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Abstract of thesis entitled:
Learning with Limited Samples

Submitted by Chen, Shouyuan
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in October 2014

Many machine learning algorithms require a large number
of samples as input to achieve good performance. However, in
many applications, it is very expensive or simply impossible to
collect a large number of samples. These applications require
the corresponding algorithms to use only a limited number of
samples, which presents an important challenge in the design
and analysis of learning algorithms.

In this thesis, we address this challenge by studying sev-
eral learning problems emerging from the fields of multi-armed
bandit (MAB) and tensor completion, which encompass a wide
range of applications where the number of available samples is
limited. For each of these problems, we identify natural require-
ments on the number of necessary samples for the corresponding
learning problems, and design practical algorithms with provable
guarantees that are close to these necessary requirements.

This thesis is divided into four parts. In the first part, we
study the combinatorial pure exploration problem in the stochas-
tic MAB setting, where a learner explores a set of arms with the
objective of finding the optimal combinatorial structure among
many. We present practical learning algorithms, upper bounds
and a lower bound for a rich class of combinatorial structures.
Our upper and lower bounds show that our algorithms are opti-

i



mal (within logarithmic factors) in terms of sample complexity
in many cases.

In the second part, we study the linear combinatorial ban-
dits problem. We design a learning algorithm for the problem
and prove the related regret bound. We apply the algorithm
to on-line diversified movie recommendation, where only a lim-
ited number of samples are known for each user. Experiment
results agree with our theoretical results and demonstrate that
our learning algorithm is accurate and sample efficient.

In the third part, we present a fast relative-error approxima-
tion algorithm for ridge regression, which is widely used in the
learning algorithms for linear bandits. Our experiment results
demonstrate the efficiency of our algorithm.

In the final part, we present new algorithms for learning pair-
wise interaction tensors from a limited number of its entries. We
show that, under mild assumptions, it is possible to exactly or
robustly learn a pairwise interaction tensor from a nearly min-
imal number of samples. Our algorithm is the first provable al-
gorithm that guarantees exact recovery of pairwise interaction
tensors. The experiments demonstrate promising performance
on temporal movie recommendation tasks.
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Chapter 1

Introduction

1.1 Motivation

Many machine learning algorithms require a large number of
samples in order to achieve good performances. However, in
many applications, it can be too expensive or simply impossible
to collect a large number of samples. These applications require
the related learning algorithms to use only a limited number of
samples.

For example, consider the problem of testing several candi-
dates of a commercial product. The learner often need to find
the best candidate by using a limited number of resources (e.g.,
customer surveys). In medical trials, researchers may wish to
find the best drug among many drugs under test, and to treat
patients as close as the case when the best drug is known [126].
It is easy to see that collecting treatment results of patients can
be a very expensive process. Moreover, in a movie recommender
system, an important problem is to predict users’ preferences
over the movies by using the rating information from users. In
this application, the rating information is often very limited,
while the learner may be asked to make prediction when a ma-
jority of information is missing [17]. Hence, we see that learning
effectively from a limited number of samples is a recurring chal-
lenge in a diverse applications.
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CHAPTER 1. INTRODUCTION 2

In this thesis, we address this challenge by studying several
concrete learning problems emerging from the fields of multi-
armed bandit (MAB) and tensor completion. MAB and tensor
completion encompass a wide range of applications where the
number of available samples is limited. For each of these prob-
lems, we identify natural requirements on the number of samples
that are necessary for the corresponding learning problems, and
design provable and practical algorithms that are close to these
necessary requirements. In theory, our results characterize the
sample complexity of these learning problems; in practice, our
algorithms lead to practical and sample efficient solutions.

The rest of this chapter is organized as follows. In Section 1.2,
we review the related work on multi-armed bandit problem in-
cluding several important extensions. In Section 1.3, we review
the literature of matrix completion and tensor completion. In
Section 1.4, we briefly describe the learning problems studied in
this thesis and summarize our contributions.

1.2 Multi-armed bandits

Multi-armed bandit (MAB) is a classical example of machine
learning problems which focus on utilizing a limited number of
samples [91, 10, 25]. The original MAB problem is a sequen-
tial decision-making problem played by a single player over a
sequence of rounds. At each round, the player chooses an ac-
tion and receives a sample of reward associated with the chosen
action. The goal of the player is to maximize her total reward ob-
tained from all the rounds. Historically, the name “multi-armed
bandit” is a metaphor: the name “bandit” refers to slot ma-
chines; and the MAB problem is a game that, in a casino, a
player is facing a number of slot machines and is asked to choose
repeatedly slot machines to insert her coins.

The MAB problem was originally motivated by medical tri-
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als [126], where an arm corresponds to a drug, and the Bernoulli
reward associated with an arm corresponds to the effectiveness
of treatment using a certain drug. The objective is to maxi-
mize the number of effective treatments, i.e., to perform almost
as good as using the best drugs for all patients. Naturally, we
do not want apply suboptimal drugs to too many patients (ex-
ploitation); while we also want to find out the best drug by
experimenting them on the patients (exploration). We can see
that an exploration-exploitation dilemma appears naturally in
this simple scenario.

Indeed, in order to play the game optimally, the player need
to carefully divide her samples (i.e. coins) into (1) exploitation
of actions that give good rewards in the past and (2) exploration
of actions that may give better rewards in the future. Owing to
the universal nature of the trade-off between exploration and
exploitation, the MAB model has found applications in diverse
domains and attracted considerable attentions.

Most of the existing work of MAB can be divided into two
categories by their assumptions on the rewards [25]: stochas-
tic reward (where the reward is sampled from a fixed distribu-
tion) and adversarial reward (where the reward is chosen by an
adversarial). Each specific bandit model has a distinct playing
strategy: the UCB-1 algorithm for stochastic MABs [91] and
the Exp3 algorithm for adversarial MABs [10]. In this thesis,
we mainly focus on the stochastic MABs. We refer readers to
[25] for a general introduction to MABs, which includes both
stochastic and adversarial settings.

The stochastic MAB problem, originally formulated by Rob-
bins [126], can be described as follows. Suppose there are n arms
and T rounds. Each arm i ∈ [n] corresponds to an unknown
probability distribution Φi on [0, 1]. For each round t = 1, . . . , T ,
the player pulls an arm it and observes a reward sampled inde-
pendently from the corresponding distribution Φit.
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In order to evaluate a player’s strategy, one can compare her
performance with the optimal strategy which always plays the
best arm, i.e. the arm with the largest mean reward. The differ-
ence between the reward of the optimal strategy and the player’s
total reward is referred as cumulative regret or, in short, regret.
In the stochastic setting, the regret of a player can be defined
as follows. For i = 1, . . . , n, let µi denote the expectation of the
reward distribution Φi. Let µ∗ = maxi∈[n] µi. Then, the regret
over T rounds is defined as follows

RT = Tµ∗ −
T∑
t=1

µit.

The stochastic MAB problem has been well studied in the
literature. The analysis of this problem was pioneered by Lai
and Robbins [91], who introduced the upper confidence bound
(UCB) techniques for obtaining asymptotic bounds of regret.
Auer et al. [9] improved the results of Lai and Robbins [91]
and obtained a finite-time regret bound. The resulting UCB1
algorithm guarantees an O(log(T )) regret, which is shown to be
essentially optimal.

In the past decade, the MAB problem has been applied into
a number of more sophisticated scenarios. Many of these ap-
plications are better modeled by extensions of the basic MAB
problem. In the following, we investigate three important exten-
sions.

1.2.1 Linear bandits

Stochastic linear bandits are a natural extension of stochastic
MABs, where arms are associated with feature vectors and re-
wards are determined by a linear function. Specifically, in this
case, the set of arms {1, 2, . . . , n} is replaced by a compact set
K ⊆ Rd. The reward at each round is given by some unknown
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linear function f defined on K, and the problem is to choose
arms from K that is as close as possible to the maximum of the
reward function f . Formally, suppose that there are T rounds
and, at each round t = 1, . . . , T , the player chooses an arm
xt ∈ K and receives a reward rt. In the stochastic linear bandits
setting, we assume that rt = f(xt) + εt, where f is an unknown
linear function and εt is a zero-mean random variable. The goal
is to maximize the sum of expected rewards

∑T
t=1 f(xt), which

is equivalent to minimize the cumulative regret.
The linearity assumption on the reward function f occurs

naturally in many applications. For example, consider the ap-
plication of recommending movies to a new user over a sequence
of rounds, and the objective is to maximize the user’s cumula-
tive ratings on the recommended movies. This application can be
naturally formulated as a linear bandit problem as follows. For
movie recommendations, it is well-known that the user’s ratings
over movies can be modeled by a linear function [128, 88, 86, 87].
Specifically, suppose that each movie i is represented by a vec-
tor vi ∈ Rd. Then, the user’s rating of movie i is modeled as
ri = uTvi + εi, where u is a d-dimensional vector which char-
acterizes the user’s preference and εi is a zero-mean random
variable. It is clear that, for a new user who did not rate any
movies before, her preference vector u is unknown. On the other
hand, there exist various algorithms based on matrix factoriza-
tion which can accurately estimate the feature vectors of movies
{v1, . . . ,vn} using the rating information of other users [128, 88].
Therefore, we can regard the n movies as n arms with known
feature vectors {v1, . . . ,vn}. The reward function corresponds to
the rating of the user over movies, which is given by f(v) = uTv
for an unknown u. In this case, playing an arm corresponds to
recommending a movie to the user, who subsequently discloses
the reward by rating the recommended movie.

The stochastic linear bandits problem was introduced by Auer
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[8]. His algorithm was later improved by Dani et al. [48], who
also gave a near complete characterization to the problem by
providing both upper and lower bounds. Li et al. [93] modified
the algorithm of Auer [8] by using ridge regression, and applied
the resulting algorithm to personalized news recommendation.
Abbasi-Yadkori et al. [1] proposed an algorithm similar to Li
et al. [93], and provided an analysis using techniques from the-
ory of self-normalized processes. Their analysis improved the
regret bound of Dani et al. [48] by a logarithmic factor.

Linear bandits are also studied under the adversarial setting,
where the reward function at each round is chosen by an ad-
versary. This setting is also known as online linear optimization
with bandit feedback, which was pioneered by Awerbuch and
Kleinberg [12] and McMahan and Blum [104]. Dani et al. [47]
provided the first optimal regret bound of O(

√
T ) based on the

Exp2 strategy. In a parallel line of research, Abernethy et al.
[2] proposed an algorithm based on online mirror descent with
O(
√
T ) regret. Their algorithm was further improved by Bubeck

et al. [27].

1.2.2 Combinatorial bandits

Combinatorial bandits are a generalization of standard MABs,
where, at each round, a subset of arms are played simultaneously.
The subset of arms are required to satisfy certain combinatorial
constraints and the reward is given by a reward function de-
fined over subsets of arms. There are two variants of combinato-
rial bandits which have different models of observations: (1) the
bandit setting, where the player only observes the reward of the
chosen subset; and (2) the semi-bandit setting, where the reward
of the chosen subset depends on the rewards of individual arms
in the subset and the rewards of these arms are revealed to the
player. By using different types of combinatorial constraints and
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reward functions, combinatorial bandits encompass a wide range
of sequential decision-making problems and therefore they have
found applications in many domains including online advertise-
ment [43], social influence maximization [43], network routing
[90, 62], wireless network [62, 63] and movie recommendation
[90].

The general stochastic combinatorial bandit problem was first
studied by Gai et al. [62], where the reward functions are re-
stricted to be linear, i.e., the reward of a subset of arms is the
sum of rewards of individual arms in the subset. Chen et al. [43]
generalized the setting to encompass non-linear reward func-
tions. They proposed the CUCB algorithm and provided tighter
regret bounds. Prior to these two work, several specific instances
of the general stochastic combinatorial problem have been stud-
ied. The problem of playing k arms simultaneously at each round
was studied by [5, 37, 97]. Gai et al. [63] studied the matching
bandit problem, where arms correspond to edges in a bipartite
graph and edges consisting of a matching was played at each
round. Liu and Zhao [99] considered a similar settings, where,
at each round, a path in a graph was played.

A parallel line of research studies the combinatorial bandit
problem in adversarial setting [39, 7, 27]. Most of these work fo-
cus on linear reward function. These work are also closely related
to the linear bandit problem in the adversarial setting [39, 25].
For non-linear rewards, a few work studied online submodular
optimization problems with bandit feedback [143, 118, 72].

1.2.3 Pure exploration bandits

The trade-off between exploration and exploitation is intrinsic
in many applications. However, in some application domains,
practitioners prefer a dedicated exploration procedure, where
the objective is to find the optimal object from a collection of
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candidates and the reward or loss incurred during exploration
can be ignored. The related learning problem, called pure ex-
ploration problem of MABs, has received much attention in the
literature.

The setting of pure exploration problem of MAB is similar
to the setting of standard stochastic MABs, which can be de-
scribed as follows. There are n arms and each arm i is associated
with an unknown reward distribution Φi, whose expectation is
denoted by µi. The game is played over a sequence of rounds.
At round t, the player chooses an arm it ∈ [n] and observes a
reward sampled independently from the associated reward dis-
tribution Φit. In the end of the game, the player is asked to
report an arm o ∈ [n], with the goal of minimizing the simple
regret, which is defined as µ∗− µo, where µ∗ = maxi∈[n] µi is the
largest mean reward. It is easy to see that a zero simple regret
means that the player correctly finds the best arm, which means
that minimizing simple regret is equivalent to finding the best
arm. Bubeck et al. [26] showed that minimizing simple regret
is fundamentally different from minimizing cumulative regret.
Hence very different algorithms are needed to solve the pure
exploration problem.

The pure exploration problem was first studied in a PAC
model by Even-Dar et al. [53]. The authors aimed to (1) mini-
mize the number of samples, i.e. the number of rounds, used by
the algorithm and (2) guarantee that the simple regret is smaller
than ε with probability at least 1 − δ. They proposed an algo-
rithm called Successive Elimination (SE), which achieves the
(ε, δ) guarantee with an optimal number of samples (up to log-
arithmic factors). A matching sample complexity lower bound
was proved by Mannor and Tsitsiklis [102] in an earlier work.

Audibert et al. [6] initiated the study of pure exploration
problem in the fixed budget setting, where the game is played
for at most T rounds and the player needs to minimize the prob-
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ability of error, which is formally Pr[µ∗−µo > ε]. They proposed
the Successive Rejection (SR) algorithm and analyze its proba-
bility of error. They also proved a matching lower bound, which
shows that their algorithm achieves the optimal probability of
error.

Several recent work [77, 78] improved SE and SR algorithms
and the related lower bounds in terms of logarithmic factors or
constant factors. In addition, a recent line of research extended
the study of this problem to the problem of finding top K best
arms or finding the best arms from several disjoint groups of
arms. These work also provided algorithms with guarantees in
both PAC setting and fixed budget setting [80, 60, 61, 81, 28,
82, 156].

1.3 Matrix completion and tensor completion

A wide range of datasets can be naturally organized in the
form of matrices, or, its higher-order generalization, tensors.
For example, consider a movie recommendation service, which
have collected a large number of users ratings over movies. This
dataset can be represented as a matrix where rows correspond
to users and columns correspond to movies. Each entry of this
matrix is the rating of a movie given by a user. As higher-order
generalizations of matrices, tensors can be used to represent data
that are addressed by more than two indices. For example, typ-
ical movie recommendation services may collect not only rating
information, but also side information including genre, time or
location. Tensors can be used to represent such datasets, where
each entry may represent the rating of a user for a movie on a
particular genre (or location).

In many applications, one cannot observe all the entries of the
data matrix/tensor. In these applications, it might be too expen-
sive, or simply impossible, to measure all the entries, and some
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entries might be missing during the measuring process. Matrix
completion and its generalization tensor completion concern the
problem of predicting the missing entries in partially observed
data matrix or tensor, under certain natural assumptions on the
matrix/tensor. The framework of matrix completion and ten-
sor completion capture many real-world applications, including
collaborative filtering [65, 107, 141], system identification [100],
global positioning [21, 137] and remote sensing [133]. For exam-
ple, in collaborative filtering, a recommender system may want
to predict the missing ratings from a partially observed rating
data matrix/tensor, which enables the system to provide person-
alized recommendations [124, 141, 107]. A well-known example
of this application is the Netflix prize, in which the participants
were asked to recover a user-movie rating matrix where most
of entries are missing [17]. In a localization service, one may
want to compute the missing values from a partially observed
distance matrix/tensor [138, 96, 21, 137]. In these applications,
we observe again the recurring problem of making predictions
with a limited number of samples. In the next part, we review
several existing algorithms and the related theoretical results of
matrix completion and tensor completion.

1.3.1 Matrix completion

Suppose that we only observe a few entries from a matrix. Then,
one can easily see that it is impossible to guess the values of
missing entries of the matrix without additional assumptions.
However, in many instances, the matrix one wish to recover is
low rank or approximately low rank. Indeed, as we have dis-
cussed, many data matrices emerged in real-world applications
are known to be approximately low rank, e.g., user-by-movie
matrices [88, 107], document-by-word matrices [75, 51] and dis-
tance matrices [138, 21]. Due the universality of low rankness,
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the low rank assumption becomes central to the work on matrix
completion [32, 31, 35, 119, 83].

Specifically, suppose we wish to recover matrix M ∈ Rn1×n2.
Let Ω denote the set of locations corresponding to the observed
entries (i.e., (i, j) ∈ Ω if and only if Mij is observed). Intuitively,
if the number of observations is sufficiently large, we might hope
that there is a unique low-rank matrix that agrees with the ob-
servations. If this is the case, then one could recover the matrix
by solving the following program

min
X∈Rn1×n2

rank(X),

s.t. Xij = Mij, (i, j) ∈ Ω.

However, solving this program is an NP-hard problem [44] and
therefore it has little practical value. This is also analogous to
the NP-hardness of `0 minimization problems occurred in the
literature of compressed sensing [33, 36, 34, 52].

An alternative solution [56, 57, 105, 142] is to use nuclear
norm as a surrogate to matrix rank, which leads to the following
convex program

min
X∈Rn1×n2

‖X‖∗, (1.1)

s.t. Xij = Mij, (i, j) ∈ Ω,

where the nuclear norm ‖X‖∗ is the sum of all singular values of
matrix X. The nuclear norm minimization method was empir-
ically observed to produce very low-rank solutions [56, 55, 15,
105, 141, 142]. Recht et al. [120] showed that Eq. (1.1) almost
always produces a rank minimizing solution.

In a seminal work, Candès and Recht [32] showed that, with
high probability, by solving Eq. (1.1), one can exactly recover
the matrix M (i.e. X = M) from O(n1.5r log2(n)) observations,
where n = max{n1, n2} and r = rank(M). Their result assumes
that (1) the matrix M satisfies certain incoherence property (see
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Chapter 5) (2) the observations are sampled uniformly at ran-
dom from all entries [n1]× [n2]. Their sample complexity bound
was later improved by Candès and Tao [35] and Keshavan et al.
[83], who showed that O(nr log2(n)) observations are sufficient
to guarantee recovery. This is a remarkable sample complexity
bound since the degree of freedom of a rank r matrix is O(nr),
while this result shows that nuclear norm minimization succeeds
as soon as the sample size exceeds the degree of freedom by a
logarithmic factor.

The proof of Candès and Tao [35] was later simplified by
Recht [119], who also slightly improved the sample complexity
in terms of constant factors. Candes and Plan [31] considered the
noisy matrix completion problem where observations are noisy.
They extended the program Eq. (1.1) and obtained a similar
sample complexity. Cai et al. [30] proposed the singular value
thresholding algorithm which can approximately solve Eq. (1.1)
when the matrix M is very large.

1.3.2 Tensor decomposition and tensor completion

A direct generalization of the matrix completion problem is ten-
sor completion, where the goal is to predict the values of missing
entries of a tensor. Due to similar reasons, in order to correctly
guess the missing entries, one need certain assumptions on the
tensors. A natural assumption is that the tensor to be recovered
is low rank.

The definition of tensor rank was first introduced by Hitch-
cock [74], which is a generalization of the definition of matrix
rank as follows. We start from the definition of rank-one ten-
sors. Let X ∈ Rn1×...×nd be an order-d tensor. Then, tensor X is
rank-one if and only if its entries can be written as

Xi1,...,id = u
(1)
i1
u

(2)
i2
. . . u

(d)
id
,

where u(1) ∈ Rn1, . . . ,u(n) ∈ Rnd are vectors. Then tensor T ∈
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Rn1×...×nd is rank r, if there exists r rank-one tensors X (1), . . . ,X (d)

such that
T = X (1) + . . .+ X (d).

We see that, when d = 2, the definition of tensor rank coincides
that that of matrix rank.

Empirically, many tensors obtained from real-world applica-
tions also have low tensor rank (see [85] and references therein)
Naturally, one may consider to generalize the results of matrix
completion to the case of tensor completion. However, the prop-
erties of tensor rank are known to be fundamentally different
from the properties of matrix rank, even for order-3 tensors.
In fact, H̊astad [71] showed that it is NP-hard to compute the
tensor rank. Hillar and Lim [73] further showed that many ba-
sic primitives for matrices, for example SVD, cannot be imple-
mented efficiently in the tensor case, even if the tensor is fully
observed. The lack of these basic primitives suggests that one
cannot directly generalize the results of matrix completion to
the tensor case.

One line of research focused on computing approximate low
rank decompositions of tensors and obtained many algorithms,
including PARAFRAC [70], canonical decomposition [38, 84],
tucker decomposition [150] and their extensions [153, 101, 16].
We refer interested readers to [85] for a survey. Many of these
algorithms work well empirically. In addition, various heuristics
were proposed to apply these low rank models to predict the
missing values in a tensor [58, 145]. However, little is known for
the theoretical guarantees of these decomposition methods, due
to the inherent hardness of tensor rank.

Recently, several work addressed the tensor completion prob-
lem by extending the nuclear norm minimization objective Eq. (1.1)
developed matrix completion problem [98, 64, 136, 89]. Liu et al.
[98] initiated the study of the tensor completion problem by gen-
eralizing the definition of nuclear norm to tensors. Several sub-
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sequent work authors proposed to optimize a weighted sum of
nuclear norms of unfolded matrices of a tensor [64, 136, 146].
However, none of these work guaranteed an exact recovery of
tensors and they did not provided a sample complexity bound
that is similar to matrix completion. In Chapter 5, we address
the tensor completion problem and provide an algorithm with
an almost optimal sample complexity. Our approach is based
on identifying an alternative low rank model of tensors which
is 1) sufficiently rich to capture important information from the
datasets and 2) lead to a solvable recovery problem.

1.4 Summary of contributions

In this thesis, we study the learning problems emerging from the
application scenarios of multi-armed bandit and tensor comple-
tion, where the number of available samples are often limited.
Our contributions are summarized as follows.

1.4.1 Combinatorial pure exploration bandits

In Chapter 2, we study the combinatorial pure exploration (CPE)
problem in the stochastic multi-armed bandit setting, where a
learner explores a set of arms with the objective of identify-
ing the optimal member of a decision class, which is a collec-
tion of subsets of arms with certain combinatorial structures
such as size-K subsets, matchings, spanning trees or paths, etc.
The CPE problem represents a rich class of pure exploration
tasks which covers not only many existing models but also novel
cases where the object of interest has a non-trivial combinatorial
structure.

We provide a series of results for the general CPE problem.
We present general learning algorithms which work for all de-
cision classes that admit offline maximization oracles in both
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fixed confidence and fixed budget settings. We prove problem-
dependent upper bounds of our algorithms. Our analysis exploits
the combinatorial structures of the decision classes and intro-
duces a new analytic tool. We also establish a general problem-
dependent lower bound for the CPE problem. Our results show
that the proposed algorithms achieve the optimal sample com-
plexity (within logarithmic factors) for many decision classes.
In addition, applying our results back to the problems of top-K
arms identification and multiple bandit best arms identification,
we recover the best available upper bounds up to constant fac-
tors and partially resolve a conjecture on the lower bounds.

1.4.2 Linear combinatorial bandits

In Chapter 3, we apply the techniques of combinatorial bandits
to recommender systems. In particular, we study the cold-start
list recommendation problem, in which the objective is to rec-
ommend lists of items over a sequence of rounds to a new user
with insufficient historical records.

We develop a principled approach called linear combinatorial
bandit in which a learning algorithm can dynamically identify
diverse items that interest a new user. Specifically, each item is
represented as a feature vector, and each user is represented as
an unknown preference vector. At each of T rounds, the ban-
dit algorithm sequentially selects a set of items according to the
item-selection strategy that balances exploration and exploita-
tion, and collects the user feedback on these selected items. A
reward function is further designed to measure the quality (e.g.
relevance or diversity) of the selected set based on observed feed-
back, and the goal of the algorithm is to maximize the total
rewards of T rounds. The reward function only needs to satisfy
two mild assumptions that is general enough to accommodate a
large class of nonlinear functions. To solve this bandit problem,
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we provide algorithm that achieves Õ(
√
T ) regret after playing T

rounds. Experiments conducted on real-wold movie recommen-
dation dataset demonstrate that our approach can effectively
address the above challenges and hence improve the performance
of recommendation task.

1.4.3 Fast approximation for ridge regression

Ridge regression is a key algorithmic component of our learning
algorithm in Chapter 2 and is also central to a wide range of
fields including machine learning, data mining and statistics. In
practice, an important case is that the number of features p is
much larger than the number of samples n, i.e. p � n. In this
case, the popular optimization algorithm for ridge regression
runs in O(n2p + n3) time, which is expensive when p is very
large.

In Chapter 4, we propose a fast relative-error approximation
algorithm for ridge regression. More specifically, our algorithm
outputs a solution x̃ satisfying ‖x̃ − x∗‖2 ≤ ε‖x∗‖2 with high
probability and runs in Õ(nnz(A) + n3/ε2) time, where nnz(A)
denotes the number of non-zero elements of matrix A. To the
best of our knowledge, this is the first algorithm for ridge re-
gression that runs in o(n2p) time with provable relative-error
approximation bound on the output vector. In addition, for sup-
plements to our main result, we analyze the risk inflation bound
of our algorithm and generalize our technique to the multiple
response ridge regression problem. Finally, we show empirical
results on both synthetic and real datasets.

1.4.4 Recovery for pairwise interaction tensors

In Chapter 5, we study the recovery problem of pairwise inter-
action tensors, a simplified low rank model for tensors. A tensor
T ∈ Rn1×n2×n3 is called a pairwise interaction tensor, if there
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exists matrices A ∈ Rn1×n2, B ∈ Rn2×n3 and C ∈ Rn3×n1 such
that each entry T can be written as the sum of correspond-
ing entries of A,B and C, i.e., Tijk = Aij + Bjk + Cki for all
i, j, k ∈ [n1]× [n2]× [n3].

Due to its simplicity and effectiveness, pairwise interaction
tensor has received considerable attention in several applica-
tions to be used as a replacement of tensors for modeling multi-
attribute dataset. However, in the literature, the existing recov-
ery algorithms for pairwise interaction interaction tensors use
local optimization techniques and do not have any guarantee on
their recovery performance.

We present an algorithm which, in the absence of noise, guar-
antees to exactly recover a pairwise interaction tensor from only
O(nr log2 n) random subsamples of entries, where n = max{n1, n2, n3}
and r = max{rank(A), rank(B), rank(C)}. On the other hand,
one can show that the degree of freedom of pairwise interaction
tensor is Ω(nr). Hence, we see that the sample size required by
our recovery algorithm is almost minimal.

In addition, for noisy cases, we also present a constrained
convex program and prove the associated error bounds. In our
analysis, we reformulate the recovery problem as a constrained
matrix recovery problem with non-orthonormal operators. Then,
we extend the techniques developed by Gross [67] for recover-
ing a matrix from observations of orthonormal operators. More-
over, we develop a simple and scalable approximation optimiza-
tion algorithm. Our experiments on both synthetic and real
datasets agree well with our theory; the experiment results on
a real-world recommendation datasets demonstrate state-of-the-
art performances.



Chapter 2

Combinatorial Pure
Exploration Bandits

We study the combinatorial pure exploration (CPE) problem in
the stochastic multi-armed bandit setting, where a learner ex-
plores a set of arms with the objective of identifying the optimal
member of a decision class, which is a collection of subsets of
arms with certain combinatorial structures such as size-K sub-
sets, matchings, spanning trees or paths, etc. The CPE problem
represents a rich class of pure exploration tasks which covers
not only many existing models but also novel cases where the
object of interest has a non-trivial combinatorial structure. In
this chapter, we provide a series of results for the general CPE
problem. We present general learning algorithms which work
for all decision classes that admit offline maximization oracles
in both fixed confidence and fixed budget settings. We prove
problem-dependent upper bounds of our algorithms. Our anal-
ysis exploits the combinatorial structures of the decision classes
and introduces a new analytic tool. We also establish a gen-
eral problem-dependent lower bound for the CPE problem. Our
results show that the proposed algorithms achieve the optimal
sample complexity (within logarithmic factors) for many deci-
sion classes. In addition, applying our results back to the prob-
lems of top-K arms identification and multiple bandit best arms

18
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identification, we recover the best available upper bounds up to
constant factors and partially resolve a conjecture on the lower
bounds.

2.1 Introduction

Multi-armed bandit (MAB) is a predominant model for char-
acterizing the tradeoff between exploration and exploitation in
decision-making problems. Although this is an intrinsic tradeoff
in many tasks, some application domains prefer a dedicated ex-
ploration procedure in which the goal is to identify an optimal
object among a collection of candidates and the reward or loss
incurred during exploration is irrelevant. In light of these appli-
cations, the related learning problem, called pure exploration in
MABs, has received much attention. Recent advances in pure
exploration MABs have found potential applications in many
domains including crowdsourcing, communication network and
online advertising.

In many of these application domains, a recurring problem is
to identify the optimal object with certain combinatorial struc-
ture. For example, a crowdsourcing application may want to
find the best assignment from workers to tasks such that overall
productivity of workers are maximized. A network routing sys-
tem during the initialization phase may try to build a spanning
tree that minimizes the delay of links, or attempts to identify
the shortest path between two sites. An online advertising sys-
tem may be interested in finding the best matching between
ads and display slots. The literature of pure exploration MAB
problems lacks a framework that encompasses these kinds of
problems where the object of interest has a non-trivial combi-
natorial structure. This chapter contributes such a framework
which accounts for general combinatorial structures, and devel-
ops a series of results, including algorithms, upper bounds and
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lower bounds for the framework.
In this chapter, we formulate the combinatorial pure explo-

ration (CPE) problem for stochastic multi-armed bandits. In the
CPE problem, a learner has a fixed set of arms and each arm is
associated with an unknown reward distribution. The learner is
also given a collection of sets of arms called decision class, which
corresponds to a collection of certain combinatorial structures.
During the exploration period, in each round the learner chooses
an arm to play and observes a random reward sampled from the
associated distribution. The objective is when the exploration
period ends, the learner outputs a member of the decision class
that she believes to be optimal, in the sense that the sum of ex-
pected rewards of all arms in the output set is maximized among
all members in the decision class.

The CPE framework represents a rich class of pure explo-
ration problems. The conventional pure exploration problem in
MAB, whose objective is to find the single best arm, clearly
fits into this framework, in which the decision class is the col-
lection of all singletons. This framework also naturally encom-
passes several recent extensions, including the problem of find-
ing the top K arms (henceforth TopK) [80, 81, 28, 82, 156]
and the multi-bandit problem of finding the best arms simul-
taneously from several disjoint sets of arms (henceforth MB)
[60, 28]. Further, this framework covers many more interesting
cases where the decision classes correspond to collections of non-
trivial combinatorial structures. For example, suppose that the
arms represent the edges in a graph. Then a decision class could
be the set of all paths between two vertices, all spanning trees
or all matchings of the graph. And, in these cases, the objec-
tives of CPE become identifying the optimal paths, spanning
trees and matchings through bandit explorations, respectively.
To our knowledge, there are no results available in the literature
for these pure exploration tasks.



CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 21

The CPE framework raises several interesting challenges to
the design and analysis of pure exploration algorithms. One chal-
lenge is that, instead of solving each type of CPE task in an
ad-hoc way, one requires a unified algorithm and analysis that
support different decision classes. Another challenge stems from
the combinatorial nature of CPE, namely that the optimal set
may contain some arms with very small expected rewards (e.g.,
it is possible that a maximum matching contains the edge with
the smallest weight); hence, arms cannot be eliminated simply
based on their own rewards in the learning algorithm or ignored
in the analysis. This differs from many existing approach of pure
exploration MABs. Therefore, the design and analysis of algo-
rithms for CPE demands novel techniques which take both re-
wards and combinatorial structures into account.

Our results. In this chapter, we propose two novel learn-
ing algorithms for general CPE problem: one for the fixed con-
fidence setting and one for the fixed budget setting. Both al-
gorithms support a wide range of decision classes in a unified
way. In the fixed confidence setting, we present Combinatorial
Lower-Upper Confidence Bound (CLUCB) algorithm. The CLUCB

algorithm does not need to know the definition of the decision
class, as long as it has access to the decision class through a
maximization oracle. We upper bound the number of samples
used by CLUCB. This sample complexity bound depends on both
the expected rewards and the structure of decision class. Our
analysis relies on a novel combinatorial construction called ex-
change class, which may be of independent interest for other
combinatorial optimization problems. Specializing our result to
TopK and MB, we recover the best available sample complex-
ity bounds [81, 61, 82] up to constant factors. While for other
decision classes in general, our result establishes the first sam-
ple complexity upper bound. We further show that CLUCB can
be easily extended to the fixed budget setting and PAC learn-
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ing setting and we provide related theoretical guarantees in the
Section 2.9.

Moreover, we establish a problem-dependent sample com-
plexity lower bound for the CPE problem. Our lower bound
shows that the sample complexity of the proposed CLUCB algo-
rithm is optimal (to within logarithmic factors) for many de-
cision classes, including TopK, MB and the decision classes
derived from matroids (e.g., spanning tree). Therefore our up-
per and lower bounds provide a nearly full characterization of
the sample complexity of these CPE problems. For more gen-
eral decision classes, our results show that the upper and lower
bounds are within a relatively benign factor. To the best of our
knowledge, there are no problem-dependent lower bounds known
for pure exploration MABs besides the case of identifying the
single best arm [102, 6]. We also notice that our result resolves
the conjecture of Bubeck et al. [28] on the problem-dependent
sample complexity lower bounds of TopK and MB problems,
for the cases of Gaussian reward distributions.

In the fixed budget setting, we present a parameter-free al-
gorithm called Combinatorial Successive Accept Reject (CSAR)
algorithm. We prove a probability of error bound of the CSAR

algorithm. This bound can be shown to be equivalent to the
sample complexity bound of CLUCB within logarithmic factors,
although the two algorithms are based on quite different tech-
niques. Our analysis of CSAR re-uses exchange classes as tools.
This suggests that exchange classes may be useful for analyzing
similar problems. In addition, when applying the algorithm to
back TopK and MB, our bound recovers the best known re-
sult in the fixed budget setting due to Bubeck et al. [28] up to
constant factors.
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2.2 Problem Formulation

In this section, we formally define the CPE problem. Suppose
that there are n arms and the arms are numbered 1, 2, . . . , n.
Assume that each arm e ∈ [n] is associated with a reward dis-

tribution ϕe. Let w =
(
w(1), . . . , w(n)

)T
denote the vector of

expected rewards, where each entry w(e) = EX∼ϕe[X] denotes
the expected reward of arm e. Following standard assumptions of
stochastic MABs, we assume that all reward distributions have
R-sub-Gaussian tails for some known constant R > 0. Formally,
if X is a random variable drawn from ϕe for some e ∈ [n], then,
for all t ∈ R, one has E

[
exp(tX − tE[X])

]
≤ exp(R2t2/2). It is

known that the family of R-sub-Gaussian tail distributions en-
compasses all distributions that are supported on [0, R] as well
as many unbounded distributions such as Gaussian distributions
with variance R2 (see e.g., [114, 125]).

We define a decision class M⊆ 2[n] as a collection of sets of
arms. Let M∗ = arg maxM∈Mw(M) denote the optimal member
of the decision class M which maximizes the sum of expected
rewards1. A learner’s objective is to identify M∗ from M by
playing the following game with the stochastic environment. At
the beginning of the game, the decision class M is revealed to
the learner while the reward distributions {ϕe}e∈[n] are unknown
to the learner. Then, the learner plays the game over a sequence
of rounds; in each round t, the learner pulls an arm pt ∈ [n] and
observes a reward sampled from the associated reward distribu-
tion ϕpt. The game continues until certain stopping condition is
satisfied. After the game finishes, the learner need to output a
set Out ∈M.

We consider two different stopping conditions of the game,
which are known as fixed confidence setting and fixed budget set-

1We define v(S) ,
∑
i∈S v(i) for any vector v ∈ Rn and any set S ⊆ [n]. In addition,

for convenience, we will assume that M∗ is unique.
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ting in the literature. In the fixed confidence setting, the learner
can stop the game at any round. The learner need to guarantee
that Pr[Out = M∗] ≥ 1 − δ for a given confidence parameter δ.
The learner’s performance is evaluated by her sample complexity,
i.e., the number of pulls used by the learner. In the fixed budget
setting, the game stops after a fixed number T of rounds, where
T is given before the game starts. The learner tries to minimize
the probability of error, which is formally Pr[Out 6= M∗], within
T rounds. In this case, the learner’s performance is measured by
the probability of error.

2.3 Algorithm, Exchange Class and Sample

Complexity

In this section, we present Combinatorial Lower-Upper Confi-
dence Bound (CLUCB) algorithm, a learning algorithm for the
CPE problem in the fixed confidence setting, and analyze its
sample complexity. En route to our sample complexity bound,
we introduce the notions of exchange classes and the widths of
decision classes, which play an important role in the analysis and
sample complexity bound. Furthermore, the CLUCB algorithm can
be extended to the fixed budget and PAC learning settings, the
discussion of which is included in Section 2.9.

Oracle. We allow the CLUCB algorithm to access a maximiza-
tion oracle. A maximization oracle takes a weight vector v ∈ Rn

as input and finds an optimal set from a given decision classM
with respect to the weight vector v. Formally, we call a func-
tion Oracle: Rn → M a maximization oracle for M if, for all
v ∈ Rn, we have Oracle(v) ∈ arg maxM∈M v(M). It is clear that
a wide range of decision classes admit such maximization or-
acles, including decision classes corresponding to collections of
matchings, paths or bases of matroids (see later for concrete ex-
amples). Besides the access to the oracle, CLUCB does not need
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any additional knowledge of the decision class M.
Algorithm. Now we describe the details of CLUCB, as shown

in Algorithm 1. During its execution, the CLUCB algorithm main-
tains empirical mean w̄t(e) and confidence radius radt(e) for each
arm e ∈ [n] and each round t. The construction of confidence
radius ensures that |w(e) − w̄t(e)| ≤ radt(e) holds with high
probability for each arm e ∈ [n] and each round t > 0. CLUCB

begins with an initialization phase in which each arm is pulled
once. Then, at round t ≥ n, CLUCB uses the following procedure
to choose an arm to play. First, CLUCB calls the oracle which
finds the set Mt = Oracle(w̄t). The set Mt is the “best” set
with respect to the empirical means w̄t. Then, CLUCB explores
possible refinements of Mt. In particular, CLUCB uses the con-
fidence radius to compute an adjusted expectation vector w̃t

in the following way: for each arm e ∈ Mt, w̃t(e) is equal to
to the lower confidence bound w̃t(e) = w̄t(e) − radt(e); and for
each arm e 6∈ Mt, w̃t(e) is equal to the upper confidence bound
w̃t(e) = w̄t(e) + radt(e). Intuitively, the adjusted expectation
vector w̃t penalizes arms belonging to the current set Mt and
encourages exploring arms out of Mt. CLUCB then calls the oracle
using the adjusted expectation vector w̃t as input to compute
a refined set M̃t = Oracle(w̃t). If w̃t(M̃t) = w̃t(Mt) then CLUCB

stops and returns Out = Mt. Otherwise, CLUCB pulls the arm
that belongs to the symmetric difference between Mt and M̃t

and has the largest confidence radius (intuitively the largest un-
certainty). This ends the t-th round of CLUCB. We note that CLUCB

generalizes and unifies the ideas of several different fixed confi-
dence algorithms dedicated to the TopK and MB problems in
the literature [81, 61, 82].
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Algorithm 1 CLUCB: Combinatorial Lower-Upper Confidence Bound

Require: Confidence δ ∈ (0, 1); Maximization oracle: Oracle(·) : Rn →M
Initialize: Play each arm e ∈ [n] once. Initialize empirical means w̄n

and set Tn(e)← 1 for all e.
1: for t = n, n+ 1, . . . do
2: Mt ← Oracle(w̄t)
3: Compute confidence radius radt(e) for all e ∈ [n] . radt(e) is defined

later in Theorem 2.1
4: for e = 1, . . . , n do
5: if e ∈Mt then w̃t(e)← w̄t(e)− radt(e)
6: else w̃t(e)← w̄t(e) + radt(e)
7: end for
8: M̃t ← Oracle(w̃t)
9: if w̃t(M̃t) = w̃t(Mt) then

10: Out←Mt

11: return Out
12: end if
13: pt ← arg maxe∈(M̃t\Mt)∪(Mt\M̃t)

radt(e) . break ties arbitrarily
14: Pull arm pt and observe the reward
15: Update empirical means w̄t+1 using the observed reward
16: Update number of pulls: Tt+1(pt) ← Tt(pt) + 1 and Tt+1(e) ← Tt(e)

for all e 6= pt
17: end for

2.3.1 Sample complexity

Now we establish a problem-dependent sample complexity bound
of the CLUCB algorithm. To formally state our result, we need to
introduce several notions.

Gap. We begin with defining a natural hardness measure of
the CPE problem. For each arm e ∈ [n], we define its gap ∆e as

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e 6∈M∗,
w(M∗)−maxM∈M:e 6∈M w(M) if e ∈M∗,

(2.1)

where we adopt the convention that the maximum value of an
empty set is −∞. We also define the hardness H as the sum of
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inverse squared gaps

H =
∑
e∈[n]

∆−2
e . (2.2)

From Eq. (2.1), we see that, for each arm e 6∈M∗, the gap ∆e

represents the sub-optimality of the best set that includes arm e;
and, for each arm e ∈M∗, the gap ∆e is the sub-optimality of the
best set that does not include arm e. This naturally generalizes
and unifies previous definitions of gaps [6, 60, 80, 28].

Exchange class and the width of a decision class. A
notable challenge of our analysis stems from the generality of
CLUCB which, as we have seen, supports a wide range of deci-
sion classes M. Indeed, previous algorithms for special cases
including TopK and MB require a separate analysis for each
individual type of problem. Such strategy is intractable for our
setting and we need a unified analysis for all decision classes. Our
solution to this challenge is a novel combinatorial construction
called exchange class, which is used as a proxy for the struc-
ture of the decision class. Intuitively, an exchange class B for a
decision class M can be seen as a collection of “patches” (bor-
rowing concepts from source code management) such that, for
any two different sets M,M ′ ∈M, one can transform M to M ′

by applying a series of patches of B; and each application of
a patch yields a valid member of M. These patches are later
used by our analysis to build gadgets that interpolate between
different members of the decision class and serve to bridge key
quantities. Furthermore, the maximum patch size of B will play
an important role in our sample complexity bound.

Now we formally define the exchange class. We begin with the
definition of exchange sets, which formalize the aforementioned
“patches”. We define an exchange set b as an ordered pair of
disjoint sets b = (b+, b−) where b+ ∩ b− = ∅ and b+, b− ⊆ [n].
Then, we define operator ⊕ such that, for any set M ⊆ [n] and
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any exchange set b = (b+, b−), we have M ⊕ b , M\b− ∪ b+.
Similarly, we also define operator 	 such that M 	 b ,M\b+ ∪
b−.

We call a collection of exchange sets B an exchange class for
M if B satisfies the following property. For any M,M ′ ∈ M
such that M 6= M ′ and for any e ∈ (M\M ′), there exists an
exchange set (b+, b−) ∈ B which satisfies five constraints: (a)
e ∈ b−, (b) b+ ⊆ M ′\M , (c) b− ⊆ M\M ′, (d) (M ⊕ b) ∈ M
and (e) (M ′ 	 b) ∈M.

Intuitively, constraints (b) and (c) resemble the concept of
patches in the sense that b+ contains only the “new” elements
from M ′ and b− contains only the “old” elements of M ; con-
straints (d) and (e) allow one to transform M one step closer
to M ′ by applying a patch b ∈ B to yield (M⊕b) ∈M (and sim-
ilarly for M ′ 	 b). These transformations are the basic building
blocks in our analysis. Furthermore, as we will see later in our
examples, for many decision classes, there are exchange classes
representing natural combinatorial structures, e.g., augmenting
paths and cycles of matchings.

In our analysis, the key quantity of exchange class is called
width, which is defined as the size of the largest exchange set as
follows

width(B) = max
(b+,b−)∈B

|b+|+ |b−|. (2.3)

Let Exchange(M) denote the family of all possible exchange
classes forM. We define the width of a decision classM as the
width of the thinnest exchange class

width(M) = min
B∈Exchange(M)

width(B). (2.4)

Sample complexity. Our main result of this section is a
problem-dependent sample complexity bound of the CLUCB algo-
rithm which show that, with high probability, CLUCB returns the
optimal set M∗ and uses at most Õ

(
width(M)2H

)
samples.
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Theorem 2.1. Given any δ ∈ (0, 1), any decision class M ⊆
2[n] and any expected rewards w ∈ Rn. Assume that the reward
distribution ϕe for each arm e ∈ [n] has mean w(e) with an
R-sub-Gaussian tail. Let M∗ = arg maxM∈Mw(M) denote the

optimal set. Set radt(e) = R
√

2 log
(

4nt3

δ

)
/Tt(e) for all t > 0

and e ∈ [n]. Then, with probability at least 1 − δ, the CLUCB

algorithm (Algorithm 1) returns the optimal set Out = M∗ and

T ≤ O
(
R2width(M)2H log

(
R2H/δ

))
, (2.5)

where T denotes the number of samples used by Algorithm 1, H
is defined in Eq. (2.2) and width(M) is defined in Eq. (2.4).

The proof of Theorem 2.1 is deferred to Section 2.8.

2.3.2 Examples of decision classes

Now we investigate several concrete types of decision classes,
which correspond to different CPE tasks. We analyze the width
of these decision classes and apply Theorem 2.1 to obtain the
sample complexity bounds. A more detailed analysis and the
constructions of exchange classes is deferred to Section 2.13. We
begin with the problem of top-K arm identification (TopK) and
multi-bandit best arms identification (MB).

Example 2.1 (TopK and MB). For any K ∈ [n], the problem
of finding the top K arms with the largest expected reward can be
modeled by decision class MTopK(K) = {M ⊆ [n] |

∣∣M ∣∣ = K}.
Let A = {A1, . . . , Am} be a partition of [n]. The problem of
identifying the best arms from each group of arms A1, . . . , Am

can be modeled by decision class MMB(A) = {M ⊆ [n] | ∀i ∈
[m], |M ∩ Ai| = 1}. Note that maximization oracles for these
two decision classes are trivially the functions of returning the
best arms or the best arm of each group.

Then we have width(MTopK(K)) ≤ 2 and width(MMB(A)) ≤ 2
(see Fact 2.2 and 2.3 in Section 2.3.2) and therefore the sample
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complexity of CLUCB for solving TopK and MB is O
(
H log(H/δ)

)
,

which matches previous results in the fixed confidence setting
[81, 61, 82] up to constant factors.

Next we consider the problem of identifying the maximum
matching or the problem of finding the shortest path (by negat-
ing the rewards) in a setting where arms correspond to edges. For
these problems, Theorem 2.1 establishes the first known sample
complexity bound.

Example 2.2 (Matchings and Paths). Let G(V,E) be a graph
with n edges and assume there is a one-to-one mapping between
edges E and arms [n]. Suppose that G is a bipartite graph. Let
MMatch(G) correspond to the set of all matchings in G. Then we
have width(MMatch(G)) ≤ |V | (In fact, we construct an exchange
class corresponding to the collection of augmenting cycles and
augmenting paths of G; see Fact 2.4).

Next suppose that G is a directed acyclic graph and let s, t ∈ V
be two vertices. LetMPath(G,s,t) correspond to the set of all paths
from s to t. Then we have width(MPath(G,s,t)) ≤ |V | (In fact,
we construct an exchange class corresponding to the collection
of disjoint pairs of paths; see Fact 2.5). Therefore the sample
complexity bounds of CLUCB for decision classes MMatch(G) and
MPath(G,s,t) are O

(
|V |2H log(H/δ)

)
.

Last, we investigate the general problem of identifying the
maximum-weight basis of a matroid. Again, Theorem 2.1 is the
first sample complexity upper bound for this type of pure ex-
ploration tasks.

Example 2.3 (Matroids). Let T = (E, I) be a finite matroid,
where E is a set of size n (called ground set) and I is a fam-
ily of subsets of E (called independent sets) which satisfies the
axioms of matroids. Assume that there is a one-to-one mapping
between E and [n]. Recall that a basis of matroid T is a maxi-
mal independent set. LetMMatroid(T ) correspond to the set of all
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bases of T . Then we have width(MMatroid(T )) ≤ 2 (derived from
strong basis exchange property of matroids; see Fact 2.1) and the
sample complexity of CLUCB for MMatroid(T ) is O

(
H log(H/δ)

)
.

The last example MMatroid(T ) is a general type of decision
class which encompasses many pure exploration tasks including
TopK and MB as special cases, where TopK corresponds to
uniform matroids of rank K and MB corresponds to partition
matroids. It is easy to see that MMatroid(T ) also covers the de-
cision class that contains all spanning trees of a graph. On the
other hand, it has been established that matchings and paths
cannot be formulated as matroids since they are matroid inter-
sections [112].

2.4 Lower Bound

In this section, we present a problem-dependent lower bound on
the sample complexity of the CPE problem. To state our results,
we first define the notion of δ-correct algorithm as follows. For
any δ ∈ (0, 1), we call an algorithm A a δ-correct algorithm if,
for any expected reward w ∈ Rn, the probability of error of A
is at most δ, i.e., Pr[M∗ 6= Out] ≤ δ, where Out is the output of
A.

We show that, for any decision classM and any expected re-
wardsw, a δ-correct algorithm A must use at least Ω

(
H log(1/δ)

)
samples in expectation.

Theorem 2.2. Fix any decision class M⊆ 2[n] and any vector
w ∈ Rn. Suppose that, for each arm e ∈ [n], the reward distribu-
tion ϕe is given by ϕe = N (w(e), 1), where we let N (µ, σ2) de-
note Gaussian distribution with mean µ and variance σ2. Then,
for any δ ∈ (0, e−16/4) and any δ-correct algorithm A, we have

E[T ] ≥ 1

16
H log

(
1

4δ

)
, (2.6)
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where T denote the number of total samples used by algorithm
A and H is defined in Eq. (2.2).

In Example 2.1 and Example 2.3, we have seen that the sam-
ple complexity of CLUCB is O(H log(nH/δ)) for pure exploration
tasks including TopK, MB and more generally the CPE tasks
with decision classes derived from matroids, i.e., MMatroid(T )

(including spanning trees). Hence, our upper and lower bound
show that the CLUCB algorithm achieves the optimal sample com-
plexity within logarithmic factors for these pure exploration
tasks. In addition, we remark that Theorem 2.2 resolves the
conjecture of Bubeck et al. [28] that the lower bounds of sample
complexity of TopK and MB problems are Ω

(
H log(1/δ)

)
, for

the cases of Gaussian reward distributions.
On the other hand, for general decision classes with non-

constant widths, we see that there is a gap of Θ̃(width(M)2) be-
tween the upper bound Eq. (2.5) and the lower bound Eq. (2.6).
Notice that we have width(M) ≤ n for any decision class M
and therefore the gap is relatively benign. Our lower bound also
suggests that the dependency on H of the sample complexity of
CLUCB cannot be improved up to logarithmic factors. Further-
more, we conjecture that the sample complexity lower bound
might inherently depend on the size of exchange sets. In Sec-
tion 2.10.2, we provide evidences on this conjecture which is
a lower bound on the sample complexity of exploration of the
exchange sets.

2.5 Fixed Budget Algorithm

In this section, we present Combinatorial Successive Accept Re-
ject (CSAR) algorithm, which is a parameter-free learning algo-
rithm for the CPE problem in the fixed budget setting. Then,
we upper bound the probability of error CSAR in terms of gaps
and width(M).
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Constrained oracle. The CSAR algorithm requires access to
a constrained oracle, which is a function denoted as COracle :
Rn × 2[n] × 2[n] →M∪ {⊥} and satisfies

COracle(v, A,B) =

{
arg maxM∈MA,B

v(M) if MA,B 6= ∅
⊥ if MA,B = ∅,

(2.7)
where we defineMA,B = {M ∈M | A ⊆M,B ∩M = ∅} as the
collection of feasible sets and ⊥ is a null symbol. Hence we see
that COracle(v, A,B) returns an optimal set that includes all
elements of A while excluding all elements of B; and if there are
no feasible sets, the constrained oracle COracle(v, A,B) returns
the null symbol ⊥. In Section 2.14, we show that constrained
oracles are equivalent to maximization oracles up to a trans-
formation on the weight vector. In addition, similar to CLUCB,
CSAR does not need any additional knowledge of M other than
accesses to a constrained oracle for M.

Algorithm. The idea of the CSAR algorithm is as follows. The
CSAR algorithm divides the budget of T rounds into n phases. In
the end of each phase, CSAR either accepts or rejects a single arm.
If an arm is accepted, then it is included into the final output.
Conversely, if an arm is rejected, then it is excluded from the
final output. The arms that are neither accepted nor rejected
are sampled for an equal number of times in the next phase.

Now we describe the procedure of the CSAR algorithm for
choosing an arm to accept/reject. Let At denote the set of ac-
cepted arms before phase t and let Bt denote the set of rejected
arms before phase t. We call an arm e to be active if e 6∈ At∪Bt.
In the beginning of phase t, CSAR samples each active arm for
T̃t−T̃t−1 times, where the definition of T̃t is given in Algorithm 2.
Next, CSAR calls the constrained oracle to compute an optimal
set Mt with respect to the empirical means w̄t, accepted arms At

and rejected arms Bt, i.e., Mt = COracle(w̄t, At, Bt). It is clear
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that the output of COracle(w̄t, At, Bt) is independent from the
input w̄t(e) for any e ∈ At ∪ Bt. Then, for each active arm e,
CSAR estimates the “empirical gap” of e in the following way. If
e ∈ Mt, then CSAR computes an optimal set M̃t,e that does not
include e, i.e., M̃t,e = COracle(w̄t, At, Bt ∪ {e}). Conversely, if
e 6∈ Mt, then CSAR computes an optimal M̃t,e which includes e,
i.e., M̃t,e = COracle(w̄t, At ∪ {e}, Bt). Then, the empirical gap
of e is calculated as w̄t(Mt)− w̄t(M̃t,e). Finally, CSAR chooses the
arm pt which has the largest empirical gap. If pt ∈ Mt then pt
is accepted, otherwise pt is rejected. The pseudo-code CSAR is
shown in Algorithm 2. We note that CSAR can be considered as a
generalization of the ideas of the two versions of SAR algorithm
due to Bubeck et al. [28], which are designed specifically for the
TopK and MB problems respectively.

2.5.1 Probability of error

In the following theorem, we bound the probability of error of
the CSAR algorithm.

Theorem 2.3. Given any T > n, any decision class M ⊆ 2[n]

and any expected rewards w ∈ Rn. Assume that the reward dis-
tribution ϕe for each arm e ∈ [n] has mean w(e) with an R-sub-
Gaussian tail. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n

(defined in Eq. (2.1)) such that ∆(1) ≤ . . . . . .∆(n). Define H2 ,
maxi∈[n] i∆

−2
(i) . Then, the CSAR algorithm uses at most T samples

and outputs a solution Out ∈M∪ {⊥} such that

Pr[Out 6= M∗] ≤ n2 exp

(
− (T − n)

18R2 ˜log(n)width(M)2H2

)
, (2.8)

where ˜log(n) ,
∑n

i=1 i
−1, M∗ = arg maxM∈Mw(M) and width(M)

is defined in Eq. (2.4).

The proof of Theorem 2.3 is deferred to Section 2.11.
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Algorithm 2 CSAR: Combinatorial Successive Accept Reject

Require: Budget: T > 0; Constrained oracle: COracle : Rn × 2[n] × 2[n] →
M∪ {⊥}.

1: Define ˜log(n) ,
∑n

i=1
1
i

2: T̃0 ← 0, A1 ← ∅, B1 ← ∅
3: for t = 1, . . . , n do

4: T̃t ←
⌈

T−n
˜log(n)(n−t+1)

⌉
5: Pull each arm e ∈ [n]\(At ∪Bt) for T̃t − T̃t−1 times
6: Update the empirical means w̄t for each arm e ∈ [n]\(At ∪Bt) . set
w̄t(e) = 0, ∀e ∈ At ∪Bt

7: Mt ← COracle(w̄t, At, Bt)
8: if Mt = ⊥ then
9: fail: set Out← ⊥ and return Out

10: end if
11: for each e ∈ [n]\(At ∪Bt) do
12: if e ∈Mt then M̃t,e ← COracle(w̄t, At, Bt ∪ {e})
13: else M̃t,e ← COracle(w̄t, At ∪ {e}, Bt)
14: end for
15: pt ← arg maxe∈[n]\(At∪Bt) w̄t(Mt)− w̄t(M̃t,e) . define w̄t(⊥) = −∞;

break ties arbitrarily
16: if pt ∈Mt then
17: At+1 ← At ∪ {pt}, Bt+1 ← Bt

18: else
19: At+1 ← At, Bt+1 ← Bt ∪ {pt}
20: end if
21: end for
22: Out← An+1

23: return Out
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One can verify that H2 is equivalent to H up to a logarithmic
factor: H2 ≤ H ≤ log(2n)H2 (see [6]). Therefore, by setting the
probability of error (the RHS of Eq. (2.8)) to a constant, one can
see that CSAR requires a budget of T = Õ(width(M)2H) sam-
ples. This is equivalent to the sample complexity bound of CLUCB

up to logarithmic factors. In addition, applying Theorem 2.3
back to TopK and MB, our bound matches the previous fixed
budget algorithm due to Bubeck et al. [28].

2.6 Related Work

The multi-armed bandit problem has been extensively studied
in both stochastic and adversarial settings [91, 10, 9]. We refer
readers to [25] for a survey on recent advances. Many work in
MABs focus on minimizing the cumulative regret, which is an
objective known to be fundamentally different from the objective
of pure exploration MABs [26]. Among these work, a recent line
of research considers a generalized setting called combinatorial
bandits in which a set of arms (satisfying certain combinatorial
constraints) are played on each round [39, 79, 111, 27, 43, 66,
95, 90]. Note that the objective of these work is to minimize the
cumulative regret, which differs from ours.

In the literature of pure exploration MABs, the classical prob-
lem of identifying the single best arm has been well-studied in
both fixed confidence and fixed budget settings [102, 53, 26, 6,
61, 77, 78]. A flurry of recent work extend this classical problem
to TopK and MB problems and obtain algorithms with upper
bounds [80, 60, 61, 81, 28, 82, 156] and worst-case lower bounds
of TopK [81, 156]. Our framework encompasses these two prob-
lems as special cases and covers a much larger class of combina-
torial pure exploration problems, which have not been addressed
in current literature. Applying our results back to TopK and
MB, our upper bounds match best available problem-dependent
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bounds up to constant factors [61, 81, 28] in both fixed confi-
dence and fixed budget settings; and our lower bound is the first
proven problem-dependent lower bound for these two problems,
which are conjectured earlier by Bubeck et al. [28].

2.7 Conclusion

In this chapter, we proposed a general framework called combi-
natorial pure exploration (CPE) that can handle pure explo-
ration tasks for many complex bandit problems with combi-
natorial constraints, and have potential applications in various
domains. We have shown a number of results for the frame-
work, including two novel learning algorithms, their related up-
per bounds and a novel lower bound. The proposed algorithms
support a wide range of decision classes in a unifying way and
our analysis introduced a novel tool called exchange class, which
may be of independent interest. Our upper and lower bounds
characterize the complexity of the CPE problem: the sample
complexity of our algorithm is optimal (up to a logarithmic fac-
tor) for the decision classes derived from matroids (including
TopK and MB), while for general decision classes, our upper
and lower bounds are within a relatively benign factor.

2.8 Analysis of CLUCB (Theorem 2.1)

In this section, we analyze the sample complexity of CLUCB and
prove Theorem 2.1.

Notations. Fix some decision class M ⊆ 2[n] and fix some
expected reward vectorw ∈ Rn. Recall thatM∗ = arg maxM∈Mw(M)
is the optimal set. Since we assume that M∗ is unique, one can
verify that, for every e ∈ [n], the gap defined in Eq. (2.1) is
positive, i.e., ∆e > 0.
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We will also need some additional notations for our analysis.
For any set a ⊆ [n], let χa ∈ {0, 1}n denote the incidence vector
of set a ⊆ [n], i.e., χa(e) = 1 if and only if e ∈ a. For an exchange
set b = (b+, b−), we define χb , χb+−χb− as the incidence vector
of b. We notice that χb ∈ {−1, 0, 1}n.

For each round t, we define vector radt =
(

radt(1), . . . , radt(n)
)T

and recall that w̄t ∈ Rn is the empirical mean rewards of arms
up to round t.

Let u ∈ Rn and v ∈ Rn be two vectors. Let 〈u,v〉 denote the
inner product of u and v. We define u◦v ,

(
u(1)·v(1), . . . , u(n)·

v(n)
)T

as the element-wise product of u and v. For any s ∈
R, we also define us ,

(
u(1)s, . . . , u(n)s)T as the element-wise

exponentiation of u. We let |u| =
(
|u(1)|, . . . , |u(n)|

)T
denote

the element-wise absolute value of u.
Finally, let us recall that for any exchange class b = (b+, b−)

and any set M ⊆ [n], we have defined M ⊕ b = M\b− ∪ b+ and
M 	 b = M\b+ ∪ b−.

2.8.1 Preparatory Lemmas

Let us begin with a simple lemma that characterizes the inci-
dence vectors of exchange sets.

Lemma 2.1. Let M1 ⊆ [n] be a set. Let b = (b+, b−) be an
exchange set such that b− ⊆M1 and b+ ∩M1 = ∅. Define M2 =
M1 ⊕ b. Then, we have

χM1
+ χb = χM2

.

In addition, we have M1 = M2 	 b.

Proof. Recall that M2 = M1\b−∪ b+ and b+∩ b− = ∅. Therefore
we see that M2\M1 = b+ and M1\M2 = b−. We can decompose
χM1

as χM1
= χM1\M2

+ χM1∩M2
. Hence, we have

χM1
+ χb = χM1\M2

+ χM1∩M2
+ χb+ − χb−
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= χM1∩M2
+ χM2\M1

= χM2
.

Using the definition of operator 	, one can verify that M1 =
M2 	 b.

The next lemma serves as a basic tool derived from exchange
classes, which allows us to interpolate between different mem-
bers of a decision class M. Moreover, it characterizes the re-
lationship between gaps and exchange sets. In Figure 2.1, we
illustrate the intuitions of the interpolations characterized in
Lemma 2.2.

Lemma 2.2 (Interpolation Lemma). Let M⊆ 2[n] and let B be
an exchange class for M. Then, for any two different members
M,M ′ of M and any e ∈ (M\M ′) ∪ (M ′\M), there exists an
exchange set b = (b+, b−) ∈ B which satisfies five constraints:
(a) e ∈ (b+ ∪ b−), (b) b− ⊆ (M\M ′), (c) b+ ⊆ (M ′\M), (d)
(M ⊕ b) ∈ M and (e) (M ′ 	 b) ∈ M. Moreover, if M ′ = M∗,
then we have 〈w,χb〉 ≥ ∆e, where ∆e is the gap defined in
Eq. (2.1).

Proof. We decompose our proof into two cases.
Case (1): e ∈M\M ′.
By the definition of exchange class, we know that there exists

b = (b+, b−) ∈ B which satisfies that e ∈ b−, b− ⊆ (M\M ′),
b+ ⊆ (M ′\M), (M ⊕ b) ∈M and (M ′ 	 b) ∈M. Therefore the
five constraints are satisfied.

Next, if M ′ = M∗, we see that e 6∈ M∗. Let us consider the
set M1 = arg maxS∈M : e∈S w(S). Note that, by the definition of
gaps (Eq. (2.1)), one has w(M∗)− w(M1) = ∆e. Now we define
M0 = M∗ 	 b. Note that we already have M∗ 	 b ∈ M. By
combining this with the fact that e ∈M0, we see that w(M0) ≤
maxS∈M : e∈S w(S) = w(M1). Therefore, we obtain that w(M∗)−
w(M0) ≥ w(M∗) − w(M1) = ∆e. Notice that the left-hand side
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of the former inequality can be rewritten using Lemma 2.1 as
follows

w(M∗)− w(M0) =
〈
w,χM∗

〉
−
〈
w,χM0

〉
=
〈
w,χM∗ − χM0

〉
= 〈w,χb〉 .

Therefore, we obtain 〈w,χb〉 ≥ ∆e.
Case (2): e ∈M ′\M .
Using the definition of exchange class, we see that there exists

c = (c+, c−) ∈ B such that e ∈ c−, c− ⊆ (M ′\M), c+ ⊆ (M\M ′),
(M ′ ⊕ c) ∈M and (M 	 c) ∈M.

We construct b = (b+, b−) by setting b+ = c− and b− = c+.
Notice that, by the construction of b, we have M ⊕ b = M 	 c
and M ′ 	 b = M ′ ⊕ c. Therefore, it is clear that b satisfies the
five constraints of the lemma.

Now, suppose that M ′ = M∗. In this case, we have e ∈ M∗.
Consider the set M3 = arg maxS∈M : e 6∈S w(S). By definition of
∆e, we see that w(M∗) − w(M3) = ∆e. Now we define M2 =
M∗ 	 b and notice that M2 ∈ M. By combining with the fact
that e 6∈ M2, we obtain that w(M2) ≤ maxS∈M : e 6∈S = w(M3).
Hence, we have w(M∗)−w(M2) ≥ w(M∗)−w(M3) = ∆e. Similar
to Case (1), applying Lemma 2.1 again, we have

〈w,χb〉 = w(M∗)− w(M2) ≥ ∆e.

Next we state two basic lemmas that help us to convert set-
theoretical arguments to linear algebraic arguments.

Lemma 2.3. Let M,M ′ ⊆ [n] be two sets. Let radt be an n-
dimensional vector with nonnegative entries. Then, we have

max
e∈(M\M ′)∪(M ′\M)

radt(e) =
∥∥radt ◦ |χM ′ − χM |

∥∥
∞.
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M M'

b-
b+

(a)

M M'

M⊕b
⊕b M'⊖b

⊖b

(b)

Figure 2.1: Illustration of Lemma 2.2: (a) A Venn diagram for the relation-
ships among M,M ′, b− and b+. Note that e ∈ b− ∪ b+. (b) An illustration
for the relationships among M , M ′, M ⊕ b and M ′ 	 b. We recall that
M ⊕ b = M\b− ∪ b+ and M ′ 	 b = M ′\b+ ∪ b−. We use dotted line to
represent an application of Lemma 2.2 between two sets.

Proof. Notice that χM ′ − χM = χM ′\M − χM\M ′. In addition,
since (M ′\M) ∩ (M\M ′) = ∅, we have χM ′\M ◦ χM\M ′ = 0n.
Also notice that χM ′\M − χM\M ′ ∈ {−1, 0, 1}n. Therefore, we
have

|χM ′\M − χM\M ′| = (χM ′\M − χM\M ′)2

= χ2
M ′\M + χ2

M\M ′ − 2χM ′\M ◦ χM\M ′
= χM ′\M + χM\M ′

= χ(M ′\M)∪(M\M ′),

where the third equation follows from the fact that χM\M ′ ∈
{0, 1}n and χM ′\M ∈ {0, 1}n. The lemma follows immediately
from the fact that radt(e) ≥ 0 and χ(M\M ′)∪(M ′\M) ∈ {0, 1}n.

Lemma 2.4. Let a, b, c ∈ Rn be three vectors. Then, we have
〈a, b ◦ c〉 = 〈a ◦ b, c〉.

Proof. We have

〈a, b ◦ c〉 =
n∑
i=1

a(i)
(
b(i)c(i)

)
=

n∑
i=1

(
a(i)b(i)

)
c(i) = 〈a ◦ b, c〉 .

The next lemma characterizes the property of w̃t which is
defined in the CLUCB algorithm.



CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 42

Lemma 2.5. Let Mt, w̃t and radt be defined in Algorithm 1 and
Theorem 2.1. Let M ′ ∈ M be an arbitrary member of decision
class. We have

w̃t(M
′)− w̃t(Mt) =

〈
w̃t,χM ′ − χMt

〉
=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt, |χM ′ − χMt

|
〉
.

Proof. We begin with proving the first part. It is easy to verify
that w̃t = w̄t + radt ◦ (1n − 2χMt

). Then, we have〈
w̃t,χM ′ − χMt

〉
=
〈
w̄t + radt ◦ (1n − 2χMt

), χM ′ − χMt

〉
=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt, (1n − 2χMt

) ◦ (χM ′ − χMt
)
〉

(2.9)

=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt,χM ′ − χMt

− 2χMt
◦ χM ′ + 2χ2

Mt

〉
=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt,χ

2
M ′ − χ2

Mt
− 2χMt

◦ χM ′ + 2χ2
Mt

〉
(2.10)

=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt, (χM ′ − χMt

)2
〉

=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt,

∣∣χM ′ − χMt

∣∣〉 , (2.11)

where Eq. (2.9) follows from Lemma 2.4; Eq. (2.10) holds since
χM ′ ∈ {0, 1}n and χMt

∈ {0, 1}n and therefore χM ′ = χ2
M ′ and

χMt
= χ2

Mt
; and Eq. (2.11) follows since χM ′−χMt

∈ {−1, 0, 1}n.

2.8.2 Confidence Intervals

First, we recall a standard concentration inequality of sub-Gaussian
random variables.

Lemma 2.6 (Hoeffding’s inequality). Let X1, . . . , Xn be n in-
dependent random variables such that, for each i ∈ [n], ran-
dom variable Xi − E[Xi] is R-sub-Gaussian distributed, i.e.,
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∀t ∈ R, E[exp(tXi−tE[Xi])] ≤ exp(R2t2/2). Let X̄ = 1
n

∑n
i=1Xi

denote the average of these random variables. Then, for any
λ > 0, we have

Pr
[∣∣X̄ − E[X̄]

∣∣ ≥ λ
]
≤ 2 exp

(
−nλ

2

2R2

)
.

Proof. For all i ∈ [n], we define vi = Xi − E[Xi]. We also define
S =

∑n
i=1 vi and ε = nλ. Therefore, for any t > 0, we have

Pr[S ≥ ε] = Pr[tS ≥ tε]
(a)

≤ E[exp(tS)]

exp(tε)
=

E[exp(
∑n

i=1 tvi)]

exp(tε)

(b)
=

∏n
i=1 E[exp(tvi)]

exp(tε)
≤
∏n

i=1 exp
(
R2t2/2

)
exp(tε)

= exp(nR2t2/2− tε),

where (a) follows from Markov’s inequality and (b) holds since
v1, . . . , vn are independent. Now minimizing over t > 0, we get

Pr[S ≥ ε] ≤ inf
t>0

exp(nR2t2/2− tε)

= exp(−ε2/2nR2)

= exp(−nλ2/2R2).

Similarly, one can show that Pr[S ≤ −ε] ≤ exp(−nλ2/2R2).
Hence, the lemma follows from a union bound.

Next, for all t > 0, we define random event ξt as follows

ξt =
{
∀i ∈ [n], |w(i)− w̄t(i)| < radt(i)

}
. (2.12)

We notice that random event ξt characterizes the event that the
confidence bounds of all arms are valid at round t.

If the confidence bounds are valid, we can generalize Eq. (2.12)
to inner products as follows.

Lemma 2.7. Given any t > 0, assume that event ξt as defined
in Eq. (2.12) occurs. Then, for any vector a ∈ Rn, we have∣∣ 〈w,a〉 − 〈w̄t,a〉

∣∣ < 〈radt, |a|〉 .
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Proof. Suppose that ξt occurs. Then, we have∣∣ 〈w,a〉 − 〈w̄t,a〉
∣∣ =

∣∣ 〈w − w̄t,a〉
∣∣

=

∣∣∣∣∣
n∑
i=1

(
w(i)− w̄t(i)

)
a(i)

∣∣∣∣∣
≤

n∑
i=1

∣∣w(i)− w̄t(i)
∣∣|a(i)|

<
n∑
i=1

radt(i) · |a(i)| (2.13)

= 〈radt, |a|〉 ,

where Eq. (2.13) follows the definition of event ξt in Eq. (2.12)
and the assumption that it occurs.

Next, we construct the high probability confidence intervals
for the fixed confidence setting.

Lemma 2.8. Suppose that the reward distribution ϕe is a R-
sub-Gaussian distribution for all e ∈ [n]. And if, for all t > 0
and all e ∈ [n], the confidence radius radt(e) is given by

radt(e) = R

√
2 log

(
4nt3

δ

)
Tt(e)

,

where Tt(e) is the number of samples of arm e up to round t.
Then, we have

Pr

[ ∞⋂
t=1

ξt

]
≥ 1− δ.

Proof. Fix any t > 0 and e ∈ [n]. Note that ϕe is a R-sub-
Gaussian tail distribution with mean w(e) and w̄t(e) is the em-
pirical mean of ϕe from Tt(e) samples. Then, we have

Pr

∣∣w̄t(e)− w(e)
∣∣ ≥ R

√
2 log

(
4nt3

δ

)
Tt(e)





CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 45

=
t−1∑
s=1

Pr

∣∣w̄t(e)− w(e)
∣∣ ≥ R

√
2 log

(
4nt3

δ

)
s

, Tt(e) = s

 (2.14)

≤
t−1∑
s=1

δ

2nt3
(2.15)

≤ δ

2nt2
,

where Eq. (2.14) follows from the fact that 1 ≤ Tt(e) ≤ t − 1
and Eq. (2.15) follows from Hoeffding’s inequality (Lemma 2.6).
By a union bound over all e ∈ [n], we see that Pr[ξt] ≥ 1− δ

2t2 .
Using a union bound again over all t > 0, we have

Pr

[ ∞⋂
t=1

ξt

]
≥ 1−

∞∑
t=1

Pr[¬ξt]

≥ 1−
∞∑
t=1

δ

2t2

= 1− π2

12
δ ≥ 1− δ.

2.8.3 Main Lemmas

Now we state our key technical lemmas. In these lemmas, we
shall use Lemma 2.2 to construct gadgets that interpolate be-
tween different members of a decision class. The first lemma
shows that, if the confidence intervals are valid, then CLUCB al-
ways returns the correct answer when it stops.

Lemma 2.9. Given any t > n, assume that event ξt (defined in
Eq. (2.12)) occurs. Then, if Algorithm 1 terminates at round t,
we have Mt = M∗.
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Proof. Suppose that Mt 6= M∗. By the assumption that M∗ is
the unique optimal set, we have w(M∗) > w(Mt). Rewriting this
inequality, we obtain that

〈
w,χM∗

〉
>
〈
w,χMt

〉
.

Let B be an exchange class for M. Applying Lemma 2.2
by setting M = Mt and M ′ = M∗, we see that there exists
b = (b+, b−) ∈ B such that (Mt ⊕ b) ∈M and 〈w,χb〉 > 0.

Now defineM ′
t = Mt⊕b. Recall that M̃t = arg maxM∈M w̃t(M)

and therefore w̃t(M̃t) ≥ w̃t(M
′
t). Hence, we have

w̃t(M̃t)− w̃t(Mt) ≥ w̃t(M
′
t)− w̃t(Mt)

=
〈
w̄t,χM ′t − χMt

〉
+
〈
radt, |χM ′ − χMt

|
〉

(2.16)

≥
〈
w,χM ′t − χMt

〉
(2.17)

= 〈w,χb〉 > 0, (2.18)

where Eq. (2.16) follows from Lemma 2.5; and Eq. (2.17) follows
the assumption that event ξt occurs and Lemma 2.7.

Therefore Eq. (2.18) shows that w̃t(M̃t) > w̃t(Mt). However,
this contradicts to the stopping condition of CLUCB: w̃t(M̃t) =
w̃t(Mt) and the assumption that the algorithm terminates on
round t.

The next lemma shows that if the confidence interval of an
arm is sufficiently small, then this arm will not be played by the
algorithm. In the proof, we construct a number of gadgets using
Lemma 2.2. We illustrate the relationships among the gadgets
in Figure 2.2.

Lemma 2.10. Given any t > 0 and suppose that event ξt (de-
fined in Eq. (2.12)) occurs. For any e ∈ [n], if radt(e) <

∆e

3width(M),
then, arm e will not be pulled on round t, i.e., pt 6= e.

Proof. We prove by contradiction. Therefore we shall assume the
opposite that pt = e in the rest of the proof.
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Mt

Mt'

Mt'⊕b

Mt
~⊖c

⊕b
M*

(a) Gadgets M ′t and M ′t ⊕ b for Case (1)

Mt
~

M*

Mt⊕b
~

⊕b

(b) Gadget M̃t ⊕ b for Case
(2)

Figure 2.2: An illustration of the relationship among the gadgets used the
proof of Lemma 2.10; We use dotted line to represent an application of
Lemma 2.2 between two sets.

First let us fix an exchange class B ∈ arg minB′∈Exchange(M) width(B′).
Note that width(B) = width(M). By Lemma 2.2, there exists
an exchange set c = (c+, c−) ∈ B such that e ∈ (c+ ∪ c−),
c− ⊆ (Mt\M̃t), c+ ⊆ (M̃t\Mt), (Mt⊕c) ∈M and (M̃t	c) ∈M.

Now, we decompose our proof into two cases.
Case (1): (e ∈M∗ ∧ e ∈ c+) ∨ (e 6∈M∗ ∧ e ∈ c−).
First we construct a gadget M ′

t = M̃t 	 c and recall that
M ′

t ∈M. By the definitions of	 and⊕, we see that M̃t = M ′
t⊕c.

We claim that M ′
t 6= M∗. The assumption of Case (1) means

that either (a) e ∈ M∗ and e ∈ c+; or (b) e 6∈ M∗ and e ∈ c−
holds. Suppose that e ∈ M∗ and e ∈ c+. Then, we see that
e 6∈ M ′

t and hence M ′
t 6= M∗. On the other hand, if e 6∈ M∗ and

e ∈ c−, then e ∈M ′
t which also means that M ′

t 6= M∗. Therefore
we have M ′

t 6= M∗ in either cases.
Next, we apply Lemma 2.2 by setting M = M ′

t and M ′ =
M∗. We see that there exists an exchange set b ∈ B such that,
e ∈ (b+∪ b−), (M ′

t⊕ b) ∈M and 〈w,χb〉 ≥ ∆e > 0. We will also
use M ′

t ⊕ b as a gadget.
Now, we define vectors d = χM̃t

−χMt
, d1 = χM ′t −χMt

and
d2 = χM ′t⊕b − χMt

. By the definition of M ′
t and Lemma 2.1, we

see that d1 = d− χc and d2 = d1 + χb = d− χc + χb.
Then, we claim that ‖radt ◦ (d− χc)‖∞ < ∆e

3width(B) . To prove
this claim, we first appeal to standard set-algebraic manipula-
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tions. We obtain

Mt\M ′
t = Mt\(M̃t 	 c)

= Mt\(M̃t\c+ ∪ c−)

= Mt\(M̃t\c+) ∩ (Mt\c−)

= (Mt ∩ c+) ∪ (Mt\M̃t) ∩ (Mt\c−)

= (Mt\M̃t) ∩ (Mt\c−) (2.19)

⊆Mt\M̃t, (2.20)

where Eq. (2.19) follows from c+ ⊆ M̃t\Mt and therefore c+ ∩
Mt = ∅. Similarly, we can derive M ′

t\Mt as follows

M ′
t\Mt = (M̃t 	 c)\Mt = (M̃t\c+ ∪ c−)\Mt

=
(
(M̃t\c+)\Mt

)
∪ (c−\Mt)

= M̃t\c+\Mt (2.21)

⊆ M̃t\Mt, (2.22)

where Eq. (2.21) follows from c− ⊆ Mt\M̃t and hence c−\Mt =
∅. By combining Eq. (2.20) and Eq. (2.22), we see that

(
(Mt\M ′

t)∪
(M ′

t\Mt)
)
⊆
(
(Mt\M̃t)∪ (M̃t\Mt)

)
. Then, applying Lemma 2.3,

we obtain

‖radt ◦ (d− χc)‖∞ =
∥∥radt ◦ (χM ′t − χMt

)
∥∥
∞

= max
i∈(Mt\M ′t)∪(M ′t\Mt)

radt(i)

≤ max
i∈(Mt\M̃t)∪(M̃t\Mt)

radt(i)

= radt(e) (2.23)

<
∆e

3width(B)
, (2.24)

where Eq. (2.23) follows from the assumption that pt = e.
Next we claim that ‖radt ◦ χc‖∞ < ∆e

3width(B) . Recall that, by

the definition of c, we have c+ ⊆ (M̃t\Mt) and c− ⊆ (Mt\M̃t).
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Hence c+∪ c− ⊆ (M̃t\Mt)∪ (Mt\M̃t). Since χc ∈ {−1, 0, 1}n, we
see that

‖radt ◦ χc‖∞ = max
i∈c+∪c−

radt(i)

≤ max
i∈(M̃t\Mt)∪(Mt\M̃t)

radt(i)

= radt(e) <
∆e

3width(B)
. (2.25)

From Eq. (2.25), we derive

〈radt, |χc|〉 =
〈
radt,χ

2
c

〉
(2.26)

= 〈radt ◦ χc,χc〉 (2.27)

≤ ‖radt ◦ χc‖∞ ‖χc‖1 (2.28)

<
∆e

3width(B)
‖χc‖1 (2.29)

≤ ∆e

3
, (2.30)

where Eq. (2.26) hold since χc ∈ {−1, 0, 1}n; Eq. (2.27) follows
form Lemma 2.4; Eq. (2.28) follows from Hölder’s inequality;
Eq. (2.29) follows from Eq. (2.25); and Eq. (2.30) holds since
‖χc‖1 = |c+| + |c−| ≤ width(B) where the inequality is due to
c ∈ B .

Next, we claim that d◦χc = |χc|. Recall that χc = χc+−χc−
and d = χM̃t

−χMt
= χM̃t\Mt

−χMt\M̃t
. We also notice that c+ ⊆

(M̃t\Mt) and c− ⊆ (Mt\M̃t). This implies that c+∩(Mt\M̃t) = ∅
and c− ∩ (M̃t\Mt) = ∅. Therefore, we have

d ◦ χc = (χM̃t\Mt
− χMt\M̃t

) ◦ (χc+ − χc−)

= χM̃t\Mt
◦ χc+ + χMt\M̃t

◦ χc− − χM̃t\Mt
◦ χc− − χMt\M̃t

◦ χc+
= χM̃t\Mt

◦ χc+ + χMt\M̃t
◦ χc−

= χc+ + χc− = |χc|.
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where the second equality holds since c+ ∩ (Mt\M̃t) = ∅ and
c−∩ (M̃t\Mt) = ∅; and the last equality holds since c+∩ c− = ∅.

Now, we bound quantity 〈radt, |d2|〉 − 〈radt, |d|〉 as follows

〈radt, |d2|〉 − 〈radt, |d|〉
=〈radt, |d2| − |d|〉 =

〈
radt,d

2
2 − d2

〉
(2.31)

=
〈
radt, (d− χc + χb)

2 − d2
〉

=
〈
radt,χ

2
b + χ2

c − 2χb ◦ χc − 2d ◦ χc + 2d ◦ χb
〉

=
〈
radt,χ

2
b − χ2

c + 2χb ◦ (d− χc)
〉

(2.32)

= 〈radt, |χb|〉 − 〈radt, |χc|〉 − 2 〈radt,χb ◦ (d− χc)〉
= 〈radt, |χb|〉 − 〈radt, |χc|〉 − 2 〈radt ◦ (d− χc),χb〉 (2.33)

≥〈radt, |χb|〉 − 〈radt, |χc|〉 − 2 ‖radt ◦ (d− χc)‖∞ ‖χb‖1

(2.34)

> 〈radt, |χb|〉 − 〈radt, |χc|〉 −
2∆e

3width(B)
‖χb‖1 (2.35)

≥〈radt, |χb|〉 − 〈radt, |χc|〉 −
2∆e

3
, (2.36)

where Eq. (2.31) holds since d ∈ {−1, 0, 1}n and d2 ∈ {−1, 0, 1}n;
Eq. (2.32) follows from the claim that d ◦ χc = |χc| = χ2

c;
Eq. (2.33) and Eq. (2.34) follow from Lemma 2.4 and Hölder’s
inequality; Eq. (2.35) follows from Eq. (2.24); and Eq. (2.36)
holds since b ∈ B and ‖χb‖1 = |b+|+ |b−| ≤ width(B).

Applying Lemma 2.5 by setting M ′ = M̃t, we have

〈w̄t,d〉+ 〈radt, |d|〉 =
〈
w̄t,χM̃t

− χMt

〉
+
〈
radt, |χM̃t

− χMt
|
〉

= w̃t(M̃t)− w̃t(Mt)

≥ w̃t(M
′
t ⊕ b)− w̃t(Mt) (2.37)

=
〈
w̄t,χM ′t⊕b − χMt

〉
+
〈
radt, |χM ′t⊕b − χMt

|
〉

= 〈w̄t,d2〉+ 〈radt, |d2|〉
= 〈w̄t,d〉 − 〈w̄t,χc〉+ 〈w̄t,χb〉+ 〈radt, |d2|〉 ,

(2.38)
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where Eq. (2.37) follows from the fact that w̃t(M̃t) = maxM∈M w̃t(M);
and Eq. (2.38) follows from the fact that d2 = d−χc +χb. Re-
arranging the above inequality, we obtain

〈w̄t,χc〉 ≥ 〈w̄t,χb〉+ 〈radt, |d2|〉 − 〈radt, |d|〉

≥ 〈w̄t,χb〉+ 〈radt, |χb|〉 − 〈radt, |χc|〉 −
2∆e

3
(2.39)

> 〈w,χb〉 − 〈radt, |χc|〉 −
2∆e

3
(2.40)

> 〈w,χb〉 −
∆e

3
− 2∆e

3
(2.41)

= 〈w,χb〉 −∆e ≥ 0, (2.42)

where Eq. (2.39) uses Eq. (2.36); Eq. (2.40) follows from the
assumption that event ξt occurs and Lemma 2.7; and Eq. (2.41)
holds due to Eq. (2.30).

We have shown that 〈w̄t,χc〉 > 0. Now we can bound w̄t(M
′
t)

as follows

w̄t(M
′
t) =

〈
w̄t,χM ′t

〉
=
〈
w̄t,χMt

+ χc
〉

=
〈
w̄t,χMt

〉
+ 〈w̄t,χc〉

>
〈
w̄t,χMt

〉
= w̄t(Mt).

However, the definition ofMt ensures that w̄t(Mt) = maxM∈M w̄t(M),
which implies that w̄t(Mt) ≥ w̄t(M

′
t). This is a contradiction,

and therefore we have pt 6= e for this case.
Case (2): (e ∈M∗ ∧ e ∈ c−) ∨ (e 6∈M∗ ∧ e ∈ c+).
First, we claim that M̃t 6= M∗. Suppose that e ∈ M∗ and

e ∈ c−. Then, we see that e 6∈ M̃t, which implies that M̃t 6= M∗.
On the other hand, suppose that e 6∈ M∗ and e ∈ c+, then
e ∈ M̃t, which also implies that M̃t 6= M∗. Therefore we have
M̃t 6= M∗ in either cases.
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Hence, by Lemma 2.2, there exists an exchange set b = (b+, b−) ∈
B such that e ∈ (b+ ∪ b−), b− ⊆ (M̃t\M∗), b+ ⊆ (M∗\M̃t) and
(M̃t⊕b) ∈M. Lemma 2.2 also indicates that 〈w,χb〉 ≥ ∆e > 0.
We will use M̃t ⊕ b as a gadget for this case. Note that the ex-
change set b defined here is different from the exchange set b
used in Case (1).

Next, we define vectors d = χM̃t
−χMt

and d1 = χM̃t⊕b−χMt
.

Notice that Lemma 2.1 gives that d1 = d+ χb.
Then, we apply Lemma 2.3 by setting M = Mt and M ′ = M̃t.

This shows that

‖radt ◦ d‖∞ ≤ max
i:(M̃t\Mt)∪(Mt\M̃t)

radt(i) = radt(e) <
∆e

3width(B)
,

(2.43)
where the last inequality follows from the assumption that radt(e) <

∆e

3width(B) .

Now, we bound quantity 〈w̄t,d1〉 + 〈radt, |d1|〉 − 〈w̄t,d〉 −
〈radt, |d|〉 as follows

〈w̄t,d1〉+ 〈radt, |d1|〉 − 〈w̄t,d〉 − 〈radt, |d|〉
= 〈w̄t,χb〉+ 〈radt, |d1| − |d|〉
= 〈w̄t,χb〉+

〈
radt,d

2
1 − d2

〉
(2.44)

= 〈w̄t,χb〉+
〈
radt, 2d ◦ χb + χ2

b

〉
(2.45)

= 〈w̄t,χb〉+
〈
radt,χ

2
b

〉
+ 2 〈radt ◦ d,χb〉 (2.46)

≥〈w,χb〉+ 2 〈radt ◦ d,χb〉 (2.47)

≥〈w,χb〉 − 2 ‖radt ◦ d‖∞ ‖χb‖1 (2.48)

> 〈w,χb〉 −
2∆e

3
(2.49)

>0, (2.50)

where Eq. (2.44) follows from the fact that d1 ∈ {−1, 0, 1}n and
d ∈ {−1, 0, 1}n; Eq. (2.45) holds since d1 = d + χb; Eq. (2.46)
follows from Lemma 2.4; Eq. (2.47) follows from the assumption
that ξt occurs and Lemma 2.7; Eq. (2.48) follows from Hölder’s
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inequality; Eq. (2.49) is due to Eq. (2.43); and Eq. (2.50) follows
from 〈w,χb〉 ≥ ∆e > 0.

Therefore, we have proven that

〈w̄t,d〉+ 〈radt, |d|〉 < 〈w̄t,d1〉+ 〈radt, |d1|〉 . (2.51)

However, we have

〈w̄t,d〉+ 〈radt, |d|〉 =
〈
w̄t,χM̃t

− χMt

〉
+
〈
radt, |χM̃t

− χMt
|
〉

= w̃t(M̃t)− w̃t(Mt) (2.52)

≥ w̃t(M̃t ⊕ b)− w̃t(Mt) (2.53)

=
〈
w̄t,χM̃t⊕b − χMt

〉
+
〈
radt, |χM̃t⊕b − χMt

|
〉

= 〈w̄t,d1〉+ 〈radt, |d1|〉 , (2.54)

where Eq. (2.52) follows from Lemma 2.5; and Eq. (2.53) follows
from the fact that w̃t(M̃t) = maxM∈M w̃t(M). This contradicts
to Eq. (2.51) and therefore pt 6= e.

2.8.4 Proof of Theorem 2.1

Theorem 2.1 is now a straightforward corollary of Lemma 2.9
and Lemma 2.10. For the reader’s convenience, we first restate
Theorem 2.1 in the following.

Theorem 4.2. Given any δ ∈ (0, 1), any decision class M ⊆
2[n] and any expected rewards w ∈ Rn. Assume that the reward
distribution ϕe for each arm e ∈ [n] has mean w(e) with an
R-sub-Gaussian tail. Let M∗ = arg maxM∈Mw(M) denote the

optimal set. Set radt(e) = R
√

2 log
(

4nt3

δ

)
/Tt(e) for all t > 0

and e ∈ [n]. Then, with probability at least 1 − δ, the CLUCB

algorithm (Algorithm 1) returns the optimal set Out = M∗ and

T ≤ O
(
R2width(M)2H log

(
R2H/δ

))
, (4.4)

where T denotes the number of samples used by Algorithm 1, H
is defined in Eq. (2.2) and width(M) is defined in Eq. (2.4).
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Proof. Lemma 2.8 indicates that the event ξ ,
⋂∞
t=1 ξt occurs

with probability at least 1− δ. In the rest of the proof, we shall
assume that this event holds.

By Lemma 2.9 and the assumption on ξ, we see that Out =
M∗. Next, we focus on bounding the total number T of samples.

Fix any arm e ∈ [n]. Let T (e) denote the total number of pull
of arm e ∈ [n]. Let te be the last round which arm e is pulled,
which means that pte = e. It is easy to see that Tte(e) = T (e)−1.
By Lemma 2.10, we see that radte(e) ≥ ∆e

3width(M) . Using the
definition of radte, we have

∆e

3width(M)
≤ R

√
2 log (4nt3e/δ)

T (e)− 1
≤ R

√
2 log (4nT 3/δ)

T (e)− 1
. (2.55)

Solving Eq. (2.55) for T (e), we obtain

T (e) ≤ 18width(M)2R2

∆2
e

log(4nT 3/δ) + 1. (2.56)

Now we define H̃ = max
{

width(M)2R2H, 1
}

. In the rest of
the proof, we show that

T ≤ 499H̃ log
(

4nH̃/δ
)

+ 2n. (2.57)

Notice that the theorem follows immediately from Eq. (2.57).
If n ≥ 1

2T , then we see that T ≤ 2n and therefore Eq. (2.57)
holds immediately. Next we assume that n < 1

2T . Since T > n,
we can write

T = CH̃ log
(

4nH̃/δ
)

+ n, for some C > 0. (2.58)

If C ≤ 499, then it is clear that Eq. (2.57) holds. Next, we as-
sume, in the contrary, that C > 499. Notice that T =

∑
e∈[n] T (e).

By summing up Eq. (2.56) for all e ∈ [n], we have

T ≤ n+
∑
e∈[n]

18width(M)2R2

∆2
e

log(4nT 3/δ)
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≤ n+ 18H̃ log(4nT 3/δ)

= n+ 18H̃ log(4n/δ) + 54H̃ log(T )

≤ n+ 18H̃ log(4n/δ) + 54H̃ log
(

2CH̃ log
(

4nH̃/δ
))
(2.59)

≤ n+ 18H̃ log(4n/δ) + 54H̃ log (2C)

+ 54H̃ log(H̃) + 54H̃ log log
(

4nH̃/δ
)

≤ n+ 18H̃ log(4nH̃/δ) + 54H̃ log (2C) log(4nH̃/δ)

+ 54H̃ log(4nH̃/δ) + 54H̃ log(4nH̃/δ) (2.60)

= n+ (126 + 54 log(2C))H̃ log(4nH̃/δ)

< n+ CH̃ log(4nH̃/δ) (2.61)

= T, (2.62)

where Eq. (2.59) follows from Eq. (2.58) and the assumption
that n < 1

2T ; Eq. (2.60) follows from the fact that H̃ ≥ 1;
Eq. (2.61) follows since 126 + 54 log(2C) < C for all C > 499;
and Eq. (2.62) is due to Eq. (2.58). Hence we see that Eq. (2.62)
is a contradiction. Therefore we see that C ≤ 499 which means
that Eq. (2.57) holds.

2.9 Extensions of CLUCB

CLUCB is a general and flexible learning algorithm for the CPE
problem. In this section, we present two extensions to CLUCB that
allow it to work in the fixed budget setting and PAC learning
setting.

2.9.1 Fixed Budget Setting

We can extend the CLUCB algorithm to the fixed budget setting
using two simple modifications: (1) requiring CLUCB to terminate
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after T rounds; and (2) using a different construction of confi-
dence intervals. The first modification ensures that CLUCB uses at
most T samples, which meets the requirement of the fixed bud-
get setting. And the second modification bounds the probability
that the confidence intervals are valid for all arms in T rounds.
The following theorem shows that the probability of error of the

modified CLUCB is bounded by O
(
Tn exp

(
−T

width(M)2H

))
.

Theorem 2.4. Use the same notations as in Theorem 2.1. Given
T > n and parameter α > 0, set the confidence radius radt(e) =

R
√

α
Tt(e)

for all arms e ∈ [n] and all t > 0. Run CLUCB al-

gorithm for at most T rounds. Then, for 0 ≤ α ≤ 1
9(T −

n)
(
R2width(M)2H

)−1
, we have

Pr
[
Out 6= M∗

]
≤ 2Tn exp (−α/2) . (2.63)

In particular, the right-hand side of Eq. (2.63) equals to O
(
Tn exp

(
−T

width(M)2H

))
when parameter α = O(TH−1width(M)−2).

Theorem 2.4 shows that the modified CLUCB algorithm in the
fixed budget setting requires the knowledge of quantity H in
order to achieve the optimal performance. However H is usually
unknown. Therefore, although its probability of error guarantee
matches the parameter-free CSAR algorithm up to logarithmic
factors, this modified algorithm is considered more restricted
than CSAR. Nevertheless, Theorem 2.4 shows that CLUCB can solve
CPE in both fixed confidence and fixed budget settings and
more importantly this theorem provides additional insights on
the behavior CLUCB.

2.9.2 PAC Learning

Now we consider a setting where the learner is only required to
report an approximately optimal set of arms. More specifically,



CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 57

we consider the notion of (ε, δ)-PAC algorithm. Formally, an
algorithm A is called an (ε, δ)-PAC algorithm if its output Out ∈
M satisfies Pr

[
w(M∗)− w(Out) > ε

]
≤ δ.

We show that a simple modification on the CLUCB algorithm
gives an (ε, δ)-PAC algorithm, with guarantees similar to Theo-
rem 2.1. In fact, the only modification needed is to change the
stopping condition from w̃t(M̃t) = w̃t(Mt) to w̃t(M̃t)−w̃t(Mt) ≤
ε on line 13 of Algorithm 1. We let CLUCB-PAC denote the modified
algorithm. In the following theorem, we show that CLUCB-PAC is
indeed an (ε, δ)-PAC algorithm and has sample complexity sim-
ilar to CLUCB.

Theorem 2.5. Use the same notations as in Theorem 2.1. Fix
δ ∈ (0, 1) and ε ≥ 0. Then, with probability at least 1 − δ, the
output Out ∈ M of CLUCB-PAC satisfies w(M∗)− w(Out) ≤ ε. In
addition, the number of samples T used by the algorithm satisfies

T ≤ O

R2
∑
e∈[n]

min

{
width(M)2

∆2
e

,
K2

ε2

}
log

R2

δ

∑
e∈[n]

min

{
width(M)2

∆2
e

,
K2

ε2

} ,

(2.64)
where K = maxM∈M |M | is the size of the largest member of
decision class.

We see that if ε = 0, the sample complexity Eq. (2.64) of
CLUCB-PAC equals to that of CLUCB. And the sample complexity
of CLUCB-PAC decreases when ε increases.

There are several PAC learning algorithms dedicated for the
TopK problem in the literature with different guarantees [81,
156, 61]. Zhou et al. [156] proposed an (ε, δ)-PAC algorithm for
the TopK problem with a problem-independent sample com-
plexity bound of O(K

2n
ε2 + Kn log(1/δ)

ε2 ).2 If we ignore logarithmic

2We notice that the definition of Zhou et al. [156] allow an (ε′, δ)-PAC algorithm to
produce an output with average sub-optimality of ε′. This is equivalent to our definition
of (ε, δ)-PAC algorithm with ε = Kε′ for the TopK problem. In this chapter, we translate
their guarantees to our definition of PAC algorithm.
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factors, then the sample complexity bound of CLUCB-PAC for the
TopK problem is better than theirs since

∑
e∈[n] min{∆−2

e , K2ε−2} ≤
nK2ε−2. On the other hand, the algorithms of Kalyanakrishnan
et al. [81], Gabillon et al. [61] and Kaufmann and Kalyanakr-
ishnan [82] guarantee to find K arms such that each of them
is better than the K-th optimal arm within a factor of ε with
probability 1− δ. Unless ε = 0, their guarantee is different from
ours which concerns the optimality of the sum of K arms.

2.9.3 Proof of Extension Results

Fixed Budget Setting (Theorem 2.4)

In this part, we analyze the probability of error of the modified
CLUCB algorithm in the fixed budget setting and prove Theo-
rem 2.4. First, we prove a lemma which characterizes the confi-
dence intervals constructed in Theorem 2.4.

Lemma 2.11. Fix parameter α > 0 and the number of rounds
T > 0. Assume that the reward distribution ϕe is a R-sub-
Gaussian distribution for all e ∈ [n]. Let the confidence radius

radt(e) of arm e ∈ [n] and round t > 0 be radt(e) = R
√

α
Tt(e)

.

Then, we have

Pr

[
T⋂
t=1

ξt

]
≥ 1− 2nT exp (−α/2) ,

where ξt is the random event defined in Eq. (2.12).

Proof. For any t > 0 and e ∈ [n], using Hoeffding’s inequality,
we have

Pr
[∣∣w̄t(e)− w(e)

∣∣ ≥ radt(e)
]
≤ 2 exp(−α/2).

By a union bound over all arms e ∈ [n], we see that Pr[ξt] ≥ 1−
2n exp(−α/2). The lemma follows immediately by using union
bound again over all round t ∈ [T ].
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Theorem 2.4 can be obtained from the key lemmas (Lemma 2.9
and Lemma 2.10) and Lemma 2.11.

Proof of Theorem 2.4. Define random event ξ =
⋂T
t=1 ξt. By Lemma 2.11,

we see that Pr[ξ] ≥ 1−2nT exp(−α/2). In the rest of the proof,
we assume that ξ happens.

Let T ∗ denote the round that the algorithm stops. We claim
that the algorithm stops before the budget is exhausted, i.e.,
T ∗ < T . If the claim is true, then the algorithm stops since it
meets the stopping condition on round T ∗. Hence w̃t(M̃T ∗) =
w̃t(MT ∗) and Out = MT ∗. By assumption on ξ and Lemma 2.9,
we know that MT ∗ = M∗. Therefore the theorem follows imme-
diately from this claim and the bound of Pr[ξ].

Next, we show that this claim is true. Let T (e) denote the
total number of pulls of arm e ∈ [n]. Let te be the last round
that arm e is pulled. Hence Tte(e) = Te− 1. By Lemma 2.10, we
see that radte(e) ≥ ∆

3width(B) . Now plugging in the definition of

radte(e), we have

∆

3width(B)
≤ radte(e)

= R

√
α

Tte(e)
= R

√
α

T (e)− 1
.

Hence we have

Te ≤
9R2width(B)2

∆2
e

· α + 1. (2.65)

By summing up Eq. (2.65) for all e ∈ [n], we have

T ∗ =
∑
e∈[n]

Te ≤ α · 9R2width(B)2

∑
e∈[n]

∆−2
e

+ n < T,

where we have used the assumption that α < 1
9(T−n)·

(
R2width(B)2

(∑
e∈[n] ∆−2

e

))−1

.
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PAC Learning (Theorem 2.5)

First, we prove a (ε, δ)-PAC counterpart of Lemma 2.9.

Lemma 2.12. If CLUCB-PAC stops on round t and suppose that
event ξt occurs. Then, we have w(M∗)− w(Out) ≤ ε.

Proof. By definition, we know that Out = Mt. Notice that the
stopping condition of CLUCB-PAC ensures that w̃t(M̃t)− w̃t(Mt) ≤
ε. Therefore, we have

ε ≥ w̃t(M̃t)− w̃t(Mt)

≥ w̃t(M∗)− w̃t(Mt) (2.66)

=
〈
w̄t,χM∗ − χMt

〉
+
〈
radt, |χM∗ − χMt

|
〉

(2.67)

≥
〈
w,χM∗ − χMt

〉
(2.68)

= w(M∗)− w(Mt),

where Eq. (2.66) follows from the definition that w̃t(M̃t) =
maxM∈M w̃t(M); Eq. (2.67) follows from Lemma 2.5; Eq. (2.68)
follows from the assumption that ξt occurs and Lemma 2.7.

The next lemma generalizes Lemma 2.10. It shows that on
event ξt each arm e ∈ [n] will not be played on round t if

radt(e) < max
{

∆e

3width(M) ,
ε

2K

}
.

Lemma 2.13. Let K = maxM∈M |M |. For any arm e ∈ [n] and

any round t > n after initialization, if radt(e) < max
{

∆e

3width(M) ,
ε

2K

}
and random event ξt occurs, then arm e will not be played on
round t, i.e., pt 6= e.

Proof. If radt(e) < ∆e

3width(M) , then we can apply Lemma 2.10
which immediately gives that pt 6= e. Hence, we only need to
prove the case that ∆e

3width(M) ≤ radt(e) <
ε

2K .
Now suppose that pt = e. By the choice of pt, we know that

for each i ∈ (Mt\M̃t)∪(M̃t\Mt), we have radt(i) ≤ radt(e) <
ε

2K .
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By summing up this inequality for all i ∈ (Mt\M̃t) ∪ (M̃t\Mt),
we have

ε >
∑

i∈(Mt\M̃t)∪(M̃t\Mt)

radt(i) (2.69)

=
〈
radt,

∣∣χMt
− χM̃t

∣∣〉 , (2.70)

where Eq. (2.69) follows from the fact that |(Mt\M̃t)∪(M̃t\Mt)| ≤
|Mt|+|M̃t| ≤ 2K; and Eq. (2.70) uses the fact that χ(Mt\M̃t)∪(M̃t\Mt)

=
|χMt

− χM̃t
|.

Then, we have

w̃t(M̃t)− w̃t(Mt) =
〈
w̄t,χM̃t

− χMt

〉
+
〈
radt, |χM̃t

− χMt
|
〉

(2.71)

≤
〈
w̄t,χM̃t

− χMt

〉
+ ε (2.72)

= w̄t(M̃t)− w̄t(Mt) + ε

≤ ε, (2.73)

where Eq. (2.71) follows from Lemma 2.5; Eq. (2.72) uses Eq. (2.70);
and Eq. (2.73) follows from w̄t(Mt) ≥ w̄t(M̃t).

Therefore, we see that w̃t(M̃t)− w̃t(Mt) ≤ ε. By the stopping
condition of CLUCB-PAC, the algorithm must terminate on round
t, before playing any arms. This contradicts to the assumption
that pt = e.

Using Lemma 2.13 and Lemma 2.12, we are ready to prove
Theorem 2.5.

Proof of Theorem 2.5. Similar to the proof of Theorem 2.1, we
appeal to Lemma 2.8, which shows that the event ξ ,

⋂∞
t=1 ξt

occurs with probability at least 1− δ. And we shall assume that
ξ occurs in the rest of the proof.

By the assumption of ξ and Lemma 2.12, we know that
w(M∗) − w(Out) ≤ ε. Therefore, we only remain to bound the
number of samples T .
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Consider an arbitrary arm e ∈ [n]. Let T (e) denote the to-
tal number of pull of arm e ∈ [n]. Let te be the last round
which arm e is pulled, i.e., pte = e. Hence Tte(e) = T (e)− 1. By
Lemma 2.13, we see that radte(e) ≥ max{ ∆e

3width(B) ,
ε

2K}. Then,

by the construction of radte(e), we have

max

{
∆e

3width(B)
,
ε

2K

}
≤ R

√
2 log (4nt3e/δ)

T (e)− 1
≤ R

√
2 log (4nT 3/δ)

T (e)− 1
.

(2.74)
Solving Eq. (2.74) for T (e), we obtain

T (e) ≤ R2 min

{
18width(B)2

∆2
e

,
16K2

ε2

}
log(4nT 3/δ) + 1. (2.75)

Notice that T =
∑

i∈[n] T (e). Hence the theorem follows by
summing up Eq. (2.75) for all e ∈ [n] and solving for T .

2.10 Proof of Lower Bound (Theorem 2.2)

In this section, we prove the problem-dependent lower bound of
the general CPE problem (Theorem 2.2). In addition, we provide
evidence on the conjecture that the sample complexity should
hinge on the size of exchange sets (Theorem 2.6), which is rele-
vant for decision classes with non-constant widths.

Notations. In this section, we will use the notion of “next-to-
optimal set” defined as follows. Fix a decision classM⊆ 2[n] and
an expected reward vectorw ∈ Rn. LetM∗ = arg maxM∈Mw(M)
denote the optimal set. Then, for any e ∈ [n], we define the next-
to-optimal set associated with e as follows

Me =

{
arg maxM∈M:e∈M w(M) if e 6∈M∗,
arg maxM∈M:e 6∈M w(M) if e ∈M∗.

(2.76)

We note that, by definition of ∆e in Eq. (2.1), we have w(M∗)−
w(Me) = ∆e.
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2.10.1 Proof of Theorem 2.2

For reader’s convenience, we restate Theorem 2.2 in the follow-
ing.

Theorem 2.2. Fix any decision class M⊆ 2[n] and any vector
w ∈ Rn. Suppose that, for each arm e ∈ [n], the reward distribu-
tion ϕe is given by ϕe = N (w(e), 1), where we let N (µ, σ2) de-
note Gaussian distribution with mean µ and variance σ2. Then,
for any δ ∈ (0, e−16/4) and any δ-correct algorithm A, we have

E[T ] ≥ 1

16
H log

(
1

4δ

)
, (2.6)

where T denote the number of total samples used by algorithm
A and H is defined in Eq. (2.2).

Before stating our proof, we first introduce two technical lem-
mas. The first lemma is the well-known Kolmogrov’s inequality.

Lemma 2.14. (Kolmogrov’s inequality [127, Corollary 7.66])
Let Z1, . . . , Zn be independent zero-mean random variables with
Var[Zk] ≤ +∞ for all k ∈ [n]. Then, for any λ > 0,

Pr

[
max

1≤k≤n
|Sk| ≥ λ

]
≤ 1

λ2

n∑
i=1

Var[Zk],

where Sk = X1 + . . .+Xk.

The second technical lemma shows that the joint likelihood
of Gaussian distributions on a sequence of variables does not
change much when the mean of the distribution shifts by a suf-
ficiently small value.

Lemma 2.15. Fix some d ∈ R and θ ∈ (0, 1). Define t =
1

4d2 log(1/θ). Given any integer T ≤ 4t and any sequence s1, . . . , sT .
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Let X1, . . . , XT be T real numbers which satisfy the following∣∣∣∣∣
T∑
i=1

Xi −
T∑
i=1

si

∣∣∣∣∣ ≤√t log(1/θ). (2.77)

Then, we have
T∏
i=1

N (Xi|si + d, 1)

N (Xi|si, 1)
≥ θ,

where we let N (x|µ, σ2) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
denote the prob-

ability density function of normal distribution with mean µ and
variance σ2.

Proof. We define vi = Xi − si for all i ∈ [T ]. Then, we have

T∏
i=1

N (Xi|si + d, 1)

N (Xi|si, 1)
=

T∏
i=1

exp

(
− (Xi − si − d)2 + (Xi − si)2

2

)

=
T∏
i=1

exp

(
−vid−

1

2
d2

)

= exp

(
−

T∑
i=1

vid

)
exp

(
−Td

2

2

)
. (2.78)

We now bound each term on the right-hand side of Eq. (2.78)
as follows

exp

(
−

T∑
i=1

vid

)
≥ exp

(
−

∣∣∣∣∣
T∑
i=1

vi

∣∣∣∣∣ · |d|
)

≥ exp
(
−
√
t log(1/θ)d

)
(2.79)

= exp

(
−1

2
log(1/θ)

)
= θ1/2, (2.80)

where Eq. (2.79) follows from Eq. (2.77); and Eq. (2.80) follows
from the fact t ≤ 1

4d2 log(1/θ). Next we have

exp

(
−Td

2

2

)
≥ exp

(
−2td2

)
(2.81)
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= exp

(
−1

2
log(1/θ)

)
= θ1/2, (2.82)

where Eq. (2.81) follows from T ≤ 4t and Eq. (2.82) follows from
the definition of t. The lemma follows immediate by combining
Eq. (2.78), Eq. (2.80) and Eq. (2.82).

Proof of Theorem 2.2. Fix δ > 0, w =
(
w(1), . . . , w(n)

)T
and a

δ-correct algorithm A. For each e ∈ [n], assume that the reward
distribution is given by ϕe = N (w(e), 1). For any e ∈ [n], let
Te denote the number of trials of arm e used by algorithm A.
In the rest of the proof, we will show that for any e ∈ [n], the
number of trials of arm e is lower-bounded by

E[Te] ≥
1

16∆2
e

log(1/4δ). (2.83)

Notice that the theorem follows immediately by summing up
Eq. (2.83) for all e ∈ [n].

Now fix an arm e ∈ [n]. We define θ = 4δ and t∗e = 1
16∆2

e
log(1/θ).

We prove Eq. (2.83) by contradiction. Therefore we assume the
opposite that E[Te] < t∗e in the rest of the proof.

Step (1): An alternative hypothesis. We consider two
hypothesis H0 and H1. Under hypothesis H0, all reward distri-
butions are same with our assumption in the theorem as follows

H0 : ϕl = N (w(l), 1) for all l ∈ [n].

On the other hand, under hypothesis H1, we change the means
of reward distributions such that

H1 : ϕe =

{
N (w(e)− 2∆e, 1) if e ∈M∗
N (w(e) + 2∆e, 1) if e 6∈M∗

and ϕl = N (w(l), 1) for all l 6= e.

For l ∈ {0, 1}, we use El and Prl to denote the expectation and
probability, respectively, under the hypothesis Hl.
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Now we claim that M∗ is no longer the optimal set under
hypothesis H1. Let Me denote the next-to-optimal set defined
Eq. (2.76). By definition of ∆e in Eq. (2.1), we know that w(M∗)−
w(Me) = ∆e. Let w0 and w1 be expected reward vectors under
H0 and H1 respectively. We have

w1(M∗)− w1(Me) = w(M∗)− w(Me)− 2∆e

= −∆e < 0.

This means that under H1, the set M∗ is not the optimal set.
Step (2): Three random events. Let X1, . . . , XTe denote

the sequence of reward outcomes of arm e. Now we define three
random events A, B and C as follows

A = {Te ≤ 4t∗e}, B = {Out = M∗} and

C =

{
max

1≤t≤4t∗e

∣∣∣∣∣
t∑
i=1

Xt − t · w(e)

∣∣∣∣∣ <√t∗e log(1/θ)

}
,

where Out is the output of algorithm A.
Now we bound the probability of these events under hypoth-

esis H0. First, we show that Pr0[A] ≥ 3/4. This can be proven
by Markov’s inequality as follows.

Pr0[Te > 4t∗e] ≤
E0[Te]

4t∗e
≤ t∗e

4t∗e
=

1

4
.

We now show that Pr0[C] ≥ 3/4. Notice that
{
Xt−w(e)

}
t=1,...,

is a sequence of zero-mean independent random variables under
H0. Define Kt =

∑t
i=1Xt. Then, by Kolmogorov’s inequality

(Lemma 2.14), we have

Pr0

[
max

1≤t≤4t∗e
|Kt − t · w(e)| ≥

√
t∗e log(1/θ)

]
≤

E0[(K4t∗e − 4w(e)t∗e)
2]

t∗e log(1/θ)

(a)
=

4t∗e
t∗e log(1/θ)

(b)
<

1

4
,
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where (a) follows from the fact that the variance of ϕe equals
to 1 and therefore E0[(K4t∗e − 4w(e)t∗e)

2] = 4t∗e; and (b) follows
since θ < e−16.

Since the probability of error of algorithm A is at most δ <
e−16/4 < 1/4, we have Pr0[B] ≥ 3/4. Define random event S =
A ∩ B ∩ C. Then, by union bound, we have Pr0[S] ≥ 1/4.

Step (3): The loss of likelihood. Now, we claim that, un-
der the assumption that E0[Te] < t∗e, one has Pr1[B] ≥ δ. Let W
be the history of the sampling process until the algorithm stops
(including the sequence of arms chosen at each time and the
sequence of observed outcomes). Define the likelihood function
Ll as

Ll(w) = pl(W = w),

where pl is the probability density function under hypothesis Hl.
Now assume that the event S occurred. We will bound the

likelihood ratio L1(W )/L0(W ) under this assumption. Since H1

and H0 only differs on the reward distribution of arm e, we have

L1(W )

L0(W )
=

Te∏
i=1

N (Xi|w1(e), 1)

N (Xi|w0(e), 1)
. (2.84)

By definition of H1 and H0, we see that w1(e) = w0(e) ± 2∆e

(where the sign depends on whether e ∈ M∗). Therefore, when
event S occurs, it easy to verify that we can apply Lemma 2.15
(by setting d = w1(e) − w0(e) = ±2∆e, T = Te and si = w0(e)
for all i). Hence, by Lemma 2.15 and Eq. (2.84), we have

L1(W )

L0(W )
≥ θ = 4δ

holds if event S occurs.
Then, define 1S as the indicator variable of event S, i.e., 1S =

1 if and only if S occurs and otherwise 1S = 0. Then, we have

L1(W )

L0(W )
1S ≥ 4δ1S
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holds regardless the occurrence of event S. Therefore, we can
obtain

Pr1[B] ≥ Pr1[S] = E1[1S]

= E0

[
L1(W )

L0(W )
1S

]
≥ 4δE0[1S]

= 4δ Pr0[S] ≥ δ.

Now we have proven that, if E0[Te] < t∗e, then Pr1[B] ≥ δ. This
means that, if E0[Te] < t∗e, algorithm A will chooseM∗ as the out-
put with probability at least δ, under hypothesis H1. However,
under H1, we have shown that M∗ is not the optimal set since
w1(Me) > w1(M∗). Therefore, algorithm A has a probability of
error at least δ under H1. This contradicts to the assumption
that algorithm A is a δ-correct algorithm. Hence, we must have
E0[Te] ≥ t∗e = 1

16∆2
e

log(1/4δ).

2.10.2 Exchange Set Size Dependent Lower Bound

As a supplement to our main lower bound (Theorem 2.2), we
show that, for any arm e ∈ [n], there exists an exchange set
b = (b+, b−) which contains e such that a δ-correct algorithm

must spend Ω̃
((
|b+|+ |b−|

)2
/∆2

e

)
samples on exploring the arms

belonging to b+ ∪ b−. Hence, on average, each arm e ∈ b+ ∪ b−
must be sampled for Ω̃((|b+| + |b−|)∆−2

e ) times. This is asymp-
totically stronger than the result of Theorem 2.2 when the size
of corresponding exchange set |b+| + |b−| is non-constant. This
result is formalized in the following theorem.

Theorem 2.6. Fix any M ⊆ 2[n] and any vector w ∈ Rn.
Suppose that, for each arm e ∈ [n], the reward distribution ϕe
is given by ϕe = N (w(e), 1), where N (µ, σ2) denotes a Gaus-
sian distribution with mean µ and variance σ2. Fix any δ ∈
(0, e−16/4) and any δ-correct algorithm A.
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Then, for any e ∈ [n], there exists an exchange set b =
(b+, b−), such that e ∈ b+ ∪ b− and

E

 ∑
i∈b+∪b−

Ti

 ≥ (|b+|+ |b−|)2

32∆2
e

log(1/4δ),

where Ti is the number of samples of arm i.

The proof is quite similar to that of Theorem 2.2 except that
they use different constructions of alternative hypothesis and
consequently this introduces some difference on the details of
computations.

Proof. Fix δ > 0, w =
(
w(1), . . . , w(n)

)T
and a δ-correct algo-

rithm A. For each i ∈ [n], assume that the reward distribution
is given by ϕi = N (w(i), 1). For any i ∈ [n], let Ti denote the
number of trials of arm i used by algorithm A.

Step (0): Setup. Fix an arm e ∈ [n]. As the first step, we
construct the exchange set b = (b+, b−) claimed in the theorem.
Let Me denote the next-to-optimal set as defined in Eq. (2.76).
By definition of ∆e in Eq. (2.1), we know that w(M∗)−w(Me) =
∆e. We construct the exchange set b = (b+, b−) where b+ =
M∗\Me and b− = Me\M∗. It is easy to check that Me ⊕ b = M∗
and 〈w,χb〉 = ∆e > 0.

We have now constructed the exchange set. We define Tb− =∑
i∈b− Ti and Tb+ =

∑
i∈b+ Ti. Now we claim that

(a) E
[
Tb−
]
≥ |b−|

2

16∆2
e

log(1/4δ) and (b) E
[
Tb+
]
≥ |b+|2

16∆2
e

log(1/4δ).

(2.85)
It is easy to check that theorem follows immediately from claims
(a) and (b). In the rest of the proof, we focus on claim (a);
the claim (b) can be proven using an almost identical similar
argument.
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Now we define θ = 4δ and t∗b− = |b−|2
16∆2

e
log(1/θ). We prove

claim (a) by contradiction, that is to assume the opposite that
E[Tb−] < t∗b−.

Step (1): An alternative hypothesis. We define two hy-
potheses H0 and H1. Under hypothesis H0, the reward distribu-
tion

H0 : ϕl = N (w(l), 1) for all l ∈ [n].

Under hypothesis H1, the mean reward of each arm is given by

H1 : ϕi =

{
N
(
w(i) + 2∆e

|b−| , 1
)

if i ∈ b−,
N (w(i), 1) if i 6∈ b−.

Similar to the proof of Theorem 2.2, we let w0 and w1 denote
the expected reward vectors under H0 and H1 respectively. One
can verify that w1(M∗)− w1(Me) = −∆e < 0. This means that
under H1, the set M∗ is not the optimal set.

Step (2): Three random events. First we consider the
complete sequence of sampling process by algorithm A. For-
mally, let W = {(Ĩ1, X̃1), . . . , (ĨT , X̃T )} be the sequence of all tri-
als by algorithm A, where Ĩi denotes the arm played in i-th trial
and X̃i be the reward outcome of i-th trial. Then, consider the
subsequence W1 of W which consists of all the trials of arms in
b−. Specifically, we write W = {(I1, X1), . . . , (ITb− , XTb−

)} such
that W1 is a subsequence of W and Ii ∈ b− for all i.

Now we define three random events A, B and C as follows

A = {Tb− ≤ 4t∗b−}, B = {Out = M∗} and

C =

{
max

1≤t≤4t∗b−

∣∣∣∣∣
t∑
i=1

Xi −
t∑
i=1

w(Ii)

∣∣∣∣∣ <√t∗b− log(1/θ)

}
,

where Out is the output of algorithm A. We now bound the
probability of each event. First, by Markov’s inequality, we have

Pr0[Tb− > 4t∗b−] ≤
E0[Tb−]

4t∗b−
=

t∗b−
4t∗b−

=
1

4
.
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Next, using Kolmogrov’s inequality (Lemma 2.14), we obtain

Pr0

[
max

1≤t≤4t∗b−

∣∣∣∣∣
t∑
i=1

Xi −
t∑
i=1

w(Ii)

∣∣∣∣∣ ≥√t∗e log(1/θ)

]

≤
E0

[(∑4t∗b−
i=1 Xi −

∑4t∗b−
i=1 w(Ii)

)2
]

t∗e log(1/θ)

(a)
=

4t∗b−
t∗b− log(1/θ)

(b)
<

1

4
,

where (a) follows from the fact that all reward distributions have
unit variance; and (b) follows since θ < e−16.

Since A is δ-correct algorithm and δ < 1/4, we have Pr0[B] ≥
3/4. Therefore, we have that the random event S = A ∩ B ∩ C
occurs with probability at least 1/4 under H0.

Step (3): The loss of likelihood. Similar to the proof of
Theorem 2.2, we let Ll denote the likelihood function under
hypothesis Hl for l ∈ {0, 1}. Since the difference of H0 and H1

only lies in the reward distributions of arms belonging to b−, we
have

L1(W )

L0(W )
=

Tb−∏
i=1

N (Xi|w1(Ii), 1)

N (Xi|w0(Ii), 1)
,

where Xi and Ii is as defined in Step (2). Assume that S occurs.
Since, for all i ∈ [Tb−], we have w1(Ii) − w0(Ii) = 2∆e

|b−| , we can

apply Lemma 2.15 here (by setting d = 2∆e

|b−| ). Therefore, on event
S, we have

L1(W )

L0(W )
≥ θ.

The rest of the proof is identical to Step (3) in the proof of
Theorem 2.2, and one can show that Pr1[B] ≥ δ under the as-
sumption that E[Tb−] < t∗b−. This means the probability of error
of algorithm A is at least δ. This contradicts to the assumption
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of A. Therefore we have E[Tb−] ≥ t∗b− which proves claim (a) in
Eq. (2.85).

2.11 Analysis of CSAR (Theorem 2.3)

Notations. Letw ∈ Rn be the vector of the expected rewards of
arms. Let M∗ = arg maxM∈Mw(M) be the optimal set. Let T be
the budget of samples. We will also use the following additional
notations in the rest of this section. Let M ⊆ [n] be a set, we
denote ¬M to be the complement of M . Let ∆(1), . . . ,∆(n) be
a permutation of ∆1, . . . ,∆n such that ∆(1) ≤ . . . . . .∆(n). Let
A1, . . . , An and B1, . . . , Bn be the two sequences of sets which
are defined in Algorithm 2. We will also continue to use the
notations of incidence vectors of sets and exchange sets, which
are defined in Section 2.8.

2.11.1 Confidence Intervals

First we establish the confidence bounds used for the analysis
of CSAR.

Lemma 2.16. Given a phase t ∈ [n], we define random event
τt as follows

τt =

{
∀i ∈ [n]\(At ∪Bt)

∣∣w̄t(i)− w(i)
∣∣ < ∆(n−t+1)

3width(M)

}
.

(2.86)
Then, we have

Pr

[
n⋂
t=1

τt

]
≥ 1−n2 exp

(
− (T − n)

18R2 ˜log(n)width(M)2H2

)
. (2.87)

Proof. Fix some t ∈ [n] and fix some active arm i ∈ [n]\(At∪Bt)
of phase t.



CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 73

Notice that the arm i has been pulled for T̃t times during the
first t phases. Therefore, by Hoeffding’s inequality (Lemma 2.6),
we have

Pr

[∣∣w̄t(i)− w(i)
∣∣ ≥ ∆(n−t+1)

3width(M)

]
≤ 2 exp

(
−

T̃t∆
2
(n−t+1)

18R2width(M)2

)
.

(2.88)

By plugging the definition of T̃t, the quantity T̃t∆
2
(n−t+1) on the

right-hand side of Eq. (2.88) can be further bounded by

T̃t∆
2
(n−t+1) ≥

T − n
˜log(n)(n− t+ 1)

∆2
(n−t+1)

≥ T − n
˜log(n)H2

,

where the last inequality follows from the definition of H2 =
maxi∈n i∆

−2
(i) . By plugging the last inequality into Eq. (2.88), we

have

Pr

[∣∣w̄t(i)− w(i)
∣∣ ≥ ∆(n−t+1)

3width(M)

]
≤ 2 exp

(
− (T − n)

18R2 ˜log(n)width(M)2H2

)
.

(2.89)
Now using Eq. (2.89) and a union bound for all t ∈ [n] and

all i ∈ [n]\(At ∪Bt), we have

Pr

[
n⋂
t=1

τt

]
≥ 1− 2

n∑
t=1

(n− t+ 1) exp

(
− (T − n)

18R2 ˜log(n)width(M)2H2

)
≥ 1− n2 exp

(
− (T − n)

18R2 ˜log(n)width(M)2H2

)
.

Readers may notice that the right-hand side of Eq. (2.87)
equals to the probability of error of CSAR claimed in Theorem 2.3.
Indeed, we will show that the CSAR algorithm will not make any
mistakes if the random event

⋂n
t=1 τt occurs.
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The following lemma builds the confidence bound of inner
products.

Lemma 2.17. Fix a phase t ∈ [n], suppose that random event τt
occurs. For any vector a ∈ Rn, suppose that supp(a)∩(At∪Bt) =
∅, where supp(a) , {i | a(i) 6= 0} is the support of vector a.
Then, we have

|〈w̄t,a〉 − 〈w,a〉| <
∆(n−t+1)

3width(M)
‖a‖1 .

Proof. Suppose that τt occurs. Then, similar to the proof of
Lemma 2.7, we have

|〈w̄t,a〉 − 〈w,a〉| = |〈w̄t −w,a〉|

=

∣∣∣∣∣
n∑
i=1

(
w̄t(i)− w(i)

)
a(i)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈[n]\(At∪Bt)

(
w̄t(i)− w(i)

)
a(i)

∣∣∣∣∣∣ (2.90)

≤
∑

i∈[n]\(At∪Bt)

∣∣(w̄t(i)− w(i)
)
a(i)

∣∣
≤

∑
i∈[n]\(At∪Bt)

|w̄t(i)− w(i)| |a(i)|

<
∆(n−t+1)

3width(M)

∑
i∈[n]\(At∪Bt)

|a(i)| (2.91)

=
∆(n−t+1)

3width(M)
‖a‖1 ,

where Eq. (2.90) follows from the assumption that a is sup-
ported on [n]\(At∪Bt); Eq. (2.91) follows from the definition of
τt (Eq. (2.86)).
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2.11.2 Main Lemmas

We begin with a technical lemma which characterizes several
useful properties of At and Bt.

Lemma 2.18. Fix a phase t ∈ [n]. Suppose that At ⊆ M∗ and
Bt∩M∗ = ∅. Let M be a set such that At ⊆M and Bt∩M = ∅.
Let a and b be two sets satisfying that a ⊆ M\M∗, b ⊆ M∗\M
and a ∩ b = ∅. Then, we have

At ⊆ (M\a∪b) and Bt∩(M\a∪b) = ∅ and (a∪b)∩(At∪Bt) = ∅.

Proof. We prove the first part as follows

At ∩ (M\a ∪ b) = (At ∩ (M\a)) ∪ (At ∩ b)
= At ∩ (M\a) (2.92)

= (At ∩M)\a
= At\a (2.93)

= At, (2.94)

where Eq. (2.92) holds since we have At ∩ b ⊆ At ∩ (M∗\M) ⊆
M∩(M∗\M) = ∅; Eq. (2.93) follows fromAt ⊆M ; and Eq. (2.94)
follows from a ⊆M\M∗ and At ⊆M∗ which imply that a∩At =
∅. Notice that Eq. (2.94) is equivalent to At ⊆ (M\a ∪ b).

Then, we proceed to prove the second part in the following

Bt ∩ (M\a ∪ b) = (Bt ∩ (M\a)) ∪ (Bt ∩ b)
= Bt ∩ (M\a) (2.95)

= (Bt ∩M)\a
= ∅\a = ∅, (2.96)

where Eq. (2.95) follows from the fact that Bt ∩ b ⊆ Bt ∩
(M∗\M) ⊆ ¬M∗ ∩ (M∗\M) = ∅; and Eq. (2.96) follows from
the fact that Bt ∩M = ∅.
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Last, we prove the third part. By combining the assumptions
that At ⊆M∗ and At ⊆M , we see that At ⊆M ∩M∗. Also note
that a ⊆M\M∗ and b ⊆M∗\M , we have

(a∩At)∪(b∩At) ⊆
(
(M\M∗)∩(M∩M∗)

)
∪
(
(M∗\M)∩(M∩M∗)

)
= ∅.

(2.97)
Similarly, we have Bt ⊆ ¬M ∩ ¬M∗. Hence, we derive

(a∩Bt)∪(b∩Bt) ⊆ ((M\M∗)∩(¬M∩¬M∗))∪((M∗\M)∩(¬M∩¬M∗)) = ∅.
(2.98)

By combining Eq. (2.97) and Eq. (2.98), we obtain

(a∪ b)∩ (At ∪Bt) = (a∩At)∪ (b∩At)∪ (a∩Bt)∪ (b∩Bt) = ∅.

The next lemma provides an important insight on the correct-
ness of CSAR. Informally speaking, suppose that the algorithm
does not make an error before phase t. Then, we show that, sup-
pose arm e has a gap ∆e larger than the “reference” gap ∆(n−t+1)

of phase t, then arm e must be correctly classified by Mt, i.e.,
e ∈Mt if and only if e ∈M∗.

Lemma 2.19. Fix any phase t > 0. Suppose that event τt occurs.
Also assume that At ⊆M∗ and Bt∩M∗ = ∅. Let e ∈ [n]\(At∪Bt)
be an active arm. Suppose that ∆(t−n+1) ≤ ∆e. Then, we have
e ∈ (M∗ ∩Mt) ∪ (¬M∗ ∩ ¬Mt).

Proof. Fix an exchange class B ∈ arg minB′∈Exchange(M) width(B′).
Suppose that e 6∈ (M∗ ∩Mt) ∪ (¬M∗ ∩ ¬Mt). This is equivalent
to the following

e ∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt). (2.99)

Eq. (2.99) can be further rewritten as

e ∈ (M∗\Mt) ∪ (Mt\M∗).
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From this assumption, it is easy to see that Mt 6= M∗. There-
fore we can apply Lemma 2.2. Then we know that there ex-
ists b = (b+, b−) ∈ B such that e ∈ b− ∪ b+, b− ⊆ Mt\M∗,
b+ ⊆M∗\Mt, Mt ⊕ b ∈M and 〈w,χb〉 ≥ ∆e > 0.

Using Lemma 2.18, we see that (Mt⊕b)∩Bt = ∅,At ⊆ (Mt⊕b)
and (b+ ∪ b−) ∩ (At ∪ Bt) = ∅. Now recall the definition Mt ∈
arg maxM∈M,At⊆M,Bt∩M=∅ w̄t(M) and also recall that Mt ⊕ b ∈
M. Therefore, we obtain that

w̄t(Mt) ≥ w̄t(Mt ⊕ b). (2.100)

On the other hand, we have

w̄t(Mt ⊕ b) =
〈
w̄t,χMt

+ χb
〉

(2.101)

=
〈
w̄t,χMt

〉
+ 〈w̄t,χb〉

>
〈
w̄t,χMt

〉
+ 〈w,χb〉 −

∆(n−t+1)

3width(M)
‖χb‖1

(2.102)

≥
〈
w̄t,χMt

〉
+ 〈w,χb〉 −

∆e

3width(M)
‖χb‖1

≥
〈
w̄t,χMt

〉
+ 〈w,χb〉 −

∆e

3
(2.103)

≥
〈
w̄t,χMt

〉
+

2

3
∆e (2.104)

≥
〈
w̄t,χMt

〉
= w̄t(Mt), (2.105)

where Eq. (2.101) follows from Lemma 2.1; Eq. (2.102) follows
from Lemma 2.17 and the fact that (b+ ∪ b−) ∩ (At ∪ Bt) = ∅;
Eq. (2.103) holds since b ∈ B which implies that ‖χb‖1 = |b+|+
|b−| ≤ width(B) = width(M); and Eq. (2.104) and Eq. (2.105)
hold since we have shown that 〈w,χb〉 ≥ ∆e ≥ 0.

This means that w̄t(Mt ⊕ b) > w̄t(Mt). This contradicts to
Eq. (2.100). Therefore we have e ∈ (M∗∩Mt)∪(¬M∗∩¬Mt).

The next lemma takes a step further. It shows that if ∆e ≥
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∆(n−t+1) for some arm e, then the empirical gap of arm e, w̄t(Mt)−
w̄t(M̃t,e), is greater than 2

3∆(n−t+1).

Lemma 2.20. Fix any phase t > 0. Suppose that event τt occurs.
Also assume that At ⊆M∗ and Bt∩M∗ = ∅. Let e ∈ [n]\(At∪Bt)
be an active arm such that ∆(t−n+1) ≤ ∆e. Then, we have

w̄t(Mt)− w̄t(M̃t,e) >
2

3
∆(t−n+1).

Proof. By Lemma 2.19, we see that

e ∈ (M∗ ∩Mt) ∪ (¬M∗ ∩ ¬Mt). (2.106)

We claim that e ∈ (M̃t,e\M∗)∪(M∗\M̃t,e) and therefore M∗ 6=
M̃t,e. Recall the definition of M̃t,e, which ensures that e ∈ M̃t,e if
and only if e 6∈Mt. By Eq. (2.106), we see that either e ∈ (M∗∩
Mt) or e ∈ (¬M∗ ∩¬Mt). First let us assume that e ∈M∗ ∩Mt.
Then, by definition of M̃t,e, we see that e 6∈ M̃t,e. Therefore
e ∈M∗\M̃t,e. On the other hand, suppose that e ∈ ¬M∗ ∩¬Mt.
Then, we see that e ∈ M̃t,e. This means that e ∈ M̃t,e\M∗.

Hence we can apply Lemma 2.2. Then we obtain that there
exists b = (b+, b−) ∈ B such that e ∈ b+ ∪ b−, b+ ⊆ M∗\M̃t,e,
b− ⊆ M̃t,e\M∗, M̃t,e ⊕ b ∈M and 〈w,χb〉 ≥ ∆e.

Define M ′
t,e , M̃t,e⊕b. Using Lemma 2.18, we have At ⊆M ′

t,e,
Bt∩M ′

t,e = ∅ and (b+∪ b−)∩ (At∪Bt) = ∅. Since M ′
t,e ∈M and

by definition w̄t(Mt) = maxM∈M,At⊆M,Bt∩M=∅ w̄t(M), we have

w̄t(Mt) ≥ w̄t(M
′
t,e). (2.107)

Hence, we have

w̄t(Mt)− w̄t(M̃t,e) ≥ w̄t(M
′
t,e)− w̄t(M̃t,e)

= w̄t(M̃t,e ⊕ b)− w̄t(M̃t,e)

=
〈
w̄t,χM̃t,e

+ χb

〉
−
〈
w̄t,χM̃t,e

〉
(2.108)

= 〈w̄t,χb〉
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> 〈w,χb〉 −
∆(n−t+1)

3width(B)
‖χb‖1 (2.109)

≥ 〈w,χb〉 −
∆e

3width(B)
‖χb‖1 (2.110)

≥ 〈w,χb〉 −
∆e

3
(2.111)

≥ 2

3
∆e ≥

2

3
∆(n−t+1), (2.112)

where Eq. (2.108) follows from Lemma 2.1; Eq. (2.109) follows
from Lemma 2.17, the assumption on event τt and the fact (b+∪
b−) ∩ (At ∪ Bt) = ∅; Eq. (2.110) follows from the assumption
that ∆e ≥ ∆(n−t+1); Eq. (2.111) holds since b ∈ B and therefore
‖χb‖1 ≤ width(M); and Eq. (2.112) follows from the fact that
〈w,χb〉 ≥ ∆e.

The next lemma shows that, during phase t, if ∆e ≤ ∆(n−t+1)

for some arm e, then the empirical gap of arm e is smaller than
1
3∆(n−t+1).

Lemma 2.21. Fix any phase t > 0. Suppose that event τt occurs.
Also assume that At ⊆M∗ and Bt ∩M∗ = ∅. Suppose an active
arm e ∈ [n]\(At∪Bt) satisfies that e ∈ (M∗∩¬Mt)∪(¬M∗∩Mt).
Then, we have

w̄t(Mt)− w̄t(M̃t,e) ≤
1

3
∆(n−t+1).

Proof. Fix an exchange class B ∈ arg minB′∈Exchange(M) width(B′).
The assumption that e ∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt) can be

rewritten as e ∈ (M∗\Mt)∪(Mt\M∗). This shows that Mt 6= M∗,
hence Lemma 2.2 applies here. Therefore we know that there
exists b = (b+, b−) ∈ B such that e ∈ (b+ ∪ b−), b+ ⊆ M∗\Mt,
b− ⊆Mt\M∗, Mt ⊕ b ∈M and 〈w,χb〉 ≥ ∆e > 0.

Define M ′
t,e ,Mt ⊕ b. We claim that

w̄t(M̃t,e) ≥ w̄t(M
′
t,e). (2.113)
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From the definition of M̃t,e in Algorithm 2, we only need to show
that (a): e ∈ (M ′

t,e\Mt) ∪ (Mt\M ′
t,e) and (b): At ⊆ M ′

t,e and
Bt ∩M ′

t,e = ∅. First we prove (a). Notice that b+ ∩ b− = ∅ and
b− ⊆ Mt. Hence we see that M ′

t,e\Mt = (Mt\b− ∪ b+)\Mt = b+

and Mt\M ′
t,e = Mt\(Mt\b− ∪ b+) = b−. In addition, we have

that e ∈ (b− ∪ b+) = (M ′
t,e\Mt) ∪ (Mt\M ′

t,e), therefore we see
that (a) holds. Next, we notice that (b) follows directly from
Lemma 2.18 by setting M = Mt. Hence we have shown that
Eq. (2.113) holds.

Hence, we have

w̄t(Mt)− w̄t(M̃t,e) ≤ w̄t(Mt)− w̄t(M ′
t,e)

=
〈
w̄t,χMt

〉
−
〈
w̄t,χMt

+ χb
〉

(2.114)

= −〈w̄t,χb〉

≤ − 〈w,χb〉+
∆(n−t+1)

3width(M)
‖χb‖1 (2.115)

≤
∆(n−t+1)

3width(M)
‖χb‖1 ≤

∆(n−t+1)

3
, (2.116)

where Eq. (2.114) follows from Lemma 2.1; Eq. (2.115) follows
from Lemma 2.17, the assumption on τt and (b+ ∪ b−) ∩ (At ∪
Bt) = ∅ (by Lemma 2.18); and Eq. (2.116) follows from the fact
‖χb‖1 ≤ width(M) (since b ∈ B) and that 〈w,χb〉 ≥ ∆e ≥
0.

2.11.3 Proof of Theorem 2.3

Using these technical lemmas, we are now ready to prove Theo-
rem 2.3. For reader’s convenience, we first restate Theorem 2.3
as follows.

Theorem 2.3. Given any T > n, any decision class M ⊆ 2[n]

and any expected rewards w ∈ Rn. Assume that the reward dis-
tribution ϕe for each arm e ∈ [n] has mean w(e) with an R-sub-
Gaussian tail. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n
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(defined in Eq. (2.1)) such that ∆(1) ≤ . . . . . .∆(n). Define H2 ,
maxi∈[n] i∆

−2
(i) . Then, the CSAR algorithm uses at most T samples

and outputs a solution Out ∈M∪ {⊥} such that

Pr[Out 6= M∗] ≤ n2 exp

(
− (T − n)

18R2 ˜log(n)width(M)2H2

)
, (2.8)

where ˜log(n) ,
∑n

i=1 i
−1, M∗ = arg maxM∈Mw(M) and width(M)

is defined in Eq. (2.4).

Proof. First, we show that the algorithm takes at most T sam-
ples. It is easy to see that exactly one arm is pulled for T̃1 times,
one arm is pulled for T̃2 times, . . . , and one arm is pulled for
T̃n times. Therefore, the total number of samples used by the
algorithm is bounded by

n∑
t=1

T̃t ≤
n∑
t=1

(
T − n

˜log(n)(n− t+ 1)
+ 1

)
=
T − n
˜log(n)

˜log(n) + n = T.

By Lemma 2.16, we know that the event τ ,
⋂T
t=1 τt oc-

curs with probability at least 1−n2 exp
(
− (T−n)

18R2 ˜log(n)width(M)2H2

)
.

Therefore, we only need to prove that, under event τ , the algo-
rithm outputs M∗. We will assume that event τ occurs in the
rest of the proof.

We prove by induction. Fix a phase t ∈ [t]. Suppose that the
algorithm does not make any error before phase t, i.e., At ⊆M∗
and Bt ∩M∗ = ∅. We show that the algorithm does not err at
phase t.

At the beginning of phase t, there are exactly t − 1 inactive
arms |At ∪ Bt| = t − 1. Therefore there must exists an active
arm et ∈ [n]\(At ∪ Bt) such that ∆et ≥ ∆(n−t+1). Hence, by
Lemma 2.20, we have

w̄t(Mt)− w̄t(Mt,et) ≥
2

3
∆(n−t+1). (2.117)
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Notice that the algorithm makes an error in phase t if and
only if it accepts an arm pt 6∈M∗ or rejects an arm pt ∈M∗. On
the other hand, by design, arm pt is accepted when pt ∈Mt and
is rejected when pt 6∈ Mt. Therefore, we see that the algorithm
makes an error in phase t if and only if pt ∈ (M∗∩¬Mt)∪(¬M∗∩
Mt).

Suppose that pt ∈ (M∗ ∩¬Mt)∪ (¬M∗ ∩Mt). Now appeal to
Lemma 2.21, we see that

w̄t(Mt)− w̄t(M̃t,pt) ≤
1

3
∆(n−t+1). (2.118)

By combining Eq. (2.117) and Eq. (2.118), we see that

w̄t(Mt)−w̄t(M̃t,pt) ≤
1

3
∆(n−t+1) <

2

3
∆(n−t+1) ≤ w̄t(Mt)−w̄t(Mt,et).

(2.119)
However Eq. (2.119) is contradictory to the definition of pt ,
arg maxe∈[n]\(At∪Bt) w̄t(Mt)− w̄t(M̃t,e). Therefore we have proven
that pt 6∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt). This means that the algo-
rithm does not err at phase t, or equivalently At+1 ⊆ M∗ and
Bt+1∩M∗ = ∅. By induction, we have proven that the algorithm
does not err at any phase t ∈ [n].

Hence we have An+1 ⊆ M∗ and Bn+1 ⊆ ¬M∗ in the final
phase. Notice that |An+1| + |Bn+1| = n and An+1 ∩ Bn+1 = ∅.
This means that An+1 = M∗ and Bn+1 = ¬M∗. Therefore the
algorithm outputs Out = An+1 = M∗ after phase n.

2.12 Analysis of the Uniform Allocation Al-

gorithm

In this section, we analyze the performance of a simple bench-
mark strategy UNI which plays each arm for a equal number of
times and then calls a maximization oracle using the empirical
means of arms as input. The pseudo-code of the UNI algorithm
is listed in Algorithm 3.



CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 83

Algorithm 3 UNI: Uniform Allocation

Require: Budget: T > 0; Maximization oracle: Oracle : Rn →M.
1: Pull each arm e ∈ [n] for bT/nc times.
2: Compute the empirical means w̄ ∈ Rn of each arm.
3: Out← Oracle(w̄)
4: return: Out

The next theorem upper bounds the probability of error of
UNI.

Theorem 2.7. Given any T > n, any decision class M ⊆
2[n] and any expected rewards w ∈ Rn. Assume that the reward
distribution ϕe for each arm e ∈ [n] has mean w(e) with an R-
sub-Gaussian tail. Also assume without loss of generality that T
is a multiple of n. Define ∆(1) = mini∈[n] ∆i and H3 = n∆−2

(1).
Then, the output Out of the UNI algorithm satisfies

Pr[Out 6= M∗] ≤ 2n exp

(
− T

18R2width(M)2H3

)
, (2.120)

where M∗ = arg maxM∈Mw(M).

From Theorem 2.7, we see that the UNI algorithm could be
significantly worse than CLUCB and CSAR, since it is clear that
H3 ≥ H ≥ H2 and potentially one has H3 � H ≥ H2 for a
large number of arms with heterogeneous gaps.

Now we prove Theorem 2.7. The proof is straightforward us-
ing tools of exchange classes.

Proof. Define ∆(1) = mini∈[n] ∆i. Define random event ξ as fol-
lows

ξ =

{
∀i ∈ [n], |w̄(i)− w(i)| <

∆(1)

3width(M)

}
.

Notice that each arm is sampled for bTnc times. Therefore,
using Hoeffding’s inequality (Lemma 2.6) and union bound, we



CHAPTER 2. COMBINATORIAL PURE EXPLORATION BANDITS 84

can bound Pr[ξ] as follows. Fix any i ∈ [n], by Hoeffding’s in-
equality, we have

Pr

[
|w̄(i)− w(i)| ≥

∆(1)

3width(M)

]
≤ 2 exp

(
−

T∆2
(1)

18R2nwidth(M)2

)
.

Then, using a union bound, we obtain

Pr
[
ξ
]
≥ 1− 2n exp

(
−

T∆2
(1)

18nR2width(M)2

)
.

In addition, using an argument very similar to Lemma 2.17, one
can show that, on event ξ, for any vector a ∈ Rn, it holds that

| 〈w̄,a〉 − 〈w,a〉 | <
∆(1)

3width(M)
‖a‖1 . (2.121)

Now we claim that, on the event ξ, we have Out = M∗. Note
that theorem follows immediately from the claim. Next, we prove
this claim.

Suppose that, on the contrary, Out 6= M∗. In this case, let us
write M = Out. We also fix B ∈ arg minB′∈Exchange(M) width(B).
Notice that by definition width(B) = width(M).

Since M 6= M∗, we see that there exists e ∈ (M\M∗) ∪
(M∗\M). Now, by Lemma 2.2, we obtain that there exists b =
(b+, b−) ∈ B such that e ∈ b+ ∪ b−, b− ⊆ M\M∗, b+ ⊆ M∗\M ,
M ⊕ b ∈ M and 〈w,χb〉 ≥ ∆e. Also notice that ∆e ≥ ∆(1).
Therefore 〈w,χb〉 ≥ ∆(1).

Consider M ′ ,M ⊕ b. We have

w̄(M ′)− w̄(M) = 〈w̄,χM ′〉 − 〈w̄,χM〉
= 〈w̄,χb〉 (2.122)

> 〈w,χb〉 −
∆(1)

3width(M)
‖χb‖1 (2.123)

≥ ∆(1) −
∆(1)

3
(2.124)
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=
2

3
∆(1) > 0, (2.125)

where Eq. (2.122) follows from Lemma 2.1; Eq. (2.123) follows
from Eq. (2.121); and Eq. (2.124) follows from the fact that
b ∈ B and hence ‖χb‖1 = |b+|+ |b−| ≤ width(B) = width(M).

Hence, we have shown that w̄(M ′) > w̄(M). However this
contradicts to the fact that w̄(M) = maxM1∈M w̄(M1) (by the
definition of maximization oracle). Hence, by contradiction, we
have proven that Out = M∗.

2.13 Exchange Classes for Example Decision

Classes

In this section, we give formal constructions of the decision
classes discussed in Example 1, 2 and 3. Further, we bound the
width of exchange classes for different examples. These bounds
are proven using concrete constructions of exchange classes (Fact 2.1 through 2.5).
The constructed exchange classes embody natural combinato-
rial structures. We illustrate the constructed exchange classes in
Figure 2.3.

Notation. We need one extra notation. Let σ : E → [n] be a
bijection from some set E with n elements to [n]. Let A ⊆ E be
an arbitrary set, we define σ(A) , {σ(a) | a ∈ A}. Conversely,
for all M ⊆ [n], we define σ−1(M) , {σ−1(e) | e ∈M}.

Fact 2.1 (Matroid). Let T = (E, I) be an arbitrary matroid,
where E is the ground set of n elements and I is the family
of subsets of E called in the independent sets which satisfy the
axioms of matroids 3. Let σ : E → [n] be a bijection from E to

3The three axioms of matroid are (1) ∅ ∈ I and I 6= {∅}; (2) Every subsets of an
independent set are independent (heredity property); (3) For all A,B ∈ I such that
|B| = |A| + 1 there exists an element e ∈ B\A such that A ∪ {e} ∈ I (augmentation
property). We refer interested readers to [112] for a general introduction to the matroid
theory.
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...

+-

(a) An exchange set from BMatroid(n)

(TopK: ?? 2.2; each cylinder repre-
sents an arm).

+

-

(b) An exchange set from BMatroid(n)

(Spanning trees: ?? 2.1; each edge
corresponds to an arm).

+
++

- - -

...

...

(c) An exchange set from BMatch(G)

(Matchings: ?? 2.4; each edge corre-
sponds to an arm)

+
+ +

+

- - -s t

(d) An exchange set from BPath(G)

(Paths: ?? 2.5; each edge corresponds
to an arm).

Figure 2.3: Examples of exchange sets belonging to the exchange classes
BMatroid(n) (one for TopK and one for spanning tree), BMatch(G) and BPath(G):
green-solid elements constitute the set b+, red-dotted elements constitute the
set b− and an example exchange set is given by b = (b+, b−). In Figure 2.3a,
we use TopK as a specific instance of matroid decision class. In Figure 2.3b,
we use spanning tree as a specific instance of matroid decision class.

[n]. Let MMatroid(T ) correspond to the collection of all bases of
matroid T and formally we define

MMatroid(T ) =
{
M ⊆ [n] | σ−1(M) is a basis of T

}
. (2.126)

Define the exchange class

BMatroid(n) =
{

({i}, {j}) | ∀i ∈ [n], j ∈ [n]
}
. (2.127)

Then we have BMatroid(n) ∈ Exchange(MMatroid(T )). In addi-
tion, we have width(BMatroid(n)) = 2, which implies that width(MMatroid(T )) ≤
2.
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To prove Fact 2.1, we first recall a well-known result from
matroid theory which is referred as the strong basis exchange
property.

Lemma 2.22 (Strong basis exchange [112]). Let A be the set
of all bases of a matroid T = (E, I). Let A1, A2 ∈ A be two
bases. Then for all x ∈ A1\A2, there exists y ∈ A2\A1 such that
A1\{x} ∪ {y} ∈ A and A2\{y} ∪ {x} ∈ A.

Using Lemma 2.22, we are ready to prove Fact 2.1.

Proof of Fact 2.1. Fix a matroid T = (E, I) where |E| = n and
fix the bijection σ : E → [n]. Let MMatroid(T ) be defined as
in Eq. (2.126) and let BMatroid(n) be defined as in Eq. (2.127).
Let A denote the set of all bases of T . By definition, we have
MMatroid(T ) = {σ(A) | A ∈ A}.

Now we show that BMatroid(n) is an exchange class forMMatroid(T ).
Let M,M ′ be two different elements of MMatroid(T ). By defi-
nition, we see that σ−1(M) and σ−1(M ′) are two bases of T .
Consider any e ∈ M\M ′. Let x = σ−1(e). We see that x ∈
σ−1(M)\σ−1(M ′).

By Fact 2.22, we see that there exists y ∈ σ−1(M ′)\σ−1(M)
such that

σ−1(M)\{x} ∪ {y} ∈ A and σ−1(M ′)\{y} ∪ {x} ∈ A.
(2.128)

Now we define exchange set b = (b+, b−) where b+ = {σ(y)} and
b− = {σ(x)}. By Eq. (2.128) and the fact that σ is a bijection,
we see that M ⊕ b ∈ MMatroid(T ) and M ′ 	 b ∈ MMatroid(T ).
We also have b ∈ BMatroid(n). Due to M,M ′ and e are chosen
arbitrarily, we have verified that BMatroid(n) is an exchange class
for MMatroid(T ).

To conclude, we observe that width(BMatroid(n)) = 2.

Now we show that TopK and MB are special cases of the
family of decision classes of derived from bases of matroids. This
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enable us to apply Fact 2.1 to construct exchange classes and
bound the widths of these decision classes. We also note that one
may use a more direct way to construct the exchange classes for
these two problems without appealing to matroids.

Fact 2.2 (TopK). For all K ∈ [n], let MTopK(K) = {M ⊆ [n] |
|M | = K} be the collection of all subsets of size K. Then we have
BMatroid(n) ∈ Exchange(MTopK(K)) and width(MTopK(K)) ≤ 2.

Proof. Let UK
n = ([n], IK) where IK is given by

IK =
{
M ⊆ [n] | |M | ≤ K}.

Recall that UK
n is a matroid (in particular, a uniform matroid

of rank K) [112]. We know that a subset M of [n] is basis of
UK
n if and only if |M | = K. Therefore, we have MTopK(K) =
MMatroid(UKn ). Then we can conclude immediately by using ?? 2.1.

Fact 2.3 (MB). For any partition A = {A1, . . . , Am} of [n], we
define

MMB(A) =
{
M ⊆ [n] | ∀i ∈ [m] |M ∩ Ai| = 1

}
.

Then we have BMatroid(n) ∈ Exchange(MTopK(K)) and width(MMB(A)) ≤
2.

Proof. Let PA = ([n], IA) where IA is given by

IA =
{
M ⊆ [n] | ∀i ∈ [m] |M ∩ Ai| ≤ 1

}
.

It can be shown that PA is a matroid (known as partition ma-
troid [112]) and each basis M of PA satisfies |M ∩Ai| = 1 for all
i ∈ [m]. Therefore we have MMB(A) = MMatroid(PA). Then the
conclusion follows immediately from Fact 2.1.
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Fact 2.4 (Matching). Let G(V,E) be a bipartite graph with n
edges. Let σ : E → [n] be a bijection. Let A be the set of all valid
matchings in G. We define MMatch(G) as follows

MMatch(G) =
{
σ(A) | A ∈ A

}
.

Define the exchange class

BMatch(G) =
{

(σ(c+), σ(c−)) | ∃c ∈ C∪P , the edges of c alternate between c+, c−

}
,

where C is the set of all cycles in G and P is the set of all
paths in G. Then we have BMatch(G) ∈ Exchange(MMatch(G)).
In addition, we have width(BMatch(G)) ≤ |V |, which implies that
width(MMatroid(T )) ≤ |V |.

To prove Fact 2.4, we recall a classical result on graph match-
ing which characterizes the properties of augmenting cycles and
augmenting paths [18].

Lemma 2.23. Let G(V,E) be a bipartite graph. Let M and M ′

be two different matchings of G. Then the induced graph G′ from
the symmetric difference (M\M ′) ∪ (M ′\M) consists of con-
nected components that are one of the following

• An even cycle whose edges alternate between M and M ′.

• A simple path whose edges alternate between M and M ′.

Proof of Fact 2.4. Fix a bipartite graph G(V,E) and a bijection
σ : E → [n]. Let M,M ′ ∈ MMatch(G) be two different elements
of MMatch(G) and consider an arbitrary e ∈ M\M ′. On a high
level perspective, we construct an exchange class which contains
all augmenting cycles and paths of G. We know that the sym-
metric difference between M and M ′ can be decomposed into a
collection of disjoint augmenting cycles and paths. And e must
be on one of the augmenting cycle or path. Then, since “apply-
ing” this augmenting cycle/path on M will yield another valid
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matching which does not contains e. We see that this meets the
requirements of an exchange class. In the rest of the proof, we
carry out the technical details of this argument.

Define A = σ−1(M) and A′ = σ−1(M ′). Let a = σ−1(e). Then
A,A′ are two matchings of G. Let G′ be the induced graph from
the symmetric difference (A\A′) ∪ (A′\A). Let C be the con-
nected component of G′ which contains the edge a. Therefore,
by Lemma 2.23, we see that C is either an even cycle or a simple
path with edges alternating between A and A′. Let C+ contains
the edges of C that belongs to A′\A. Similarly, let C− contains
the edges of C that belongs to A\A′. Define b+ = σ(C+) and
b− = σ(C−). Let b = (b+, b−) be an exchange set.

Since b corresponds to either an augmenting path or an aug-
menting cycle, we see that b ∈ BMatch(G). Since a ∈ C−, we
obtain that e ∈ b−. In addition, note that C+ ⊆ A′\A and
C− ⊆ A\A′. Therefore we have b+ ⊆M ′\M and b− ⊆M\M ′.

Since C is an A-augmenting path/cycle, therefore it imme-
diately holds that A\C− ∪ C+ is a valid matching. Therefore,
we have M\b− ∪ b+ ∈ MMatch(G). Similarly, one can show that
M ′\b+ ∪ b− ∈MMatch(G). Hence we have shown that BMatch(G)

is an exchange class for MMatch(G).

Fact 2.5 (Path). Let G(V,E) be a directed acyclic graph with n
edges. Let s, t ∈ V be two different vertices. Let σ : E → [n] be
a bijection. Let A(s, t) be the set of all valid paths from s to t in
G. We define MPath(G,s,t) as follows

MPath(G,s,t) =
{
σ(A) | A ∈ A(s, t)

}
.

Define exchange class

BPath(G) = {(σ−1(p), σ−1(q)) | p, q are the arcs of two disjoint paths of G with same endpoints}.

Then, we have BPath(G) ∈ Exchange(MPath(G,s,t)). In addition,
we have width(BPath(G)) ≤ |V | and therefore width(MPath(G,s,t)) ≤
|V |.
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Proof. Fix a directed acyclic graphG(V,E) and a bijection σ : E →
[n]. Fix two vertices s, t ∈ V .

We prove that BPath(G) is an exchange class for MPath(G,s,t).
LetM,M ′ ∈MPath(G,s,t) be two different sets. Then σ−1(M), σ−1(M ′)
are two sets of arcs corresponding to two different paths from
s to t. Let P = (v1, . . . , vn1), P

′ = (v′1, . . . , v
′
n2

) denote the two
paths, respectively. Notice that s = v1 = v′1 and t = vn1 = v′n2.
We also denote E(P ) = σ−1(M) and E(P ′) = σ−1(M ′).

Fix some e ∈ M\M ′ and define a = σ−1(e). Suppose that a
is an arc from u to v. Since a is on path P , there exists i such
that vi = u and vi+1 = v. Now we define j1 = arg maxj≤i,vj∈P ′ j
and j2 = arg minj≥i+1,vj∈P ′ j. Notice that j1 and j2 are well-
defined since P and P ′ intersects on at least two vertices (s and
t). Let v′k1 = vj1 and v′k2 = vj2 be the corresponding indices
in P ′. Then, we see that Q1 = (vj1, vj1+1, . . . , vj2) and Q2 =
(v′k1, v

′
k1+1, . . . , v

′
k2

) are two different paths from vj1 to vj2. Denote
the sets of arcs of Q1 and Q2 as E(Q1) and E(Q2).

Let b = (b+, b−), where b+ = σ(E(Q2)), b− = σ(E(Q1)). We
see that b ∈ BPath(G). It is clear that a ∈ E(Q1), E(Q1) ⊆
E(P )\E(P ′) and E(Q2) ⊆ E(P ′)\E(P ). Therefore e ∈ b−, b− ⊆
M\M ′ and b+ ⊆M ′\M .

Now it is easy to check that E(P1)\E(Q1)∪E(Q2) equals the
set of arcs of path (v1, . . . , vj1, v

′
k1+1, . . . , v

′
k2−1, vj2, . . . , vn1) (recall

that vj1 = v′k1 and vj2 = v′k2). This means that E(P1)\E(Q1) ∪
E(Q2) ∈ A(s, t) and therefore M\b− ∪ b+ ∈ MPath(G,s,t). Using
a similar argument, one can show that M ′\b+∪b− ∈MPath(G,s,t)

and hence we have verified that BPath(G) ∈ Exchange(MPath(G,s,t)).
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2.14 Equivalence Between Constrained Ora-

cles and Maximization Oracles

In this section, we present a general method to implement con-
strained oracles using maximization oracles. The idea of the re-
duction is simple: one can impose the negative constrains B
by setting the corresponding weights to be sufficiently small;
and one can impose the positive constrains A by setting the
corresponding weights to be sufficiently large. The reduction
method is shown in Algorithm 4. The correctness of the re-
duction is proven in Lemma 2.24. Furthermore, it is trivial to
reduce from maximization oracles to constrained oracles. There-
fore, Lemma 2.24 shows that maximization oracles are equiva-
lent to constrained oracles up to a transformation on the weight
vector.

Lemma 2.24. Given M⊆ 2[n], w ∈ Rn, A ⊆ [n] and B ⊆ [n],
suppose that A ∩ B = ∅. Then the output Out of Algorithm 4
satisfies Out ∈ arg maxM∈M,A⊆M,B∩M=∅w(M) where we use the
convention that the arg max of an empty set is ⊥. Therefore
Algorithm 4 is a valid constrained oracle.

Proof. Let w1 and w2 be defined as in Algoritm 4. Let M =
Oracle(w2). Let MA,B = {M ∈ M | A ⊆ M,B ∩M = ∅} be
the subset of M which satisfies the constraints. If MA,B = ∅,
then it is clear M cannot satisfy both of the constraints A ⊆M
and B ∩M = ∅. Therefore Algorithm 4 returns ⊥ in this case.

In the rest of the proof, we assume that MA,B 6= ∅. Since
MA,B is non-empty, we can fix an arbitrary M0 ∈MA,B, which
will be used later in the proof. We will also frequently use the
fact that, for all v ∈ Rn and all S ⊆ [n], we have

− ‖v‖1 ≤ v(S) ≤ ‖v‖1 . (2.129)

First we claim that B ∩M = ∅. Suppose that B ∩M 6= ∅.
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Algorithm 4 COracle(w, A,B)

Require: w ∈ Rn, A ⊆ [n], B ⊆ [n]; Maximization oracle Oracle : Rn →M
1: L1 ← ‖w‖1

2: for i = 1, . . . , n do
3: if i ∈ A then
4: w1(i)← 3L1

5: else
6: w1(i)← w(i)
7: end if
8: end for
9: L2 ← ‖w1‖1

10: for i = 1, . . . , n do
11: if i ∈ B then
12: w2(i)← −3L2

13: else
14: w2(i)← w1(i)
15: end if
16: end for
17: M ← Oracle(w2)
18: if B ∩M = ∅ and A ⊆M then
19: Out = M
20: else
21: Out = ⊥
22: end if
23: return: Out

Then there exists i ∈ B∩M and we fix such an i. Then we have

w2(M) = w2(M\{i}) + w2(i)

≤ w2(M\B) + w2(i) (2.130)

= w1(M\B) + w2(i) (2.131)

≤ L2 − 3L2 = −2L2, (2.132)

where Eq. (2.130) follows from the fact that w2(j) = −L2 ≤ 0
for all j ∈ B\{i}; Eq. (2.131) holds since w1 and w2 coincide on
all entries of M\B; and Eq. (2.132) follows from the definition
L2 = ‖w1‖1 and Eq. (2.129).

On the other hand, observing that B∩M0 = ∅, we can bound
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w2(M0) as follows

w2(M0) = w1(M0) ≥ −L2.

Therefore we see that w2(M0) > w2(M). However, this contra-
dicts to the definition of M since M ∈ arg maxM ′∈Mw2(M

′).
Therefore our claim B ∩M = ∅ is true. By this claim and since
w2 and w1 coincide on entries of [n]\B, we have

w2(M) = w1(M). (2.133)

Next we claim that A ⊆ M . Suppose that A 6⊆ M . Then we
have

w2(M) = w1(M) = w1(M ∩ A) + w1(M\A)

= 3|M ∩ A|L1 + w(M\A) (2.134)

≤ (3|A| − 3)L1 + L1 (2.135)

= (3|A| − 2)L1, (2.136)

where Eq. (2.134) follows from the definition ofw1; and Eq. (2.135)
follows from the assumption that A 6⊆ M and therefore |M ∩
A| ≤ |A| − 1.

On the other hand, using the fact that A ⊆ M0 (since M0 ∈
MA,B), we have

w2(M0) = w1(M0) = w1(A) + w1(M0\A) (2.137)

= 3|A|L1 + w(M0\A) (2.138)

≥ 3|A|L1 − L1 (2.139)

= (3|A| − 1)L1, (2.140)

where Eq. (2.137) follows from the fact that M0∩B = ∅ and A ⊆
M0; Eq. (2.138) follows from the definition of w1, which ensures
that w1 and w coincide on M0\A; and Eq. (2.139) follows from
Eq. (2.129).

Therefore, by combining Eq. (2.136) and Eq. (2.140), we see
that w2(M0) > w2(M). Again this contradicts to the definition
of M , which proves the claim that A ⊆M .
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Now we see that A ⊆ M and B ∩ M = ∅, which means
that M ∈ MA,B. Therefore, we remain to verify that w(M) =
maxM ′∈MA,B

w(M ′). Suppose that there exists M1 ∈MA,B such
that w(M1) > w(M). Notice that B ∩M1 = ∅ and A ⊆ M1, we
have

w2(M1) = w1(M1)

= w1(M1\A) + w1(B)

= w(M1\A) + 3|A|L1

= w(M1) + 3|A|L1 − w(A).

Similarly, one can show that w2(M) = w(M) + 3|A|L1 − w(A).
By combining with the assumption that w(M1) > w(M) we see
that w2(M1) > w2(M), which contradicts to the definition of M .
Hence we have verified that w(M) = maxM ′∈MA,B

w(M ′).

2.15 Preliminary Experiments: Identifying the

Minimum Spanning Tree

In this section, we present some preliminary experimental results
of our algorithms CLUCB and CSAR. We conduct experiments on a
real-world dataset with decision classes corresponding to span-
ning trees. We compare our algorithms with the uniform alloca-
tion benchmark UNI discussed in Section 2.12. The experiment
results show that the proposed algorithms are considerably more
sample efficient than the UNI algorithm, which agrees with our
theoretical analysis.

Setup. Our task is to identify the optimal routing tree from
a networking system which has the lowest expected latency in
an exploration procedure, where one can obtain noisy measure-
ments of latencies between different nodes. We model this prob-
lem as a CPE problem where the arms correspond to edges and
the decision class corresponds to the set of spanning trees (which
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Figure 2.4: Comparison of empirical probability of errors with respect to H.
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Figure 2.5: Empirical sample complexity of CLUCB with respect to H.

is a special case of matroids, as we have discussed in Exam-
ple 2.3). We use a real-world dataset called RocketFuel [140],
which contains several ISP networks with routing information
such as average latencies between nodes pairs. We select three
medium-sized ISP networks with numbers of edges ranging from
161 to 328. For each network, we model the latency X(e) of edge
e as the sum of the given average latency l(e) and an additive
random noise N (0, 1). Then we model the reward of edge e as
the negative latency −X(e) and therefore the expected reward
of e is given by w(e) = −l(e). Notice that we now need to find
the spanning tree that maximizes the expected reward, which is
exactly an instance of CPE.

Since the ground-truth of expected reward w is known, we
can compute the ground-truth of the optimal set M∗ and the
hardness measures H. Furthermore, in order to investigate the
relationship between H and sample complexity empirically, we
generate a number of instances with different H by adjusting the
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Figure 2.6: Empirical probability of error of CSAR and UNI with respect to
budget size T .

expected reward of each arm e ∈M∗ with a same additive quan-
tity c0 while not changing the optimality of M∗. By definition of
H, we see that H decreases when c0 increases.

Evaluation method. We use the following evaluation pro-
cedure to compare the sample efficiency between CLUCB,CSAR and
UNI. Since CSAR and UNI are both learning algorithms in the fixed
budget setting, the comparison between them is straightforward:
for each given budget, we run both algorithms with this bud-
get independently for 1000 times and compare their empirical
probability of errors (the fraction of runs where a tested algo-
rithm fails to report the ground-truth optimal set M∗). On the
other hand, we use the following procedure to compare CLUCB

with other fixed budget algorithms. For each instance of ISP
network, we run CLUCB independently for 1000 times. Suppose
that the i-th run of CLUCB uses Ti samples, we also run UNI and
CSAR with budget Ti. Then we compare the empirical probability
of errors of the tested algorithms after the 1000 runs are com-
pleted. In this way, we see that the compared algorithms use an
equal number of samples in each run, which allows us to com-
pare their sample efficiency. Finally, we set δ = 0.3 for CLUCB

throughout the experiments.
Experimental results. We test all competing algorithms

using the aforementioned evaluation method. The experimen-
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tal results are shown in Figure 2.4, Figure 2.5 and Figure 2.6.
From the results (Figure 2.4 and Figure 2.6), we see that both
CLUCB and CSAR are consistently more sample efficient than UNI

by a large margin, i.e., they incur a smaller empirical probability
of error than UNI when using a same number of samples. This
matches our theoretical analyses of these algorithms. We also
see that the probability of error of CLUCB is always smaller than
the guarantee δ = 0.3 (Figure 2.4) and the sample complex-
ity of CLUCB is approximately linear in H (Figure 2.5), which
agrees with our theory that the sample complexity bound for
the spanning tree decision class is Õ(H) (see Example 2.3).



Chapter 3

Linear Combinatorial Bandits

In this chapter, we apply combinatorial bandit models to recom-
mender systems. In particular, we study the list-wise recommen-
dation problem in a cold start setting, in which the objective is
to recommend lists of items over a sequence of rounds to a new
user with insufficient historical records.

We develop a model called linear combinatorial bandit in
which a learning algorithm can dynamically identify diverse items
that interest a new user. Specifically, each item is represented
as a feature vector, and each user is represented as an unknown
preference vector. At each of the T rounds, the algorithm se-
quentially selects a set of items according to the item-selection
strategy that balances exploration and exploitation, and collects
the user feedback on these selected items. A reward function is
further designed to measure the quality (e.g. relevance or diver-
sity) of the selected set based on observed feedback, and the goal
of the algorithm is to maximize the total rewards of T rounds.
The reward function only needs to satisfy two mild assumptions.
that is general enough to accommodate a large class of nonlinear
functions. In this chapter, we provide a learning algorithm that
achieves Õ(

√
T ) regret after playing T rounds. Experiments con-

ducted on real-wold movie recommendation dataset demonstrate
that our approach can effectively address the above challenges
and hence improve the performance of recommendation task.

99
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3.1 Introduction

Stochastic linear bandits are a natural extension of stochas-
tic MABs, where arms are associated with feature vectors and
rewards are determined by a linear function. Similar to the
stochastic MABs, linear bandits naturally characterize the trade-
off between exploration and exploitation. Recently, researchers
have applied linear bandit algorithms to develop recommender
systems that can adapt to user feedback over time [93, 45].

However, in practice, a recommender system usually provides
a set of movies, rather than a single movie, to a user at each time
that the user visits the system. Using the terminology of MABs,
this setting corresponds to the bandit game where a set of arms,
instead of a single arm, are played at each round. In this setting,
we need to extend the definition of reward from single arms to
sets of arms. For example, in recommender systems, one may
agree that a good definition of the reward of a set of movies
should not simply be the sum of ratings of each movie in this
set; it should also take diversity of the recommended set in to
consider, in order to to avoid redundant or over-narrowed recom-
mendation system. This “diversity promoting” reward function
can be inherently non-linear. In order to model this sequential
decision making problem, one would need a new model that (1)
allows each arm to be associated with a feature vector; (2) al-
lows a set of arms to be played at each round; and (3) allows the
reward function to be non-linear (with respect to the rewards of
each individual arms).

In this chapter, we develop such a model, which is called lin-
ear combinatorial bandit. Our model can be used to address rec-
ommendation problems emerged from real-world applications,
where one need to recommend sets of diversified items. For this
model, we develop LinCUCBand prove a Õ(

√
n) regret bound
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for the LinCUCB algorithm after playing n rounds1. We also de-
velop Rarely Switching LinCUCB algorithm, which reduces the
query complexity of LinCUCB algorithm at the cost of a slightly
increased α-regret. We apply the framework to the diversified
movie recommendation setting and conduct experiments on a
public dataset.

3.2 Related Work

Most of traditional recommendation techniques focus on learn-
ing user preference according to users’ historical records [88, 130,
29]. However, recent studies show that historical records may
not well represent user interest [132, 154]. On the one hand,
some users may not provide sufficient records, in which case it
is crucial to predict user preference dynamically according to
user feedback [103, 106]. On the other hand, users can hold di-
verse interest, and thus recommendation techniques should not
only aim at increasing relevance, but also consider improving
diversity of recommended results [154, 116].

To recommend items to users without sufficient historical
records, several studies formulate this task as a multi-armed
bandit problem [93, 94, 22]. Multi-armed bandit is a well-studied
topic in the fields of statistics and machine learning (cf. [19, 5]).
In traditional non-linear bandit problem, the learner cannot ac-
cess the features of arms, and the rewards of different arms are
independent. In this setting, the upper confidence bound (UCB)
algorithm is proven to be theoretically optimal [91, 9]. However,
without using arm features, the performance of UCB algorithm
is quite limited in many practical scenarios, especially when
there are a large number of arms [93]. On the other hand, linear
bandit problem considers the case where the learner can observe
the features of arms. Consequently, the learner can use these ob-

1Õ(·) is variant of big O notation that ignores logarithmic factors.
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servations to infer the rewards of other unseen arms and improve
the performance over time. Notably, Auer et al. [9] considered
the linear bandit problem and developed LinRel algorithm that
achieved an Õ(

√
n) regret bound after playing n rounds. Later,

Li et al.[93] proposed LinUCB algorithm, which improves the
practical performance of LinRel algorithm while enjoys similar
regret bound [45]. They applied LinUCB algorithm on a per-
sonalized news recommendation task and demonstrated good
performance [93].

In the settings of both non-linear and linear bandits, the
learner is allowed to play one single arm on each round, i.e.,
recommend one item each time. However, recommending a sin-
gle item on each round may not satisfy a user’s diverse interest.
Recently, several work generalized the classical non-linear ban-
dits to combinatorial bandits [63, 62, 43], where the learner can
play a set of arms, which is termed as a super arm, on each
round. However, as generalizations of non-linear bandits, these
work did not use arm features. Hence, their performance can be
suboptimal in many recommendation tasks, particularly when
the number of arms is large. Though our method inherits some
concepts (e.g. super arm) from non-linear combinatorial bandit,
both problem formulation and regret analysis are quite different,
which are actually our main contributions.

Yue and Guestrin [155] proposed a linear submodular bandit
approach for diversified retrieval. Their approach placed a strong
restriction on user behavior. In particular, they assumed that
user can only scan the items one by one in top-down fashion. In
contrast, our framework has no limitation on user behavior. In
addition, their framework is specifically designed for a certain
type of submodular reward functions, while our approach allows
a much larger class of reward functions.
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3.3 Linear Combinatorial Bandit

In this section, we formulate the linear combinatorial bandit
problem. Let n be the number of rounds and m be the number
of arms. Let St ⊆ 2[m] be the set of all possible subsets of arms
on round t. We call each set of arms St ∈ St a super arm.
At each round t ∈ [n], a learner observes m feature vectors
{xt(1), . . . ,xt(m)} ⊆ Rd corresponding to m arms. Then, the
learner is asked to choose one super arm St ∈ St to play. Once
a super arm St ∈ St is played, the learner observes the scores of
arms in {rt(i)}i∈St and receives a reward Rt(St). For each arm
i ∈ [m], its score rt(i) is assumed to be

rt(i) = θT∗ xt(i) + εt(i), (3.1)

where θ∗ is a parameter unknown to the learner and the noise
εt(i) is a zero-mean random variable. On the other hand, the
reward Rt(St) measures the quality of the super arm St and
its definition will be specified later. The goal of the learner is

to maximize the expected cumulative reward E
[∑

t∈[n]Rt(St)
]

over n rounds.
The reward Rt(St) on round t is an application dependent

function which measures the quality of recommended set of arms
St ⊆ [m]. The reward can simply be the sum of the scores of arms
in St, i.e. Rt(St) =

∑
i∈St rt(i). However, our framework also

allows other more complicated non-linear rewards. For example,
in addition to the sum of scores of arms, the reward Rt(St) may
also consider the “diversity” of arms in St, which can be defined
as a non-linear function of features of arms.

Specifically, we consider the case where the expected reward
E [Rt(St)] is a function of three variables: super arm St, fea-
ture vectors of arms Xt , {xt(i)}i∈[m] and expected scores r∗t ,
{θT∗ xt(i)}i∈[m] associated with the arms. Formally, we denote
the expected reward of playing St as E [Rt(St)] = fr∗t ,Xt

(St). By
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choosing different types of expected reward fr,X(·), our frame-
work covers both linear and non-linear rewards. Finally, in order
to carry out our analysis, the expected reward fr,X(·) is required
to satisfy the following assumptions.

Monotonicity The expected reward fr,X(S) is monotone non-
decreasing with respect to the score vector r. Formally, for
any set of feature vectors of arms X and super arm S, if
r(i) ≤ r′(i) for all i ∈ [m], we have fr,X(S) ≤ fr′,X(S).

Lipschitz continuity The expected reward fr,X(S) is Lipschitz
continuous with respect to the score vector r restricted on
the arms in S. In particular, there exists a universal con-
stant C > 0 such that, for any two score vectors r and r′,

we have |fr,X(S)− fr′,X(S)| ≤ C
√∑

i∈S [r(i)− r′(i)]2.

Our framework does not require the player to have direct
knowledge on how the reward function fr,X(S) is defined. Al-
ternatively, we assume that the player has access to an oracle
OracleS(r,X), which takes the expected scores r and arms X
as input, and returns the solution of the maximization problem
arg maxS∈S fr,X(S). Since the maximization problems of many
reward functions fr,X(·) of practical interest are NP-hard, our
framework allows the oracle to produce an approximate solution
to the problem. More precisely, an oracle OracleS(r,X) is called
α-approximation oracle for some α ≤ 1, if given input r and X,
the oracle always returns a super arm S = OracleS(r,X) ∈ S
satisfying fr,X(S) ≥ α optr,X, where optr,X = maxS∈S fr,X(S)
is the optimal value of the reward function. Under this setting,
when α = 1, the α-approximation oracle is exact and always
produces the optimal solution.

Recall that the goal of the learner is to maximize its cumula-
tive reward without knowing θ∗. Clearly, with the knowledge of
θ∗, the optimal strategy is to choose St = arg maxSt∈St frt,Xt

(St)
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on round t. Hence, it is natural to evaluate a learner relative to
this optimal strategy and the difference of the learner’s total re-
ward and the total reward of the optimal strategy is called regret.
However, if a learner only has accesses to an α-approximation
oracle for some α < 1, such evaluation would be unfair. Hence,
in this chapter, we use the notion of α-regret which compares
the learner’s strategy with α-fraction of the optimal rewards on
round t. Formally, the α-regret on round t can be written as

Regαt = α opt
rt,Xt

−frt,Xt
(St), (3.2)

and we are interested in designing an algorithm whose total α-
regret

∑T
t=1 Regαt is as small as possible.

3.4 Algorithm and α-Regret Analysis

In this section, we present linear combinatorial upper confidence
bound algorithm (LinCUCB). LinCUCB is a general and ef-
ficient algorithm for the linear combinatorial bandit problem.
The basic idea of LinCUCB is to maintain a confidence set
for the true parameter θ∗. For each round t, the confidence set
is constructed from feature vectors X1, . . . ,Xt−1 and observed
scores of selected arms {r1(i)}i∈S1

, . . . , {rt−1(i)}i∈St−1 from previ-
ous rounds. As we will see later (Theorem 3.3), our construction
of the confidence sets ensures that the true parameter θ∗ lies in
the confidence set with high probability. Using this confidence
set of parameter θ∗ and feature vectors of arms Xt, the algorithm
can efficiently compute an upper confidence bound for each score
r̂t = {r̂t(1), . . . , r̂t(m)}. The upper confidence bounds r̂t and fea-
ture vectors of arms Xt are given to the oracle as input. Then,
the algorithm plays the super arm returned by the oracle and
uses the observed scores to adjust the confidence sets. The pseu-
docode of the algorithm is listed in Algorithm 5. The algorithm
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has time complexity O(n(d3 + md + h)), where h denotes the
time complexity of the oracle.

Algorithm 5 LinCUCB

1: input: λ, α1, . . . , αn
2: Initialize V0 ← λId×d,b0 ← 0d
3: for t← 1, . . . , n do
4: θ̂t ← V−1

t−1bt−1

5: for i ∈ 1, . . . ,m do
6: r̄t(i)← θ̂Tt xt(i)

7: r̂t(i)← r̄t(i) + αt

√
xt(i)TV−1

t−1xt(i)

8: end for
9: St ← OracleSt(r̂t,Xt)

10: Play super arm St and observe {rt(i)}i∈St

11: Vt ← Vt−1 +
∑

i∈St
xt(i)xt(i)

T

12: bt ← bt−1 +
∑

i∈St
rt(i)xt(i)

13: end for

We now state our main theoretical result, a bound on the
α-regret of Algorithm 5 when run with an α-approximation or-
acle. To carry out our analysis, we will need to assume that
the l2-norms of parameter θ∗ and feature vectors of arms Xt are
bounded. Using this assumption together with the monotonic-
ity and Lipschitz continuity properties of the expected reward
function fr,X(·), the following theorem states that the α-regret of
Algorithm 5 is at most O(d log(n)

√
n+
√
nd log(n/δ)), or Õ(

√
n)

if one ignores logarithmic factors and regards the dimensionality
of the parameter d as a constant.

Theorem 3.1. (α-regret bound of Algorithm 5). Without loss
of generality, assume that ‖θ∗‖2 ≤ S, ‖xt(i)‖2 ≤ 1 and rt(i) ∈
[0, 1] for all t ≥ 0 and i ∈ [m]. Given 0 < δ < 1, set αt =√
d log

(
1+tm/λ

δ

)
+ λ1/2S. Then, with probability at least 1 − δ,

the total α-regret of LinCUCB algorithm satisfies
n∑
t=1

Regαt ≤ C
√

64nd log(1 + nm/dλ)·
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λS +

√
2 log(1/δ) + d log(1 + nm/(λd))

)
,

for any n ≥ 0.

Note that the requirements ‖xt(i)‖2 ≤ 1 and rt(i) ∈ [0, 1] can
be satisfied through proper rescaling on xt(i) and θ∗.

Our next result is a problem-dependent α-regret bound of
Algorithm 5. Let Bt =

{
S | S ∈ St, frt,Xt

(S) < α optrt,Xt

}
denote the set of “bad” super arms on round t. We define the
gap ∆t at time t as follows

∆t = α opt
rr,Xt

−max
S∈Bt

frt,Xt
(S). (3.3)

Furthermore, we define ∆̄n = min1≤t≤n ∆t. Then, the α-regret
of Algorithm 5 can be bounded in terms of ∆̄n as follows.

Theorem 3.2. (Problem-dependent α-regret bound of Algo-
rithm 5) Under the same assumption as in theorem 3.1, with
probability at least 1− δ, we have

n∑
t=1

Regαt ≤
64C

∆̄n
d log(1 + nm/dλ)·(√

d log ((1 + nm/λ)/δ) + λ1/2S
)2

.

3.4.1 Proof

We begin with restating a concentration result from Abbasi-
Yadkori et al. [1]. This result states that the true parameter
θ∗ lies within an ellipsoid centered at θ̂t simultaneously for all
t ∈ [n] with high probability.

Theorem 3.3. ([1, Theorem 2]) Suppose the observed scores
rt(i) are bounded in [0, 1]. Assume that ‖θ∗‖2 ≤ S and ‖xt(i)‖2 ≤
1 for all t ≥ 0 and i ∈ [m]. Define Vt = V+

∑n
t=1

∑
i∈St xt(i)xt(i)

T
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and set V = λI. Then, with probability at least 1−δ, for all round
t ≥ 0, the estimate θ̂t satisfies 2

∥∥∥θ̂t − θ∗∥∥∥
Vt−1
≤

√
d log

(
1 + tm/λ

δ

)
+ λ1/2S.

The proof of Theorem 3.3 is based on the theory of self-
normalized processes. For an introduction to this theory, we refer
interested readers to [113, 50].

Next, using Theorem 3.3, we show that with high probability,
the upper confidence bounds of scores r̂t also do not deviate far
from the true value of scores r∗t for each round t ∈ [n].

Lemma 3.1. If we set αt =

√
d log

(
1+tm/λ

δ

)
+λ1/2S, with prob-

ability at least 1− δ, we have

0 ≤ r̂t(i)− r∗t (i) ≤ 2αt ‖xt(i)‖V−1t−1 ,

holds simultaneously for any round t ≥ 0 and any arm i ∈ [m].

Proof. By Theorem 3.3, the random event∥∥∥θ̂t − θ∗∥∥∥
Vt−1
≤

√
d log

(
1 + tm/λ

δ

)
+ λ1/2S

holds for all t ∈ [n] simultaneously with probability at least 1−δ.
Now assume the above random event happens, by the defini-

tion of r̂t(i), we have

|r̂t(i)− r∗t (i)|

=
∣∣∣θ̂Tt xt(i) + αt ‖xt(i)‖V−1t−1 − θ

T
∗ xt(i)

∣∣∣
≤
∣∣∣(θ̂t − θ∗)Txt(i)

∣∣∣+ αt ‖xt(i)‖V−1t−1
≤
∥∥∥θ̂t − θ∗∥∥∥

Vt−1
‖xt(i)‖V−1t−1 + αt ‖xt(i)‖V−1t−1

2We denote ‖a‖M ,
√
aTMa, where a is a vector and M is a positive definite matrix.
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≤2αt ‖xt(i)‖V−1t−1 .

On the other hand, we have

r̂t(i)− r∗(i)
= θ̂Tt xt(i) + αt ‖xt(i)‖V−1t−1 − θ

T
∗ xt(i)

= (θ̂t − θ∗)Txt(i) + αt ‖xt(i)‖V−1t−1
≥ −

∥∥∥θ̂t − θ∗∥∥∥
Vt−1
‖xt(i)‖V−1t−1 + αt ‖xt(i)‖V−1t−1

≥ − αt ‖xt(i)‖V−1t−1 + αt ‖xt(i)‖V−1t−1 = 0.

To prove our main result Theorem 3.1, we need the following
technical lemma.

Lemma 3.2. Let V ∈ Rd×d be a positive definite matrix. For all
t = 1, 2, . . ., let St be a subset of [m] of size less than or equal to
k and define Vn = V +

∑n
t=1

∑
i∈St xt(i)xt(i)

T .

Then, if λ ≥ k and ‖xt(i)‖2 ≤ 1 for all t and i, we have

n∑
t=1

∑
i∈St

‖xt(i)‖2
V−1t−1
≤ 2 log det Vn − log det V

≤ 2d log((trace(V) + nk)/d)

− 2 log det V.

Proof. We have

det(Vn)

= det

(
Vn−1 +

∑
i∈Sn

xn(i)xn(i)
T

)

= det(Vn−1) det

(
I +

∑
i∈Sn

(V
−1/2
n−1 xn(i))(V

−1/2
n−1 xn(i))

T

)
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= det(Vn−1) det

(
I +

∑
i∈Sn

‖xn(i)‖2
V−1t−1

)

= det(V)
n∏
t=1

(
1 +

∑
i∈St

‖xt(i)‖2
V−1t−1

)
.

Now, using the fact that u ≤ 2 log(1 + u) for any u ∈ [0, 1] and
that ‖xt(i)‖2

V−1t−1
≤ ‖xt(i)‖2 /λmin(Vt−1) ≤ 1/λ ≤ 1/k, we obtain

n∑
t=1

∑
i∈St

‖xt(i)‖2
V−1t−1
≤ 2

n∑
t=1

log

(
1 +

∑
i∈St

‖xt(i)‖2
V−1t−1

)
= 2 log det Vn − 2 log det V.

We remain to bound log det Vn. Since ‖xn(i)‖2 ≤ 1 and
|Si| ≤ k for all i ∈ [n], the trace of Vn can be bounded by
trace(Vn) ≤ trace(V) + nk. Apply the Determinant-Trace In-
equality [1, Lemma 10], we have

log det(Vn) ≤ d log((trace(V) + nk)/d).

Based on Lemma 3.1, Lemma 3.2 and the two assumptions
on the expected reward, we are now ready to prove our main
theorem.

Proof. (Theorem 3.1) By Lemma 3.1, we have r̂t(i) ≥ r∗t (i) holds
simultaneously for all t ∈ [n] and i ∈ [m] with probability at
least 1−δ. Now, assume that this random event holds and apply
the monotonicity property of the expected reward, for any super
arm S ∈ St, we have fr̂t,Xt

(S) ≥ fr∗t ,Xt
(S).

Let St ∈ St be the super arm returned by the oracle St =
OracleSt(r̂t,Xt) on round t. We now show that fr̂t,Xt

(St) ≥
α optr∗t ,Xt

. To see this, we denote S∗t = arg maxS∈St fr∗t ,Xt
(S)
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as the maximizer of fr∗t ,Xt
(·) and Ŝt as the optimal solution of

arg maxS∈St fr̂t,Xt
(S). Then, we have

fr̂t,Xt
(St) ≥ α opt

r̂t,Xt

= αfr̂t,Xt
(Ŝt) ≥ αfr̂t,Xt

(S∗t )

≥ αfr∗t ,Xt
(S∗t ) = α opt

r∗t ,Xt

,

where we have used the definition of α-approximation oracle and
the optimality of Ŝt.

Now, we can bound α-regret at round t as follows,

Regαt = α opt
r∗t ,Xt

−fr∗t ,Xt
(St)

≤ fr̂t,Xt
(St)− fr∗t ,Xt

(St)

≤ C

√∑
i∈St

(r̂t(i)− r∗t (i))2

≤ C

√∑
i∈St

4α2
t ‖xt(i)‖

2
V−1t−1

,

where the second inequality follows from the Lipschitz continuity
property of the expected reward fr,X(·).

Therefore, with probability at least 1− δ, for all n ≥ 0,

n∑
t=1

Regαt ≤

√√√√n

n∑
t=1

(Regat )
2

≤C

√√√√8n
n∑
t=1

∑
i∈St

4α2
t ‖xt(i)‖

2
V−1t−1

≤Cαn
√

32n

√√√√ n∑
t=1

∑
i∈St

‖xt(i)‖2
V−1t−1

≤Cαn
√

32n
√

2d log(λ+ nm/d)− 2d log λ



CHAPTER 3. LINEAR COMBINATORIAL BANDITS 112

≤C
√

64nd log(1 + nm/dλ)·(√
d log ((1 + nm/λ)/δ) +

√
λS
)
,

where the last inequality follows from Lemma 3.2, the fact that
|St| ≤ m for all t and that V = λI.

Proof. (Theorem 3.2) First we assume that, for all t ∈ [n] and
i ∈ [n], we have r̂t(i) ≥ r∗t (i). By Lemma 3.1, we see that this
assumption holds with probability at least 1− δ.

Using an argument similar to the proof of Theorem 3.1, we
know that, under our assumption, Regαt is bounded by

Regαt ≤ C

√∑
i∈St

4α2
t ‖xt(i)‖

2
V−1t−1

. (3.4)

Next, since either Regαt ≤ 0 (this correspond to the case of
choosing a super-arm St with reward not smaller than α optrt,Xt

)
or Regαt ≥ ∆t, therefore we have

Regαt ≤
Regαt

2

∆t
. (3.5)

Hence, we have

n∑
t=1

Regαt ≤
n∑
t=1

(Regαt )2

∆t

≤ 32C

∆̄n

(
n∑
t=1

∑
i∈St

α2
t ‖xt(i)‖

2
V−1t−1

)

≤ 32α2
nC

∆̄n

(
n∑
t=1

∑
i∈St

‖xt(i)‖2
V−1t−1

)

≤ 32α2
nC

∆̄n
(2d log(λ+ nm/d)− 2d log λ)
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≤ 64C

∆̄n
d log(1 + nm/dλ)·(√
d log ((1 + nm/λ)/δ) + λ1/2S

)2

,

where the first inequality follows from Eq. (3.5); the second in-
equality follows from Eq. (3.4); and the last inequality follows
from Lemma 3.2 with the fact that |St| ≤ m for all t and V = λI.

3.4.2 Reducing Query Complexity of LinCUCB

The proposed LinCUCB algorithm is a general learning algo-
rithm for the linear combinatorial bandit problem. However, one
potential drawback of LinCUCB is that it has a relatively high
query complexity, i.e. it may queries the oracle for O(n) time.
This is important if making queries to the oracle is expensive.
For example, the oracle may have a high computational complex-
ity, or the oracle may cost certain amount of resources per query.
It is clear that reducing the query complexity of LinCUCB would
be beneficial for these cases.

In this part, we show that a modified LinCUCB algorithm
need to call the oracle for only O(log(n)) times, which leads
to an exponential saving in the query complexity, with a small
price on the α-regret. The idea is to re-query the oracle only
when det(Vt) is increased by a factor of 1 + γ. Following the
terminology of Abbasi-Yadkori et al. [1], we refer this modified
LinCUCB algorithm as Rarely Switching LinCUCB algorithm.
The pseudo-code of this algorithm is shown in Algorithm 6.

Our next result shows that the modified algorithm increases
the regret by only a factor of O(

√
1 + γ).

Theorem 3.4. (α-regret bound of Algorithm 6). Use the same
assumption as in Theorem 3.1. Assume that there exists X and
S such that X = X1 = . . . = Xn and S = S1 = . . . = Sn. Given
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parameter γ > 0, then, with probability at least 1 − δ, the total
α-regret of Algorithm 6 satisfies

n∑
t=1

Regαt ≤ C
√

1 + γ
√

64nd log(1 + nm/dλ)·(√
λS +

√
2 log(1/δ) + d log(1 + nm/(λd))

)
,

for any n ≥ 0.

Algorithm 6 Rarely Switching LinCUCB

1: input: λ, α1, . . . , αn, γ
2: V0 ← λId×d,b0 ← 0d
3: V−1 ← 0d×d, τ0 ← 0
4: for t← 1, . . . , n do
5: if det(Vt−1) ≥ (1 + γ) det(Vτt−1−1) then
6: τt ← t
7: θ̂t ← V−1

t−1bt−1

8: for i ∈ 1, . . . ,m do
9: r̄t(i)← θ̂Tt x(i)

10: r̂t(i)← r̄t(i) + αt

√
x(i)TV−1

t−1x(i)

11: end for
12: St ← OracleSt(r̂t,X)
13: else
14: τt ← τt−1

15: St ← Sτt
16: end if
17: Play super arm St and observe {rt(i)}i∈St

18: Vt ← Vt−1 +
∑

i∈St
x(i)x(i)T

19: bt ← bt−1 +
∑

i∈St
rt(i)x(i)

20: end for

We first prove a technical lemma in the following.

Lemma 3.3. Let A,B,C ∈ Rd×d be three symmetric positive
semi-definite matrices. Assume that A = B−C. Then, we have

sup
x 6=0

xTA−1x

xTB−1x
≤ det(B)

det(A)
.
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Proof. First, similar to the proof of [1, Lemma 12], let us assume
that C = vvT for some v ∈ Rd. We first prove the claim for this
special case. We will prove the general case later.

Fix an arbitrary non-zero vector x ∈ Rd. Then, we have

xTA−1x

xTB−1x
=

xT (B− vvT )−1x

xTB−1x

(a)
=

xT
(
B−1 + B−1v(1− vTB−1v)−1vTB−1

)
x

xTB−1x

= 1 +
1

1− vTB−1v
· (x

TB−1v)2

xTB−1x

= 1 +
1

1− vTB−1v
· (x

TB−1/2B−1/2v)2

xTB−1x
(b)

≤ 1 +
1

1− vTB−1v
·
∥∥xTB−1/2

∥∥2 ∥∥B−1/2v
∥∥2

xTB−1x

= 1 +
1

1− ‖v‖2
B−1

· ‖x‖
2
B−1 ‖v‖

2
B−1

‖x‖2
B−1

= 1 +
‖v‖2

B−1

1− ‖v‖2
B−1

=
1

1− ‖v‖2
B−1

, (3.6)

where (a) follows from Woodbury matrix identity and (b) follows
from Cauchy-Schwartz inequality.

On the other hand, we have

det(A) = det(B− vvT )

= det(B) det(I− (B−1/2v)(B−1/2v)T )

= det(B)(1− ‖v‖2
B−1).

Therefore we obtain

det(B)

det(A)
=

1

1− ‖v‖2
B−1

. (3.7)
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By combining Eq. (3.6) and Eq. (3.7), we see that our claim
holds for this case.

Next, we prove the claim for general C. Since C is a symmet-
ric positive semidefinite matrix, therefore there exists a sequence
of vectors v1, . . . ,vr ∈ Rd such that C =

∑r
i=1 viv

T
i .

Now, for each i ∈ {0, . . . , r}, define Ai = B−
(∑i

j=1 vjv
T
j

)
.

Again fix an arbitrary nonzero vector x ∈ Rd. Notice that A =
Ar and B = A0, we have

xTA−1x

xTB−1x
=

xTA−1
r x

xTA−1
r−1x

·
xTA−1

r−1x

xTA−1
r−2x

· · · x
TA−1

1 x

xTA−1
0 x

≤ det(Ar−1)

det(Ar)
· det(Ar−2)

det(Ar−1)
· · · det(A0)

det(A1)

=
det(B)

det(A)
,

where the inequality follows from the claim proved in the first
part.

Then, we are ready to prove Theorem 3.4 by combining the
argument for Theorem 3.1 and Lemma 3.3.

Proof. (Theorem 3.4) By Theorem 3.3 and the definition of αt,
we see that the random event{

∀t ∈ [n], ‖θt − θ∗‖Vt−1
≤ αt

}
holds with probability at least 1− δ. We shall assume that this
random event holds in the rest of the proof.

For all t ∈ [n], we see that τt is the smallest time such that
St = Sτt. Let i ∈ [m] be an arbitrary arm and let x(i) be the
feature vector of the i-th arm.

Applying Lemma 3.3, we obtain

‖x(i)‖V−1τt−1 =
√

x(i)TV−1
τt−1x(i)
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≤
√(

x(i)TV−1
t x(i)

)√ det(Vt−1)

det(Vτt−1)

= ‖x(i)‖V−1t−1

√
det(Vt−1)

det(Vτt−1)

≤
√

1 + γ ‖x(i)‖V−1t−1 . (3.8)

Next, we bound |r̂τt(i)− r∗(i)| as follows.

|r̂τt(i)− r∗(i)| =
∣∣∣θ̂Tτtx(i) + ατt ‖x(i)‖V−1τt−1 − θ

T
∗ x(i)

∣∣∣
≤
∣∣∣θ̂Tτtx(i)− θT∗ x(i)

∣∣∣+ ατt ‖x(i)‖V−1τt−1
≤
∥∥∥θ̂τt − θ∗∥∥∥

Vτt−1
‖x(i)‖V−1τt−1

+ ατt ‖x(i)‖V−1τt−1
≤ 2ατt ‖x(i)‖V−1τt−1 .

One can also show that

r̂τt(i) ≥ r∗(i).

Define S∗ = arg maxS∈S fr∗,X(S) and Ŝτt = arg maxS∈S fr̂τt ,X(S).
Then, we have

fr̂τt ,X(Sτt) ≥ α opt
r̂τt ,X

= αfr̂τt ,X(Ŝτt) ≥ αfr̂τt ,X(S∗)

≥ αfr∗,X(S∗) = α opt
r∗,X

,

where we have used again the definition of α-approximation or-
acle.

Now we can bound the regret on time t as follows

Regαt = α opt
r∗,X
−fr∗,X(St)
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= α opt
r∗,X
−fr∗,X(Sτt)

≤ fr̂τt ,X(Sτt)− fr∗,X(Sτt)

≤ C

√∑
i∈Sτt

(r̂τt(i)− r∗(i))2

≤ C

√∑
i∈Sτt

4α2
τt
‖x(i)‖2

V−1τt−1

≤ C
√

1 + γ

√∑
i∈St

4α2
t ‖x(i)‖2

V−1t−1
, (3.9)

where Eq. (3.9) follows from Eq. (3.8).
Therefore, by summing up the regret for all round t ∈ [n], we

obtain

n∑
t=1

Regαt ≤

√√√√n

n∑
t=1

(Regat )
2

≤ C
√

1 + γ

√√√√8n
n∑
t=1

∑
i∈St

4α2
t ‖xt(i)‖

2
V−1t−1

≤ C
√

1 + γ
√

64nd log(1 + nm/dλ)·(√
d log ((1 + nm/λ)/δ) +

√
λS
)
,

where the second inequality follows from Eq. (3.9) and the rest
of derivation is same to the proof of Theorem 3.1.

3.5 Application to Online Diversified Recom-

mendation

In this section, we apply our algorithm to diversified movie rec-
ommendation tasks. In this application, the recommender sys-
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tem recommends sets of movies, rather than individual ones. In
addition, the recommended movies should be diversified such
that the coverage of information that interests users is maxi-
mized. Furthermore, the recommender system need to use the
user’s feedback to improve its performance for future recommen-
dations.

This application can be naturally formulated as a linear com-
binatorial problem as follows. Suppose, on each round t, there
are m available movies and each movie is represented as a fea-
ture vector xt(i) ∈ Rd. We can view the m movies as m arms
and regard the feature vectors of movies as the feature vectors
associated with arms. Then, the parameter θ∗ ∈ Rd corresponds
to the user’s (unknown) preference and the scores rt(i) are the
ratings given by the user. At each round t, the system need
to recommend a set of exactly k movies. This cardinality con-
straint is equivalent to assign the set of allowed super arms
St = {S|S ∈ 2[m] and |S| = k} to be the set of all subsets of
size k for all t ≥ 0.

Next, we define the expected reward fr,X(S) of a super arm
S and construct an α-approximation oracle that associates to
the expected reward. The definition of reward of super arm S

should reflect both relevance and diversity of the set of movies
in the super arm. We consider the following definition of reward
which is proposed recently by Qin and Zhu [116],

fr,X(S) =
∑
i∈S

r(i) + λh(S,X), (3.10)

where h(S,X) = 1
2 |S| log(2πe) + 1

2 log det(X(S)TX(S) + σ2I) is
called entropy regularizer since it quantifies the posterior un-
certainty of ratings of movies in the set S. Here, the matrix
X(S) ∈ Rd×|S| denotes a submatrix of X that consists of columns
indexed by S and σ2 is a smoothing parameter. This definition
of entropy regularizer is derived as the differential entropy of
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ratings based on the Probabilistic Matrix Factorization (PMF)
model. The derivation is omitted and we refer interested readers
to [116] for details. Finally, the parameter λ of Eq. (3.10) is a
regularization constant which trades-off between relevance and
diversity.

As shown in [116], a simple greedy algorithm is guaranteed
to find the super arm with reward larger than (1 − 1/e)OPT ,
where OPT is the reward of the best super arm [110, 116]. By
definition, this algorithm can be employed as a valid (1− 1/e)-
approximation oracle in the linear combinatorial bandit frame-
work. We denote this oracle by Odiv

k (r,X).
By plugging this oracle Odiv

k (r,X) in LinCUCB , we can con-
struct an algorithm for the online diversified movie recommen-
dation application. This can be done by simply changing Line
9 of Algorithm 5 to St ← Odiv

k (r̂t,Xt). We denote the resulting
algorithm as LinCUCBdiv. This algorithm enjoys the same re-
gret bound we established in Theorem 3.1. We refer interested
readers to [117] for details of the LinCUCBdivalgorithm.

3.6 Experiments

3.6.1 Experiment Setup

We conduct experiments on the MovieLens dataset, which is a
public dataset consisting 1,000,029 ratings for 3900 movies by
6040 users of online movie recommendation service [108]. Each
element of the dataset is represented by a tuple ti,j = (ui, vj, ri,j),
where ui denotes userID, vj denotes movieID, and ri,j which is
an integer score between 1 and 5 denotes the rating of user i for
movie j (higher score indicates higher preference).

We split the dataset into training and test set as follows. We
construct the test set by randomly selecting 300 users such that
each selected user has at least 100 ratings. The remaining 5740
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users and their ratings belong to the training set. Then, we apply
a rank-d probabilistic matrix factorization (PMF) algorithm on
the training data to learn the feature vectors of movies (each
feature vector is d-dimensional). These feature vectors will be
used later by the bandit algorithms as the feature vectors of
arms.

Baselines. We compare our combinatorial linear bandit al-
gorithm with the following baselines.
k-LinUCB algorithm. LinUCB [93] is a linear bandit al-

gorithm which recommends exactly one arm at each time. To
recommend a set of k movies, we repeat LinUCB algorithm k

times on each round. By sequentially removing recommended
arms, we ensure the k arms returned by LinUCB are distinct
on each round. Finally, we highlight that the resulting bandit
algorithm can be regarded as a combinatorial linear bandit with
linear expected reward function

fr,X(S) =
∑
i∈S

r(i).

Therefore, the major difference between k-LinUCB algorithm
and our LinCUCBdivalgorithm, which uses a reward function
defined in Eq. (3.10), lies in that our algorithm optimizes the
diversity of arms in set St.

Warm-start diversified movie recommendation. We de-
note this baseline as “warm-start” for short. For each user u in
test set, we randomly select η ratings to train an user preference
vector using PMF model. We call the parameter η as warm-
start offset. With the estimated preference vector, one can re-
peatedly recommend sets of diverse recommendation results by
maximizing the reward function 3.10. Note that this method
cannot dynamically adapts to user’s feedback, and thus each
round is independent with the others.

Metric. We use precision to measure the quality of recom-
mended movie sets over n rounds. Specifically, for each user u
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in the test test, we define the set of “preferred movies” Lu as
the set of movies which user u assigned a rating of 4 or 5. In-
tuitively, a good movie set recommendation algorithm should
recommend movie sets which cover a large fraction of preferred
movies. Formally, on round t, suppose the recommendation al-
gorithm recommends a set of movies St. The precision pt,u of
user u on round t is defined as

pt,u =
|St ∩ Lu|
|St|

.

Then, the average precision of Pt of all test users up to round t

is given by

Pt =
1

t|U |
∑
u∈U

t∑
i=1

pi,u.

Note that we do not aim at predicting the ratings of movies,
but to provide more satisfying recommendation lists. Hence, pre-
cision is a more appropriate metric rather than the root mean
square error (RMSE).

Actually, our algorithm (as well as baselines) essentially used
an l2-regularized linear regression method to predict movie rat-
ings based on existing observations. This is equivalent to the
rating prediction methods used by many matrix factorization al-
gorithms, which are shown to have low RMSEs [107]. Moreover,
we cannot use regret as a metric either, because the definitions
of regrets vary greatly for different bandit algorithms.

3.6.2 Experiment Results

We consider recommending different number of movies to each
user on each round, i.e., the size of super arm k takes values
in {5, 10, 15, 20}. For each k, we set the exploration parameter
αt = 1.0. The parameters of entropy regularizer are set to be
λ = 0.5 and σ = 1.0.
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t = 5 t = 10 warm-start
KL CC KL CC η = 2k η = all

k = 5 0.785 0.810 0.831 0.861 0.763 0.884
k = 10 0.779 0.806 0.814 0.851 0.745 0.862
k = 15 0.770 0.793 0.803 0.836 0.720 0.841
k = 20 0.762 0.784 0.791 0.822 0.692 0.824

Table 3.1: Precision values of competing algorithms. CC:
LinCUCBdivalgorithm. KL: k-LinUCB algorithm.

For the warm-start baseline that allows an offline-estimated
user preference, we consider two cases where η takes different
values. In one case that we denote as “warm-start 2k”, η = k×2
which indicates the method can access ratings of two rounds.
In the other case that we denote as “warm-start all”, η equals
the total amount of observations, which indeed corresponds to
the best solution, i.e., all observations are used to train user
preference.

The results are shown in Figure 3.1 and Table 3.1, where
our approach is denoted as LinCUCBdiv. We can see that, in
all cases, the “warm-start 2k” baseline outperforms bandit algo-
rithms on earlier rounds, which is reasonable since the “warm-
start 2k” baseline is provided warm-start observations to learn
the user preference. But when more user feedbacks are available,
bandit algorithms improve performance by dynamically adapt-
ing to user feedbacks. Near the end of 10 rounds, LinCUCBdiv can
achieve a result that is comparable to “warm-start all”. Com-
pared to k-LinUCB, our method LinCUCBdiv finds a better
match between recommended movies and user interest (i.e., the
movies liked by each given user), and thus improves the over-
all performance. Furthermore, when k is larger, LinCUCBdiv al-
gorithm obtains larger performance gain over k-LinUCB algo-
rithm. The experiment results indicate that our method helps
uncover users’ diverse interest by using a non-linear diversity
promoting reward function.
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Figure 3.1: Experiment results comparing LinCUCBdiv with k-LinUCB,
warm-start 2t and warm-start all on different choices of k.
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3.7 Conclusion

We presented a general model called linear combinatorial ban-
dit that accommodates combinatorial nature of linear arms. We
developed an efficient algorithm LinCUCB for linear combina-
torial bandit and provide a rigorously regret analysis. We fur-
ther applied this model on online diversified movie recommenda-
tion task, and developed a specific algorithm LinCUCBdivfor this
application. Experiments on public MovieLens dataset demon-
strate that our approach helps explore and exploit users’ diverse
preference, and hence improves the performance of recommen-
dation task.



Chapter 4

Fast Relative-Error
Approximation Algorithm for
Ridge Regression

A key component used in the learning algorithms of linear stochas-
tic bandits is ridge regression [93, 45, 1], which is also widely ap-
plied in other areas of machine learning and statistics. In many
of these applications, the number of features p is often much
larger than the number of samples n. When p > n, the popular
solution of ridge regression takes O(n2p + n3) time. It is clear
that this is expensive for large datasets where p� n� 1.

In this chapter, we present an o(n2p) time approximation
algorithm for ridge regression with a provable relative error
bound. Specifically, assuming that the data matrix A is full-
rank, our algorithm computes an approximate solution x̃ satis-
fying that ‖x̃−x∗‖2 ≤ ε‖x∗‖2 with high probability, and runs in
Õ(nnz(A) + n3/ε2) time, where x∗ is the optimal solution and
nnz(A) is the number of non-zero elements of matrix A. To our
knowledge, this is the first relative-error approximation algo-
rithm for ridge regression that runs in o(n2p) time. In addition,
we analyze the risk inflation bound of our algorithm and gen-
eralize our technique to the multiple response ridge regression
problem. Finally, we show empirical results on both synthetic

126
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and real datasets.

4.1 Introduction

The learning algorithms of linear stochastic bandits employ ridge
regression [93, 45, 1] as a key algorithmic component. Ridge re-
gression is also widely applied in other areas of machine learning
and statistics. It is an extension of the well-known ordinary lin-
ear regression by introducing an `2 regularization. Ridge regres-
sion can be formulated as the following optimization problem

x∗ = arg min
x∈Rp

‖Ax− b‖2
2 + λ ‖x‖2

2 , (4.1)

where A is an n × p sample-by-feature matrix called design
matrix, b is an n-dimensional vector called target vector, and
λ ∈ R+ is a regularization parameter.

A natural and popular approach [131] for solving Eq. (4.1) is
to compute the unique minimizer x∗ as follows

x∗ = AT (AAT + λIn)
−1b. (4.2)

Computing x∗ using Eq. (4.2) takes O(n2p+ n3) time, which is
O(n2p) if p� n. If the data have high dimensional features, i.e.,
p� n� 1, this approach can be very slow.

In this chapter, we propose an algorithm for ridge regression
that runs in o(n2p) and has provable relative-error approxima-
tion guarantees. More specifically, our algorithm computes a vec-
tor x̃ satisfying that ‖x̃− x∗‖2 ≤ ε ‖x∗‖2 with high probability
for full rank design matrix A1. We show that the time complex-
ity of our proposed algorithm is O(nnz(A)+n3 log(nε )/ε

2) where
nnz(A) is the number of non-zero entries of A. Therefore, our
algorithm is considerable faster than the O(n2p+n3) time solver
which uses Eq. (4.2) to compute x∗, for the p� n cases.

1Our algorithm can be extended to the case of general A, see [42] for details
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In addition, we prove a risk inflation bound of our algorithm
under standard statistical assumptions. Further, we extend our
algorithm to multiple ridge regression problem, where there are
multiple target vectors. We also prove a relative-error bound
on the output for this extension. We conduct experiments us-
ing both synthetic and real datasets. The experimental results
agree with our theory and show that the proposed algorithm
considerably improves the computational efficiency while pro-
duces accurate solutions.

4.1.1 Notations and Preliminaries

In this part, we describe the notations and definitions that are
used later in this chapter. Let In denote the n×n identity matrix
and let 0n denote the n × n zero matrix. Given a matrix M ∈
Rn×p of rank r, let M(i), where i ∈ [n], denote the i-th row of
M as a row vector. Let nnz(M) denote the number of non-zero
entries of M. Let ‖M‖F denote the Frobenius norm of M and
let ‖M‖2 denote the spectral norm of M. Let σi(M) denote the
i-th largest singular value of M and let σmax(M) and σmin(M)
denote the largest and smallest singular values of M. The thin
SVD of M is M = UMΣMVT

M , where UM ∈ Rn×r, ΣM ∈ Rr×r

and VM ∈ Rp×r. The Moore-Penrose pseudoinverse of M is a
p× n matrix defined by M† = VMΣ−1

M UT
M .

4.1.2 Oblivious subspace embedding

Our algorithm is based on the oblivious subspace embedding
(OSE) technique. In the following, we review the definition of
oblivious subspace embedding (OSE) and introduce the OSEs
used in our algorithm.

Definition 4.1. Given any r > 0, δ ∈ (0, 1) and ε ∈ (0, 1), we
call a t × p random matrix S an (r, δ, ε)-OSE, if, for any rank
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r matrix M ∈ Rp×m, the following holds simultaneously for all
z ∈ Rm,

(1− ε) ‖Mz‖2 ≤ ‖SMz‖2 ≤ (1 + ε) ‖Mz‖2 ,

with probability at least 1− δ.

Many types of random matrices have been shown to be OSEs
including Gaussian matrices [49] and random sign matrices [129].
However, these types of matrices are dense matrices. It is clear
that computing sketched matrix SM given M ∈ Rp×m takes
O(t · nnz(M)) time for a dense OSE S ∈ Rt×p. Hence, several
work focused on finding S that allows fast matrix-vector multi-
plication in order to speed up the computation of the sketched
matrix SM [46, 149, 109]. We refer readers to [23] for the devel-
opment of this line of research.

Our algorithm uses a combination of two types of fast OSEs:
sparse embedding and subsampled randomized Hadamard trans-
formation (SRHT). The detailed definitions and properties sparse
embedding and SRHT can be found in [42].

We consider the product S = ΦsrhtΦsparse, where Φsrht is a
t × t′ SRHT matrix and Φsparse is a t′ × p sparse embedding
matrix. We show that if t = O([

√
r +

√
log(p)]2 log(r)/ε) and

t′ = O(r2/ε2), the product S is an OSE.

Theorem 4.1. Given ε ∈ (0, 1), δ ∈ (0, 1) and r > 0, select
integers t′ ≥ 2δ−1(r2 + r)/(2ε/3 − ε2/9)2 and t ≥ 18ε−1[

√
r +√

8 log(6p/δ)]2 log(6r/δ). Let Φsparse be a t′×p sparse embedding
matrix and let Φsrht be a t× t′ SRHT matrix. Then the product
S = ΦsrhtΦsparse is an (r, δ, ε)-OSE.

Therefore, we see that, when r ≥ O(log(p)), the product OSE
S has t = O(r log(r)/ε) rows. This is smaller than using sparse
embedding matrix alone. Finally, computing a sketched matrix
SM given M ∈ Rp×m takes O(nnz(M) + mr2 log(r)/ε2) time.
The proof of Theorem 4.1 is deferred to Section 4.7.
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4.2 Algorithm and Main Results

In this section, we present our approximation algorithm for ridge
regression (Algorithm 7). Then, we state our main result on the
approximation guarantee of our algorithm (Theorem 4.2). In the
rest of the chapter, we shall assume that the design matrix A is
a full rank matrix. For the results on general A, we refer readers
to [42].

Algorithm. Algorithm 7 takes four inputs (1) design matrix
A ∈ Rn×p, (2) target vector b ∈ Rn, (3) regularization parame-
ter λ > 0 and (4) integer parameters t′ and t. First, Algorithm 7
computes the sketched matrix AST , where S ∈ Rt×p is defined to
be the product of sparse embedding matrix Φsparse ∈ Rt′×p and
SRHT matrix Φsrht ∈ Rt×t′, i.e. S = ΦsrhtΦsparse. Then, the algo-
rithm computes the approximate solution x̃ of ridge regression
Eq. (4.1), by using the following key estimation of x̃,

x̃ = AT (AST )†
T
(λ(AST )†

T
+ AST )†b. (4.3)

The procedure of computing AST and x̃ is summarized in Al-
gorithm 7.

Main result. We show that, with high probability, the out-
put x̃ of Algorithm 7 is a relative-error approximation to the
optimal solution x∗ of ridge regression.

Theorem 4.2. Suppose that we are given a full rank design
matrix A ∈ Rn×p, a target vector b ∈ Rn, a regularization pa-
rameter λ > 0, accuracy parameters ε ∈ (0, 1) and δ ∈ (0, 1).
Assume that n < p. Select integers t′, t such that t′ ≥ 2δ−1(n2 +
n)/(ε/6−ε2/144)2 and t ≥ 72ε−1[

√
n+
√

8 log(6p/δ)]2 log(6n/δ).
Run Algorithm 7 with inputs A, b, λ, t′, t and let x̃ denote the
output of the algorithm. Then, with probability at least 1− δ, we
have

‖x̃− x∗‖2 ≤ ε ‖x∗‖2 , (4.4)

where x∗ is the optimal solution of ridge regression in Eq. (4.1).
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Algorithm 7 Fast relative-error approximation algorithm of ridge regression

Require: design matrix A ∈ Rn×p (n samples with p features), target vector
b ∈ Rn, regularization parameter λ > 0, integer parameters t′ and t.

Ensure: approximate solution x̃ ∈ Rp to ridge regression problem Eq. (4.1).
1: Construct sparse embedding matrix Φsparse ∈ Rt′×p.
2: Construct SRHT matrix Φsrht ∈ Rt×t′ .
3: for each row A(i) of A in arbitrary order do
4: Compute (AST )(i) ← (A(i)Φ

T
sparse)Φ

T
srht

5: end for
6: Construct AST by concatenating row vectors {(AST )(i)}i∈[n].
7: Compute the pseudoinverse (AST )†

8: Set x̃← AT (AST )†
T

(λ(AST )†
T

+ AST )†b
9: return x̃

In addition, if t′ = O(n2/ε2) and t = O(n log(n)/ε), the time
complexity of Algorithm 7 is

O
(

nnz(A) + n3 log
(n
ε

)
/ε2
)
.

Running times. Define t′ = O(n2/ε2) and t = O(n log(n)/ε)
according to Theorem 4.2. The time complexity of constructing
sparse embedding matrix Φsparse and SRHT matrix Φsrht is O(p).
Computing AST takes O(nnz(A) + nt′ log(t′)) = O(nnz(A) +

n3 log(nε )/ε
2) time. The pseudoinverse of AST and λ(AST )†

T
+

AST can be computed in O(n2t) = O(n3 log(n)/ε) time. Com-

puting the product (AST )†
T
(λ(AST )†

T
+AST )†b also takesO(n2t) =

O(n3 log(n)/ε) time. Finally, multiplying AT uses O(nnz(A))
time. Summing up, the total running time is the sum of all
these operations, which is O(nnz(A) + n3 log(nε )/ε

2).
Remarks. We note that the estimation method of x̃ as in

Eq. (4.3) holds for general OSEs S, not necessarily limiting to
the one used in Algorithm 7, i.e. S = ΦsrhtΦsparse. This fact is
formalized in the following lemma.

Lemma 4.1. Given a full rank matrix A ∈ Rn×p (n < p),
b ∈ Rn and λ > 0. Suppose that S ∈ Rt×p is an (n, δ, ε/4)-OSE
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for ε ∈ (0, 1) and δ ∈ (0, 1). Then, with probability at least 1−δ,
the approximation solution x̃ obtained by Eq. (4.3) satisfies

‖x̃− x∗‖2 ≤ ε ‖x∗‖2 ,

where x∗ is the optimal solution to ridge regression Eq. (4.1).

4.3 Risk Inflation Bound

In this section, we study the risk inflation of the approximate
solution x̃ returned by Algorithm 7 with respect to the optimal
solution x∗ of ridge regression. We begin with review the defini-
tion of risk of ridge regression. To properly define the risk, we
need to that A and b have the linear relationship as follows

b = Ax0 + e, (4.5)

where x0 ∈ Rp is an unknown vector which is assumed to be the
“true” parameter and e ∈ Rn is independent noise in each coor-
dinate, with E [ei] = 0 and Var[ei] = σ2. Under this assumption,
the risk of any vector b̂ ∈ Rn is given by

risk(b̂) ,
1

n
E

[∥∥∥b̂−Ax0

∥∥∥2

2

]
,

where the expectation is taken over the randomness of noise [13].
The following theorem shows that, compared with the opti-

mal solution x∗, the approximate solution x̃ returned by Algo-
rithm 7 increases the risk by a small additive factor.

Theorem 4.3. Suppose that n < p. Given a full rank design
matrix A ∈ Rn×p, b ∈ Rn, λ > 0, ε ∈ (0, 1) and λ ∈ (0, 1). As-
sume that A and b have the linear relationship as in Eq. (4.5).
Let x̃ denote the output of Algorithm 7 with inputs A, b, λ, t′ =⌈
2δ−1(n2 + n)/(ε/6− ε2/144)2

⌉
and t =

⌈
72ε−1[

√
n+

√
8 log(6p/δ)]2 log(6n/δ)

⌉
.
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Let x∗ denote the optimal solution of ridge regression. Then, with
probability at least 1− δ,

risk(b̃) ≤ risk(b∗) +
3ε

n
‖A‖2

2

(
‖x0‖2 + σ2ρ2

)
, (4.6)

where we define b̃ = Ax̃ and b∗ = Ax∗; we also define ρ2 =∑
i∈[r]

(
σi

σ2
i+λ

)2

and σi is the i-th largest singular value of A.

4.4 Multiple Response Ridge Regression

In this section, we generalize our techniques to solve multiple
response ridge regression [24].

The multiple response ridge regression problem is defined as
follows. Given a design matrix A ∈ Rn×p, m target vectors (re-
sponses) B ∈ Rp×m and a regression parameter λ > 0, the mul-
tiple response regression problem is to find an n×m matrix X∗

such that

X∗ = arg min
X∈Rn×m

‖AX−B‖2
F + λ ‖X‖2

F . (4.7)

The optimal solution of Eq. (4.7) is given by

X∗ = AT (λIn + AAT )−1B. (4.8)

It is clear that Eq. (4.8) takes O(n2p+n3+nm) time to compute,
which is expensive if p� n� 1.

Next, we generalize our techniques to solve multiple response
regression problem. The first step is to compute the sketched
matrix AST , where S = ΦsrhtΦsparse. Notice that this step is
identical to that of Algorithm 7, which uses one pass through
A. Then, we use the following generalized version of Eq. (4.3)
to compute the approximate solution X̃,

X̃ = AT (AST )†T (λ(AST )†T + AST )†B, (4.9)
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which uses a second pass through A. We show that the approx-
imate solution X̃ given by Eq. (4.9) is a relative-error approxi-
mation of X∗ in the following theorem.

Theorem 4.4. Given a full rank matrix A ∈ Rn×p, B ∈ Rn×m,
λ > 0, parameter ε ∈ (0, 1) and δ ∈ (0, 1). Select integers t′, t
such that t′ ≥ 2δ−1(n2 +n)/(ε/6− ε2/144)2 and t ≥ 72ε−1[

√
n+√

8 log(6p/δ)]2 log(6n/δ). Let S = ΦsrhtΦsparse, where Φsparse ∈
Rt′×p is a sparse embedding matrix and Φsrht ∈ Rt×t′ is an SRHT
matrix. Then, with probability at least 1− δ, we have∥∥∥X̃−X∗

∥∥∥
F
≤ ε ‖X∗‖F ,

where X̃ is given by Eq. (4.9) and X∗ is the optimal solution
to multiple response ridge regression Eq. (4.7). In addition, the
total time complexity of computing AST and X̃ is O(nnz(A) +
n3 log(nε )/ε

2 + nm).

4.5 Experiments

Baselines. We compare the performance of our algorithm sketch-

ing (Algorithm 7) to three baselines. The first baseline is the
standard algorithm, which computes the optimal solution us-
ing the dual space approach in Eq. (4.2). The other two base-
lines use popular randomized dimensionality reduction methods,
including sampling and random projection. The sampling al-
gorithm simply samples a subset of t columns of A uniformly
at random. The projection algorithm post-multiplies A by
a random sign matrix ΦT

sign ∈ Rp×t, with each entry of Φsign

having value chosen from {±1/
√
t} uniformly at random. Then,

sketched matrices with t columns obtained by sampling and
projection are plugged in Eq. (4.3) to compute an approx-
imate solution x̃ of ridge regression. Finally, notice that Φsign
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Figure 4.1: Quality-of-approximation and running times on synthetic dataset
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(a) ARCENE: Speedup
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(b) ARCENE: Error rate
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(d) DOROTHEA: Error rate

Figure 4.2: Classification accuracy and running times on realworld datasets

is also an OSE for sufficiently large t [129] and therefore, by
Lemma 4.1, the projection algorithm produces a relative-error
approximation as well. However, for dense A, computing AΦT

sign

alone takes O(tnp) time, which is even slower than the stan-
dard algorithm when t > n. Hence, we do not compare its
running time to other competing algorithms.

Implementation. Our implementation of Algorithm 7 is
slightly different from its description in two places. First, Al-
gorithm 7, and its analysis, uses the Walsh-Hadamard trans-
formation (as a step of SRHT), while our implementation uses
discrete Hartley transformation (DHT) [139]. DHT has a highly
optimized implementation provided in FFTW package [59]. In
addition, it is possible to show that DHT or other Fourier-type
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transformations have a guarantee similar to Walsh-Hadamard
transformation [11, 149]. Second, we set t′ = 2t, i.e. the sketch
size of sparse embedding is two times larger than that of SRHT.
Empirically, this setting offers a good trade-off between accu-
racy and speed. All competing algorithms are implemented using
C++ and the experiments are conducted on a standard work-
station using a single core.

4.5.1 Synthetic dataset

Setup. We generate the n × p design matrix A using the fol-
lowing method, such that each row (sample) of A contains an
s-dimensional signal and p-dimensional noises. Specifically, we
define A = MΣVT + αE. Here, M is an n × s matrix which
represents the signals, and each entry Mij ∼ N (0, 1) is an i.i.d
Gaussian random variable. Σ is an s × s diagonal matrix and
the diagonal entries are given by Σii = 1 − (i − 1)/p for each
i ∈ [s]. V is a p× n column orthonormal matrix which contains
a random s-dimensional subspace of Rp. Notice that MΣVT is
a rank s matrix with linearly decreasing singular values. E is
an n × p matrix which contributes the additive Gaussian noise
Eij ∼ N (0, 1). α > 0 is a parameter chosen to balance the energy
of signals MΣVT and the energy of noises E. In this experiment,
we choose α = 0.05 which brings

∥∥MΣVT
∥∥
F
≈ α ‖E‖F . Then,

we generate the target vector x ∈ Rp with xi ∼ N (0, 1). Fi-
nally, the target vector b ∈ Rn is given by b = Ax + γe, where
ei ∼ N (0, 1) and γ = 5.

Metrics. We measure the performance of our algorithm and
baselines both in terms of accuracy and speedup factor. More
specifically, let x∗ denote the optimal solution produced by the
standard algorithm and let x̃ denote the output vector returned
by an approximation algorithm. To evaluate the accuracy of ap-
proximation, we compute three metrics: relative error :

‖x̃−x∗‖2
‖x∗‖2

;
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cosine similarity : x̃Tx∗
‖x̃‖2‖x∗‖2

; objective suboptimality : f(x̃)
f(x∗)−1, with

f(x) , ‖Ax− b‖2
2 + λ ‖x‖2

2. In addition, the speedup factor is
given by the ratio between the time used by standard algo-
rithm and that of a competing algorithm.

Results. In the experiment, we set n = 500, p = 50000
and s = 50. We run the competing algorithms with 10 different
choices of t within range [2000, 20000]. The results are shown
in Figure 4.1. Figure 4.1(a) reports the speed up of approx-
imation algorithms with respect to the standard algorithm.
We see that our algorithm sketching is slightly slower than
the sampling algorithm, but both of them speed up consider-
ably with respect to the standard algorithm. Figure 4.1(b),
(c) and (d) plot the accuracy metrics of the competing algo-
rithms. We see that indeed the accuracy of approximation im-
proves as the sketch size t increases. In addition, both of our
sketching algorithm and the projection algorithm output
a significantly more accurate solution than the sampling algo-
rithm. Notably, when the sketch size t ≈ 10000, our algorithm
sketching has a relative-error smaller than 10%, cosine sim-
ilarity larger than 99% and objective suboptimality less than
10%; meanwhile speeds up the computation about 4 times.

4.5.2 Realworld datasets

Setup. We also test the proposed algorithm on two binary
classification datasets: ARCENE and DOROTHEA [69]. Both
datasets are publicly available from the UCI repository [14].
ARCENE contains 200 samples (100 for training and 100 for
testing) with 10000 real valued features. DOROTHEA consists
of 1150 samples (800 for training and 350 for testing) with
100000 binary valued features. We apply ridge regression on both
classification tasks by setting the responses to be +1 for positive
examples and −1 for negative examples. We run ridge regression
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algorithms on the training data to compute the feature weights
and measure the classification error rate on the testing data.
For each dataset, we test 10 different choices of sketch size t
and record the classification error rates and speed up factors of
competing algorithms.

Results. The results2 are shown in Figure 4.2. We observe
that the classification error decreases as the sketch size t in-
creases. It is also clear that, using the same sketch size t, sketch-
ing and projection produce more accurate predictions than
sampling. On the other hand, sketching and sampling al-
gorithms are considerably faster than the standard algorithm.
From the results, we see that our algorithm sketching sub-
stantially speeds up the computation, while attains a very small
increase in error rate. For ARCENE dataset, when t ≈ 3000,
sketching accelerates the computation by 2.1 times while in-
creases the error rate by 4.5%; and, for DOROTHEA dataset,
when t ≈ 20000, the speedup of sketching is about 4.1 times
and the error rate is almost the same to the standard algo-
rithm.

4.6 Conclusions

We presented an efficient relative-error approximation algorithm
for ridge regression for p � n cases. Our algorithm runs in
Õ(nnz(A) + n3/ε2) time, which is substantially faster than the
standard O(n2p+n3) algorithm for large p instances. In addition,
we analyzed the risk inflation of our algorithm and extended
our techniques to design fast relative-error approximation al-
gorithms for multiple response ridge regression and structured
ridge regression. We reported experimental results of our algo-
rithm on both synthetic and real datasets, which supported our
analysis and demonstrated good practical performance.

2The results of relative-error are deferred to Section 4.11.
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4.7 Proof of Theorem 4.1

For convenience, we restate the theorem in the following.

Theorem 4.1. Given ε ∈ (0, 1), δ ∈ (0, 1) and r > 0, select
integers t′ ≥ 2δ−1(r2 + r)/(2ε/3 − ε2/9)2 and t ≥ 18ε−1[

√
r +√

8 log(6p/δ)]2 log(6r/δ). Let Φsparse be a t′×p sparse embedding
matrix and let Φsrht be a t× t′ SRHT matrix. Then the product
S = ΦsrhtΦsparse is an (r, δ, ε)-OSE.

Proof. By [109, Theorem 3], Φsparse ∈ Rt′×p is an (r, δ/2, ε/3)-
OSE. Similarly, by [149, Lemma 4.1], Φsrht ∈ Rt′×t is also an
(r, δ/2, ε/3)-OSE.

Now fix an arbitrary matrix M ∈ Rp×m of rank r. Since Φsparse

is an (r, δ/2, ε/3)-OSE, by Definition 4.1, we have

(1− ε/3) ‖Mz‖2 ≤ ‖ΦsparseMz‖2 ≤ (1 + ε/3) ‖Mz‖2 , (4.10)

holds for all z ∈ Rm simultaneously with probability at least 1−
δ/2. Eq. (4.10) also implies that rank(ΦsparseM) = rank(M) = r.
Now, conditioning on the event that Eq. (4.10) holds, and using
the fact that Φsrht is an (r, δ/2, ε/3)-OSE, we have

(1−ε/3) ‖ΦsparseMz‖2 ≤ ‖Φsrht(ΦsparseMz)‖2 ≤ (1+ε/3) ‖ΦsparseMz‖2 ,

(4.11)
holds for all z ∈ Rm simultaneously with probability at least
1− δ/2. When both Eq. (4.10) and Eq. (4.11) hold, we have, for
any z ∈ Rm,

‖Φsrht(ΦsparseMz)‖2 ≤ (1 + ε/3) ‖ΦsparseMz‖2

≤ (1 + ε/3)2 ‖Mz‖2

≤ (1 + ε) ‖Mz‖2 , (4.12)

where we have used Eq. (4.10), Eq. (4.11) and the fact that ε < 1.
The other direction: ‖Φsrht(ΦsparseMz)‖2 ≥ (1 − ε) ‖Mz‖2 can
be proved using the same method. Now, notice that, by union
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bound, the probability that both Eq. (4.10) and Eq. (4.11) hold
simultaneously for any z is at least 1 − δ. This concludes our
proof.

4.8 Proof of Lemma 4.1 and Theorem 4.2

From this point on, we denote the thin SVD of design matrix
A ∈ Rn×p of full rank by A = UΣVT , with U ∈ Rn×n, Σ ∈
Rn×n and V ∈ Rp×n. We also denote the SVD of SV by SV =
UφΣφV

T
φ , with Uφ ∈ Rt×n, Σφ ∈ Rn×n and Vφ ∈ Rn×n. Notice

that Vφ is an n×n unitary matrix and therefore VφV
T
φ = In. We

will frequently use the following property of the pseudoinverse
of matrix product.

Fact 4.1. For any matrix A ∈ Rm×n and B ∈ Rn×p, we have
(AB)† = B†A†, if at least one of the following holds.

1. A has orthonormal columns.

2. B has orthonormal rows.

3. A has full column rank and B has full row rank.

By Fact 4.1, we immediate obtain the following lemma.

Lemma 4.2. Suppose that SV is full rank, then the pseudoin-
verse of AST is given by

(AST )† = (SV)†TΣ−1UT .

The first step of our proof is to represent x∗ and x̃ in a form
that is easier to work with.

Lemma 4.3. Let the optimal solution of ridge regression x∗ be
defined as in Eq. (4.2). We have

x∗ = VG−1UTb,

where G = λΣ−1 + Σ.
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Proof. Notice that A is a full rank matrix. Therefore U is an
orthonormal matrix. By definition of x∗, we have

x∗ = AT (AAT + λI)−1b

= VΣUT (UΣ2UT + λUUT )−1b

= VΣ(Σ2 + λI)−1UTb

= V(Σ + λΣ−1)−1UTb.

Lemma 4.4. Define matrix G̃ = λΣ−1 + Σ(SV)T (SV). Let x̃
be defined as in Eq. (4.3). Suppose that SV is full rank. Then,
we have that G̃ is full rank and that

x̃ = VG̃−1UTb.

Proof. By the construction of x̃, we have

x̃ = AT
(
(AST )†

)T (
λ
(
(AST )†

)T
+ AST

)†
b

= VΣUTUΣ−1(SV)†
(
λUΣ−1(SV)† + UΣ(SV)T

)†
b

= V(SV)†
(
λUΣ−1(SV)† + UΣ(SV)T

)†
b

= VVφΣ
−1
φ UT

φ

(
λUΣ−1VφΣ

−1
φ UT

φ + UΣVφΣφU
T
φ

)†
b

= VVφΣ
−1
φ UT

φUφ

(
λΣ−1VφΣ

−1
φ + ΣVφΣφ

)†
UTb

= VVφΣ
−1
φ

(
λΣ−1VφΣ

−1
φ + ΣVφΣφ

)†
UTb, (4.13)

where we have repeatedly used Fact 4.1 and Lemma 4.2.
Define T1 = λΣ−1VφΣ

−1
φ + ΣVφΣφ. Next, we show that

rank(T1) = n. To see this, we define T2 = λI + ΣVφΣ
2
φV

T
φΣ

and notice that T2 = T1(ΣφV
T
φΣ). Since λ > 0, it is clear that

T2 is a positive definite matrix and therefore rank(T2) = n.
Now notice that rank(ΣφV

T
φΣ) = rank(Σφ) = n. Hence, we

have

rank(T1) = rank(T1(ΣφV
T
φΣ)) = rank(T2) = n.
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Then, using Fact 4.1 on Σ†φ and T†1, we have

(4.13) = VVφ

(
λΣ−1Vφ + ΣVφΣ

2
φ

)†
UTb

= V
(
λΣ−1 + ΣVφΣ

2
φV

T
φ

)†
UTb

= VG̃†UTb,

where we have used Fact 4.1 again and that SV = UφΣφV
T
φ .

Finally, the rank of G̃ is given by

rank(G̃) = rank(T1ΣφV
T
φ ) = rank(T1) = n.

Hence the pseudoinverse of G̃ equals to its inverse, i.e. G̃† =
G̃−1, and this concludes our proof of the lemma.

From Lemma 4.3 and Lemma 4.4, we see that x̃ admits a
representation that is very similar to x∗. It is clear that the key
difference between x̃ and x∗ comes from that of G̃ and G.

The next lemma (Lemma 4.5) is our key technical lemma,
which shows that G̃ is closely related to G in the sense that
G−1 is an approximate matrix inversion of G̃.

Lemma 4.5. Given ε ∈ (0, 1/4) and δ ∈ (0, 1). Let S be an
(n, δ, ε)-OSE. Let G̃ = λΣ−1+Σ(SV)T (SV) and G = λΣ−1+Σ.
Notice that G is invertible and define R = G−1G̃−I. Then, with
probability at least 1− δ, we have (a) SV is a full rank matrix,
(b) ‖R‖2 ≤ 2ε+ ε2, and (c)∥∥(I + R)−1R

∥∥
2
≤ 2ε+ ε2

1− (2ε+ ε2)
.

To prove Lemma 4.5, we need two lemmas from linear alger-
bra and the theory of OSEs. First, we use the following property
on the stability of singular values, which can be regarded as a
generalization of Weyl’s inequality to singular values of non-
Hermitian matrices.
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Lemma 4.6. [144, Exercise 1.3.22 (iv)] Let C ∈ Rm×n and
D ∈ Rm×n be two matrices of the same size. Then, for all
i ∈ [min{m,n}],

|σi(C + D)− σi(C)| ≤ ‖D‖2 .

Proof. Let C′ =

[
0m C
CT 0n

]
, D′ =

[
0m D
DT 0n

]
, then all of C′,

D′ and C′ + D′ are (m+ n)× (m+ n) Hermitian matrices and
also

σi(C) = σ2i(C
′), σi(C+D) = σ2i(C

′+D′) ∀i ∈ [min{m,n}];
(4.14)

‖D‖2 = ‖D′‖2 . (4.15)

Using Weyl’s inequality [see 144, Section 1.3] on the singular
values of Hermitian matrices, we have that

|σi(C′ + D′)− σi(C′)| ≤ ‖D′‖2 , ∀i ∈ [m+ n]. (4.16)

Thus we have that:

|σi(C + D)− σi(C)| ≤ ‖D‖2 , ∀i ∈ [min{m,n}]. (4.17)

The second ingredient we needed is the following characteri-
zation of OSEs.

Theorem 4.5. Let V ∈ Rp×r be a column orthonormal matrix.
Let S ∈ Rt×p be an (r, δ, ε)-OSE. Then, with probability 1 − δ
over the choices of S, we have that (a) SV is a full rank matrix
and (b) for all i ∈ [r], the i-th largest singular value of SV is
bounded by

|1− σi(SV)| ≤ ε. (4.18)
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Proof. By the definition of OSE (Definition 4.1), with probabil-
ity 1− δ, we have

(1− ε) ‖Vz‖2 ≤ ‖SVz‖2 ≤ (1 + ε) ‖Vz‖2 for all z ∈ Rp.
(4.19)

In the rest of the proof, we assume that Eq. (4.19) holds.
First, we show that SV is a rank r matrix. Since V is a rank

r matrix, it suffices to show that ker(SV) = ker(V). It is easy
to see that ker(V) ⊆ ker(SV): Indeed, for any z ∈ ker(V), we
have SVz = S(Vz) = 0, which means that z ∈ ker(SV).

Now, we prove the other direction: ker(SV) ⊆ ker(V). Con-
sider any vector z ∈ ker(SV). Using Eq. (4.19) and the fact that
SVz = 0, we have

0 = ‖SVz‖2 ≥ (1− ε) ‖Vz‖2 ≥ 0.

Therefore, the above equality holds which means that Vz = 0
and z ∈ ker(V).

Next, we prove part (b) of the theorem. Fix an arbitrary
i ∈ [r]. Let vφi denote the i-th right singular vector of SV. Now,
using Eq. (4.19) and the definition of singular value, we have

σi(SV) =
∥∥∥SVvφi

∥∥∥
2

(4.20)

≤ (1 + ε)
∥∥∥Vvφi

∥∥∥
2

(4.21)

= (1 + ε)
∥∥∥vφi ∥∥∥

2
(4.22)

= (1 + ε), (4.23)

where Eq. (4.20) follows from the definition of singular value,
Eq. (4.21) follows form Eq. (4.19) and Eq. (4.22) is obtained by
dropping V which does not change l2 norm. The other direction:
σi(SV) ≥ (1−ε) can be proved using the same method by using
the other side of Eq. (4.19).

Hence, we have proved that σi(SV) ∈ [1 − ε, 1 + ε] for all
i ∈ [r], which concludes the part (b) of the theorem.
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Proof of Lemma 4.5. Since S is an (r, δ, ε)-OSE. By Theorem 4.5,
we have that, with probability 1 − δ, SV is a full rank matrix
and all singular values of SV are bounded in [1− ε, 1+ ε]. In the
rest of the proof, we assume this holds. And this already proves
part (a) of the lemma.

We start with bounding ‖R‖2. By the definition of R, we
have

‖R‖2 =
∥∥∥G−1(G̃−G)

∥∥∥
2

=
∥∥(λΣ−1 + Σ)−1Σ((SV)T (SV)− I)

∥∥
2

≤
∥∥(λΣ−1 + Σ)−1Σ

∥∥
2

∥∥VφΣ
2
φV

T
φ − I

∥∥
2

=
∥∥(λΣ−1 + Σ)−1Σ

∥∥
2

∥∥VφΣ
2
φV

T
φ −VφV

T
φ

∥∥
2

=
∥∥(λΣ−1 + Σ)−1Σ

∥∥
2

∥∥Σ2
φ − I

∥∥
2

≤ max
i

σi

λσ−1
i + σi

((1 + ε)2 − 1)

≤ 2ε+ ε2, (4.24)

where we have used the fact that Vφ is a unitary matrix and
dropped terms that do not change spectral norm.

Now, we apply Lemma 4.6 by setting C = I and D = R.
Then, for all i ∈ [r], we have

σi(I + R) ≥ 1− ‖R‖2 ≥ 1− (2ε+ ε2). (4.25)

Hence, we have∥∥(I + R)−1R
∥∥

2
≤
∥∥(I + R)−1

∥∥
2
‖R‖2

≤ (σmin(I + R))−1 ‖R‖2

≤ 2ε+ ε2

1− (2ε+ ε2)
.

We are now ready to prove our main results: Lemma 4.1 and
Theorem 4.2. For reader’s convenience, we first restate them in
the following.
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Lemma 4.1. Given a full rank matrix A ∈ Rn×p (n < p),
b ∈ Rn and λ > 0. Suppose that S ∈ Rt×p is an (n, δ, ε/4)-OSE
for ε ∈ (0, 1) and δ ∈ (0, 1). Then, with probability at least 1−δ,
the approximation solution x̃ obtained by Eq. (4.3) satisfies

‖x̃− x∗‖2 ≤ ε ‖x∗‖2 ,

where x∗ is the optimal solution to ridge regression Eq. (4.1).

Proof. Let ε′ = ε/4 and recall the definition R = G−1G̃−I. Since
S is an (n, δ, ε′)-OSE. By Lemma 4.5, with probability 1− δ, we
have that SV is a full rank matrix and that

∥∥(I + R)−1R
∥∥

2
≤

2ε′+ε′2

1−(2ε′+ε′2) . In the rest of the proof, we assume that this event
happens.

Since SV is a full rank matrix. Applying Lemma 4.3 and
Lemma 4.4, we have

‖x̃− x∗‖2 =
∥∥∥V(G̃−1 −G−1)UTb

∥∥∥
2

=
∥∥∥(G̃−1 −G−1)UTb

∥∥∥
2
. (4.26)

where we have dropped the unitary term V which does not
change l2 norm.

Next, we write G̃ = G(I + R). This means that G̃−1 =
(I + R)−1G−1. Therefore,

(4.26) =
∥∥((I + R)−1 − I

)
G−1UTb

∥∥
2

=
∥∥−(I + R)−1RG−1UTb

∥∥
2

(4.27)

≤
∥∥(I + R)−1R

∥∥
2

∥∥G−1UTb
∥∥

2

=
∥∥(I + R)−1R

∥∥
2
‖x∗‖2

≤ 2ε′ + ε′2

1− (2ε′ + ε′2)
‖x∗‖2 (4.28)

≤ 4ε′ ‖x∗‖2 = ε ‖x∗‖2 .

where Eq. (4.27) follows from matrix inversion lemma, i.e. C−1−
D−1 = −C−1(C − D)D−1 for any squared matrices C and D



CHAPTER 4. FAST RIDGE REGRESSION APPROXIMATION 148

of the same size, and Eq. (4.28) follows from the assumption on∥∥(I + R)−1R
∥∥

2
.

Theorem 4.2. Suppose that we are given a full rank design
matrix A ∈ Rn×p, a target vector b ∈ Rn, a regularization pa-
rameter λ > 0, accuracy parameters ε ∈ (0, 1) and δ ∈ (0, 1).
Assume that n < p. Select integers t′, t such that t′ ≥ 2δ−1(n2 +
n)/(ε/6−ε2/144)2 and t ≥ 72ε−1[

√
n+
√

8 log(6p/δ)]2 log(6n/δ).
Run Algorithm 7 with inputs A, b, λ, t′, t and let x̃ denote the
output of the algorithm. Then, with probability at least 1− δ, we
have

‖x̃− x∗‖2 ≤ ε ‖x∗‖2 , (4.4)

where x∗ is the optimal solution of ridge regression in Eq. (4.1).
In addition, if t′ = O(n2/ε2) and t = O(n log(n)/ε), the time

complexity of Algorithm 7 is

O
(

nnz(A) + n3 log
(n
ε

)
/ε2
)
.

Proof. It is easy to see that the solution x̃ returned by Algo-
rithm 7 is given by Eq. (4.3) with S = ΦsrhtΦsparse. Therefore,
the bound on ‖x̃− x‖2 follows immediately from Lemma 4.1 and
Theorem 4.1 which shows that S = ΦsrhtΦsparse is an (r, δ, ε/4)-
OSE. And the running time analysis of Algorithm 7 is given in
Section 4.2.

4.9 Proof of Theorem 4.3

Theorem 4.3. Suppose that n < p. Given a full rank design
matrix A ∈ Rn×p, b ∈ Rn, λ > 0, ε ∈ (0, 1) and λ ∈ (0, 1). As-
sume that A and b have the linear relationship as in Eq. (4.5).
Let x̃ denote the output of Algorithm 7 with inputs A, b, λ, t′ =⌈
2δ−1(n2 + n)/(ε/6− ε2/144)2

⌉
and t =

⌈
72ε−1[

√
n+

√
8 log(6p/δ)]2 log(6n/δ)

⌉
.

Let x∗ denote the optimal solution of ridge regression. Then, with
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probability at least 1− δ,

risk(b̃) ≤ risk(b∗) +
3ε

n
‖A‖2

2

(
‖x0‖2 + σ2ρ2

)
, (4.6)

where we define b̃ = Ax̃ and b∗ = Ax∗; we also define ρ2 =∑
i∈[r]

(
σi

σ2
i+λ

)2

and σi is the i-th largest singular value of A.

Proof. Let b̃ = Ax̃ denote the prediction using approximated x̃
returned by Algorithm 7. Let b∗ = Ax∗ denote the prediction
using optimal solution x∗ of Eq. (4.1). Define b0 = Ax0. Let the
thin SVD of A be A = UΣVT .

Using the classical bias-variance decomposition [13], for any
b̂ ∈ Rn, we have

risk(b̂) = bias(b̂) + var(b̂), (4.29)

where we define

bias(b̂) ,
1

n

∥∥∥E [b̂]− b0

∥∥∥2

2
and var(b̂) ,

1

n
E

[∥∥∥b̂− E
[
b̂
]∥∥∥2

2

]
as the bias component and the variance component, respectively.

By Lemma 4.3, we have x∗ = VG−1UTb, where G = λΣ−1 +
Σ. And by Lemma 4.4, we have x̃ = VG̃−1UTb, where G̃ =
λΣ−1 + Σ(SV)T (SV). Also notice that

∥∥G−1
∥∥2

F
= ρ2. Using

these definition, we first bound the variance component var(b̃).
We have

var(b̃) =
1

n
E

[∥∥∥b̃− E
[
b̂
]∥∥∥2

2

]
=

1

n
E
[
‖Ax̃− E [Ax̃]‖2

2

]
=

1

n
E

[∥∥∥AVG̃−1UTe
∥∥∥2

2

]
=

1

n
E

[∥∥∥UΣG̃−1UTe
∥∥∥2

2

]
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=
1

n
E
[
tr
(
eTU(G̃−1)TΣ2G̃−1UTe

)]
=

1

n
E
[
tr
(
U(G̃−1)TΣ2G̃−1UTeeT

)]
=
σ2

n
tr
(
U(G̃−1)TΣ2G̃−1UT

)
=
σ2

n
tr
(

(G̃−1)TΣ2G̃−1
)

=
σ2

n

∥∥∥ΣG̃−1
∥∥∥2

F
,

where we have repeatedly used the cyclic property of trace of
matrix product. Similarly, one can show that

var(b∗) =
σ2

n

∥∥ΣG−1
∥∥2

F
.

Now we recall the definition R = G−1(G̃ − G) and write
G̃−1 = (I + R)−1G−1. Then, we have∥∥∥ΣG̃−1

∥∥∥
F

=
∥∥Σ(I + R)−1G−1

∥∥
F

=
∥∥ΣG−1 −Σ(I + R)−1RG−1

∥∥
F

(4.30)

≤
∥∥ΣG−1

∥∥
F

+
∥∥Σ(I + R)−1RG−1

∥∥
F

(4.31)

≤
∥∥ΣG−1

∥∥
F

+ ‖Σ‖2

∥∥(I + R)−1R
∥∥

2

∥∥G−1
∥∥
F

≤
∥∥ΣG−1

∥∥
F

+ ερ ‖A‖2 , (4.32)

where Eq. (4.30) follows from Woodbury matrix identity, Eq. (4.31)
follows from triangle inequality and Eq. (4.32) follows from Lemma 4.5,
the fact that S is an (n, δ, ε/4)-OSE and the definition that
ρ =

∥∥G−1
∥∥
F

.

Now, we can bound var(b̃) as follows

var(b̃) =
σ2

n

∥∥∥ΣG̃−1
∥∥∥2

F

≤ σ2

n

(∥∥ΣG−1
∥∥
F

+ ερ ‖A‖2

)2
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≤ σ2

n

(∥∥ΣG−1
∥∥2

F
+ 2ερ ‖A‖2

∥∥ΣG−1
∥∥
F

+ ε2ρ2 ‖A‖2
2

)
≤ σ2

n

(∥∥ΣG−1
∥∥2

F
+ 2ερ2 ‖A‖2

2 + ε2ρ2 ‖A‖2
2

)
(4.33)

≤ var(b∗) + (2ε+ ε2)
σ2

n
ρ2 ‖A‖2

2 , (4.34)

where Eq. (4.33) follows from the definition ρ =
∥∥G−1

∥∥
F

.

Next, we bound the bias component bias(b̃). We can simplify
bias(b̃) as follows

bias(b̃) =
1

n

∥∥∥E [b̃]− b0

∥∥∥2

=
1

n

∥∥∥AVG̃−1UTE [b]− b0

∥∥∥2

2

=
1

n

∥∥∥AVG̃−1UTAx0 −Ax0

∥∥∥2

2

=
1

n

∥∥∥UΣG̃−1UTAx0 −UΣVTx0

∥∥∥2

2

=
1

n

∥∥∥ΣG̃−1ΣVTx0 −ΣVTx0

∥∥∥
2

=
1

n

∥∥∥(ΣG̃−1 − I)ΣVTx0

∥∥∥2

2
,

where we have dropped U which does not change l2 norms. Using
the same method, bias(b∗) can be simplified as

bias(b∗) =
1

n

∥∥(ΣG−1 − I)ΣVTx0

∥∥2

2
.

It is easy to see that
√
n bias(b̃) =

∥∥∥(ΣG̃−1 − I)ΣVTx0

∥∥∥
2

and we can bound it as follows√
n bias(b̃) =

∥∥∥(ΣG̃−1 − I)ΣVTx0

∥∥∥
2

=
∥∥(Σ(I + R)−1G−1 − I)ΣVTx0

∥∥
2

=
∥∥(ΣG−1 − I−Σ(I + R)−1RG−1)ΣVTx0

∥∥
2

(4.35)
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≤
∥∥(ΣG−1 − I)ΣVTx0

∥∥
2

+
∥∥Σ(I + R)−1RG−1ΣVTx0

∥∥
2

(4.36)

≤
√
n bias(b∗) + ‖Σ‖2

∥∥(I + R)−1R
∥∥

2

∥∥G−1Σ
∥∥

2

∥∥VTx0

∥∥
2

≤
√
n bias(b∗) + ‖A‖2 · ε ·max

i

σ2
i

λ+ σ2
i

‖x0‖2

(4.37)

≤
√
n bias(b∗) + ε ‖A‖2 ‖x0‖2 , (4.38)

where Eq. (4.35) follows from matrix inversion lemma, Eq. (4.36)
is the triangle inequality and Eq. (4.37) follows from Lemma 4.5
and that S is an (r, δ, ε/4)-OSE. Now, dividing both sides of the
above inequality Eq. (4.38) by

√
n, we have that√

bias(b̃) ≤
√

bias(b∗) +
ε√
n
‖A‖2 ‖x0‖2 .

Finally, we obtain the following bound on bias(b̃)

bias(b̃) ≤ bias(b∗) + 2
√

bias(b∗) · ε√
n
‖A‖2 ‖x0‖2 +

ε2

n
‖A‖2

2 ‖x0‖2
2

≤ bias(b∗) +
2√
n

∥∥(ΣG−1 − I)ΣVTx0

∥∥
2
· ε√

n
‖A‖2 ‖x0‖2

+
ε2

n
‖A‖2

2 ‖x0‖2
2

≤ bias(b∗)+

2

(
1√
n

∥∥ΣG−1 − I
∥∥

2
‖Σ‖2

∥∥VTx0

∥∥
2

)(
ε√
n
‖A‖2 ‖x0‖2

)
+

ε2

n
‖A‖2

2 ‖x0‖2
2

≤ bias(b∗) +
2ε

n
‖A‖2

2 ‖x0‖2
2 +

ε2

n
‖A‖2

2 ‖x0‖2
2 (4.39)

= bias(b∗) +
(2ε+ ε2)

n
‖A‖2

2 ‖x0‖2
2 , (4.40)
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where Eq. (4.39) holds since ‖Σ‖2 = ‖A‖2,
∥∥VTx0

∥∥
2

= ‖x0‖2

and
∥∥ΣG−1 − I

∥∥
2

= maxi
λ

λ+σ2
i
≤ 1.

The theorem follows immediately from Eq. (4.29), Eq. (4.34),
Eq. (4.40) and the fact that ε < 1.

4.10 Proof of Theorem 4.4

We first prove a generalization of Lemma 4.1 as follows.

Lemma 4.7. Given a full rank matrix A ∈ Rn×p, B ∈ Rn×m

and λ > 0. Suppose that S ∈ Rt×p is an (n, δ, ε/4)-OSE for
ε ∈ (0, 1) and δ ∈ (0, 1). Then, with probability 1− δ, we have∥∥∥X̃−X∗

∥∥∥
F
≤ ε ‖X∗‖F ,

where X̃ is given by Eq. (4.9) and X∗ is the optimal solution to
multiple response ridge regression Eq. (4.7).

Proof. Let the thin SVD of A be A = UΣVT . Fix an arbi-
trary i ∈ [m], consider the column vectors X̃(i) and X∗(i). By
definition, we can see that X∗(i) = AT (λIn + AAT )−1B(i) and

X̃(i) = AT (AST )†
T
(λ(AST )†

T
+ AST )†B(i).

Define G̃ = λΣ−1 + Σ(SV)T (SV) and G = λΣ−1 + Σ. Now, we
can regard B(i) as the target vector and then apply Lemma 4.3
on X∗(i) and Lemma 4.4 on X̃(i), respectively. This shows that
X∗(i) = VG−1UTB(i) and X̃(i) = VG̃−1UTB(i). Hence, combin-
ing all columns i ∈ [m], we have that X∗ = VG−1UTB and
X̃ = VG̃−1UTB.

Similar to the proof of Lemma 4.1, we recall the definition
R = G−1(G̃−G) and write G̃−1 = (I + R)−1G−1. Let ε′ = ε/4.
Then, we have∥∥∥X̃−X∗

∥∥∥
F

=
∥∥∥V(G̃−1 −G−1)UTB

∥∥∥
F
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=
∥∥∥(G̃−1 −G−1)UTB

∥∥∥
F

=
∥∥((I + R)−1 − I

)
G−1UTB

∥∥
F

=
∥∥(I + R)−1RG−1UTB

∥∥
F

(4.41)

≤
∥∥(I + R)−1R

∥∥
2

∥∥G−1UTB
∥∥
F

=
∥∥(I + R)−1R

∥∥
2
‖X∗‖F

≤ 2ε′ + ε′2

1− (2ε′ + ε′2)
‖X∗‖F (4.42)

≤ 4ε′ ‖X∗‖F
= ε ‖X∗‖F . (4.43)

where Eq. (4.41) follows from matrix inversion lemma and Eq. (4.42)
follows from Lemma 4.5 and the fact that S is an (r, δ, ε/4)-
OSE.

Now, Theorem 4.4 restated below is an immediate conse-
quence of Lemma 4.7.

Theorem 4.4. Given a full rank matrix A ∈ Rn×p, B ∈ Rn×m,
λ > 0, parameter ε ∈ (0, 1) and δ ∈ (0, 1). Select integers t′, t
such that t′ ≥ 2δ−1(n2 +n)/(ε/6− ε2/144)2 and t ≥ 72ε−1[

√
n+√

8 log(6p/δ)]2 log(6n/δ). Let S = ΦsrhtΦsparse, where Φsparse ∈
Rt′×p is a sparse embedding matrix and Φsrht ∈ Rt×t′ is an SRHT
matrix. Then, with probability at least 1− δ, we have∥∥∥X̃−X∗

∥∥∥
F
≤ ε ‖X∗‖F ,

where X̃ is given by Eq. (4.9) and X∗ is the optimal solution
to multiple response ridge regression Eq. (4.7). In addition, the
total time complexity of computing AST and X̃ is O(nnz(A) +
n3 log(nε )/ε

2 + nm).

Proof of Theorem 4.4. The bound on
∥∥∥X̃−X

∥∥∥
F

follows imme-

diately from Lemma 4.7 and Theorem 4.1 which shows that
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Figure 4.3: Relative-error of competing algorithms on realworld datasets

S = ΦsrhtΦsparse is an (n, δ, ε/4)-OSE. And the running time
analysis is similar to the one given in Section 4.2.

4.11 Experimental Results: Relative-error on

Realworld Datasets

In this section, we present the deferred experiment results of
relative-error of competing baselines on datasets ARCENE and
DOROTHEA. The experiment configuration is the same to Sec-
tion 4.5.2. Figure 4.3 plots the results. We see that, similar to
the results on the synthetic dataset, the relative-error decreases
as t increases. In addition, the sketching algorithm and the
projection algorithm outperform the sampling algorithm in
terms of accuracy on both datasets. Notice that, for moderately
large t, the sketching algorithm achieves a relative-error that
is smaller than 20% on both datasets.



Chapter 5

Recovery of Pairwise
Interaction Tensors

Tensor completion from incomplete observations is a problem of
significant practical interest. However, it is unlikely that there
exists an efficient algorithm with provable guarantee to recover
a general tensor from a limited number of observations. In this
chapter, we study the recovery algorithm for pairwise interac-
tion tensors, which has recently gained considerable attention
for modeling multiple attribute data due to its simplicity and
effectiveness. Specifically, in the absence of noise, we show that
one can exactly recover a pairwise interaction tensor by solving
a constrained convex program which minimizes the weighted
sum of nuclear norms of matrices from O(nr log2(n)) observa-
tions. For the noisy cases, we also prove error bounds for a con-
strained convex program for recovering the tensors. Our exper-
iments on the synthetic dataset demonstrate that the recovery
performance of our algorithm agrees well with the theory. In
addition, we apply our algorithm on a temporal collaborative
filtering task and obtain state-of-the-art results.

156
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5.1 Introduction

Many tasks of recommender systems can be formulated as re-
covering an unknown tensor (multi-way array) from a few obser-
vations of its entries [122, 152, 151, 135]. Recently, convex opti-
mization algorithms for recovering a matrix, which is a special
case of tensor, have been extensively studied [56, 142, 54]. More-
over, there are several theoretical developments that guarantee
exact recovery of most low-rank matrices from partial observa-
tions using nuclear norm minimization [68, 32]. These results
seem to suggest a promising direction to solve the general prob-
lem of tensor recovery.

However, there are inevitable obstacles to generalize the tech-
niques for matrix completion to tensor recovery, since a number
of fundamental computational problems of matrix is NP-hard in
their tensorial analogues [73]. For instance, H̊astad showed that
it is NP-hard to compute the rank of a given tensor [71]; Hillar
and Lim proved the NP-hardness to decompose a given tensor
into sum of rank-one tensors even if a tensor is fully observed
[73]. The existing evidence suggests that it is very unlikely that
there exists an efficient exact recovery algorithm for general ten-
sors with missing entries. Therefore, it is natural to ask whether
it is possible to identify a useful class of tensors for which we
can devise an exact recovery algorithm.

In this chapter, we focus on pairwise interaction tensors,
which have recently demonstrated strong performance in several
recommendation applications, e.g. tag recommendation [121] and
sequential data analysis [123]. Pairwise interaction tensors are a
special class of general tensors, which directly model the pair-
wise interactions between different attributes. Take movie rec-
ommendation as an example, to model a user’s ratings for movies
varying over time, a pairwise interaction tensor assumes that
each rating is determined by three factors: the user’s inherent
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preference on the movie, the movie’s trending popularity and
the user’s varying mood over time. Formally, pairwise interac-
tion tensor assumes that each entry Tijk of a tensor T of size
n1 × n2 × n3 is given by following

Tijk =
〈
u

(a)
i ,v

(a)
j

〉
+
〈
u

(b)
j ,v

(b)
k

〉
+
〈
u

(c)
k ,v

(c)
i

〉
,

for all (i, j, k) ∈ [n1]× [n2]× [n3],
(5.1)

where {u(a)
i }i∈[n1], {v

(a)
i }j∈[n2] are r1 dimensional vectors, {u(b)

j }j∈[n2],

{v(b)
k }k∈[n3] are r2 dimensional vectors and {u(c)

k }k∈[n3], {v
(c)
i }i∈[n1]

are r3 dimensional vectors, respectively. 1

The existing recovery algorithms for pairwise interaction ten-
sor use local optimization methods, which do not guarantee
the recovery performance [123, 121]. In this chapter, we de-
sign efficient recovery algorithms for pairwise interaction ten-
sors with rigorous guarantee. More specifically, in the absence
of noise, we show that one can exactly recover a pairwise in-
teraction tensor by solving a constrained convex program which
minimizes the weighted sum of nuclear norms of matrices from
O(nr log2(n)) observations, where n = max{n1, n2, n3} and r =
max{r1, r2, r3}. For noisy cases, we also prove error bounds for
a constrained convex program for recovering the tensors.

In the proof of our main results, we reformulated the recov-
ery problem as a constrained matrix completion problem with a
special observation operator. Previously, Gross et al. [68] have
showed that the nuclear norm heuristic can exactly recover low
rank matrix from a sufficient number of observations of an or-
thogonal observation operator. We note that the orthogonality is
critical to their argument. However, the observation operator, in
our case, turns out to be non-orthogonal, which becomes a major
challenge in our proof. In order to deal with the non-orthogonal
operator, we have substantially extended their technique in our

1For simplicity, we only consider three-way tensors in this chapter.
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proof. We believe that our technique can be generalized to han-
dle other matrix completion problem with non-orthogonal ob-
servation operators.

Moreover, we extend existing singular value thresholding method
to develop a simple and scalable algorithm for solving the re-
covery problem in both exact and noisy cases. Our experiments
on the synthetic dataset demonstrate that the recovery perfor-
mance of our algorithm agrees well with the theory. Finally, we
apply our algorithm on a temporal collaborative filtering task
and obtain state-of-the-art results.

5.2 Recovering pairwise interaction tensors

In this section, we first introduce the matrix formulation of pair-
wise interaction tensors and specify the recovery problem. Then
we discuss the sufficient conditions on pairwise interaction ten-
sors for which an exact recovery would be possible. After that
we formulate the convex program for solving the recovery prob-
lem and present our theoretical results on the sample bounds for
achieving an exact recovery. In addition, we also show a quadrat-
ically constrained convex program is stable for the recovery from
noisy observations.

A matrix formulation of pairwise interaction tensors.
The original formulation of pairwise interaction tensors by Ren-
dle et al. [121] is given by Eq. (5.1), in which each entry of a
tensor is the sum of inner products of feature vectors. We can
reformulate Eq. (5.1) more concisely using matrix notations. In
particular, we can rewrite Eq. (5.1) as follows

Tijk = Aij+Bjk+Cki, for all (i, j, k) ∈ [n1]× [n2]× [n3], (5.2)

where we set Aij =
〈
u

(a)
i ,v

(a)
j

〉
, Bjk =

〈
u

(b)
j ,v

(b)
k

〉
, and Cki =〈

u
(c)
k ,v

(c)
i

〉
for all (i, j, k). Clearly, matrices A,B and C are rank
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r1, r2 and r3 matrices, respectively.
We call tensor T ∈ Rn1×n2×n3 a pairwise interaction tensor,

which is denoted as T = Pair(A,B,C), if T obeys Eq. (5.2).
We note that this concise definition is equivalent to the original
one. In the rest of this chapter, we will exclusively use the matrix
formulation of pairwise interaction tensors.

Recovery problem. Suppose we have partial observations
of a pairwise interaction tensor T = Pair(A,B,C). We write
Ω ⊆ [n1] × [n2] × [n3] to be the set of indices of m observed
entries. In this work, we shall assume Ω is sampled uniformly
from the collection of all sets of size m. Our goal is to recover
matrices A,B,C and therefore the entire tensor T from exact
or noisy observations of {Tijk}(ijk)∈Ω.

Before we proceed to the recovery algorithm, we first discuss
when the recovery is possible.

Recoverability: uniqueness. The original recovery prob-
lem for pairwise interaction tensors is ill-posed due to a unique-
ness issue. In fact, for any pairwise interaction tensor T =
Pair(A,B,C), we can construct infinitely manly different sets of
matrices A′,B′,C′ such that Pair(A,B,C) = Pair(A′,B′,C′).
For example, we have Tijk = Aij + Bjk + Cki = (Aij + δai) +
Bjk+(Cki+(1−δ)ai), where δ 6= 0 can be any non-zero constant
and a is an arbitrary non-zero vector of size n1. Now, we can
construct A′,B′ and C′ by setting A′ij = Aij + δai, B

′
jk = Bjk

and C ′ki = Cki + (1− δ)ai. It is clear that T = Pair(A′,B′,C′).
This ambiguity prevents us to recover A,B,C even if T is

fully observed, since it is entirely possible to recover A′,B′,C′ in-
stead of A,B,C based on the observations. In order to avoid this
obstacle, we construct a set of constraints such that, given any
pairwise interaction tensor Pair(A,B,C), there exists unique
matrices A′,B′,C′ satisfying the constraints and obeys Pair(A,B,C) =
Pair(A′,B′,C′). Formally, we prove the following proposition.

Proposition 5.1. For any pairwise interaction tensor T =
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Pair(A,B,C), there exists unique A′ ∈ SA,B
′ ∈ SB,C

′ ∈ SC
such that Pair(A,B,C) = Pair(A′,B′,C′) where we define SB =
{M ∈ Rn2×n3 : 1TM = 0T},SC = {M ∈ Rn3×n1 : 1TM = 0T}
and SA = {M ∈ Rn1×n2 : 1TM =

(
1
n2

1TM1
)

1T}.

We point out that there is a natural connection between the
uniqueness issue and the “bias” components, which is a quan-
tity of much attention in the field of recommender system [88].
Due to lack of space, we defer the detailed discussion on this
connection and the proof of Proposition 5.1 to Section 5.8.

Recoverability: incoherence. It is easy to see that recov-
ering a pairwise tensor T = Pair(A,0,0) is equivalent to re-
cover the matrix A from a subset of its entries. Therefore, the
recovery problem of pairwise interaction tensors subsumes ma-
trix completion problem as a special case. Previous studies have
confirmed that the incoherence condition is an essential require-
ment on the matrix in order to guarantee a successful recovery
of matrices. This condition can be stated as follows.

Let M = UΣVT be the singular value decomposition of a
rank r matrix M. We call matrix M is (µ0, µ1)-incoherent if M
satisfies:

A0. For all i ∈ [n1] and j ∈ [n2], we have n1
r

∑
k∈[r] U

2
ik ≤ µ0

and n2
r

∑
k∈[r] V

2
jk ≤ µ0.

A1. The maximum entry of UVT is bounded by µ1

√
r/(n1n2)

in absolute value.
It is well known the recovery is possible only if the ma-

trix is (µ0, µ1)-incoherent for bounded µ0, µ1 (i.e, µ0, µ1 is poly-
logarithmic with respect to n). Since the matrix completion
problem is reducible to the recovery problem for pairwise inter-
action tensors, our theoretical result will inherit the incoherence
assumptions on matrices A,B,C.

Exact recovery in the absence of noise. We first con-
sider the scenario where the observations are exact. Specifi-
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cally, suppose we are given m observations {Tijk}(ijk)∈Ω, where
Ω is sampled from uniformly at random from [n1]× [n2]× [n3].
We propose to recover matrices A,B,C and therefore tensor
T = Pair(A,B,C) using the following convex program,

minimize
X∈SA,Y∈SB ,Z∈SC

√
n3 ‖X‖∗ +

√
n1 ‖Y‖∗ +

√
n2 ‖Z‖∗ (5.3)

subject to Xij + Yjk + Zki = Tijk, (i, j, k) ∈ Ω,

where ‖M‖∗ denotes the nuclear norm of matrix M, which is
the sum of singular values of M, and SA, SB, SC is defined in
Proposition 5.1.

We show that, under the incoherence conditions, the above
nuclear norm minimization method successful recovers a pair-
wise interaction tensor T when the number of observations m is
O(nr log2 n) with high probability.

Theorem 5.1. Let T ∈ Rn1×n2×n3 be a pairwise interaction ten-
sor T = Pair(A,B,C) and A ∈ SA,B ∈ SB,C ∈ SC as de-
fined in Proposition 5.1. Without loss of generality assume that
9 ≤ n1 ≤ n2 ≤ n3. Suppose we observed m entries of T with the
locations sampled uniformly at random from [n1]×[n2]×[n3] and
also suppose that each of A,B,C is (µ0, µ1)-incoherent. Then,
there exists a universal constant C, such that if

m > C max{µ2
1, µ0}n3rβ log2(6n3),

where r = max{rank(A), rank(B), rank(C)} and β > 2 is a pa-
rameter, the minimizing solution X,Y,Z for program Eq. (5.3)
is unique and satisfies X = A,Y = B,Z = C with probability
at least 1− log(6n3)6n

2−β
3 − 3n2−β

3 .

Stable recovery in the presence of noise. Now, we move
to the case where the observations are perturbed by noise with
bounded energy. In particular, our noisy model assumes that we
observe

T̂ijk = Tijk + σijk, for all (i, j, k) ∈ Ω, (5.4)
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where σijk is a noise term, which maybe deterministic or stochas-
tic. We assume σ has bounded energy on Ω and specifically that
‖PΩ(σ)‖F ≤ ε1 for some ε1 > 0, where PΩ(·) denotes the re-
striction on Ω. Under this assumption on the observations, we
derive the error bound of the following quadratically-constrained
convex program, which recover T from the noisy observations.

minimize
X∈SA,Y∈SB ,Z∈SC

√
n3 ‖X‖∗ +

√
n1 ‖Y‖∗ +

√
n2 ‖Z‖∗ (5.5)

subject to
∥∥∥PΩ(Pair(X,Y,Z))− PΩ(T̂ )

∥∥∥
F
≤ ε2.

Theorem 5.2. Let T = Pair(A,B,C) and A ∈ SA,B ∈ SB,C ∈
SC. Let Ω be the set of observations as described in Theorem 5.1.
Suppose we observe T̂ijk for (i, j, k) ∈ Ω as defined in Eq. (5.4)
and also assume that ‖PΩ(σ)‖F ≤ ε1 holds. Denote the recon-
struction error of the optimal solution X,Y,Z of convex pro-
gram Eq. (5.5) as E = Pair(X,Y,Z) − T . Also assume that
ε1 ≤ ε2. Then, we have

‖E‖∗ ≤ 5

√
2rn1n2

2

8β log(n1)
(ε1 + ε2),

with probability at least 1− log(6n3)6n
2−β
3 − 3n2−β

3 .

The proof of Theorem 5.1 and Theorem 5.2 is available in
Section 5.6 and Section 5.7.

Related work. Rendle et al. [121] proposed pairwise inter-
action tensors as a model used for tag recommendation. In a
subsequent work, Rendle et al. [123] applied pairwise interac-
tion tensors in the sequential analysis of purchase data. In both
applications, their methods using pairwise interaction tensor
demonstrated excellent performance. However, their algorithms
are prone to local optimal issues and the recovered tensor might
be very different from its true value. In contrast, our main re-
sults, Theorem 5.1 and Theorem 5.2, guarantee that a convex
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program can exactly or accurately recover the pairwise inter-
action tensors from O(nr log2(n)) observations. In this sense,
our work can be considered as a more effective way to recover
pairwise interaction tensors from partial observations.

In practice, various tensor factorization methods are used for
estimating missing entries of tensors [85, 134, 3, 152, 115]. In
addition, inspired by the success of nuclear norm minimization
heuristics in matrix completion, several work used a generalized
nuclear norm for tensor recovery [147, 148, 98]. However, these
work do not guarantee exact recovery of tensors from partial
observations.

5.3 Scalable optimization algorithm

There are several possible methods to solving the optimization
problems Eq. (5.3) and Eq. (5.5). For small problem sizes, one
may reformulate the optimization problems as semi-definite pro-
grams and solve them using interior point method. The state-
of-the-art interior point solvers offer excellent accuracy for find-
ing the optimal solution. However, these solvers become pro-
hibitively slow for pairwise interaction tensors larger than 100×
100×100. In order to apply the recover algorithms on large scale
pairwise interaction tensors, we use singular value thresholding
(SVT) algorithm proposed recently by Cai et al. [30], which is a
first-order method with promising performance for solving nu-
clear norm minimization problems.

We first discuss the SVT algorithm for solving the exact com-
pletion problem Eq. (5.3). For convenience, we reformulate the
original optimization objective Eq. (5.3) as follows,

minimize
X∈SA,Y∈SB ,Z∈SC

‖X‖∗ + ‖Y‖∗ + ‖Z‖∗ (5.6)

subject to
Xij√
n3

+
Yjk√
n1

+
Zki√
n2

= Tijk, (i, j, k) ∈ Ω,
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where we have incorporated coefficients on the nuclear norm
terms into the constraints. It is easy to see that the recovered
tensor is given by Pair(n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z), where X,Y,Z

is the optimal solution of Eq. (5.6). Our algorithm solves a
slightly relaxed version of the reformulated objective Eq. (5.6),

minimize
X∈SA,Y∈SB ,Z∈SC

τ (‖X‖∗ + ‖Y‖∗ + ‖Z‖∗) +
1

2

(
‖X‖2

F + ‖Y‖2
F + ‖Z‖2

F

)
(5.7)

subject to
Xij√
n3

+
Yjk√
n1

+
Zki√
n2

= Tijk, (i, j, k) ∈ Ω.

It is easy to see that Eq. (5.7) is closely related to Eq. (5.6) and
the original problem Eq. (5.3), as the relaxed problem converges
to the original one as τ → ∞. Therefore by selecting a large
value the parameter τ , a minimizing solution to Eq. (5.7) nearly
minimizes Eq. (5.3).

Our algorithm iteratively minimizes Eq. (5.7) and produces
a sequence of matrices {Xk,Yk,Zk} converging to the opti-
mal solution (X,Y,Z) that minimizes Eq. (5.7). We begin with
several definitions. For observations Ω = {ai, bi, ci|i ∈ [m]},
let operators PΩA : Rn1×n2 → Rm, PΩB : Rn2×n3 → Rm and
PΩC : Rn3×n1 → Rm represents the influence of X,Y,Z on the
m observations. In particular,

PΩA(X) =
1
√
n3

m∑
i=1

Xaibiδi, PΩB(Y) =
1
√
n1

m∑
i=1

Ybiciδi, and

PΩC(Z) =
1
√
n2

m∑
i=1

Zciaiδi.

It is easy to verify that

PΩA(X)+PΩB(Y)+PΩC(Z) = PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z)).

We also denote P∗ΩA be the adjoint operator of PΩA and simi-
larly define P∗ΩB and P∗ΩC . Finally, for a matrix X for size n1 ×
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n2, we define center(X) = X − 1
n1

11TX as the column center-
ing operator that removes the mean of each n2 columns, i.e.,
1T center(X) = 0T .

Starting with y0 = 0 and k = 1, our algorithm iteratively
computes

Step (1). Xk = shrinkA(P∗ΩA(yk−1), τ),

Yk = shrinkB(P∗ΩB(yk−1), τ),

Zk = shrinkC(P∗ΩC(yk−1), τ),

Step (2e). ek = PΩ(T )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z))

yk = yk−1 + δek.

Here shrinkA is a shrinkage operator defined as follows

shrinkA(M, τ) , arg min
M̃∈SA

1

2

∥∥∥M̃−M
∥∥∥2

F
+ τ

∥∥∥M̃∥∥∥
∗
. (5.8)

Shrinkage operators shrinkB and shrinkC are defined similarly
except they require M̃ belongs SB and SC , respectively. We note
that our definition of the shrinkage operators shrinkA, shrinkB
and shrinkC are slightly different from that of the original SVT
[30] algorithm, where M̃ is unconstrained. We can show that
our constrained version of shrinkage operators can also be cal-
culated using singular value decompositions of column centered
matrices.

Let the SVD of the column centered matrix center(M) be
center(M) = UΣVT , Σ = diag({σi}). We can prove that the
shrinkage operator shrinkB is given by

shrinkB(M, τ) = U diag({σi − τ}+)VT , (5.9)

where s+ is the positive part of s, that is, s+ = max{0, s}. Since
subspace SC is structurally identical to SB, it is easy to see that
the calculation of shrinkC is identical to that of shrinkB. The
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computation of shrinkA is a little more complicated. We have

shrinkA(M, τ) = U diag({σi−τ}+)VT+
1

√
n1n2

({δ − τ}+ + {δ + τ}−) 11T ,

(5.10)
where UΣVT is still the SVD of center(M), δ = 1√

n1n2
1TM1 is

a constant and s− = min{0, s} is the negative part of s. The
algorithm iterates between Step (1) and Step (2e) and produces
a series of (Xk,Yk,Zk) converging to the optimal solution of
Eq. (5.7). The iterative procedure terminates when the training
error is small enough, namely,

∥∥ek∥∥
F
≤ ε. We refer interested

readers to [30] for a convergence proof of the SVT algorithm.
The optimization problem for noisy completion Eq. (5.5) can

be solved in a similar manner. We only need to modify Step (2e)
to incorporate the quadratical constraint of Eq. (5.5) as follows

Step (2n). ek = PΩ(T̂ )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z))[

yk

sk

]
= PK

([
yk−1

sk−1

]
+ δ

[
ek

−ε

])
,

where PΩ(T̂ ) is the noisy observations and the cone projection
operator PK can be explicitly computed by

PK : (x, t)→


(x, t) if ‖x‖ ≤ t,
‖x‖+t
2‖x‖ (x, ‖x‖) if − ‖x‖ ≤ t ≤ ‖x‖ ,

(0, 0) if t ≤ −‖x‖ .

By iterating between Step (1) and Step (2n) and selecting a suffi-
ciently large τ , the algorithm generates a sequence of {Xk,Yk,Zk}
that converges to a nearly optimal solution to the noisy comple-
tion program Eq. (5.5) [30]. We have also included a detailed
description of both algorithms in Section 5.9.

At each iteration, we need to compute one singular value
decomposition and perform a few elementary matrix additions.
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We can see that for each iteration k, Xk vanishes outside of
ΩA = {aibi} and is sparse. Similarly Yk,Zk are also sparse matri-
ces. Previously, we showed that the computation of shrinkage op-
erators requires a SVD of a column centered matrix center(M)−
1
n1

11TX, which is the sum of a sparse matrix M and a rank-
one matrix. Clearly the matrix-vector multiplication of the form
center(M)v can be computed with time O(n+m). This enables
the use of Lanczos method based SVD implementations for ex-
ample PROPACK [92] and SVDPACKC [20], which only needs
subroutine of calculating matrix-vector products. In our imple-
mentation, we develop a customized version of SVDPACKC for
computing the shrinkage operators. Further, for an appropriate
choice of τ , {Xk,Yk,Zk} turned out to be low rank matrices,
which matches the observations in the original SVT algorithm
[30]. Hence, the storage cost Xk,Yk,Zk can be kept low and we
only need to perform a partial SVD to get the first r singular
vectors. The estimated rank r is gradually increased during the
iterations using a similar method suggested in [30, Section 5.1.1].
We can see that, in sum, the overall complexity per iteration of
the recovery algorithm is O(r(n+m)).

5.4 Experiments

Phase transition in exact recovery. We investigate how the
number of measurements affects the success of exact recovery.
In this simulation, we fixed n1 = 100, n2 = 150, n3 = 200 and
r1 = r2 = r3 = r. We tested a variety of choices of (r,m) and
for each choice of (r,m), we repeat the procedure for 10 times.
At each time, we randomly generated A ∈ SA,B ∈ SB,C ∈ SC
of rank r. We generated A ∈ SA by sampling two factor ma-
trices UA ∈ Rn1×r,VA ∈ Rn2×r with i.i.d. standard Gaussian
entries and setting A = PSA(UAVT

A), where PSA is the or-
thogonal projection onto subspace SA. Matrices B ∈ SB and
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C ∈ SC are sampled in a similar way. We uniformly sampled a
subset Ω of m entries and reveal them to the recovery algorithm.
We deemed A,B,C successfully recovered if (‖A‖F + ‖B‖F +
‖C‖F )−1(‖X−A‖F + ‖Y −B‖F + ‖Z−C‖F ) ≤ 10−3, where
X,Y and Z are the recovered matrices. Finally, we set the pa-
rameters τ, δ of the exact recovery algorithm by τ = 10

√
n1n2n3

and δ = 0.9m(n1n2n3)
−1.

Figure 5.1 shows the results of these experiments. The x-
axis is the ratio between the number of measurements m and
the degree of freedom d = r(n1 + n2 − r) + r(n2 + n3 − r) +
r(n3 + n1 − r). Note that a value of x-axis smaller than one
corresponds to a case where there is infinite number of solutions
satisfying given entries. The y-axis is the rank r of the synthetic
matrices. The color of each grid indicates the empirical success
rate. White denotes exact recovery in all 10 experiments, and
black denotes failure for all experiments. From Figure 5.1 (Left),
we can see that the algorithm succeeded almost certainly when
the number of measurements is 2.5 times or larger than the
degree of freedom for most parameter settings. We also observe
that, near the boundary of m/d ≈ 2.5, there is a relatively sharp
phase transition. To verify this phenomenon, we repeated the
experiments, but only vary m/d between 1.5 and 3.0 with finer
steps. The results on Figure 5.1 (Right) shows that the phase
transition continued to be sharp at a higher resolution.

Stability of recovering from noisy data. In this simu-
lation, we show the recovery performance with respect to noisy
data. Again, we fixed n1 = 100, n2 = 150, n3 = 200 and r1 =
r2 = r3 = r and tested against different choices of (r,m). For
each choice of (r,m), we sampled the ground truth A,B,C using
the same method as in the previous simulation. We generated Ω
uniformly at random. For each entry (i, j, k) ∈ Ω, we simulated
the noisy observation T̂ijk = Tijk+εijk, where εijk is a zero-mean
Gaussian random variable with variance σ2

n. Then, we revealed
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{T̂ijk}(ijk)∈Ω to the noisy recovery algorithm and collect the re-
covered matrix X,Y,Z. The error of recovery result is measured
by (‖X−A‖F+‖Y −B‖F+‖Z−C‖F )/(‖A‖F+‖B‖F+‖C‖F ).
We tested the algorithm with a range of noise levels and for each
different configuration of (r,m, σ2

n), we repeated the experiments
for 10 times and recorded the mean and standard deviation of
the relative error.

noise level relative error
0.1 0.1020± 0.0005
0.2 0.1972± 0.0007
0.3 0.2877± 0.0011
0.4 0.3720± 0.0015
0.5 0.4524± 0.0015

(a) Fix r = 20, m = 5d and noise level varies.

observations m relative error
m = 3d 0.1445± 0.0008
m = 4d 0.1153± 0.0006
m = 5d 0.1015± 0.0004
m = 6d 0.0940± 0.0007
m = 7d 0.0920± 0.0011

(b) Fix r = 20, 0.1 noise level and m varies.

rank r relative error
10 0.1134± 0.0006
20 0.1018± 0.0007
30 0.0973± 0.0037
40 0.1032± 0.0212
50 0.1520± 0.0344

(c) Fix m = 5d, 0.1 noise level and r varies.

Table 5.1: Simulation results of noisy data.

We present the result of the experiments in Table 5.1. From
the results in Table 5.1(a), we can see that the error in the solu-
tion is proportional to the noise level. Table 5.1(b) indicates that
the recovery is not reliable when we have too few observations,
while the performance of the algorithm is much more stable for
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a sufficient number of observations around four times of the de-
gree of freedom. Table 5.1(c) shows that the recovery error is
not affected much by the rank, as the number of observations
scales with the degree of freedom in our setting.

Temporal collaborative filtering. In order to demonstrate
the performance of pairwise interaction tensor on real world ap-
plications, we conducted experiments on the Movielens dataset.
The MovieLens dataset contains 1,000,209 ratings from 6,040
users and 3,706 movies from April, 2000 and February, 2003.
Each rating from Movielens dataset is accompanied with time in-
formation provided in seconds. We transformed each timestamp
into its corresponding calendar month. We randomly select 10%
ratings as test set and use the rest of the ratings as training set.
In the end, we obtained a tensor T of size 6040× 3706× 36, in
which the axes corresponded to user, movie and timestamp re-
spectively, with 0.104% observed entries as the training set. We
applied the noisy recovery algorithm on the training set. Fol-
lowing previous studies which applies SVT algorithm on movie
recommendation datasets [76], we used a pre-specified trunca-
tion level r for computing SVD in each iteration, i.e., we only
kept top r singular vectors. Therefore, the rank of recovered
matrices are at most r.

We evaluated the prediction performance in terms of root
mean squared error (RMSE). We compared our algorithm with
noisy matrix completion method using standard SVT optimiza-
tion algorithm [30, 31] to the same dataset while ignore the time
information. Here we can regard the noisy matrix completion al-
gorithm as a special case of the recover a pairwise interaction
tensor of size 6040 × 3706 × 1, i.e., the time information is ig-
nored. We also noted that the training tensor had more than
one million observed entries and 80 millions total entries. This
scale made a number of tensor recovery algorithms, for example
Tucker decomposition and PARAFAC [85], impractical to apply
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on the dataset. In contrast, our recovery algorithm took 2430
seconds to finish on a standard workstation for truncation level
r = 100.

The experimental result is shown in Figure 5.2. The empir-
ical result of Figure 5.2(a) suggests that, by incorporating the
temporal information, pairwise interaction tensor recovery algo-
rithm consistently outperformed the matrix completion method.
Interestingly, we can see that, for most parameter settings in
Figure 5.2(b), our algorithm recovered a rank 2 matrix Y rep-
resenting the change of movie popularity over time and a rank
15 matrix Z that encodes the change of user interests over time.
The reason of the improvement on the prediction performance
may be that the recovered matrix Y and Z provided meaningful
signal. Finally, we note that our algorithm achieves a RMSE of
0.858 when the truncation level is set to 50, which slightly out-
performs the RMSE=0.861 (quote from Figure 7 of the paper)
result of 30-dimensional Bayesian Probabilistic Tensor Factor-
ization (BPTF) on the same dataset, where the authors predict
the ratings by factorizing a 6040×3706×36 tensor using BPTF
method [152]. We may attribute the performance gain to the
modeling flexibility of pairwise interaction tensor and the learn-
ing guarantees of our algorithm.

5.5 Conclusion

In this chapter, we proved rigorous guarantees for convex pro-
grams for recovery of pairwise interaction tensors with missing
entries, both in the absence and in the presence of noise. We de-
signed a scalable optimization algorithm for solving the convex
programs. We supplemented our theoretical results with simula-
tion experiments and a real-world application to movie recom-
mendation. In the noiseless case, simulations showed that the
exact recovery almost always succeeded if the number of ob-
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servations is a constant time of the degree of freedom, which
agrees asymptotically with the theoretical result. In the noisy
case, the simulation results confirmed that the stable recovery
algorithm is able to reliably recover pairwise interaction tensor
from noisy observations. Our results on the temporal movie rec-
ommendation application demonstrated that, by incorporating
the temporal information, our algorithm outperforms conven-
tional matrix completion and achieves state-of-the-art results.

5.6 Proof of Theorem 5.1

Sampling model. Recall that Theorem 5.1 assumed that Ω
is sampled uniformly at random from the collection of all set
of size m. This uniform sampling model turns out to be awk-
ward to deal with. Following the strategy of [68, 119], we use the
sampling with replacement model on Ω as a proxy for uniform
sampling. This differs from the earlier approach by [32] where
the authors used a Bernoulli sampling model as a proxy for uni-
form sampling model. The sampling with replacement model has
enabled a significant simplification on the proof and therefore we
shall follow this model in the rest of our proof. Specifically, we
consider the case where the index of each observation is sampled
independently and uniformly from the set [n1]× [n2]× [n3]. Note
that, in expectation, the sampling with replacement model is the
same with uniform sampling model. It may appear to be trou-
blesome since the sampling with replacement model can lead to
duplicated entires. However, the following lemma allows us to
bound the probability of failure when sampling with replace-
ment by the likelihood of error under uniform sampling model.

Lemma 5.1. ([119, Proposition 3.1]) The probability that the
recovery algorithm Eq. (5.3) fails when Ω is sampled uniformly
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from the collection of sets of size m is no larger than the prob-
ability that the algorithm fails when each index of Ω is sampled
independently and uniformly.

Proof. The proof is similar to [36, Section ii.C] and [119, Propo-
sition 3.1]. Let Ω′ be a collection of indices sampled independent
and uniformly from the set [n1]× [n2]× [n3]. Also denote Ωk as
a set of entries of size k sampled uniformly at random from all
sets of entries of size k. Then, we have

Pr(Failure(Ω′)) =
m∑
k=0

Pr(Failure(Ω′)||Ω′| = k) Pr(|Ω′| = k)

=
m∑
k=0

Pr(Failure(Ωk)) Pr(|Ω′| = k)

≥ Pr(Failure(Ωm))
m∑
k=0

Pr(|Ω′| = k)

= Pr(Failure(Ωm)).

Therefore, the probability of failure when sampling with re-
placement is larger than that under uniform sampling model.
Hence, we only need to upper bound the failure probability un-
der sampling with replacement model to prove Theorem 5.1. In
the rest of this chapter, we will consider solely sampling with
replacement model.

Preliminaries. In order to present the proof, we require sev-
eral additional notations. We shall slightly abuse the notation
and denote ek be the kth standard basis vector, equal to 1 in
kth entry and 0 everywhere else. Denote δij = eie

T
j be the ma-

trix which equals to 1 in entry (i, j) and 0 in other entries. The
dimension of ek and δij shall be clear from context.

Let Ω = {(ai, bi, ci)}i∈[m], where each (ai, bi, ci) is sampled
independently and uniformly at random from [n1]× [n2]× [n3].
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We define the operator RΩ : Rn1×n2 ⊗Rn2×n3 ⊗Rn3×n1 → Rm to
be

RΩ(X,Y,Z) =
m∑
i=1

1
√
n3
〈X, δaibi〉+

1
√
n1
〈Y, δbici〉+

1
√
n2
〈Z, δciai〉 .

(5.11)
Then, the original convex program Eq. (5.3) can be reformulated
as

minimize
X∈SA,Y∈SB ,Z∈SC

‖X‖∗ + ‖Y‖∗ + ‖Z‖∗ (5.12)

subject to RΩ(X,Y,Z) = t,

where ti = Taibici is the ith observation of T . Note that the
scaling coefficients on X,Y,Z have been incorporated into RΩ.

In order to further simplify the notations, we consider the
following block diagonal matrix

M =

 X
Y

Z

 ,
or more compactly M = diag(X,Y,Z). It is clear that ‖M‖∗ =

‖X‖∗+‖Y‖∗+‖Z‖∗. Now, denote δ
(A)
ab , diag(δab,0n2×n3,0n3×n1)

where δ
(A)
ab is a n1×n2 matrix and 0n2×n3 and 0n3×n1 are zero ma-

trices of size n2×n3 and n3×n1, respectively. Similarly, we define
define δ

(B)
bc , diag(0n1×n2, δbc,0n3×n1) and δ

(C)
ca , diag(0n1×n2,0n2×n3, δca).

Now, we have

M =
∑
ab

〈
X, δ

(A)
ab

〉
+
∑
bc

〈
Y, δ

(B)
bc

〉
+
∑
ca

〈
Z, δ(C)

ca

〉
.

Then, we may equivalently define RΩ by

RΩ(M) =
m∑
i=1

1
√
n3

〈
M, δ

(A)
aibi

〉
+

1
√
n1

〈
M, δ

(B)
bici

〉
+

1
√
n2

〈
M, δ(C)

ciai

〉
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=
m∑
i=1

〈
M,

1
√
n3
δ

(A)
aibi

+
1
√
n1
δ

(B)
bici

+
1
√
n2
δ(C)
ciai

〉
,

m∑
i=1

〈M, σaibici〉 , (5.13)

where in the last equation, we have defined

σaibici ,
1
√
n3
δ

(A)
aibi

+
1
√
n1
δ

(B)
bici

+
1
√
n2
δ(C)
ciai
. (5.14)

Note that we have RΩ(M) = RΩ(X,Y,Z). Therefore, we can
further rewrite the convex program as

minimize
M∈S

‖M‖∗ (5.15)

subject to RΩ(M) = t,

where we have define the linear subspace S as the product space
of SA, SB and SC , namely,

S = {diag(A,B,C) : A ∈ SA,B ∈ SB,C ∈ SC}.

Hence, M ∈ S if and only if M is a block diagonal matrix
diag(X,Y,Z) and X ∈ SA, Y ∈ SB and Z ∈ SC . For conve-
nience, we also define the orthogonal complement S⊥ by

S⊥ = {diag(A,B,C) : A ∈ S⊥A ,B ∈ S⊥B ,C ∈ S⊥C}.

Indeed, the convex program Eq. (5.15), despite the constraint
M ∈ S, seems to be very similar to the standard nuclear norm
heuristic to matrix completion problem. However, we found the
major challenge here is that the observation operator RΩ is non-
orthogonal. Previously, Gross et al. [68] showed that the nuclear
norm heuristic leads to exact recovery when the observation op-
erator is orthogonal. The orthogonality of observation operator
is critical to their argument and therefore their proof cannot be
directly applied to our problem. In this work, we extend their
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technique to deal with the non-orthogonal operator RΩ. It turns
out that the constraint M ∈ S plays a vital role in the argument
which is unknown in previous work of matrix completion.

In the rest of chapter, we shall consider the following singular
value decompositions of A,B,C

A = UAΣAVT
A, B = UBΣBVT

B, C = UCΣCVT
C .

Recall that we have defined SB = {M ∈ Rn2×n3 : 1TM = 0T},
SC = {M ∈ Rn3×n1 : 1TM = 0T} and SA = {M ∈ Rn1×n2 :

1TM =
(

1
n2

1TM1
)

1T}. Now, we introduce the orthogonal de-

compositions of SA = TA ⊕ T⊥A , SB = TB ⊕ T⊥B and SC =
TC ⊕ T⊥C , where TA is the linear space TA = {UAYT + XVT

A :
∀X,Y}∩SA and T⊥A is the orthogonal complement (and respec-
tively TB, TC , T

⊥
B , T

⊥
C ) are defined similarly. Analogous to the

definition of S, we define subspace T as

T = {diag(A,B,C) : A ∈ TA,B ∈ TB,C ∈ TC}.

We also denote the orthogonal complement of T as T⊥ which is
defined in a similar way.

Further, the orthogonal projection operator onto TA is given
by

PTA(Z) = PUAPSA(Z) + PSA(Z)PVA −PUAPSA(Z)PVA,

where PUA, PVA are the orthogonal projections onto UA and VA
respectively and PSA is the orthogonal projection onto SA. By
simple calculation, we can derive

PSA(A) = A− 1

n1
1T1A +

1

n1n2
(1TA1)1T1.

Similarly, we can derive the orthogonal projection operator PTB
(respectively PTC) onto TB (respectively TC) as PTB(Z) = PUBPSB(Z)+
PSB(Z)PVB−PUBPSB(Z)PVB and PTC(Z) = PUCPSC(Z)+PSC(Z)PVC−
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PUCPSC(Z)PVC , where PSB(B) = B − 1
n2

1T1B and PSC(C) =

C− 1
n3

1T1C.
In addition, we also consider the orthogonal decomposition

Rn1×n2 = SA⊕S⊥A (respectively SB,S⊥B , SC , S⊥C ). The orthogonal
projection operator PS⊥A , PS⊥B and PS⊥C are given by

PS⊥A (A) = (I − PSA)(A) =
1

n1
1T1A− 1

n1n2
(1TA1)1T1,

and

PS⊥B (B) =
1

n2
1T1B, PS⊥C (C) =

1

n3
1T1C.

Moreover, we can derive the orthogonal projection operators PS
as PS(diag(X,Y,Z)) = diag(PSA(X),PSB(Y),PSC(Z)). The or-
thogonal projection operators PT ,PS⊥ and PT⊥ can also be de-
rived similarly.

To proceed, we shall need one additional tool, the non-commutative
Bernstein inequality.

Theorem 5.3. (Non-commutative Bernstein inequality [119, The-
orem 3.2]) Let X1, . . . ,Xm be independent zero mean random
matrices of dimension d1×d2. Suppose ρ2

k = max{
∥∥E[XkX

T
k ]
∥∥ ,∥∥E[XT

kXk]
∥∥}

and ‖Xk‖ ≤M almost surely for every k. Then, for any τ > 0,

Pr

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥ > τ

]
≤ (d1 + d2) exp

(
−τ 2/2∑m

k=1 ρ
2
k +Mτ/3

)
.

We omit the proof of the non-commutative Bernstein inequal-
ity. For details, readers may refer to [119, Appendix A] and
[4]. Furthermore, the righthand side is always less than (d1 +
d2) exp(−3

8τ
2/(
∑m

k=1 ρ
2
k)) when τ ≤ 1

M

∑m
k=1 ρ

2
k. In our proof, we

will solely rely on the condensed version of non-commutative
Bernstein inequality.

We are now ready to state the proof of Theorem 5.1. First,
in the following theorem, we show that if there exists a “dual
certificate”, the solution to convex program Eq. (5.3) is unique
and exactly recovers the pairwise interaction tensor.
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Theorem 5.4. Let r = max{r1, r2, r3}. Let W = diag(UAVT
A,UBVT

B,UCVT
C)

be a block diagonal matrix. Suppose that there exists a “dual cer-
tificate” F ∈ range(R∗Ω) such that

‖PT (F)−W‖F ≤
√

r

2n3
, ‖PT⊥(F)‖ < 1

2

And also suppose that

1

2
‖PT⊥(E)‖∗ >

√
r

2n3
‖PT (E)‖F

holds for any E ∈ ker(RΩ). Then, the A,B,C is the unique
minimizing solution of Eq. (5.3).

Proof. Let M = diag
(√

n3A,
√
n1B,

√
n2C

)
be a block diago-

nal matrix. By the definition of nuclear norm, we have ‖M‖∗ =√
n3 ‖A‖∗+

√
n1 ‖B‖∗+

√
n2 ‖C‖∗. Now, consider for any block

diagonal matrix E = diag(EA,EB,EC) such that E ∈ ker(RΩ).
Pick UA⊥ and VA⊥ such that [UA,UA⊥] and [VA,VA⊥] are

unitary matrices and
〈
UA⊥V

T
A⊥,PT⊥A (EA)

〉
=
∥∥∥PT⊥A (E)

∥∥∥
∗
. Also

pick UB⊥,VB⊥,UC⊥,VC⊥ similarly. Let W⊥ = diag(UA⊥V
T
A⊥,UB⊥V

T
B⊥,UC⊥V

T
C⊥).

We have W⊥ ∈ T⊥ and 〈W⊥,PT⊥(E)〉 = ‖PT⊥(E)‖∗. Also note
the fact that 〈F,E〉 = 0 since F ∈ range(RT

Ω) and E ∈ ker(RΩ).
Then it follows that,

‖M + E‖∗
≥〈W + W⊥,M + E〉
= ‖M‖∗ + 〈W + W⊥,E〉
= ‖M‖∗ + 〈W + W⊥ − F,E〉
= ‖M‖∗ + 〈W + W⊥ − F,PT (E) + PT⊥(E) + PS⊥(E)〉
= ‖M‖∗ + 〈W − PT (F),PT (E)〉+ 〈W⊥ − PT⊥(F),PT⊥(E)〉
= ‖M‖∗ − 〈PT (F)−W,PT (E)〉+ 〈W⊥,PT⊥(E)〉
− 〈PT⊥(F),PT⊥(E)〉
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≥‖M‖∗ − ‖PT (F)−W‖F ‖PT (E)‖F + ‖PT⊥(E)‖∗
− ‖PT⊥(F)‖ ‖PT⊥(E)‖∗

> ‖M‖∗ −
√

r

2n3
‖PT (E)‖F +

1

2
‖PT⊥(E)‖∗

≥‖M‖∗ =
√
n3 ‖A‖∗ +

√
n1 ‖B‖∗ +

√
n2 ‖C‖∗ ,

where the first inequality follows from the variational character-
ization of nuclear norm ‖M + E‖∗ = sup‖Q‖=1 〈Q,M + E〉. We
have also used the fact that E ∈ S and therefore PS⊥(E) = 0.
Therefore, if there exists any X,Y,Z obeyingRΩ(diag(

√
n3(X−

A),
√
n1(Y−B),

√
n2(Z−C)) = 0, or equivalently 1√

n3

√
n3(Xij−

Aij)+
1√
n1

√
n1(Yjk−Bjk)+

1√
n2

√
n2(Zki−Cki) = 0 for all (i, j, k) ∈

Ω, we would have ‖X‖∗+‖Y‖∗+‖Z‖∗ > ‖A‖∗+‖B‖∗+‖C‖∗. In
other words, if X,Y,Z statisifes Xij+Yjk+Zki = Aij+Bjk+Cki
for any (i, j, k) ∈ Ω, the weighted sum of the nuclear norm
of X,Y and Z would be strictly larger than that of A,B and
C. Therefore, A,B and C is the unique minimizer of program
Eq. (5.3).

Therefore, we remain to show that such a dual certificate F
exists with high probability. The proof relies on a series of appli-
cations of noncommutative Bernstein inequality and the clever
golfing scheme proposed by [68]. We begin with an elementary
bound on ‖PT (σabc)‖F .

Proposition 5.2. Suppose that A,B,C are (µ0, µ1)-incoherent.
Then, for any (a, b, c) ∈ [n1]×[n2]×[n3], the length of orthogonal
projection of σabc onto space T is bounded by

‖PT (σabc)‖2
F ≤

28µ0r

n1n2
,

where σabc , 1√
n3
δ

(A)
ab + 1√

n1
δ

(B)
bc + 1√

n2
δ

(C)
ca .
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Proof. By definition, we have ‖PT (σabc)‖2
F = 1

n3
‖PTA(δab)‖2

F +
1
n1
‖PTB(δbc)‖2

F + 1
n2
‖PTC(δca)‖2

F . Therefore, it suffices to bound
these terms individually.

We first deal with ‖PTB(δbc)‖F . It can be decomposed as

‖PTB(δbc)‖2
F

= 〈PTB(δbc),PTB(δbc)〉
= 〈PTB(δbc), δbc〉
= ‖PUBPSB(δbc)‖2

F + ‖PSB(δbc)PVB‖
2
F − ‖PUBPSB(δbc)PVB‖

2
F

≤‖PUBPSB(δbc)‖2
F + ‖PSB(δbc)PVB‖

2
F .

Now it suffices to bound both terms ‖PUBPSB(δbc)‖2
F and ‖PSB(δbc)PVB‖

2
F .

We have

PUBPSB(δbc) = PUBδbc −
1

n3
PUB11T δbc = PUBδbc,

where the second equality holds since B ∈ SB and therefore
PUB1 = 0. Combining with the incoherence property A0, we
have

‖PUBPSB(δbc)‖2
F = ‖PUBδbc‖

2
F = ‖PUBeb‖2

F ≤
µ0r

n2
.

Next, we need to bound ‖PSB(δbc)PVB‖
2
F . We have

‖PSB(δbc)PVB‖
2
F =

∥∥∥∥δbcPVB −
1

n2
11T δbcPVB

∥∥∥∥2

F

≤ 2 ‖δbcPVB‖
2
F +

2

n2
2

∥∥11T δbcPVB

∥∥2

F

= 2 ‖PVBec‖2
F +

2

n2
2

∥∥1eTc PVB

∥∥2

F

= 2 ‖PVBec‖2
F +

2

n2
2

∥∥∥∥∥∑
b′

eb′e
T
c PVB

∥∥∥∥∥
2

F

= 2 ‖PVBec‖2
F +

2

n2
2

‖n2PVBec‖2
F
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= 4 ‖PVBec‖2
F

≤ 4µ0r

n3
,

where the first inequality is the Cauchy-Schwartz inequality and
the final inequality is due to incoherence property A0. There-
fore,

‖PTB(δbc)‖2
F ≤

µ0r

n2
+

4µ0r

n3
≤ 5µ0r

n2
.

In addition, we can bound ‖PTC(δca)‖F using the same method.
It remains to bound ‖PTA(δab)‖2

F which is no greater than
‖PUAPSA(δab)‖2

F + ‖PSA(δab)PVA‖
2
F following a similar analysis.

Again, we start with bounding ‖PUAPSA(δab)‖2
F . We have

‖PUAPSA(δab)‖2
F

=

∥∥∥∥PUAδab −
1

n1
PUA1eTb +

1

n1n2
PUA11T

∥∥∥∥2

F

≤3 ‖PUAδab‖
2
F +

3

n2
1

∥∥PUA1eTb
∥∥2

F
+

3

n2
1n

2
2

∥∥PUA11T
∥∥2

F

=3 ‖PUAea‖2
F +

3

n2
1

∥∥∥∥∥∑
a′

PUAea′

∥∥∥∥∥
2

F

+
3

n2
1n

2
2

∥∥∥∥∥∑
a′b′

PUAea′

∥∥∥∥∥
2

F

≤3 ‖PUAea‖2
F +

3

n1

∑
a′

‖PUAea′‖2
F +

3

n1n2

∑
a′b′

‖PUAea′‖2
F

≤9µ0r

n1
,

where we have repeatedly applied Cauchy-Schwartz inequality
and assumption A1. We can also bound ‖PSA(δab)PVA‖

2
F using

the same method as

‖PSA(δab)PVA‖
2
F ≤

9µ0r

n2
.

Therefore, we have

‖PTA(δab)‖2
F ≤

9µ0r

n1
+

9µ0r

n2
≤ 18µ0r

n1
.
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Finally, combining the above inequalities, we have

‖PT (σabc)‖2
F

=
1

n3
‖PTA(δab)‖2

F +
1

n1
‖PTB(δbc)‖2

F +
1

n2
‖PTC(δca)‖2

F

≤26µ0r

n1n2

≤18µ0r

n1n3
+

5µ0r

n1n2
+

5µ0r

n1n2

≤28µ0r

n1n2
.

The next proposition shows that, in expectation, n1n2n3m R∗ΩRΩ

is an isometric operator on S. Therefore, the observation oper-
ator RΩ can be regarded as an orthogonal projection operator
in expectation on subspace S.

Proposition 5.3. Suppose Ω is a set of entries of size m which
is sampled independent and uniformly with replacement. Then
for any block diagonal matrix E = diag (EA,EB,EC) satisfying
that E ∈ S, denoting O(E) , n1n2n3

m E[R∗ΩRΩ(E)], we have

PS(O(E)) = E.

Proof. We can calculate O(E) as follows,

O(E) =
∑
abc

〈E, σabc〉σabc

=
∑
abc

[〈
E,

(
1
√
n3
δ

(A)
ab +

1
√
n1
δ

(B)
bc +

1
√
n2
δ(C)
ca

)〉]
·(

1
√
n3
δ

(A)
ab +

1
√
n1
δ

(B)
bc +

1
√
n2
δ(C)
ca

)
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=

(
EA +

1
√
n1n3

1n11
T
n3

ET
B +

1
√
n2n3

ET
C1n31

T
n2
,

EB +
1

√
n1n2

1n21
T
n1

ET
C +

1
√
n1n3

ET
A1n11

T
n3
,

EC +
1

√
n2n3

1n31
T
n2

ET
A +

1
√
n1n2

ET
B1n21

T
n1

)
=
(
EA +

1
√
n1n3

1n11
T
n3

ET
B,EB +

1
√
n1n2

1n21
T
n1

ET
C+

1
√
n1n3

ET
A1n11

T
n3
,EC +

1
√
n2n3

1n31
T
n2

ET
A

)
,

where the third equality follows since 1Tn2EB = 0Tn3 and 1Tn3EC =
0Tn1.

Now, by the definition of SA and S⊥A , since 1Tn3E
T
B1n2 = 0, we

have 1n21
T
n3

ET
B ∈ S⊥A and therefore PSA(1n11

T
n3

ET
B) = 0n1×n2. We

also have PSB(1n21
T
n1

ET
C) = 0n2×n3 and PSC(1n31

T
n2

ET
A) = 0n3×n1.

In addition, we have ET
A1n11

T
n3
∈ S⊥B and hence PSB(ET

A1n11
T
n3

) =
0n3×n1. Combining these facts, we have

PS(O(E)) = E.

Next, we show that, with high probability, R∗ΩRΩ is very
close to an isometry on subspace T if the number of observations
|Ω| is sufficient by appealing to the non-commutative Bernstein
inequality.

Lemma 5.2. Suppose Ω is a set of entries of size m which is
sampled independently and uniformly from [n1]× [n2]× [n3] with
replacement. Then for all β > 1,

n1n2n3

m

∥∥∥∥PTR∗ΩRΩPT −
m

n1n2n3
PT
∥∥∥∥ ≤

√
16pµ0rn3β log(n3)

3m

with probability at least 1− 2n2−2β
3 if m > 448

3 µ0rn3β log(n3).
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Proof. By Proposition 5.3, for any E ∈ T , we have

E [PTR∗ΩRΩPT ] = PTE [R∗ΩRΩ]PT

= PT
(

m

n1n2n3
O
)
PT

=
m

n1n2n3
PT .

Now we use noncommunicative Bernstein inequality to bound
the deviation of the operator PTR∗ΩRΩPT from its expected
value m

n1n2n3
PT in spectral norm.

Consider any block diagonal matrix E = diag(EA,EB,EC),
we can decompose PTR∗ΩRΩPT (E) as follows,

PTR∗ΩRΩPT (E) =
m∑
k=1

〈PT (E), σakbkck〉 PT (σakbkck)

=
m∑
k=1

〈E,PT (σakbkck)〉 PT (σakbkck)

Define the operator τabc which maps E to 〈E,PT (σabc)〉 PT (σabc).
Clearly, we have PTR∗ΩRΩPT =

∑m
k=1 τakbkck and E[τakbkck] =

1
n1n2n3

PT . We can bound the operator norm ‖τabc‖ using Propo-
sition 5.3 as follows

‖τabc‖ = sup
‖E‖F=1

‖τabc(E)‖F

= ‖PT (σabc)‖2
F

≤ 28µ0r

n1n2
.

Now we can compute the bound,∥∥∥∥τakbkck − 1

n1n2n3
PT
∥∥∥∥ ≤ max

{
28µ0r

n1n2
,

1

n1n2n3

}
≤ 28µ0r

n1n2
,

where we have utilized the fact that ‖A−B‖ ≤ max{‖A‖ , ‖B‖}
for positive semidefinite matrices A and B. We also have∥∥E[τ 2

akbkck
]
∥∥ =

∥∥∥E [‖PT (σakbkck))‖
2
F τakbkck

]∥∥∥
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≤ 28µ0r

n1n2
‖E [τakbkck]‖

=
28µ0r

n2
1n

2
2n3

.

Therefore,∥∥∥∥∥E
[(

τakbkck −
1

n1n2n3
PT
)2
]∥∥∥∥∥ =

∥∥∥∥E[τ 2
akbkck

]− 1

n2
1n

2
2n

2
3

PT
∥∥∥∥

≤ max

{∥∥E[τ 2
akbkck

]
∥∥ , 1

n2
1n

2
2n

2
3

}
≤ max

{
28µ0r

n2
1n

2
2n3

,
1

n2
1n

2
2n

2
3

}
≤ 28µ0r

n2
1n

2
2n3

.

The lemma follows by applying the noncommuntative Bernstein
inequality.

The next lemma asserts that, for a fixed matrix E, R∗ΩRΩ(E)
is close to O(E) in spectral norm.

Lemma 5.3. Suppose Ω is a set of entries of size m which is
sampled independent and uniformly with replacement. Then, for
any β > 1 and any E ∈ S,∥∥∥n1n2n3

m
PSR∗ΩRΩ(E)− E

∥∥∥ ≤√72βn2n2
3 log(n1 + n2 + n3)

m
‖E‖∞ ,

holds with probability at least 1 − 2(n1 + n2 + n3)
1−β provided

that m > 98
9 βn2 log(n1 + n2 + n3).

Proof. Define the operator γabc which maps E to n1n2n3 〈E, σabc〉σabc.
We can decompose n1n2n3

m PSR∗ΩRΩ(E)− E as

n1n2n3

m
PSR∗ΩRΩ − E =

1

m

[∑
k

(PSγakbkck(E)− E)

]
.
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We can bound ‖PSγakbkck(E)‖ as,

‖PSγakbkck(E)‖ ≤ ‖γakbkck(E)‖
= n1n2n3 ‖〈E, σakbkck〉σakbkck‖
≤ 3n2n3 ‖E‖∞

Therefore, we have

‖PSγakbkck(E)− E‖ ≤ ‖PSγaksbkck(E)‖+ ‖E‖
≤ 3n2n3 ‖E‖∞ + n3 ‖O(E)‖∞
≤ 7

2
n2n3 ‖E‖∞ ,

where we used the fact that ‖E‖ ≤ n3 ‖E‖∞ and n ‖E‖∞ ≤
1
2n2n3 ‖E‖∞ for n2 ≥ 2. We also have

‖E [(PSγakbkck(E))∗ (PSγakbkck(E))]‖
≤‖E [(γakbkck(E))∗ (γakbkck(E))]‖

=
∥∥∥E [n2

1n
2
2n

2
3 〈E, σakbkck〉

2 σ∗akbkckσakbkck

]∥∥∥
=

∥∥∥∥∥n1n2n3

∑
abc

〈E, σabc〉2 σ∗abcσabc

∥∥∥∥∥
≤

∥∥∥∥∥9n2n3

∑
abc

‖E‖2
∞ σ

∗
abcσabc

∥∥∥∥∥
=9n2n3 ‖E‖2

∞

∥∥∥∥∥∑
ab

δ
(A)
bb +

∑
bc

δ
(B)
bc +

∑
ca

δ(C)
ca

∥∥∥∥∥
≤9n2n

2
3 ‖E‖

2
∞ .

We now obtain,

‖E [(PSγakbkck(E)− E)∗ (PSγakbkck(E)− E)]‖
≤ max {‖E[(PSγakbkck(E))∗(PSγakbkck(E))]‖ , ‖E∗E‖}
≤ 9n2n

2
3 ‖E‖

2
∞ .

Then the lemma follows by the noncommunative Bernstein In-
equality.
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The next concentration result is the final piece for construct-
ing the dual certificate.

Lemma 5.4. Suppose Ω is a set of entries of size m sampled
independently with replacement. Then for any E ∈ T and any
β > 2, we have∥∥∥n1n2n3

m
PTR∗ΩRΩ(E)− E

∥∥∥
∞
≤
√

864βµ0rn3 log n3

m
‖E‖∞

with probability at least 1− 6n2−β
3 if m > 50βµ0rn3 log(n3).

Proof. Without loss of generality, for each a, b, we define the
random variable

χab(A) =
〈
δ

(A)
ab , n1n2n3 〈E, σa′b′c′〉 PT (σa′b′c′)− E

〉
,

where a′, b′, c′ is sampled uniformly random from [n1]×[n2]×[n3].
We also define χbc(B) and χca(C) similarly. We now bound each of
χab(A), χbc(B) and χca(C) using standard Berstein inequality. By
definition, we have E[χab(A)] = 0 and

|χab(A)| ≤
∣∣∣〈δ(A)

ab , n1n2n3 〈E, σa′b′c′〉 PT (σa′b′c′)
〉∣∣∣+

∣∣∣〈δ(A)
ab ,E

〉∣∣∣
= n1n2n3 |〈E, σa′b′c′〉|

∣∣∣〈δ(A)
ab ,PT (σa′b′c′)

〉∣∣∣+
∣∣∣〈δ(A)

ab ,E
〉∣∣∣

≤ 3
√
n1n2n3 ‖E‖∞

∥∥∥PT (δ
(A)
ab )
∥∥∥
F
‖PT (σa′b′c′)‖F + ‖E‖∞

≤ 90n3µ0r ‖E‖∞
Now we can also bound E[χ2

ab(A)] as follows,

E[χ2
ab(A)] =

1

n1n2n3

∑
a′b′c′

〈
δ

(A)
ab , n1n2n3 〈E, σa′b′c′PT (σa′b′c′)〉 − E

〉2

= n1n2n3

∑
a′b′c′

〈E, σa′b′c′〉2
〈
δ

(A)
ab ,PT (σa′b′c′)

〉2

−
〈
E, δ

(A)
ab

〉2

≤ n1n2

∑
a′b′c′

〈E, σa′b′c′〉2
〈
δ

(A)
ab ,PT (δ

(A)
a′b′)
〉2
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≤ 9n1n2n3 ‖E‖2
∞

∑
a′b′

〈
δ

(A)
ab ,PT (σa′b′)

〉2

≤ 9n1n2n3 ‖E‖2
∞

∥∥∥PT (δ
(A)
ab )
∥∥∥2

F

≤ 162µ0rn3 ‖E‖2
∞ .

Clearly the entry
〈
δ

(A)
ab ,

n1n2n3
m PTR∗ΩRΩ(E)− E

〉
is the mean

value of m i.i.d copies of χab(A). Apply the Bernstein’s Inequality,
we have

Pr
[ ∣∣∣〈δ(A)

ab ,
n1n2n3

m
PTR∗ΩRΩ(E)− E

〉∣∣∣ >√864βµ0rn3 log(n3)

m
‖E‖∞

]
≤ 2n−β3 .

By union bound, we have

Pr
[∥∥∥n1n2n3

m
PTR∗ΩRΩ(E)− E

∥∥∥
∞
>

√
864βµ0rn3 log(n3)

m
‖E‖∞

≤ 6n2−β
3 .

Finally, we adapt the “golfling scheme” proposed by [68] to
construct the dual certificate F.

Lemma 5.5. Suppose Ω is a set of entries of size sample inde-
pendently with replacement for m > 3600 max{µ2

1, µ0}rn3β log2(6n3).
There exists F ∈ range(R∗Ω) satisfies

‖PT (F)−W‖F ≤
√

r

2n3
, ‖PT⊥(F)‖ < 1

2
,

with probability at least 1− 3 log(6n3)(3n3)
2−β for all β > 2.

Proof. Partition m entries of Ω into p partitions of size q, where

q ≥ 3600 max{µ0, µ
2
1}rn3β log(6n3), p ≥ log(6n3).
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Denote Ωj be the j th partition. By Lemma 5.2 and union bound,
we have

Pr
[n1n2n3

q

∥∥∥PTR∗ΩjRΩjPT−
q

n1n2n3
PT ≤

1

2
for all j ∈ [p]

]
≥ 1− log(6n3)2n

2−2β
3 .

Now suppose the above event happens. Define F0 = 0, G0 =
W and

Fj = Fj−1 +
n1n2n3

q
R∗Ωj−1RΩj−1(Gj−1),Gj = W − PT (Fj)

for j ∈ [p]. We can now bound ‖Gj‖F as follows,

‖Gj‖F = ‖W − PT (Fj)‖F

=

∥∥∥∥W − PT (Fj−1)−
n1n2n3

q
PTR∗Ωj−1RΩj−1(Gj−1)

∥∥∥∥
F

=

∥∥∥∥Gj−1 −
n1n2n3

q
PTR∗Ωj−1RΩj−1(Gj−1)

∥∥∥∥
F

≤ 1

2
‖Gj−1‖F .

It follows that ‖Gp‖F ≤ 2−p ‖G0‖F = 2−p
√

3r ≤ r
2n3

, since

p ≥ log(2n3) ≥ log2

√
2n3. Now choose F = Fp, it is easy to

check that

‖PT (F)−W‖F ≤
√

r

2n3

with at least probability 1− log(6n3)2n
2−β
3 .

We now argue that Fp also satisfies the second inequality
in this lemma with high probability. Apply Lemma 5.3 and
Lemma 5.4, we have

Pr
[ ∥∥∥∥n1n2n3

q
PSR∗ΩjRΩj(Gj−1)−Gj−1

∥∥∥∥ ≤√
72n1n2

2β log(n1 + n2 + n3)

q
‖Gj−1‖∞

]
≥ 1− 2(n1 + n2 + n3)

1−β,
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Pr

[∥∥∥∥Gj−1 −
n1n2n3

q
PTR∗ΩjRΩj(Gj−1)

∥∥∥∥ ≤ 1

2
‖Gj−1‖∞

]
≥ 1−6n2−β

3 .

By union bound, the above random events holds for all j =
1, . . . , p with probability at least 1−2 log(6n3)(3n3)

1−β. Suppose
these random event happens, we can bound PT⊥(Fp) as follows.

‖PT⊥(Fp)‖ ≤
p∑
j=1

∥∥∥∥n1n2n3

q
PT⊥R∗ΩjRΩj(Gj−1)

∥∥∥∥
=

p∑
j=1

∥∥∥∥PT⊥ (n1n2n3

q
PSR∗ΩjRΩj(Gj−1)−Gj−1

)∥∥∥∥
≤

p∑
j=1

∥∥∥∥n1n2n3

q
PSR∗ΩjRΩj(Gj−1)−Gj−1

∥∥∥∥
≤

p∑
j=1

√
72n2n2

3β log(n1 + n2 + n3)

q
‖Gj−1‖∞

= 2

p∑
j=1

2−j

√
72n2n2

3β log(n1 + n2 + n3)

q
‖W‖∞

<

√
288µ2

1rn3β log(3n3)

q

<
1

2
,

where the second equality holds because PT⊥(Gj−1) = 0 for all
j and the last inequality follows since q > 3600µ2

1rn3β log(6n3).
Finally, by union bound, the probability that all above random
events happen is at least 1− 3 log(6n3)(3n3)

2−β.

Remark 5.1. By golfing scheme construction, the dual certifi-
cate F can be decomposed by

F =

p∑
i=1

n1n2n3

q
R∗ΩiRΩi(Gi),
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for some G1, . . . ,Gp.

We will use this property later for proving the stable recovery
result in the presence of noise.

The next lemma is an elementary Chernoff bound which
shows that maximum duplication of any entry in Ω when sam-
pling with replacement is bounded by 8

3β log(n1). This gives us
the upper bound of the spectral norm of RΩ.

Lemma 5.6. Suppose Ω is a set of entries of size sample inde-
pendently with replacement for m > 3600 max{µ2

1, µ0}rn3β log2(6n3).
We have

‖RΩ‖ ≤

√
8β log(n3)

n1

for n3 ≥ 1 and β ≥ 1 with probability at least 1− 3n2−2β
3 .

Proof. Given a set of entries Ω = {(ak, bk, ck)}k∈[m] sampled uni-
formly with replacement, denote the number of reptitions as
η

(A)
ab = |{k|ak = a, bk = b}|, η(B)

bc = |{k|bk = b, ck = c}| and

η
(C)
ca = |{k|ck = c, ak = a}|.

‖RΩ‖
= sup
‖E‖F=1

‖RΩ(E)‖F

≤ 1
√
n1

sup
‖E‖F=1

√√√√ m∑
k=1

〈
E, δ

(A)
akbk

+ δ
(B)
bkck

+ δ
(C)
ckak

〉2

≤ 1
√
n1

sup
‖E‖F=1

√√√√3

[
m∑
k=1

〈
E, δ

(A)
akbk

〉2

+
m∑
k=1

〈
E, δ

(B)
bkck

〉2

+
m∑
k=1

〈
E, δ

(C)
ckak

〉2
]

=
1
√
n1

sup
‖E‖F=1

√√√√3

[∑
ab

〈
E, δ

(A)
ab

〉2

η
(A)
ab +

∑
bc

〈
E, δ

(B)
bc

〉2

η
(B)
bc +

∑
ca

〈
E, δ

(C)
ca

〉2

η
(C)
ca

]

=
1
√
n1

√
3 max{max

ab
η

(A)
ab ,max

bc
η

(B)
bc ,max

ca
η

(C)
ca }.
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Therefore, it suffices to bound the maximum number of repe-
titions of any entry in Ω. To this end, we can apply Chernoff
bound for the Bernoulli distribution. The probability of an en-
try a, b be sampled for more than t times can be bounded by
Chernoff bound.

Pr

[
η

(A)
ab ≥

8

3
β log(n1)

]
≤
(

8

3
β log(n1)

)− 8
3β log(n1)

exp

(
8

3
β log(n1)

)
≤ n−2β

1 ,

when n1 ≥ 9. We can also bound η
(B)
bc and η

(C)
ca similarly. By

union bound, we have

max{max
ab

η
(A)
ab ,max

bc
η

(B)
bc ,max

ca
η(C)
ca } ≤

8

3
β log(n)

hold with probability at least 1− 3n2−2β
3 by union bound.

Finally, to apply Theorem 5.4, we require the following bound
relating ‖PT⊥(E)‖∗ and ‖PT (E)‖F for any fixed matrix E ∈
ker(RΩ).

Lemma 5.7. Suppose Ω is a set of entries of size sample inde-
pendently with replacement for m > 3600 max{µ2

1, µ0}rn3β log2(2n3).
Then, for any E ∈ ker(RΩ), we have

1

2
‖PT⊥(E)‖∗ <

√
r

2n3
‖PT (E)‖F ,

with probability at least 1− 3n2−β
3 .

Proof. Since E ∈ ker(RΩ), we have

0 = ‖RΩ(E)‖F ≥ ‖RΩPT (E)‖F − ‖RΩPT⊥(E)‖F .

Apply Lemma 5.2,

n1n2n3

m

∥∥∥∥PTR∗ΩRΩPT −
m

n1n2n3
PT
∥∥∥∥ ≤ 1

2
(5.16)
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holds with probability at least 1 − 3n2−β
3 . Suppose Eq. (5.16)

holds, we can bound ‖RΩPT (E)‖F as follows

‖RΩPT (E)‖2
F = 〈RΩPT (E),RΩPT (E)〉

= 〈E,PTR∗ΩRΩPT (E)〉

≥ m

2n1n2n3
‖PT (E)‖2

F .

On the other hand, we need to bound ‖RΩPT⊥(E)‖F . Suppose

‖RΩ‖ ≤
√

8β log(n3)
n1

≤
√

8β
n1

log(n3) which holds with probability

at least 1− n2−β
3 by Lemma 5.6, we have

‖RΩPT⊥(E)‖F ≤ ‖RΩ‖ ‖PT⊥(E)‖F

≤
√

8β

n1
log(n3) ‖PT⊥(E)‖F .

Therefore,

‖PT⊥(E)‖∗ ≥ ‖PT⊥(E)‖F

≥
√

n1

8β log2(n3)
‖RΩPT⊥(E)‖F

≥
√

n1

8β log2(n3)
‖RΩPT (E)‖F

≥
√

mn1

8n1n2n3β log2(n3)
‖PT (E)‖F

≥

√
3600n3n1rµ0β log2(6n3)

8n1n2n3β log2(6n)
‖PT (E)‖F

>

√
2r

n3
‖PT (E)‖F .

We are now ready to prove the exact recovery result Theo-
rem 5.1.
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Proof. (Theorem 1) By Lemma 5.5, there exists F ∈ range(R∗Ω)
such that

‖PT (F)−W‖F ≤
√

r

2n3
, ‖PT⊥(F)‖ < 1

2
,

with probability at least 1− 3 log(6n3)(3n3)
2−β for all β > 2.

On the other hand, Lemma 5.7 shows that for any E ∈
ker(RΩ),

1

2
‖PT⊥(E)‖∗ >

√
r

2n3
‖PT (E)‖F ,

holds with probability at least 1− 3n2−β
3 .

By union bound, the above random events happen simulta-
neously with probability at least 1−3 log(6n3)(3n3)

2−β−3n2−β
3 .

Finally, in the case that both random events holds, by Theo-
rem. 5.4, the solution to Eq. (5.3) is unique and exactly recov-
ers A,B,C and therefore the pairwise interaction tensor T =
Pair(A,B,C).

5.7 Proof of Theorem 5.2

In this section, we generalize the proof of Theorem 5.2 for the
noisy cases.

Proof. (Theorem 2) First, define operator Q = γ2R∗ΩRΩ, where
γ = ‖RΩ‖−1, as the normalized version of R∗ΩRΩ. Clearly, we

have ‖Q‖ = 1. By Lemma 5.6, we can bound γ by γ ≥
√

n1
8β log(n3) .

We can decompose the optimal solution M̂ of the convex
progam Eq. (5.5) into the sum of the true matrix M and the
error matrix E, namely, M̂ = M + E. To prove the theorem,
we need to bound the error term E in its nuclear norm ‖E‖∗.
To do this, we start with bounding ‖Q(E)‖F . Denote the noisy
observations as an m-dimensional vector y, where yi = Taibici.
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We have

‖Q(E)‖F (5.17)

≤
∥∥∥Q(M̂)− γ2R∗Ω(y)

∥∥∥
F

+
∥∥γ2R∗Ω(y)−Q(M)

∥∥
F

=γ2
∥∥∥R∗ΩRΩ(M̂)−R∗Ω(y)

∥∥∥
F

+ γ2 ‖R∗Ω(y)−R∗ΩRΩ(M)‖F

≤γ2 ‖R∗Ω‖
∥∥∥RΩ(M̂)− y

∥∥∥
F

+ γ2 ‖R∗Ω‖ ‖y −RΩ(M)‖F
≤γε1 + γε2 , δ. (5.18)

In the last inequality, the first term
∥∥∥RΩ(M̂)− y

∥∥∥
F

is no greater

than ε2 due to constraint of optimization problem and the second
term ‖y −RΩ(M)‖F ≤ ε1 is the assumption on the observation
noise.

On the other hand, we can bound ‖Q(E)‖F by following

‖Q(E)‖F ≥ ‖QPT (E)‖F − ‖QPT ⊥(E)‖F .

For the second term, we have ‖QPT ⊥(E)‖F ≤ ‖PT ⊥(E)‖F . Now,
we focus on the first term, we have

‖QPT (E)‖F
=γ2 ‖R∗ΩRΩPT (E)‖F
≥γ2 ‖PTR∗ΩRΩPT (E)‖F
≥γ2 m

n1n2n3

∥∥∥n1n2n3

m
PTR∗ΩRΩPT (E)

∥∥∥
F

≥γ2 m

n1n2n3

[
‖PT (E)‖F −

∥∥∥n1n2n3

m
PTR∗ΩRΩPT (E)− PT (E)

∥∥∥
F

]
≥γ2 m

n1n2n3

[
‖PT (E)‖F −

∥∥∥n1n2n3

m
PTR∗ΩRΩPT − PT

∥∥∥ ‖PT (E)‖F
]

≥γ2 m

n1n2n3

1

2
‖PT (E)‖F ≥

m

16β log(n3)n2n3
‖PT (E)‖F

Therefore, we have

‖Q(E)‖F ≥
m

16βn2n3 log(n3)
‖PT (E)‖F − ‖PT ⊥(E)‖F . (5.19)
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Now, combine Eq. (5.18) and Eq. (5.19), we have

‖PT (E)‖F ≤
16βn2n3 log(n3)

m
(δ + ‖PT ⊥(E)‖F )

≤ 16βn2n3 log(n3)

m
(δ + ‖PT ⊥(E)‖∗) .

Next, we proceed to bound ‖PT ⊥(E)‖∗. We can use a similar
subgradient argument as in the proof of Theorem 5.4. Let F ∈
range(R∗Ω) be the dual certificate as described in Theorem 5.4,
we have∥∥∥M̂∥∥∥

∗
= ‖M + E‖∗
≥〈W + W⊥,M + E〉 = ‖M‖∗ + 〈W + W⊥,E〉
= ‖M‖∗ + 〈W + W⊥ − F,E〉+ 〈F,E〉
= ‖M‖∗ + 〈W − PT (F),PT (E)〉+ 〈W⊥ − PT ⊥(F),PT ⊥(E)〉+ 〈F,E〉

≥ ‖M‖∗ −
√
r

n2
3

‖PT (E)‖F +
1

2
‖PT ⊥(E)‖∗ + 〈F,E〉 .

Recall that M̂ is the optimal solution to the convex program

Eq. (5.5), we have
∥∥∥M̂∥∥∥

∗
≤ ‖M‖∗. Hence, we have

1

2
‖PT⊥(E)‖∗ ≤

√
r

n2
3

‖PT (E)‖F − 〈F,E〉 .

Now we bound 〈F,E〉. By the golfling scheme construction
of F in Lemma. 5.5, we have

〈F,E〉 =

p∑
i=1

〈
R∗ΩiRΩi(Gi),E

〉
=

p∑
i=1

〈
Gi,R∗ΩiRΩi(E)

〉
≥ −

p∑
i=1

‖Gi‖F
∥∥R∗ΩiRΩi(E)

∥∥
F
.
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For each i, we can bound
∥∥R∗ΩiRΩi(E)

∥∥
F

by∥∥R∗ΩiRΩi(E)
∥∥
F

=
∥∥∥R∗ΩiRΩi(M̂)−R∗Ωi(yΩi)

∥∥∥
F

+
∥∥R∗Ωi(yΩi)−R∗ΩiRΩi(M)

∥∥
F

≤
∥∥R∗Ωi∥∥ ∥∥∥RΩi(M̂)− yΩi

∥∥∥
F

+
∥∥R∗Ωi∥∥ ‖yΩi −RΩi(M)‖F

=
ε1
γ

+
ε2
γ
,

where yΩi is the restriction of y on Ωi.
Therefore, we have

〈F,E〉 ≥ −ε1 + ε2
γ

p∑
i=1

‖Gi‖F

≥ −2(ε1 + ε2)

γ
‖G0‖F

= −2(ε1 + ε2)

γ
‖W‖F ≥ −

2(ε1 + ε2)

γ

√
r1 + r2 + r3.

Consequently, for reasonable values of parameters, we have

1

2
‖PT⊥(E)‖∗ ≤

√
r

n2
3

‖PT (E)‖F +
2(ε1 + ε2)

γ

√
r1 + r2 + r3

≤ 16β log(n3)
√
r

m
(δ + ‖PT⊥(E)‖∗) +

2(ε1 + ε2)

γ

√
r1 + r2 + r3

≤ 1

16
(δ + ‖PT⊥(E)‖∗) +

ε1 + ε2
16

.

Hence, we have

‖PT⊥(E)‖∗ ≤
16

7

(
δ +

ε1 + ε2
16

)
≤ 3δ.

Last, combining the above inequalities and setting ε = ε1 + ε2,
we can finally bound the error E in terms of its nuclear norm as
follows

‖E‖∗ ≤
√

2r ‖PT (E)‖F + ‖PT⊥(E)‖∗
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≤
√

2rn2δ + (
√

2rn2 + 1) ‖PT⊥(E)‖∗
≤
√

2rn2γε+ 3(
√

2rn2 + 1)γε

≤ 5
√

2rn2γε

≤ 5

√
2rn1n2

2

8β log(n1)
ε.

5.8 Proof of Proposition 5.1

We first review some terminologies. We call a matrix A a doubly
centered matrix, if each column and each row of A sums up to
zero, i.e. 1TA = 0T and A1 = 0 hold simultaenously. We also
call a vector v a centered vector, if the sum of its entries equals
to zero, namely, 1Tv = 0.

Lemma 5.8. Given an arbitrary pariwise interaction tensor
T = Pair(A,B,C), there exists a unique 7-tuple (A0,B0,C0, a,b, c, d)
such that A0,B0,C0 are doubly centered matrices, a,b, c are
centered vectors and satisfies

Tijk = A0
ij+B

0
jk+C

0
ki+ai+bj+ck+d, for all (i, j, k) ∈ [n1]×[n2]×[n3].

(5.20)

Remark 5.2. We can interpret the quantities a,b, c, d in Lemma 5.8
as axis-aligned biases of tensor T . For example, every entries of
the form T1jk are influenced by bias a1; the entries of form Ti1k
for all (i, k) are biased by b1; the entries of form Tij1 for all (i, j)
are biased by c1. In addition, all entries of T is biased by d.

Proof. (Lemma 5.8) In the following, we shall prove the exis-
tence and uniqueness separately.

Existence. Given any A,B and C of appropriate size, we
now construct the 7-tuple (A0,B0,C0, a,b, c, d) specified in the
lemma.



CHAPTER 5. RECOVERYOF PAIRWISE INTERACTION TENSORS200

We define the mean values of matrices A,B and C by σA =
1

n1n2
1TA1, σB = 1

n2n3
1TB1 and σC = 1

n3n1
1TB1. We also denote

the mean vectors of columns of matrices A,B and C by ac =
1
n1

AT1, bc = 1
n2

BT1 and cc = 1
n3

CT1. Similarly, we denote the

mean vectors of rows of matrices A,B and C by ar = 1
n2

A1,

br = 1
n3

B1 and cr = 1
n1

C1.

Now, we construct the desired 7-tuple (A0,B0,C0, a,b, c, d)
by

A0
ij = Aij − acj − ari + σa, B0

jk = Bjk − bcj − brk + σb, C0
ki = Cki − cci − crk + σc

ai = ari + cci − σa − σc, bj = brj + acj − σb − σa, ck = crk + bck − σc − σb
d = σa + σb + σc,

where (i, j, k) ranges within [n1]× [n2]× [n3]. It is easy to ver-
ify that A0,B0,C0 are doubly centered matrices and a,b, c are
centered vectors and that Aij + Bjk + Cki = A0

ij + B0
jk + C0

ki +
ai + bj + ck + d.

Uniqueness. Suppose there exists two 7-tuples (A0
1,B

0
1,C

0
1, a1,b1, c1, d1)

and (A0
2,B

0
2,C

0
2, a2,b2, c2, d2) that satisfy the centering property

specified in the lemma. Consider their differences (A0,B0,C0, a,b, c, d) =
(A0

1 −A0
2,B

0
1 −B0

2,C
0
1 −C0

2, a1 − a2,b1 − b2, c1 − c2, d1 − d2).
Clearly, we remain to show that (A0,B0,C0, a,b, c, d) are zeros.

It is clear A0,B0,C0 are doubly centered matrices and a,b, c
are centered vectors. In addition, the following holds for all
(i, j, k)

0 = A0
ij +B0

jk + C0
ki + ai + bj + ck + d. (5.21)

We first show d = 0. We can see this by summing over all
i, j, k on both sides of Eq. (5.21),

0 =
∑
ijk

[A0
ij +B0

jk + C0
ki + ai + bj + ck + d] = n1n2n3d,

where the first inequality holds by the centering properties on
A0,B0,C0, a,b, c.
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Next, we show that a = 0. This can be done by summing
over all (j, k) ∈ [n2] × [n3] on both sides of Eq. (5.21) and for
any i,

0 =
∑
jk

[A0
ij +B0

jk + C0
ki + ai + bj + ck + d]

=
∑
jk

[A0
ij +B0

jk + C0
ki + ai + bj + ck]

= n2n3ai,

where we have used the result that d = 0 and the centering
properties. Similarly, we can show b = 0 and c = 0.

Finally, we remain to show A = 0. Again, fix any i, j and
sum over all k ∈ [n3], we have

0 =
∑
k

[A0
ij +B0

jk + C0
ki + ai + bj + ck + d] = n3A

0
ij,

where we have used the facts that ai = bj = ck = d = 0. We can
prove B = 0 and C = 0 using similar arguments.

Lemma 5.8 essentially states that the representation of a pair-
wise interaction tensor is unique if one separate out these bias
components. We can immmediately obtain Proposition 5.1 by
condensing the unique representation scheme (A0,B0,C0, a,b, c, d)
for pairwise interaction tensors identified by Lemma 5.8. In par-
ticular, we construct A′ ∈ SA,B

′ ∈ SB,C
′ ∈ SC by setting

A′ij = A0
ij + ai + d, B′jk = B0

jk + bj and C ′ij = C0
ki + ck. By the

centering property of A0,B0,C0 and a,b, c, it is clear that each
column of A′ sums up to a same value (n1d) and each column of
B′,C′ sums up to zero. Hence A′,B′,C′ satisfy the constraints
defined by SA, SB, SC respectively. We can also easily show the
uniqueness of A′,B′,C′ under this constraints using the unique-
ness of (A0,B0,C0, a,b, c, d).

Proof. (Propostion 5.1) The existence follows immediately from
Lemma 5.8. Specifically, we can set A′ij = A0

ij + ai + d, B′jk =
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B0
jk + bj and C ′ki = C0

ki + ck. We can easily verify that A′ ∈
SA,B

′ ∈ SB and C′ ∈ SC .
Now we prove the uniqueness. Suppose that we have Pair(A1,B1,C1) =

Pair(A2,B2,C2), where A1 ∈ SA, A2 ∈ SA, B1 ∈ SB, B2 ∈ SB,
C1 ∈ SC and C2 ∈ SC . Denote A = A1−A2, B = B1−B2 and
C = C1 −C2, we remain to show that the differences A,B and
C are zero.

Note that A ∈ SA,B ∈ SB,C ∈ SC . We can construct 7-tuple
(A0,B0,C0, a,b, c, d) similarly to the proof of Lemma 5.8. We
define the mean values of matrix A by σA = 1

n1n2
1TA1 (note that

the mean value of B and C is zero). We denote the mean vectors
of rows of matrices A,B and C by ar = 1

n2
A1, br = 1

n3
B1 and

cr = 1
n1

C1.

Now, we construct the desired 7-tuple (A0,B0,C0, a,b, c, d)
by

A0
ij = Aij − ari + σa, B0

jk = Bjk − brk, C0
ki = Cki − crk,

ai = ari − σa,

where (i, j, k) ranges within [n1]× [n2]× [n3]. In addition, we set
b = br, c = cr and d = σa. We can verify that A0

ij +B0
jk +C0

ki +
ai + bj + ck + d = Aij +Bjk +Cki = 0. By Lemma 5.8, it follows
immediately that (A0,B0,C0, a,b, c, d) are zeros. Therefore, we
have A = 0, B = 0 and C = 0.

5.9 Details of recovery algorithm
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Algorithm 8 Exact Recovery of Pairwise Interaction Tensor

1: procedure ExactRecover(Ω = {aibici}i∈[m],PΩ(T ) =
{Taibici}i∈[m], τ, δ, ε)

2: y← 0
3: for k = 1, . . . , kmax do
4: [X, rA]← shrinkA(P∗ΩA

(y), τ, rA)
5: [Y, rB]← shrinkB(P∗ΩB

(y), τ, rB)
6: [Z, rC ]← shrinkB(P∗ΩC

(y), τ, rC) . shrinkC is algorithmically
identical to shrinkB.

7: e← PΩ(T )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z)

8: if ‖e‖F / ‖PΩ(T )‖F ≤ ε then
9: break

10: end if
11: y← y + δe
12: end for
13: end procedure
14: return [n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z]

Algorithm 9 Stable Recovery of Pairwise Interaction Tensor

1: procedure StableRecover(Ω = {aibici}i∈[m],PΩ(T̂ ) =

{T̂aibici}i∈[m], τ, δ, ε, ε1)
2: y← 0
3: s← 0
4: for k = 1, . . . , kmax do
5: [X, rA]← shrinkA(P∗ΩA

(y), τ, rA)
6: [Y, rB]← shrinkB(P∗ΩB

(y), τ, rB)
7: [Z, rC ]← shrinkB(P∗ΩC

(y), τ, rC)

8: e← PΩ(T̂ )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z)

9: if ‖e‖F /
∥∥∥PΩ(T̂ )

∥∥∥
F
≤ ε then

10: break
11: end if
12: y← y + δe
13: s← s− δε1
14: [y, s]← PK(y, s)
15: end for
16: end procedure
17: return [n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z]
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Algorithm 10 Shrinkage operator

1: procedure shrinkB(X̂, τ, r)
2: s← r + 1
3: repeat
4: [U,Σ,V]← svd(center(X̂), s) . svd(M, s): return top s singular

vectors of M
5: s← s+ 5
6: until σs−5 ≤ τ
7: r ← max{j : σj > τ}
8: X←

∑r
i=1(σj − τ)ujv

∗
j

9: return [X, r]
10: end procedure
11: procedure shrinkA(X̂, τ, r)
12: [X, r]← shrinkB(X̂, τ, r)
13: δ ← sum(X̂) . sum(X̂): elemetwise sum of matrix X̂
14: γ ← 1

n1n2
({δ − τ}+ + {δ + τ}−)

15: return [X + γ11T , r]
16: end procedure
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Figure 5.1: Phase transition with respect to rank and degree of freedom. Top:
m/d ∈ [1, 5]. Bottom: m/d ∈ [1.5, 3.0].
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Figure 5.2: Empirical results on the Movielens dataset. (a) Comparison of
RMSE with different truncation levels. MC: Matrix completion algorithm.
RPIT: Recovery algorithm for pairwise interaction tensor. (b) Rank of re-
covered matrix X,Y,Z. r1 = rank(X), r2 = rank(Y), r3 = rank(Z).



Chapter 6

Conclusion

In this thesis, we made theoretical and experimental contri-
butions to several problems emerged from the fields of multi-
armed bandit and tensor completion, which concern with learn-
ing in the presence of a limited number of samples. To each of
these problems, we identified natural requirements on the num-
ber of samples and we designed practical algorithms with prov-
able theoretical guarantees that are close to these requirements.
Through our experiments, we demonstrated that our algorithms
work well empirically and the experiment results agree well with
our theories.

Specifically, in Chapter 2, we provided a series of results
for the combinatorial pure exploration problem in the stochas-
tic bandit setting, including general learning algorithms, upper
bounds and a lower bound. In our analysis, we introduced a
novel tool which may be of independent interest. Our upper and
lower bounds showed that our algorithm achieve the optimal
sample complexity (within logarithmic factors) in many cases.
In addition, our lower bound partially settled a recent conjec-
ture.

In Chapter 3, we applied combinatorial bandit methods to
recommender systems. More specifically, we developed the lin-
ear combinatorial bandit model for the application of item list
recommendation problem, in which the objective is to recom-

207
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mend lists of items over a sequence of rounds to a new user with
insufficient historical records. Based on this model, we designed
a learning algorithm that dynamically recommend diverse items
that might be interested of a user. Further, our model generalizes
the existing combinatorial bandit model and can be applied to
other combinatorial bandit problems where arms are associated
with feature vectors. We conducted experiments on a real-wold
movie recommendation dataset and the results showed promis-
ing empirical performance of our algorithm.

Our learning algorithm for linear combinatorial bandits relies
on a key algorithmic component called ridge regression, which
is also widely applied in the fields of machine learning, data
mining and statistics. In Chapter 4, we designed a fast relative-
error approximation algorithm for ridge regression for the high-
dimensional cases, i.e., the number of features p is larger than
the number of samples n. We showed that our algorithm is the
first algorithm for ridge regression that runs in o(n2p) time with
provable relative-error approximation bound on the output vec-
tor. We also analyzed the risk inflation bound of our algorithm
and generalized our technique to the multiple response ridge re-
gression problem. Empirical results on both synthetic and real
datasets demonstrated the efficiency and accuracy of our algo-
rithm.

Finally, in Chapter 5, we studied the recovery problem of
pairwise interaction tensors, a simplified low rank model for
tensors, which has attracted considerable attention due to its
simplicity and effectiveness. We designed an algorithm which,
in the absence of noise, guarantees to exactly recover a pairwise
interaction tensor from only O(nr log2 n) random subsamples of
entries, which is optimal within logarithmic factors. In addition,
for noisy cases, we also developed a constrained convex program
and prove the associated error bounds. Moreover, we proposed a
simple and scalable algorithm for the related optimization prob-
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lems. Our experiments demonstrated that our algorithm can be
used to improve the accuracy of movie recommendation with
time information.
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