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Abstract of thesis entitled:
Point-of-interest Recommendation in Location-based Social

Networks
Submitted by ZHAO, Shenglin
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in November 2017

Location-based social networks (LBSNs) have become popular
recently because of the explosive increase of smart phones that
makes users easily to access to the LBSN Apps. More than 2.3
billion people worldwide use smart phones in 2017 predicted
by EMarketer, which prospers the online LBSNs. A typical
LBSN such as Foursquare collects users’ check-in information
including visited locations’ geographical information (latitude
and longitude) and users’ comments at the location and allows
users to make friends and share information as well. Driven
by the collected big data in LBSNs, point-of-interest (POI)
recommendation arises to improve the user experience in the
App, which attempts to suggest each user a list of POIs that the
user may feel interesting and be willing to visit in the future.

Developing POI recommendation systems requires analytics
of the human mobility with respect to real-world POIs. Different
from watching on Netflix or shopping on Amazon, checking-in at
a POI in LBSNs is a physical activity, which causes the most im-
portant feature in POI recommendation: geographical influence.
In addition, check-ins exhibit specific temporal characteristics.
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For instance, users check-in at POIs around the office in the
day time while at bars in the evening. These geographical
and temporal features make the POI recommendation more
challenging than traditional recommendation systems.

In this thesis, we systematically study the problem of POI
recommendation in LBSNs. In particular, we review the
literature in the area of POI recommendation, analyze the
user mobility in LBSNs, and develop POI recommendation
systems. First, we review state-of-the-art POI recommendation
techniques and discover the challenges in POI recommendation
systems. Second, we analyze the user mobility in LBSNs from
geographical and temporal perspective respectively and show
how to capture the geographical and temporal influence in
a POI recommendation system. Third, we develop two POI
recommendation systems: Geo-Teaser and STELLAR. Finally,
we conclude this thesis and point out future work directions.
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論文題目：位置社交網絡中的興趣點推薦
作者 ：趙胜林
學校 ：香港中文大學
學系 ：計算機科學與工程學系
修讀學位：哲學博士
摘要 ：
最近基於位置的社交網絡（LBSN）由於智能手機的爆炸式增
長而變得流行起來。由 EMarketer 預測，在 2017 年全球超過
23億人使用智能手機，這使得用户可以輕鬆訪問手機應用程序
而普及了基於位置的社交網絡。Foursquare 等典型的基於位置
的社交網絡會收集用户的簽到信息，包括訪問地點的地理位置
信息（緯度和經度）以及用户在該位置的評論，并允許用户交
朋友和共享信息。在位置社交網絡收集到的大數據的驅動下，
興趣點（POI）推薦應用應運而生以改善位置社交網絡應用中
的用户體驗。興趣點推薦應用旨在向每個用户建議用户可能感
興趣并願意在將來訪問的興趣點列表。
開發興趣點推薦系統需要對現實世界的興趣點進行人員移動性
的分析。不同於在 Netflix 上觀影或在亞馬遜購物，在位置社
交網絡中的興趣點進行簽到是一種親身體驗行为，這形成了興
趣點推薦中最重要的特徵：地理影響。另外，簽到行为也表現
出特别的時間特徵。例如，用户在白天常在辦公室附近的興趣
點簽到, 而在晚上則是在酒吧活動。這些地理和時間特徵使興
趣點推薦比傳統的推薦系統更具挑戰性。
在本論文中，我們系統的研究了位置社交網絡中的興趣點推薦
問題。具體的，我們回顧了興趣點推薦領域的文獻，分析了位
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置社交網絡中的用户移動性，并提出了原創的興趣點推薦系
統。首先，我們綜述了主流的興趣點推薦技術，并分析興趣點
推薦系統存在的挑戰。第二，我們分别從地理和時間角度分析
位置社交網絡中的用户移動性，并展示如何在興趣點推薦系統
中利用地理和時間影響提高系統表現。第三，我們開發了兩個
興趣點推薦系統：Geo-Teaser 和 STELLAR。最後，我們總結
本論文并指出未來的工作方向。

iv



Acknowledgement

First and foremost, I would like to thank my supervisors,
Prof. Michael R. Lyu and Prof. Irwin King. Without their
supervision, I cannot finish my Ph.D. study at CUHK. Their
inspiring guidance and patience on my research help me go
through the tough Ph.D. period. More importantly, I benefit
a lot from their rigorous requirements for the writing and
presentation, not only on knowledge but also on attitude in
doing research. In addition, I also want to thank Prof. Anthony
Man-Cho So and Prof. Shiqian Ma, whose interesting and
inspiring courses help much in my research.
I am grateful to my thesis assessment committee members, Prof.
Kwong-Sak LEUNG, Prof. Siu-On Chan, and Prof. Yufei Tao,
for their constructive comments and valuable suggestions to this
thesis and all my term presentations. Great thanks to Prof. Yiu-
ming CHEUNG from Hong Kong Baptist University who kindly
serves as the external examiner for this thesis. Also, I want to
thank my mentors when I intern in Huawei Noah’s Ark Lab, Dr.
Jia Zeng and Dr. Mingxuan Yuan, for the insightful discussions
and happy time.
I would like to thank Tong Zhao, Haiqin Yang, Hongyi Zhang,
Yu Kang, Xixian Chen, Guang Ling, Chen Cheng, for their
contributions and suggestions for my research work in this thesis.
I am also thankful to my other group fellows, Chao Zhou, Yuxin

v



Su, Qirun Zhang, Baichuan Li, Shouyuan Chen, Jieming Zhu,
Zibin Zheng, Yangfan Zhou, Yilei Zhang, Cuiyun Gao, Hui
Xu, Jichuan Zeng, Pinjia He, Jiani Zhang, Ken, Han Shao,
Wang Chen, Yue Wang, Pengpeng Liu. In addition, I own
the thanks to my research collaborators Prof. Qi Xie from
Southwest University for Nationalities, Mr. Jiajun Cheng from
National University of Defense Technology, Mr. Sheng Zhang
and Prof. Jianguo Yao from Shanghai Jiaotong University. The
collaborations broaden my view and deepen my understanding
with the machine learning algorithms, beyond the area of
recommendation systems.
Last but the most important, I would like to thank my dear
family. Their deep love and constant support are the driving
force when I feel frustrated in the research.

vi



To my family.

vii



Contents

Abstract i

Acknowledgement v

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . 4
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . 8

2 Literature Review 12
2.1 Problem Description . . . . . . . . . . . . . . . . 13
2.2 Taxonomy by Influential Factors . . . . . . . . . . 15

2.2.1 Geographical Influence . . . . . . . . . . . 16
2.2.2 Temporal Influence . . . . . . . . . . . . . 21
2.2.3 Social Influence . . . . . . . . . . . . . . . 24
2.2.4 Content Indications . . . . . . . . . . . . 26
2.2.5 Summary . . . . . . . . . . . . . . . . . . 30

2.3 Taxonomy by Methodology . . . . . . . . . . . . 32
2.3.1 Fused Model . . . . . . . . . . . . . . . . 32
2.3.2 Joint Model . . . . . . . . . . . . . . . . . 35
2.3.3 Summary . . . . . . . . . . . . . . . . . . 43

2.4 Performance Evaluation . . . . . . . . . . . . . . 43
2.4.1 Data Sources . . . . . . . . . . . . . . . . 45

viii



2.4.2 Metrics . . . . . . . . . . . . . . . . . . . 46
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 47

3 Modeling Geographical Influence 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 50
3.2 Related Work . . . . . . . . . . . . . . . . . . . . 52
3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Gaussian Mixture Model . . . . . . . . . . 54
3.3.2 Genetic Algorithm Based Gaussian Mix-

ture Model . . . . . . . . . . . . . . . . . 55
3.4 Experiment . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Setup and Metrics . . . . . . . . . . . . . 56
3.4.2 Dataset . . . . . . . . . . . . . . . . . . . 58
3.4.3 Results . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 59

4 Modeling Temporal Influence 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 62
4.2 Related Work . . . . . . . . . . . . . . . . . . . . 65
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Empirical Data Analysis . . . . . . . . . . 68
4.3.2 Time Labeling Scheme . . . . . . . . . . . 71

4.4 Method . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Aggregated Temporal Tensor Factoriza-

tion Model . . . . . . . . . . . . . . . . . 73
4.4.2 Learning . . . . . . . . . . . . . . . . . . . 74
4.4.3 Model Discussion . . . . . . . . . . . . . . 78

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . 80
4.5.1 Data Description and Experimental Set-

ting . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 Performance Metrics . . . . . . . . . . . . 81

ix



4.5.3 Baselines . . . . . . . . . . . . . . . . . . 82
4.5.4 Experimental Results . . . . . . . . . . . . 83

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 87

5 Geo-Teaser System 88
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 89
5.2 Related Work . . . . . . . . . . . . . . . . . . . . 93
5.3 Data Description and Analysis . . . . . . . . . . . 97

5.3.1 Data Description . . . . . . . . . . . . . . 97
5.3.2 Empirical Analysis . . . . . . . . . . . . . 98

5.4 Method . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 Temporal POI Embedding . . . . . . . . . 101
5.4.2 Geographically Hierarchical Pairwise Ran-

king . . . . . . . . . . . . . . . . . . . . . 103
5.4.3 Geo-Teaser Model . . . . . . . . . . . . . 105
5.4.4 Learning . . . . . . . . . . . . . . . . . . . 106

5.5 Experimental Evaluation . . . . . . . . . . . . . . 109
5.5.1 Experimental Setting . . . . . . . . . . . . 109
5.5.2 Performance Metrics . . . . . . . . . . . . 110
5.5.3 Model Comparison . . . . . . . . . . . . . 110
5.5.4 Experimental Results . . . . . . . . . . . . 112

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 116

6 STELLAR System 118
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 119
6.2 Related Work . . . . . . . . . . . . . . . . . . . . 122
6.3 Data Description and Successive

Check-in Analysis . . . . . . . . . . . . . . . . . . 123
6.3.1 Data Description . . . . . . . . . . . . . . 124
6.3.2 Successive Check-in Analysis . . . . . . . 124

6.4 STELLAR Model . . . . . . . . . . . . . . . . . . 127

x



6.4.1 Time Indexing Scheme . . . . . . . . . . . 127
6.4.2 Model Formulation . . . . . . . . . . . . . 128
6.4.3 Model Inference and Learning . . . . . . . 131

6.5 Experiment . . . . . . . . . . . . . . . . . . . . . 134
6.5.1 Experimental Setting . . . . . . . . . . . . 134
6.5.2 Comparison Methods . . . . . . . . . . . . 135
6.5.3 Experimental Results . . . . . . . . . . . . 135
6.5.4 Discussion of Time Indexing Scheme . . . 136
6.5.5 Parameter Effect . . . . . . . . . . . . . . 137

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 138

7 Conclusion and Future Work 139
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Future Work . . . . . . . . . . . . . . . . . . . . 141

7.2.1 Ranking-based Model . . . . . . . . . . . 141
7.2.2 Online Recommendation . . . . . . . . . . 142
7.2.3 Deep Learning Based Recommendation . . 143

A Publications during Ph.D. Study 144

Bibliography 147

xi



List of Figures

1.1 Demonstration of location-based services . . . . . 2

2.1 Demonstration of check-in information in Foursquare 14
2.2 Influential factors in LBSNs . . . . . . . . . . . . 16
2.3 Power law distribution pattern [107] . . . . . . . 17
2.4 Check-in distribution in multi-centers [11] . . . . 19
2.5 Distributions of personal check-in locations [116] . 20
2.6 Periodic pattern [10] . . . . . . . . . . . . . . . . 21
2.7 Consecutive pattern [128] . . . . . . . . . . . . . 22
2.8 Demonstration of non-uniformness [18] . . . . . . 23
2.9 The significance of social influence on POI recom-

mendation [18] . . . . . . . . . . . . . . . . . . . 25
2.10 Sentiment-preference transforming rule [103] . . . 27
2.11 Demonstration of GeoMF model [44] . . . . . . . 38
2.12 A graphical representation of the model [45] . . . 40
2.13 Overview of ST-RNN [49] . . . . . . . . . . . . . 42
2.14 Demonstration of check-in meta record . . . . . . 45

3.1 Comparison of different models . . . . . . . . . . 59

4.1 Tensor illustration for check-ins . . . . . . . . . . 64
4.2 Sparsity demonstration . . . . . . . . . . . . . . . 68
4.3 Demonstration of non-uniformness at different

time scales . . . . . . . . . . . . . . . . . . . . . . 70

xii



4.4 Time labeling scheme demonstration . . . . . . . 71
4.5 Embedding neural network for ATTF model . . . 79
4.6 Precision on Foursquare and Gowalla . . . . . . . 84
4.7 Recall on Foursquare and Gowalla . . . . . . . . . 84
4.8 F-score Foursquare and Gowalla . . . . . . . . . . 85
4.9 The effect of regularization parameter λ . . . . . 86
4.10 The effect of latent factor dimension . . . . . . . 87

5.1 Framework of the Geo-Teaser model . . . . . . . 91
5.2 POI correlation in sequences . . . . . . . . . . . . 98
5.3 Check-in pattern at different hours over day of

week . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4 Temporal POI embedding model . . . . . . . . . 102
5.5 Model comparison . . . . . . . . . . . . . . . . . 112
5.6 Demonstration of model component functions . . 114
5.7 Parameter effect on α and β . . . . . . . . . . . . 116
5.8 Parameter effect on distance threshold s . . . . . 116

6.1 Successive check-ins’ spatial-temporal property . . 125
6.2 Time encoding demonstration . . . . . . . . . . . 128
6.3 STELLAR model formulation demonstration . . . 129
6.4 The effect of regularization . . . . . . . . . . . . . 137
6.5 The effect of latent dimension . . . . . . . . . . . 138

xiii



List of Tables

2.1 Summary of POI recommendation systems mo-
deling for influential factors . . . . . . . . . . . . 31

2.2 Summary of POI recommendation systems cate-
gorized by methodology . . . . . . . . . . . . . . 44

2.3 LBSN datasets for POI recommendation . . . . . 46

3.1 Data statistics . . . . . . . . . . . . . . . . . . . . 58

4.1 Statistics of datasets . . . . . . . . . . . . . . . . 81

5.1 Data statistics . . . . . . . . . . . . . . . . . . . . 97

6.1 Statistics of datasets . . . . . . . . . . . . . . . . 124
6.2 Performance comparison . . . . . . . . . . . . . . 134
6.3 Comparison of different time schemes . . . . . . . 137

xiv



Chapter 1

Introduction

This thesis presents our research of POI recommendation in
LBSNs, which is an important research field of search and
recommendation for location-based services. We provide a brief
overview of the research problem in Section 1.1, and highlight
the main contributions of this thesis in Section 1.2. Section 1.3
outlines the thesis structure.

1.1 Overview

Location-based services play an important role in this Internet
of Things (IoT) era. To monitor the status of devices connected
to the Internet, analyze the collected data from different kinds
of devices, and provide personalized services for device users,
the location information of the device is indispensable for data
analysis. For instance, the smart watch collects the location
information of users and records their daily trajectories; and the
map applications such as Google Maps in smart phones collect
users’ location information and guide users to anywhere in real-
time. Figure 1.1 shows the location-based services in six aspects:
search and recommendation, transportation, healthcare, public

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Demonstration of location-based services

safety, game, environment monitoring, etc. Specifically, the
location-based search and recommendation work for two kinds
of applications: search engines such as Google and Baidu and
LBSNs such as Yelp and Foursquare. In this work, we focus on
the search and recommendation task in LBSNs.
LBSNs such as Foursquare and Facebook Places allow users
to share their check-in behaviors, make friends, and write
comments on visited locations, also called POIs [10, 106]. LBSNs
are very popular now—for instance, Foursquare has attracted
over 50 million people worldwide to use its service each month
and recorded over 10 billion check-ins in total until Oct. 2017.1
To improve user experience in LBSNs by suggesting favorite
locations, a typical search and recommendation task namely
POI recommendation [107, 9, 15, 111, 127, 126] comes out,
which mines users’ check-in sequences to recommend places
where an individual may feel interested and be willing to check-

1https://foursquare.com/about
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in in the future. The POI recommendation applications are of
significance in two aspects: helping users explore new interesting
places in a city and facilitating business owners to launch
advertisements to the target customers.
Developing POI recommendation systems requires analyzing the
human check-in activity in LBSNs. The check-in activity repre-
sents the user interactions with real-world POIs and exhibits
specific geographical and temporal characteristics. From the
geographical perspective, most of the check-ins happen in some
constrained regions such as the district around the user’s home
or office. From the temporal perspective, the check-in activity
also exhibits some specific patterns. For instance, users check-
in at POIs around the office in the day time while bars in the
evening. These unique features make the POI recommendation
different from traditional recommendation systems. Hence, we
need to comprehensively understand the human mobility in
LBSNs and develop new algorithms for POI recommendation.
In this thesis, we study the POI recommendation in LBSNs.
In particular, we review the literature in POI recommenda-
tion, analyze the user mobility in LBSNs, and develop POI
recommendation systems. First, we survey state-of-the-art POI
recommendation techniques and point out the challenges in
POI recommendation systems. Second, we analyze the user
mobility in LBSNs from geographical and temporal perspective
respectively and show how to capture the geographical and
temporal influence to enhance the POI recommendation system.
Third, we develop a Geo-temporal sequential embedding rank
(Geo-Teaser) model for POI Recommendation. Fourth, we
develop a spatial-temporal latent ranking (STELLAR) model
for successive POI recommendation. Finally, we conclude this
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thesis and point out possible future work.

1.2 Thesis Contributions

In this thesis, we make contributions of POI recommendation in
LBSNs in the following ways.

1. Literature review of POI recommendation in LBSNs.
POI recommendation as a new application comes out
with the popularity of LBSNs, which recommends users
locations where they may feel interested and plan to check-
in. POI recommendation helps users explore the city and
find the useful services in LBSNs, and also helps the busi-
nesses discover target customers to launch advertisements.
The significance of POI recommendation for users and
businesses makes it attract much academic and industrial
attention. In this chapter, we offer a systematic review
of this field, summarizing the contributions of individual
efforts and exploring their relations. We discuss the new
properties and challenges in POI recommendation, compa-
ring with traditional recommendation problems, e.g., movie
recommendation. Then, we present a comprehensive review
in two aspects: influential factors for POI recommendation
and methodologies employed for POI recommendation.
Moreover, we show the available datasets and the metrics.

2. Understanding human mobility from geographical
perspective.
POI recommendation that suggests new locations for pe-
ople to visit is an important application in LBSNs. Compa-
red with traditional recommendation problems, e.g., movie
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recommendation, geographical influence is a special feature
that plays an important role in recommending POIs. In this
chapter, we understand the user mobility in LBSNs from
the geographical perspective and capture the geographical
influence for POI recommendation. Our contributions are
as follows. First, we propose Gaussian Mixture Model
(GMM) to automatically learn users’ activity centers via
exploring their check-in history records. Moreover, we
propose GA-GMM that employs a genetic algorithm based
GMM to eliminate outliers. Finally, we conduct experi-
ments on a real-world LBSN dataset and demonstrate that
the proposed models capture the geographical information
better and improve the accuracy of POI recommendation.

3. Understanding human mobility from temporal per-
spective.
Understanding the user mobility from the temporal per-
spective is the key to POI recommendation. Because the
user mobility in LBSNs exhibits strong temporal patterns—
for instance, users would like to check-in at restaurants at
noon and visit bars at night. Hence, capturing the temporal
influence is necessary to ensure the high performance
in a POI recommendation system. In this chapter, we
understand the user mobility in LBSNs from the temporal
perspective. Our contributions are four-fold: (1) To the
best of our knowledge, this is the first temporal tensor
factorization method for POI recommendation, subsuming
all the three temporal properties: periodicity, consecutive-
ness, and non-uniformness. (2) We propose a novel model,
Aggregated Temporal Tensor Factorization (ATTF), to
capture temporal effect in POI recommendation at different
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time scales. Experimental results show that our model
outperforms prior temporal model more than 20%. (3)
The proposed ATTF model is a general framework to
capture the temporal features at different scales, which
outperforms single temporal factor model and achieves 10%
improvement in the top-5 POI recommendation task on
Gowalla data. (4) We understand the ATTF model from
the embedding neural network perspective, verifying the
effectiveness of the embedding neural network that is a
general framework for latent factor models, including rating
estimation models (e.g., MF [34]) and ranking models (e.g.,
our ATTF model).

4. Geo-Teaser system for POI recommendation.
POI recommendation is an important application for LBSNs,
which learns the user preference and mobility pattern from
check-in sequences to recommend POIs. To model the user
preference, check-in sequential pattern, and the user spatial
and temporal mobility pattern, in this chapter, we propose
a Geo-Temporal sequential embedding rank (Geo-Teaser)
model for POI recommendation. The contributions are
three-fold: (1) We propose the temporal POI embedding
model, which captures the check-ins’ sequential contexts
and the various temporal characteristics on different days.
In particular, we introduce the word2vec framework to
project every POI as one object in an embedding space
for learning the sequential relations among POIs. Furt-
hermore, we learn the temporal POI representations from
the check-in sequence under some specific temporal state.
(2) We propose a new way to incorporate the geographi-
cal influence into the pairwise preference ranking method
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through discriminating the unvisited POIs according to
geographical information. In particular, we define a hier-
archical pairwise preference relation for each user check-
in: the user prefers the visited POI than the unvisited
neighboring POI, and the user prefers the unvisited neig-
hboring POI than the unvisited non-neighboring POI. Then
we learn the hierarchical pairwise preference to capture
the geographical influence and user preference. (3) We
propose the Geo-Teaser model as a unified framework
combining the temporal POI embedding model and the
geographically hierarchical pairwise preference ranking mo-
del. Experimental results on two real-life datasets show
that the Geo-Teaser model outperforms state-of-the-art
models. Compared with the best baseline competitor, the
Geo-Teaser model improves at least 20% on both datasets
for all metrics.

5. STELLAR system for successive POI recommenda-
tion.
Successive POI recommendation in LBSNs becomes a signi-
ficant task since it helps users to navigate a large number of
candidate POIs and provide the best POI recommendations
based on users’ most recent check-in knowledge. However,
all existing methods for successive POI recommendation
only focus on modeling the correlation between POIs based
on users’ check-in sequences, but ignore an important
fact that successive POI recommendation is a time-subtle
recommendation task. To capture the impact of time
on successive POI recommendation, in this chapter, we
propose a spatial-temporal latent ranking (STELLAR)
model to explicitly formulate the interactions among user,



CHAPTER 1. INTRODUCTION 8

POI, and time. Our contributions are three-fold: (1)
We propose a time-aware successive POI recommendation
method—the STELLAR model, by considering the time
information. In this model, we employ a new POI latent
feature representation means to resolve the problem of
coupled interaction. Experimental results demonstrate our
STELLAR model outperforms state-of-the-art successive
POI recommendation method. (2) We design a three-
slice time indexing scheme to represent the timestamps,
which captures the user check-ins specific characteristics:
preference variance and periodicity. Experimental results
show that our model better captures the temporal effect
than state-of-the-art temporal models for POI recommen-
dation. (3) We introduce a new interval-aware weight
utility function to differentiate successive check-ins’ correla-
tions, which improves the successive POI recommendation
accuracy.

1.3 Thesis Structure

The remainder of this thesis is organized as follows.

• Chapter 2
In this chapter, we provide a systematic review in the area
of POI recommendation. First, we report the problem
definition of POI recommendation in Section 2.1. Next, we
categorize the POI recommendation systems in two aspects:
influential factors and methodology. More specifically, we
propose two taxonomies to classify POI recommendation
systems. In Section 2.2, we categorize the systems by
the influential factors for check-in activities, including
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the geographical information, temporal influence, social
relationship, and content indications. In Section 2.3, we ca-
tegorize the systems by the methodology, including systems
modeled by fused methods and joint learning methods. For
each category, we summarize the contributions and system
features and highlight the representative work. Then, we
introduce data sources and metrics for system performance
evaluation in Section 2.4. Finally, we draw the conclusion
of this chapter in Section 2.5.

• Chapter 3
In this chapter, we understand the user mobility in LBSNs
from the geographical perspective and capture the geo-
graphical influence for POI recommendation. In Section 3.2,
we introduce the related work in three aspects: POI
recommendation in LBSNs, geographical influence captu-
ring methods, and GA-GMM. In Section 3.3, we demon-
strate the two models: GMM and GA-GMM to capture
the geographical influence for POI recommendation. In
Section 3.4, we compare our proposed methods with state-
of-the-art geographical models. Experimental results show
that our proposed models better capture the geographical
influence and perform better for POI recommendation.
In Section 3.5, we summarize this chapter and draw the
conclusion.

• Chapter 4
In this chapter, we analyze the user mobility from the
temporal perspective and aim to capture the temporal
influence for the POI recommendation. In Section 4.2,
we review the most relevant work. In Section 4.3, we
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introduce our empirical analysis on check-in data and
demonstrate the time labeling scheme. Next, in Section 4.4
we present the details of our proposed ATTF model and
understand the proposed model from the neural network
perspective. Then, in Section 4.5 we report experimental
results conducted on two real-world datasets. Finally,
in Section 4.6 we summarize this chapter and draw the
conclusion.

• Chapter 5
In this chapter, we propose the Geo-Teaser model for POI
recommendation to capture the user preference, check-
ins’ sequential pattern, and the user spatial and temporal
mobility pattern. In Section 5.2, we review the related
work and summarize the connections of our model and
prior work. In Section 5.3, we introduce two real-world
datasets and report empirical data analysis that motivates
our method. Next, we introduce our proposed Geo-Teaser
model and show the learning algorithm in Section 5.4.
Then, we evaluate our proposed model in Section 5.5.
Finally, we conclude this chapter in Section 5.6.

• Chapter 6
In this chapter, we propose the STELLAR system to resolve
the time-aware successive POI recommendation problem.
In Section 6.2, we review the most relevant work and
summarize the connections of our model and prior work. In
Section 6.3, we introduce the empirical analysis on check-
in data to show the spatial and temporal properties. Next,
we present the details of our model and show the learning
procedures in Section 6.4. Then, in Section 6.5 we report
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experimental results conducted on two real-world datasets.
Finally, we conclude this chapter in Section 6.6.

• Chapter 7
In this chapter, we summarize this thesis and point out the
future work direction. In particular, we draw the conclusion
of this thesis in Section 7.1. Then, in Section 7.2, we point
out the future work direction in three aspects: ranking
based model, online recommendation, and deep learning
based recommendation.

2 End of chapter.



Chapter 2

Literature Review

POI recommendation comes out with the popularity of LBSNs,
which suggests users locations where they may feel interested
and plan to check-in in the future. In this chapter, we offer
a systematic review of POI recommendation, summarizing the
contributions of individual efforts and exploring their relations.
First, we report the problem description and discuss the new
properties and challenges in POI recommendation. Then, we
present a comprehensive review in two aspects: influential fac-
tors for POI recommendation and methodologies employed for
POI recommendation. Specifically, we propose two taxonomies
to classify POI recommendation systems: 1) We categorize the
systems by the influential factors for check-in activities, inclu-
ding the geographical information, social relationship, temporal
influence, and content indications. 2) We categorize the sys-
tems by the methodology, including systems modeled by fused
methods and joint learning methods. For each category, we
summarize the contributions and system features and highlight
the representative work. Moreover, we discuss the available
datasets and the popular metrics. Finally, we conclude this
literature review.

12
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2.1 Problem Description

POI recommendation aims to mine users’ check-in records and
recommend POIs for users in LBSNs. Formally, we define two
important terms, i.e., check-in and check-in sequence, as follows.

Definition 1 (Check-in) A check-in is denoted as a triple
⟨u, l, t⟩ that depicts a user u visiting POI l at time t.

Definition 2 (Check-in sequence) A check-in sequence is a
set of check-ins of user u, denoted as Su = {⟨l1, t1⟩, · · · , ⟨ln, tn⟩},
where ti is the check-in timestamp. For simplicity, we denote
Su = {l1, · · · , ln}.

POI recommendation recommends a user a list of POIs via
mining the check-in records. Given Definition 1 and Definition 2,
the problem of POI recommendation can be defined as follows.

Definition 3 (POI recommendation) Given all users’ check-
in sequences S, POI recommendation aims to recommend a POI
list SN to each user u. Here S is a collected check-in sequence
set, contain all sequences Su for all users.

POI recommendation is a branch of recommendation systems,
which encourages to address this task through borrowing ideas
from conventional recommendation systems such as movie re-
commendation. Hence, we suffice to make use of conventional
recommendation system techniques to recommend POIs, e.g.,
collaborative filtering (CF) methods. However, the special
scenario in LBSNs that the location bridges the physical world
and the online networking services, arouses new challenges
to the traditional recommendation system techniques. Take
Foursquare as an example, Figure 2.1 demonstrates how the
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Figure 2.1: Demonstration of check-in information in Foursquare

check-in information is recorded, including user name, POI,
check-in timestamp, and geographical information in the map.
After introducing the location, some new challenges appear,
which can be summarized as follows [123].

1. Physical constraints. The check-in activity is limited by
physical constraints, compared with shopping online from
Amazon and watching a movie on Netflix. For one thing,
users in LBSNs check-in at geographically constrained
areas. As observed in [11, 10], users usually check-in
at POIs around their homes and offices, and there are
a few check-ins out of their cities. For another, shops
regularly provide services at some limited time. For
instance, most of coffee shops open during day time but
close at night. Such physical constraints make the check-in
activity in LBSNs exhibit significantly spatial and temporal
properties [2, 10, 18, 19, 76, 104, 110, 125, 124].

2. Extreme sparseness. A typical user in LBSNs such as
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Foursquare contains hundreds of check-ins each year. But
there are millions of POIs in the LBSNs. Compared with
traditional movie recommendation, POI check-in data are
much sparser. So it is difficult to suggest top N (usually
five or ten) POIs from millions of candidates.

3. Complex relations. The location sharing activities in the
online social media alter original social relations since
people are apt to make new friends with geographical neig-
hbors [83, 84]. Moreover, for online social media services
such as Twitter and Facebook, the location for geo-tagging
yields new relations between locations and locations [112],
and as well between users and locations [17, 82, 108].

4. Heterogeneous information. LNSNs consist of different
kinds of information, including not only check-in records,
the geographical information of locations, and venue des-
criptions but also users’ social relation information and
media information (e.g., user comments and tweets). The
heterogeneous information depicts the user activity from a
variety of perspectives [98, 97, 115], inspiring POI recom-
mendation systems of different kinds [47, 54, 46, 65, 81, 96,
114].

2.2 Taxonomy by Influential Factors

We categorize the studies in POI recommendation according
to several influential factors upon the user check-in activity.
Because of the spatial and temporal properties resulted from the
physical constraints and heterogeneous information such as loca-
tions’ geographical information and users’ comments, the check-
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in activity is a synthesized decision from a variety of factors.
Figure 2.2 shows four main factors in POI recommendations:
temporal dynamics, geographical influence, social relations, and
content indications. In the following, we demonstrate how
each factor affects the check-in activity and how to model each
influential factor for POI recommendation.

Figure 2.2: Influential factors in LBSNs

2.2.1 Geographical Influence

Geographical influence is an important factor that distinguishes
the POI recommendation from traditional item recommendation
because the check-in behavior depends on locations’ geographi-
cal features. Analysis on users’ check-in data shows that a
user acts in geographically constrained areas and prefers to
visiting POIs nearby where the user has checked-in. The
feature of geographical constraints can shrink the POI can-
didate set and alleviate the effect of data sparsity. Several
studies [7, 44, 54, 107, 113, 116, 117, 122] attempt to employ
the geographical influence to improve POI recommendation



CHAPTER 2. LITERATURE REVIEW 17

systems. In particular, three representative models, i.e., po-
wer law distribution model, Gaussian distribution model, and
kernel density estimation model, are proposed to capture the
geographical influence in POI recommendation.

Figure 2.3: Power law distribution pattern [107]

In [107], Ye et al. employ a power law distribution model
to capture the geographical influence. Power law distribution
pattern has been observed in human mobility such as withdraw
activities in ATMs and travel in different cities [3, 21, 76]. Also,
Ye et al. discover a similar pattern of users’ check-in activity
in LBSNs [106, 107]. Figure 2.3 demonstrates two POIs’ co-
occurrence probability distribution over the distance between
two POIs. Because of the power law distribution in Figure 2.3,
we are able to model the geographical influence as follows. The
co-occurrence probability y of two POIs by the same user can
be formulated as follows,

y = a ∗ xb, (2.1)

where x denotes the distance between two POIs, a and b

are parameters of the power-law distribution. Here, a and b
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should be learned from the observed check-in data, depicting
the geographical feature of the check-in activity. A standard
way to learn the parameters, a and b, is to transform Eq. (2.1)
to a linear equation via a logarithmic operation, and learn the
parameters by fitting a linear regression problem.
On the basis of the geographical influence model depicted
through the power law distribution, new POIs can be suggested
according to the following formula. Given a checked-in POI set
Li, the probability Pr(lj|Li) of visiting POI lj for user ui, is
formulated as,

Pr(lj|Li) =
Pr(lj ∪ Li)

Pr(Li)
=

∏
ly∈Li

Pr(d(lj, ly)), (2.2)

where d(lj, ly) denotes the distance between POI lj and ly, and
Pr(d(lj, ly)) = a ∗ d(lj, ly)b. In [106, 107], Ye et al. leverage
the power law distribution to model the geographical influence
and combine it with collaborative filtering techniques [77] to
recommend POIs. In addition, Yuan et al. [113] also adopt the
power law distribution model, but learn the parameter using a
Bayesian rule instead.
The second type to model the geographical influence is a series
of Gaussian distribution based methods. Cho et al. [11] observe
that users in LBSNs always act around some activity centers,
e.g., home and office, as shown in Figure 2.4. Further, Cheng et
al. [7] propose a Multi-center Gaussian Model (MGM) to capture
the geographical influence for POI recommendation. Given the
multi-center set Cu, the probability of visiting POI l by user u

is defined by

P (l|Cu) =

|Cu|∑
cu=1

P (l ∈ cu)
fα
cu∑

i∈Cu
fα
i

N(l|µCu
,
∑

Cu
)∑

i∈Cu
N(l|µi,

∑
i)
, (2.3)
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Figure 2.4: Check-in distribution in multi-centers [11]

where P (l ∈ cu) ∝ 1
d(l,cu)

is the probability of the POI l

belonging to the center cu, fα
cu∑

i∈Cu
fα
i

denotes the normalized effect
of the check-in frequency on the center cu and parameter α

maintains the frequency aversion property, N(l|µCu
,
∑

Cu
) is the

probability density function of Gaussian distribution with mean
µCu

and covariance matrix
∑

Cu
. Specifically, the MGM employs

a greedy clustering algorithm on the check-in data to find
the user activity centers, which may result in the unbalanced
assignment of POIs to different activity centers. Hence, Zhao
et al. [122] propose a genetic-based Gaussian mixture model to
capture the geographical influence, which outperforms the MGM
in POI recommendation.
The third type of geographical model is the kernel density
estimation (KDE) model. In order to mine the personalized
geographical influence, Zhang et al. [116] argue that the ge-
ographical influence on each individual user should be perso-
nalized rather than modeling through a common distribution,
e.g., power law distribution [107] and MGM [7]. As shown



CHAPTER 2. LITERATURE REVIEW 20

Figure 2.5: Distributions of personal check-in locations [116]

in Figure 2.5, it is hard to model different users using the
same distribution. To this end, they leverage kernel density
estimation [85] to model the geographical influence using a
personalized distance distribution for each user. Specifically, the
kernel density estimation model consists of two steps: distance
sample collection and distance distribution estimation. The step
of distance sample collection generates a sample Xu for a user by
computing the distance between every pair of locations visited
by the user. Then, the distance distribution can be estimated
through the probability density function f over distance d,

f(d) =
1

|Xu|σ
∑
d′∈Xu

K(
d− d′

σ
), (2.4)

where σ is a smoothing parameter, called the bandwidth. K(·)
is the Gaussian kernel

K(x) =
1√
2π

e−
x2

2 . (2.5)

Denote Lu = {l1, l2, . . . , ln} as the visited locations of user u.
The probability of user u visiting a new POI lj given the checked-
in POI set Lu is defined as,

p(lj|Lu) =
1

|Lu|
∑
li∈Lu

f(dij), (2.6)
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where dij is the distance between li and lj, f(·) is the distance
distribution function in Eq. (2.4).

2.2.2 Temporal Influence

Temporal influence is of vital importance for POI recommen-
dation because physical constraints on the check-in activity
result in specific patterns. Temporal influence in a POI re-
commendation system performs in three aspects: periodicity,
consecutiveness, and non-uniformness.

(a) Day pattern (b) Week pattern

Figure 2.6: Periodic pattern [10]

Users’ check-in behaviors in LBSNs exhibit the periodic pattern.
For instance, users always visit restaurants at noon and have
fun in nightclubs at night. Also, users visit places around
the office on weekdays and spend time in shopping malls on
weekends. Figure 2.6 shows the periodic pattern in a day and
a week, respectively. The check-in activity exhibits this kind
periodic pattern—visiting the same or similar POIs at the same
time slot. This observation inspires the studies exploiting this
periodic pattern for POI recommendation [11, 15, 113, 118].
Consecutiveness performs in the check-in sequences, especially
in the successive check-ins. Successive check-ins are usually
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(a) CCDF of intervals in successive
check-ins

(b) CCDF of distances in successive check-
ins

Figure 2.7: Consecutive pattern [128]

correlated. For instance, users may have fun in a nightclub
after dining in a restaurant. This frequent check-in pattern
implies that the nightclub and the restaurant are geographically
adjacent and correlated from the perspective of venue function.
Data analysis on Foursquare and Gowalla in [128] explores
the spatial and temporal property of successive check-ins in
Figure 2.7, namely the complementary cumulative distributive
function (CCDF) of intervals and distances between successive
check-ins. It is observed that many successive check-ins are
highly correlated: over 40% and 60% successive check-in be-
haviors happen in less than 4 hours in Foursquare and Gowalla
respectively; about 90% successive check-ins happen in less than
32 kilometers (half an hour driving distance) in Foursquare and
Gowalla. Researchers exploit the Markov chain model to capture
the sequential pattern [9, 14, 25, 119]. Studies in [9, 14] assume
that two successive checked-in POIs in a short term are highly
correlated and employ the factorized personalized Markov chain
(FPMC) model [74] to recommend successive POIs. Zhang
et al. [119] propose an additive Markov model to learn the
transitive probability between two successive check-ins. Zhao
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et al. [128] exploit a spatial temporal latent ranking model for
POI recommendation, which captures the consecutiveness by a
POI-POI latent interaction similar to FPMC model.

Figure 2.8: Demonstration of non-uniformness [18]

The non-uniformness feature depicts a user’s check-in preference
variance at different hours of a day, or at different months of a
year, or at different days of a week [15]. As shown in Figure 2.8,
the study in [15] demonstrates an example of a random user’s
aggregated check-in activities on the user’s top five most visited
POIs. It is observed that a user’s check-in preference changes
at different hours of a day—the most frequent checked-in POI
alters at different hours. Similar temporal characteristics also
appear at different months of a year, and different days of a week
as well. This non-uniformness feature can be explained from the
user’s daily life customs: 1) A user may check-in at POIs around
the user’s home in the morning hours, visit places around the
office in the day hours, and have fun in bars during night hours.
2) A user may visit more locations around the user’s home or
office on weekdays. On weekends, the user may check-in more
at shopping malls or vacation places. 3) At different months,
a user may have different hobbies for food and entertainment.
For instance, a user would visit ice cream shops in the months of
summer while visit hot pot restaurants in the months of winter.
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2.2.3 Social Influence

Inspired by the assumption that friends in LBSNs share more
common interests than non-friends, social influence is explored
to enhance POI recommendation [7, 17, 18, 20, 106, 103, 117,
119]. In fact, employing social influence to enhance recommen-
dation systems has been explored in traditional recommendation
systems, both in memory-based methods [31, 58] and model-
based methods [32, 56, 57]. Researchers borrow the ideas from
traditional recommendation systems to POI recommendation.
In the following, we demonstrate representative studies captu-
ring social influence in two aspects: memory-based and model-
based.
Ye et al. [106] propose a memory-based model, friend-based
collaborative filtering (FCF) approach for POI recommendation.
FCF model constrains the user-based collaborative filtering to
find top similar users in friends rather than all users of LBSNs.
Hence, the preference rij of user ui at lj is calculated as follows,

rij =

∑
uk∈Fi

rkjwik∑
uk∈Fi

wik
, (2.7)

where Fi is the set of friends with top-n similarity, wik is simi-
larity weight between ui and uk. FCF enhances the efficiency
by reducing the computation cost of finding top similar users.
However, it overlooks the non-friends who share many common
check-ins with the target user. Experimental results show that
FCF brings very limited improvements over user-based POI
recommendation in terms of precision.
Cheng et al. [7] apply the probabilistic matrix factorization with
social regularization (PMFSR) [57] in POI recommendation,
which integrates social influence into PMF [80]. Denote U and
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L are the set of users and POIs, respectively. PMFSR learns the
latent features of users and POIs by minimizing the following
objective function,

arg min
U,L

|U|∑
i=1

|L|∑
j=1

Iij(g(cij)− g(UT
i Lj))

2 + λ1||U ||2F + λ2||L||2F+

β

|U|∑
i=1

∑
uf∈Fi

sim(i, f)||Ui − Uf ||2F ,

(2.8)

where cij is the check-in frequency, Ui, Uf , and Lj are the latent
features of user ui, uf , and POI lj respectively, Iij is an indicator
denoting user ui has checked-in at POI lj, Fi is the set of user ui’s
friends, sim(i, f) denotes the social weight between user ui and
uf , and g(·) is the sigmoid function to mapping the target value
into the range of [0,1]. In this framework, the social influence is
incorporated by the social constraints that ensure latent features
of friends keep in close at the latent subspace. Due to its
validity, Yang et al. [103] also employ the same framework to
their sentiment-aware POI recommendation.

Figure 2.9: The significance of social influence on POI recommendation [18]

Although social influence improves traditional recommendation
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system significantly [32, 56, 57], the social influence on POI
recommendation shows limited improvements [7, 18, 106]. Fi-
gure 2.9 shows the limited improvement achieved from social
influence in [18]. Why this happens can be explained as follows.
Users in LBSNs make friends online without any limitation; on
the contrary, the check-in activity requires physical interactions
between users and POIs. Hence, friends in LBSNs may share
the common interest but may not visit common locations. For
instance, friends in favor of Italian food from different cities will
visit their own local Italian food restaurants. This phenome-
non differs from the online movie and music recommendation
scenarios in Netflix and Spotify.

2.2.4 Content Indications

In LBSNs, users generate contents including tips and pho-
tos about the POIs. Although contents do not accompany
each check-in record, the available contents such as the user
comments and photos, can be used to enhance the POI re-
commendation [16, 29, 43, 103, 109, 95]. On the one hand,
user comments provide extra information from the shared tips
beyond the check-in behavior, e.g., the preference on a location.
For instance, the check-in at an Italian restaurant does not
necessarily mean the user likes this restaurant. Probably
the user just likes Italian food but not this restaurant, even
dislikes the taste of this restaurant. Compared with the check-
in activity, the comments usually provide explicit preference
information, which is a kind of complementary explanations
for the check-in behavior. As a result, the comments are able
to be used to deeply understand the users’ check-in behavior
and improve POI recommendation [16, 29, 103]. On the other
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hand, photos about POIs also reveal users’ check-in preference.
For example, a user who posts many architecture photos is
more likely to visit famous landmarks; while a user posts lots
of images about food has more incentive to visit restaurants.
Thus, images have potentials to improve the performance of POI
recommendation. In the following, we report two representative
studies that exploit comments and photos to enhance the POI
recommendation respectively.

Figure 2.10: Sentiment-preference transforming rule [103]

The research in [103] is the first and representative work ex-
ploiting the comments to strengthen the POI recommendation.
Yang et al. [103] propose a sentiment-enhanced location recom-
mendation method, which utilizes the user comments to adjust
the check-in preference estimation. As shown in Figure 2.10,
the raw tips in LBSNs are collected and analyzed using natural
language processing techniques, including language detection,
sentence split, POS identification, processed by SentiWordNet,
and Noun phrase chunking. Then, each comment is given
a sentiment score. According to the estimated sentiment, a
preference score of one user at a POI is generated. Figure 2.10
also shows how to handle a comment example: transforming
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it to several noun phrases such as “Reasonable price”, “Good
place”, and “Long waiting time”, generating a sentiment score
of 0.3, and mapping this value to the preference measure of
5. Moreover, through combining the preference measure from
sentiment analysis and the check-in frequency, the proposed
model in [103] generates a modified rating Ĉi,j measuring the
preference of user ui at a POI lj. Accordingly, the traditional
matrix factorization method can be employed to recommend
POIs through the following objective,

arg min
U,L

∑
(i,j)∈Ω

(Ĉi,j − UiL
T
j )

2 + α||U ||2F + β||L||2F , (2.9)

where Ui and Lj are latent features of user ui and lj respectively,
Ĉi,j is the combined rating value, α and β are regularizations.
The research in [95] is the first and representative work ex-
ploiting the photos to strengthen the POI recommendation.
Let U , L, and P be the set of users, POIs, and photos,
respectively. Furthermore, X ∈ R|U|×|L| denotes the user-POI
check-in matrix, where each entry means the check-in frequency.
Next, G ∈ R|U|×|L| denotes the normalized version of X with
Gij = g(Xij) and g(·) is the sigmoid function. Pui

denotes
the set of photos uploaded by user ui and Plj denotes the set
of phones tagged to POI lj. Hence, the image enhanced POI
recommendation aims to recommend each user top k unvisited
POIs, given the check-in matrix G, user images Pu for all users,
and POI images Pl for all POIs. This visual feature enhanced
POI recommendation system can be learned by maximizing the
likelihood defined on G, Pu, and Pl.
To learn the maximum likelihood on Pu, P (fis = 1|ui, ps) is
defined to measure the probability that a photo ps belongs to a
user ui. Considering the image ps posted by ui, it is natural to
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assume that ps contains certain visual contents that meet ui’s
preferences; while for an arbitrary image pw posted by other
users, i.e., pw /∈ Pui

, pw is less likely to contain visual contents
that meet ui’s preferences. Meantime, ui’s preferences are
captured by the latent feature ui ∈ RK . Then, the probability
P (fis = 1|ui, ps) is defined via a softmax function,

P (fis = 1|ui, ps) =
exp(uT

i ·P · CNN(ps))∑
pk∈P exp(uT

i ·P · CNN(pk))
(2.10)

where fis denotes if ps is posted by ui, CNN(ps) is the extracted
feature from the image ps via CNN (implemented by VGG-
16 [86]), P ∈ RK×d is the interaction matrix between the visual
contents and latent user features, and d is the dimension of the
visual contents.
Similarly, the probability P (gjt = 1|lj, pt) is defined to measure
whether the image pt is tagged to the POI lj for learning the
maximum likelihood on Pl. Considering an image pt associated
with POI lj, CNN(Pt) denotes the visual feature of image pt,
and lj ∈ RK denotes the latent feature of POI lj. Hence, the
probability of P (gjt = 1|lj, pt) is defined as follows,

P (gjt = 1|lj, pt) =
exp(lTj ·Q · CNN(pt))∑

pk∈P exp(lTj ·Q · CNN(pk))
, (2.11)

where gjt denotes if photo pt is tagged to POI lj, Q ∈ RK×d is
the interaction matrix between the visual contents and latent
POI features, and d is the dimension of the visual contents.
Given the check-in matrix G, user images Pu, and POI images
Pl, the visual feature enhanced POI recommendation framework
is defined via maximizing the following logarithmic posterior
distribution,

max
U,L,P,Q

logP (U,L,P,Q|G,Pu,Pl), (2.12)
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where U,L,P,Q are user latent feature matrix, POI latent
feature matrix, user-photo feature interaction matrix, and POI-
photo feature interaction matrix, respectively. Furthermore,
based on P (fis = 1|ui, ps) and P (gjt = 1|lj, pt) this posterior
distribution can be learned through the maximum likelihood
over G, Pu, and Pl with regularizations,

max
U,L,P,Q

α(

|U|∑
i=1

∑
pk∈Pui

logP (fik = 1|ui, pk) +
|L|∑
j=1

∑
pk∈Plj

logP (gjk = 1|lj , pk))

−||Y⊙ (G−UTL||2F − λ1(||U||2F + ||L||2F )− λ2(||P||2F + ||Q||2F ),
(2.13)

where Y is the indicator matrix that constrains the calculation
only valid for the non-zero entries in G, ⊙ is the Hadamard
product, α is the hyperparamter to constrain the effect of visual
modeling, and λ1 and λ2 are regularizations to avoid overfitting.
After learning the objective function Eq. (2.13), the top k POIs
can be selected according to the value of UTL that measures the
user check-in preference on POIs.

2.2.5 Summary

In this section, we show how the four influential factors, ge-
ographical influence, temporal influence, social influence, and
content indications contribute to the POI recommendation and
how the deliveries incorporate them. In addition, the check-in
activity implies the user preference, which can be modeled using
the collaborative filtering methods. In the following, we summa-
rize the existing POI recommendation systems and demonstrate
how the influential factors contribute to POI recommendation
in Table 2.1.
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Table 2.1: Summary of POI recommendation systems modeling for influential
factors

User Geographical Temporal Social Content
Preference Influence Influence Influence Indications

[7]
√ √ √

[107]
√ √ √

[103]
√ √ √

[44]
√ √

[128]
√ √ √

[126]
√ √

[113]
√ √ √

[116]
√ √ √

[15]
√ √

[16]
√ √

[14]
√ √

[121]
√ √ √

[95]
√ √
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2.3 Taxonomy by Methodology

In this section, we categorize the POI recommendation systems
by the methodologies. There are two ways to construct a
POI recommendation system: the fused model and the joint
model, which are categorized by the way of modeling the
influential factors discussed in Section 2.2. The fused model
fuses recommended results from collaborative filtering method
and recommended results from models capturing geographical
influence, social influence, and temporal influence. The joint
model establishes a joint model to learn the user preference and
the influential factors together.

2.3.1 Fused Model

The fused model establishes a model for each influential fac-
tor and combines their recommended results with suggestions
from the collaborative filtering model [77] that captures user
preference on POIs. Since social influence provides limited
improvements in POI recommendation and user comments are
usually missing in users’ check-ins, geographical influence and
temporal influence constitute two important factors for POI
recommendation. Hence, a typically fused model [7, 107, 117]
recommends POIs through combining the traditional colla-
borative filtering methods and influential factors, especially
including geographical influence or temporal influence. Using
collaborative filtering methods to capture the user preference
can be categorized into two types: memory-based method (e.g.,
user-based) and model-based method (matrix factorization). In
the following, we introduce the representative work for fused
model in two aspects: memory-based and model-based.



CHAPTER 2. LITERATURE REVIEW 33

Representative Work for Memory-based Method

In [107], Ye at al. propose a fused framework for POI recom-
mendation, which captures the user preference, social influence,
and geographical influence. Specifically, Ye et al. [107] use the
user-based collaborative filtering to model the user preference,
friend-based collaborative filtering for social influence, power law
distribution model for geographical model. Let Si,j denote the
check-in probability score of user ui at POI lj. Su

i,j, Ss
i,j, and Sg

i,j

denote the check-in probability scores of user ui at POI lj, cor-
responding to recommendation results based on user preference,
social influence, and geographical influence, respectively. Then,
the fused recommendation result is formulated as,

Si,j = (1− α− β)Su
i,j + αSs

i,j + βSg
i,j, (2.14)

where the two weighting parameters α and β (0 ≤ α+β ≤ 1) de-
note the relative importance of social influence and geographical
influence comparing to user preference.
Specifically, Su

i,j, Ss
i,j, and Sg

i,j are obtained from the check-in pro-
bability pui,j, psi,j, and pgi,j for a user ui to visit a POI lj. psi,j, and
pgi,j can be calculated using Eq. (2.7) described in Section 2.2.3
and Eq. (2.2) described in Section 2.2.1, respectively. pui,j is
calculated through the user-based CF model,

pui,j =

∑
uk
wi,k · ck,j∑
uk
wi,k

, (2.15)

where ck,j denotes the check-in frequency of user uk at POI lj,
wi,k is the similarity weight between user ui and uk calculated via
the Pearson Correlation Covariance [77]. After we get the check-
in probability estimation, we obtain the corresponding scores,

Su
i,j =

pui,j
Zu
i

, Ss
i,j =

psi,j
Zs
i

, Sg
i,j =

pgi,j
Zg
i

, (2.16)
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where Zu
i , Zs

i , Z
g
i are normalization terms. Zu

i = maxlj∈L\Li
{pui,j},

Zs
i = maxlj∈L\Li

{psi,j}, Zg
i = maxlj∈L\Li

{pgi,j}, where L \ Li

denotes the POIs user ui has not visited.

Representative Work for Model-based Method

In [7], Cheng et al. employ probabilistic matrix factorization
(PMF) [80] and probabilistic factor model (PFM) [55] to learn
user preference for recommending POIs. Suppose U denote the
set of users and L denote the set of POIs. Ui and Lj denote
the latent feature of user ui and POI lj. PMF-based method
assumes Gaussian distribution on observed check-in data and
Gaussian priors on the user latent feature matrix U and POI
latent feature matrix L. Then, the objective function to learn
the model is as follows,

min
U,L

|U|∑
i=1

|L|∑
j=1

Iij(g(cij)− g(UT
i Lj))

2 + λ1||U ||2F + λ2||L||2F , (2.17)

where g(x) = 1
1+e−x is the sigmoid function, cij is the checked-in

frequency of user ui at POI lj. Iij is the indicator function to
record the check-in state of ui at lj. Namely, Iij equals one when
the i-th user has checked-in at j-th POI; otherwise zero. After
learning the user and POI latent features, the preference score
of ui over lj is measured by the following score function,

P (Ful) = g(UT
i Lj), (2.18)

where g(·) is the sigmoid function.
In addition, the geographical influence can be modeled through
MGM, shown in Eq. (2.3) of Section 2.2.1. Then, a fused model
is proposed to combine user preference learned from Eq. (2.17)
and geographical influence modeled in Eq. (2.3). The proposed
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model determines the probability Pul of a user u visiting a
location l via the product of the preference score estimation and
the probability of whether a user will visit that place in terms
of geographical influence ,

Pul = P (Ful) · P (l|Cu), (2.19)

where P (l|Cu) is calculated via the MGM and P (Ful) encodes a
user’s preference on a location.

2.3.2 Joint Model

Different from the fused model, the joint model learns several
influential factors together and then recommends POIs from the
jointly learned model. Compared with the fused model, a joint
model connects different influential factors into the same final
training target—the check-in behavior. The joint model depicts
the check-in behavior as a synthesized decision influenced by
several factors together, which better reflects the real scenario
than the fused model. This advantage over the fused model
makes the joint model attract more attention. Recently a
number of joint models [15, 16, 29, 35, 44, 45, 54, 103, 111]
have been proposed for POI recommendation. We categorize
the joint models into three types: 1) MF-based joint model
that incorporates factors such as geographical influence and
temporal influence into traditional collaborative filtering model
like matrix factorization and tensor factorization, e.g., [15, 16,
44, 54, 103]; 2) generative graphical model that establishes a
generative model according to the check-ins and extra influences
like geographical information, e.g., [29, 45, 35, 111]; 3) neural
network model that jointly models the influential factors in a
neural network, e.g., [52, 49].
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Representative Work for MF-based Joint Model

In this section, we report two representative studies about
the MF-based joint model, which incorporate temporal effect
and geographical effect into a matrix factorization framework,
respectively.
In [15], Gao et al. propose a Location Recommendation
framework with Temporal effects (LRT), which incorporates
temporal influence into a matrix factorization model. The
LRT model contains two assumptions on temporal effect: 1)
non-uniformness, users’ check-in preferences change at different
hours of one day; 2) consecutiveness, users’ check-in preferences
are similar in consecutive time slots. To model the non-
uniformness, LRT separates a day into T slots, and defines
time-dependent user latent feature Ut ∈ Rm×d, where m is the
number of users, d is the latent feature dimension, and t ∈ [1, T ]

indexes time slots. Suppose that Ct ∈ Rm×n denotes a matrix
depicting the check-in frequency at temporal state t. U and L

denote the latent feature matrix for user and POI, respectively.
Using the non-negative matrix factorization to model the POI
recommendation system, the time-dependent objective function
is as follows,

min
Ut≥0,L≥0

T∑
t=1

||Yt⊙(Ct−UtL
T )||2F +α

T∑
t=1

||Ut||2F +β||L||2F , (2.20)

where Yt is the corresponding indicator matrix, α and β are
the regularizations. Furthermore, the temporal consecutiveness
inspires to minimize the following term,

min
T∑
t=1

m∑
i=1

ϕi(t, t− 1)||Ut(i, :)− Ut−1(i, :)||22, (2.21)
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where ϕi(t, t−1) ∈ [0, 1] is defined as a temporal coefficient that
measures user preference similarity between temporal state t and
t − 1. The temporal coefficient could be calculated via cosine
similarity according to users’ check-ins at state t and t− 1. To
represent the Eq. (2.21) in matrix form, we get

min
T∑
t=1

Tr((Ut − Ut−1)
TΣt(Ut − Ut−1), (2.22)

where Σt ∈ Rm×m is the diagonal temporal coefficient matrix
among m users. Combining the two minimization targets, the
objective function of the LRT model is gained as follows,

min
Ut≥0,L≥0

T∑
t=1

||Yt ⊙ (Ct − UtL
T )||2F + α

T∑
t=1

||Ut||2F + β||L||2F

+λ

T∑
t=1

Tr((Ut − Ut−1)
TΣt(Ut − Ut−1),

(2.23)

where λ is a non-negative parameter to control the temporal
regularization. User and location latent representations can be
learned by solving the above optimization problem. Then, the
user check-in preference Ĉt(i, j) at each temporal state can be
estimated by the product of user latent feature and location
feature (Ut(i, :)L(j, :)

T ). Recommending POIs for users is to
find POIs with the higher value of Ĉ(i, j). To aggregate different
temporal states’ contributions, Ĉ(i, j) is estimated through

Ĉ(i, j) = f(Ĉ1(i, j), Ĉ2(i, j), . . . , ĈT (i, j)), (2.24)

where f(·) is an aggregation function, e.g., sum, mean, maxi-
mum, and voting operation.
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Figure 2.11: Demonstration of GeoMF model [44]

In [44], Lian et al. propose the Geo matrix factorization (Ge-
oMF) model to incorporate geographical influence into a weig-
hted regularized matrix factorization model (WRMF) [30, 66].
WRMF is a popular model for one-class collaborative filtering
problem, learning implicit feedback for recommendations. Ge-
oMF treats the user check-in as implicit feedback and leverages a
0/1 rating matrix to represent the user check-ins. Furthermore,
GeoMF employs an augmented matrix to recover the rating
matrix, as shown in Figure 2.11. Each entry in the rating matrix
is the combination of two interactions: user feature and POI
feature, users’ activity area representation and POIs’ influence
area representation. Suppose there are m users and n POIs. The
latent feature dimension is d for user and POI representations,
and the latent feature dimension is l for users’ activity area and
POIs’ influence area representations. Then the estimated rating
matrix can be formulated as,

R̃ = PQT +XY T , (2.25)

where R̃ ∈ Rm×n is the estimated matrix, P ∈ Rm×d and
Q ∈ Rn×d are the user latent matrix and POI latent matrix,
respectively. In addition, X ∈ Rm×l and Y ∈ Rn×l are
user activity area representation matrix and POI activity area
representation matrix, respectively. Define W as the binary
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weighted matrix whose entry wui is set as follows,

wui =

{
α(cui) + 1 if cui > 0

1 otherwise,
(2.26)

where cui is user u’s check-in frequency at POI li, α(cui) > 0 is a
monotonically increasing function with respect to cui. Following
the scheme of WRMF model, the objective function of GeoMF
is formulated as,

arg min
P,Q,X

||W⊙(R−PQT−XY T )||2F +γ(||P ||2F + ||Q||2F )+λ||X||1,

(2.27)
where Y is POIs’ influence area matrix generated from a
Gaussian kernel function, P , Q, and X are parameters that need
to learn, and γ and λ are regularizations. After learning the
latent features from Eq. (2.27), the proposed model estimates
the check-in possibility according to Eq. (2.25), and then
recommends the POIs with higher values for each user.

Representative Work for Generative Graphical Model

In this section, we present the representative research about
the generative graphical model, which incorporates geographical
influence into a generative graphical model.
In [45], Liu et al. propose a geographical probabilistic factor
analysis framework that takes various factors into consideration,
including user preferences, the geographical influence, and the
user mobility pattern. The proposed model mimics the user
check-in decision process to learn geographical user preferences
for effective POI recommendations. Figure 2.12 demonstrates
the graphical representation of the proposed model. Specifically,
the proposed model assumes that the geographical locations
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Figure 2.12: A graphical representation of the model [45]

have been clustered into several latent regions denoted as R.
A multinomial distribution is applied to model user mobility
over the regions R, r ∼ p(r|ηu), where ηu is a user dependent
distribution over latent regions for user ui. Then, each region
r ∈ R is assumed to be a Gaussian geographical distribution and
the POI lj is characterized by l ∼ N (µr,

∑
r) with µr and

∑
r

being the mean vector and covariance matrix of the region. In
addition, the user check-in process is affected by the following
factors: (1) each user ui is associated with an interest α(i, j)

with respect to POI lj; (2) each POI lj has popularity ρj; and
(3) the distance between the user and the POI d(ui, lj). Then,
the probability of user ui visiting POI lj can be formulated as,

p(ui, lj) ∝ α(i, j)ρj(d0 + d(ui, lj))
−τ , (2.28)

where a power-law like the parametric term (d0 + d(ui, lj))
−τ is

used to model the distance factor. Moreover, the user preference
for POI can be represented as a linear combination of a latent
factor uT

i lj and a function of user and item observable properties
xTi Wyj, namely

α(i, j) = uT
i lj + xTi Wyj. (2.29)
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ALGORITHM 1: Model generative process
1: Draw a region r ∼ Multinomial(ηu)
2: Draw a location l ∼ N (µr,

∑
r)

3: Draw a user preference
4: Generate user latent factor ui ∼ P (ui; Φu)

5: Generate POI latent factor lj ∼ P (lj; Φlj)

6: User-item preference α(i, j) = uT
i li + xT

i Wyj
7: Generate pij ∼ P (fij), where pij = (uT

i lj + xT
i Wyj)ρj(d0 + d(ui, lj))

−τ

The proposed model uses implicit user check-in data to model
user preferences and the distribution of check-in counts are
usually skewed, so a Bayesian probabilistic non-negative latent
factor model is employed: pij ∼ P (fij) where fij = α(i, j)ρj(d0+

d(ui, lj))
−τ . The proposed model shown in Figure 2.12 can be

generated according to Algorithm 1.
After the parameters are learned, the proposed model pre-
dicts the number of check-ins of a user for a given POI as
E(pij|ui, lj) = (uT

i lj+xTi Wyj)ρj(d0+d(ui, lj))
−τ . Moreover, POI

recommendations are based on the predicted check-in times.
The larger the predicted value is, the more likely the user will
choose this POI.

Representative Work for Neural Network Model

In this section, we report the representative research about
neural network model, which extends the recurrent neural
network (RNN) [22] with spatial and temporal information for
next POI recommendation.
In [49], Liu et al. propose the Spatial Temporal Recurrent
Neural Network (ST-RNN) model to predict the next POI.
Formally, let P be a set of users and Q be a set of locations,
pu,ql ∈ Rd indicate the latent vectors of user u and location l.
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For each user u, the history of where he has been is given as
Qu = qut1, q

u
t2
, . . ., where quti denotes where user u is at time ti.

And the history of all users is denoted as QU = {Qu1, Qu2, ...}.
Given historical records of a users, the task is to predict where
a user will go next at a specific time t. The possibility of user
u visit location l at time t can be estimated by the following
function,

ou,t,l = (hu
t,ql

+ pu)
Tql, (2.30)

where pu,ql ∈ Rd indicate the latent vectors of user u and
location l, and hu

t,ql
captures the user’s dynamic interests under

spatial and temporal contexts learned from a RNN model.

Figure 2.13: Overview of ST-RNN [49]

Specifically, the hidden representation for capturing user in-
terest’s dynamics is learned by the ST-RNN model, shown in
Figure 2.13. hu

t,qut
denotes the dynamic interest representation

of user u at time t, qu
ti

is the latent vector of the location the
user visits at time ti, and ŵ is window size. Therefore, hu

t,qut
can

be formulated from the visited POIs in the watching window,

hu
t,qut

= f
( ∑
quti∈Q

u,t−ŵ<ti<t

Mqu
ti
+ Cht−ŵ,qut−ŵ

)
, (2.31)
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where f(x) is sigmoid function, M denotes the transition matrix
for input elements to capture the current behavior of the user,
and C is the recurrent connection of the previous status pro-
pagating sequential signals. Furthermore, M is used to capture
the spatial and temporal contexts, defined as M = Squt −quti

Tt−ti,
where Squt −quti

is the distance-specific transition matrix for the
geographical distance between qut and quti, and Tt−ti denotes the
time-specific transition matrix for the time interval t − ti. To
learn the parameters Squt −quti

, Tt−ti, qu
ti
, C, hu

t,qut
, pu, and ql, [49]

uses the Bayesian Personalized Ranking (BPR) [72] and Back
Propagation Through Time (BPTT) [79] to infer the model.

2.3.3 Summary

In this section, we categorize the POI recommendation systems
according to the used methodologies. As shown in Section 2.2,
POI recommendations are influenced by several factors. Two dif-
ferent means are used to model the influential factors together,
1) recommend POIs separately according to each factor and then
ensemble results, and 2) establish a joint model incorporating
different influential factors. Table 2.2 show the summary of POI
recommendation systems categorized by the methodology.

2.4 Performance Evaluation

In this section, we report two important aspects for evaluating
a POI recommendation system: data sources and metrics. We
first summarize several popular LBSN datasets. Then, we
describe the metrics used to verify the effectiveness of the
recommendation results.
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Table 2.2: Summary of POI recommendation systems categorized by metho-
dology

Fused Model Joint Model
Memory-based Model-based MF-based Generative Neural

Model Model Model Model Model
[7]

√

[107]
√

[103]
√

[128]
√

[44]
√

[126]
√

[113]
√

[116]
√

[15]
√

[16]
√

[14]
√

[121]
√

[45]
√

[49]
√

[35]
√

[111]
√

[52]
√

[95]
√
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2.4.1 Data Sources

Gowalla, Brightkite, and Foursquare are famous benchmark
datasets available for evaluating a POI recommendation model.
In this section, we briefly introduce these datasets and describe
the statistics, shown in Table 2.3. In particular, the Brightkite
and Gowalla data in [11] contains the user friendships and
user check-in sequences. The check-in data also contains the
timestamp and geographical information, shown in Figure 2.14.
Since the user check-in data is recorded chronologically, this da-
taset can also be used for sequential modeling. The Foursquare
data in [17] and [18] collect the data using the similar format,
including the user friendship and check-in sequential records. In
addition, the Foursquare data in [17] and [18] also includes the
user comments. But the user comments are very limited and
many check-in records do not contain comments. The Gowalla
data in [7] also contain the user sequential check-in records(
including the user comments) and user friendships. But the data
in [7] store the geographical information( i.e., latitude and longi-
tude) separately. The data in [11, 7, 17, 18] are collected globally
and contain the similar information, including the sequential
check-in records and user friendship. On the contrary, the
Foursquare data in [1] is collected in city level, including crawled
check-in data in Los Angeles and New York. This dataset not
only contains the user friendships and user comments, but also
the user profiles, venue category information, and photos for
the venue. Yet this dataset does not contain the sequential
information or timestamps for each check-in.

user id check-in time latitude longitude POI id

Figure 2.14: Demonstration of check-in meta record
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Table 2.3: LBSN datasets for POI recommendation
Name Statistics
Brightkite [11] 4,491,143 check-ins from 58,228

users
Gowalla 1 [11] 6,442,890 check-ins from 196,591

users
Gowalla 2 [7] 4,128,714 check-ins from 53,944

users
Foursquare 1 [17] 2,073,740 check-ins from 18,107

users
Foursquare 2 [18] 1,385,223 check-ins from 11,326

users
Foursquare 3 [1] 325,606 check-ins from 80,606

users

2.4.2 Metrics

Most of the POI recommendation systems utilize metrics of
precision and recall, which are two general metrics to evaluate
the model performance in information retrieval [12, 23]. To see
the balance of precision and recall, F-score is also introduced
in some work. Since the precision and recall are low for POI
recommendation, some studies [45, 106] introduce one relative
metric, which measures the model comparative performance over
random selection.
The precision and recall in the top-N recommendation system
are denoted as P@N and R@N , respectively. P@N measures
the ratio of recovered POIs to the N recommended POIs, and
R@N means the ratio of recovered POIs to the set of POIs in
the testing data. For each user u ∈ U , LT

u denotes the set of
correspondingly visited POIs in the test data, and LR

u denotes
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the set of recommended POIs. Then, the definitions of P@N

and R@N are formulated as follows,

P@N =
1

|U|
∑
u∈U

|LR
u ∩ LT

u |
N

, (2.32)

R@N =
1

|U|
∑
u∈U

|LR
u ∩ LT

u |
|LT

u |
. (2.33)

Further, F-score is the harmonic mean of precision and recall.
Therefore, the F-score is defined as,

F-score@N =
2 ∗ P@N ∗R@N

P@N +R@N
. (2.34)

In order to better compare the results, a relative metric is
introduced. Relative precision@N and recall@N are denoted as
r-P@N and r-R@N , respectively. Let LC

u denote the candidate
POIs for each user u, namely POIs the user has not checked-in,
then precision and recall of a random recommendation system is
|LT

u |
|LC

u |
and |N |

|LC
u |

, respectively. Then, the relative precision@N and
recall@N are defined as,

r − P@N =
P@N

|LT
u |/|LC

u |
, (2.35)

r −R@N =
R@N

|N |/|LC
u |
. (2.36)

2.5 Conclusion

Due to the prevalence of LBSNs and the importance of POI
recommendation systems in LBNSs, we provide a systematic
survey of the related recent studies. We review over 60 papers
published in related top conferences and journals, including but
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not limited to AAAI, IJCAI, SIGIR, KDD, WWW, RecSys,
UbiComp, ACM SIGSPATIAL, ACM TIST, and IEEE TKDE.
we categorize the systems by the influential factors and the
methodology. Particularly we also report the representative
work in each category. This chapter presents a panorama of
this research with a balanced depth and scope.

2 End of chapter.



Chapter 3

Understanding Human
Mobility from Geographical
Perspective

POI recommendation is a significant service for LBSNs. It
recommends new places such as clubs, restaurants, and coffee
bars to users. Whether recommended locations meet users’
interests depends on three factors: user preference, social
influence, and geographical influence. Especially, capturing the
geographical influence plays the most important role for POI
recommendations. Previous studies observe that checked-in
locations disperse around several centers and employ Gaussian
distribution based models to approximate users’ check-in beha-
viors. Yet centers discovering methods are not satisfactory in
prior work. In this chapter, we propose two models—Gaussian
mixture model (GMM) and genetic algorithm based Gaussian
mixture model (GA-GMM) to capture geographical influence.
More specifically, we exploit GMM to automatically learn
users’ activity centers; further we utilize GA-GMM to improve
GMM by eliminating outliers. Experimental results on a real-
world LBSN dataset show that GMM beats several popular

49
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geographical capturing models in terms of POI recommendation,
while GA-GMM excludes the effect of outliers and enhances
GMM.

3.1 Introduction

POI recommendation is a significant service for LBSNs. With
the development of mobile devices and Web 2.0 technologies,
many LBSNs like Foursquare and Gowalla emerge and attract
many users. These LBSNs allow users to check-in at POIs,
make friends, and share location-related information. In order
to help users discover new interesting places in LBSNs, the POI
recommendation arises.
User preference, social influence, and geographical influence are
three aspects responsible for users’ check-in activities [106, 107].
Generally we derive user preference from user-based collabo-
rative filtering, explore social influence based on users’ social
relationships, and model geographical influence from check-
in locations’ spatial features. And then we construct a POI
recommendation system in the way of combining those three
kinds of influence. The representative work is as follows. Ye et
al. [107] propose a linear fused framework to combine them and
Cheng et al. [7] propose a fused model to recommend POIs.
For POI recommendation in LBSNs, research about geographi-
cal influence is new and requires more attention, comparing with
user preference and social influence. It is well-defined on how to
derive user preference and social influence in a recommendation
system [34, 78]. Note that users’ evaluations for items reflect
their preferences and friends are inclined to share preferences.
We derive user preference from user-based collaborative filtering
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and introduce social influence by containing similarity among
friends. For POI recommendation system, we use collaborative
filtering method to get user preference through treating locations
as items and check-in frequencies as rating values, and we
capture social influence by including friends’ similarity in check-
in locations [7, 106, 107]. In 2010, Ye et al. [106] first propose
POI recommendation for LBSNs and utilize power law principle
to model users’ geographical influence. In the meantime, Cho et
al. [11] study the user mobility in LBSNs inspired by Gonzalez’s
discovery [21]. The study focuses on those users who frequently
check-in, since Gonzalez’s discovery bases on call logs data
that have strong periodic property. They propose a periodic
mobility model (PMM) to capture user’s geographical influence
for location prediction in LBSNs. Next, Cheng et al. [7] propose
Multi-center Gaussian Model (MGM) to capture geographical
influence. This model assumes a user’s visited locations disperse
around several centers and utilizes a greedy method to discover
centers. It defines a district by a fixed distance and thus ignores
discrepancy between users. In summary, Gaussian distribution
based models perform well for POI recommendation, but we
still encounter challenges in how to discover the activity centers
accurately and how to eliminate the effect of outliers.
In order to find activity centers more accurately and eliminate
outliers, we propose two models—Gaussian mixture model
(GMM) and genetic algorithm based Gaussian mixture model
(GA-GMM) to capture geographical influence. From geographi-
cal perspective, people prefer places that are nearer to their
activity centers. Those frequent checked-in places naturally
form a user’s activity district. According to locations’ spatial
clustering feature, we apply GMM to find a user’s activity
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district centers. However, outliers exist in the observed data
that do harm to learn the model. How to eliminate the impact
of outliers? Thang et al. [90] propose a genetic algorithm based
EM algorithm to implement the trimmed likelihood estimate
(TLE) method [64] to eliminate the outliers in mixture models.
We exploit this genetic based EM algorithm to train GMM. The
genetic algorithm based GMM (GA-GMM) improves GMM and
models the geographical influence better.
Our contributions are as follows. First, we propose GMM to
automatically learn users’ activity centers via exploring their
check-in history records. Moreover, we enhance GMM by GA-
GMM to eliminate outliers. Finally, we conduct experiments on
a real-world LBSN dataset and demonstrate that the proposed
models capture the geographical information better and improve
the accuracy of POI recommendation.

3.2 Related Work

In this section, we introduce related work in three aspects: POI
recommendation in LBSNs, geographical influence capturing
methods, and GA-GMM.
POI recommendation in LBSNs is a new research topic. POI
recommendation is widely used in GPS-based mobile devices
at first [28, 33]. In 2010, Ye et al. [106] first propose POI
recommendation in LBSNs. Further, Ye et al. [107] point
out that user preference, social influence, and geographical
influence are three aspects responsible for recommending POIs
and geographical influence is the most important among the
three factors. The representative work is as follows. Ye et
al. [107] recommend POIs through a linear fused framework
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combining user preference, social influence, and geographical
influence. Cheng et al. [7] propose a fused model to combine
them to recommend POIs.
Study of geographical influence capturing methods is new for
POI recommendation. In 2010, Ye et al. [106] first propose POI
recommendation for LBSNs and arise a power law principle to
capture geographical influence for POI recommendation. Earlier
related work about geographical influence appears in the study
of user movement pattern. Gonzalez et al. [21] build a model
using call logs and discover that activities of an individual
usually center around a small number of frequently visited
locations. Based on this, Cho et al. [11] study the specific users
frequently checking in and propose a periodic mobility model
(PMM) to capture geographical influence for location prediction
in LBSNs. Cheng et al. [7] employ a multi-center Gaussian
model (MGM) to capture the geographical feature of locations
in the proposed fused POI recommendation model.
Genetic algorithm based GMM (GA-GMM) is a method to
eliminate outliers when learning GMM. Trimmed likelihood
estimate (TLE) method is adopted to eliminate outliers in
some studies of mixture model analysis [64]. Thang et al. [90]
first propose a genetic algorithm based method to implement
the trimmed likelihood estimating method to train mixture
models and demonstrate the performance through a genetic
algorithm based GMM (GA-GMM). Wang et al. utilize the GA-
GMM to process EEG signal and apply it on brain-computer
interface [93].
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3.3 Model

3.3.1 Gaussian Mixture Model

Gaussian mixture model (GMM) [63] is the most widely used
mixture model. We can formulize it as follows:

p(Xi) =
K∑
k=1

πkN (Xi|µk,
∑

k),

where p(Xi) denotes probability dense distribution of data xi, µk

indicates mean value, ∑
k indicates covariance matrix for a base

distribution, K denotes the number of base components, and πk
is the mixing coefficient.
We exploit GMM to capture geographical influence in POI
recommendation. Each Gaussian distribution component re-
presents an activity district and the mean value denotes the
longitude and latitude of the district center. Centers may be his
home, office, or some specific entertainment place. We assume
places nearer to some center are geographically easier to arrive
and people prefer those places.
In the following, we show how to recommend POIs through
GMM. For a user, a location’s geographical information ([lon-
gitude, latitude]) in his check-in history records represents data
xi. We recommend POIs through the following steps:

1. Learn the parameters of GMM,

2. Calculate candidate locations’ probabilities fitting the trai-
ned model, and

3. Sort the candidate locations and recommend the top K

locations.
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3.3.2 Genetic Algorithm Based Gaussian Mixture Mo-
del

In order to eliminate the effect of outliers, we introduce a
genetic algorithm based Gaussian mixture model (GA-GMM).
Generally we could use maximum likelihood EM algorithm
to learn GMM [63]. If we use Θ to denote the parameters,
likelihood function could be represented as

p(X|Θ)ML =
n∏

i=1

p(Xi|Θ).

Further, if we use the logarithm form, we can denote the
objective of maximum likelihood EM algorithm as follows:

Θ̂ML = arg max log p(X|Θ)ML = arg max
n∑

i=1

log p(Xi|Θ). (3.1)

This formula includes all observed data. Trimmed likelihood
estimate (TLE)—that aims to to select the subset of data with
maximum sum of likelihood values—is used to eliminate the
outliers [64]. We can use a genetic algorithm to find the optimal
subset and exploit maximum likelihood EM algorithm to learn
the parameters of GMM, as illustrated in Algorithm 2 [90]. In
this case, the objective function could be represented as

log pTLE(X|Θ) =
n∑

i=1

wi log p(Xi|Θ), (3.2)

where ∀i = 1, 2, ..., n, wi ∈ {0, 1} and
∑n

i=1wi = m, m repre-
sents the number of valid data. When wi = 1, it indicates that
the corresponding data is chosen into the subset. Otherwise, the
data is an outlier and should be discarded. Hence, the result is
a subset of size m out of n original samples, which fits GMM
most in terms of likelihood contribution.
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As a genetic algorithm, GA-GMM contains properties of genetic
algorithm—it includes encoding scheme, fitness function, and
operators like crossover, mutation, and selection. We use
the standard way to implement crossover and selection [59].
Encoding scheme, fitness function, and a self-defined mutation
(Guided Mutation) are defined as follows.

Definition 4 Encoding scheme. The chromosome is encoded
into a binary string and each bit represents the existence
of corresponding observed data. Each chromosome and its
corresponding mixture model will be a possible solution to our
problem.

Definition 5 Fitness function. The fitness score function is set
as the trimmed logarithm likelihood of the corresponding GMM
of a chromosome—log pTLE(X|Θ).

Definition 6 Guided Mutation. Guided Mutation ensures the
chromosome in a population to mutate toward maximizing fitness
score. It means we choose chromosome that has higher value
fitting trained GMM.

3.4 Experiment

3.4.1 Setup and Metrics

We prepare the data by cleaning and splitting. We filter
locations of less than 10 visits. And then we split the dataset
into three non-overlapping sets in sequence: a redundant set,
a training set, and a test set. The test set keeps 10% of the
whole data set. We test different cases in which the proportion
of training data is 90% and 50% respectively. When training
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ALGORITHM 2: Genetic-based Expectation Maximization Algo-
rithm

1. t=0;
2. Initialize P0(t);
3. for t = 1 : G do
4. P1(t)← perform several cycles of EM on P0(t);
5. P2(t)← Guided Mutation in P1(t);
6. fScore2 ← evaluate P2(t);
7. P0(t)

′ ← selection and crossover to generate offspring from P2(t);
8. P1(t)

′ ← perform several cycles of EM on P0(t)
′ ;

9. P2(t)
′ ← Guided Mutation in P1(t)

′ ;
10. fScore

′
2 ← evaluate P2(t)

′ ;
11. P3(t)← selection from [P2(t), P2(t)

′
];

12. iBest← best individual from P3(t);
13. if iBest satisfies convergence condition then break;
14. P0(t+ 1)← P3(t);
15. t = t+ 1;
16. Perform EM on iBest until convergence;

data set is 90%, there is no redundant data. When the training
data set is 50%, redundant data is the former 40% data that
will be discarded.
We evaluate the performance of different models in capturing
geographical influence by the accuracy of POI recommendation
that is measured by Precision and Recall. POI recommendation
is to recommend the top-N highest ranked locations. However,
the system should not recommend locations the user has checked
in. To evaluate the performance of POI recommendation, we
use the Precision@N and Recall@N as the metrics that are
standard metrics to measure the performance of POI recommen-
dation [107]. Precision@N defines the ratio of recovered POIs
to the N recommended POIs and Recall@N defines the ratio of
recovered POIs to the size of test set.



CHAPTER 3. MODELING GEOGRAPHICAL INFLUENCE 58

Table 3.1: Data statistics
Min. C. Max. C. Avg. C. Min. T. Max. T. Avg. T.

1,001 50,243 2,505 366 968 593

3.4.2 Dataset

We use the Gowalla data records from February 2009 to Septem-
ber 2011. We select 3836 active users’ records to experiment.
We define active users as users whose check-ins are more than
1000 times and experience of using Gowalla is more than 1 year.
After removing locations with less than 10 visits, all check-ins
of active users include 183,667 different locations. We illustrate
statistics of the data in Table 3.1, where “C.” represents the
check-in times of a user and “T.” represents the time span (unit
is day) from first check-in to last check-in.

3.4.3 Results

We compare the POI recommendation performance of GMM
and GA-GMM with Gaussian model (GM) and Multi-center of
Gaussian model (MGM) [7] when training data set is 90% and
50% respectively.
Gaussian model (GM) [21] is a baseline model used in [11].
It models human movement as a stochastic process centered
around a single point.
Multi-center Gaussian model (MGM) [7] is a latest model.
It uses a fixed distance to define a district. When check-ins in a
district are more than a threshold, the mean of all check-ins is
the center. It utilizes a greedy method to find the district and
requires no overlapping between two districts.
We illustrate experimental results in Figure 3.1. GMM outper-
forms GM and MGM; further GA-GMM improves GMM. Hence,
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Figure 3.1: Comparison of different models

GA-GMM could better capture the geographical influence. In
the experiment, we set the number of centers in GMM and GA-
GMM as 2 for simplicity, since Cho et al. propose that the
check-in behavior comprises two states in [11]. We set the radius
of a region in MGM as 1 kilometer and the threshold as 10%
(that means the ratio of check-ins in one district is at least 10%
of all his check-ins).

3.5 Conclusion

We apply GMM and GA-GMM to capture geographical in-
fluence in POI recommendation. We exploit GMM to auto-
matically learn users’ activity centers; further we utilize GA-
GMM to improve GMM by eliminating outliers. According to
experimental results, we draw conclusions as follows. 1) GMM
outperforms the baseline model GM and the latest model MGM.
2) GA-GMM eliminates the outliers of data and improves GMM.
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It discovers the activity centers more precisely, which increases
the accuracy of POI recommendation.

2 End of chapter.



Chapter 4

Understanding Human
Mobility from Temporal
Perspective

Understanding user mobility from the temporal perspective
is the key to POI recommendation that mines user check-in
sequences to suggest interesting locations for users. Because
user mobility in LBSNs exhibits strong temporal patterns—
for instance, users would like to check-in at restaurants at
noon and visit bars at night. Hence, capturing the temporal
influence is necessary to ensure the high performance in a POI
recommendation system. We summarize the temporal charac-
teristics of user mobility in LBSNs in three aspects: periodicity,
consecutiveness, and non-uniformness. More importantly, we
observe that the temporal characteristics exist at different time
scales. To this end, we propose an Aggregated Temporal
Tensor Factorization (ATTF) model for POI recommendation
to capture the three temporal features together, as well as at
different time scales. Specifically, we employ a temporal tensor
factorization method to model the check-in activity, subsuming
the three temporal features together. Next, we exploit a linear

61
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combination operator to aggregate temporal latent features’
contributions at different time scales. Experiments on two
real-world datasets show that the ATTF model achieves better
performance than the state-of-the-art temporal models for POI
recommendation.

4.1 Introduction

Understanding the user mobility from temporal perspective is
important to establish a practical POI recommendation system.
Previous studies show that the user mobility in LBSNs exhibits
significant temporal features [11, 15, 113]. For example, users
always stay in the office in the Monday afternoon, and enjoy
entertainments in bars at night. In summary, the temporal
features in users’ check-in data can be abstracted in three
aspects.

• Periodicity. Users share the same periodic pattern,
visiting the same or similar POIs at the same time slot [11,
113]. For instance, a user always visits restaurants at
noon, so do other users. Hence, the periodicity inspires the
time-aware collaborative filtering method to recommend
POIs [113].

• Consecutiveness. A user’s current check-in is largely
correlated with the recent check-in [9, 15]. Gao et al. [15]
model this property by assuming that user preferences
are similar in two consecutive hours. Cheng et al. [9]
assume that two checked-in POIs in a short term are highly
correlated in latent feature space.
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• Non-uniformness. A user’s check-in preference changes
at different hours of a day [15]. For example, at noon a
user may visit restaurants while at night the user may have
fun in bars.

By capturing the observed temporal features, a variety of
systems are proposed to enhance POI recommendation per-
formance [9, 15, 113], which gain better performance than
general collaborative filtering (CF) methods [107]. Nevertheless,
previous work [9, 15, 113] cannot model the three features
together. Moreover, an important fact is ignored in prior work
that the temporal influence exists at different time scales. For
example, in day level, you may check-in at POIs around your
home in the earning morning, visit places around your office in
the day time, and have fun at nightclubs in the evening. In
week level, you may stay in the city for work on weekdays and
go out for vocation on weekends. Hence, to better model the
temporal influence, capturing the temporal features at different
time scales is necessary.
In this chapter, we propose an Aggregated Temporal Ten-
sor Factorization (ATTF) model for POI recommendation to
capture the three temporal features together, as well as at
different time scales. We construct a user-time-POI tensor to
represent the check-ins as shown in Figure 4.1, and then employ
the interaction tensor factorization [75] to model the temporal
effect. Different from prior work that represents the temporal
influence at a single scale, we index the temporal information
at different scales, i.e., hour, week day, and month, to learn
the latent representation. Furthermore, we employ a linear
combination operator to aggregate different temporal latent
features’ contributions, which capture the temporal influence at
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Figure 4.1: Tensor illustration for check-ins

different scales. Specifically, our ATTF model learns the three
temporal properties as follows: (1) periodicity is learned from
the temporal CF mechanism; (2) consecutiveness is manifested
in two aspects—time in a slot brings the same effect through
sharing the same time factor, and the relation between two
consecutive time slots can be learned from the tensor model;
(3) non-uniformness is depicted by different time factors repre-
senting different time slots from each time scale perspective.
Moreover, an aggregate operator is introduced to combine the
temporal influence at different scales, i.e., hour, week day, and
month, and represent the temporal effect in a whole.
To sum up, we propose the ATTF model to seek a better way to
capture the temporal influence for POI recommendation. More-
over, we establish an embedding neural network to represent the
ATTF model, which gives new insights to understand the pro-
posed model from the neural network perspective. Specifically,
this chapter makes the following contributions.

• To the best of our knowledge, this is the first tempo-
ral tensor factorization method for POI recommendation,
subsuming all the three temporal properties: periodicity,
consecutiveness, and non-uniformness.
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• We propose a novel model to capture temporal effect in POI
recommendation at different time scales. Experimental
results show that our model outperforms prior temporal
model more than 20%.

• The ATTF model is a general framework to capture the
temporal features at different scales, which outperforms
single temporal factor model and gains 10% improvement
in the top-5 POI recommendation task on Gowalla data.

• We understand the ATTF model from the embedding
neural network perspective, verifying the effectiveness of
the embedding neural network that is a general framework
for latent factor models, including rating estimation mo-
dels (e.g., MF [34]) and ranking models (e.g., our ATTF
model).

4.2 Related Work

In this section, we first review the literature of POI recommen-
dation. Then, we summarize the progress of modeling temporal
effect for POI recommendation. Finally, we review the literature
of embedding learning and its applications, which inspires us to
understand the proposed ATTF model from the neural network
perspective.
POI Recommendation. Most of POI recommendation sys-
tems base on the collaborative filtering (CF) techniques, which
can be reported in two aspects, memory-based and model-based.
On the one hand, Ye et al. [107] propose the POI recommenda-
tion problem in LBSNs solved by user-based CF method, and
further improve the system by linearly combining the geographi-
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cal influence, social influence, and preference similarity. In
order to enhance the performance, more advanced techniques are
then applied, e.g., incorporating temporal influence [113], and
utilizing a personalized geographical model via kernel density
estimator [116, 117]. On the other hand, model-based CF
is proposed to tackle the POI recommendation problem that
benefits from its scalability. Cheng et al. [7] propose a multi-
center Gaussian model to capture user geographical influence
and combine it with social matrix factorization (MF) model [57]
to recommend POIs. Gao et al. [15] propose an MF-based
model, Location Recommendation framework with Temporal
effects (LRT), utilizing similarity between time-adjacent check-
ins to improve performance. Lian et al. [44] and Liu et al. [54]
enhance the POI recommendation by incorporating geographical
information in a weighted regularized matrix factorization mo-
del [30]. In addition, some researchers subsume users’ comments
to improve the recommendation performance [16, 43, 111].
Other researchers model the consecutive check-ins’ correlations
to enhance the system [9, 51, 128, 127].
Temporal Effect Modeling. In 2011, Cho et al. [11] propose
the periodicity of check-in data in LBSNs. People always
visit restaurants at noon, so we suffice to recommend users
restaurants meeting their tastes at noon. The CF technique
helps us to recommend similar POIs at the same time slot.
However, experiments in [11] depend on dense check-in data,
not fitting most of the users. In 2013, Yuan et al. [113]
combine the temporal similarity and non-temporal similarity
and propose a new similarity metric to enhance the user-based
CF model. At the same year, Gao et al. [15] observe the
non-uniformness property (a user’s check-in preference changes
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at different hours of a day), and consecutiveness (a user’s
preference at time t is similar with time t − 1). Further, Gao
et al. propose LRT model based on MF technique to model
the non-uniformness and consecutiveness. Meantime, Cheng
et al. [9] propose the Factorized Personalized Markov Chain
model [74] with Local Region constraint (FPMC-LR) to capture
the consecutiveness, supposing the strong correlation between
two consecutive checked-in POIs. However, previous work does
not model the three features together nor modeling the temporal
influence at different scales.
Embedding Neural Network. The embedding neural net-
work, e.g., word2vec framework [61], has turned out to be a
successful semi-supervised learning method. It is used in natural
language processing [48, 53]. For the efficacy of the framework
in capturing the correlations of items, the embedding neural
network is employed to the network embedding [69, 89, 24],
and as well as in recommendation systems [102, 88]. Moreover,
recent studies [39, 42] show that the neural word embeddings
can be treated as a kind of matrix factorization method [34].
This equivalence between neural embeddings and the latent
factor models inspires us to understand our ATTF model from
the embedding neural network perspective. Our interpretation
of ATTF model from neural network perspective verifies that
the embedding neural network can be treated as a general
framework for latent factor models, including rating estimation
models [34] and ranking models (e.g., our proposed ATTF
model).
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(a) A user’s check-in pattern in a day (b) Consecutive hour pair similarity

Figure 4.2: Sparsity demonstration

4.3 Preliminaries

In this section, we first analyze the temporal features of user
check-in data. Then, we introduce the time labeling scheme
that is the prerequisite of our ATTF model. We analyze user
check-in data in Foursquare and Gowalla, which demonstrates
the similar check-in pattern. In the following, we show the
empirical data analysis result based on a randomly selected user
in Foursquare.

4.3.1 Empirical Data Analysis

We leverage empirical data analysis to explore the three tempo-
ral properties of check-in data. Our analysis verifies previous
discoveries, for instance, the non-uniformness—user check-in
preference changes at different time of a day [15]. Moreover,
we observe some new properties not covered in prior work, e.g.,
the non-uniformness exists at different time scales.
Data sparsity is a big concern in previous temporal models.
Figure 4.2(a) demonstrates a user’s check-in pattern in a day.
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We observe that the user always has many check-ins in the
morning and evening, which verifies the periodicity. The check-
in activity repeats in the morning and evening. Figure 4.2(b)
shows the consecutive hour pair similarity1, i.e., the check-
in similarity between time t and t − 1 (t means the hour
1, 2, ..., 24). We observe that the user check-in preference has
high similarity at some consecutive hours, e.g., between 5 o’clock
and 4 o’clock, 8 o’clock and 7 o’clock. However, we also find
that at some time (e.g., 9:00), the user has few check-ins and
the similarity is zero. Therefore, the sparse data make it too
hard to model the periodicity and consecutiveness via a counting
method (e.g., Pearson correlation or cosine similarity). As
shown in Figure 4.2(b), most of the similarities are zero. So
the consecutiveness cannot be modeled at most of the time.
The dilemma of counting methods in the face of sparse data
motivates us to exploit a latent factor learning model. In our
model, we use a time latent factor to represent the temporal
effect of a time slot, not modeling the temporal effect from the
user or POI perspective. Further, the temporal factor is learned
from all users’ check-ins at the time slot. Therefore, it overcomes
the sparsity problem in counting methods.
We observe that the non-uniformness (e.g., the check-in change
characteristics) exists at different time scales in users’ check-
in data. Following [15], we demonstrate an example of a
random user’s aggregated check-in activities on his/her top 5
most visited POIs in Figure 4.3. Figure 4.3(a) verifies the non-
uniformness: a user’s check-in preference changes at different
hours of a day [15]. As shown in Figure 4.3(a), the most visited

1We use cosine similarity here; other measures like Pearson correlation are also
applicable.
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(a) Non-uniformness in hour of one day

(b) Non-uniformness in day of week (c) Non-uniformness in month

Figure 4.3: Demonstration of non-uniformness at different time scales

POI changes at different hours. For example, the most visited
POI is POI 1 at 1:00 while the most visited POI is POI 4 at
5:00. Besides, we discover there are other change characteristics.
As shown in Figure 4.3(b) and Figure 4.3(c), a user’s check-in
preference changes at different months of a year, and among
different days of a week as well. The change of check-ins at
different time scales depicts the user preference from different
perspectives: 1) A user may check-in at POIs around his/her
home in the morning, visit places around the office in the day
time, and have fun in bars at night. 2) A user may visit
more locations around his/her home or office on weekdays. On
weekends, he/she may check-in more at some shopping malls
or vocation places. 3) At different months, a user may have
different customs. For instance, he/she would visit ice cream
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shops in the months of summer and hot pot restaurants in the
months of winter. Hence, only modeling the non-uniformness at
a single scale, we cannot capture all temporal features, which
need to be formulated at different scales.

4.3.2 Time Labeling Scheme

Time labeling is a prerequisite of our ATTF model. We use a
time latent factor to represent the temporal effect at a specific
time, and then learn from a latent factor model. Time labeling
scheme determines how to assign a latent factor to specific time.
Before diving to the model, we describe the time labeling scheme
first.

Figure 4.4: Time labeling scheme demonstration

Figure 4.4 demonstrates the time labeling scheme. In order to
capture temporal features at different time scales, we represent
a time spot with several parts and then aggregate their con-
tributions together. According to the empirical data analysis,
we consider temporal features in three time scales: month of
a year, day of a week, and hour of a day. Now the temporal
effect is formulated by three latent time factors. As shown in
Figure 4.4, we leverage three slices to denote a time spot: month
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of year, day of week, and hour of day. Further they are depicted
by three kinds of different temporal latent vectors respectively.
So a time spot t is labeled by a tuple (t1, t2, t3), which satisfies
that t1 ∈ {0, 1, · · · , 12}, t2 ∈ {0, 1, · · · , 6}, t3 ∈ {0, 1, · · · , 23}
(we have 12 months in a year, 7 days in a week, and 24 hours
in a day). Furthermore, we define T1 ⊂ R12×d, T2 ⊂ R7×d, and
T3 ⊂ R24×d to denote the corresponding temporal latent factor
matrices, where d is the latent vector dimension.
To aggregate several temporal factors, we define an operator
A(·) : Rd × Rd × Rd → Rd to combine different temporal
features. Take “2011-04-05 18:10:23” as an example, its label
ids at month, day of week, and hour are 3 (April), 2 (Tuesday),
18 (after 18:00). Hence its temporal latent factor is formulated
as A(T1,3, T2,2, T3,18). It is important to note that our scheme is
flexible: we are able to ignore one feature by taking away a slice,
or introduce a new feature by adding a new slice.
Memory Reducing Trick. We reduce the input data size
through a binary coding trick. We employ one label id instead
of three to represent the three slices. In detail, we use 4 bits to
represent the month, 3 bits to represent the day of week, and
5 bits to represent the hour slot. So the time label id can be
represented by an integer of 16 bits. For instance, “2011-04-
05 18:10:23” could be coded as “0011 010 10010”, and its label
id is 850. When we learn the model, we transform the label
id into binary representation and find the corresponding label
to each slice. After labeling the time, we are able to model the
temporal effect from a user-time-POI latent factorization model;
see details in Section 4.4.
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4.4 Method

In this section, we first demonstrate the ATTF model. Then
we give the detailed model inference and learning procedure.
Finally, we summarize the model discussion.

4.4.1 Aggregated Temporal Tensor Factorization Mo-
del

Denote that U is the set of users and L is the set of POIs. In
addition, T1, T2, and T3 are the set of months, days of week,
and hours respectively. Further we define T as the set of time
label tuples, consisting of elements t := (t1, t2, t3), namely the
temporal representation at different scales. The ATTF model
estimates the preference of a user u at a POI l given a specific
time label t through a score function f(u, t, l), where u ∈ U is
user id, t ∈ T is a time label tuple, and l ∈ L is POI id.
We are typically given N training examples (ui, ti, li) ∈ {1, ..., |U|}×
{1, ..., |T |}×{1, ..., |L|}, i = 1, 2, ..., N , and correspondingly out-
puts yi ∈ R, i = 1, 2, ..., N . Here, (ui, ti, li) is the index of
a particular element of a user-time-POI tensor, and yi is the
preference score of the user at the POI given the time label.
One could simply collate the training data to build a suitable
tensor, so the training task turns to fill in the blank entries of
the tensor.
We exploit the Pairwise Interaction Tensor Factorization (PITF) [75]
model to decompose the user-time-POI tensor. PITF model
that turns out to be successful in the ECML/PKDD Discovery
Challenge, runs much faster than other tensor factorization
methods and has better performance in a large scale prediction
task [75]. Thus the score of a POI l given user u and time
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t is factorized into three interactions: user-time, user-POI,
and time-POI, where each interaction is modeled through the
latent vector product. Further, we infer the model via Bayesian
Personalized Ranking (BPR) criteria [73] that is a general
framework to train a recommendation system from implicit
feedback. Because prior work [44, 128, 127] indicates that
treating the check-ins as implicit feedback is better than explicit
ways for POI recommendation. Since we recommend POIs for
users at specific time, any candidate POI has the same user-time
interaction. As a result, the preference score is independent of
the user-time interaction. Then the score function for a given
time label t, user u, and a target POI l could be formulated as :

f(u, t, l) = ⟨U (L)
u , L

(U)
l ⟩+ ⟨A(T

(L)
1,t1

, T
(L)
2,t2

, T
(L)
3,t3

), L
(T )
l ⟩, (4.1)

where ⟨·⟩ denotes the vector inner product, A(·) is the aggregate
operator. Suppose that d is the latent vector dimension, U (L)

u ∈
Rd is user u’s latent vector for POI interaction, L

(U)
l , L

(T )
l ∈

Rd are POI l’s latent vectors for user interaction and time
interaction, T

(L)
1,t1

, T
(L)
2,t2

, T
(L)
3,t3
∈ Rd are time t’s latent vector

representations in three aspects: month, day of week, and hour.
Aggregate operator combines the several temporal features
together. We propose a linear convex combination operator.
It is formulated as follows,

A(·) = α1 · T (L)
1,t1

+ α2 · T (L)
2,t2

+ α3 · T (L)
3,t3

, (4.2)

where α1, α2, and α3 denote the weights of each temporal factor,
which satisfy α1 + α2 + α3 = 1, and α1, α2, α3 >= 0.

4.4.2 Learning

We infer the model via BPR criteria [73], which treats the check-
in activity as a kind of implicit feedback. Namely, we assume
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the user prefers the visited POIs than the unvisited. We treat
the visited POIs as positive and the unvisited as negative. Then,
we suppose that the score of f(u, t, l) at positive observations
is higher than the negative POIs, given u and t. Further, we
formulate the relation that user u prefers a positive POI li than
a negative one lj at time t as follows

li >u,t lj. (4.3)

Based on the pairwise preference defined above, we suffice
to extract the set of preference constraints from the training
examples

DS := {(u, t, li, lj)|li >u,t lj, u ∈ U , t ∈ T , li, lj ∈ L}. (4.4)

For simplicity, we denote yu,t,l = f(u, t, l). Then for any
quadruple in DS, it satisfies yu,t,li > yu,t,lj . Using a logistic
function to model this relation, we get

p(li >u,t lj) := σ(yu,t,li − yu,t,lj), (4.5)

which measures the probability of li is a positive observation and
lj is a negative observation for user u at time t. In Eq. (4.5), σ
is the logistic function σ(x) = 1

1+e−x .
Suppose the quadruples in DS are independent of each other,
then learning the ATTF model is to maximize the likelihood of
all the pair orders

arg max
Θ

∏
(u,t,li,lj)∈DS

p(li >u,t lj), (4.6)

where Θ is the parameters to learn, namely U (L), L(U), L(T ),
T

(L)
1 , T

(L)
2 , and T

(L)
3 . The objective function is equivalent to

minimizing the negative log likelihood. To avoid the risk of
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overfitting, we add a Frobenius norm term to regularize the
parameters. Then the objective function is

arg min
Θ

∑
(u,t,li,lj)∈DS

− ln(σ(yu,t,li − yu,t,lj)) + λΘ||Θ||2F , (4.7)

where λΘ is the regularization parameter.
We leverage the Stochastic Gradient Decent (SGD) algorithm
to learn the objective function for efficacy. First, we define
yu,t,lp,ln = yu,t,lp − yu,t,ln, which models the pairwise relation in
DS. Further we denote a common part in gradient decent values
for all parameters as δ = 1 − σ(yu,t,lp,ln). As T

(L)
1,t1

, T
(L)
2,t2

, and
T

(L)
3,t3

are symmetric, they have the same gradient form. For
simplicity, we use T

(L)
t ∈ {T (L)

1,t1
, T

(L)
2,t2

, T
(L)
3,t3
} to represent any of

them, α ∈ {α1, α2, α3} to denote corresponding weight, and A(·)
to denote A(T

(L)
1,t1

, T
(L)
2,t2

, T
(L)
3,t3

). Then the updating rule for the
parameters is as follows,

U (L)
u ← U (L)

u + γ · (δ · (L(U)
lp
− L

(U)
ln

)− λ · U (L)
u ),

L
(U)
lp
← L

(U)
lp

+ γ · (δ · U (L)
u − λ · L(U)

p ),

L
(T )
lp
← L

(T )
lp

+ γ · (δ · A(·)− λ · L(T )
lp

),

L
(U)
ln
← L

(U)
ln
− γ · (δ · U (L)

u + λ · L(U)
n ),

L
(T )
ln
← L

(T )
ln
− γ · (δ · A(·) + λ · L(T )

ln
),

T
(L)
t ← T

(L)
t + γ · (δ · α · (L(T )

lp
− L

(T )
ln

)− λ · T (L)
t ),

(4.8)

where γ is the learning rate, λ is the regularization parameter.
To train the model, we use the bootstrap skill to draw the qua-
druple from DS, following [73]. Algorithm 3 gives the detailed
procedure to learn the ATTF model. We aim to learn the latent
representations of user, temporal features, and POIs, namely
U (L), T

(L)
1 , T

(L)
2 , T

(L)
3 , L(U), L(T ). Let |U| denote the number of
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ALGORITHM 3: ATTF model learning algorithm
Input: Training tuples {(ui, ti, li)}i=1,...,N

Output: U (L), T
(L)
1 , T

(L)
2 , T

(L)
3 , L(U), L(T )

Initialize U (L), T
(L)
1 , T

(L)
2 , T

(L)
3 , L(U), L(T )

Uniformly sample ⌊100 ∗
√
|U|⌋ check-in tuples from DS to generate

De for loss calculation
for iterations do

//S is the number of sampled check-ins
for i ∈ [1, S] do

Draw (u, t, lp) uniformly from training tuples
// k is the number of negative samples
for n = 1, 2, ..., k do

Draw ln uniformly to form (u, t, lp, ln)

yu,t,lp,ln ← yu,t,lp − yu,t,ln
δ ← 1− σ(yu,t,lp,ln)

Update parameters according to Eq. (6.8)
end

end
Estimate the loss defined on De

end
Return U (L), T

(L)
1 , T

(L)
2 , T

(L)
3 , L(U), L(T )

users, then we generate about ⌊100 ∗
√
|U|⌋ tuples from DS

to generate a tuple set De for the loss estimation, namely the
negative log likelihood value. We follow the implementation of
BPRMF [73] in MyMediaLite2 to set the number of samples
for loss estimation as ⌊100 ∗

√
|U|⌋. In each iteration, we

sample S check-ins and then generate negative samples to learn
the model. After that, we calculate the loss value over De:∑
(u,t,li,lj)∈De

− ln(σ(yu,t,li − yu,t,lj)) + λΘ||Θ||2F . The convergent

condition is satisfied when the loss value for the fixed sampled
tuples does not decrease.

2http://www.mymedialite.net/index.html
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Complexity. The runtime for predicting a triple (u, t, l) is in
O(d), where d is the number of latent vector dimension. The
updating procedure is also in O(d). Hence training a quadruple
is in O(d), then training an example (u, t, l) is in O(k · d),
where k is the number of sampled negative POIs. For each
iteration, we sample S training examples. The calculation cost
for loss estimation is less than the training procedure. Therefore,
training the model costs O(I ·S ·k ·d), where I is the number of
iterations. In practical, I is always small for different datasets,
in the range of [5, 30].

4.4.3 Model Discussion

The ATTF model can be treated as a linear combination of
two matrix factorization models which learn user preference and
temporal effect respectively, as shown in Eq. (4.1). The first
term depicts the user-POI interaction, which is similar as the
low rank matrix factorization for the user-POI matrix through
collaborative filtering technique. The second term depicts the
time-POI interaction, which acts like leveraging a latent factor
model to describe the relations between time labels and POIs.
Further, the aggregate operator A(·) combines several temporal
factors together.
Two points are important to note for our model: (1) The ATTF
model and the time labeling scheme are a general framework
to subsume several temporal characteristics together. We take
three common ones in this work, but it is easy to add others,
e.g., different days in a month, workdays and vocations in a
year. (2) Even though the model equation for ATTF in POI
recommendation suffices to be expressed by a combination of
two MF models, it is different from a simple ensemble of two MF
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Figure 4.5: Embedding neural network for ATTF model

model recommendation results because in our case the model
parameters are learned jointly. Thus the learned parameters
jointly represent the user preference and temporal effect. It
better reflects the fact that user check-in behavior is a complex
decision under many conditions.
The ATTF model can also be interpreted from the embedding
neural network perspective. The embedding network, e.g.,
word2vec framework [61], has turned out to be a successful semi-
supervised learning method in natural language processing [68,
36], network embedding [69, 89, 24], and recommendation
systems [102, 88]. Moreover, recent studies [39, 42] show that
the neural word embeddings can be treated as a kind of matrix
factorization method [34]. This equivalence between neural
embeddings and the latent factor models inspires us to under-
stand our ATTF model from the embedding neural network
perspective. Figure 4.5 demonstrates the equivalent embedding
neural network for the ATTF model. The input layer is the one-
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hot representation for user, POI，and temporal information. The
second layer is the embedding layer, which projects the one-hot
vector as a continuous latent vector in the Euclidean subspace.
Next, we exploit the product and sum operation to represent the
check-in preference as ⟨U (L)

u , L
(U)
l ⟩ + ⟨A(T

(L)
1,t1

, T
(L)
2,t2

, T
(L)
3,t3

), L
(T )
l ⟩,

equivalent to Eq. (4.1). Finally, we construct a BPR loss layer
to learn the embedding representations.

4.5 Experiment

We conduct systematical experiments to seek the answers of the
following questions: 1) how the proposed ATTF model performs
comparing with state-of-the-art models? 2) whether the ATTF
model is better than single temporal factor models? 3) how the
parameters affect the model performance?

4.5.1 Data Description and Experimental Setting

Two real-world datasets are used in the experiment: one is
Foursquare data from January 1, 2011 to July 31, 2011 provided
in [18] and the other is Gowalla data from January 1, 2011 to
September 31, 2011 in [122]. We filter the POIs checked-in by
less than 5 users and then choose users who check-in more than
10 times as our samples. After the preprocessing, the datasets
contain the statistical properties as shown in Table 4.1. We
randomly choose 80% of each user’s check-ins as training data,
and the remaining 20% for test data. Moreover, we use each
check-in (u, t, l) in training data to learn the latent features of
user, time, and POI. Then given the (u, t), we estimate the score
value of different candidate POIs, select the top N candidates,
and compare them with check-in tuples in test data.
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Table 4.1: Statistics of datasets
Source Foursquare Gowalla
#users 10,180 3,318
#POIs 16,561 33,665
#check-ins 867,107 635,600
Avg. #check-ins each user 85.2 191.6
Avg. #POIs each user 24.3 104.1
Avg. #users each POI 14.9 10.3
Density 3 0.0015 0.003

4.5.2 Performance Metrics

In this work, we leverage three metrics to evaluate the model
performance–precision, recall, and F-score. The precision and
recall in the top-K recommendation system are denoted as P@K

and R@K respectively. P@K measures the ratio of recovered
POIs to the K recommended POIs, and R@K means the ratio
of recovered POIs to the set of POIs in the testing data. For
each user u ∈ U , LT (u) denotes the set of correspondingly
visited POIs in the test data, and LR(u) denotes the set of
recommended POIs. Then the definitions of P@K and R@K

are formulated as follows

P@K =
1

|U|
∑
u∈U

|LR(u) ∩ LT (u)|
K

, (4.9)

R@K =
1

|U|
∑
u∈U

|LR(u) ∩ LT (u)|
|LT (u)|

. (4.10)

Further, F-score is the harmonic mean of precision and recall.
So the F-score is defined as

F-score@K =
2 ∗ P@K ∗R@K

P@K +R@K
. (4.11)

3Density means the fraction of checked-in entries over all entries in user-POI matrix.
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4.5.3 Baselines

We compare our ATTF model with state-of-the-art collabora-
tive filtering (CF) methods and POI recommendation methods
incorporating temporal effect. Prior work [128, 127] indicates
that treating the check-ins as implicit feedback is better to
recommend POIs. Hence we exploit Weighted Regularized Ma-
trix Factorization (WRMF) [30, 66] and Bayesian Personalized
Ranking Matrix Factorization (BPR-MF) [73] as comparative
CF methods. To illustrate the efficacy of our ATTF model, we
compare it with LRT [15] and FPMC-LR [9] which are state-of-
the-art POI recommendation methods incorporating temporal
effect.

• WRMF. The WRMF model is designed for processing
large scale implicit feedback data. We define the weight
mapping of user ui at POI lj as wi,j = (1+10·Ci,j)

0.5, where
Ci,j is the check-in counts, following the setting in [54].

• BPR-MF. The BPR-MF model is a popular MF-based
recommendation method to learn the pairwise relation, in
which users prefer the observed items than the unobserved.

• LRT. The LRT model is designed to modeling the “non-
uniformnes” and “consecutiveness” in a matrix factoriza-
tion model for POI recommendation.

• FPMC-LR. The FPMC-LR model adds the Local Region
constraint (i.e., geographical information) in the Factorized
Personalized Markov Chain (FPMC) model [74]. FPMC-
LR incorporates the geographical information and temporal
consecutiveness through a local region constraint and the
FPMC model respectively.
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Moreover, to demonstrate the advantage of ATTF in aggrega-
ting several temporal latent factors, we also compare with three
single temporal latent factor models: TTFM, TTFW, and
TTFH. They are typically PITF model, that correspondingly
considering the month, day of week, and hour as a temporal
latent factor. Because these three models are the subset
of our ATTF model, we attain their results by setting the
corresponding weight as 1, and others as 0 in ATTF.

4.5.4 Experimental Results
Performance Comparison

In the following, we demonstrate the performance comparison on
precision, recall and F-score. We set the latent factor dimension
as 60 for all compared models. We leverage grid search method
to find the best weights in ATTF model. α1, α2, and α3 are
constrained in the range of [0, 1]. In the grid search method, we
first change α1 from zero to one with step size 0.1. Then, for
each α1 value, for instance α1 = 0.1, we change α2 from zero to
1−α1 with step size 0.1. α3 can be calculated by 1−α1−α2. The
grid search method tries all value combinations with step size 0.1
satisfying the constraints α1+α2+α3 = 1, and α1, α2, α3 >= 0.
As a result, the ATTF model on Foursquare data achieves the
best result when α1 = 0.7, α2 = 0.1, and α3 = 0.2, while the
ATTF model on Gowalla data achieves the best when α1 = 0.2,
α2 = 0.1, and α3 = 0.7.
Figure 4.6, Figure 4.7, and Figure 4.8 show the experimen-
tal results for Foursquare and Gowalla data on measurement
precision, recall, and F-score respectively. We see that 1)
Our proposed ATTF model outperforms state-of-the-art CF
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(a) Foursquare (b) Gowalla

Figure 4.6: Precision on Foursquare and Gowalla

(a) Foursquare (b) Gowalla

Figure 4.7: Recall on Foursquare and Gowalla

methods and POI recommendation models. Compared with
the best state-of-the-art competitor in POI recommendation
area (e.g., FPMC-LR), the ATTF model gains more than 20%
enhancement on Foursquare data, and more than 36% enhan-
cement on Gowalla data for all three measures, Precision@5,
Recall@5, and F-score@5. We observe that models perform
better on Foursquare data than Gowalla data, even though it is
sparser. The reason lies in that Gowalla data contain much more
POIs and a large candidate POI set makes the recommendation
harder. 2) The ATTF model outperforms single temporal factor
models. Compared with best single temporal factor model, the
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(a) Foursquare (b) Gowalla

Figure 4.8: F-score Foursquare and Gowalla

ATTF model gains about 3% enhancement on Foursquare data,
and about 10% improvement on Gowalla data in a top-5 POI
recommender system. So when data are denser, the ATTF
model gets advantages. Because the ATTF model uses a tuple
to represent a time spot, which gives more precise information.
Dense data strengthen this precise labeling scheme. In addition,
different weight assignments on both data give us two interesting
insights: (i) When data are sparse, the temporal feature on
month dominates the POI recommendation performance. Be-
cause check-ins on hour or day of week are sparse as shown
in Figure 4.3, then the corresponding characteristics are not
easily caught. The Foursquare dataset has high weight on month
temporal factor. However, when data are denser, check-ins on
hour are not so sparse. So the temporal characteristic on hour
of day becomes prominent. (ii) We usually pay much attention
to temporal characteristics on hour of day and day of week. Our
experimental results indicate that the temporal characteristic on
month is important, especially for sparse data. 3) Our proposed
ATTF model, single temporal factorization models (e.g., TTFM,
TTFW, and TTFH), and FPMC-LR perform much better than
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(a) Foursquare (b) Gowalla

Figure 4.9: The effect of regularization parameter λ

other competitors, especially at recall measure. They try to
recommend POIs at more specific situations, which is the key
point to improve performance. Our models recommend a user
POIs at some specific time, and FPMC-LR recommends POIs
given a user’s recent checked-in POIs; while, the other three
models give general recommendations.

Parameter Effect

The regularization parameter and latent vector dimension are
two important factors affecting the model performance. We
explore how they affect the proposed model in the condition
of other parameters fixed.
Figure 4.9 demonstrates the effect of regularization parameter
on model performance. For simplicity, we set the same para-
meter λ for all latent vectors. The regularization part does
not significantly affect the model. The model achieves the best
performance at 0.001. With the increasing of λ, the performance
decreases.
Figure 4.10 demonstrates how the latent vector dimension
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(a) Foursquare (b) Gowalla

Figure 4.10: The effect of latent factor dimension

affects the model. The performance of ATTF steadily rises with
the increase of latent vector dimension. For the trade-off of
high performance and low computation cost, we suggest setting
dimension d = 60.

4.6 Conclusion

In this chapter, we propose the ATTF model for POI recom-
mendation. The proposed model introduces time factor to
model the temporal effect in POI recommendation, subsuming
all the three temporal properties: periodicity, consecutiveness,
and non-uniformness. Moreover, the ATTF model captures the
temporal influence at different time scales through aggregating
several time factors’ contributions. Experimental results on two
real-world datasets show that the ATTF model outperforms
state-of-the-art models. Our model is a general framework to
aggregate several temporal characteristics at different scales.

2 End of chapter.



Chapter 5

Geo-Teaser: Geo-Temporal
Sequential Embedding Rank for
POI Recommendation

POI recommendation is an important application for LBSNs,
which learns the user preference and mobility pattern from
check-in sequences to recommend POIs. Previous studies
show that modeling the sequential pattern of user check-ins
is necessary for POI recommendation. Markov chain model,
recurrent neural network, and the word2vec framework are
used to model check-in sequences in previous work. Howe-
ver, all previous sequential models ignore the fact that check-
in sequences on different days naturally exhibit the various
temporal characteristics, for instance, “work” on weekday and
“entertainment” on weekend. In this chapter, we take this
challenge and propose a Geo-Temporal sequential embedding
rank (Geo-Teaser) model for POI recommendation. Inspired by
the success of the word2vec framework to model the sequential
contexts, we propose a temporal POI embedding model to learn
POI representations under some particular temporal state. The
temporal POI embedding model captures the contextual check-

88
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in information in sequences and the various temporal characte-
ristics on different days as well. Furthermore, we propose a new
way to incorporate the geographical influence into the pairwise
preference ranking method through discriminating the unvisited
POIs according to geographical information. Then we develop
a geographically hierarchical pairwise preference ranking model.
Finally, we propose a unified framework to recommend POIs
combining these two models. To verify the effectiveness of
our proposed method, we conduct experiments on two real-life
datasets. Experimental results show that the Geo-Teaser model
outperforms state-of-the-art models.

5.1 Introduction

LBSNs such as Foursquare and Facebook Places have become
popular services to attract users sharing their check-in beha-
viors, making friends, and writing comments on POIs. With
the prosperity of LBSNs, POI recommendation comes out
to improve the user experience, which mines users’ check-in
sequences and recommends places where an individual has not
been. POI recommendation not only helps users explore new
interesting places in a city, but also facilitates business owners
to launch advertisements to target customers. Due to the
significance for users and businesses, POI recommendation has
attracted much academic attention, and thus a bunch of met-
hods has been proposed to enhance the POI recommendation
system [7, 25, 107, 111].
Modeling the sequential pattern of user check-ins is necessary
for POI recommendation. Because successive check-ins are
usually correlated [9, 51, 105, 119]. Markov chain model,
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recurrent neural network, and the word2vec framework are used
to model the check-in sequences in previous work. Studies
in [51, 105, 119] exploit the Markov chain model to capture
the successive check-ins’ transitive pattern. Besides, researchers
in [9, 14, 128] use the latent factor model based on the Markov
chain property to model the successive check-ins’ correlations.
Recently, inspired by the success of deep learning, the neural
network has been used to model the check-in sequences. Liu
et al. [49] employ the recurrent neural network (RNN) to
find the sequential correlations. The work in [52] models the
check-in sequences through the word2vec framework to capture
the sequential contexts. Moreover, we observe that check-
in sequences on different days naturally exhibit the various
temporal characteristics. For example, users always check-in
at POIs around offices on weekday while visit shopping malls
on weekend. However, all previous sequential models ignore the
various temporal characteristics, which motivates our model.
Inspired by the success of the word2vec framework to model the
sequential contexts [52], we propose a temporal POI embedding
model to capture the contextual check-in information and the
various temporal characteristics as well. In [52], all POIs are
built as the “corpus”, each POI is treated as a “word”, and
a user’s all sequential check-ins are treated as a “sentence”.
Then, the word2vec framework [61] can be used to learn the
POI embeddings, which contain the contextual relationships of
consecutively visited POIs, showing better performance than
Markov chain model. Nevertheless, the learned POI embeddings
for capturing the sequential contexts cannot subsume the vari-
ous temporal characteristics on different days. Moreover, the
geographical influence is not considered in [52]. Studies on user
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Figure 5.1: Framework of the Geo-Teaser model

mobility data show that the geographical influence is the most
significant factor for POI recommendation [107, 117, 122]. The-
refore, the geographical influence is expected to be incorporated
to improve the POI recommendation.
To sum up, we propose the Geo-Teaser model for POI recom-
mendation, as shown in Figure 5.1. On the one hand, we propose
a temporal POI embedding model to capture the contextual
check-in information and the various temporal characteristics
as well. In particular, we treat one user’s check-in sequence
in one day as a “sentence”. Then we consider each sequence
under a specific temporal state and define the temporal POI,
referring to a POI taking a specific temporal state as context.
Further, we propose the temporal POI embedding model to learn
POI representations and temporal state representations. On
the other hand, we incorporate the geographical influence into a
pairwise preference ranking model and develop a geographically
hierarchical pairwise preference ranking model. Traditionally,
we assume users prefer the visited POIs than the unvisited and
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establish a pairwise ranking model to learn user preference on
POIs [41, 128]. Previous studies [7, 107] indicate that users
prefer POIs that are geographically adjacent to their visited
POIs. This geographical characteristic inspires us to boost
the traditional pairwise ranking model through hierarchical
pairwise preference relations that discriminate the unvisited
POIs according to POIs’ geographical information. Finally, we
propose the Geo-Teaser model as a unified framework to re-
commend POIs combining the temporal POI embedding model
and the geographically hierarchical pairwise ranking model. We
summarize the contributions as follows:

1. We propose the temporal POI embedding model, which
captures the check-ins’ sequential contexts and the various
temporal characteristics on different days. In particular,
we introduce the word2vec framework to project every
POI as one object in an embedding space for learning
the sequential relations among POIs. Furthermore, we
learn the temporal POI representations from the check-in
sequence under some specific temporal state.

2. We propose a new way to incorporate the geographi-
cal influence into the pairwise preference ranking method
through discriminating the unvisited POIs according to ge-
ographical information. In particular, we define a hierarchi-
cal pairwise preference relation for each user check-in: the
user prefers the visited POI than the unvisited neighboring
POI, and the user prefers the unvisited neighboring POI
than the unvisited non-neighboring POI. Then we learn the
hierarchical pairwise preference to capture the geographical
influence and user preference.
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3. We propose the Geo-Teaser model as a unified framework
combining the temporal POI embedding model and the
geographically hierarchical pairwise preference ranking mo-
del. Experimental results on two real-life datasets show
that the Geo-Teaser model outperforms state-of-the-art
models. Compared with the best baseline competitor, the
Geo-Teaser model improves at least 20% on both datasets
for all metrics.

5.2 Related Work

In this section, we first demonstrate the recent progress of POI
recommendation. Then we report how the prior work exploits
the sequential influence and geographical influence to improve
the POI recommendation. Since our proposed method adopts an
embedding learning method, the word2vec framework, to model
check-in sequences, we also review the literature of the word2vec
framework and its applications.
POI Recommendation. POI recommendation has attracted
intensive academic attention recently. Most of the proposed
methods base on Collaborative Filtering (CF) techniques to
learn user preference on POIs. On the one hand, the studies
in [107, 113] employ the memory-based CF to recommend POIs.
The proposed system first finds some users sharing the similar
check-in preference with the target user and then recommends
POIs where the “similar” users have checked-in but the target
user has not. Furthermore, the researchers attempt to analyze
the user check-in behavior and incorporate the spatial and tem-
poral influence to improve the recommendation performance.
On the other hand, some other studies in [7, 15, 16, 40]
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leverage the model-based CF, i.e., the Matrix Factorization
(MF) technique. They treat the POI as “item” and the check-
in frequency as “rating” and establish a user-POI matrix to
recommend POIs using traditional MF models. Moreover, the
researchers in [44, 54] observe that it is better to treat the check-
ins as implicit feedback than explicit way, namely the check-ins
are similar to clicks on Webs rather than the rating on Movies.
They utilize the weighted regularized MF [30] to model this kind
of implicit feedback. In addition, recent work in [41, 128, 126]
employs pairwise ranking models to learn the user check-in as an
implicit feedback and shows the advantages of ranking methods.
Sequential Modeling. Modeling the sequential pattern is
important for POI recommendation. Most of the studies
employ the Markov chain property in consecutive check-ins
to capture the sequential pattern. We usually categorize the
POI recommendation system as generic POI recommendation
and successive POI recommendation by subtle differences in
the recommendation task whether to be biased to the recent
check-in. The successive POI recommendation is proposed to
recommend POIs given the recent check-in, which naturally
attempts to model the sequential pattern from successive check-
ins [9, 14, 117, 49]. Also, researchers leverage the sequential
modeling to improve the generic POI recommendation. The
studies in [51, 105] learn the categories’ transitive pattern in
sequential check-ins. Zhang et al. [119] recommend POIs by
learning the transitive probability through an additive Markov
chain. Recently, inspired by the success of deep learning, the
neural network has been used to model the check-in sequences.
Liu et al. [49] employ the recurrent neural network (RNN) to find
the sequential correlations among POIs. In the meantime, the
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work [52] models the check-in sequences through the word2vec
framework [61] to capture the sequential contexts. The success
in the prior work [51, 105, 119, 49, 52] motivates us to capture
the sequential pattern in user check-ins to improve the generic
POI recommendation. However, all previous sequential models
ignore the various temporal characteristics. Hence, we propose
a temporal POI embedding method to capture the sequential
POIs’ correlations under different temporal states.
Geographical Influence. Geographical influence plays an im-
portant role in POI recommendation. Compared with watching
movies on Netflix and online shopping in Amazon, the check-in
activity is limited to the physical constraint. Hence, the check-
ins usually occur in the POIs nearby the user’s home and wor-
king place. This observation motivates researchers to capture
the geographical influence to improve the POI recommendation.
On the one hand, researchers attempt to establish geographical
models to recommend POIs. First, researchers in [107, 113]
discover that the distances for each pair of visited POIs in
the LBSN follow the power law distribution after analyzing the
geographical relations among visited POIs. Then, they propose
a power law distribution model to fit the spatial relations among
POIs and recommend POIs according to this kind of geographi-
cal influence [107, 113]. Moreover, researchers in [11, 7, 122]
analyze each user’s check-ins rather than all visited POIs and
propose the Gaussian distribution based models to capture the
geographical influence. Recently, Zhang et al. [117, 120] have
observed that each user occupies a group of special parameters
in the Gaussian mixture model. Then, they leverage the
kernel density estimation to model each user’s check-ins for
personalization. On the other hand, instead of independently
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modeling the geographical influence, more researchers attempt
to jointly model the geographical influence and other factors
such as user preference and temporal influence together. The
studies in [44, 54] incorporate the geographical influence into a
weighted regularized MF model [30, 66] to learn the geographical
influence and user preference together. Similar to [44, 54], we
model the check-ins as a kind of implicit feedback. But we
learn it through a Bayesian pairwise ranking method [73] due
to its success in [128]. Furthermore, we propose a geographi-
cally hierarchical pairwise ranking model, which captures the
geographical influence via discriminating the unvisited POIs
according to their geographical information.
Embedding Learning. The word2vec framework [61] is an
effective neural language model to learn embedding representa-
tions in word sequences. The key idea is to learn the sentence
as the bag of words and represent the relations among words in
the embedding subspace, such as “male”-“female”+“queen” =
“king”. The embedding learning technique in the word2vec fra-
mework attempts to capture the words’ contextual correlations
in sentences, showing better performance than the perspectives
of word transitivity in sentences and word similarity. As a
result, the embedding learning technique has been widely used
in natural language processing recently [60, 62]. Afterwards,
paragraph2vector [36] and other variants [48, 53] are proposed
to enhance the word2vec framework for specific purposes. Since
the efficacy of the framework in capturing the contextual corre-
lations of items, the embedding technique based on the word2vec
framework is employed to network embedding [69], as well as in
user modeling [88] and item modeling [87]. To take the power
of embedding learning for POI recommendation, Liu et al. [52]
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Table 5.1: Data statistics
Foursquare Gowalla

#users 10,034 3,240
#POIs 16,561 33,578
#check-ins 865,647 556,453
Avg. #check-ins of each user 86.3 171.7
Avg. #POIs for each user 24.6 95.4
Avg. #users for each POI 14.9 9.2
Density 0.0015 0.0028

model the sequential contexts through a Skip-Gram model and
achieves better performance than Markov chain model. Xie et
al. [102] use similar embedding technique to recommend POIs.
However, the previous work [52, 102] ignores two significant
factors accounting for the check-in activity, the various temporal
characteristics and geographical influence. To incorporate these
two factors, we propose the Geo-Teaser model.

5.3 Data Description and Analysis

In this section, we first introduce two real-world LBSN datasets
and then conduct the empirical analysis to explore the properties
of check-in sequences in one day.

5.3.1 Data Description

We use two check-in datasets crawled from real-world LBSNs for
data analysis. One is collected from Foursquare provided in [18]
and the other is Gowalla data provided in [122]. We preprocess
the data by filtering the POIs checked-in less than five users
and users whose check-ins are less than ten times. Then we
keep the remaining users’ check-in records from January 1, 2011
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Figure 5.2: POI correlation in sequences

to July 31, 2011. After the preprocessing, the datasets contain
the statistical properties as shown in Table 5.1.

5.3.2 Empirical Analysis

We conduct data analysis to answer the following two questions:
1) how POIs in sequences of one day correlate each other? 2)
how check-in sequences perform on different days?
We investigate the correlations of POIs in sequences of one day,
as shown in Figure 5.2. To calculate the correlation between
two POIs, we construct the user-POI matrix according to the
check-in records. Then, we measure the correlation of a POI
pair regarding the Jaccard similarity of those users who have
checked-in at the two POIs. In Figure 5.2(a), we calculate
the average correlation value of POI pairs in sequences for all
users and compare it with the average correlation value of 5,000
random POI pairs. We observe that the correlation of POIs
in sequences is much higher than random pairs by about 100
times for Foursquare and 50 times for Gowalla, which motivates
the sequential modeling. In Figure 5.2(b), we compare the
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(a) Foursquare

(b) Gowalla

Figure 5.3: Check-in pattern at different hours over day of week

correlation of consecutive pairs with nonconsecutive pairs in
sequences. Take a sequence of (l1, l2, l3) as an example, (l1, l2)
and (l2, l3) are consecutive pairs, and (l1, l3) is a nonconsecutive
pair. We also calculate the average value of all sequences
for all users to make the comparison. We observe that the
nonconsecutive pairs contain comparable correlation to the
consecutive pairs. Hence, not only consecutive POIs are highly
correlated [9, 128], all POIs in a sequence are highly correlated
with a contextual property. Accordingly, it is not satisfactory
to only model the consecutive check-ins’ transitive probability
by Markov chain model or the consecutive check-ins’ correlation
by tensor factorization. This observation motivates us to model
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the whole sequence through the word2vec framework.
We explore how the various temporal characteristics on different
days affect the user’s check-in behavior. Previous work [126,
128] shows that user check-ins exhibit different patterns on
different days, especially for working days and weekends. Fi-
gure 5.3 demonstrates the number of cumulated check-ins for
all users at different hours on different days of a week, from
Monday to Sunday. From the statistics of cumulated check-ins
in Figure 5.3, we observe the day of week check-in pattern at
different hours: users take more check-ins in the late afternoon
and the evening from 16:00 p.m. to 3:00 a.m. on weekends than
the weekdays. Hence, Saturday and Sunday take the similar
pattern, while the days from Monday to Friday take the similar
pattern that is different from the weekends. We may infer that
weekday and weekend exert two types of effects on the user’s
check-in behavior. Therefore, modeling the sequence pattern
should contain this temporal feature.

5.4 Method

In this section, we first propose the temporal POI embedding
model to capture the various temporal characteristics for se-
quential modeling. Next, we demonstrate the geographically
hierarchical pairwise preference ranking model. Then, we pro-
pose the Geo-Teaser model as a unified framework to recommend
POIs combining the temporal POI embedding model and the
geographically hierarchical pairwise preference ranking model.
Finally, we show the learning procedures for the Geo-Teaser
model.
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5.4.1 Temporal POI Embedding

We propose a temporal POI embedding method to learn the
sequential pattern, which captures POIs’ contextual information
from user check-in sequences and as well as the various temporal
characteristics. Different from the work [52] that treats a user’s
all check-ins as a “sentence”, we treat a user’s check-ins of
one day as a “sentence”. Because consecutive check-ins on
different days may span a long time and be not highly correlated.
Further, we assume that check-in sequences on different days
exhibit various temporal characteristics. Then, we learn POI
embeddings in a sequence with some specific temporal state.
To better describe the model, we present some basic concepts
as follows.

Definition 7 (Check-in) A check-in is a triple ⟨u, l, t⟩ that
depicts a user u visiting POI l at time t.

Definition 8 (Check-in sequence) A check-in sequence is a
set of check-ins of user u in one day, denoted as Su = {⟨l1, t1⟩,
. . . , ⟨ln, tn⟩}, where t1 to tn belong to the same day. For
simplicity, we denote Su = {l1, . . . , ln}.

Definition 9 (Target POI and context POI) In a sequence
Su, the chosen li is the target POI and other POIs in Su are
context POIs.

We propose the temporal POI embedding model based on the
Skip-Gram model [61]. As shown in Figure 5.4, we learn
the representations of context POIs from li−k to li+k given a
target POI li and the sequence temporal state ts. Here k is
a parameter to control the context window size. In addition,
the temporal state ts is composed of two options, weekday
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Figure 5.4: Temporal POI embedding model

and weekend. Because we want to discriminate weekday and
weekend, which depict the various temporal characteristics on
day level as shown in Figure 5.3. Formally, given a sequence
Su and its temporal state ts, our model attempts to learn the
temporal POI embeddings through maximizing the following
function,

LTPE =
∑
Su∈S

1

|Su|
∑
li∈Su

∑
−k≤c≤k,c ̸=0

(
log Pr(li+c|li, ts)

)
, (5.1)

where S is a set containing all sequences Su for all users. LTPE

aims to maximize the context POI’s conditional occurrence
likelihood for all sequences.
Furthermore, we formulate the probability Pr(li+c|li, ts) using
a softmax function. For better description, we introduce two
symbols, defined as follows: l̂′c = l′c ⊕ l′c, lti = li ⊕ ts, where ⊕ is
the concatenation operator, and l′c, li, and ts are latent vectors
of output layer context POI, target POI, and temporal state,
respectively. Thus, we get l̂′c · lti = l′c · li + l′c · ts. Therefore, the
probability Pr(li+c|li, ts) can be formulated as,

Pr(li+c|li, ts) =
exp(̂l′c · lti)∑
li∈L exp(̂l′c · lti)

. (5.2)
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As the size of set L in Eq. (5.2) is large, we exploit the negative
sampling technique [61] to learn the model efficiently. Then,
the objective function can be formulated in a new form easier
to optimize,

LTPE =
∑
Su∈S

1

|Su|
∑
li∈Su

∑
−k≤c≤k,c≠0

(
logσ(̂l′c · lti)+∑

h

Ek′ logσ(−l̂′k′ · lti)
)
,

(5.3)

where lk′ is the sampled negative POI, h is the number of
negative samples, σ(·) is the sigmoid function, and E(·) means
to calculate the expectation value for all generated negative
samples. Here we adopt the same strategy in [61], namely using
a unigram distribution, to draw the negative samples.

5.4.2 Geographically Hierarchical Pairwise Ranking

We propose the geographically hierarchical pairwise preference
ranking model, which incorporates the geographical influence
into a pairwise ranking model. The check-in activity is observed
as a kind of implicit feedback similar to the web clicks [44, 54].
To learn this implicit feedback, we leverage the Bayesian perso-
nalized ranking (BPR) criteria [73] to learn the user preference
on POIs. BPR is a pairwise ranking model, which learns the
pairwise user preference based on the assumption that users
prefer the visited POIs than the unvisited. In our geographi-
cally hierarchical pairwise ranking model, we discriminate the
unvisited POIs using POIs’ geographical information. Previous
studies [7, 113, 122] observe that users prefer the POIs nearby
the visited than POIs far away, we can discriminate the unvisi-
ted POIs and define neighboring POI and non-neighboring POI
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as follows.

Definition 10 (Neighboring POI and non-neighboring POI) For each
check-in ⟨u, li⟩, the neighboring POI is the POI whose distance
from li is less than or equal to a threshold s, while the non-
neighboring POI is the POI whose distance is more than s.

Furthermore, for each check-in ⟨u, li⟩, we define a hierarchical
pairwise preference relation: the user prefers the visited POI li
than the unvisited neighboring POI lne, and prefers the unvisited
neighboring POI lne than the unvisited non-neighboring POI lnn.
Denote d(li, lj) as the distance of two POIs li and lj, we represent
the hierarchical pairwise preference relation for check-in ⟨u, li⟩
as follows,

li >u,d(li,lne)≤s lne ∨ lne >u,d(li,lnn)>s lnn. (5.4)

Suppose L is the set of POIs, and Lu is the visited POIs of user
u, the hierarchical pairwise preference relation set for a sequence
Su satisfying Eq. (5.4) is defined as follows,

DSu
= {(u, li, lne) ∨ (u, lne, lnn)|li ∈ Su, d(li, lne) ≤ s,

d(li, lnn) > s, lne, lnn ∈ L \ Lu}.
(5.5)

Now learning the geographically hierarchical pairwise ranking
model is equivalent to model the preference relations in DSu

.
Here we employ the MF model to formulate the preference score
function. We use lti = li⊕ts to represent the temporal POI latent
vector, which is consistent with the temporal POI embedding
model. In addition, we define û = u⊕u, then the score function
can be formulated as,

f(u, ts, li) = û · lti. (5.6)
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Next, we use the sigmoid function to formulate the pairwise
preference probability. Suppose Pr(li >u ln) denotes the
probability of user u prefers POI li than ln, and σ(·) is the
sigmoid function. Then, each pair in the preference set can be
formulated as,

Pr(li >u ln) = σ(f(u, ts, li)−f(u, ts, ln)) = σ(u · (li− ln)). (5.7)

Thus, learning the geographically hierarchical pairwise ranking
model is equivalent to maximize the following function,

LGPR =
∑
Su∈S

∑
(u,li,ln)∈DSu

logσ(u · (li − ln)), (5.8)

where S is a set containing all sequences Su for all users and
DSu

is hierarchical pairwise preference relations on sequence Su.

5.4.3 Geo-Teaser Model

We propose the Geo-Teaser model as a unified framework to
recommend POIs combining the temporal embedding model and
the pairwise ranking model. Learning the Geo-Teaser model is
equivalent to maximize LTPE and LGPR together,

O = arg max
U,L,T

α · LTPE + β · LGPR, (5.9)

where α and β are the hyperparameters to trade-off the sequen-
tial modeling and the preference learning modules. We expect
to obtain the user, POI, and temporal state representations
through learning the temporal POI embeddings and geographi-
cally pairwise preference relations in the Geo-Teaser model.
Substituting LTPE and LGPR with Eq. (5.3) and Eq. (5.8)
respectively, then we can learn the Geo-Teaser model through
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the following objective function,

arg max
U,L,T

∑
Su∈S

∑
li∈Su

( ∑
−k≤c≤k,c ̸=0

α logσ(l′c · li)+∑
h

αEk′ logσ(−l′k′ · li)+∑
DSu

β log(σ(u · (li − ln)))
)
.

(5.10)

5.4.4 Learning

We use an alternate iterative update procedure and employ sto-
chastic gradient descent (SGD) to learn the objective function.
To learn the model, for each sampled training instance, we
separately calculate the derivatives for LTPE and LGPR, and
then update the corresponding parameters along the ascending
gradient direction,

Θt+1 = Θt + η × ∂O(Θ)

∂Θ
, (5.11)

where Θ is the training parameter and η is the learning rate.
Specifically, for a check-in ⟨u, li⟩, we calculate the stochastic
gradient decent for LTPE. First, we get the updating rule for
the context POI lc,

li ← li + αη(1− σ(̂l′c · lti))l′c
ti ← ti + αη(1− σ(̂l′c · lti))l′c
l′c ← l′c + αη(1− σ(̂l′c · lti))(li + ti).

(5.12)

Then, we update the negative sample l′k as follows,

li ← li − αησ(̂l′k′ · lti)l′k′
ti ← ti − αησ(̂l′k′ · lti)l′k′
l′k′ ← l′k′ − αησ(̂l′k′ · lti)(li + ti).

(5.13)
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To update LGPR, we calculate the stochastic gradient decent for
each preference pair (u, li, ln) in DSu

1. Denote δ = 1− σ(u · li−
u · ln), we update the parameters as follows,

u← u + βηδ(li − ln)
li ← li + βηδu
ln ← ln − βηδu.

(5.14)

Algorithm 4 shows the details of learning the Geo-Teaser model.
S is the set of all sequences, and Su is a sequence of user u. U,
L, and T are feature matrices of the user, POI, and temporal
state. L′, an assistant learning parameter, is the output layer
POI matrix in Skip-Gram model. We use the standard way [61]
to learn the POI representations in the sequences, as shown from
line 5 to line 14 in Algorithm 4. Next, we exploit the Bootstrap
sampling to generate m unvisited POIs and then classify the
unvisited POIs as neighboring POIs and non-neighboring POIs
according to their distances from the visited POI li. Then, we
establish the pairwise preference set Dm for each check-in ⟨u, li⟩.
Here Dm = {(u, li, lne) ∨ (u, lne, lnn)|d(li, lne) ≤ s, d(li, lnn) >

s, lne, lnn ∈ L \ Lu}. Then we learn the parameters for each
instance in Dm, shown from line 15 to line 25 in Algorithm 4.
After learning the Geo-Teaser model, we get the latent feature
representations of users, POIs, and temporal states. Then, we
can estimate the check-in possibility of user u over a candidate
POI l at temporal state ts according to the preference score
function. Furthermore, we use the Eq. (5.6) for score estimation.
Finally, we rank the candidate POIs and select the top N POIs
with the highest estimated possibility values for each user.

1The pair of (u, li, ln) happens in two cases: (u, li, lne) and (u, lne, lnn) as shown in
Alg. 4.
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ALGORITHM 4: Learning algorithm for the Geo-Teaser model
Input: S

Output: U, L, T
1 Initialize U, L, L′, and T (uniformly at random)
2 for iterations do
3 for Su ∈ S do
4 for ⟨u, li⟩ ∈ Su do
5 for each context POI lc do
6 li ← li + αη(1− σ(̂l′c · lti))l′c
7 ti ← ti + αη(1− σ(̂l′c · lti))l′c
8 l′c ← l′c + αη(1− σ(̂l′c · lti))(li + ti)
9 for {k′ ∼ Pncc} do

10 li ← li − αησ(̂l′k′ · lti)l′k′
11 ti ← ti − αησ(̂l′k′ · lti)l′k′
12 l′k′ ← l′k′ − αησ(̂l′k′ · lti)(li + ti)
13 end
14 end
15 Uniformly sample m unvisited POIs
16 for (u, li, lne) ∈ Dm do
17 δ = 1− σ(u · li − u · lne)
18 u← u + βηδ(li − lne)
19 li ← li + βηδu ; lne ← lne − βηδu
20 end
21 for (u, lne, lnn) ∈ Dm do
22 δ = (1− σ(u · lne − u · lnn))
23 u← u + βηδ(lne − lnn)
24 lne ← lne + βηδu ; lnn ← lnn − βηδu
25 end
26 end
27 end
28 end

Scalability. For one check-in, learning the temporal embedding
model costs O(k · h · d), where k, h, and d denote the context
window size, the number of negative samples, and the latent
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vector dimension, respectively. For the pairwise preference
learning from line 15 to 25 in Algorithm 4, we sample m

unvisited POIs, which can generate maximum O(m2) pairwise
preference tuples. For each check-in, the learning procedures
cost O(m2 · d). Therefore, the complexity of our model is
O
(
(k ·h+m2) ·d · |C|

)
, where C is the set of all check-ins. For k,

h, m, and d are fixed hyperparameters, the proposed model can
be treated as linear in O(|C|). Furthermore, in order to make
our model more efficient, we turn to the asynchronous stochastic
gradient descent (ASGD) [71] and parallelly run the algorithm
in an unlock way. As the check-in frequency distribution of POIs
in LBSNs follows a power law [107], this results in a long tail
of infrequent POIs, which guarantees to employ the ASGD to
parallel the parameter updates.

5.5 Experimental Evaluation

We conduct experiments to seek the answers to the following
questions: 1) how the Geo-Teaser model performs comparing
with state-of-the-art recommendation methods? 2) how each
component (i.e., the various temporal characteristics and geo-
graphical influence) affects the model performance? 3) how the
parameters affect the model performance?

5.5.1 Experimental Setting

Two real-world datasets are used in the experiment: one is
from Foursquare provided in [18] and the other is from Gowalla
in [122]. Table 5.1 demonstrates the statistical information of
the datasets. In order to make our model satisfactory to the
scenario of recommending for future check-ins, we choose the
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first 80% of each user’s check-ins as training data, the remaining
20% for test data, following [9, 119].

5.5.2 Performance Metrics

In this work, we compare the model performance through
precision and recall, which are generally used to evaluate a
POI recommendation system [15, 41]. To evaluate a top-N
recommendation system, we denote the precision and recall as
P@N and R@N , respectively. In our POI recommendation
task, P@N measures the ratio of recovered POIs to the N

recommended POIs, and R@N means the ratio of recovered
POIs to the set of POIs in the test data. Then we calculate
the average precision and recall over all users for evaluation.
Supposing Lvisited denotes the set of correspondingly visited
POIs in the test data, and LN,rec denotes the set of recommended
POIs, the definitions of P@N and R@N are formulated as
follows,

P@N =
1

|U |
∑
u∈U

|Lvisited ∩ LN,rec|
N

, (5.15)

R@N =
1

|U |
∑
u∈U

|Lvisited ∩ LN,rec|
|Lvisited|

. (5.16)

5.5.3 Model Comparison

Prior work [44, 54] observes that treating the check-ins as
implicit feedback is better to model the user preference. Hence
we compare our model with WRMF [30, 66] and BPRMF [73],
which are state-of-the-art collaborative filtering models designed
for capturing the implicit feedback. To illustrate the effecti-
veness of our model, we compare it with four state-of-the-art
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POI recommendation methods: LRT [15], LORE [119], Rank-
GeoFM [41], and SG-CWARP [52].

• BPRMF [73]: Bayesian Personalized Ranking Matrix
Fac-torization (BPRMF) is a popular pairwise ranking
method that models the implicit feedback data to recom-
mend top-N items.

• WRMF [30, 66]: Weighted Regularized Matrix Factorization
(WRMF) model is designed for implicit feedback ranking
problem. We set the weight mapping function of user ui at
POI lj as wi,j = (1 + 10 · Ci,j)

0.5, where Ci,j is the number
of check-ins, following the setting in [54].

• LRT [15]: Location Recommendation framework with
Temporal effects model (LRT) is a state-of-the-art POI
recommendation method, which captures the temporal
effect in POI recommendation.

• LORE [119]: LORE is state-of-the-art model that ex-
ploits the sequential influence for location recommendation.
Compared with other work [9, 105], LORE employs the
whole sequence’s contribution, not only the successive
check-ins sequential influence.

• Rank-GeoFM [41]: Rank-GeoFM is a ranking based
geographical factorization method, which incorporates the
geographical and temporal influence in a latent ranking
model.

• SG-CWARP [52]. SG-CWARP is the latest work, which
leverages the word2vec framework to model the check-ins
for sequential contexts.
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Figure 5.5: Model comparison

5.5.4 Experimental Results

In the following, we demonstrate the experimental results on
precision and recall, denoted as P@N and R@N , for the top N

POI recommendation task. Since the model comparison results
are consistent with different values of N , e.g., 1, 5, 10, and 20,
we show representative results at 5 and 10 following [15, 16]. All
models achieve the best performances at appropriate parameter
settings.



CHAPTER 5. GEO-TEASER SYSTEM 113

Performance Comparison

Figure 5.5 illustrates the experimental results of different mo-
dels. We discover that the proposed Geo-Teaser model achieves
better performance than all the baselines. Compared with Rank-
GeoFM that is a state-of-the-art model incorporating the geo-
graphical influence and temporal influence, Geo-Teaser achieves
improvements at least 28% on both datasets for all metrics. This
verifies the effectiveness of our sequential modeling and as well
as the validity of means for incorporating various temporal cha-
racteristics and geographical influence. SG-CWARP is the best
baseline competitor, which verifies the advantage of modeling
the sequential pattern through Skip-Gram model over Markov
chain model, namely the LORE model. Our Geo-Teaser model
outperforms the SG-CWARP at least 20% on both datasets for
all metrics, which verifies our strategy of incorporating various
temporal characteristics and geographical influence to improve
POI recommendation. In addition, we observe that models
perform better on Gowalla than Foursquare for precision, but
worse for recall. The reason lies in that each user’s test data size
in Gowalla is bigger than Foursquare. As shown in Table 5.1,
the average check-ins for each user in Gowalla is about two
times of Foursquare. According to the metrics in Eq. (5.15)
and Eq. (5.16), the result is reasonable.

Model Discussion

In this section, we explore how each component, i.e., the vari-
ous temporal characteristics and geographical influence, affects
the model performance. The Geo-Teaser model improves the
SG-CWARP in two aspects, capturing the various temporal
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Figure 5.6: Demonstration of model component functions

characteristics and geographical influence. Ignoring the various
temporal characteristics and geographical influence, we propose
the SG-BPRMF model as the basic version of our proposed
Geo-Teaser model. The SG-BPRMF uses the Skip-Gram mo-
del to model the sequence and BPRMF to capture the user
preference, which is equivalent to SG-CWARP. Furthermore,
we incorporate the various temporal characteristics into SG-
BPRMF and propose the Teaser model. In the following, we
compare the SG-BPRMF, Teaser, and Geo-Teaser to show how
the various temporal characteristics and geographical influence
affect the model.
Figure 5.6 shows the model performances. We observe that
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Teaser model improves SG-BPRMF at least about 10% on
both datasets for all metrics, which indicates that incorporating
the various temporal characteristics improves the model perfor-
mance. Moreover, the Geo-Teaser model improves the Teaser
model at least about 15% on both datasets. It means our stra-
tegy of incorporating geographical influence by discriminating
the unvisited POIs is valid.

Parameter Effect

In this section, we show how the three important hyperparame-
ters, α, β, and s affect the model performance. α and β balance
the sequential influence and the user preference. s shows the
sensitivity of our geographical model.
We tune α and β to see how to trade-off the sequential modeling
and user preference learning, shown in Figure 5.7. Both α and
β appear together with the learning rate η in the parameter
update procedures. It is not necessary to separately tune the
three parameters. We are able to absorb the learning rate η

into α and β. In other words, we set α ← α · η, β ← β · η. We
avoid to tune the learning rate η, but turn to control the update
step size through tuning α and β. Hence α and β should be small
enough to guarantee convergence. Assuming the same value for
α and β, we tune α to change the learning rate. The model gets
the best performance when α = 0.05. Then we set α = 0.05,
and change β to see how the model performance varies with β

α .

Geo-Teaser attains the best performance if β
α ∈ [0.25, 0.5].

In the Geo-Teaser model, we classify the unvisited POIs as
neighboring POIs and non-neighboring POIs to constitute a new
preference set according to a threshold distance s. Here we
choose different values of s to see how this parameter affects the
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Figure 5.7: Parameter effect on α and β
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Figure 5.8: Parameter effect on distance threshold s

model performance, as shown in Figure 5.8. Here s is calculated
in the kilometer. We observe that the Geo-Teaser model achieves
the best performance at s = 10.

5.6 Conclusion

We propose the Geo-Teaser model for POI recommendation in
this chapter. In particular, we propose the temporal POI em-
bedding model to capture the check-ins’ sequential contexts and
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the various temporal characteristics on different days. Moreover,
we propose the geographically hierarchical pairwise ranking
model to improve the recommendation performance through
incorporating geographical influence. Finally, we propose a
unified framework combining the two parts to recommend POIs.
Experimental results on two datasets, Foursquare and Gowalla,
show that our model outperforms state-of-the-art models. The
proposed Geo-Teaser model improves at least 20% on both
datasets for all metrics compared with SG-CWARP model.

2 End of chapter.



Chapter 6

STELLAR: Spatial-Temporal
Latent Ranking Model for
Successive POI
Recommendation

Successive POI recommendation in LBSNs becomes a significant
task since it helps users to navigate a large number of candidate
POIs and provide the best POI recommendations based on
users’ most recent check-in knowledge. However, all existing
methods for successive POI recommendation only focus on
modeling the correlation between POIs based on users’ check-in
sequences, but ignore an important fact that successive POI
recommendation is a time-subtle recommendation task. In
fact, even with the same previous check-in information, users
would prefer different successive POIs at different time. To
capture the impact of time on successive POI recommendation,
in this chapter, we propose a spatial-temporal latent ranking
(STELLAR) method to explicitly model the interactions among
user, POI, and time. In particular, the proposed STELLAR
model is built upon a ranking-based pairwise tensor factorization

118
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framework with a fine-grained modeling of user-POI, POI-time,
and POI-POI interactions for successive POI recommendation.
In addition, we design a novel three-slice indexing scheme to
represent the timestamps, which captures the user check-ins’
specific characteristics: preference variance and periodicity. Mo-
reover, we propose a new interval-aware weight utility function
to differentiate successive check-ins’ correlations, which breaks
the time interval constraint in prior work. Evaluations on
two real-world datasets demonstrate that the STELLAR model
outperforms state-of-the-art successive POI recommendation
model about 20% in Precision@5 and Recall@5.

6.1 Introduction

LBSNs such as Foursquare, Gowalla, Facebook Place, and
GeoLife, become increasingly popular and provide users a new
way to share their locations and experience about POIs via
check-in behaviors. To help users navigate a huge number of
POIs and suggest the most suitable POIs to meet their personal
preferences, POI recommendation methods are developed and
play an important role in LBSN services. POI recommendation
learns users’ preferences based on user check-in records and then
predicts users’ preferred POIs for recommendation. To this end,
a bunch of methods has been proposed for POI recommendation
recently [106, 107, 7, 15, 44].
Successive POI recommendation, as a natural extension of
general POI recommendation, is proposed and has attracted
great research interest recently. Different from general POI
recommendation that focuses only on estimating users’ preferen-
ces on POIs, successive POI recommendation provides satisfied
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recommendations promptly based on users’ most recent checked-
in location, which requires not only the preference modeling
from users but also the accurate correlation analysis between
POIs. Cheng et al. [9] first propose the problem of successive
POI recommendation and utilize a personalized Markov chain
and region localization to solve the problem. In addition, Feng
et al. [14] propose a personalized metric embedding method to
model the check-in sequences. However, all previous methods
ignore to investigate the impact of time on successive POI
recommendation.
Successive POI recommendation is a time-subtle recommenda-
tion task since at different time users would prefer different
successive POIs. It is easy to imagine that a user may go to
a restaurant after leaving from office at noon, while the user
may be more likely to go to a gym when the user leaves office
at night. However, previous successive POI recommendation
methods only highlight the modeling of correlations between
POIs within users’ check-in sequences, but neglect to model such
a time-sensitive property.
In this chapter, we try to understand the underlying mechanism
of how time influences successive POI recommendation perfor-
mance. To motivate this work, we first conduct an empirical
analysis on two real-world LBSN datasets to verify that time is
an important factor to affect users’ successive POI check-in be-
haviors. Based on the analysis, we propose the STELLAR model
to recommend a user most possible successive POIs based on the
most recent check-in and the querying timestamp. The proposed
STELLAR model is built upon a ranking-based pairwise tensor
factorization framework with a fine-grained modeling of user-
POI, POI-time, and POI-POI interactions for successive POI
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recommendation. To overcome the weaknesses of prior latent
ranking models [6, 91, 75] that suffer from coupled interaction
on POI feature, we represent each POI by three different
latent feature vectors and model the three kinds of interactions
separately. Moreover, the proposed STELLAR method contains
two specific characteristics making it more suitable for successive
POI recommendation: 1) we design a three-slice time indexing
scheme to capture the temporal features of check-in behavior–
preference variance and periodicity; 2) we introduce an interval-
aware weight utility function to differentiate the correlations of
successive check-ins, which breaks the time interval constraint
in prior work [7].
The contributions of this chapter are summarized as follows:

• We propose a time-aware successive POI recommendation
method–the STELLAR model, by considering the time
information. In this model, we employ a new POI latent
feature representation means to resolve the problem of
coupled interaction. Experimental results demonstrate our
STELLAR model outperforms state-of-the-art successive
POI recommendation method.

• We design a three-slice time indexing scheme to represent
the timestamps, which captures the user check-ins specific
characteristics: preference variance and periodicity. Expe-
rimental results show that our model better captures the
temporal effect than state-of-the-art temporal models for
POI recommendation.

• We introduce a new interval-aware weight utility function
to differentiate successive check-ins’ correlations, which
improves the successive POI recommendation accuracy.
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6.2 Related Work

In this section, we first review the literature of latent ranking
model. Then, we show the progress of POI recommendation.
Finally, we present the connection of our proposed STELLAR
model and the prior work.
Latent ranking model. Latent ranking model is a popular
solution for recommendation tasks and ranking tasks [67, 99].
In a recommendation task, latent ranking model represents user
and item feature into latent vectors, and find their relations in
latent subspace. In particular, Singular Value Decomposition
(SVD) [67] and Non-negative Matrix Factorization (NMF) [37]
are two standard methods that exploit the latent ranking model
for collaborative filtering task. Recently, [100] proposes the
latent collaborative retrieval (LCR) model, which combines the
retrieval and recommendation task, leading the direction of
recommendations sensitive to some query condition.
POI recommendation. POI recommendation is an im-
portant task in LBSNs. Ye et al. firstly discuss how to use
memory-based methods to recommend POIs [106, 107]. In order
to improve the memory-based models, advanced techniques are
then leveraged to capture more information, including social and
geographical influence [94, 116, 117], temporal effect [113, 118],
and sequential check-ins’ influence [119, 117]. On the other
hand, model-based methods are proposed for the seek of sca-
lability, most of which base on the latent ranking techniques.
[7] proposes a multi-center Gaussian model to capture user
geographical influence and combines it with matrix factorization
(MF) model [34] to recommend POIs. [15] proposes an MF-
based model which captures the temporal effect to improve
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performance. [103], [29], and [16] leverage user comments to
improve the POI recommendation system. [44] and [54] improve
POI recommendation by incorporating geographical information
in a weighted regularized matrix factorization model. Instead
of estimating the user preference score on POIs, [9] and [41]
establish ranking models to learn the recommender system.
Other techniques for POI recommendation include generative
graphical models, metric learning techniques, and graph-based
method. Readers may refer the papers and references the-
rein [14, 114, 45, 35, 111].
Connection to prior work. We focus on successive POI
recommendation, which recommends POIs on the basis of a
user’s most recent check-in. [9] utilizes the latent ranking model
to solve the problem, while [14] employs the metric learning.
Our work is most related to [9]. However, prior work does
not consider the time effect on successive POI recommendation,
which motivates us to propose the STELLAR model. Moreover,
we propose a three-slice time indexing scheme to represent
the timestamps and introduce an interval-aware weight utility
function to differentiate the correlations of successive check-ins.

6.3 Data Description and Successive
Check-in Analysis

Before we introduce the proposed method, in this section, we
first introduce two real-world LBSN datasets and then conduct
some empirical analysis on them to explore the spatial and
temporal properties of users’ successive check-in behaviors.
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6.3.1 Data Description

We use two check-in datasets crawled from real-world LBSNs:
one is Foursquare data provided in [18] and the other is Gowalla
data [122]. Both contain users’ check-in history from January
1, 2011 to July 31, 2011. We filter the POIs checked-in by less
than five users and then choose users who check-in more than
10 times as our samples. After the preprocessing, the datasets
contain the statistical properties as shown in Table 6.1.

Table 6.1: Statistics of datasets
Foursquare Gowalla

#users 10,034 3,240
#POIs 16,561 33,578
#check-ins 865,647 556,453
Avg. #check-ins each user 86.3 171.7
Avg. #POIs each user 24.6 95.4
Avg. #users each POI 14.9 9.2
Density 0.0015 0.0028

6.3.2 Successive Check-in Analysis

Now we conduct some empirical analysis to demonstrate the
spatial and temporal properties of users’ successive check-in
behaviors.

Spatial and temporal analysis. Successive check-ins demonstrate
significant spatial and temporal property, shown in Figure 6.1.
Figure 6.1(a) and Figure 6.1(b) show the complementary cumu-
lative distribution function (CCDF) of intervals and distances
in successive check-ins. We verify the observation in [9] that
many successive check-ins are highly correlated especially in
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(a) CCDF of intervals in successive check-ins (b) CCDF of distances in successive check-ins

(c) CCDF of distances in successive check-ins
beyond 4 hours

(d) Time sensitive analysis of successive POI
check-ins

Figure 6.1: Successive check-ins’ spatial-temporal property
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spatial relation: over 40% and 60% successive check-in behaviors
happen in less than 4 hours since last check-in in Foursquare and
Gowalla respectively; about 90% successive check-ins happen
in less than 32 kilometers (half an hour driving distance) in
Foursquare and Gowalla. Further, we check the CCDF of
distances in successive check-ins that happen beyond 4 hours,
shown in Figure 6.1(c). We observe although being weaker the
spatial correlations still exist: about 80% successive checked-
in POIs happen in less than 32 kilometers. It is not hard to
explain the phenomenon: a user always acts around his/her
home or office, so the successive check-in, even independent
with the last check-in, still possibly happens in the same activity
area. Hence, successive checked-in POIs are spatially correlated,
while successive check-ins in shorter interval contain stronger
correlation.

Time sensitive analysis. Besides the spatial and temporal con-
tiguity, we observe that users’ successive check-ins are time-
sensitive behaviors. We count in all users and calculate (1) the
average probability of a previous check-in leading to the same
successive POI at different time (time-insensitive) and (2) the
average probability of a check-in followed by different successive
POIs at different timestamps (time-sensitive). Figure 6.1(d)
shows the analytical results. We can obviously find that with
different time, given the same previous POI check-in, users’
successive POI check-ins would be different. This observation
triggers us to incorporate time impact into successive POI
recommendation.
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6.4 STELLAR Model

In this section, we will detail the STELLAR model for successive
POI recommendation. We first demonstrate how to index
timestamps in our model. Then we introduce the formulation
our STELLAR model. Finally, we demonstrate how to make
the model inference and learn the system.

6.4.1 Time Indexing Scheme

To capture the check-in behavior’s specific temporal characte-
ristics, we design a novel time indexing scheme to smoothly
encode a standard timestamp to a particular time id. The check-
in behavior’ temporal characteristics contain two aspects: (1)
Periodicity [11, 113]. For example, users always visit restaurants
at noon and bars at night; users check-in POIs around the
office in weekdays but visit malls for shopping on weekends.
(2) Preference variance [15]. Users’ check-in preferences change
with time. In addition, the preference variance exists in three
scales: hours of a day, different days of a week, and different
months of a year, which is observed in [15] but not modeled.
Our proposed scheme captures the two properties in three scales
as follows. First, a timestamp is divided into three slices in
terms of month, weekday type, and hour slot. Next, we split a
week into weekday and weekend and a day into the following
four sessions: the morning session from 6:00 a.m. to 10:59
a.m., the afternoon and night session from 0:00 a.m. to 2:59
a.m. and 3:00 p.m. to 11:59 p.m., two transitive sessions that
range from 3:00 a.m. to 5:59 a.m. and 11:00 a.m. to 2:59
p.m.. Further, we use 4 bits to represent the month information,
1 bit to denote weekday or weekend, and 2 bits to show the
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hour session. Finally, we convert the binary code into a unique
decimal digit as the time ID, where the ID is in the range of
0 to 95. Figure 6.2 demonstrates the procedure of encoding an
exemplary timestamp, “2011-04-05 18:10:23”.

Figure 6.2: Time encoding demonstration

6.4.2 Model Formulation

The STELLAR system aims to provide time-aware successive
POI recommendations. The task needs to learn a score function
for a given user u to a candidate POI lc at the timestamp t

given his/her last check-in as a query POI lq, which is defined
as follows:

f(u, lq, t, lc), (6.1)

where f : U × L × T × L → R maps a four-tuple tensor to real
values. U , L, and T denote the set of users, the set of POIs,
and the set of smoothed time ids, respectively. The score value
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Figure 6.3: STELLAR model formulation demonstration

represents the “successive check-in possibility” of a user to a
candidate POI at the timestamp given the query POI.
We establish a latent ranking framework to learn the score
function, which employs pairwise tensor interactions to repre-
sent the following three key factors affecting users’ check-in
behavior: (1) the preference of a user u to a candidate POI
lc, (2) the temporal effect of time t on a candidate POI lc, and
(3) correlation of the last checked-in POI lq and a candidate
POI lc. Correspondingly, the score value of f(u, lq, t, lc) is
determined by user-POI interaction, time-POI interaction, and
POI-POI interaction together. In this case, a single vector
representation for each POI is not semantically enough to
capture the three different kinds of interactions. Therefore, we
define a 3 × d matrix to represent POI latent feature, where
for each POI, there are three latent vectors used to describe
the POI-user interaction, POI-time interaction and POI-POI
interaction, respectively. As shown in Figure 6.3, we formulate
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the function f(u, lq, t, lc) as

f(u, lq, t, lc) = L̂T
lc,1Uu + L̂T

lc,2L̂lq,2 + L̂T
lc,3Tt, (6.2)

where Uu, Tt ∈ Rd are latent vectors of user u and time t,
L̂lc,1, L̂lc,2, L̂lc,3 ∈ Rd are candidate POI lc’s three d-dimension
vectors which correspondingly interact with users, other POIs
and time labels, and L̂lq,2 is query POI lq’s latent vector
interacting to the candidate POI. To ensure the interactions are
positive, all latent vectors are non-negative. Further we denote
U ∈ Rd×|U | as the user latent matrix and T ∈ Rd×|T | as the time
latent matrix. In addition, we use L̂, a 3 × d × |L| tensor, to
denote the POI latent factor.
From the observations in Figure 6.1, we find that successive
POIs in a shorter interval contain a stronger correlation. To
depict this observation, we introduce a weight utility function
to differentiate the strong and weak correlations. The weight
score value is in the range of [0,1], and the function is non-
increasing with the duration of two successive check-ins. When
two successive check-ins happen within a threshold interval, we
assume they are highly correlated. Otherwise the correlation
decreases with the increase of the time interval. In formal, we
define the weight utility function as follows:

w =

{
0.5 + 2

∆T ∆T ≥ s

1 otherwise
, (6.3)

where ∆T is the interval of successive check-ins, in unit of hour;
and s is the threshold of differentiating the correlations. In our
experiments, s is set as 4 to get best performance. The check-in
time of query POI lq and current time t determine the interval
∆T . So we are able to refine the score function as

f(u, lq, t, lc, w) = L̂T
lc,1Uu + w · L̂T

lc,2L̂lq,2 + L̂T
lc,3Tt, (6.4)
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where w is the weight value to measure the POI-POI interaction.
The STELLAR model is proposed to handle the following two
challenging issues: (1) Disastrous sparsity. Prior methods
learn a model from a tensor with only three tuples. In our
formulation, we focus on tuples of four elements, (user, POI,
time, POI), which increase the sparsity of the tensor signifi-
cantly. (2) Coupled interaction. The tuples in previously
proposed tensor related methods are independent. For example,
in [72, 75], the tuple includes user, item, and tag, which are
independent. This is easier for updating the models. However,
in our constructed tensor, the tuple includes two POIs coupled
in the updating. This makes the previous tensor decomposition
methods[91, 6, 75] unsatisfactory. Our method represents the
POI feature via a matrix and then models the three kinds
of interactions separately. Further, we simplify the tensor
completion problem as a combination of three low rank matrix
factorization problems, which mitigates the sparsity trouble.

6.4.3 Model Inference and Learning

We make the model inference via learning the ranking order of
successive check-in possibilities. Because we care more about
the ranking order of the candidate POIs rather than the real
values of check-in possibilities when recommending successive
POIs for users. We follow the optimization criteria used in [73]
and propose a pairwise ranking based objective function for the
proposed STELLAR model.
We demonstrate the inference procedure following [73]. First,
we suppose that the scores of f(u, lq, t, lc) at checked-in POIs
are higher than the unchecked-in counterparts. Then we define
the order lcp >u,lq,t l

c
n, which means at time t, given query POI
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lq, user u visits POI lcp but not lcn. Further we suffice to extract
the set of all pairwise preference constraints

DS := {(u, lq, t, lcp, lcn)|lcp >u,lq,t l
c
n}. (6.5)

Suppose the tuples in DS are independent of each other, then
to learn the parameters in the score function is to minimize the
negative log likelihood of all the pair orders. Further, we add a
Frobenius norm term to regularize the parameters to avoid the
risk of overfitting. Then the objective function is

O := arg min
Θ

∑
(u,lq,t,lcp,l

c
n)∈DS

− ln(σ(f(u, lq, t, lcp)−

f(u, lq, t, lcn))) + λ||Θ||2F ,
(6.6)

where σ is the logistic function σ(x) = 1
1+e−x , λ is the regulari-

zation parameter, and Θ denotes the parameter set, including
U , T and L̂.
We leverage the stochastic gradient decent (SGD) algorithm
to learn the objective function for efficacy. Denote δ = 1 −
σ(yu,lq,t,lcp,lcn), then we get the derivative of each parameter θ ∈ Θ

for a tuple (u, lq, t, lcp, l
c
n) as

∂O
∂θ

=



−δ · (L̂lcp,1 − L̂lcn,1) + λ · Uu θ = Uu

−δ · (L̂lcp,3 − L̂lcn,3) + λ · Tt θ = Tt

−δ · w · (L̂lcp,2 − L̂lcn,2) + λ · L̂lq,2 θ = L̂lq,2

−δ · Uu + λ · L̂lcp,1 θ = L̂lcp,1

−δ · w · L̂lq,2 + λ · L̂lcp,2 θ = L̂lcp,2

−δ · Tt + λ · L̂lcp,3 θ = L̂lcp,3

δ · Uu + λ · L̂lcn,1 θ = L̂lcn,1

δ · w · L̂lq,2 + λ · L̂lcn,2 θ = L̂lcn,2

δ · Tt + λ · L̂lcn,3 θ = L̂lcn,3.

(6.7)
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To ensure the non-negativity, we project the learned parameter
to non-negative value. We define the projected operator P (·) :
Rd → Rd as P [xi] = max(0, xi), i = 1, . . . , d. For each sampled
tuple (u, lq, t, lcp, l

c
n) ∈ DS, we update each parameter θ ∈ Θ

through the derivative,

θ ← P (θ − γ
∂O
∂θ

); (6.8)

where γ is the learning rate. To train the model, we draw the
tuple from DS via the bootstrap sampling rule, following [73].
Algorithm 5 gives the detailed procedure to learn the STELLAR
model. The convergent condition is satisfied when the negative
log likelihood value for a fixed sampled tuples does not decrease.
Complexity. Calculating the preference score of a tuple
(u, lq, t, lc) costs O(d), where d is the latent vector dimension.
The updating procedure for each parameter is also in O(d).
Hence training an example (u, lq, t, lc) is in O(k · d), where k is
the number of sampled unchecked POIs. Therefore, the runtime
of training the model is in O(N · k · d), where N is the number
of training examples.

ALGORITHM 5: STELLAR model learning algorithm
Input: Training tuples {(ui, l

q
i , ti, l

c
i )}i=1,...,N

Output: U, T, L̂

1: Initialize U, T, L̂

2: repeat
3: Draw (u, lq, t, lcp) uniformly from training tuples
4: For s = 1, · · · , k, where k is #sampled unchecked POIs
5: Draw (u, lq, t, lcp, l

c
n) uniformly

6: Update parameters according to Eq. (6.8)
7: until convergence
8: return U, T, L̂
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Table 6.2: Performance comparison
BPRMF WRMF LRT FPMC−LR TLAR SLAR STELLAR

Gowalla P@5 0.025 0.031 0.033 0.048 0.053 0.050 0.059
R@5 0.020 0.022 0.030 0.167 0.204 0.197 0.226

Foursquare P@5 0.031 0.033 0.061 0.109 0.119 0.114 0.129
R@5 0.027 0.028 0.053 0.347 0.373 0.368 0.425

6.5 Experiment

We conduct experiments to answer the following questions:
1) how our model performs comparing with state-of-the-art
models? 2) whether our time indexing scheme works well? 3)
how the parameters affect the model performance?

6.5.1 Experimental Setting

We evaluate our model on two datasets with statistics shown
in Table 6.1. The system recommends a user a list of POIs,
given his/her last checked-in POI and timestamp as the query.
It is equivalent to solve the collaborative retrieval task [100],
treating (query POI, time id, weight) as the query for each user.
Following setting in [100], we extract tuples of (user, query POI,
time id, weight, POI) from all successive check-ins. Here we get
time id from the check-in timestamp via encoding procedure.
And the weight value is calculated according to the interval
between two successive check-ins through the utility function in
Eq. (6.3). In order to make our model effective for future check-
ins, we split the tuples into two parts, 80% and 20% according
to time sequential order. So we take the first group of tuples
for training and the second group for test. Finally, we measure
different models through Precision@5 and Recall@5, which are
general metrics for POI recommendation problem used in prior
work [9, 15, 107].
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6.5.2 Comparison Methods

Our Methods. We propose three methods: TLR, SLR,
and STELLAR. TLR and SLR methods are special cases of
STELLAR, which correspondingly only ignore the POI-POI
interaction and time-POI interaction.
Baselines. We compare our proposed model with state-of-the-
art latent ranking models and POI recommendation methods.
Prior work [44, 54] indicates that treating the check-ins as impli-
cit feedback is better to recommend POIs. Hence we introduce
two comparative latent ranking methods that model the check-
ins as implicit feedback: WRMF [30, 66] and BPRMF [73].
In addition, we introduce two state-of-the-art POI recommenda-
tion methods: LRT [15] and FPMC-LR [9]. LRT is state-of-
the-art model that incorporates temporal information in a latent
ranking model to improve POI recommendation. FPMC-LR is
the state-of-the-art successive POI recommendation model.

6.5.3 Experimental Results

In the following, we demonstrate the performance comparison.
We set latent dimension as 40, and train different models to get
their best performances at appropriate parameters.
Baselines vs. Our Methods. Table 6.2 shows the
experimental results on Foursquare and Gowalla data. We see
that: 1) Our proposed model outperforms state-of-the-art latent
ranking methods and POI recommendation models. Compared
with state-of-the-art successive POI recommendation method,
STELLAR model gains about 22.9% and 35.3% improvement for
Gowalla, and 18.3% and 22.5% improvement for Foursquare on
Precision@5 and Recall@5. We observe that all models perform
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much better on Foursquare dataset than Gowalla dataset, even
though it is sparser. The reason lies in Foursquare data contain
much less POIs. 2) Our proposed models and FPMC-LR
perform much better than other models, especially at recall
measure. The reason lies in that these models leverage more
conditions for each query. Our models recommend a user POIs
given a user’s recent check-in, the specific timestamp, or both;
and FPMC-LR recommends POIs given a user’s recent checked-
in POIs. On the contrary, other three models give general
recommendations.
LRT vs. TLAR. The experimental results show that TLAR
outperforms LRT model. Our model depicts the temporal effect
with a latent feature, which gets rid of sparsity problem suffering
in LRT model. Furthermore, since TLAR is a special case
of STELLAR, it means that STELLAR model captures the
temporal effect well from the timestamps.
FPMC-LR vs. SLAR. The experimental results show that
SLAR outperforms FPMC-LR model. It means SLAR model
improves the recommendation performance by differentiating
the correlations of successive check-ins.

6.5.4 Discussion of Time Indexing Scheme

Our three-slice time indexing scheme effectively captures the
temporal effect in three scales. In order to demonstrate its
efficacy, we ignore one slice to index the time and then compare
their results with our model, shown in Table 6.3. ‘M’, ‘W’,
and ‘D’ represent month, week, and day slice respectively. Our
model demonstrates the best performance.
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Table 6.3: Comparison of different time schemes
M+W M+D W+D M+W+D

Gowalla P@5 0.051 0.053 0.054 0.059
R@5 0.207 0.208 0.219 0.226

Foursquare P@5 0.118 0.120 0.121 0.129
R@5 0.371 0.389 0.398 0.425

6.5.5 Parameter Effect

The regularization and latent dimension are important parame-
ters to learn a latent ranking model. Figure 6.4 and Figure 6.5
demonstrate the effect of the parameters on model performance.
For simplicity, we set the same value for all latent vectors’
regularizations in the model. The model has best performance
when λ = 0.001. The performance of Stellar steadily rises with
the increase of latent vector dimension. For the trade-off of
performance and computation cost, we suggest to set dimension
d = 40.

(a) Fousquare (b) Gowalla

Figure 6.4: The effect of regularization
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(a) Foursquare (b) Gowalla

Figure 6.5: The effect of latent dimension

6.6 Conclusion

In this chapter, we study the problem of successive POI recom-
mendation. Compared with previous work, we show that succes-
sive POI recommendation is a time-subtle recommendation task.
To capture the time impact, we first design a time indexing
scheme to smoothly encode timestamps to particular time ids
and then incorporate the time ids into our proposed STELLAR
model. The STELLAR model is built upon a ranking-based
pairwise interaction tensor factorization framework with a fine-
grained modeling of the interactions among time, user, and POI.
Experimental results on two datasets, Foursquare and Gowalla,
show that the STELLAR model outperforms state-of-the-art
models.

2 End of chapter.



Chapter 7

Conclusion and Future Work

In this chapter, we summarize the main contributions of this
thesis and provide several interesting future directions.

7.1 Conclusion

POI recommendation is an important application in LBSNs.
Due to its special geographical and temporal characteristics,
POI recommendation is more challenging than traditional re-
commendation tasks. In order to understand the user check-
in activity in LBSNs, we analyze the user mobility from geo-
graphical and temporal perspective respectively and show how
to improve the POI recommendation through the geographical
influence and temporal influence. Moreover, we propose two
POI recommendation systems: Geo-Teaser and STELLAR.
In particular, in chapter 3, we understand the human mobility
in LBSNs from the geographical perspective and attempt to
model the geographical influence for POI recommendation. In
particular, we propose two models— GMM and GA-GMM to
capture geographical influence. More specifically, we exploit
GMM to automatically learn users’ activity centers; further,

139
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we utilize GA-GMM to improve GMM by eliminating outliers.
Experimental results on a real-world LBSN dataset show that
GMM beats several popular geographical capturing models
regarding POI recommendation, while GA-GMM excludes the
effect of outliers and enhances GMM.
In chapter 4, we study the human mobility in LBSNs from the
temporal perspective. We summarize the temporal characte-
ristics of user mobility in LBSNs in three aspects: periodicity,
consecutiveness, and non-uniformness. Moreover, we observe
that the temporal characteristics exist at different time scales,
which cannot be modeled in prior work. To this end, we propose
the ATTF model for POI recommendation to capture the three
temporal features together, as well as at different time scales.
Experiments on two real-world datasets show that the ATTF
model achieves better performance than the state-of-the-art
temporal models for POI recommendation.
In chapter 5, we propose the Geo-Teaser system for POI
recommendation. In particular, inspired by the success of
the word2vec framework to model the sequential contexts, we
first propose a temporal POI embedding model to learn POI
representations under some particular temporal state. The
temporal POI embedding model captures the contextual check-
in information in sequences and the various temporal characte-
ristics on different days as well. Furthermore, we propose a new
way to incorporate the geographical influence into the pairwise
preference ranking method through discriminating the unvisited
POIs according to geographical information. Then we develop
a geographically hierarchical pairwise preference ranking model.
Finally, we propose a unified framework to recommend POIs
combining these two models. To verify the effectiveness of
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our proposed method, we conduct experiments on two real-life
datasets. Experimental results show that the Geo-Teaser model
outperforms state-of-the-art models.
In chapter 6, we propose the STELLAR model for time-aware
successive POI recommendation. In particular, the proposed
STELLAR model is built upon a ranking-based pairwise tensor
factorization framework with a fine-grained modeling of user-
POI, POI-time, and POI-POI interactions for successive POI
recommendation. In addition, we design a novel three-slice
indexing scheme to represent the timestamps, which captures
the user check-ins’ specific characteristics: preference variance
and periodicity. Moreover, we propose a new interval-aware
weight utility function to differentiate successive check-ins’
correlations, which breaks the time interval constraint in prior
work. Evaluations on two real-world datasets demonstrate that
the STELLAR model outperforms state-of-the-art successive
POI recommendation model about 20% in Precision@5 and
Recall@5.

7.2 Future Work

A bunch of studies has been proposed for POI recommendation.
Summarizing the existing work, we point out the trends and new
directions in three possible aspects: ranking-based model, online
recommendation, and deep learning based recommendation.

7.2.1 Ranking-based Model

Several ranking-based models [14, 41, 128] have been proposed
for POI recommendation recently. Most of the previous methods
attempt to estimate the user check-in probability over POIs [7,
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15, 16]. However, for the POI recommendation task, we do
not care about the predicted check-in possibility value but the
preference order. Some work has proved that it is better for
the recommendation task to learn the order rather than the real
value [73, 38, 92, 99, 101]. BPR loss [73] and WARP loss [92, 99]
are two popular pairwise loss criteria to learn the ranking order.
Researchers in [8, 14, 128] leverage the BPR loss to learn a POI
recommendation model, and Li et al. [41] use the WARP loss.
Also, He et al. [26] propose a list-wise ranking model for POI
recommendations. The existing work using ranking-based model
has shown its advantage in model performance. Then, learning
to rank, as an important technique for information retrieval [5,
50], may be used more for POI recommendation to improve
performance in the future.

7.2.2 Online Recommendation

The online POI recommendation model has advantages over
offline models in two aspects: cold-start problem and adap-
tability to the user behavior variance. Most of the previous
work recommends POIs via the offline model. Hence, the
previous work is apt to suffer the two problems: (1) cold-start
problem, the proposed model performs not satisfying for new
users or users who have only a few check-ins; (2) user behavior
variance, the proposed model, may perform awfully if a user’s
behavior changes since it learns user behavior according to
historical records. Researchers in [1, 111] utilize offline model
and online recommendation to improve the recommendation
results. However, there is no work using online model for
POI recommendation. In fact, online recommendation models
based on multi-armed bandits [4] have been proposed for movie



CHAPTER 7. CONCLUSION AND FUTURE WORK 143

recommendation and advertisement recommendation [70, 129].
In the future, online recommendation methods will be a new
direction for POI recommendation.

7.2.3 Deep Learning Based Recommendation

Inspired by the success of deep learning, the neural network
method has been used to model the check-in sequences. Liu
et al. [49] employ RNN to find the sequential correlations. In
addition, several studies [13, 52, 102, 127] leverage the embed-
ding learning for POI recommendations. Liu et al. [52] model
the check-in sequences through the word2vec framework [61] to
capture the sequential contexts. Xie et al. [102] propose a graph-
based framework for POI recommendations to systematically
model the POI, user, and time relations in an embedding space
and learn the representations through the word2vec framework.
Moreover, we [127] propose a temporal POI embedding based
on Skip-Gram model [61] and combine it with a geographically
pairwise user preference ranking model to recommend POIs. In
the future, more advanced techniques, such as LSTM [27], can
be used for POI recommendation.

2 End of chapter.
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Publications during Ph.D.
Study

Journal and Book Chapter

1. Shenglin Zhao, Tong Zhao, Irwin King, and Michael
R. Lyu. “C2SEER: Context and Content Aware Sequential
Embedding Rank Model for Point-of-interest Recommen-
dation”. ACM TIST (Manuscript)

2. Shenglin Zhao, Irwin King, and Michael R. Lyu. “A
Survey on Point-of-interest Recommendation in Location-
based Social Networks”. ACM TWeb (Under Review).

3. Shenglin Zhao, Michael R. Lyu, and Irwin King. “Ag-
gregated Temporal Tensor Factorization Model for Point-
of-interest Recommendation”. Neural Processing Letters.

4. Shenglin Zhao. “Location-based Social Network Analy-
sis”. Encyclopedia of Social Network Analysis and Mining
(Under Review)

Conference
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5. Shenglin Zhao, Irwin King, and Michael R. Lyu. “Geo-
Pairwise Ranking Matrix Factorization Model for Point-
of-interest Recommendation”. ICONIP 2017 (Best paper
nominee).

6. Sheng Zhang, Shenglin Zhao, Mingxuan Yuan, Jia Zeng,
Jianguo Yao, Irwin King, and Michael R. Lyu. “Traffic
Prediction Based Power Saving in Cellular Networks: A
Machine Learning Method”. SIGSPATIAL 2017.

7. Jiajun Cheng, Shenglin Zhao, Jiani Zhang, Irwin King,
Xin Zhang, and Hui Wang. “Aspect-level Sentiment Clas-
sification with HEAT (Hierarchical Attention) Network”.
CIKM 2017.

8. Shenglin Zhao, Michael R. Lyu, Irwin King, Jia Zeng,
and Mingxuan Yuan. “Mining Business Opportunities from
Location-based Social Networks”. SIGIR 2017.

9. Shenglin Zhao, Tong Zhao, Irwin King, and Michael
R. Lyu. “Geo-Teaser: Geo-Temporal Sequential Embedding
Rank for Point-of-interest Recommendation”. WWW 2017
(Cognitive Computing Track).

10. Shenglin Zhao, Michael R. Lyu, and Irwin King. “Ag-
gregated Temporal Tensor Factorization Model for Point-
of-interest Recommendation”. ICONIP 2016.

11. Qi Xie, Shenglin Zhao, Zibin Zheng, Jieming Zhu, and
Michael R. Lyu. “Asymmetric Correlation Regularized
Matrix Factorization for Web Service Recommendation”.
ICWS 2016.
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12. Shenglin Zhao, Tong Zhao, Haiqin Yang, Michael R. Lyu,
and Irwin King. “STELLAR: Spatial-Temporal Latent
Ranking for Successive Point-of-Interest Recommendation”.
AAAI 2016.

13. Shenglin Zhao, Haiqin Yang. “Scalable Point-of-interest
Recommendation via Geo-embedding Pairwise Matrix Fac-
torization”. WSDM 2015 workshop on Scalable Data
Analytics.

14. Shenglin Zhao, Irwin King, and Michael R. Lyu. “Cap-
turing Geographical Influence in POI Recommendations”.
ICONIP 2013.

Note: The papers [1, 2, 3, 4, 8, 9, 11, 12, 13] are partially
involved in this thesis.

2 End of chapter.
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