataset
	Experimental Setup
	Baselines
	Evaluation Metric

	Experimental Results
	RQ1: How much faster is CoSHC than the original code retrieval models?
	RQ2: How does CoSHC affect the accuracy of the original models? 
	RQ3: Can the classification module help improve performance?

	Discussion
	Threats to Validity
	Threats to External Validity
	Threats to Internal Validity

	Summary

	Accelerating Code Retrieval via Segmented Deep Hashing
	Introduction
	Method
	Overview
	Recall and Re-rank with Deep Hashing
	Initial Hashing Projection Training
	Iteration Training Strategy
	Hash Alignment
	Inference of Binary Hash Codes

	Experimental Settings
	Datasets
	Baselines
	Metrics
	Implementation Details

	Evaluation
	RQ1: What is the Efficiency of CSSDH?
	RQ2: What is the Effectiveness of CSSDH?
	RQ3: What is the Effectiveness of Adaptive Bits Relaxing?
	RQ4: How Many Error Bits Have Been Fixed?

	Threats to Validity
	Threats to External Validity
	Threats to Internal Validity

	Summary

	Weakly Supverised Vulnerability Detection and Localization via Multiple Instance Learning
	Introduction
	Methodology
	Overview
	Code Encoding
	The Design of Code Encoder
	Multiple Instance Learning-Based Training Strategy
	Model Inference

	Experimental Setup
	Data Pre-processing
	Implementation Details
	Baselines
	Evaluation Metrics

	Experimental Results
	Comparison on function-level vulnerability detection and statement-level vulnerability localization 
	Impact of the top-k statement selection on the performance of WILDE
	Impact of different channels on the performance of WILDE 
	The influence of the training data size to the performance of WILDE
	The detection ability of WILDE for different types of CWE vulnerabilities

	Threats to Validity
	Threats to External Validity
	Threats to Internal Validity

	Summary

	Conclusion and Future Work
	Conclusion
	Future Directions
	Repository-Level Code Generation with Large Language Model
	Reliable Code Generation with Large Language Model
	Vulnerability Detection with Static Analysis and Large Language Model


	Publications during Ph.D. Study
	Bibliography

