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Abstract of thesis entitled:
Interpretability-driven Intelligent Software Reliability Engi-

neering
Submitted by HE, Shilin
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in August 2020

The reliability of software, including traditional software and
intelligent software, is crucial to both end-users and service
providers. However, the increasing scale and complexity of
traditional software and the massive parameters of intelligent
software, make both software hard to understand, which poses
great challenges for software reliability engineering. Especially,
detecting and tracking the problems becomes inefficient and
error-prone when unexpected software behaviors occur. In this
thesis, we study the intelligent software reliability engineering
from the interpretability perspective. Specifically, we propose to
interpret traditional software with logs and intelligent software
with gradients and bilingual knowledge.

Firstly, we conduct an experience report on log-based anomaly
detection, which uncovers abnormal software behaviors using
the interpretable logs. The anomaly detection plays a vital
role in traditional software reliability engineering. Although
anomaly detection has been widely studied in recent years,
a comprehensive benchmark and an open-source toolkit are
lacking. We implement six representative anomaly detection
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methods and evaluate their performance in terms of effectiveness
and efficiency. We obtain five insightful findings and make these
methods open-source for easy reuse and further study.

Secondly, we propose an intelligent log-based method to
identify impactful problems in software systems. There could
be various types of problems, while some are more impactful,
leading to the degradation of Key Performance Indicator (KPI).
To tackle the challenges of highly imbalanced log distribution
and label scarcity, we propose a novel cascading clustering
and KPI correlation method to identify impactful problems.
Experimental results on three real-world datasets confirm the
effectiveness and efficiency of our proposed method.

Thirdly, we focus on interpreting the intelligent software,
which is the first step towards its reliability engineering. We take
the neural machine translation (NMT) model as our testbed.
Although NMT advances the state-of-the-art performance, its
unsatisfactory interpretability poses great challenges for model
debugging and improving. We propose to understand the model
input-output behaviors by exploiting the internal gradients to
estimate the word importance. Comprehensive experiments on
different perturbation operations, language pairs, and model
architectures validate the effectiveness of our method. We also
employ the proposed word importance to detect the under-
translation error in NMT.

Fourthly, we explore the interpretability of NMT models by
assessing its learned bilingual knowledge. The NMT model con-
tains tons of uninterpretable parameters, but the essential bilin-
gual knowledge that model embeds for translation is unclear.
We propose to quantitatively assess the bilingual knowledge
that NMT models learn using the human-understandable phrase
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table. Extensive experiments on widely-used datasets show that
the phrase table is reasonable and consistent. Moreover, we ob-
tain some interesting findings after analyzing the model learning
dynamics and some advanced model improvement techniques.

In summary, this thesis targets at studying the interpretability-
based reliability engineering of both traditional software and
intelligent software. Comprehensive experiments on widely-used
datasets confirm the effectiveness and efficiency of our proposed
methods.
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摘要 ：

軟件，包括傳統軟件和智能軟件，其可靠性對於終端用戶和服

務提供方都至關重要。然而，傳統軟件急劇增加的規模和複雜

度，以及智能軟件中巨量的參數，使得軟件難以被理解，從而

給軟件可靠性工程帶來了巨大的挑戰。尤其當意料之外的軟件

行為出現的時候，檢測和追蹤問題變得非常的低效和易錯。在

本論文中，我們從可解釋性的角度探究智能軟件可靠性工程。

具體來說，我們提出用日誌來解釋傳統軟件以及用梯度和知識

來解釋智能軟件。

首先，我們基於日誌的異常檢測算法基礎上進行經驗研究。異

常檢測在傳統軟件可靠性分析中極為重要，其目的在於利用可

解釋性的日誌來找出異常的軟件行為。雖然異常檢測已被廣泛

研究，但始終缺乏詳盡的基準探究和開源工具。我們實現了六

種代表性的異常檢測方法，並且從有效性和效率的角度對這些

方法進行評估。我們總結出五個有趣結論，並將這些方法開源

以供後續使用和研究。

其次，我們提出一種智能化的，基於日誌的方法來鑒別出軟件

系統中有影響力的問題。軟件系統中的問題種類可能有很多，

但是有些問題會相較於其餘問題更有影響力，也更容易導致系

統性能監控指標的下降。為了解決日誌分佈極度不均衡和標籤
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缺乏的挑戰，我們提出一種新穎的級聯聚類以及關聯系統性能

監控指標的方法來鑒別出有影響力的問題。我們在三個真實數

據集上驗證了我們方法的有效性和高效率。

再其次，我們關注與解釋智能軟件的行為，該可解釋性是邁向

智能軟件可靠性工程的第一步。在本論文中，我們將神經機器

翻譯模型作為我們的研究對象。雖然神經機器翻譯模型已經極

大地促進了機器翻譯任務的效果，它的不可解釋性卻阻礙了模

型的糾錯和提升。我們提出用模型內部的梯度信息來估計詞重

要性，從而理解模型的輸入-輸出行為。我們在不同擾動，語
言對和模型架構上實驗證明我們方法的有效性。我們還將這種

基於梯度的方法用於檢測神經機器翻譯的漏譯問題。

最後，我們從評估模型學習到的雙語知識角度來探究神經機器

翻譯模型的可解釋性。神經機器翻譯模型中包含大量不可解釋

的參數，並且模型中的翻譯所需雙語知識是不清楚的。我們提

出用短語詞表的方法來量化評估模型學習到的雙語知識。我們

在常見數據集上進行大量的實驗，結果表明短語表是一種合理

且通用的評估方法。除此之外，我們分析了模型的動態學習過

程和一些模型改進方法，並從中得到了一些有趣的結論。

綜上所述，本論文旨在從可解釋性角度出發研究傳統軟件和智

能軟件的可靠性工程。我們在廣泛使用的數據集上進行了大量

豐富的實驗，結果證明了我們所提出的這些方法的有效性和高

效性。
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Chapter 1

Introduction

This thesis presents our research on interpretability-driven in-
telligent software reliability engineering, an important field in
software engineering. We first provide a brief overview of the
research problems understudy in Section 1.1 and highlight the
main contributions of this thesis in Section 1.2. Section 1.3
outlines the thesis structure.

1.1 Overview

With the revolution of computer techniques and the increase of
user demands, the software has been providing the commercial
and social infrastructure of modern life to everyone, such
as communication, e-commence, and travelling. In general,
the software includes traditional software (Software 1.0, e.g.,
standalone software, distributed systems, service systems) and
intelligent software (Software 2.0, e.g., artificial intelligence
applications). The software, including search engines such as
Google Search, social networks such as Facebook, and machine
translators like Google Translate, brings excellent convenience to
human-beings and increases human productivity tremendously
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CHAPTER 1. INTRODUCTION 2

by providing services to millions of end-users around the world.
The software reliability is crucial to both end-users and software
providers since a tiny error might lead to user dissatisfaction,
revenue loss, and even human life in danger. As an example, in
traditional software, Amazon Web Service (AWS) encountered
an outage problem in its simple storage service (S3) in 20171,
which breaks down a lot of websites and applications built upon
it, and millions of users are affected. In terms of intelligent
software, in June 2020, a Tesla car, which is on the autopilot
mode, crashes into an overturned truck on a busy highway in
Taiwan2, demonstrating that the unreliable intelligent software
might threat human lives or even lead to more severe conse-
quences.
However, the increasing complexity and scale of software nowa-
days make the software hard to understand, which poses signif-
icant challenges to the problem detection and troubleshooting
and thereby hinders the achieving of software reliability. No-
tably, traditional software such as the system software contains
millions of lines of source code distributed in a large number
of strongly-coupled components and modules, making it noto-
riously hard to comprehend the software, let alone debugging
and troubleshooting. For example, Spark [2] contains around
1.32 million lines of source code, and Hadoop [1] contains 4.10
million lines of source code3. Intelligent software such as the
Transformer [148] consists of tens of millions of uninterpretable
real-value parameters. Under such a circumstance, it is nec-

1https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-
lot-of-websites-and-apps/]

2https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-crashes-
directly-into-overturned-truck-ignores-pedestrian-with-autopilot-on

3Online statistics accessed in June 2020
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Source Code Snippet  

/* hadoop/hdfs../
LeaseRenewer.java  
* (Simplified for easy presentation)  
*/  
Try  
{ 
      renew();  
      lastRenewed = 
Time.monotonicNow();  
} catch (IOException ie) 
{  
       LOG.warn("Failed to renew 
lease for " + clientsString() + " for " 
+ (elapsed/1000) + " seconds. Will 
retry shortly ...", ie);  
} 

Log Messages 

[1] 2015-10-18 18:05:48,680 WARN 
[LeaseRenewer:service@clusters:9000] 
org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease 
for [DFSClient_NONMAPREDUCE_1537864556_1] for 51 
seconds.  Will retry shortly … 
[2] 2015-10-18 18:05:51,180 WARN 
[LeaseRenewer:service@clusters:9000] 
org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease 
for [DFSClient_NONMAPREDUCE_-274751412_1] for 79 
seconds. 
[3] 2015-10-18 21:51:51,181 WARN 
[LeaseRenewer:service@clusters:9000] 
org.apache.hadoop.hdfs.LeaseRenewer: Failed to renew lease 
for [DFSClient_NONMAPREDUCE_-1547462655_1] for 785 
seconds.  Will retry shortly …

Figure 1.1: An example of a Hadoop code snippet and its generated log
messages.

essary for both developers and maintainers to understand the
logic behind the software before completely fixing the potential
bugs [124, 51, 136]. Therefore, the interpretability of software
becomes a must for software reliability engineering.
In traditional software, to interpret program executions and
debug unexpected behaviors, developers often resort to program
analysis methods such as testing or debugger tools (e.g., Java
Debugger). However, this method is very inefficient and does
not apply to large-scale distributed systems. As an alternative,
a typical solution is to leverage the software logs. Unlike
the source code, logs are mostly in natural language and
describe a specific program event in a human-understandable
and abstractive manner. As shown in Figure 1.1, the left part is
a code snippet of the try-catch block extracted from the Hadoop
system, in which the logging statement describes the detailed
information about the exception. The right part shows three
log messages generated from the logging statement.
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In large-scale software, developers insert logging statements
to record the detailed information of program execution flows
(such as when processing a user request), which by natural can
interpret the software behaviors and help detect the software
problems. As a common practice, developers usually inspect
the logs manually or use heuristic rules to understand software
behaviors. For example, they extract the related logs by
searching keywords (e.g., “fail”, “exception”) in log messages.
However, these human-centered methods are inadequate for
large-scale software because of the following reasons:

• Large-scale software generates tons of logs, for example,
at about 50 gigabytes (around 120~200 million lines) per
hour [101]. The sheer volume of logs makes it notoriously
difficult, if not infeasible, to clearly interpret the software
behaviors and discern the key problem information from
the log data manually.

• The large-scale, parallel nature of software such as dis-
tributed system makes its behaviors too complex to com-
prehend by a single developer, who is often responsible
for sub-components only. For example, many systems
(e.g., Hadoop, Spark) are implemented by hundreds of
developers. A developer might have only an incomplete
understanding of overall software behaviors, making it
challenging to identify problems from massive logs.

• The fault tolerance mechanism in distributed systems makes
the logs redundantly generated and further disturb the
software understanding. Traditional methods such as
keyword search become ineffective in extracting suspicious
log messages and likely lead to many false positives. The
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identified logs might be unrelated to real failures [90], which
will significantly increase the manual inspection effort.

To tackle the above challenges, in this thesis, we resort to intelli-
gent methods (i.e., machine learning techniques) for automated
log analysis in software reliability engineering. Specifically,
we focus on two closely-related classification tasks, anomaly
detection, and problem identification. The task details are listed
as follows:
Anomaly detection: The task aims to detect abnormal soft-
ware behaviors and distinguish them from their counterparts.
These anomalies are very likely to be software problems.
Problem identification: The task not only distinguishes the
software problems from normal software behaviors but also
identifies different types of problems using the log data.
Recent years have also witnessed the rapid rise and wide
adoption of intelligent software in many areas, such as speech
recognition in Siri, machine translation in Google Translate, face
identification in phone unlocking. Similar to the traditional soft-
ware, intelligent software provides services (Machine Learning as
a Service, MLaaS) to end-users, and its reliability is also crucial.
In recent studies [59, 6, 166], intelligent software such as deep
learning models are often criticized for their sensitivity and
vulnerability. When adding some human-imperceptible noises
or perturbations (i.e., adversarial examples), the models are
prone to make wrong predictions. For example, after adding
some background noises, the speech of “How are you?” can
be incorrectly identified as “Open the door.” Besides, some
regular examples may also confuse the model to make wrong
predictions, e.g., corner cases that are not learned well in
training. Especially when some unexpected software behaviors
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(a) Traditional Software (b) Intelligent Software

Stop
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Condition

Code Inside Loop

Update Counter

Figure 1.2: Comparison between (a) traditional software (white-box) and (b)
intelligent software (black-box) in terms of internal mechanisms.

occur in safety-critical applications such as auto-driving cars
and medical diagnosis, intelligent software would be a disaster.
To conclude, vulnerability and sensitivity indicate that deep
learning models only learn superficial representations and are
not reliable.
However, it is unclear why intelligent software makes the wrong
prediction on these examples, which impedes the achievement
of its reliability. As shown in Figure 1.2, traditional software
is a white box with an apparent program logic flow and can
be easily interpreted by humans. On the contrary, intelligent
software is a black box. It consists of many stacked layers,
and each layer is nothing but the combination of linear and
non-linear transformation functions with real-value parameters.
The internal working mechanisms of intelligent software then
is a mystery for humans. Therefore, in the long journey of
intelligent software reliability, the interpretability is an essential
early step. Intuitively, intelligent software is more reliable if it
is more interpretable.
In addition to providing explanations to intelligent software
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predictions, interpretability can also help other related tasks,
such as testing, debugging, safety. In testing, interpretations can
be utilized to design corner or edge cases by covering essential
features. In debugging, in analogy to the white-box testing in
traditional software, intelligent software can only be debugged
when interpretable. An interpretation of a wrong prediction can
help understand the cause of the error and derives a direction
for bug fixing. As for safety, the interpretation can identify the
most critical features, and we may design methods to protect
these important features from being attacked.
However, interpreting the intelligent software is non-trivial.
Traditional methods heavily rely on the model structure by
visualizing the internal components (e.g., attention) as the
salience map. However, recent work shows that the attention
does not provide meaningful explanations since the relation
between attention scores and the model output is unclear [78].
Besides, there is no previous research studying and quantifying
the knowledge embedded in intelligent software. In this thesis,
we take the state-of-the-art neural machine translation (NMT)
models as our intelligent software. The NMT has demonstrated
its superiority in real-world deployment, but its interpretabil-
ity is not thoroughly studied. Specifically, we consider the
interpretability of intelligent software from two complementary
angles: model attribution and model knowledge:
Model attribution estimation: The task attempts to ex-
plain the model input-output behaviors, i.e., the input-output
correspondence. In detail, it estimates the importance of
each input feature when the model makes a prediction. The
obtained interpretation is input-dependent, which provides a
local explanation for individual inputs.
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Figure 1.3: Overview of the research in this thesis.

Model knowledge assessment: It focuses on explaining
the model behaviors by grounding the uninterpretable model
parameters into the human-understandable domain knowledge.
The interpretation provides a global explanation for the model
and quantitatively assess the knowledge embedded in the model.
It also provides a local explanation for individual inputs.
Therefore, the research of this thesis comprises two parts, as
depicted in Figure 1.3. In the first part, to realize the traditional
software reliability engineering, we interpret the traditional soft-
ware by applying intelligent methods on the generated logs. This
part consists of two closely-related tasks, anomaly detection,
and problem identification. In the second part, we focus on
intelligent software interpretation for the goal of intelligent
software reliability engineering. We first approach the model
attribution by providing a gradient-based method, and then
quantitatively assess the bilingual knowledge embedded in the
intelligent software.
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1.2 Thesis Contributions

In this thesis, we mainly focus on software reliability engineering
from the interpretability perspective in both traditional soft-
ware and intelligent software. Studying the interpretability
is a crucial early step in realizing the software reliability.
Specifically, in traditional software, we approach the software
reliability by employing intelligent log-based methods in the
anomaly detection and problem identification task. In intelligent
software, we propose to attribute the model predictions to the
model input with the gradient information. Besides, we explore
the method to assess the knowledge embedded in the intelligent
software quantitatively. The contributions are summarized as
follows:

• For log-based anomaly detection, we provide the first
systematic and comprehensive experience report to fill
the gap between the industry and academia. To this
end, we evaluate six state-of-the-art anomaly detection
methods and compare their accuracy and efficiency on two
representative production log datasets. Additionally, we
release an open-source toolkit of these anomaly detection
methods for easy reuse and further study. The open-source
toolkit has now become a standard benchmark in this area.

• For log-based problem identification, we propose a novel
framework to identify impactful problems, i.e., Log3C.
To tackle the challenges of the high imbalance of log
distribution and the lack of labeled data, we propose the
cascading clustering, an efficient and effective clustering
algorithm, and KPI correlation. The proposed Log3C is
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evaluated on three real-world log data and applied to the
maintenance of actual online service systems.

• For gradient-based attribution estimation, we employ the
integrated gradients method to calculate the word impor-
tance, which explains the neural machine translation model
prediction. We validate that the gradient information
can outperform existing interpretation methods such as
attention in various language pairs, directions, and model
structures. Further analyses of linguistic properties provide
some guidance on future model structure design. Besides,
we apply our method to detect the under-translation error.

• For phrase-table-based knowledge assessment, we approach
the model interpretability by an original bilingual knowl-
edge assessing method in neural machine translation. We
leverage the phrase table, an interpretable table of bilingual
lexicons, to represent the model knowledge. Massive
experiments show that the phrase table is reasonable and
consistent. Equipped with the phrase table, we obtain some
interesting findings in model learning dynamics and model
improvement methods. This work opens up a new angle to
interpret NMT with statistic models and provides empirical
supports for recent advances in improving NMT models.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2
In this chapter, we provide a systematic review of the
background knowledge and related work. Firstly, we briefly



CHAPTER 1. INTRODUCTION 11

introduce different methods of interpreting traditional soft-
ware in §2.1. Then, §2.2 illustrates the general framework
of log analysis using intelligent methods for software re-
liability engineering. §2.3 provides the basic information
about the intelligent software we study in this thesis, i.e.,
neural machine translation, including the task description
and standard model structures. At last, §2.4 reviews recent
advances in interpreting intelligent software.

• Chapter 3
This chapter presents our experience report on log-based
anomaly detection methods. We first introduce the moti-
vation in §3.1 and provide a detailed review of six state-of-
the-art log-based anomaly detection methods in §3.2. In
§3.3, we empirically evaluate these methods on two log
datasets and introduce several interesting findings based
on the experimental results. We further provide some
discussions in the limitation and the potential directions
in §3.4 and conclude the work in §3.5.

• Chapter 4
In this chapter, we introduce a novel log-based method to
identify impactful service system problems. We first intro-
duce the background knowledge in §4.1 and then introduce
our proposed Log3C framework as well as the details in
§4.2. §4.3 presents the experimental results on three real-
world datasets, demonstrating that our method is both
efficient and effective. §4.4 presents our result discussions,
lists the threats to validity, and shares the success story
and lessons learned in the real-world deployment. At last,
we summarize the work in §4.5.
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• Chapter 5
This chapter presents the interpretability study in neu-
ral machine translation model, the first step towards its
reliability engineering. §5.1 introduces the background
and motivation, and §5.2 illustrates our gradient-based
method. Through a variety of experiments, we confirm
the consistent effectiveness of the proposed method in §5.3.
We provide some linguistic analysis and the application
of under-translation error detection in §5.4. Besides, we
discuss some possible directions for future explore in §5.5
and conclude the work in §5.6.

• Chapter 6
In this chapter, we propose interpreting the neural ma-
chine translation model by assessing its learned bilingual
knowledge with statistic models – phrase table. We first
introduce the evolvement of the translation knowledge
throughout different machine translation generations in
§6.1. Next, our proposed phrase table method is illustrated
in §6.2 and evaluated under different configurations in §6.3.
Equipped with the interpretable phrase table, we analyze
the NMT model learning and advanced techniques in §6.4
and summarize the work in §6.6.

• Chapter 7
The last chapter first summarizes this thesis in §7.1. Then
in §7.2, we discuss some potential future research directions
about software reliability engineering in terms of both
traditional software and intelligent software.

2 End of chapter.



Chapter 2

Background Review

This chapter reviews the background knowledge and related
work. The overall structure is illustrated in Figure 2.1. We
first present different types of traditional software interpretation
methods in Section 2.1, among which the log analysis is a
crucial thread of research. In Section 2.2, we illustrate the
general framework for log-based reliability engineering. After
that, Section 2.3 introduces the necessary information (e.g., task
definition, model structure) about the intelligent software we
study in this thesis, i.e., neural machine translation. Then,
in Section 2.4, we provide a taxonomy on recent studies in
interpreting intelligent software.

2.1 Interpretation for Traditional Software

Although white-box, traditional software such as distributed
systems and large-scale office software are hard to comprehend
since they usually consist of millions of code lines, which further
poses challenges to software reliability engineering. In the
last decades, many software engineering practices and program
analysis methods have been developed to relieve the problem of

13
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Figure 2.1: An overview of software interpretability research.

software interpretability. In general, there are three categories
of methods in interpreting traditional software behaviors: devel-
opment practices (§2.1.1), static program analysis (§2.1.2) and
dynamic program analysis (§2.1.3). Note that we do not aim to
explore the entire space but introduce techniques closely related
to software reliability engineering.

2.1.1 Development Practices

A natural choice to improve the software interpretability is
increasing the readability of source code. Unreadable code is
prone to cause bugs in operation. In the early years, studies [47]
have found that improving the source code readability can
drastically reduce the time to understand it and help the
further modification. Industrial practices [135] also demonstrate
that software readability is one way to determine whether the
software product is reliable.
There are multiple methods to increase the program readability,
such as writing code comments, and following naming conven-
tions for objects (e.g., variables, classes). A comment in the
source code is a human-readable explanation or annotation of
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a code block, function, module, and program. The comments
are generally ignored by compilers and interpreters, and will not
affect the program behaviors. With the interpretable comments
available, developers and maintainers do not need to read the
complex code to understand its functionality.
However, the method is labor-intensive and inefficient. With the
development of software engineering, more advanced techniques
are proposed to interpret and analyze the software behaviors
regarding properties such as robustness, correctness, and safety.
In the following sections, we briefly introduce the static program
analysis and dynamic program analysis.

2.1.2 Static Program Analysis

In static program analysis, the program is not executed, and all
analyses are built upon the source code only. Typical techniques
that could interpret program behaviors consist of control-flow
analysis, data-flow analysis, abstract interpretation, etc. We
will briefly explain the key ideas behind these techniques:

• control-flow analysis: It extracts information about the
function dependency in the program, i.e., which function
can be called during the program execution. The depen-
dency information is illustrated by a control flow graph
(CFG).

• data-flow analysis: Similar to the control-flow analysis,
data-flow analysis depicts the variable values at each pro-
gram point and their changes over time. The information
is represented by the data-flow diagram (DFD).

• abstract interpretation: It extracts the information about
possible executions of a program by the form of mathemat-
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ical characterizations; in other words, semantics.

Although interpreting the software behaviors from different
perspectives, the techniques mentioned above provide necessary
information for locating potentially vulnerable code, especially
in safety-critical software. Since the static program analysis does
not execute the software, it might lead to inaccurate results. On
the contrary, dynamic program analysis resolves the problem by
running the source code.

2.1.3 Dynamic Program Analysis

Dynamic analysis is proposed to leverage the runtime knowledge
to interpret the software program to increase the analysis accu-
racy. Three typical analysis methods are testing, monitoring,
and program slicing. The details are presented as follows:

• testing: As a standard procedure in software development,
the software is tested with tailored test cases to ensure its
normal operations. Testing methods interpret the software
by ensuring the program behaviors consistent with the
expected output when feeding an input.

• monitoring: Monitoring can effectively interpret the soft-
ware execution by inserting numerous monitoring indica-
tors into the source code. During the runtime, the software
collects information about the program, such as resource
usage (e.g., CPU utilization rate, memory consumption)
and recording events (such as logs). Particularly in software
maintenance, log plays a vital role in monitoring software
execution and interpreting software behaviors.
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• program slicing: It reduces the program to the minimum
form but still produces the selected program behaviors.
Program slicing provides a faithful representation of the
original program. It could interpret the original program
by a simplified but equally-functioned program.

In this thesis, a part of our focus lies in the log-based analysis
for software reliability engineering. Unlike the techniques
mentioned above, we aim to provide intelligent solutions to
analyze the massive log data better. In the following section,
we will introduce the general framework for log-based analysis
with intelligent methods, i.e., machine learning techniques.

2.2 Intelligent Log Analysis Framework

Due to the great volume of log data, interpreting the traditional
software becomes tedious and difficult, if not possible. In
recent years, intelligent log analysis has been widely employed to
improve the reliability of traditional software systems in many
aspects [111], such as the anomaly detection [16, 93, 159], failure
diagnosis [32, 100, 117], program verification [21, 130], and
performance prediction [28].
In this part, we will illustrate the general framework of log
analysis for traditional software reliability engineering. As
depicted in Figure 2.2, the log analysis framework consists of
four steps: log collection (§2.2.1), log parsing (§2.2.2), feature
extraction (§2.2.3) and log mining (§2.2.4). Details of each step
are presented in the following sections.
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Figure 2.2: A framework of intelligent log analysis.

2.2.1 Log Collection

As aforementioned in Section 1.1 and illustrated in Figure 1.1,
logs are firstly generated when executing the logging statements
in the software runtime phase and then saved on the local disk.
In large-scale traditional software, for example, a distributed
system that contains tens of thousands of computing nodes. It
routinely generates logs to record system states and runtime
information, each comprising a timestamp and a log message
indicating when and what has happened. Generally, logs
are firstly generated on each node and then gather for the
downstream tasks such as manual inspecting and automated
analysis. For example, Figure 2.3 shows 8 log messages extracted
from a service system that recording detailed information about
the end-user HTTP requests.
Due to the enormous volume of logs (e.g., Petabytes per day)
that large-scale systems may generate, the storage becomes
trouble even with distributed file systems such as HDFS. Recent
studies [91, 31] propose to compress the original log file to
dramatically reduce the storage space, which we believe is a
promising research direction.
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2.2.2 Log Parsing

Log parsing aims to extract the log event (i.e., event template)
from the raw log messages, as depicted in Figure 2.3. Logs
are unstructured plain text that consists of constant parts and
variable parts, where the constant parts keep unchanged while
the variable parts may vary in different program executions.
For instance, in Figure 2.3, log message 2 and 8 share the
same logging template “Leaving Monitored Scope (*) Execution
Time=*”, while the remaining strings in the logs are variable
parts as they are not fixed in different messages. Constant parts
are predefined in the logging statements by developers. Variable
parts are often generated dynamically (e.g., port number, IP
address) and often not be well utilized in the downstream tasks.
The most straightforward way of log parsing is to write a
regular expression for every logging statement in the source
code, as adopted in [159]. However, it is tedious and time-
consuming because the source code updates frequently and is not
always available in practice (e.g., third-party libraries). Thus,
automatic log parsing without source code is imperative.
There are mainly three types of automated log parsing methods:
clustering (e.g., LKE [53], LogSig [142], LogMine [64]), frequent-
pattern mining (SLCT [146], LogCluster [147]) and heuristic-
based (e.g., iPLoM [98], Drain [71], AEL [79]).

• clustering: In clustering-based log parsers, we calculate the
distances between logs first, and then clustering techniques
are often employed to separate logs into different groups.
Finally, a log event is generated from each cluster.

• frequent-pattern mining: For frequent-pattern mining ap-
proaches, frequent item-sets (e.g., tokens, token-position
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02   Leaving Monitored Scope (EnsureListItemsData) Execution Time=52.9013

07   HTTP request URL: http://AAA:1000/BBBB/sitedata.html

05   HTTP request URL: /55/RST/UVX/ADEG/Lists/Files/docXX.doc

03   HTTP request URL: /14/Emails/MrX(MrX@mail.com)/1c-48f0-b29.eml

01   Name=Request (GET:http://AAA:1000/BBBB/sitedata.html)

08   Leaving Monitored Scope (Request (POST:http://AAA:100/BBBB/ 
       sitedata.html)) Execution Time=334.319268903038

04   HTTP Request method: GET

06   Overridden HTTP request method: GET

E1   Name=Request (*)

E3   HTTP Request method: *

E5   Overridden HTTP request method: *

E4   HTTP request URL: *
Log Parsing

E2   Leaving Monitored Scope (*) Execution Time = *
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(Task_ID)

Figure 2.3: An example of log messages and log events.

pairs) are built first by traversing over the log data. Next,
frequent words are selected and composed as the event
candidates. Finally, candidates are further processed to
become log events.

• heuristic: Heuristic-based methods parse logs by making
use of the characteristics of logs. For example, Drain uti-
lizes a fixed-depth tree structure to represent log messages
and extracts log events efficiently.

In our previous study, we evaluate 13 log parsers on a total
of 16 log datasets in our previous work [169, 70]. Besides, we
published an open-source log parsing toolkit online1, which is
employed to parse raw logs into log events in this thesis.

1Log parsers available at https://github.com/logpai/logparser
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2.2.3 Feature Extraction

A single log cannot reflect the problem due to its limited
information. Instead, a common practice is to leverage a
sequence of logs, i.e., log sequence. However, in large-scale
systems, different log sequences are often interleaved and cannot
be disentangled easily. To form a log sequence, log messages that
have strong relations should be linked together, and details are
as follows:

• task identifier : Task identifier, such as the job id and the
process id is to mark different execution flows for a large
system or software in runtime. For instance, HDFS logs use
the block_id to record the allocation, writing, replication,
deletion of a certain block. Thus, Logs that share the same
task identifier can then be linked together as a log sequence.

• time-stamp: Since not all logs have the preset task iden-
tifier, an alternative way is to leverage the timestamp
information. Logs that are generated in the same time
interval compose a log sequence. There are also two
configurations for the time interval setting: fixed window
and sliding window, as shown in Figure 2.4. For the fixed
window method, logs that occur in the same time interval
(i.e., window size such as 10 minutes) are grouped together,
and different time intervals have no overlap. Differently,
logs in different sliding windows have overlap. The sliding
window consists of two attributes: window size and step
size, where the window size is the same as the one in the
fixed window, and the step size defines the time interval
before the next sliding window.

After linking the log sequence, we construct a numerical feature
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Figure 2.4: An illustration on time window (fixed window and sliding
window) for log sequence.

vector. In detail, given the log sequence and the parsing method,
we take the log event as a feature and use a feature vector to
represent the log sequence. In each log sequence, we count the
occurrence number of each log event to form the feature vector
(namely, feature vector). For example, if the feature vector
is [0, 0, 2, 3, 0, 1, 0] and each position represent a log event, it
means that event 3 occurred twice, and event 4 occurred three
times in this log sequence. In this way, we can successfully
reconstruct the original log sequence and represent it using the
feature vector.

2.2.4 Log Mining

Based on the extracted feature vector, we aim to mine some
useful patterns with intelligent methods in this step. Since this
part is also our main contributions in this thesis, we will briefly
introduce some basic ideas and leave more detailed descriptions
in Chapter 3 and Chapter 4.
The general flow for log mining is first to train the model based
on the training data and then test on a reserved subset of test
data to evaluate its performance. Each data sample is denoted
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as (x, y), where x is the feature vector of a log sequence, and y
is the data label (might not be available), such as the anomaly
or not. In terms of the existence of data label y, the log mining
methods can be divided into two threads: supervised method
and unsupervised method. In the supervised method, labels are
used to guide the training of the supervised models. Typical
supervised methods include the decision tree, logistic regression,
neural networks. While in unsupervised methods, there is no
label for the model training. Typical methods are the dimension
reduction method, such as PCA, one-class SVM, and clustering.
There are a variety of log analysis tasks, as aforementioned, in
this thesis, we mainly focus on two tasks: anomaly detection
and problem identification. We review some related researches
as follows:
Anomaly detection task aims at finding abnormal behaviors,
which can be reported to the developers for manual inspection
and debugging. Xu et al. [159] propose the first anomaly
detection method based on PCA in the HDFS system and
Beschastnikh et al. [21] formalize the logs as a finite state
machine to describes system runtime behaviors and detect
anomalies. Besides, Farshchi et al. [49] adopt a regression-
based analysis technique to detect anomalies of cloud application
operations. There are also other studies [23, 150, 12, 7, 11]
working on the anomaly detection in different software systems
for different purposes. Different from these methods that focus
on detecting a specific kind of anomaly, in Chapter 3, we evalu-
ate the effectiveness and efficiency of various anomaly detection
methods for anomalies in large scale distributed systems.
Problem identification task is an extension to the anomaly
detection, which categorizes different problem types by grouping
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similar log problems together. Lin et al. [90] proposed a
clustering-based approach for problem identification. Based on
testing environment logs, a knowledge base is built firstly and
updated in the production environment. However, it requires
manual examination when new problems appear. Yuan et al.
[162] employed a classification method to categorize system
traces by calculating the similarity with traces of existing and
known problems. Beschastnikh et al. [20] inferred system
behaviors by utilizing logs, which can support anomaly detection
and bug finding. Ding et al. [40, 41] correlated logs with system
problems and mitigation solutions when similar logs appear.
Shang et al. [130] identified problems by grouping the same log
sequences after removing repetition and permutations. However,
they ignored the different importance of log events and the
similarity between any two log sequences. Chapter 4 presents
our attempts on log-based problem identification, in which we
propose an efficient and effective clustering algorithm under the
guidance of system performance monitoring.

2.3 Intelligent Software

In this section, we present the details of intelligent software
that we studied in this thesis, i.e., Neural Machine Transla-
tion (NMT). We start with the machine translation task and
then introduce the RNNSearch model and the state-of-the-art
Transformer model for NMT.

2.3.1 Neural Machine Translation Task

Machine translation is the task that aims to convert an input
sentence in the source language into an output sentence in
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the target language without losing any information. Machine
translation has now been widely deployed in many industrial
products, e.g., Google Translate, social network posts transla-
tion.
Suppose I is the source sentence length and J is the length of
the target sentence, the goal of a machine translation model
M : x → y is to maximize the conditional probability of the
target sequence y = {y1, ..., yJ} given a source sentence x =
{x1, ..., xI}, :

P (y|x;θ) =
J∏
j=1

P (yj|y<j,x;θ)

where θ is the model parameter and y<j is a partial translation.
At each time step j, the model generates an output word of
the highest probability based on the source sentence x and the
partial translation y<j.
Training: The model is trained on N parallel samples (x, y)
(training corpus D), where N is usually very large, such
as around 4.5 million in WMT English⇒German translation
corpus. The training objective is to minimize the negative log-
likelihood loss on the training corpus:

L(θ;D) = −
N∑

(x,y)∈D
logP (y|x)

Inference: After training the model, we can employ the model
to decode the output sentence given any input sentence in the
source language. Since the greedy decoding may generate less
satisfactory sentences, during the inference, beam search, is
widely adopted to decode a more optimal translation. Beam
search is now the standard practice for machine translation
tasks, generating tokens with top-beam (e.g., top 5) highest
probability.
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Evaluation: BLEU [115] is the standard metric for evaluating
the machine translation performance. It measures the similarity
between the generated translation and the reference sentence
from the token matching perspective, i.e., 1-gram to 4-gram.
We usually use the 4-gram NIST BLEU score as the evaluation
metric.

2.3.2 Model Structures

The machine translation task has a long history, in which the
MT model have evolved from MT (RBMT) [67, 126], through
SMT [25, 110], to NMT [141, 15]. RBMT methods require large
sets of linguistic rules and extensive lexicons with morpholog-
ical, syntactic, and semantic information, which are manually
constructed by humans. Benefiting from the availability of large
amounts of parallel data in the 1990s, SMT approaches relieve
the labor-intensive problem of RBMT by automatically learning
the linguistic knowledge from bilingual corpora with statistic
models. More recently, NMT, which builds a single end-to-end
neural network on the training corpora, has taken MT’s field.
Both the RBMT and SMT models are interpretable to humans
since they involve many manually designed features that carry
real-world meanings, e.g., word alignment. However, NMT
models, which represent the current state-of-the-art techniques
in MT task, are uninterpretable, which hinders the achieving
of its reliability. Therefore, we will introduce our recent work
on NMT model interpretability in this thesis. We will briefly
go through two representative models in NMT in the following
part:
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Figure 2.5: RNNSearch structure in neural machine translation.

RNNSearch model As shown in Figure 2.5, the RNNSearch [15]
model is the first model that defines the Encoder-Decoder
model structure and dramatically boosts the neural machine
translation performance. The RNNSearch model relies mostly
on the recurrent neural network (RNN), which is good at
modeling sequential data such as the natural language.
In detail, the RNNSearch model consists of three components:
encoder, decoder as well as the attention module. The encoder is
a bi-directional RNN built on the source embedding of the input
sentence ([x1, x2, ..., end]), and it can capture the information
from both forward and backward direction. The decoder is a
standard forward RNN that predicts the next token based on
previously generated tokens. Besides, according to the hidden
state in the current decoder step, the RNNSearch model utilizes
the attention mechanism to treat the encoder hidden states
(from h1 to hm) differently. The attention mechanism firstly
calculates the attention weight (aji) of different encoder hidden
states and takes the weighted sum of encoder hidden states as
the context vector:

cj =
m∑
i=1

ajihi
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In the decoder generation, the context vector considers the input
tokens’ contribution and assigns more weights to more relevant
tokens. Therefore, attention is often used as an interpretation
method in natural language processing tasks such as machine
translation.

Transformer model The RNNSearch model has two significant
drawbacks: 1) It suffers from the long-range dependency prob-
lem since the RNN structure tends to forget tokens on distant
positions. 2) The primary component RNN in the RNNSearch
model has to iterate through the sequence one by one word, and
each state depends on all previous states. The sequentiality is an
obstacle to the parallelization of model training, especially for
modern computing devices that rely on parallel processing, such
as Tensor Processing Units (TPUs) and Graphics Processing
Units (GPUs).
To tackle the problems as mentioned above, Transformer [149]
employs a novel self-attention module to parallelize the calcu-
lation and further accelerate the training. Transformer is now
the state-of-the-art neural machine translation model and our
intelligent software of interest in the following chapters.
Similar to the RNNSearch model, the Transformer model is also
composed of the encoder and decoder components. In both
the encoder and decoder component, firstly, each input word
is represented as the addition of an embedding vector and a
positional embedding which captures the relative position within
the sequence. The representation is then fed into modules that
can be stacked on top of each other multiple times, as depicted
by Nx in Figure 2.6.
Each module consists mainly of a multi-head self-attention and a
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 2.6: Transformer structure in neural machine translation.
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feed-forward network. Unlike traditional methods that compute
a single attention weight, the multi-head self-attention computes
multiple attention blocks using the multi-head, concatenates,
and projects them linearly back to a predefined subspace. Each
attention head calculates the scaled dot-product attention with
different linear projections over the given input representations.
Finally, a fully connected feed-forward network is leveraged,
which has two linear transformation layers with a ReLU acti-
vation function [63].
The decoder differs from the encoder slightly. The decoder
generates the word from left to right, and thereby the multi-
head self-attention attends only to past words. Besides, there is
an encoder-decoder self-attention module which attends to the
encoder representations. Finally, a Softmax layer is employed
to map the output representation to the probability distribution
over the target vocabulary.
In Chapter 5 and Chapter 6, we study the interpretability of
NMT models, and our main experimental results are based on
the state-of-the-art Transformer model.

2.4 Interpretation for Intelligent Software

In this section, we will first introduce the overall taxonomy
for interpreting the intelligent software. Generally, the in-
terpretability is approached from three threads: input-output
attribution, internal representations, and data point attribution.
Details are illustrated in the following sections.
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2.4.1 Input-Output Attribution

To explain why the model makes a correct or incorrect predic-
tion, a straightforward way is to understand the prediction from
the input feature perspective [8, 42, 72]. In other words, input-
output attribution attempts to estimate the contribution that
each input feature makes to the output prediction, e.g., feature
importance. Since features in different inputs may play different
roles in the model prediction, the attribution method is a local-
explanation method which is input-specific. The attribution
method contains two major groups, perturbation-based [8] and
gradient-based [140, 72].
The perturbation-based methods [123, 170, 50] estimate the in-
put feature contribution by perturbing (or removing) the feature
and measuring the performance change of model predictions
after this operation. However, perturbation-based methods are
easy to implement but often very slow. Besides, the perturbed
feature numbers and feature orders can also significantly affect
the resulting interpretation, making it difficult to rely on the
results. They do not exploit any intermediate information, such
as gradients. For example, Alvarez-Melis et al. [8] measure the
relevance between two input-output tokens by perturbing the
input sequence.
The gradient-based method computes attributions by taking
a few backward passes through the network. Specifically, we
estimate the attribution values as the gradient of the model
prediction with respect to the input features. However, directly
applying the gradient could be problematic due to the non-
linearity in the deep neural networks. To tackle the problem,
recent advances have been proposed such as the Layer-wise
Relevance Propagation (LRP) in several variants [13, 103],
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DeepLIFT [134, 133], and Integrated Gradients [140, 128,
105, 37]. Among all gradient-based approaches, the integrated
gradients [140] is appealing since it does not need any instrumen-
tation of the architecture and can be computed easily by calling
gradient operations. In the Chapter 5 of this thesis, we employ
the IG method to interpret NMT models and reveal several
interesting findings, which can potentially help debug NMT
models and design better architectures for specific language
pairs.

2.4.2 Internal Representations

The internal representation based methods focus on the model
internals instead of the input-output correspondence, which
provides a global explanation to human. In general, the goal
of internal representation interpretability is to understand the
knowledge embedded in the learned representation vectors.
There are mainly three threads of studies: layer representa-
tion [131, 18, 151], neurons [17], model weights [152, 78, 155].
In layer representation understanding, for example, in the NMT
task, Several researchers turn to expose systematic differences
between human and NMT translations [88, 127], indicating
the linguistic properties worthy of investigating. They mainly
focus on whether the NMT model embeds sufficient linguistic
knowledge, such as grammar for translation. To achieve so, the
probing task [34] is utilized to evaluate the linguistic information
embedded in the representation. However, the learned repre-
sentations may depend on the model implementation, which
potentially limits the applicability of these methods to a broader
range of model architectures.
Recently, the functionality of specific neurons also attracts the
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interest of researchers. In deep learning models, are there some
neurons that are more important than other neurons? Does a
particular neuron control a property of the generated sentences?
For example, researchers [17] show that some specific neurons
control the gender property in the generated sentence. These
studies attempt to open the black-box of deep learning by
probing into the neurons.
The model weights are mostly real-value parameters that cannot
be well-explained, but the attention module is often considered
as self-explainable. However, recent researches show that atten-
tion is not an explanation, and different attention distribution
may yield the same model predictions [152, 78, 155].

2.4.3 Datapoint Attribution

Datapoint attribution is a slightly different method that instead
focuses on the data samples. In data point attribution, coun-
terfactual explanation and training sample explanation are two
standard sets of methods.
In counterfactual explanation, to explain the prediction of a data
sample, we need to first find a similar data samples by changing
some input features that may change the model prediction in a
relevant way, for example, a flip in the predicted class.
To explain the prediction of a test sample, the method finds
similar data points in the training data relevant to the current
data sample prediction, which may further help identify the
prediction problems [95, 139, 86]. For example, the method
is useful when finding out that the training data is poisoned.
Removing the problematic training samples could then help
avoid the wrong prediction problem.
The data point attribution provides another angel for interpret-
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ing the model prediction, which is also relevant to our studies
on the bilingual knowledge assessment since the extraction of
bilingual knowledge is also training data based.

2 End of chapter.



Chapter 3

Log-based Interpretation for
Anomaly Detection

In the reliability engineering of traditional software such as
large-scale distributed systems, anomaly detection plays an
important role. Logs which record system runtime information,
are widely used to interpret the software behaviors in terms
of the anomaly detection. In this chapter, we mainly focus
on system anomaly detection. Specifically, we provide an
empirical study on existing anomaly detection methods and
evaluate their performance regarding effectiveness and efficiency
on two representative log datasets. We further conclude several
interesting findings that might guide future research and release
the toolkit for public reuse. The chapter is organized as follows:
we first introduce the problem background in §3.1 and present
a detail review on existing methods in §3.2. We then show the
experiments and the findings in §3.3. We discuss the limitations
and the potential directions in §3.4 and conclude this chapter in
§3.5.

35



CHAPTER 3. LOG-BASED ANOMALY DETECTION 36

3.1 Problems and Motivation

Modern software systems are evolving to a large scale, either by
scaling out to distributed systems built on thousands of com-
modity machines (e.g., Hadoop [1], Spark [2]) or by scaling up to
high-performance computing with supercomputers of thousands
of processors (e.g., Blue Gene/L [112]). These systems are
emerging as the core part of the IT industry, supporting a wide
variety of online services and intelligent applications for millions
of users. Because most of these systems often operate on a 24x7
basis, serving millions of online users globally, high availability
and reliability become a must. Any incidents of these systems,
including service outage and degradation of service quality, will
break down applications and lead to significant revenue loss.
Anomaly detection, which aims at uncovering abnormal system
behaviors promptly, plays a vital role in incident management
of large-scale systems. Timely anomaly detection allows sys-
tem developers (or operators) to pinpoint issues promptly and
resolve them immediately, thereby reducing system downtime.
Systems routinely generate logs, which record detailed runtime
information during system operation. Such widely-available
logs are used as the primary data source for system anomaly
detection. Log-based anomaly detection (e.g., [90, 117, 159])
has become a research topic of practical importance both
in academia and in industry. However, traditional manual
inspecting methods become not applicable due to the reasons
we introduced in Section 1.1: 1) the vast volume of logs makes it
difficult to inspect the logs manually; 2) the large scale systems
are too complex to understand by a single developer; 3) the
fault tolerance mechanism may confuse the developers and lead
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to many false positives. As a result, automated log analysis
methods for anomaly detection are highly in demand.
Log-based anomaly detection has been widely studied in the
last decades. However, we found that there is a gap between
research in academia and practice in the industry. On the one
hand, developers are, in many cases, not aware of the state-of-
the-art anomaly detection methods, since there is currently a
lack of a comprehensive review on this subject. They have to go
through a large body of literature to get a comprehensive view of
current anomaly detection methods. The literature review is a
cumbersome task yet does not guarantee that the most suitable
method can be found since each research work usually focuses
specifically on reporting a particular method towards a target
system. The difficulty may be exacerbated if developers have
no prior background knowledge of machine learning required to
understand these methods.
On the other hand, to our knowledge, no log-based open-source
tools are currently available for anomaly detection. There is
also a lack of comparison among existing anomaly detection
methods. It is hard for developers to know which is the best
method for their practical problems at hand. To compare all
candidate methods, they need to try each one with their im-
plementation. Enormous efforts are often required to reproduce
the methods because no test oracles exist to guarantee correct
implementations of the underlying machine learning algorithms.
To bridge this gap, in this chapter, we provide a detailed review
and evaluation of log-based anomaly detection, as well as release
an open-source toolkit1 for anomaly detection. Our goal is not
to improve any specific method, but to portray an overall picture

1Available at https://github.com/logpai/loglizer
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of current research on log analysis for anomaly detection. We
believe that our work can benefit researchers and practitioners
in two aspects: Firstly, the review can help them grasp a
quick understanding of current anomaly detection methods.
Secondly, the open-source toolkit avoids time-consuming yet
redundant efforts for re-implementation, which allows them
to reuse existing methods and make further customization or
improvement easily.
The log analysis process for anomaly detection involves four
main steps: log collection, log parsing, feature extraction, and
anomaly detection, as depicted in 2.2. In this chapter, we
will focus primarily on the aspects of feature extraction and
machine learning models for anomaly detection. According to
the type of data involved and the machine learning techniques
employed, anomaly detection methods contain two main cate-
gories: supervised anomaly detection and unsupervised anomaly
detection. Supervised methods require the training labels with
clear specifications on normal instances and abnormal instances.
Then classification techniques are utilized to learn a model
to maximize the discrimination between normal and abnormal
instances. Unsupervised methods, however, do not need labels
at all. They work based on the observation that an abnormal
instance usually manifests as an outlier point distant from other
instances. As such, unsupervised learning techniques, such
as clustering, can be applied. More specifically, we reviewed
and implemented six representative anomaly detection methods
reported in recent literature, including three supervised methods
(i.e., Logistic Regression [22], Decision Tree [27], and SVM
[89]) and three unsupervised methods (i.e., Log Clustering [90],
PCA [159], and Invariant Mining [93]). We further perform
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a systematic evaluation of these methods on two publicly-
available log datasets, with a total of 15,923,592 log messages
and 365,298 anomaly instances. The evaluation results are
reported on precision, recall, F-measure and efficiency. Though
the data are limited, we believe that these results, as well as
the corresponding findings revealed, can provide guidelines for
the adoption of these methods and serve as baselines in future
development.

3.2 Methodology

As aforementioned in Section 2.2, anomaly detection is a specific
log mining task. Before the logging mining phase, we have the
log collection, log parsing, feature extraction phases, which have
been introduced in detail. The input to anomaly detection is the
feature vector for each log sequence, while the output is whether
the log sequence is an anomaly or not. In this section, we
mainly focus on providing a detailed review of six representative
anomaly existing detection methods. Among them, three are
supervised while the other three are unsupervised. The super-
vised methods require the training data to have labels while the
unsupervised methods do not have the label information. We
present the details as follows.

3.2.1 Supervised Anomaly Detection

Supervised learning (e.g., decision tree) is a kind of machine
learning task which derives the model from labeled training data.
Labeled training data, which indicate normal or abnormal state
by labels, are the prerequisite of supervised anomaly detection.
The more labeled training data we have, the more precise
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the model would be. We will introduce three representative
supervised methods: Logistic regression, Decision tree, and
Support vector machine (SVM) in the following.

1) Logistic Regression

Logistic regression is a widely used statistical model for classifi-
cation. To decide whether an instance is normal or abnormal, we
use logistic regression to estimate the probability p of all possible
states. The probability p is estimated by a logistic function that
built on labeled training data. When a new instance appears,
the logistic function could compute the probability p (0 < p < 1)
of all possible states. After obtaining the probabilities, the state
of the largest probability is the classification output.
To detect anomalies, we construct a feature vector from each log
sequence, and every feature vector, as well as with its label, is
called an instance. Firstly, we use training instances to establish
the logistic regression model, which is a logistic function. After
obtaining the model, we feed a testing instance X into the
logistic function to compute its possibility p as an anomaly, the
label of X is anomalous when p ≥ 0.5 and normal otherwise.

2) Decision Tree

Decision Tree is a tree structure diagram that uses branches to
illustrate the predicted state for each instance. The decision tree
is constructed in a top-down manner using the training data.
Each tree node is created using the current “best” attribute
selected by attribute’s information gain [65]. For example, the
root node in Figure 3.1 shows that there are 20 instances in our
dataset. When splitting the root node, the occurrence number
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Figure 3.1: An example of anomaly detection based on decision tree.

of Event 2 is selected as the “best” attribute. Thus, the entire
20 training instances are divided into two subsets according to
the value of this attribute, in which one contains 12 instances
and eight instances, respectively.
Decision Tree was first applied to failure diagnosis for the web
request log system in [27]. The feature vectors, together with
their labels, are utilized to build the decision tree. To identify
the state of a new instance, the method traverses the decision
tree according to each traversed tree node’s predicates. In the
end, the instance will arrive at one of the leaves, which indicates
the instance state.

3) SVM

Support Vector Machine (SVM) is a supervised learning method
for classification. In SVM, a hyperplane is constructed to
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separate various classes of instances in high-dimension space.
Finding the hyperplane is an optimization problem, which
targets maximizing the distance between the hyperplane and
the nearest data point in different classes.
In [89], Liang et al. employ the SVM to detect failures and
compare the performance against other methods. Similar to
Logistic Regression and Decision Tree, the training instances are
feature vectors together with their labels. In anomaly detection
via SVM, if a new log sequence locates on above the hyperplane,
it would be reported as an anomaly, while marked as normal
otherwise. There are two kinds of SVM, namely linear SVM and
non-linear SVM. In this chapter, we only discuss linear SVM,
because linear SVM outperforms non-linear SVM in most of our
experiments.

3.2.2 Unsupervised Anomaly Detection

Unlike supervised methods, unsupervised learning is another
common machine learning task, but its training data is unla-
beled. Unsupervised methods are more applicable in a real-
world production environment due to the lack of labels. Con-
ventional unsupervised approaches include various clustering
methods, association rule mining, PCA, etc.

1) Log Clustering

In [90], Lin et al. design a clustering-based method called Log-
Cluster to identify online system problems. LogCluster requires
two training phases, namely knowledge base initialization phase,
and online learning phase. Thus, the training instances are
divided into two parts for these two phases, respectively.
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The knowledge base initialization phase contains three steps: log
vectorization, log clustering, representative vectors extraction.
Firstly, log sequences are vectorized as feature vectors, as previ-
ously introduced. Besides, the feature vectors are further revised
by Inverse Document Frequency (IDF) [125] and normalization.
Secondly, LogCluster clusters normal and abnormal feature
vectors separately with agglomerative hierarchical clustering,
yielding two sets of vector clusters (i.e., normal clusters and
abnormal clusters) as a knowledge base. Finally, we select a
representative vector for each cluster by computing its centroid.
The online learning phase is used to adjust the clusters con-
structed in the knowledge base initialization phase. In the online
learning phase, feature vectors are added to the knowledge base
one by one. Given a feature vector, the distances with existing
representative vectors are computed separately. If the smallest
distance is less than a threshold, this feature vector will be
added to the nearest cluster, and the representative vector of
this cluster will be updated. Otherwise, LogCluster creates a
new group using this feature vector.
After constructing the knowledge base and complete the on-
line learning process, LogCluster can be employed to detect
anomalies. Specifically, to determine the state of a new log
sequence, we compute its distance to representative vectors
in the knowledge base. If the smallest distance is larger
than a threshold, the log sequence is reported as an anomaly.
Otherwise, the log sequence is reported as the nearest cluster’s
status, i.e., normal/abnormal case.
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Figure 3.2: An illustration of anomaly detection based on PCA.

2) PCA

Principal Component Analysis (PCA) is a statistical method
that has been widely used to conduct dimension reduction. The
basic idea behind PCA is to project high-dimension data (e.g.,
high-dimension points) to a new coordinate system composed of
k principal components (i.e., k dimensions), where k is set to be
less than the original dimension. PCA calculates the k principal
components by finding components (i.e., axes) which catch
the most variance among the high-dimension data. Thus, the
PCA-transformed low-dimension data can preserve the major
characteristics (e.g., the similarity between two points) of the
original high-dimension data. For example, in Figure 3.2, PCA
attempts to transform two-dimension points to one-dimension
points. Sn is selected as the principal component because the
distance between points can be best described by mapping them
to Sn.
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PCA was first applied in log-based anomaly detection by Xu
et al. [159]. In their anomaly detection method, each log
sequence is vectorized as a feature vector. After that, we employ
the PCA to find patterns between the dimensions of feature
vectors. Employing PCA, two subspaces are generated, namely
the normal space Sn and anomaly space Sa. Sn is constructed
by the first k principal components and Sn is constructed by
the remaining (n− k), where n is the original dimension. Then,
the projection ya = (1 − PP T )y of an feature vector y to Sa
is calculated, where P = [v1,v2, . . . , vk,] is the first k principal
components. If the distance of ya is larger than a threshold, the
corresponding feature vector will be reported as an anomaly. For
example, the selected point in Figure 3.2 is an anomaly because
the distance of its projection on Sa is too large. To be specific,
a feature vector is regarded as an anomaly if

SPE ≡ ‖ya‖2 > Qα

where squared prediction error (i.e., SPE) represents the “dis-
tance”, and Qα is the threshold providing (1− α) confidence
level. We follow the original paper to set Q = 0.001. For k, we
calculate it automatically by adjusting the PCA to capture 95%
variance of the data, which is the same as the original paper.

3) Invariants Mining

Program Invariants are the linear relationships that always hold
during system running, even with various inputs and under
different workloads. Invariants mining was first applied to log-
based anomaly detection in [93]. Logs with the same task
identifier (e.g., job id, block id in HDFS) often represent the
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Figure 3.3: An example of the execution flow for a code snippet.

program execution flow of a user request or an operation. A
simplified program execution flow is illustrated in Figure 3.3.
In this execution flow, the system generates a log message at
each stage from A to G. Assuming that there are plenty of
instances running in the system and they follow the program
execution flow in Figure 3.3, the following equations would be
valid:
n (A) = n (B)
n (B) = n (C) + n (E) + n (F )
n (C) = n (D)
n (G) = n (D) + n (E) + n (F )
where n (∗) represents the number of logs which belong to
corresponding log event ∗.
Intuitively, Invariants mining could uncover the linear rela-
tionships, e.g., n (A) = n (B), between multiple log events
representing the system normal execution behaviors. Linear
relationships prevail in real-world system events. For example,
normally, a file must be closed after it was opened. Thus, log
with the phrase “open file” and log with the phrase “close file”
would appear in pairs. If the number of log events “open file”
and that of “close file” in an instance are not equal, it will be
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marked as abnormal because it violates the linear relationship.
Invariants mining, which aims at finding invariants (i.e., linear
relationships), contains three steps. The input of invariants
mining is a feature vector generated from log sequences, where
each row is a feature vector. Firstly, the invariant space is
estimated using singular value decomposition, which determines
the amount r of invariants that need to be mined in the next
step. Secondly, this method finds out the invariants by a brute
force search algorithm. Finally, each mined invariant candidate
is validated by comparing its support with a threshold (e.g.,
supported by 98% of the event count vectors). This step will
continue until r independent invariants are obtained.
In anomaly detection based on invariants, when a new log
sequence arrives, we check whether it obeys the invariants. The
log sequence will be reported as an anomaly if at least one
invariant is broken.

3.2.3 Comparisons

To reinforce the understanding of the above six anomaly de-
tection approaches and help developers better choose anomaly
detection methods to use, we discuss the advantages and disad-
vantages of different methods in this part.
For supervised methods, labels are required for anomaly detec-
tion. The decision tree is more interpretable than the other two
methods, as developers can detect anomalies with meaningful
explanations (i.e., predicates in tree nodes). Logistic regression
cannot solve linearly non-separable problems, which can be
solved by SVM using kernels. However, SVM parameters are
hard to tune (e.g., penalty parameter), so it often requires much
manual effort to establish a model.
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Unsupervised methods are more practical and meaningful due
to the lack of labels. Log clustering uses the idea of online
learning. Therefore, it is suitable for processing a large volume
of log data. Invariants mining can not only detect anomalies
with high accuracy but can also provide meaningful and intuitive
interpretation for each detected anomaly. However, invariants
mining is time-consuming. PCA is not easy to understand and
is sensitive to the data. Thus, its anomaly detection accuracy
varies over different datasets.

3.2.4 Tool Implementation

We implemented six anomaly detection methods in Python with
over 4,000 lines of code and packaged them as a toolkit. For
supervised methods, we utilize a widely-used machine learning
package, scikit-learn [118], to implement the learning models of
Logistic Regression, Decision Tree and SVM. There are plenty
of parameters in SVM and logistic regression, and we manually
tune these parameters to achieve the best results during training.
For SVM, we tried different kernels and related parameters one
by one, and we found that SVM with linear kernel obtains
the better anomaly detection accuracy than other kernels. For
logistic regression, different parameters are also explored, and
they are carefully tuned to achieve the best performance.
Implementing unsupervised methods, however, is not straight-
forward. For log clustering, we were not able to directly use the
clustering API from scikit-learn since the API is not designed
for large-scale datasets, and our data cannot fit the memory.
We implemented the clustering algorithm into an online version,
whereby each data instance is grouped into a cluster one by one.
There are multiple thresholds to be tuned. We also paid great
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efforts to implement the invariants mining method, because
we built a search space for possible invariants and proposed
numerous ways to prune all unnecessary invariants. It is very
time-consuming to test different combinations of thresholds. We
finally implemented the PCA method according to the original
reference based on an API from scikit-learn, which contains two
hyper-parameters only and is easy to tune.

3.3 Evaluations

In this section, we will first introduce the datasets and the
experiment setup we employed to evaluate these methods. Then,
we provide the evaluation results of supervised and unsupervised
anomaly detection methods, and these two types of techniques
are generally applicable in different settings. Finally, the
efficiency of all these methods is evaluated and compared.

3.3.1 Experimental Setup

Log Datasets: Publicly available production logs are scarce
data because companies rarely publish them due to confidential
issues. Fortunately, by exploring an abundance of literature
and intensively contacting the corresponding authors, we have
successfully obtained two log datasets, HDFS data [159] and
BGL data [112], which are suitable for evaluating existing
anomaly detection methods. Both datasets were collected from
production systems, with a total of 15,923,592 log messages
and 365,298 anomaly samples, manually labeled by the original
domain experts. Thus we take these labels (anomaly or not) as
the ground truth for accuracy evaluation purposes. Table 3.1
presents more statistical information about the datasets.
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System #Time span #Data size #Log messages #Anomalies
BGL 7 months 708 M 4,747,963 348,460
HDFS 38.7 hours 1.55 G 11,175,629 16,838

Table 3.1: Summary statistics of the datasets.

HDFS data contain 11,175,629 log messages, which were col-
lected from Amazon EC2 platform [159]. HDFS logs record a
unique block ID for each block operation such as allocation,
writing, replication, deletion. Thus, the operations in logs
can be more naturally captured by task ID, as introduced in
Section 2.2, because each unique block ID can be utilized to
slice the logs into a set of log sequences. Then we extract feature
vectors from these log sequences and generate 575,061 feature
vectors. Among them, 16,838 samples are marked as anomalies.
BGL data contain 4,747,963 log messages, which were recorded
by the BlueGene/L supercomputer system at Lawrence Liver-
more National Labs (LLNL) [112]. Unlike HDFS data, BGL
logs have no identifier recorded for each job execution. Thus,
we have to use fixed windows or sliding windows to slice logs
as log sequences, and then extract the corresponding feature
vectors. But the number of windows depends on the chosen
window size (and step size). In BGL data, 348,460 log messages
have a specific type of failure, and a log sequence is marked as
an anomaly if any failure logs exist in that sequence.
Experimental setup: We ran all our experiments on a Linux
server with Intel Xeon E5-2670v2 CPU and 128GB DDR3
1600 RAM, on which 64-bit Ubuntu 14.04.2 with Linux kernel
3.16.0 was running. Unless otherwise stated, we repeat each
experiment five times and report the average result. We use
precision, recall, and F-measure, which are the most com-
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monly used classification metrics, to evaluate the accuracy of
anomaly detection methods as we already have the ground truth
(anomaly or not) for both of the datasets. As shown in the
below equations, precision measures the percentage of how many
reported anomalies are correct, recall measures the rate of how
many real anomalies are detected, and F-measure indicates the
harmonic mean of precision and recall.

Precision = #Anomalies detected
#Anomalies reported

Recall = #Anomalies detected
#All anomalies

F −measure = 2× Precision×Recall
Precision+Recall

For all three supervised methods, we choose the first 80% data
as the training data, and the remaining 20% as the testing
data because only previously happening events could lead to a
succeeding anomaly. By default, we set the window size of fixed
windows to one hour, and set the window size and step size of
sliding windows to be six hours and one hour, respectively.

3.3.2 Effectiveness of Supervised Methods

To explore the effectiveness of supervised methods, we use them
to detect anomalies on HDFS data and BGL data. We use
task ID to slice HDFS data and then generate the feature
vectors, while fixed windows and sliding windows are applied to
BGL data separately. To check the validity of three supervised
methods (namely Logistic Regression, Decision Tree, SVM), we
first train the models on training data and then apply them
to testing data. We report both training accuracy and testing
accuracy in different settings, as illustrated in the following
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Figure 3.4: Accuracy of supervised methods on HDFS data with task ID.

Figures. We can observe that all supervised methods achieve
high training accuracy (over 0.95), which implies that normal
and abnormal instances are well separated by using our feature
representation. However, their accuracy on testing data varies
with different methods and datasets. The overall accuracy of
HDFS data is higher than the accuracy of BGL data with both
fixed windows and sliding windows. It is mainly because the
HDFS system records relatively simple operations with only 29
log events, which is much less than the 385 log events in BGL
data. Besides, HDFS data are grouped by task ID, thereby
causing a higher correlation between events in each log sequence.
Therefore, anomaly detection methods on HDFS perform better
than on BGL.
In particular, Figure 3.4 shows the accuracy of anomaly detec-
tion on HDFS data, and all three approaches have excellent
performance on testing data with the F-measure close to 1.
When applying supervised approaches to the testing data of
BGL with fixed windows, they do not achieve high accuracy,
although they perform well on training data. As Figure 3.5
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Figure 3.5: Accuracy of supervised methods on BGL data with fixed
windows.

illustrates, all three methods on BGL with fixed windows have
the recall of only 0.57, while they obtain high detection precision
of 0.95. We found that as the fixed window size is only one hour,
thus, it may cause the uneven distribution of anomalies. For
example, some anomalies that happened in the current window
may correlate with events in the former time window, and
they are incorrectly divided. Consequently, anomaly detection
methods with a one-hour fixed window do not perform well on
BGL data.

Finding 1: Supervised anomaly detection methods achieve high
precision, while the recall varies over different datasets and
window settings.

To address the problem of poor performance with fixed windows,
we employed the sliding windows to slice BGL data with window
size = 6h and step size = 1h. The results are given in Figure
3.6. Comparing with the fixed windows, anomaly detection
methods based on sliding windows achieve much higher accuracy
on testing data. By using sliding windows, we can not only
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Window Size 1 h 3 h 6 h 9 h 12 h
#Sliding windows 5153 5151 5150 5145 5145

Step Size 5 min 30 min 1 h 3 h 6 h
#Sliding windows 61786 10299 5150 1718 860

Table 3.2: Sliding window amount for different window size and step size.
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Figure 3.6: Accuracy of supervised methods on BGL data with sliding
windows.

obtain as many windows (feature vectors) as fixed windows but
can also avoid the problem of uneven distribution because the
window size is much larger. . Among supervised methods, we
observe that SVM achieves the best overall accuracy with an
F-measure of 0.85. Moreover, the decision tree and logistic
regression that are based on sliding windows achieve 10.5%
and 31.6% improvements in recall than the results on the fixed
windows.
To further study the influences of different window sizes and
various step sizes on anomaly detection accuracy, we conduct
experiments by changing one parameter while keeping the other
parameter constant. According to the diagram a) of Figure
3.7, We hold the step size at one hour while changing the



CHAPTER 3. LOG-BASED ANOMALY DETECTION 55

1h 3h 6h 9h 12h

Window Size

0.4

0.5

0.6

0.7

0.8

0.9
F-

m
ea

su
re

Logistic
Decision Tree
SVM

(a) Different window sizes

5min 0.5h 1h 3h 6h

Step Size

0.4

0.5

0.6

0.7

0.8

0.9

F-
m

ea
su

re

Logistic
Decision Tree
SVM

(b) Different step sizes

Figure 3.7: Accuracy of supervised methods on BGL data with different
window sizes and step sizes.

window size, as shown in Table 3.2. Window sizes larger than
12 hours are not considered as they are not practical in real-
world applications. We can observe that the F-measure of SVM
slightly decreases when the window size increases. In contrast,
the accuracy of logistic regression increases slowly first but falls
sharply when window sizes increase to nine hours, and then it
keeps steady. Logistic regression achieves the highest accuracy
when the window size is 6 hours. The variation trend of decision
tree accuracy is opposite to the logistic regression, and it reaches
the highest accuracy at 12 hours. Therefore, logistic regression
is sensitive to the window size while decision tree and SVM
remains stable.
Compared with window size, step size likely has a significant
effect on anomaly detection accuracy. Table 3.2 illustrates that
if we reduce the step size while keeping the window size at six
hours, the number of sliding windows (data instances) increases
dramatically. All three methods show the same trend that the
accuracy first increases slightly, then drop at around 3 hours.
It may be caused by the dramatic decrease in data instance
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amount when using a large step size, for example, at 3 hours.
One exception is the step size of six hours when the window
size equals the step size. Thus, the sliding window is the fixed
window. In this situation, some noises caused by overlapping are
removed, which leads to a small increase in detection accuracy.

Finding 2: Anomaly detection with sliding windows can
achieve higher accuracy than that of fixed windows.

3.3.3 Effectiveness of Unsupervised Methods

Although supervised methods achieve high accuracy, especially
on the HDFS data, these methods are not necessarily applicable
in a practical setting, where data labels are often not avail-
able. Unsupervised anomaly detection methods are proposed
to address this problem. To explore the anomaly detection
accuracy of unsupervised methods, we evaluate them on the
HDFS data and BGL data. As indicated in the last section, the
sliding window can lead to more accurate anomaly detection.
Therefore, we only report the results of sliding windows on BGL
data. As log clustering is extremely time-consuming on HDFS
data with around half-a-million instances, tuning parameters
become impractical. We then choose the largest log size that we
can handle in a reasonable time to represent our HDFS data.
In Figure 3.8, we can observe that all unsupervised methods
show good accuracy on HDFS data, but they obtain relatively
low accuracy on BGL data. Among three approaches, invari-
ants mining achieves superior performance (with F-measure of
0.91) against other unsupervised anomaly detection methods on
both data. Invariants mining automatically constructs linear
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Figure 3.8: Accuracy of unsupervised methods on both datasets.

correlation patterns to detection anomalies, which fit well with
the nature BGL data, where failures are marked through some
critical events. Log clustering and PCA do not obtain good
detection accuracy on BGL data. The poor performance of
log clustering is caused by the high-dimensional and sparse
characteristics of feature space. As such, log clustering is
difficult to separate anomalies and normal instances, often
leading to a lot of false positives.

Finding 3: Unsupervised methods generally achieve inferior
performance against supervised methods. But invariants
mining manifests as a promising method with stable, high
performance.

We study in-depth to understand why the PCA does not achieve
high accuracy on BGL data. The criterion for PCA to detect
anomalies is the distance to normal space (squared prediction
error). As Figure 3.9 illustrates, when the distance exceeds
a specific threshold (the red dash line represents our current
threshold), an instance is identified as an anomaly. However, by
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Figure 3.9: Distance distribution in the anomaly space of PCA.

using the ground truth labels to plot the distance distribution,
as shown in Figure 3.9, we found that any single threshold
cannot naturally separate both classes (normal and abnormal).
Therefore, PCA does not perform well on the BGL data.
Like supervised methods, we also conduct experiments on
different window size and step size settings to explore their
effects on accuracy. As shown in Figure 3.10, we have an
interesting observation that the accuracy steadily rises when
the window size increases, while the change of step size has
little influence on effectiveness. This observation is contrary
to what we found for supervised methods. As illustrated in
Table 3.2, the window number sharply decreases when the
window size increases. Under the large window size setting, more
noises are included when more information is covered. However,
unsupervised methods could discover more accurate patterns for
anomaly detection.

Finding 4: The settings of window size and step size have differ-
ent effects on supervised methods and unsupervised methods.



CHAPTER 3. LOG-BASED ANOMALY DETECTION 59

1h 3h 6h 9h 12h

Window Size

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re
Log Clustering
Invariant Mining

PCA

(a) Window sizes

5min 0.5h 1h 3h 6h

Step Size

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

Log Clustering
Invariant Mining

PCA

(b) Step sizes

Figure 3.10: Accuracy of unsupervised methods with different window sizes
and step sizes on BGL data.

3.3.4 Efficiency of Anomaly Detection Methods

In Figure 3.11, the efficiency of all these anomaly detection
methods is evaluated on both datasets with varying log sizes.
Besides, supervised methods can detect anomalies quickly (less
than one minute), while unsupervised methods are much more
time-consuming (except PCA). We can observe that all anomaly
detection methods scale linearly as the log size increases, except
for the log clustering, whose time complexity is O(n2). Note
that both horizontal and vertical axes are not on a linear scale.
Furthermore, log clustering cannot handle large-scale datasets in
an acceptable time; thus, running time results of log clustering
are not fully plotted. It is worth noting that the running time of
invariants mining is larger than log clustering on BGL data but
not on HDFS data. The reason is that more log events in BGL
data than HDFS data increase the time for invariants mining.
Besides, we also find that the running time of invariants mining
slightly decreases at the log size of 125 megabytes on BGL data.
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We set the stopping criteria to control its brute force searching
process on large datasets, which could avoid the unnecessary
search for high-dimensional correlations.

Finding 5: Most anomaly detection methods scale linearly with
log size, but the methods of Log Clustering and Invariants
Mining need further optimizations for speedup.

3.4 Discussion

In this section, we discuss some limitations and related studies
of this work and provide some potential directions for future
research.
Diversity of datasets Publicly-available log datasets are scarce
resources because companies are often unwilling to open their
log data due to confidential issues. Thanks to the support
from [112, 159], we obtained two production log datasets that
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enabled our work. The datasets represent logs from two different
systems, but the dataset diversity may still limit the evaluation
results and the findings. The availability of more log datasets
would allow us to generalize our findings and drastically support
related research. It is our future plan to collect more log datasets
from open platforms.
Feature representation To generalize our implementations
of anomaly detection methods, we focus mainly on a feature
space denoted by feature vectors, which has been employed in
most of the existing work (e.g., [93, 159]). There are still other
features that need further exploration, such as the timestamp of
a log message, and the order information of a log sequence can
be extracted. However, as reported in [93], logs generated by
modern distributed systems are usually interleaved by different
processes. Thus, it becomes a great challenge to extract reliable
temporal features from such logs.
Other available methodsWe have reviewed and implemented
most of the commonly-used and representative log analysis
methods for anomaly detection. However, some other ap-
proaches are employing different techniques, such as frequent
sequence mining [55], finite state machine [53], and formal
concept analysis [40]. We also believe that more are coming
out because of the practical importance of log analysis. It is our
ongoing work to implement and maintain a more comprehensive
set of open-source tools.
Other empirical study Recently, many empirical studies [163,
168, 102] on software reliability emerge because empirical study
can usually provide useful and practical insights for both re-
searchers and developers. Yuan et al. [163, 54] study the logging
practice of open-source systems and industrial systems, and
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they provide improvement suggestions for developers. Pecchia
et al. [116] study the logging objectives and issues impacting
log analysis in industrial projects. Our study aims at reviewing
and benchmarking the existing work that applies log analysis
techniques to system anomaly detection.
Open-source log analysis toolsThere is currently a lack
of publicly-available log analysis tools that could be directly
utilized for anomaly detection. We also note that a set of new
companies (e.g., [3, 4]) are offering log analysis tools as their
products, but they are all working as a black box. It would lead
to increased difficulty in reproducible research and slow down
the overall innovation process. We hope our work makes the
first step towards making source code publicly available, and we
advocate more efforts in this direction.
Potential directions 1) Model interpretability Most of current
log-based anomaly detection methods are built on machine
learning models (such as PCA). But most of these models work
as a “black box,” and they are hard to interpret to provide
intuitive insights, and developers often cannot figure out what
the anomalies are. Methods that could reflect the natures of
anomalies are highly desired. 2) Real-time log analysis Current
systems and platforms often generate logs in real-time and in
huge volumes. Thus, it becomes a big challenge to deal with big
log data in real-time. The development of log analysis tools on
big data platforms and the functionality of real-time anomaly
detection are in demand.
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3.5 Summary

In this chapter, we fill the industry and academia gap by
providing a detailed review and evaluation of six state-of-the-
art anomaly detection methods, including three supervised and
three unsupervised methods. We compare their accuracy and
efficiency on two representative production log datasets under
various settings. Furthermore, we release an open-source toolkit
of these anomaly detection methods for easy reuse and further
study.

2 End of chapter.



Chapter 4

Log-based Interpretation for
Problem Identification

Unlike the anomaly detection in Chapter 3, in this chapter, we
propose to identify different types of impactful problems using
the interpretable logs. For a cloud-based online system that
provides 24/7 service, a vast number of logs could be generated
every day. However, these logs are highly imbalanced, which hin-
ders the identification of real problems. Besides, those impactful
problems should be reported and fixed by engineers with a high
priority. To tackle these challenges, we propose Log3C, a novel
clustering-based approach to promptly and precisely identify
impactful system problems, by utilizing both log sequences (a
sequence of log events) and system KPIs. Specifically, we design
a novel cascading clustering algorithm and correlate the clusters
of log sequences with system KPIs. Experimental results on
real-world log data confirm its effectiveness and efficiency.

4.1 Problems and Motivation

Service quality is vital to cloud-based online service systems
such as Microsoft Azure, Amazon AWS, Google Cloud, where

64
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logs are frequently utilized in the system maintenance and
diagnosis for its interpretable runtime information. Clearly,
manual problem diagnosis with logs is very time-consuming and
error-prone due to the increasing scale and complexity of large-
scale systems. As aforementioned in Chapter 3, a stream of
methods based on machine learning have been proposed for
log-based problem identification and troubleshooting. Some
use supervised methods, such as classification algorithms [162],
to categorize system problems. However, they require a large
number of labels and substantial manual labeling effort. Others
use unsupervised methods, such as PCA [159] and Invariants
Mining [93], to detect system anomalies.
However, these approaches can only recognize whether there is
a problem or not but cannot distinguish among different types
of problems. To identify different problem types, clustering
is the most pervasive method [90, 39, 38, 35]. However, it is
hard to develop an effective and efficient log-based problem
identification approach through clustering. We present the
challenges in the following part.
Firstly, large-scale online service systems such as those of
Microsoft and Amazon, often run on a 7× 24 basis and support
hundreds of millions of users, which yields an incredibly large
quantity of logs. For instance, a Microsoft service system that
we studied can produce dozens of Terabytes of logs per day.
Notoriously, conducting conventional clustering on data of such
order-of-magnitude consumes a great deal of time, which is
unacceptable in practice [77, 5, 48, 65]. Hence, in this chapter,
we propose an efficient and effective clustering algorithm to
tackle the challenge.
Secondly, there are many types of problems associated with the
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logs, and clustering alone cannot determine whether a cluster
reflects a problem or not. In previous work on log clustering,
developers are required to manually verify the problems during
the clustering process [90], which is tedious and time-consuming.
Besides, among all the problems, some are impactful and should
be fixed with a higher priority. Intuitively, impactful problems
can lead to the degradation of system KPIs (Key Performance
Indicators), which are widely adopted in industry, such as service
availability, average request latency, and failure rate. They
measure the health status of a system over a time interval and
are collected periodically. A lower KPI value indicates that
some system problems may have occurred, and consequently,
the service quality deteriorates.
To tackle the second challenge, we leverage both log and KPI
data to guide the identification of impactful problems. In
practice, systems continuously generate logs, but the KPI values
are periodically collected. We use time interval to denote the
KPI collection frequency. The time interval is typically 1 hour
or more, set by the production team. In our setting, we use
failure rate as the KPI, which is the ratio of failed requests to
all requests within a time interval. In each time interval, there
could be many logs but only one KPI value (e.g., one failure
rate).
Thirdly, log data is highly imbalanced. In a production environ-
ment, a well-deployed online service system operates normally
most of the time. That is, most of the logs record normal
operations, and only a small percentage of logs are problematic
and indicate impactful problems. The imbalanced data distri-
bution can severely impede the accuracy of the conventional
clustering algorithm [160]. Furthermore, it is intrinsic that some
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problems may arise less frequently than others; therefore, these
rare problems emerge with fewer log messages. As a result,
it is challenging to identify all problem types from the highly
imbalanced log data.
For a well-deployed online service system, it operates normally in
most cases and exhibits problems occasionally. However, it does
not imply that problems are easy to identify. On the contrary,
problems are hidden among a vast number of logs, while most
logs record the system’s normal operations. In addition, various
types of service problems may manifest different patterns, occur
at different frequencies, and affect the service system in different
manners.
As an example, Figure 4.1 shows the long tail distribution of 18
types of log sequences (in logarithmic scale for easy plotting),
which are labeled by engineers from product teams. The first
two types of log sequences occupy more than 99.8% of the
total occurrences (“head”) and are generated by normal system
operations. The remaining ones indicate different problems, but
they all together only take up less than 0.2% of all occurrences
(“long tail”). Besides, the occurrences of distinct problem types
vary significantly. For example, the first type of problem (the
3rd bar in Figure 4.1) is a “SQL connection problem,” which
shows that the server cannot connect a SQL database. The
most frequent problem occurs over 100 times more often than
the least frequent one. The distribution is highly imbalanced
and exhibits strong long-tail property, which poses challenges
for log-based problem identification.
In this chapter, we propose a novel problem identification
framework, Log3C, using log data and system KPI data. To
be specific, we propose a novel clustering algorithm, Cascading
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Figure 4.1: An example of long tail distribution in log sequences.

Clustering, which clusters a massive amount of log data by
iteratively sampling, clustering, and matching log sequences
(sequences of log events). Cascading clustering can significantly
reduce the clustering time while keeping high accuracy. Further,
we analyze the correlation between log clusters and system
KPIs. By integrating the Cascading Clustering and Correlation
analysis, Log3C can promptly and precisely identify impactful
service problems. The implementation is available on Github1.
We evaluate our approach on real-world log data collected from
a deployed online service system at Microsoft. The results show
that our method can accurately find impactful service problems
from large log datasets with high time performance. Log3C can
precisely find out problems with an average precision of 0.877
and an average recall of 0.883. We have also successfully applied
Log3C to the maintenance of many actual online service systems

1https://github.com/logpai/Log3C

https://github.com/logpai/Log3C
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at Microsoft.

4.2 Methodology

In this section, we aim at solving the following problems:
1) Given system logs and KPIs, how to detect impactful
service system problems automatically? 2) How to identify
different kinds of impactful service system problems precisely
and promptly?
To this end, we propose the Log3C framework, as depicted in
Figure 4.2. Log3C consists of four steps: log parsing, sequence
vectorization, cascading clustering, and correlation analysis. In
short, at each time interval, logs are parsed into log events,
vectorized into sequence vectors, and grouped into multiple
clusters through cascading clustering. However, we still cannot
extrapolate whether a cluster is an impactful problem, which
necessitates the use of KPIs. Consequently, in step four, we
correlate clusters and KPIs over different time intervals to find
impactful problems. More details are presented in the following
sections.

4.2.1 Log Parsing

As aforementioned, log parsing extracts the log event for each
raw log message. In this chapter, we use an automatic log
parsing method proposed in [53] to extract log events. Following
this method, firstly, some common parameter fields (e.g., IP
address), are removed using regular expressions. Then, we group
log messages into coarse-grained groups based on weighted edit
distance. These groups are further split into fine-grained groups
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1. Log Parsing

t₁:

td:
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Figure 4.2: An overall framework of Log3C.
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of log messages. Finally, a log event is obtained by finding the
longest common substrings for each raw log message group.
To form a log sequence, log messages that share the same task
ID are linked together and parsed into log events. Moreover,
we remove the duplicate events in the log sequence. Gen-
erally, repetition often indicates retrying operations or loops,
such as continuously trying to connect to a remote server.
Without removing duplicates, similar log sequences with dif-
ferent occurrences of the same event are identified as distinct
sequences, although they essentially indicate the same system
behavior/operation. Following the common practice [90, 130] in
log analysis, we remove the duplicate log events.

4.2.2 Sequence Vectorization

After obtaining log sequences from logs in all time intervals, we
compute the vector representation for each log sequence. We
believe that different log events have different discriminative
power in problem identification. As delineated in Step 2 of
Figure 4.2, to measure the importance of each log event, we
calculate the event weight by combining the following two
techniques:
IDF Weighting: IDF (Inverse Document Frequency) is widely
utilized in text mining to measure the importance of words in
some documents, which lowers the weight of frequent words
while increasing rare words’ weight [125, 99]. In our scenario,
events that frequently appear in numerous log sequences cannot
distinguish problems well because problems are relatively rare.
Hence, the event and log sequence are analogous to word and
document, respectively. We aggregate log sequences in all time
intervals to calculate the IDF weight, which is defined in the
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first equation, where N is the total number of all log sequences,
and ne is the number of log sequences that contain the event
e. With IDF weighting, frequent events have low weights, while
rare log events are weighted high.

widf(e) = log
(
N

ne

)

w(e) = α ∗Norm(widf(e)) + (1− α) ∗ wcor(e)

Importance Weighting: In problem identification, it is in-
tuitive that events strongly correlate with KPI degradation are
more critical and should be weighted more. Therefore, we build
a regression model between log events and KPI values to find
the importance weight. To achieve so, as shown in Figure 4.2,
in each time interval, we sum the occurrence of each event in
all log sequences (three in the example) as a summary sequence
vector. After that, we get d summary sequence vectors, and
d KPI values are also available as aforementioned. Then, a
multivariate linear regression model is applied to evaluate the
correlation between log events and KPIs. The weights wcor(e)
obtained from the regression model serve as the importance
weights for log events e. Note that the regression model only
aims to find the importance weight for the log event.
As denoted in the second equation, the final event weight
is the weighted sum of IDF weight and importance weight.
Besides, we use Sigmoid function [158] to normalize the IDF
weight into the range of [0, 1]. Since the importance weight is
directly associated with KPIs and is thereby more effective in
problem identification, we value the importance weight more,
i.e., α < 0.5. In our experiments, we empirically set α to 0.2.
Given the final event weights, the weighted sequence vectors can
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be easily obtained. For simplicity, hereafter, we use “sequence
vectors” to refer to “weighted sequence vectors”. Note that each
log sequence has a corresponding sequence vector.

4.2.3 Cascading Clustering

Once all log sequences are vectorized, we group sequence vectors
into clusters separately for each time interval. However, the
conventional clustering methods are incredibly time-consuming
when the data size is large [77, 5, 48, 65] because distances
between any pair of samples are required. As mentioned in
Section 4.1, log sequences follow the long tail distribution and
are highly imbalanced. Based on the observation, we propose
a novel clustering algorithm, cascading clustering, to group
sequence vectors into clusters (different log sequence types)
promptly and precisely, where each cluster represents one kind
of log sequence (system behavior).
Figure 4.3 depicts the procedure of cascading clustering, which
leverages iterative processing, including sampling, clustering,
matching. The input of cascading clustering is all the sequence
vectors in a time interval, and the output is a number of
clusters. To be more specific, we first sample a portion of
sequence vectors, on which a conventional clustering method
(e.g., hierarchical clustering) is applied to generate multiple
groups. Then, a pattern can be extracted from each group. In
the matching step, we match all the original sequence vectors
with the patterns to determine their cluster. Those mismatched
sequence vectors are collected and fed into the next iteration. By
iterating these processes, all sequence vectors can be clustered
rapidly and accurately. The reason is that large clusters are
separated from the remaining data at the first several iterations.
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Figure 4.3: An overview of the cascading clustering algorithm.

1) Sampling

Given numerous sequence vectors in each time interval, we first
sample a portion of them through Simple Random Sampling
(SRS). Each sequence vector has an equal probability of p (e.g.,
0.1%) to be selected. Suppose there are N sequence vectors in
the input data, then the sampled data size is M = dp ∗ Ne.
After sampling, log sequence types (clusters) that dominate in
the original input data are still dominant in the sampled data.

2) Clustering

After sampling M sequence vectors from the input data, we
group these sequence vectors into multiple clusters and extract
a representative vector (pattern) from every cluster. To do so,
we calculate the distance between every two sequence vectors
and apply an ordinary clustering algorithm.
Distance Metric: During clustering, we use Euclidean dis-
tance as the distance metric, which is defined in the following
equations: u and v are two sequence vectors, and l is the vector
length, which is the number of log events. ui and vi are the i-th
value in vector u and v, respectively.
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d(u, v) =
√
‖u− v‖ =

√√√√√ l∑
i=1

(ui − vi)2

Clustering Technique: We utilize Hierarchical Agglomerative
Clustering (HAC) to conduct clustering. At first, each sequence
vector itself forms a cluster, and the closest two clusters are
merged into a new one. To find the closest clusters, we use the
complete linkage [156] to measure the cluster distance, as shown
in the following:

D(A,B) = max{d(a, b), ∀a ∈ A,∀b ∈ B}

D is the cluster distance between two clusters A and B, which is
defined as the longest distance between any two elements (one
in each cluster) in the clusters. The merging process continues
until reaching a distance threshold of θ. That is, the clustering
stops when all the distances between clusters are larger than θ.
In Section 4.3.4, we also study the effect of different thresholds.
After clustering, similar sequence vectors are grouped into the
same cluster, while dissimilar sequence vectors are separated
into different clusters.
Pattern Extraction: After clustering, a representative vector
is extracted for each cluster, which serves as the pattern of a
group of similar log sequences. To achieve so, we compute the
mean vector [9] of all sequence vectors in a cluster. Assume
that there are k clusters, then k mean vectors (patterns) can be
extracted to represent those clusters, respectively.

3) Matching

As illustrated in Figure 4.3, we match each sequence vector in
the original input data (of size N) to one of the k patterns,
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which are obtained by clustering M sampled sequence vectors.
To this end, for each sequence vector x, we calculate the distance
between it and every pattern. Furthermore, we compute the
minimum distance of µ as denoted in the following function,
where P is a set of all patterns. If the minimum distance µ is
smaller than the threshold θ defined in the clustering step, the
sequence vector x is matched with a pattern successfully and
thereby can be assigned to the corresponding cluster. Otherwise,
this sequence vector is classified as mismatched. Note that those
unmatched sequence vectors would proceed to the next iteration.

µ = min{d(x, Pj), ∀j ∈ {1, 2, ..., k}}

4) Cascading

After going through the above three processes (i.e., sampling,
clustering, and matching), most of the data in a time interval
can be grouped into clusters. At the same time, some sequence
vectors may remain unmatched. Hence, we further process the
mismatched data by repeating the above-mentioned procedures.
During each iteration, new clusters are grouped based on
current mismatched data, new patterns are extracted, and new
mismatched data are produced. In our experiments, we cascade
these repetitions until all the sequence vectors are successfully
grouped together.

Algorithm and Time Complexity Analysis. The pseudo-code of
Cascading clustering is described in the Algorithm 1. The
algorithm takes sequence vectors in a time interval as input
data, with sample rate and clustering distance threshold as
hyper-parameters. After cascading clustering, the algorithm
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Algorithm 1: Cascading Clustering
Input : Sequence vector data D, Sample rate p, Clustering

threshold θ
Output: Sequence clusters globalClusters, Pattern set

gloablPatList

1 misMatchData = D;
2 globalPatList = ∅; globalClusters = ∅;
3 while mismatchData! = ∅ do
4 SampleData = ∅;
5 /* Sampling sequence vectors */
6 foreach seqV ec ∈ D do
7 if random(0, 1) <= p then
8 SampleData.append(seqV ec);
9 end

10 end
11 /* Hierarchical clustering */
12 localClusters = HAC(SampledData, θ);
13 localPatList = patternExtraction(clusters);
14 /* Matching and finding mismatched data */
15 newMismatchData = ∅;
16 foreach seqV ec ∈ misMatchData do
17 foreach pat ∈ localPatList do
18 distList.append(dist(seqV ec, pat));
19 end
20 if min(distList) > θ then
21 newMismatchData.append(seqV ec);
22 end
23 end
24 misMatchData = newMismatchData;
25 globalPatList.extend(localPatList);
26 globalClusters.extend(localClusters);
27 end
28 Return globalClusters, globalPatList
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outputs all sequence vector clusters and a set of patterns. To
initialize, we assign all sequence vectors D to the mismatched
data. Besides, we define two global variables (lines 1-2) to store
the clusters and patterns. Then, the sampled data is obtained
with a sampling rate of p (lines 3-10). In lines 12 and 13,
we perform the hierarchical agglomerative clustering (HAC) on
sampled data with a threshold θ and extract the cluster patterns.
Other clustering methods (e.g., K-Means) are also applicable
here. During the matching process (line 16-23), we use distList
(line 17-19) to store the distances between a sequence vector
and every cluster pattern. The sequence vector is allocated to
the closest cluster if the distance is smaller than the threshold
θ. The remaining mismatched data is updated (lines 24) and
processed in the next cascading round.
We now analyze the time complexity of the proposed algorithm.
Note that only the core parts of the cascading clustering algo-
rithm are considered, i.e., distance calculation and matching,
because they consume most of the time. We set the data size
to N , which is a large number (e.g., larger than 106). The
sample rate p is usually a user-defined small number (e.g., less
than 1%). For standard hierarchical agglomerative clustering,
the distance calculation takes O(N 2) time complexity, and no
matching is involved. For cascading clustering, suppose that
pN data instances are selected and clustered into k1 groups
firstly, and further N1 instances are mismatched. Therefore,
the time complexity of the first round is T1 = p2N 2 + k1N .
After t iterations, the total number of clusters is K = ∑t

i=1 ki.
Therefore, the overall time complexity T (cc) is calculated as:
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T (cc) = p2N 2 + k1N + p2N 2
1 + k2N1 + ...+ p2N 2

t + ktNt−1

= p2N 2 +
∑t

i=1 p
2N 2

i + k1N +
∑t−1

i=1 ki+1Ni

< p2N 2 + tp2N 2
1 +KN < (pN + p

√
tN1 +

√
KN)2

Since N is a large number and K is the total number of clusters,
we have K � N and

√
KN � N . Because the data follows

the long tail distribution, and the “head” occupies most of the
data (e.g., more than 80%). After several iterations, most data
can be successfully clustered and matched. Recall that p �
1, we then have p

√
tN1 � N and pN � N . Therefore, the

inequality pN + p
√
tN1 +

√
KN < N holds and the left-hand

side is much smaller. Given that f(X) = X2 is a monotonic
increasing function (X ≥ 0), where f(X) decreases with the
decreasing of X. We then have (pN + p

√
tN1 +

√
KN)2 �

N 2 satisfied, which indicates that cascading clustering consumes
much less time than standard clustering in terms of distance
calculation and matching. In our experiments, we empirically
evaluate the time performance of cascading clustering, and the
results support our theoretical analysis.

4.2.4 Correlation Analysis

As described in Figure 4.2, log sequence vectors are grouped
into multiple clusters separately in each time interval. These
clusters only represent different types of log sequences (system
behaviors) but may not necessarily be problems. From the
groups, we identify impactful problems that could lead to the
degradation of KPI. Intuitively, KPI degrades more if impact
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problems occur more frequently. Hence, we aim to identify those
clusters that highly correlate with KPI’s changes. To do so,
we model the correlation between cluster sizes and KPI values
over multiple time intervals. Unlike the importance weighting in
Section 4.2.2 that discriminates the importance of different log
events, this step attempts to identify impactful problems from
clusters of sequence vectors.
More specifically, we utilize a multivariate linear regression
(MLR) model (as shown in the following equation), which
correlates independent variables (cluster sizes) with the depen-
dent variable (KPI). Among all independent variables, those
have statistical significance make notable contributions to the
dependent variable. Moreover, the corresponding clusters indi-
cate impactful problems, whose occurrences contribute to the
change of KPI. Statistical significance is widely utilized in the
identification of important variables [132, 74].
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...
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In the above equation, suppose there are n clusters generated
during d time intervals. cij represents the cluster size (the
number of sequence vectors) of the j-th cluster at the time
interval i. KPIi is the system KPI value at the time interval i.
βi and εi are coefficients and error terms that would be learned
from data.
To find out which clusters highly correlate with the KPI values,
we adopt the t-statistic, which is a widely used statistical
hypothesis test. In our MLR model, important groups (indi-



CHAPTER 4. LOG-BASED PROBLEM IDENTIFICATION 81

cating impactful problems) make significant contributions to
the change of KPIs, and their coefficients should not be zero.
Therefore, we make a null hypothesis for each independent
variable that its coefficient is zero. A two-tailed t-test is then
applied to measure each coefficient’s significant difference, i.e.,
the probability p that the null hypothesis is true. A lower
p-value is preferred since it represents a higher likelihood of
rejecting the null hypothesis. If p-value is less than or equal
to a given threshold of α (significance level), the corresponding
cluster implies an impactful problem that affects the KPI. In this
chapter, we set α to 0.05, a common setting in the hypothesis
test.

4.3 Evaluations

In this section, we evaluate our approach using real-world data
from industry. We aim at answering the following research
questions:
RQ1: How effective is the proposed Log3C approach in detecting
impactful problems?
RQ2: How effective is the proposed Log3C approach in identi-
fying different types of problems?
RQ3: How does cascading clustering perform under different
configurations?

4.3.1 Experimental Setup

Datasets: We collect real-world data from an online service
system X of Microsoft. Service X is a large scale online service
system that serves hundreds of millions of users globally on
a 24/7 basis. Service X has been running over the years and
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has achieved high service availability. The system operates in
multiple data centers with a large number of machines, each of
which produces a vast quantity of logs every hour. Service X
utilizes the load balancing strategies, and end-user requests are
accepted and dispatched to different back-ends. There are many
components at the application level, and each component has
its specific functionalities. Most user requests involve multiple
components on various servers. Each component generates
logs, and all the logs are uploaded to a distributed HDFS-like
data storage automatically. Each machine or component has a
probability of failing, leading to various problem types. We use
failure rate as the KPI, which shows the percentage of failed
requests in a time interval.

Data Snapshot starts #Log Seq (Size) #Events #Types
Data 1 Sept 5th 10:50 359,843 (722MB) 365 16
Data 2 Oct 5th 04:30 472,399 (996MB) 526 21
Data 3 Nov 5th 18:50 184,751 (407MB) 409 14

Table 4.1: Summary of service X log data.

Data 1

Method Precision Recall F1-Measure
PCA 0.465 0.946 0.623
IM 0.604 1.000 0.753

Log3C 0.900 0.920 0.910

Data 2

Method Precision Recall F1-Measure
PCA 0.142 0.834 0.242
IM 0.160 0.847 0.269

Log3C 0.897 0.826 0.860

Data 1

Method Precision Recall F1-Measure
PCA 0.207 0.922 0.338
IM 0.168 0.704 0.271

Log3C 0.834 0.903 0.868

Table 4.2: Accuracy of problem detection on service X data.
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Service X produces a large quantity of log data consisting of
billions of log messages. However, it is unrealistic to evaluate
Log3C on all the data due to the lack of labels. The labeling
difficulties origin from two aspects: first, the log sequences are
enormous. Second, various problem types can exist, and human
labeling is very time-consuming and error-prone. Therefore, we
extract logs that were generated during a specified period2 on
three different days. In this way, three real-world datasets (i.e.,
Data 1, 2, 3) are obtained, as shown in Table 4.1. Besides the
log data, we also collect the corresponding KPI values. During
labeling, product team engineers utilize their domain knowledge
to identify the normal log sequences. Then, they manually
inspect the rest log sequences from two aspects: 1) Does the
log sequence indicate a problem? 2) What is the problem type?
Table 4.1 shows the number of problem types identified in the
evaluation datasets. Note that the manual labels are only used
for evaluating the effectiveness of Log3C in our experiments.
Log3C is an unsupervised method, which only requires log and
KPI data to identify problems.
Implementation and Environments: We use Python to
implement our approach for easy comparison, and run the
experiments on a Windows Server 2012 (Intel(R) Xeon(R) CPU
E5-4657L v2 @ 2.40GHz 2.40 with 1.00TB Memory).
Evaluation Metrics: To measure the effectiveness of Log3C
in problem detection, we use precision, recall, and F1-measure.
Given the labels from engineers, we calculate these metrics as
follows:
Precision: the percentage of log sequences that are correctly
identified as problems over all the log sequences that are

2The actual period is anonymous due to data sensitivity.
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identified as problems: Precision = TP
TP+FP .

Recall: the percentage of log sequences that are correctly
identified as problems over all problematic log sequences: Recall
= TP

TP+FN .
F1-measure: the harmonic mean of precision and recall.
TP is the number of problematic log sequences that are correctly
detected by Log3C, FP is the number of non-problematic log
sequences that are wrongly identified as problems. FN is the
number of problematic log sequences that are not detected by
Log3C, TN is the number of log sequences that are identified as
non-problematic by both engineers and Log3C.
To measure the effectiveness of clustering, we use the Normalized
Mutual Information (NMI), which is a widely used metric for
evaluating clustering quality [137]. The value of NMI ranges
from 0 to 1. The closer to 1, the better the clustering results.
To measure the efficiency of cascading clustering, we record the
total time (in seconds) spent on clustering.

4.3.2 Effectiveness in Problem Detection

To answer RQ1, we apply Log3C to the three datasets collected
from Service X and evaluate the precision, recall, and F1-
measure. The results are shown in Table 4.2. Log3C achieves
satisfactory accuracy, with recall ranging from 0.826 to 0.92 and
precision ranging from 0.834 to 0.9. The F1-measures on the
three datasets are 0.91, 0.86, and 0.868, respectively.
Furthermore, we compare our method with two typical methods:
PCA [159] and Invariants Mining [93]. All these three methods
are unsupervised, log-based problem identification methods.
PCA projects the log sequence vectors into a subspace. If
the projected vector is far from the majority, it is considered
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as a problem. Invariants Mining extracts the linear relations
(invariants) between log event occurrences, which hypothesizes
that log events are often pairwise generated. For example, when
processing files, “File A is opened” and “File A is closed” should
be printed as a pair. Log sequences that violate the invariants
are regarded as problematic.
Log3C achieves good recalls (similar to those obtained by
two comparative methods) and surpasses the comparative ap-
proaches concerning precision and F1-measure. The absolute
improvement in F1-measure ranges from 15.7% to 61.8% on
the three datasets. The two comparative methods all achieve
low precision (less than 0.61), while the precisions achieved
by Log3C are higher than 0.83. We also explore the reasons
for the low precision of the competing methods. In principle,
PCA and invariants mining aim at finding the abnormal log
sequences from the entire data. However, some rare user/system
behaviors can be wrongly identified as problems. Thus, many
false positives are generated, which result in high recall and low
precision. More details are described in Section 4.4.4.
Regarding the time usage of problem detection, on average,
it takes Log3C 223.93 seconds to produce the results for each
dataset, while PCA takes around 911.97 seconds, and invariants
mining consumes 1830.78 seconds. The time performance of
Log3C is satisfactory, considering a large amount of log sequence
data.

4.3.3 Effectiveness in Problem Identification

In Log3C, we propose a novel cascading clustering algorithm to
group log sequences into clusters that represent different types of
problems. For the ease of evaluation, clusters that represent nor-
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mal system behaviors are considered as special “non-problem”
types. In this section, we use NMI to evaluate the effectiveness of
Log3C in identifying different kinds of problems. We also com-
pare the performance of cascading clustering (denoted as CC)
with the standard clustering method hierarchical agglomerative
clustering (denoted as SC). To compare fairly, we implement a
variant of Log3C that replaces CC with SC (Log3C-SC ). All the
other settings (e.g., distance threshold, event weight) remain the
same.

Data 1
Size 10k 50k 100k 200k

Log3C-SC 0.659 0.706 0.781 0.822
Log3C 0.720 0.740 0.798 0.834

Data 2
Size 10k 50k 100k 200k

Log3C-SC 0.610 0.549 0.600 0.650
Log3C 0.624 0.514 0.663 0.715

Data 3
Size 10k 50k 100k 180k

Log3C-SC 0.601 0.404 0.792 0.828
Log3C 0.680 0.453 0.837 0.910

Table 4.3: Clustering accuracy on service X data.

Table 4.3 presents the NMI results, in which data size refers
to the number of log sequences. We sample four subsets of
each dataset with size ranging from 10k to 200k (for Data 3,
180k is used instead of 200k as its total size is around 180k).
From the table, we can conclude that Log3C (with cascading
clustering) is effective in grouping numerous log sequences
into different clusters and outperforms Log3C-SC on all three
datasets. Besides, with the increase of data size, clustering
accuracy increases. It is because more accurate event weights
can be obtained with more data during sequence vectorization.
For instance, when 200k data is used, the NMI values achieved
by Log3C range from 0.715 to 0.91 (180k for Data 3).
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Data 1
Size 10k 50k 100k 200k
SC 127.6 2319.2 9662.3 38415.5
CC 1.0 4.3 9.2 20.7

Data 2
Size 10k 50k 100k 200k
SC 80.6 2469.1 8641.2 38614.0
CC 0.7 3.8 9.5 18.9

Data 3
Size 10k 50k 100k 180k
SC 81.5 2417.2 8761.2 33728.3
CC 0.8 4.0 8.8 18.3

Table 4.4: Efficiency (in seconds) of clustering algorithms.

θ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
NMI 0.848 0.867 0.912 0.916 0.928 0.898 0.898 0.887

Table 4.5: Cascading clustering accuracy under distance threshold θ.

We also evaluate the time performance of cascading clustering.
Table 4.4 shows that our cascading clustering (CC) dramatically
saves time in contrast to the standard HAC clustering (SC), and
the comparison is more noticeable when the data size grows. For
example, our approach is around 1800x faster than standard
clustering on dataset 1 with a volume of 200k.

4.3.4 Performance under Different Configurations

In Section 4.2.3, we introduced two crucial hyper-parameters
in cascading clustering: the sample rate p and the distance
threshold θ. In this section, we evaluate clustering accuracy and
time performance under different configurations of parameters.
We conduct the experiments on Data 1, but the results are also
applicable to other datasets.
Distance threshold θ: We first fix the sample rate (1%) and
vary the distance threshold θ for cascading clustering. Table 4.5
illustrates the clustering accuracy (NMI). When θ is 0.30, the
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Figure 4.4: Effectiveness and efficiency of cascading clustering under different
configurations.

highest NMI value (0.928) is achieved. However, we also observe
that NMI changes slightly when the threshold changes within a
reasonable range. The results show that our proposed cascading
clustering algorithm is insensitive to the distance threshold to
some degree.
Sample rate p: It is straightforward that the sample rate
can affect the time performance of cascading clustering because
it takes more time to do clustering on a larger dataset. To
verify it, we change the sample rate while fixing the distance
threshold. Figure 4.4 depicts the results. We conduct the
experiments with different sample rates under three distance
thresholds (0.15, 0.25, and 0.3). The left sub-figure shows
that a higher sample rate generally causes more time usage.
However, when the sample rate is low, e.g., 0.01%, a little more
time is required. A small sample rate leads to more iterations
of clustering in cascading clustering, which hampers cascading
clustering efficiency. Besides, we also evaluate the clustering
accuracy under different sample rates. As shown in the right
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sub-figure of Figure 4.4, clustering accuracy (NMI) is relatively
stable when the sample rate changes. It indicates that the NMI
value floats slightly with a small standard deviation of 0.0071.
In summary, we can conclude that a low sample rate generally
does not affect clustering accuracy and costs much less time.
This finding can guide the setting of the sample rate in practice.

Data Size 20k 50k 100k
#Clusters SC CC SC CC SC CC

20 0.958 0.947 0.885 0.918 0.837 0.850
50 0.971 0.961 0.937 0.960 0.906 0.916
100 0.976 0.995 0.956 0.979 0.927 0.939
200 0.988 0.990 0.973 0.973 0.955 0.953

Data Size 200k 300k 600k
#Clusters SC CC SC CC SC CC

20 0.786 0.791 0.758 0.774 - 0.725
50 0.864 0.883 0.837 0.854 - 0.811
100 0.903 0.911 0.889 0.892 - 0.859
200 0.929 0.937 0.914 0.925 - 0.896

Table 4.6: Accuracy of standard clustering (SC) and cascading clustering
(CC) on synthetic data.

4.4 Discussion

In this section, we discuss some settings and threats that might
affect the performance of our methods. In addition, we share
some of our success stories and lessons learned when deploying
the Log3C framework.
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4.4.1 Discussions of Results

1) Cluster Numbers in Cascading Clustering

In Section 4.3, we explored the efficiency and effectiveness of
the cascading clustering algorithm on real-world datasets. In
this section, we evaluate our cascading clustering algorithm on
some synthetic datasets. More specifically, we generate some
synthetic datasets with a different number of clusters.
To simulate a scenario that is similar to problem identification,
we synthesize several synthetic datasets consisting of multiple
clusters, where the cluster sizes follow the long-tail distribution.
In more detail, 1) we firstly synthesize a dataset of multiple
clusters, and the data sample dimension is fixed at 200. The
data samples in each group follow the multivariate normal
distribution [157]. 2) Then, we use the pow law function (i.e.,
f(x) = αx−k) to determine the size of each cluster with some
Gaussian noises added, as noises always exist in real data. In
this way, we can generate multiple datasets with different data
sizes (from 20k to 600k) and various clusters (from 20 to 200).
Figure 4.5 shows the time performance (in logarithmic scale for
easy plotting) of standard clustering and cascading clustering
where the number of clusters is 50 and 200. We also vary
the synthetic data size from 20k to 600k. Cascading clustering
requires much less time than standard clustering (hierarchical
agglomerative clustering), with different cluster numbers. For
example, standard clustering takes 11512.2 seconds (around 3.19
hours) on 200k data with 50 clusters, while cascading clustering
(sample rate is 1%) only takes 10.3 seconds on the same dataset.
Our cascading clustering algorithm is more than 1000× faster
than standard clustering.
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Figure 4.5: Efficiency of clustering methods on synthetic data with 50 cluster
(left) and 200 clusters (right).

In Table 4.6, we measure the clustering accuracy (in terms of
NMI) under different data sizes and cluster numbers. We can
conclude from the table that, overall, cascading clustering leads
to equal or slightly better accuracy when compared with the
standard clustering. The main reason is that our cascading
clustering algorithm is specially designed for long-tailed data.
The small clusters can be precisely clustered. Moreover, the
evaluation results of standard clustering on 600k data are not
available due to the out-of-memory (more than 1TB) compu-
tation. From Table 4.6, we can also observe that clustering
accuracy increases with the increase of cluster number and
decreases when the data size increases.

2) Impact of Log Data Quality

The quality of log data is crucial to log-based problem identifica-
tion. For a large-scale service system, logs are usually generated
on local machines, which are then collected and uploaded to a
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data center separately. During the process, some logs may be
missed or duplicated. For duplicated logs, they do not affect the
accuracy of Log3C as duplicates are removed from log sequences,
as described in Section 4.2.2. To evaluate the impact of missing
log data, we randomly remove a certain percentage (missing
rate) of logs from Data 1 and then evaluate the accuracy of
Log3C. We use three different missing rates 0.1%, 0.5%, and 1%.
The resulting F1-measures are 0.877, 0.834, 0.600, respectively.
We can find that a higher missing rate could lead to a lower
problem identification accuracy. Therefore, we suggest ensuring
the log data quality before applying Log3C in practice.

4.4.2 Threats to Validity

We have identified the following threats to validities:
Subject Systems: In our experiment, we only collect log data
from one online service system (Service X). This system is a
typical, large-scale online system, from which sufficient data can
be collected. Furthermore, we have applied our approach to the
maintenance of the actual online service systems of Microsoft.
In the future, we will evaluate Log3C on more subject systems
and report the evaluation results.
Selection of KPI: In our experiments, we use failure rate as
the KPI for problem identification. failure rate is an important
KPI for evaluating system service availability. There are also
other KPIs, such as mean time between failures, average request
latency, throughput, etc. In our future work, we will experiment
with problem identification concerning different KPI metrics.
Noises in labeling: Our experiments are conducted on three
datasets collected as a period of logs on three different days.
The engineers manually inspected and labeled the log sequences.
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Noises (false positives/negatives) may be introduced during
the manual labeling process. However, as the engineers are
experienced professionals of the product team who maintain the
service system, we believe the amount of noise is small (if it
exists).

4.4.3 Success Story

Log3C is successfully applied to Microsoft’s Service X system
for log analysis. Service X provides hundreds of millions of
global end-users online services on a 7 ∗ 24 basis. For online
service systems like Service X, inspecting logs is the only feasible
way for fault diagnosis. In the Service X system, more than
one Terabyte logs (around billions) is generated in a few hours,
and it is a great challenge to process the great volume of logs.
A distributed version of Log3C is developed and employed in
Service X. Billions of logs can be handled within hours using
our method, which helps the service team identify different log
sequence types and detect system problems. For example, in
April 2015, a severe problem occurred in one component of
Service X on some servers. The problem was caused by an
incompatibility issue between a patch and a previous product
version during a system upgrade. The service team received
lots of user complains regarding this problem. Our Log3C
successfully detected the problem and reported it to the service
team. The service team also utilized Log3C to investigate
the logs and precisely identified the problem type. With the
help of Log3C, the team quickly resolved this critical issue and
redeployed the system.
Log3C is also integrated into Microsoft’s Product B, an in-
tegrated environment for analyzing the root causes of service
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issues. Tens of billions of logs are collected and processed
by Product B every day, in which Log3C is the log analysis
engine. Using Log3C, Product B divides the log sequences
into different clusters and identifies many service problems
automatically. Log3C significantly reduces engineers’ efforts
on manually inspecting the logs and pinpointing root causes
of failures. Furthermore, fault patterns are also extracted and
maintained for analyzing similar problems in the future.

4.4.4 Lessons Learned

1) Problems != Outliers

Recent research [159, 93] proposed many approaches to detect
system anomalies using data mining and machine learning
techniques. These approaches work well for relatively small
systems. Their ideas are mainly based on the following hypoth-
esis: systems are regular most of the time, and problems are
“outliers”. Many current approaches try to detect the “outliers”
from a massive volume of log data. For example, PCA [159]
attempts to map all data to a normal subspace, and those cannot
be projected to the normal space are considered as anomalies.
However, outliers are not always real problems. Some outliers
are caused by certain infrequent user behaviors, e.g., rarely-used
system features. Our experiences with the production system
reveal that there are indeed many unusual user behaviors, which
are not real problems. A lot of effort could be wasted by
examining these false positives. In our work, we utilize system
KPI to guide the identification of real system problems.
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2) The Trend of Problem Reports Is Important

In production, engineers care about the occurrence of a problem
and the number of problem reports (i.e., the instances of
problems) over time (which reflects the number of users affected
by the problem over time). Through our communication with
a principal architect of a widely-used service in Microsoft, we
conclude three types of important trends: 1) Increasing. When
the size of one certain problem continuously increases for a
period, the production team should be notified. It is because
the number of problem reports may accumulate and cause even
serious consequences. 2) The appearance of new problems: when
a previously unknown problem appears, it is often a sign of new
bugs, which may be introduced by software updates or a newly
launched product feature. 3) The disappearance of problems:
The disappearing trend is very interesting. In production,
after fixing a problem, the scale of the problem is expected to
decrease. However, sometimes the disappearing trend may stop
at a certain point (the service team continues to receive reports
for the same problem), which often indicates an incomplete bug-
fix or a partial solution. More debugging and diagnosis work are
needed to identify the root cause of the problem and propose a
complete bug-fixing solution.

4.5 Summary

Large-scale online service systems generate a vast number of
logs, which can be used for troubleshooting. In this chapter,
we propose Log3C, a novel framework for automated problem
identification via log analysis. At the heart of Log3C is cascad-
ing clustering, an innovative clustering algorithm for clustering
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a large number of highly imbalanced log sequences. The
grouped log sequences are correlated with system KPI through
a regression model, from which the clusters that represent
impactful problems are identified. We evaluate Log3C using
real-world log data. Besides, we also apply our approach to
the maintenance of actual online service systems. The results
confirm the effectiveness and efficiency of Log3C in practice.
In the future, we will apply Log3C to various software systems
to further evaluate its effectiveness and efficiency. Also, the
proposed Cascading Clustering algorithm is a general algorithm
that can be applied to a wide range of problems.

2 End of chapter.



Chapter 5

Gradient-based Input-Output
Attribution

In this chapter, we focus on the interpretation of intelligent
software for its software reliability engineering. To specify,
we take the neural machine translation model as intelligent
software due to its wide popularity in practice. Although
neural machine translation (NMT) has advanced the state-
of-the-art on various language pairs, the interpretability of
NMT remains unsatisfactory. In this chapter, we propose to
address this gap by focusing on understanding the input-output
behavior of NMT models. Specifically, we measure the word
importance by attributing the NMT output to every input word
through a gradient-based method. We validate the approach
on a couple of perturbation operations, language pairs, and
model architectures, demonstrating its superiority on identifying
input words with higher influence on translation performance.
Encouragingly, the calculated importance can serve as indicators
of input words that are under-translated by NMT models.
Furthermore, our analysis reveals that words of certain syntactic
categories have higher importance, while the categories vary
across language pairs, which can inspire better design princi-

97
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ples of NMT architectures for multi-lingual translation. The
chapter is organized as follows: we first introduce the problem
background in §5.1 and present our method in §5.2. We then
confirm the effectiveness of our method under various settings
in §5.3. The linguistic analysis is demonstrated in §5.4. We
then discuss some potential applications in §5.5 and conclude
this chapter in §5.6.

5.1 Problems and Motivation

Neural machine translation (NMT) has achieved the state-
of-the-art results on a mass of language pairs with varying
structural differences, such as English-French [15, 148] and
Chinese-English [66]. However, so far not much is known about
how and why NMT works, which pose great challenges for
debugging NMT models and designing optimal architectures.
The understanding of NMT models has been approached pri-
marily from two complementary perspectives. The first thread
of work aims to understand the importance of representations by
analyzing the linguistic information embedded in representation
vectors [131, 18] or hidden units [17, 42]. Another direction
focuses on understanding the importance of input words by
interpreting the input-output behavior of NMT models. Pre-
vious work [8] treats NMT models as black-boxes and provides
explanations that closely resemble the attention scores in NMT
models. However, recent studies reveal that attention does not
provide meaningful explanations since the relationship between
attention scores and model output is unclear [78].
In this chapter, we focus on the second thread and try to open
the black-box by exploiting the gradients in NMT generation,
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which aims to estimate the word importance better. Specifically,
we employ the integrated gradients method [140] to attribute
the output to the input words with the integration of first-
order derivatives. We justify the gradient-based approach via
quantitative comparison with black-box methods on a couple of
perturbation operations, several language pairs, and two repre-
sentative model architectures, demonstrating its superiority on
estimating word importance.
We analyze the linguistic behaviors of words with the impor-
tance and show its potential to improve NMT models. First, we
leverage the word importance to identify input words that are
under-translated by NMT models. Experimental results show
that the gradient-based approach outperforms both the best
black-box method and other comparative methods. Second,
we analyze the linguistic roles of identified important words,
and find that words of certain syntactic categories have higher
importance while the categories vary across language. For exam-
ple, nouns are more important for Chinese⇒English translation,
while prepositions are more important for English-French and
-Japanese translation. This finding can inspire better design
principles of NMT architectures for different language pairs. For
instance, a better architecture for a given language pair should
consider its own language characteristics.

5.2 Methodology

5.2.1 Word Importance

In this chapter, the notion of “word importance” is employed
to quantify the contribution that a word in the input sentence
makes to the NMT generations. We categorize the methods of
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word importance estimation into two types: black-box methods
without the knowledge of the model and white-box methods that
have access to the model internal information (e.g., parameters
and gradients). Previous studies mostly fall into the former type,
and in this study, we investigate several representative black-box
methods:

• Content Words: In linguistics, all words can be categorized
as either content or content-free words. Content words
consist mostly of nouns, verbs, and adjectives, which carry
descriptive meanings of the sentence and thereby are often
considered as important.

• Frequent Words: We rank the relative importance of input
words according to their frequency in the training corpus.
We do not consider the top 50 most frequent words since
they are mostly punctuation and stop words.

• Causal Model [8]: Since the causal model is complicated to
implement and its scores closely resemble attention scores
in NMT models. In this study, we use Attention scores to
simulate the causal model.

Our approach belongs to the white-box category by exploiting
the intermediate gradients, which will be described in the next
section.

5.2.2 Integrated Gradients

In this chapter, we resort to a gradient-based method, inte-
grated gradients [140] (IG), which was originally proposed to
attribute the model predictions to input features. It exploits
the handy model gradient information by integrating first-order
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Figure 5.1: An example of (a) word importance and (b) contribution matrix
calculated by integrated gradients on English⇒French translation task.

derivatives. IG is implementation invariant and does not require
neural models to be differentiable or smooth, thereby is suitable
for complex neural networks like Transformer. In this chapter,
we use IG to estimate the word importance in an input sentence
precisely.
Formally, let x = (x1, ..., xI) be the input sentence and x′ be a
baseline input. F is a well-trained NMT model, and F (x)j is
the model output (i.e., P (yj|y<j,x)) at time step j. Integrated
gradients is then defined as the integral of gradients along a
straight line path from the baseline x′ to the input x. In detail,
the contribution of the ith word in x to the prediction of F (x)j
is defined as follows.

IGj
i (x) = (xi − x′i)

∫ 1

α=0

∂F (x′ + α(x− x′))j
∂xi

dα

where ∂F (x)j

∂xi
is the gradient of F (x)j w.r.t. the embedding of the

ith word. In this chapter, as suggested, the baseline input x′ is
set as a sequence of zero embeddings that has the same sequence
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length I. In this way, we can compute the contribution of a
specific input word to a designated output word. Since the above
formula is intractable for deep neural models, we approximate it
by summing the gradients along a multi-step path from baseline
x′ to the input x.

IGj
i (x) = (xi − x′i)

S

S∑
k=0

∂F (x′ + k
S (x− x′))j
∂xi

where S denotes the number of steps that are uniformly dis-
tributed along the path. The IG will be more accurate if a
larger S is used. In our preliminary experiments, we varied the
steps and found 300 steps yielding fairly good performance.
Following the formula, we can calculate the contribution of every
input word makes to every output word, forming a contribution
matrix of size I×J , where J is the output sentence length. Given
the contribution matrix, we can obtain the word importance of
each input word to the entire output sentence. To this end, for
each input word, we first aggregate its contribution values to all
output words by the sum operation, and then normalize all sums
through the Softmax function. Figure 5.1 illustrates an example
of the calculated word importance and the contribution matrix,
where an English sentence is translated into a French sentence
using the Transformer model. The input in English is “It has
always taken place .” and the output in French is “Elle a toujours
eu lieu .”. A negative contribution value indicates that the input
word has negative effects on the output word.

5.3 Evaluations

Data To make the conclusion convincing, we first choose two
large-scale datasets that are publicly available, i.e., Chinese-
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English and English-French. Since English, French, and Chi-
nese all belong to the subject-verb-object (SVO) family, we
choose another very different subject-object-verb (SOV) lan-
guage, Japanese, which might bring some interesting linguistic
behaviors in English-Japanese translation.
For Chinese-English task, we use WMT17 Chinese-English
dataset that consists of 20.6M sentence pairs. For English-
French task, we use WMT14 English-French dataset that com-
prises 35.5M sentence pairs. For English-Japanese task, we
follow [104] to use the first two sections of WAT17 English-
Japanese dataset that consists of 1.9M sentence pairs. Following
the standard NMT procedure, we adopt the standard byte
pair encoding (BPE) [129] with 32K merge operations for all
language pairs. We believe that these datasets are large enough
to confirm the rationality and validity of our experimental
analyses.

Implementation We choose the state-of-the-art model, Trans-
former [148] and the conventional RNNSearch model [15] as
our test bed. We implement the Attribution method based on
the Fairseq framework for the above models. All models are
trained on the training corpus for 100k steps under the standard
settings, which achieve comparable translation results. All the
following experiments are conducted on the test dataset, and we
estimate the input word importance using the model generated
hypotheses.
In the following experiments, we compare IG (Attribution) with
several black-box methods (i.e., Content, Frequency, Attention)
as introduced in Section 5.2.1. In Section 5.3.1, to ensure that
the translation performance decrease attributes to the selected
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words instead of the perturbation operations, we randomly select
the same number of words to perturb (Random), which serves
as a baseline. Since there is no ranking for content words, we
randomly select a set of content words as important words. To
avoid the potential bias introduced by randomness (i.e., Random
and Content), we repeat the experiments for 10 times and report
the averaged results. We calculate the Attention importance in
a similar manner as the Attribution, except that the attention
scores use a max operation due to the better performance.

Evaluation We evaluate the effectiveness of estimating word
importance by the translation performance decrease. More
specifically, unlike the usual way, we measure the decrease of
translation performance when perturbing a set of important
words that are of top-most word importance in a sentence. The
more translation performance degrades, the more important the
word is.
We use the standard BLEU score as the evaluation metric for
translation performance. To make the conclusion more convinc-
ing, we conduct experiments on different types of synthetic per-
turbations (Section 5.3.1), as well as different NMT architectures
and language pairs (Section 5.3.2). In addition, we compare
with a supervised erasure method, which requires ground-truth
translations for scoring word importance (Section 5.3.3).

5.3.1 Results on Different Perturbations

In this experiment, we investigate the effectiveness of word
importance estimation methods under different synthetic pertur-
bations. Since the perturbation on text is notoriously hard [166]
due to the semantic shifting problem, in this experiment, we
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investigate three types of perturbations to avoid the potential
bias :

• Deletion perturbation removes the selected words from
the input sentence, and it can be regarded as a specific
instantiation of sentence compression [33].

• Mask perturbation replaces embedding vectors of the se-
lected words with all-zero vectors [10], which is similar
to Deletion perturbation except that it retains the place-
holder.

• Grammatical Replacement perturbation replaces a word
by another word of the same linguistic role (i.e., POS
tags), yielding a sentence that is grammatically correct but
semantically nonsensical [30, 61], such as “colorless green
ideas sleep furiously”.

Figure 5.2 illustrates the experiments on Chinese⇒English
translation with Transformer. It shows that Attribution method
consistently outperforms other methods against different pertur-
bations on a various number of operations. Here the operation
number denotes the number of perturbed words in a sentence.
Specifically, we can make the following observations.
Under three different perturbations, perturbing words of top-
most importance leads to lower BLEU scores than Random
selected words. It confirms the existence of important words,
which have greater impacts on translation performance. Fur-
thermore, perturbing important words identified by Attribution
outperforms the Random method by a large margin (more than
4.0 BLEU under 5 operations).
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Figure 5.2: Effect of different perturbations on Chinese⇒English translation.
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Finding 1: Important words are more influential on translation
performance than the others.

Figure 5.2 shows that two black-box methods (i.e., Content, Fre-
quency) perform only slightly better than the Random method.
Specifically, the Frequency method demonstrates even worse
performances under the Mask perturbation. Therefore, linguis-
tic properties (such as POS tags) and the word frequency can
only partially help identify the important words, but it is not
as accurate as we thought. In the meanwhile, it is intriguing
to explore what exact linguistic characteristics these important
words reveal, which will be introduced in Section 5.4.

Finding 2: The gradient-based method is superior to compara-
tive methods (e.g., Attention) in estimating word importance.

We also evaluate the Attention method, which bases on the
encoder-decoder attention scores at the last layer of Trans-
former. Note that the Attention method is also used to simulate
the best black-box method SOCRAT, and the results show that
it is more effective than black-box methods and the Random
baseline. Given the powerful Attention method, Attribution
method still achieves best performances under all three pertur-
bations. Furthermore, we find that the gap between Attribution
and Attention is notably large (around 1.0+ BLEU difference).
Attention method does not provide as accurate word importance
as the Attribution, which exhibits the superiority of gradient-
based methods and consists with the conclusion reported in the
previous study [78].
In addition, as shown in Figure 5.2, the perturbation effective-
ness of Deletion, Mask, and Grammatical Replacement varies
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from strong to weak. In the following experiments, we choose
Mask as the representative perturbation operation for its moder-
ate perturbation performance, based on which we compare two
most effective methods Attribution and Attention.

5.3.2 Results on Different Configurations

In this section, we mainly investigate whether our method can be
generally applicable in various settings. Specifically, we vary the
NMT architecture, language pair as well as direction to validate
our method, and the details are presented as follows.

Different NMT Architecture We validate the effectiveness of
the proposed approach using a different NMT architecture
RNNSearch on the Chinese⇒English translation task. The
results are shown in Figure 5.3(a). We observe that the
Attribution method still outperforms both Attention method
and Random method by a decent margin. By comparing to
Transformer, the results also reveal that the RNNSearch model
is less robust to these perturbations. To be specific, under the
setting of five operations and Attribution method, Transformer
shows a relative decrease of 55% on BLEU scores while the
decline of RNNSearch model is 64%.

Different Language Pairs and Directions We further conduct ex-
periments on another two language pairs (i.e., English⇒French,
English⇒Japanese in Figures 5.3(b, c)) as well as the reverse
directions (Figures 5.3(d, e, f)) using Transformer under the
Mask perturbation. In all the cases, Attribution shows the best
performance while Random achieves the worst result. More
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specifically, Attribution method shows similar translation qual-
ity degradation on all three language-pairs, which declines to
around the half of the original BLEU score with five operations.

Finding 3: Our gradient-based method is consistent against
different architectures, language pairs and translation direc-
tions

5.3.3 Comparison with Supervised Erasure

There exists another straightforward method, Erasure [8, 10,
170], which directly evaluates the word importance by measuring
the translation performance degradation of each word. Specif-
ically, it erases (i.e., Mask) one word from the input sentence
each time and uses the BLEU score changes to denote the word
importance (after normalization).
In Figure 5.4, we compare Erasure method with Attribution
method under the Mask perturbation. The results show that
Attribution method is less effective than Erasure method when
only one word is perturbed. But it outperforms the Erasure
method when perturbing 2 or more words. The results reveal
that the importance calculated by erasing only one word cannot
be generalized to multiple-words scenarios very well. Besides,
the Erasure method is a supervised method which requires
ground-truth references, and finding a better words combination
is computation infeasible when erasing multiple words.
We close this section by pointing out that our gradient-based
method consistently outperforms its black-box counterparts in
various settings, demonstrating the effectiveness and universal-
ity of exploiting gradients for estimating word importance. In
addition, our approach is on par with or even outperforms the
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Figure 5.3: Effect of the Mask perturbation on (a) Chinese⇒English
translation using the RNNSearch model, (b, c, d, e, f) other language pairs
and directions using Transformer model.
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Figure 5.4: Effect of Attribution and Erasure methods on Chinese⇒English
translation with Mask perturbation.

Method Top 5% Top 10% Top 15%
Attention 0.058 0.077 0.119
Erasure 0.154 0.170 0.192

Attribution 0.248 0.316 0.342

Table 5.1: F1 accuracy of detecting under-translation errors with the
estimated word importance.

supervised erasure method (on multiple-word perturbations).
This is encouraging since our approach does not require any
external resource and is fully unsupervised.

5.4 Analysis

In this section, we conduct analyses on two potential usages
of word importance, which can help debug NMT models (Sec-
tion 5.4.1) and design better architectures for specific languages
(Section 5.4.2). Due to the space limitation, we only an-
alyze the results of Chinese⇒English, English⇒French, and
English⇒Japanese. We list the results on the reverse directions
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in Appendix, in which the general conclusions also hold.

5.4.1 Effect on Detecting Translation Errors

In this experiment, we propose to use the estimated word im-
portance to detect the under-translated words by NMT models.
Intuitively, under-translated input words should contribute little
to the NMT outputs, yielding much smaller word importance.
Given 500 Chinese⇒English sentence pairs translated by the
Transformer model (BLEU 23.57), we ask ten human annotators
to manually label the under-translated input words, and at
least two annotators label each input-hypothesis pair. These
annotators have at least six years of English study experience,
whose native language is Chinese. Among these sentences,
178 sentences have under-translation errors with 553 under-
translated words in total.
Table 5.1 lists the accuracy of detecting under-translation errors
by comparing words of least importance and human-annotated
under-translated words. As seen, our Attribution method consis-
tently and significantly outperforms both Erasure and Attention
approaches. By exploiting the word importance calculated by
Attribution method, we can identify the under-translation errors
automatically without the involvement of human interpreters.
Although the accuracy is not high, it is worth noting that our
under-translation method is very simple and straightforward.
This is potentially useful for debugging NMT models, e.g.,
automatic post-editing with constraint decoding [76, 120].
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5.4.2 Analysis on Linguistic Properties

In this section, we analyze the linguistic characteristics of
important words identified by the attribution-based approach.
Specifically, we investigate several representative sets of linguis-
tic properties, including POS tags, and fertility, and depth in a
syntactic parse tree. Fertility can be categorized into 4 types:
one-to-many (“≥ 2”), one-to-one (“1”), many-to-one (“(0, 1)”),
and null-aligned (“0”). Syntactic depth shows the depth of a
word in the dependency tree. In these analyses, we multiply the
word importance with the corresponding sentence length for fair
comparison. We use a decision tree based regression model to
calculate the correlation between the importance and linguistic
properties.
Table 5.2 lists the correlations, where a higher value indicates
a stronger correlation. We find that the syntactic information
is almost independent of the word importance value. Instead,
the word importance strongly correlates with the POS tags and
fertility features, and these features in total contribute over
95%. A lower tree depth indicates closer to the root node in the
dependency tree, which might indicate a more important word.
Therefore, in the following analyses, we mainly focus on the POS
tags (Table 5.3) and fertility properties (Table 5.4). For better
illustration, we calculate the distribution over the linguistic
property based on both the Attribution importance (“Attri.”)
and the word frequency (“Count”) inside a sentence, and the
“4” denotes relative change over the count-based distribution.
The larger the relative increase between these two values, the
more important the linguistic property is.
As shown in Table 5.3, content words are more important on
Chinese⇒English but content-free words are more important
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Type Zh⇒En En⇒Fr En⇒Ja

P
O
S
T
ag
s

Noun 21.0% 1.9% 0.7%
Verb 0.3% 25.0% 0.3%
Adj. 0.4% 9.3% 0.7%
Prep. 1.3% 4.5% 26.7%
Dete. 3.0% 5.7% 2.1%
Punc. 3.5% 18.3% 30.5%
Others 0.5% 1.2% 4.7%
Total 30.0% 65.9% 65.6%

Fe
rt
ili
ty

≥ 2 50.2% 21.4% 21.7%
1 15.4% 7.0% 3.1%

(0, 1) 2.5% 0.4% 3.0%
0 0.0% 1.9% 3.8%

Total 68.1% 30.7% 31.6%

Sy
nt
ac
ti
c Low 1.6% 2.5% 1.2%

Middle 0.3% 0.8% 1.4%
High 0.0% 0.1% 0.1%
Total 1.9% 3.4% 2.7%

Table 5.2: Correlation between Attribution word importance with POS tags,
fertility, and syntactic depth.

on English⇒Japanese. On English⇒French, there is no notable
increase or decrease of the distribution since English and French
are in essence very similar. We also obtain some specific findings
of great interest. For example, we find that noun is more impor-
tant on Chinese⇒English translation, while preposition is more
important on English⇒French translation. More interestingly,
English⇒Japanese translation shows a substantial discrepancy
in contrast to the other two language pairs. The results
reveal that preposition and punctuation are very important in
English⇒Japanese translation, which is counter-intuitive.

Finding 4: Certain syntactic categories have higher importance
while the categories vary across language pairs.
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Punctuation in NMT is understudied since it carries little
information and often does not affect the understanding of
a sentence. However, we find that punctuation is important
on English⇒Japanese translation, whose proportion increases
dramatically. We conjecture that it is because the punctuation
could affect the sense groups in a sentence, which further benefits
the syntactic reordering in Japanese.
We further compare the fertility distribution based on word
importance and the word frequency on three language pairs.
We hypothesize that a source word that corresponds to multiple
target words should be more important since it contributes more
to both sentence length and BLEU score.
Table 5.4 lists the results. Overall speaking, one-to-many fertil-
ity is consistently more important on all three language pairs,
which confirms our hypothesis. On the contrary, null-aligned
words receive much less attention, which shows a persistently
decrease on three language pairs. It is also reasonable since null-
aligned input words contribute almost nothing to the translation
outputs.

Finding 5: Words of high fertility are always important.

5.4.3 Analyses on Reverse Directions

We analyze the distribution of syntactic categories and word
fertility on the same language pairs with reverse directions, i.e.,
English⇒Chinese, French⇒English, and Japanese⇒English. The
results are shown in Table 5.5 and Table 5.6 respectively, where
we observe similar findings as before. We use the Stanford POS
tagger to parse the English and French input sentences, and use
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Table 5.3: Distribution of syntactic categories based on word count (“Count”)
and Attribution importance (“Attri.”).
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Languages Fertility Count Attri. 4

Z
h⇒

E
n ≥ 2 0.087 0.146 +67.82%

1 0.621 0.622 +0.16%
(0, 1) 0.115 0.081 -29.57%

0 0.176 0.150 -14.77%
E
n⇒

Fr
≥ 2 0.126 0.138 +9.52%
1 0.672 0.670 -0.30%

(0, 1) 0.116 0.113 -2.59%
0 0.086 0.079 -8.14%

E
n⇒

Ja

≥ 2 0.117 0.143 +22.22%
1 0.570 0.565 -0.88%

(0, 1) 0.059 0.055 -6.78%
0 0.254 0.237 -6.69%

Table 5.4: Distributions of word fertility and their relative change based on
Attribution importance and word count.

the Kytea1 to parse the Japanese input sentences.

Syntactic Categories On English⇒Chinese, content words are
more important than content-free words, while the situation
is reversed on both French⇒English and Japanese⇒English
translations. Since there is no clear boundary between Preposi-
tion/Determiner and other categories in Japanese, we set both
categories to be none. Similarly, Punctuation is more important
on Japanese⇒English, which is in line with the finding on
English⇒Japanese. Overall speaking, it might indicate that the
Syntactic distribution with word importance is language-pair
related instead of the direction.

Word Fertility The word fertility also shows similar trend as
the previously reported results, where one-to-many fertility
is more important and null-aligned fertility is less important.

1http://www.phontron.com/kytea/
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Table 5.5: Distribution of syntactic categories with reverse directions based
on word count (“Count”) and Attribution importance (“Attri.”).
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Languages Fertility Count Attri. 4

E
n⇒

Z
h ≥ 2 0.091 0.106 +16.48%

1 0.616 0.629 +2.11%
(0, 1) 0.083 0.077 -7.23%

0 0.210 0.187 -10.95%
Fr
⇒
E
n ≥ 2 0.088 0.094 +6.82%

1 0.707 0.721 +1.98%
(0, 1) 0.102 0.094 -7.84%

0 0.103 0.092 -10.68%

Ja
⇒
E
n ≥ 2 0.079 0.085 +7.59%

1 0.513 0.520 +1.36%
(0, 1) 0.086 0.097 +12.79%

0 0.322 0.298 -7.45%

Table 5.6: Distributions of word fertility and relative changes with reverse
directions.

Interestingly, many-to-one fertility shows an increasing trend on
Japanese⇒English translation, but the proportion is relatively
small.
In summary, the findings on language pairs with reverse direc-
tions still agree with the findings in this chapter, which further
confirms the generality of our experimental findings.

5.5 Discussion

We approach understanding NMT by estimating the word
importance via a gradient-based methods. Our analyses show
that important words are of distinct syntactic categories on
different language pairs, which might support the viewpoint
that essential inductive bias should be introduced into the model
design [138]. Our study also suggests the possibility of detecting
the notorious under-translation problem via the gradient-based
method.
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This chapter presents an initiating step towards the general
understanding of NMT models, which may bring some potential
improvements, such as

• Interactive MT and Constraint Decoding [52, 76]: The
model pays more attention to the detected unimportant
words, which are possibly under-translated;

• Adaptive Input Embedding [14]: We can extend the adaptive
softmax [60] to the input embedding of variable capacity –
more important words are assigned with more capacity;

• NMT Architecture Design: The language-specific inductive
bias (e.g., different behaviors on POS [108, 161]) should be
incorporated into the model design.

We can also explore other applications of word importance to
improve NMT models, such as more tailored training methods.
In general, model interpretability can build trust in model
predictions, help error diagnosis and facilitate model refinement.
We expect our work could shed light on the NMT model
understanding and benefit the model improvement.
There are many possible ways to implement the general idea
of exploiting gradients for model interpretation. The aim of
this chapter is not to explore this whole space but simply to
show that some fairly straightforward implementations work
well. Our approach can benefit from advanced exploitation of
the gradients or other useful intermediate information, which we
leave to the future work.
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5.6 Summary

In this chapter, we propose to understand NMT by inves-
tigating the word importance via a gradient-based method,
which bridges the gap between word importance and translation
performance. Empirical results show that the gradient-based
method is superior to several black-box methods in estimating
the word importance. Our study demonstrates the necessity
and effectiveness of exploiting the intermediate gradients for
estimating word importance. We find that word importance is
useful for understanding NMT by identifying under-translated
words. We provide empirical support for the design principle
of NMT architectures: essential inductive bias (e.g., language
characteristics) should be considered for model design.

2 End of chapter.



Chapter 6

Phrase-table-based Bilingual
Knowledge Assessment

In the previous chapter, we propose to interpret the neural
machine translation model from the input-output attribution
perspective. However, the input-output attribution focuses only
on specific input examples, and it does not represent an global
explanation of the intelligent software behaviors. Therefore,
in this chapter, we attempt to bridge the gap by assessing
the bilingual knowledge learned in NMT models with the
phrase table – an interpretable table of bilingual lexicons. The
proposed method provides a global explanation for the bilingual
knowledge learned in the model. Extensive experiments on
widely-used datasets show that the phrase table is reasonable
and consistent against language pairs, random seeds, and model
structures. Equipped with the interpretable phrase table, we
find some interesting findings in the model training and recent
advances for model improvement. The chapter is organized as
follows: we first introduce the problem background in §6.1 and
present our method in §6.2. We then confirm the effectiveness of
our method under various settings in §6.3. With the proposed
method, we analyze the training process and some recent

122
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advances of NMT in §6.4. We then discussion the potential
applications of our method in §6.5 and conclude this chapter in
§6.6.

6.1 Problems and Motivation

Modern machine translation (MT) systems aim to produce
fluent and adequate translations by automatically learning in-
depth knowledge of bilingual lexicons and grammar from the
training corpora. Since the proposal of machine translation task,
techniques have evolved from rule-based MT (RBMT) [67, 126],
through SMT [26, 110], to NMT [141, 15]. In RBMT methods,
a large number of linguistic rules and extensive lexicons with
morphological, syntactic, and semantic information, are man-
ually constructed by humans. But the method is impractical
in nowadays since the rules are very complex and are always
evolving. Thanks to the availability of large amounts of parallel
data in the wild, SMT approaches automatically learn the lin-
guistic knowledge from bilingual corpora with statistic models,
which relieve the labor-intensive problem of RBMT methods.
More recently, NMT, which builds an end-to-end neural network
on the training data, has taken the field of MT. Several
studies have shown that NMT model representations contain a
substantial amount of linguistic information on multiple levels:
morphological [18], syntactic [131], and semantic [75].
In the development circle of each generation, MT models are
generally improved with techniques that are essential in the
last generation. For example, Chiang et al. [29] and Liu et al.
[92] relieved the non-fluent translation problem of SMT models
by automatically learning syntactic rules that were manually
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created in RBMT systems. Tu et al. [145] alleviated the
inadequate translation problem of NMT models by introducing
the coverage mechanism, which is a standard concept in SMT.
Inspired by previous studies, we hypothesize that MT models
of different generations are possibly identical in modeling the
essential knowledge.
Specifically, SMT models generate translations based on several
statistical models that explicitly represent the knowledge bases,
such as translation model for bilingual lexicons, reordering, and
language models for grammar [83]. Recently, NMT models have
advanced the state-of-the-art (SOTA) by implicitly modeling
the knowledge bases in a large neural network, which is jointly
trained to improve the translation performance [15, 57, 149].
Despite their power with a massive amount of parameters, we
have limited understanding of how and why an NMT model
works, which poses great challenges for error analysis and model
refinement.
In this part, we bridge the gap by assessing the knowledge
bases learned by NMT models with statistical models in SMT.
We believe and empirically verify that although using different
forms (e.g., continuous vs. discrete) to represent the knowledge,
NMT and SMT models are identical in modeling the essential
knowledge bases. In the long-goal journey, we start with probing
the bilingual knowledge with the statistical translation model,
also known as the phrase table. Bilingual knowledge is at the
core of adequacy modeling, which is a major weakness of NMT
models [145].
The phrase table is an essential component of the SMT sys-
tems, which records the correspondence between bilingual lex-
icons [83]. Previous studies have incorporated the phrase
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(a) Output of an English ⇒ German NMT model
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(b) Phrase table extracted from the NMT model

Figure 6.1: The output of an NMT model (a) can be explained by an
extracted phrase table (b).

table as an external signal to guide the generation in NMT
models [153, 164, 167, 62]. All these works show that the
bilingual knowledge in phrase tables can be identical to those
in NMT models, and thereby can be seamlessly integrated
into NMT models. Based on the observation, we employ
the phrase table to assess the bilingual knowledge for NMT
models. In addition, Lample et al. [87] have advanced the SOTA
performance of unsupervised NMT by evolving from learning
the alignment of word embeddings to phrase embeddings based
on an external phrase table. The improvement is identical to
the evolution of SMT from word-based models [26] to phrase-
based models [85]. It reconfirms our hypothesis that MT models
of different generations are identical in modeling the essential
knowledge, and thus share similar evolving trends.
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Specifically, we extract the phrase table from NMT model
predictions, which is inspired by recent work on investigating
the example forgetting phenomenon in image classification [144].
Intuitively, an NMT model has learned the essential knowledge
in terms of bilingual phrase pairs if it can correctly predict the
corresponding part of a training example. Experimental results
on different language pairs, random seeds, and model structures
show that the extracted phrase tables correlate well with the
NMT performances. Besides, as shown in Figure 6.1, the phrase
table extracted from an NMT model can well explain the model
translation. These results reveal that the phrase table can
reasonably represent the bilingual knowledge learned by NMT
models.
With the interpretable phrase table in hand, we could better
understand the behaviors of NMT models in many aspects. We
start with investigating the learning dynamics of the bilingual
knowledge. We find that NMT models tend to first learn simple
patterns and then complex patterns, and the catastrophic for-
getting phenomenon occurs during the model training.1 Besides,
we reveal that one strength of NMT models over SMT models
is that, NMT models distill high-quality bilingual knowledge
from the training data. We then revisit several advances in
improving NMT models, which potentially affect the learned
bilingual knowledge. Through extensive experiments, we have
the following observations:

• Model Capacity: We thought it likely that increasing model
capacity leads to more bilingual lexicons. It turns out to
be false: Transformer-Big outperforms Transformer-Base

1We follow [144] to define “forgetting event” to have occurred when a training example
transitions from being predicted correctly to incorrectly during training.
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by 1.3 BLEU points, while the extracted phrase tables are
of almost the same size. We conjecture that the strengths of
large-capacity models lie in a better learning ability of more
complex knowledge, such as composition rules to combine
the bilingual lexicons.

• Data Augmentation: We investigate back translation [129]
and forward translation [165, 68], which introduce addition-
ally synthetic parallel corpus. Both the back-translation [129]
and the forward-translation [165] improve the translation
performance not only by introducing new bilingual knowl-
edge but also with a better quality estimation of existing
knowledge.

• Domain Adaptation: Fine-tuning is a simple yet effective
technique in domain adaptation, which learns to transfer
out-of-domain knowledge to in-domain [96]. As expected,
by adapting to the in-domain data, the fine-tuning ap-
proach learns more and better bilingual knowledge from
the in-domain data while forgetting partial out-of-domain
knowledge.

6.2 Methodology

There are many possible ways to implement the general idea
of extracting the phrase table from NMT model predictions.
The aim of this chapter is not to explore the whole space but
simply to show that one fairly straightforward implementation
works well and the idea is reasonable. We leave the exploitation
of more advanced statistic models on bilingual knowledge (e.g.,
syntax rules [92] and discontinuous phrases [56]) for future work.
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As shown in Algorithm 2, we follow the standard pipeline in
SMT to construct the phrase table with a two-phase approach.
The first phase, as the focus of this chapter, is phrase extraction
where the bilingual phrase pairs are extracted from a word-
aligned parallel data. Secondly, each phrase pair is assigned with
several scores, which are estimated based on the occurrences of
these phrases or their words in the same word-aligned training
data. The key challenge then is how to incorporate the prior of
NMT predictions into the SMT pipeline. In this study, we model
the NMT priors as a mask sequence, which is integrated into the
standard SMT pipeline as a constraint, as listed in Algorithm 2.

Algorithm 2: Constructing Phrase Table
Input : training example (x, y), alignment a, mask m
Output: phrase set R

1 Procedure PhraseTable()
2 Extraction;
3 Estimation;
4 Procedure Extraction()
5 R̂ ← extract candidates from {(x, y), a};
6 foreach r ∈ R̂ do . priors of NMT predictions
7 if r is consistent with m then
8 R.append(r)
9 end

10 end
11 Procedure Estimation()
12 standard procedure;

Building Masked Word-Aligned Parallel Data. Inspired by [144],
we define “memorized phrase pair” to be extracted from the asso-
ciated (partial) training example, which is predicted correctly by
the NMT model. To this end, we first decompose the sequence
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generation of NMT into a series of classification tasks.
Given a modelM and a training example (x = {x1, . . . , xI},y =
{y1, . . . , yJ}), we use the model M to force-decode x to y and
check whether the j-th token is correctly predicted:

mj =


1, if yj = arg max

y′
j∈V

P (y′j|y<j,x)

0, otherwise

where P (y′j|y<j,x) is the model prediction probability at the
step j (ranges from 1 to J) and V is the target vocabulary. A
token yj is predicted correctly if the model assigns the highest
probability to it.
Intuitively, a token yj with mask mj = 0 denotes that the token
is not correctly predicted by the model. Accordingly, any phrase
pairs that contain the token yj should not be extracted from the
training example (x,y), since these phrase pairs are not fully
learned by the NMT model. A lightweight implementation is
to replace these tokens with a special symbol “$MASK$”, and
follow the standard phrase extraction procedure as in the SMT
pipeline. Then we remove phrase pairs that contain the symbol
“$MASK$” (lines 6-10 in Algorithm 2), and feed the pruned
phrase pairs to the second phase of quality score estimation.

6.3 Evaluations

6.3.1 Experimental Setup

Data and Models We conduct experiments on the widely-used
WMT2014 English⇒German (En⇒De) and the syntactically-
distant WAT2017 English⇒Japanese (En⇒Ja) [106] datasets.
We use 4-gram NIST BLEU score [115] as the evaluation metric.
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For all datasets used in the experiments, we apply the BPE [129]
with 32K merge operations.

SMT experiments We follow the standard configuration in the
SMT pipeline and settings of Edinburgh’s phrase-based system
in WMT-2014 [44]. More specifically, we leverage the huge
German monolingual corpus on the WMT website and the
Japanese data in the parallel corpus to train a 5-gram language
model for En⇒De and En⇒Ja translation respectively, and
the language model is built on the KenLM [73]2 toolkit. The
fast_align [45]3 is used to obtain the word alignment. We use
the Moses [84] default system setting for both training and
testing. For the training, we set maximum phrase length to
7 for phrase table extraction and adopt MERT [109] to tune
feature weights of the Moses decoder. Note that all experiments
are automated by following standard procedures and parameter
settings. Following [80] to reduce the redundancy, we further
remove phrase pairs that occur only once in the training data.
In following experiments with the phrase table, we adopt inverse
phrase translation probability, inverse lexical weighting, direct
phrase translation probability, direct lexical weighting, phrase
penalty, word penalty. language model score, and lexical
reordering features.

NMT experiments We use the Fairseq [114] toolkit to im-
plement the Transformer models [149]. We follow the stan-
dard parameter configuration to train all the models and the
batch size is 32K (4096×8) tokens. The Transformer-

2https://kheafield.com/code/kenlm/
3https://github.com/clab/fast_align
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big model is trained for 300K steps with 0.3 dropout. The
Transformer-Small model is trained following the same
setting of Transformer-Base. We train the NMT models for
100K steps and save the checkpoint per epoch. To understand
the dramatic increase of NMT performances in the first epoch,
we save checkpoints per 200 steps and extract phrase tables from
training examples that have seen so far only.

Environment and Implementation details All NMT models are
trained on 8 V100 Nvidia GPUs using the single precision
floating point. The SMT experiments (including phrase table
extraction and SMT model training) are based on CPUs only.
Our SMT experiments are conducted using a Linux machine
with CPU of 80-cores Intel(R) Xeon(R) Gold 6133 @2.50GHz
and memory of 250GB. The experiments are efficient since many
of which can be executed in parallel. Force decoding an NMT
model on the training corpus can be conduced in parallel with
a large batch, which takes less than ten minutes only. For
the bilingual knowledge extraction, it takes around 2 hours to
extract the phrase table from the force-decoded data. In the
analysis part, the SMT model training time varies with the
phrase table size, which ranges from around 2 to 9 hours.

Evaluation Metrics To verify our claims, we propose several
metrics to quantitatively evaluate the phrase table quality. If the
metrics correlate well with the NMT performance, the phrase
table is reasonable in representing the bilingual knowledge of
NMT models. The metrics are as follows:
Phrase Table Size: As a straightforward metric, the size mea-
sures the number of distinct phrase pairs in a phrase table.
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A larger phrase table size indicates more abundant bilingual
knowledge.
Recovery Percent: A good phrase table should contain enough
knowledge to cover as much training data as possible. Accord-
ingly, we propose the recovery percent metric to measure the
ability of phrase tables in training data reconstruction. In detail,
we use the phrase table to force decode the target sentence to
recover as many target tokens as possible, and the proportion of
the recovered tokens over all tokens is denoted as the recovery
percent. A higher recovery percent indicates a better phrase
table since more data can be reconstructed.
Translation Quality: Finally, we directly evaluate the phrase
table quality in terms of translation performance. Specifically,
we train a SMT model with the extracted phrase table by the
off-the-shelf Moses toolkit and evaluate its BLEU score on the
test set. For fair comparisons, we keep other SMT components
unchanged and only alter the phrase table, therefore the relative
SMT BLEU score is our focus of interest.

6.3.2 Phrase Table Evaluation

The extracted phrase table correlates well with the NMT per-
formance. A good knowledge representation should be highly
in line with the NMT performance during the entire learning
process. Figure 6.2a illustrates the results of the above metrics
on the En⇒De dataset. We evaluate the correlation between
quality metrics of phrase table (i.e., phrase table size, recovery
percent, and translation quality) and NMT performance (“NMT
BLEU”) on En⇒De and En⇒Ja datasets. All metrics are
scaled by the corresponding best score to fit in the figure.
As seen, all three metrics are highly in line with the NMT
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performance (“NMT BLEU”) in the learning course. The
Pearson correlations between NMT BLEU scores and phrase
table size, recovery percent, and the translation quality are
0.975, 0.987, and 0.956, respectively, demonstrating very high
correlations between the phrase table and NMT performance.
It confirms our claim that the phrase table is a reasonable
assessment to represent the bilingual knowledge learned by NMT
models.
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Figure 6.2: Correlation between phrase table quality and NMT performance
on (a) En⇒De and (b) En⇒Ja and the phrase table size under different
random seeds (c).
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The conclusion is robust across language pairs, random seeds and
model structures. We also validate our approach on the En⇒Ja
dataset, as shown in Figure 6.2b. The Pearson correlations
are respectively 0.988, 0.990, and 0.908, which demonstrate the
universality of our conclusions. To avoid the potential bias,
we vary the initialization seed and analyze the robustness of
extracted phrase tables. Figure 6.2c depicts that the phrase
table size increases similarly in different seeds. Besides, at
each epoch, more than 85% phrase pairs are the same among
three seeds (“Overlap”), showing its robustness against random
seeds. Experiments on a LSTM-based model further confirm
our findings and we leave the results in the Appendix due to
space limits. Considering the general applicability of the phrase
table, we use the Transformer model on En⇒De translation for
further analyses. We will interchangeably use the terms “phrase
table” and “bilingual knowledge” in the following sections.

6.3.3 Different Model Structures

In addition to the experiments on different language pairs and
random seeds , we further evaluate the correlation between
the quality metric of phrase tables and NMT performances
(“NMT BLEU”) on a state-of-the-art but different structure,
a LSTM-based Transformer [43]. The results are depicted in
the Figure 6.3. The Pearson correlation between NMT BLEU
scores and phrase table size, recovery percent, and the trans-
lation quality are 0.990, 0.993, 0.900, respectively. The high
correlation score demonstrate that the phrase table is robust
against different model structures. The results reconfirm that
the proposed phrase table is a reasonable assessment tool for
representing the bilingual knowledge learned by NMT models.
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6.4 Analysis

With the interpretable phrase table in hand, we attempt to
understand how NMT models learn the bilingual knowledge
from two perspectives:

• How do NMT models learn the bilingual knowledge during
training? (Section 6.4.1 and Section 6.4.2)

• Does the trained NMT model sufficiently exploit the bilin-
gual knowledge embedded in the training examples? (Sec-
tion 6.4.3)

6.4.1 Learning Dynamics

In this section, we investigate the evolvement of bilingual
knowledge during the NMT model training. To this end, we
categorize the phrase pair into different levels (in ascending order
of complexity) using several metrics that are widely used in SMT
research. For fair comparisons, the metric scores are normalized
by the max score in each level.
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Phrase Length: A long phrase is usually difficult to translate,
and thereby more complex than a short phrase [94]. The phrase
length category is: short (1-3) < middle (3-5) < long (5-7).
Reordering Type: The metric measures the order of two phrases
with lexicalized reordering [143]. Disordered phrases are often
hard to translate [83] and thereby more complex. The category
of reordering type is: monotone < swap < discontinuous.
Word Fertility: Word fertility measures the source-target word
alignments in each phrase pair. Words with a complex fertility
might indicate inherent translation difficulty [24]. Fertility type
with increasing complexity is: 1-1 align < M-1 align < 1-M
align.

NMT models tend to learn simple patterns first and complex
patterns later. As shown in Figure 6.4a, NMT models learn
short phrases faster than medium phrases and long phrases,
embodied by the fastest convergence rate and the highest slope
among three categories in the first epoch. As the learning
continues, medium and long phrases start to converge to a
relatively stable state slowly. Besides, NMT BLEU scores show a
very similar increasing trend as the short phrase, demonstrating
a high correlation (Pearson correlation: 0.992) between the
NMT performance and short phrases.
We can observe similar findings on the phrase reordering type
(Figure 6.4b) and word fertility (Figure 6.4c). Simple patterns
like monotone and 1-1 aligned phrases can be quickly learned by
NMT models, while complex patterns are learned more slowly.
It is in line with the findings of [122]: deep networks will first
learn low-complexity functional components, before absorbing
high-complexity features. The results also indicate that NMT
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Figure 6.4: Learning dynamics of bilingual knowledge according to three
metrics of different complexity levels.
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models might by nature has the learning ability similar to the
curriculum learning [19, 82] without any explicit curriculum.

Forgetting dynamics occur in the learning of bilingual knowledge.
As shown in Figures 6.2 and 6.4, the size of the learned phrase
table is monotonically increasing as the learning processes. One
question naturally arises: are the phrase pairs never forgotten
once learned?
Figure 6.5 shows the result. Note that we only plot the first
15 epochs to ensure that the phrases are never forgotten until
the training ends for at least several epochs. Around 80% of
learned phrase table is unforgettable phrases (always learned
phrase pairs), while the rest phrase pairs are forgotten. The
finding is consistent with the findings of [144] on the image
classification tasks. Further analyses are shown in the Appendix.
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Figure 6.6: Learning dynamics of unforgettable bilingual knowledge accord-
ing to different complexity metrics.
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Figure 6.7: Learning dynamics of bilingual knowledge that are forgotten
according to different complexity metrics.
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6.4.2 Forgettable and Unforgettable Knowledge

In Section 6.4, we find that the model forgets some bilingual
knowledge in the learning course. In each epoch, the bilingual
knowledge learned by NMT models consists of two parts:
unforgettable (i.e., never forgotten in subsequent epochs) and
forgettable (i.e., the remaining part) knowledge. In this section,
we further analyze the evolvement of both unforgettable and
forgettable knowledge in the learning course in terms of metrics
(i.e., phrase length, reordering type, and word fertility) of differ-
ent complexity levels. Figure 6.6 and Figure 6.7 show the results
of unforgettable and forgettable knowledge correspondingly and
the scores are normalized by the max value in each metric.
For the unforgettable knowledge (Figure 6.6), since the very
beginning epochs, the model has captured most of the simple
and unforgettable patterns, as indicated by a high start point
(around 80%). However, complex patterns (e.g., longer phrase
length) although have a lower starting point, are quickly learned
by the model. Besides, from the distribution of phrase pairs, we
find that simple patterns occupy the majority of the unforget-
table knowledge (Over 85%).
For the forgettable knowledge (Figure 6.7), the patterns in
different complexity levels show a similar trend: they first
increase to the peak and then decrease. The model continually
forgets certain knowledge at the first several epochs, which might
indicate a very unstable model training at the beginning. After
that, the model gradually grasps more and more knowledge and
the forgettable knowledge starts to decrease, potentially showing
that the training becomes stabilized.
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6.4.3 Learned Bilingual Knowledge

In this experiment, we evaluate whether NMT models have
sufficiently exploited the bilingual knowledge in the training
examples, by comparing the phrase tables extracted from NMT
predictions and from the raw training data. We use the latter
to represent the full bilingual knowledge embedded in all raw
training examples.

“Shared” vs. “Non-Shared” Knowledge To compare the bilin-
gual knowledge of two models, we first define the “Shared”
knowledge as entries having same phrase pairs in both phrase
tables. An entry in the phrase table also includes conditional
probabilities and count. The “Shared” knowledge could still be
different regarding the conditional probabilities and count even
they have same phrase pairs. After finding the “Shared” knowl-
edge, the complementary parts in each phrase table is denoted
as the “Non-Shared” knowledge. In other words, “All” denotes
the whole phrase table, “Shared” denotes the intersection of two
tables, and “Non-shared” denotes the complement. Note that
the probabilities of “Shared” phrases are different for the two
tables.
As shown in Table 6.1, the bilingual knowledge learned by
NMT model (“NMT”) shows comparable translation quality
with the full-data knowledge (“Full”) (17.90 vs. 17.91), but with
only a half of phrases (9.0M vs. 17.5M).4 In addition, NMT
provides a better probability estimation for the “Shared” phrase
pairs (17.90 vs. 17.32), in other words, the distilled essential
knowledge. In the “Non-Shared” phrase table, 78.2% of the

4Considering the full phrase table before filtering, NMT phrase only takes 22.8% of the
full table (76M vs. 335M).
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Phrase Table Shared Non-Shared All
Size BLEU Size BLEU Size BLEU

Full 9.0M 17.32 8.5M 4.50 17.5M 17.91
NMT 9.0M 17.90 0M 0 9.0M 17.90

Table 6.1: Comparison of the phrase table extracted from the full training
data (“Full”) and NMT models (“NMT”).

Model NMT Phrase Table
#Para BLEU Size BLEU

Small 38M 25.45 7.7M 17.35
Base 98M 27.11 9.0M 17.90
Big 284M 28.40 9.2M 17.89

Table 6.2: Statistics of NMT models and the corresponding phrase tables for
different model capacities.

phrase pairs share the same source phrase as the “Shared” phrase
table, of which 83.2% have a lower translation probability and
has low quality. The results empirically confirm our hypothesis
that NMT models distill the bilingual knowledge by discarding
those low-quality phrase pairs.

6.4.4 Revisiting Recent Advances

In this section, we revisit recent advances that potentially affect
the learning of bilingual knowledge. Specifically, we investigate
three types of techniques: (1) model capacity that indicates
how complicated patterns a model can express; (2) data aug-
mentation that introduces additional knowledge with external
data; and (3) domain adaptation that transfers knowledge across
different domains.
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Model Shared Non-Shared
Size BLEU Size BLEU

Small 7.0M 17.53 0.7M 2.37
Base 7.0M 17.49 2.0M 3.57
Big 7.0M 17.29 2.2M 3.47

Table 6.3: Comparison among phrase tables that are extracted from models
of different model capacities.

1) Model Capacity

We vary the layer dimensionality of Transformer, and obtain
three model variants: Small (256), Base (512), and Big
(1024). As listed in Table 6.2, increasing model capacity
consistently improves translation performance. However, the
extracted phrase table is only marginally increased.
We compare the phrase tables learned by different models, as
shown in Table 6.3. The phrase table shared by all models
takes the overwhelming majority, which adds most value to
the translation performance (“Shared” BLEU). We conjecture
that enlarging capacity improves NMT performance by better
exploiting complex patterns beyond bilingual lexicons. It also
confirms our intuition that bilingual lexicons can be a crucial
early step in assessing the knowledge in NMT models.

2) Data Augmentation

In this experiment, we investigate two representative data aug-
mentation approaches, i.e., back-translation [129] and forward-
translation [165], which differ at exploiting target or source-side
monolingual data, respectively. Specifically, we randomly sam-
ple a same-size (around 4.5M) English and German monolingual
dataset from the WMT website, and construct the synthetic
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Model NMT Phrase Table
#Para BLEU Size BLEU

Base 98M 27.11 9.0M 17.90
+ BT 98M 29.75 20.9M 19.26
+ FT 98M 28.43 28.0M 19.33

Table 6.4: NMT models and phrase tables for back-translation (“BT”) and
forward-translation (“FT”).

Model Shared Non-Shared
Size BLEU Size BLEU

Base 8.3M 17.67 0.7M 1.78
+ BT 8.3M 18.61 12.6M 10.45

Base 8.4M 17.83 0.5M 1.21
+ FT 8.4M 18.30 19.6M 11.25

Table 6.5: Comparison of phrase tables for BT and FT.

corpus with Base models that are trained on the parallel data.
Table 6.4 lists the results of NMT models and the extracted
phrase tables. As shown, both data augmentation techniques
significantly improve the performance of NMT models by ex-
ploiting a larger and better phrase table.5 Besides, Table 6.5
shows the detailed comparison of the extracted phrase tables.
Both augmentation methods induce new knowledge and enhance
existing knowledge over the baseline, and the newly introduced
knowledge contributes a lot to the translation performance
improvement.
We further analyze the characteristics of the newly introduced
phrase pairs in terms of different metrics, as illustrated in
Figure 6.8. One interesting finding is that the newly introduced
phrase pairs are notably longer than the original ones in the

5The different sizes of BT and FT phrase tables are due to the different monolingual
datasets used for them, the averaged phrase length of which are 24.8 and 28.4, respectively.
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Figure 6.8: Distribution of metrics on phrases in base model and newly
introduced by BT and FT.

base model. Besides, the new phrase pairs show less reordered
patterns and more monotone patterns, which may explain the
producing of longer phrases. The finding is consistent with
previous studies, which show that the BT text is simpler than
naturally occurring text [46].

3) Domain Adaptation

At last, we analyze the transferability of the bilingual knowledge
of NMT models by directly applying it to another domain. To
this end, we fine-tune the NMT model which was previously
trained on the WMT14 En⇒De dataset (News, out-of-domain),
on the IWSLT14 En⇒De dataset (Spoken language with 160K
training examples, in-domain) for several epochs. We extract
the phrase table using the in-domain training corpus, and the
results are shown in Table 6.6. The fine-tuned NMT model
benefits from a larger and better phrase table, by adapting the
original model to the in-domain dataset. The analysis results in
Table 6.7 further show that the fine-tuning technique improves
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Fine NMT Phrase Table
Tune # Para. BLEU Size BLEU

× 98M 15.78 168K 16.08
X 98M 31.26 316K 18.50

Table 6.6: Statistics of NMT models and the corresponding phrase tables for
the domain adaptation.

Fine Shared Non-Shared
Tune Size BLEU Size BLEU

× 0.16M 15.95 0.01M 1.65
X 0.16M 16.92 0.16M 6.95

Table 6.7: Comparison of phrase tables extracted from models with/without
fine-tuning in domain adaptation.

performance with both more phrases (“Non-Shared”) in the
phrase table and better quality estimation of the original phrases
(“Shared”).
In addition, we re-extract the phrase table based on the out-of-
domain dataset using the fine-tuned model. The phrase table
achieves only a BLEU score of 4.77 with 2.6M phrase pairs, while
the original phrase table without fine-tuning has 9.0M phrase
pairs and its BLEU score is 17.90. To conclude, the fine-tuning
approach increases new in-domain knowledge while forgetting
certain amount of out-of-domain knowledge that are previously
learned. The results provide an empirical validation of the
catastrophic forgetting phenomenon in domain adaptation [81],
which further demonstrate the reasonableness of our proposed
approach.
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6.5 Discussion

In this chapter, we propose to assess the bilingual knowledge
learned by NMT models with statistic models – phrase table.
The reported results provide a better understanding of NMT
models and recent technological advances in learning the es-
sential bilingual lexicons. The findings also indicate several
potential applications which we leave for future exploration:

• Error diagnosis that debugs mistaken predictions by trac-
ing associated phrase pairs [42];

• Curriculum learning that dynamically assigns more weights
to instances associated with the unlearned knowledge [119];

• Phrase memory that stores unlearned phrases in NMT to
query when generating translations [153, 164].

Although the phrase table successfully explains many model
behaviors, it cannot explain certain techniques such as enlarging
model capacity. The explored bilingual lexicon is only one of
the critical knowledge bases in the translation process. In the
future, we will investigate more advanced forms of bilingual
knowledge [92, 56], as well as exploring other types of knowledge
bases such as grammar with statistic models (e.g., reordering
and language models). This chapter is the first step in what we
hope will be a long and fruitful journey.

6.6 Summary

In this chapter, we propose to interpret the bilingual knowledge
learned in the NMT models, which provides a global interpreta-
tion that help us better understand the model. Through exten-
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sive experiments on different language pairs, model structures
and random seeds, our study demonstrates the reasonableness
and effectiveness of assessing the NMT knowledge with statistic
models, which opens up a new angle to interpret NMT models.
Equipped with the interpretable phrase table, we find that NMT
models learn patterns from simple to complex and distill essen-
tial bilingual knowledge from the training examples. We also
revisit several advances (e.g., back-translation) that potentially
affect the learning of bilingual knowledge, and report some
interesting findings. We believe this work opens up a new angle
to interpret NMT with statistic models and provides empirical
supports for recent advances in improving NMT models.

2 End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

As the software occupies our daily life and brings us conve-
nience in various forms, its reliability is vital to both end-
users and service providers. However, the increasing complexity
and scale in both traditional software and intelligent software
make them hard to understand, posing significant challenges
for software reliability engineering. In this thesis, we study
the software reliability engineering from the interpretability
perspective, which is a crucial early step in realizing the software
reliability. To be specific, in traditional software, we approach
software reliability by interpreting the software logs for anomaly
detection and problem identification. In intelligent software,
we aim to interpret the model by estimating the input-output
correspondence and assessing bilingual knowledge, respectively.
The contributions are summarized as follows:
In Chapter 3, to fill the gap between the industry and academia
on log-based anomaly detection, we provide the first system-
atic and comprehensive experience report. To achieve so, we
evaluate six state-of-the-art anomaly detection methods on two

150
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representative log datasets. Besides, we release an open-source
toolkit of these anomaly detection methods for easy reuse and
further study.
In Chapter 4, to tackle the challenges of the high imbalance
of log distribution and the lack of labeled data, we propose a
novel framework to identify impactful problems, i.e., Log3C. At
its core is the cascading clustering algorithm, an efficient and
effective clustering method on log sequences. Experiments on
three real-world log data and real-world usage in online service
systems confirm our method’s effectiveness and efficiency.
In Chapter 5, we open the black box of intelligent software by the
input-output attribution. Specifically, we employ the integrated
gradients method to calculate the word importance. Extensive
experiments on various configurations confirm that our method
can outperform existing interpretation methods. Besides, we
apply our approach to detect the under-translation error. Our
linguistic analyses provide some interesting findings that can
guide future model structure design.
In Chapter 6, to provide a global explanation of the intelligent
software behaviors, we approach the model interpretability by
assessing the bilingual knowledge. We propose to use the phrase
table to represent bilingual knowledge. Massive experiments
show that the phrase table is reasonable and consistent. We also
obtain some interesting findings in model learning dynamics and
model improvement methods based on the phrase table.
In summary, this thesis studies the reliability engineering of
both traditional software and intelligent software from the
interpretability perspective. Extensive experiments on widely-
recognized datasets confirm the effectiveness and efficiency of
our proposed methods.
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7.2 Future Work

Software reliability engineering has been a long-standing re-
search topic, which is recently advanced and enriched by artifi-
cial intelligence from two aspects: traditional software reliability
with intelligent methods and intelligent software reliability.
Although a number of novel techniques have been proposed
from the interpretability perspective, there are plenty of exciting
research directions that we leave for future work.

7.2.1 Advanced Log Analysis for Reliability Engineer-
ing

Due to the lack of a large amount of labeled data in traditional
software reliability engineering, most existing researches focus
on conventional machine learning techniques such as the decision
tree and clustering. They did not take the full use of the power
of more advanced learning methods, i.e., deep neural networks.
Recently, the self-supervised learning [58, 113, 69, 36], which
is also termed as representation learning, has demonstrated its
ability in capturing patterns without labels. The idea behind is
to learn the intrinsic properties or structures of the training
data, which can alternatively serve the role of “label”. For
example, BERT [36] is a self-supervised learning method which
has now become the state-of-the-art model for many NLP tasks.
The low dependency on labeled data makes the self-supervised
learning suitable for the log analysis, which would be a promising
research direction in the next few years. Specifically, we can
leverage the self-supervised learning techniques in log analysis by
modeling the log sequences with RNN or Transformer structure.
Intuitively, the model can learn the majority patterns of the log
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sequences and leave the rest as anomalies.

7.2.2 Multi-source Intelligent Reliability Engineering

In this thesis, we approach the traditional software reliability
by learning mainly from the interpretable log data. However, in
the maintenance of industrial software systems, it is common
to inspect many aspects of the software system, e.g., CPU
utilization rate, memory consumption, etc. These monitoring
metrics can interpret software behaviors, which could then
help the automatic identification of software problems. We
believe the use of multi-source interpretation data would be the
mainstream of future research.
There are several challenges that need to be addressed. The
first challenge is that the multi-source data might have too
many types, which ones to consider in the modeling then
becomes a problem. The second challenge to address is the
heterogeneous [171] property for multi-source data, which makes
the model design difficult.

7.2.3 Intelligent Software Robustness

Model robustness is at the core of ensuring intelligent software
reliability. Recent studies [59, 6, 107] have shown that the
deep learning models are vulnerable and brittle when feeding
adversarial examples. How to make sure that deep learning
models are robust against different perturbations is now a hot
research topic [97, 121, 154].
We are interested in designing novel defense methods to protect
the model from being attacked with the model interpretability.
Since important input features contribute mostly to the model
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prediction, these features should be explicitly protected with
tailored strategies. On the contrary, other features play less
critical roles in the model prediction, thereby they can be
ignored naturally. Therefore, the interpretability could provide
guidance in the model defense, which we believe is a promising
direction.

2 End of chapter.
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Publications during Ph.D.
Study

1. Shilin He, Jieming Zhu, Pinjia He, Michael R. Lyu.
“Experience Report: System Log Analysis for Anomaly
Detection”. In Proceedings of the 27th International Sym-
posium on Software Reliability Engineering (ISSRE), 2016.
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IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2018.
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2 End of chapter.
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