
Automated Runtime Data Analysis
for System Reliability Management

HE, Pinjia

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
February 2018

Thesis Assessment Committee

Professor LUI Chi Shing, John (Chair)

Professor LYU Rung Tsong, Michael (Thesis Supervisor)

Professor LEUNG Kwong Sak (Committee Member)

Professor Cheung S.C. (External Examiner)

Abstract of thesis entitled:
Automated Runtime Data Analysis for System Reliability Man-

agement
Submitted by HE, Pinjia
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in February 2018

Runtime data are data generated by systems or programs during their
execution. Typical runtime data include system logs and Quality-
of-Service (QoS) values, which are widely employed by developers
in various system reliability management tasks, such as anomaly
detection, operational issues handling, performance prediction, etc.
However, traditional reliability management methods become inef-
ficient and error-prone because of the increase of modern system
complexity and the rapid growth of runtime data volume. In this
thesis, we propose automated data analysis methods to effectively
utilize runtime data in reliability management tasks.

Firstly, we conduct an evaluation study on existing data-driven
log parsing methods. Log parsing is the first step of many log based
reliability management methods. In log parsing, the unstructured
raw log messages are transformed into structured event sequences.
Although log parsing has been widely studied, a comprehensive
benchmarking and an open-source toolkit are lacking. We imple-
ment four representative log parsing methods and evaluate their
performance in terms of accuracy, efficiency, and effectiveness on
reliability management tasks. We obtain six insightful findings, and
make these parsing methods open-source for reuse.

Secondly, we propose a parallel log parsing method for large-
scale log data analysis. When system logs grow to a large scale, ex-

i

isting log parsing methods fail to complete in reasonable time, which
makes log parsing the bottleneck of reliability management tasks.
Because timely reliability management is important, an efficient
log parsing method that can accurately parse large-scale log data is
highly demanded. Our proposed parallel log parser POP employs
specially designed heuristic rules and clustering algorithm. It is
optimized on top of Spark, a large-scale data processing platform.
Thus, POP can employ the computing power of computer clusters
and handle large-scale logs efficiently.

Thirdly, we propose an online log parsing method to parse raw
log messages in a streaming manner. Most of existing log parsing
methods focus on offline, batch processing of logs. However, typical
log collection process in modern systems is online, which make an
online log parser more eligible than the offline ones. Besides, an
online log parsing methods can keep updating the parsing model
by newly collected log messages. By designing a fixed depth parse
tree, our proposed online log parsing method can efficiently parse
log messages in a streaming manner.

Fourthly, we propose an operational issues prioritization method
based on hierarchical log clustering. Modern system developers
handle issues reported by their users daily. To gain insights into the
issues and find out the solutions, they often need to inspect tons of
logs generated during system runtime. Our proposed method largely
facilitates the operational issues handling process by clustering
similar issues to the same group based on their corresponding log
sequences, and recommending the largest issue groups to develop-
ers. Specifically, our method includes a coarse-grained clustering
based on the event appearance matrix and a fine-grained clustering
based on the event count matrix.

Lastly, we propose a QoS prediction method for Web service
recommendation. A typical modern system based on Web services
need to regularly switch its service components based on their QoS
values (e.g., response time) to avoid potential system failure and

ii

maintain system performance. However, it is difficult for service
users to monitor the QoS values of all candidate services. To predict
these QoS values accurately, our proposed QoS prediction method
utilizes matrix factorization on existing sparse QoS values. The
location of service providers and users is encoded in the matrix
factorization model to improve prediction accuracy.

In summary, this thesis targets at the design of data-driven tech-
niques on system runtime data to automate labor-intensive reliability
management tasks. Extensive experiments on real-world datasets
determine the effectiveness of our proposed methods.

iii

論文題目 ：系統可靠性管理的運行時數據自動化分析方法

作者 ：贺品嘉

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位 ：哲學博士

摘要 ：

 運行時數據由系統或程序在執行過程中生成。典型的運行

時數據是日誌和服務質量數據。它們被開發者廣泛采用於各

種系統可靠性管理的任務，如異常檢測、業務問題處理、性

能預測等。然而，因為現代系統越來越復雜，且運行時數據

的數據量快速增長，傳統的可靠性管理方法效率低且容易出

錯。在本論文中，我們提出了自動化數據分析方法，以有效

地利用運行時數據來完成可靠性管理的任務。

首先，我們對以數據作為驅動的日誌解析方法進行了評價研

究。日誌解析是許多基於日誌的可靠性管理方法的第壹步，

其作用是將非結構化的原始日誌轉換為結構化的日誌事件序

列。雖然日誌解析被廣泛研究，但學界缺乏對不同日誌解析

方法的全面基準評測和日誌解析的開源工具包。我們實現了

四種有代表性的日誌解析方法，並在準確性、效率和對可靠

iv

性管理任務的有效性方面評估了它們的性能。我們得出了六

個有價值的結論，並將這四種日誌解析方法開源以方便其被

重復使用。

其次，我們提出了壹種用於大規模日誌分析的並行化日誌解

析方法。當系統日誌規模較大時，現有的日誌解析方法無法

在合理的時間內完成，這使得日誌解析成為整個可靠性管理

任務的性能瓶頸。因為快速及時的可靠性管理非常重要，我

們需要壹種高效的日誌解析方法，用於準確地解析大規模日

誌數據。我們提出的並行日誌解析算法 POP 包含了專門設計

的啟發式規則和聚類算法。在實現上，POP 針對大型數據處理

平臺 Spark 作了特殊的優化。因此，POP 可以利用計算機集群

的計算能力，有效地處理大規模日誌。

再次，我們提出了壹種在線日誌解析方法，以流處理的方式

解析原始日誌。大多數現有的日誌解析方法都采用離線、批

處理的方式。然而，現代系統中典型的日誌收集過程是在線

的，這使得在線日誌解析器比離線日誌解析器更能融入現代

系統中。且在線日誌解析器可以通過新收集的日誌來更新解

析模型。我們提出了壹種在線日誌解析方法，通過壹個特殊

設計的固定深度的解析樹，其能以流處理的方式高效地解析

系統日誌。

v

然後，我們提出了壹種基於分層日誌聚類的業務問題優先級

計算的方法。現代系統操作員每天處理用戶上報的業務問題。

為了深入了解問題並找出解決方案，他們常常需要檢查大量

系統運行時生成的日誌。我們提出的方法分析與業務問題相

關聯的日誌序列。日誌序列相似的業務問題將被聚到同壹類

中。統計每壹類所含業務問題的數量後，我們並將業務問題

數量最多的幾個類推薦給操作員。這大大加速了業務問題處

理的速度。具體而言，我們的方法包括基於事件發生矩陣的

粗粒度聚類和基於事件頻率矩陣的細粒度聚類。

最後，我們提出了壹種服務質量的預測方法來作 Web 服務推

薦。典型的基於 Web 服務的現代系統需要根據其組件的服務

質量（如響應時間）定期切換其服務組件，以避免潛在的系

統故障和維護系統性能。然而，用戶很難監控所有備選服務

的服務質量。為了準確預測這些服務質量，我們提出的服務

質量預測方法在現有的稀疏的服務質量記錄上使用矩陣分解

模型。我們在矩陣分解模型中對服務提供者和使用者的位置

進行了編碼，並以此提高了預測精度。

綜上所述，本論文的目標是設計以數據作為驅動的技術，對

系統運行時數據進行分析，並自動化勞動密集型的系統可靠

性管理任務。大量基於真實數據的實驗驗證了我們提出的方

法的有效性。

vi

Acknowledgement

I feel highly privileged to take this opportunity to express my sincere
gratitude to the people who have been instrumental and helpful on
my way to pursuing my PhD degree.

First and foremost, I would like to thank my supervisor, Prof.
Michael R. Lyu, for his kind supervision of my PhD study at CUHK.
He has provided inspiring guidance and incredible help on every
aspect of my research. From choosing a research topic to working
on a project, from technical writing to paper presentation, I have
learnt so much from him not only on knowledge but also on attitude
in doing research. Besides, he gives me a lot of freedom to select
my research topic and study necessary techniques. I will always be
grateful to his advice, encouragement and support at all levels.

I am grateful to my thesis assessment committee members,
Prof. Chi Shing Lui and Prof. Kwong Sak Leung, for their con-
structive comments and valuable suggestions to this thesis and all
my term reports. Great thanks to Prof. Shing-Chi Cheung from
The Hong Kong University of Science and Technology who kindly
served as the external examiner for this thesis.

I would like to thank my oversea supervisor, Prof. Tao Xie, for
his support of my visit to University of Illinois Urbana-Champaign.
During this visit, Prof. Xie has provided insightful ideas and con-
structive feedback to my research. I also thank Dengfeng Li, Chiao
Hsieh, Mingming Zhang, Wing Lam, Siwakorn Srisakaokul, Wei
Yang, and Zhengkai Wu for the short but wonderful memories in
UIUC.

vii

I would like to thank Prof. Hongyu Zhang, my mentor during
the internship at Microsoft Research Asia. I also thank friends met
in MSRA, Youshan Miao, Yuanwei Lu, Shaowei Wang, Heng Lin,
Dongpo Zhao, and Luwei Cheng, for their kindness and help.

I would like to thank my life-long friends, Shiqian Chen, Kun-
hong Xu, Rong Yuan, and Yiwei Liu, for their trust and support.

I thank Zibin Zheng, Jieming Zhu, Shilin He, Jian Li, and
Jianlong Xu, for their valuable guidance and contribution to the
research work in this thesis. I am also thankful to my other
groupmates, Yangfan Zhou, Haiqin Yang, Yilei Zhang, Guang Ling,
Chen Cheng, Yu Kang, Tong Zhao, Junjie Hu, Hongyi Zhang,
Shenglin Zhao, Xixian Chen, Yuxin Su, Cuiyun Gao, Hui Xu,
Jichuan Zeng, Xiaotian Yu, Pengpeng Liu, and Yue Wang, who gave
me encouragement and kind help.

Last but not least, I would like to thank my parents. Without
their deep love and constant support, this thesis would never have
been completed.

viii

To my family.

ix

Contents

Abstract i

Acknowledgement vii

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Contributions 5
1.3 Thesis Organization 9

2 Background Review 12
2.1 System Runtime Data 12
2.2 Log Parsing . 14

2.2.1 Problem Description 14
2.2.2 Literature Review 16

2.3 Operational Issues Prioritization via Log Events . . . 25
2.3.1 Problem Description 26
2.3.2 Literature Review 27

2.4 QoS Prediction via Limited QoS Values in Logs . . . 29
2.4.1 Problem Description 30
2.4.2 Literature Review 30

3 Evaluation Study of Log Parsing and Its Use in Log
Mining 33
3.1 Introduction . 33
3.2 Log Parsing Overview 37

x

3.2.1 Overview of Log Parsing 37
3.2.2 Existing Log Parsing Methods 38
3.2.3 Tool Implementation 40

3.3 Log Mining . 41
3.3.1 Overview of Log Mining 41
3.3.2 System Anomaly Detection 42

3.4 Evaluation Study 44
3.4.1 Study Methodology 44
3.4.2 RQ1: Accuracy of Log Parsing Methods . . . 46
3.4.3 RQ2: Efficiency of Log Parsing Methods . . 48
3.4.4 RQ3: Effectiveness of Log Parsing Methods

on Log Mining 51
3.5 Discussions . 53
3.6 Summary . 54

4 Parallel Log Parsing for Large-Scale Log Data 55
4.1 Introduction . 55
4.2 Parallel Log Parsing (POP) 59

4.2.1 Step 1: Preprocess by Domain Knowledge . 61
4.2.2 Step 2: Partition by Log Message Length . . 61
4.2.3 Step 3: Recursively Partition by Token Po-

sition . 62
4.2.4 Step 4: Generate Log Events 65
4.2.5 Step 5: Merge Groups by Log Event 65
4.2.6 Implementation 66

4.3 Evaluation . 69
4.3.1 Study Methodology 69
4.3.2 Accuracy of POP 72
4.3.3 Efficiency of POP 75
4.3.4 Effectiveness of POP on Log Mining: A

Case Study 83
4.3.5 Parameter Sensitivity 85
4.3.6 Observations 91

xi

4.4 Discussions . 92
4.5 Summary . 93

5 Online Log Parsing via Fixed Depth Tree 94
5.1 Introduction . 94
5.2 Methodology . 98

5.2.1 Overall Tree Structure 99
5.2.2 Step 1: Preprocess by Domain Knowledge . 100
5.2.3 Step 2: Search by Log Message Length . . . 100
5.2.4 Step 3: Search by Preceding Tokens 101
5.2.5 Step 4: Search by Token Similarity 102
5.2.6 Step 5: Update the Parse Tree 102

5.3 Evaluation . 104
5.3.1 Experimental Settings 104
5.3.2 Accuracy of Drain 106
5.3.3 Efficiency of Drain 108
5.3.4 Effectiveness of Drain on Real-World Anomaly

Detection Task 110
5.4 Summary . 114

6 Prioritizing Operational Issues via Hierarchical Log Clus-
tering 115
6.1 Introduction . 115
6.2 POI Framework . 118

6.2.1 Raw Logs 118
6.2.2 Log Parsing 118
6.2.3 Vector Generating 119
6.2.4 Log Clustering 120
6.2.5 Issue Prioritization 120

6.3 Methodology . 121
6.3.1 Inverse Cardinality 121
6.3.2 Clustering by Log Event Appearance 122
6.3.3 Clustering by Log Event Count 124

xii

6.4 Evaluation . 127
6.4.1 Experiment Settings 127
6.4.2 Evaluation of Clustering Algorithm 128
6.4.3 Evaluation of Coverage Ability 130

6.5 Summary . 133

7 Location-Based Web Services QoS Prediction via Histor-
ical QoS Logs 134
7.1 Introduction . 134
7.2 Framework of Web Service Recommendation 138
7.3 Hierarchical Matrix Factorization 140

7.3.1 Overview 140
7.3.2 Users and Services Clustering 141
7.3.3 Local Matrix Factorization 143
7.3.4 Global Matrix Factorization 144

7.4 Experiments . 146
7.4.1 Dataset Description 146
7.4.2 Metrics . 146
7.4.3 Comparison 147
7.4.4 Impact of α 150
7.4.5 Impact of Dimensionality 152
7.4.6 Impact of Matrix Density 155

7.5 Summary . 155

8 Conclusion and Future Work 156
8.1 Conclusion . 156
8.2 Future Work . 158

A List of Publications 162

Bibliography 165

xiii

List of Figures

1.1 Hadoop Ecosystem (modified from figure in [16]) . . 3
1.2 An Overview of Automated Runtime Data Analysis

for System Reliability Management 4

2.1 An Illustrated Example of Log Parsing 15
2.2 An Illustrated Example of User-Service Matrix . . . 30

3.1 Overview of Log Parsing 38
3.2 Running Time of Log Parsing Methods on Datasets

in Different Size . 49
3.3 Parsing Accuracy on Datasets in Different Size . . . 50

4.1 Overview of Log Analysis 56
4.2 Overview of Log Parsing 60
4.3 Proxifier Log Samples 61
4.4 An Example of AT, RT Calculation 63
4.5 Overview of POP Implementation 68
4.6 Parsing Accuracy on Datasets in Different Size . . . 77
4.7 Running Time of Log Parsing Methods on Datasets

in Different Size . 78
4.8 Running Time on Synthetic Datasets 82
4.9 Example Log Group 86
4.10 Impact of GS . 87
4.11 Impact of splitRel 89
4.12 Impact of splitRel (splitAbs=0) 90
4.13 Impact of maxDistance 91

xiv

5.1 Structure of Parse Tree in Drain (depth = 3) 98
5.2 Parse Tree Update Example (depth = 4) 103
5.3 Running Time of Log Parsing Methods on Data Sets

in Different Size . 111

6.1 Overview of Our Approach 119
6.2 A Raw Log Message of Hadoop File System (HDFS) 119
6.3 An Example of Clustering by Log Event Appearance 122
6.4 An Example of Clustering by Log Event Count . . . 125
6.5 Evalution of Clustering Ability 129
6.6 Coverage Ability Curve of Different Methods 131

7.1 Web Services Invocation Scenario 136
7.2 Framework of Hierarchical Web Service Recom-

mendation System 138
7.3 An Example of QoS Prediction by Hierarchical Ma-

trix Factorization (α = 0.8) 139
7.4 Impact of α on MAE 150
7.5 Impact of α on NMAE 151
7.6 Impact of Dimensionality on MAE 152
7.7 Impact of Dimensionality on NMAE 153
7.8 Impact of Matrix Density 154

xv

List of Tables

3.1 Summary of Our System Log Datasets 45
3.2 Parsing Accuracy of Log Parsing Methods (Raw /

Preprocessed) . 46
3.3 Anomaly Detection with Different Log Parsing Meth-

ods (16,838 Anomalies) 51

4.1 Summary of Our System Log Datasets 71
4.2 Parsing Accuracy of Log Parsing Methods (Raw /

Preprocessed) . 74
4.3 Log Size of Sample Datasets 75
4.4 Parsing Accuracy of POP on Sample Datasets in

Table 4.3 with parameters tuned on 2k datasets . . . 76
4.5 Running Time of POP (Sec) on Sample Datasets in

Table 4.3 . 81
4.6 Anomaly Detection with Different Log Parsing Meth-

ods (16,838 Anomalies) 83

5.1 Summary of Log Data Sets 104
5.2 Parameter Setting of Drain 106
5.3 Parsing Accuracy of Log Parsing Methods 107
5.4 Running Time (Sec) of Log Parsing Methods 108
5.5 Log Size of Sample Datasets for Efficiency Experi-

ments . 109
5.6 Anomaly Detection with Different Log Parsing Meth-

ods (16,838 True Anomalies) 113

7.1 Parameters . 148

xvi

7.2 Value of α . 148
7.3 Performance Comparison (MAE) 149
7.4 Performance Comparison (NMAE) 149

xvii

Chapter 1

Introduction

This thesis presents our research towards automated runtime data
analysis for system reliability management, which is currently an
important field of study and practice in software operation and
maintenance. We provide a brief overview of the research problems
under study in Section 1.1, and highlight the main contributions of
this thesis in Section 1.2. Section 1.3 outlines the thesis structure.

1.1 Overview

Modern systems play an important role in our daily life. For
example, distributed systems, which are typical modern systems,
have become the core building block of the IT industry, powering
various applications such as e-commerce platforms, instant messag-
ing software, online banking systems, etc. These distributed systems
usually work in a 24 × 7 manner serving millions of users all over
the world. In practice, a startup company can rent servers from
distributed system providers to host its own application or service
(e.g., online notebook). Thus, any non-trivial downtime of these
systems can lead to enormous revenue loss for both service providers
and service users. In February 2017, Amazon Web Services (AWS)
has encountered an outage that took down a bunch of large online
services (e.g., Trello, Quora, IFTTT) for several hours [5], which

1

CHAPTER 1. INTRODUCTION 2

impacted both service providers (i.e., AWS) and service users (e.g.,
Quora). Therefore, a system reliability management framework is
highly in demand.

To manage system reliability, developers mainly rely on system
runtime data, which are generated during system execution. Typical
runtime data include user information, system logs, Quality-of-
Service (QoS) values, etc. Specifically, user information describes
the profile of users, which can be employed to search historical
user behaviors or issues. System logs are free-form text printed by
logging statements in source codes, which are widely utilized in re-
liability management tasks, such as anomaly detection [35, 42, 94],
problem identification [56, 81], problem diagnosis [72, 98], etc. QoS
values, which can be extracted from logs, are used in various online
service systems to evaluate system reliability.

Although system runtime data are of great use in system re-
liability management tasks, traditional methods that mainly rely
on manual analysis become inefficient and error-prone for modern
systems, because modern systems are getting much more complex
in structure and larger in scale. For example, as illustrated in Fig.
1.1, Hadoop ecosystem contains various modern systems, including
Hadoop Distributed File System (HDFS), Spark, Zookeeper, etc.
Different systems provide different functionalities, such as data
storage, data intelligence, monitoring, etc. It is therefore typical
that these systems often need to coordinate with each other to ac-
complish a task, which leads to the complexity of system reliability
management. Besides, each of these systems can employ various
existing open-source components, so the structure of these systems
themselves can be very complex. Usually, modern systems are also
large-scale, which are widely used by big companies (e.g., Amazon
EC2 [1], Google Cloud [4], and Microsoft Azure [6]). These large-
scale systems generate tons of runtime data every day. For example,
cloud system in Alibaba produces about 30-50 gigabytes (around
120-200 million lines) of system logs per hour.

CHAPTER 1. INTRODUCTION 3

Java Virtual Machine

Operating System

Fl
um

e
|

Sq
oo

p
|

Ch
uk

w
a

Da
ta

 In
te

gr
at

io
n

Am
bari | Zookeeper| O

ozie
M

anagem
ent, M

onitoring, O
rchestration

HDFS

MapReduce

YARN

Distributed Storage

Distributed Processing

Distributed Scheduling

Data Access

Data Storage

Interaction
Visualization

Execution
Development

Data Serialization

Data Intelligence

Pig
 Hive

HBase
 Cassandra

Hcatalog
Lucene
Hama

Crunch

 Avro
Thrift

 Spark
Mahout

Figure 1.1: Hadoop Ecosystem (modified from figure in [16])

Thus, it is challenging to employ these system runtime data
effectively and efficiently. First, since modern systems are complex
and often employ various existing open-source components, the
runtime data generated are often in various formats. For exam-
ple, logs are printed by logging statements written by different
developers or even different logging frameworks, so logs are often
free-form text messages. Manually inspecting these free-form logs
are prohibitive. Moreover, these free-form logs cannot be directly
input to most of automated log analysis frameworks, which require
structured data (e.g., a matrix) as input. Second, due to the large
amount of users and complexity of the systems, developers of
modern systems receive tons of operational issues. To address these

CHAPTER 1. INTRODUCTION 4

System Logs

User Info

QoS Values
System

 Runtim
e Data

Operational
Issues

Prioritization

QoS
Prediction

Reliability
M

anagem
ent

Log
Parsing

Figure 1.2: An Overview of Automated Runtime Data Analysis for System
Reliability Management

issues, developers need to inspect the corresponding runtime data.
Given that many operational issues in modern systems are redundant
[56, 81], traditional methods that rely on manual analysis becomes
inefficient and error-prone. Third, modern systems employ QoS
values to evaluate the reliability of their provided services. A service
often provides different QoS (e.g., response time) to different service
because of the underlying network. To provide the most suitable
services to users, developers need to monitor various QoS values.
However, as the number of users rapidly grows, it is impossible to
monitor the QoS values of services received by all users. Thus, it
is highly desired to predict QoS values based on limited QoS value
data.

In this context, automated runtime data analysis has recently
emerged as a promising solution for modern system reliability man-
agement. With the help of data mining techniques (e.g., clustering

CHAPTER 1. INTRODUCTION 5

algorithms) and large-scale data processing platforms (e.g., Apache
Spark [11]), traditional reliability management methods that are
labor-intensive and error-prone, can be automatically handled by
data analysis techniques. Fig. 1.2 illustrates the overview of the
automated runtime data analysis framework. System runtime data
has a wealth of information that can be utilized by developers. After
log parsing, which transforms runtime data to structured data, data
mining techniques can be employed in various system reliability
management tasks, such as operational issues handling and QoS
prediction. As a result, the objective of this thesis is to build a system
reliability management framework, where runtime data are analyzed
automatically to obtain insights and assist developers in various
reliability management tasks. The research of this thesis comprises
five parts. In the first three parts, we focus on the study of log
parsing. Specifically, in the first part, we conduct an evaluation study
on existing log parsers and publicly release our implementation as
a reusable toolkit. In the second part, we propose a parallel log
parser built on top of Apache Spark. In the third part, we design
an online log parser to parse logs in a streaming manner. In the
fourth part, we propose an operational issues prioritization method
based on hierarchical log clustering. Finally, in the fifth part, we
design a QoS prediction method, which employs limited QoS values
extracted from logs.

1.2 Thesis Contributions

In this thesis, we make contributions to system reliability manage-
ment in the following ways:

1. Evaluation study of log parsing
Logs, which record runtime information of modern systems,
are widely utilized by developers (and operators) in system
development and maintenance. Due to the ever-increasing

CHAPTER 1. INTRODUCTION 6

size of logs, data mining models are often adopted to help
developers extract system behavior information. However,
before feeding logs into data mining models, logs need to be
parsed by a log parser because of their unstructured format.
Although log parsing has been widely studied in recent years,
users are still unaware of the advantages of different log parsers
nor the impact of them on subsequent log mining tasks. Thus
they often re-implement or even re-design a new log parser,
which would be time-consuming yet redundant. To address this
issue, we study four log parsers and package them into a toolkit
to allow their reuse [39]. In addition, we obtain six insightful
findings by evaluating the performance of the log parsers on
five datasets with over ten million raw log messages, while
their effectiveness on a real-world log mining task has been
thoroughly examined.

2. Parallel log parsing for large-scale log data
Although the overall accuracy of existing parsers is high, they
are not robust across all datasets. When logs grow to a large
scale (e.g., 200 million log messages), which is common in
practice, these parsers are not efficient enough to handle such
data on a single computer. To address the above limitations, we
design and implement a parallel log parser (namely POP) [40]
on top of Spark, a large-scale data processing platform. POP
employs specially designed heuristic rules and hierarchical
clustering algorithm. Comprehensive experiments have been
conducted to evaluate POP on both synthetic and real-world
datasets. The evaluation results demonstrate the capability
of POP in terms of accuracy, efficiency, and effectiveness on
subsequent log mining tasks. Specifically, POP achieves the
highest parsing accuracy on all real-world datasets compared
with the existing methods. Besides, POP can parse our syn-
thetic HDFS (Hadoop Distributed File System) dataset, which

CHAPTER 1. INTRODUCTION 7

contains 200 million lines of raw log messages, in 7 mins.

3. Online log parsing
Most of the existing log parsing methods (e.g., parsers in
Chapter 3 and Chapter 4) focus on offline, batch processing
of logs. However, as the volume of logs increases rapidly,
model training of offline log parsing methods, which employs
all existing logs after log collection, becomes time-consuming.
To address this problem, we propose an online log parsing
method, namely Drain [41], that can parse logs in a streaming
and timely manner. To accelerate the parsing process, Drain
uses a fixed depth parse tree, which encodes specially designed
rules for parsing. We evaluate Drain on five real-world log
datasets with more than 10 million raw log messages. The
experimental results show that Drain has the highest accuracy
on four datasets, and comparable accuracy on the remaining
one. Besides, Drain obtains 51.85%∼81.47% improvement in
running time compared with the state-of-the-art online parser.
We also conduct a case study on an anomaly detection task
using Drain in the parsing step, which determines the effec-
tiveness of Drain in log analysis.

4. Prioritizing operational issues via hierarchical log cluster-
ing
As modern systems become complex and large-scale, operators
may need to handle tons of operational issue every day. An
operational issue is a system problem reported by users at
runtime, accompanied with user ID, configuration informa-
tion, log sequences, etc. Typically, operators need to first
inspect the accompanied log sequences and then identify the
problem encountered. However, it is prohibitive and error-
prone for operators to manually handle a large number of
issues. To address this problem, we propose POI to facilitate
the issue handling process. POI clusters similar operational

CHAPTER 1. INTRODUCTION 8

issues into groups based on the corresponding log sequences.
Then POI prioritizes the issue groups according to the number
of issues they contain. With POI, operators can focus on
the representative issue clusters instead of the large-scale log
sequences. Extensive experiments have been conducted on
a real-world dataset with 16,838 issues. Compared with the
existing methods, POP achieves the highest F-measure and the
best issue coverage.

5. Location-based Web services QoS prediction via historical
QoS logs
Developers, who design systems based on service-oriented
architecture (SOA), combine several Web services for system
development. As the number of functionally-equivalent ser-
vices increases rapidly, developers need to select the most
suitable Web services based on their QoS values (e.g., response
time). However, in reality, the QoS values are not easy to
obtain, because developers only know historical invocations,
whose QoS values are recorded in service logs. To tackle
this challenge, we design a location-based hierarchical ma-
trix factorization (HMF) method to perform personalized QoS
prediction. We cluster developers (i.e., users) and services
into several user-service groups based on their location. To
better characterize the QoS data, our HMF model is trained
in a hierarchical way by using the global QoS matrix as
well as several location-based local QoS matrices generated
from user-service groups. Then the missing QoS values are
predicted by compactly combining the results from local matrix
factorization and global matrix factorization. Comprehensive
experiments are conducted on a real-world Web service QoS
dataset with 1,974,675 Web service invocation records. The
experimental results show that our HMF method achieves
higher prediction accuracy than the state-of-the-art methods.

CHAPTER 1. INTRODUCTION 9

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2
In this chapter, we review some background knowledge and
related work on automated runtime data analysis for system
reliability management. First, we briefly introduce system
runtime data, with focus on its usage in modern system re-
liability management, typical runtime data, system logs, and
log management. Then we review representative log parsing
methods, including both offline log parsers and online log
parsers. After that, we introduce typical log mining methods
that enhance system reliability, with focus on representative
operational issues handling techniques. Finally, we review QoS
prediction approaches that predict missing QoS values based
on limited QoS values from QoS logs.

• Chapter 3
This chapter presents an evaluation study on four representative
log parsing methods and their use in log mining, with the aim
to provide researchers and developers with a benchmark and a
reusable parsing toolkit. We conclude with six insightful find-
ings with respect to their accuracy, efficiency, and effectiveness
on the subsequent log mining tasks. The source codes of the
four evaluated log parser have been released for reproduction.
More specifically, in Section 3.1, we introduce log parsing and
the motivation of our evaluation study. Section 3.2 reviews four
representative log parsing methods (i.e., SLCT [88], IPLoM
[64], LKE [35], LogSig [85]). Section 3.3 reviews recent
studies on log mining with a detailed example of anomaly
detection. The evaluation study results are reported in Section
3.4. We discuss some limitations in Section 3.5. Finally, we
conclude this chapter in Section 3.6.

CHAPTER 1. INTRODUCTION 10

• Chapter 4
In this chapter, we present a parallel log parsing framework,
namely POP. POP employs specially designed heuristic rules
and hierarchical clustering algorithm. To achieve paralleliza-
tion, we optimize POP on top of Spark, a large-scale data
processing platform. To the best of our knowledge, POP is the
first parallel log parsing framework. More specifically, Section
4.1 introduces log parsing and our motivation for parallel log
parsing. Section 4.2 introduces our parallel log parsing method,
which includes five steps, and its implementation details on
Spark. The evaluation results are reported in Section 4.3. We
discuss practical usage of POP in Section 4.4. We summarize
this chapter in Section 4.5.

• Chapter 5
This chapter presents an online log parsing framework, namely
Drain, which can parse logs in a streaming manner. The
core technique of Drain is a fixed depth tree, which encodes
different specially designed heuristic parsing rules. When a
log message arrives, Drain employs the fixed depth tree to
search the most suitable log group for parsing, and update
the rules accordingly. More specifically, Section 5.1 presents
the overview of log parsing and explains the motivation of
designing an online log parser. Section 5.2 describes the five
steps of our online log parsing method, Drain. The first four
steps search a correct log group for the current log message,
while the fifth step updates the fixed depth tree accordingly.
We evaluate the performance of Drain in Section 5.3. Finally,
we conclude this chapter in Section 5.4.

• Chapter 6
In this chapter, we present an operational issue prioritizing
framework, namely POI. The core idea of POI is to cluster

CHAPTER 1. INTRODUCTION 11

similar issues into groups based on the corresponding log
sequences, and then prioritize these issue groups according
to the number of issues inside. More specifically, Section
6.1 introduces the motivation of operational issues prioritiza-
tion. Section 6.2 presents some background knowledge and
the prioritizing framework. Then Section 6.3 introduces our
hierarchical log clustering algorithm in detail. Experimental
results are explained in Section 6.4, and finally, we conclude
this chapter in Section 6.5.

• Chapter 7
This chapter presents a Web service QoS values prediction
method, namely HMF, based on historical QoS logs. A
developer usually has employed only a few Web services, so
only limited QoS values are available in historical QoS logs.
The core idea of HMF is to predict QoS values by learning from
similar developers and services. More specifically, Section 7.1
explains the motivation of QoS prediction based on historical
QoS logs. Section 7.2 describes the framework of our QoS
prediction. Our proposed hierarchical matrix factorization
model is explained in detail in Section 7.3. Section 7.4 presents
experiments and discusses the experiment results. Finally, we
conclude this chapter in Section 7.5.

• Chapter 8
The last chapter summarizes this thesis and provides some
future directions that deserve for further exploration.

To make each chapter self-contained, we may briefly reiterate the
critical contents, such as model definitions and motivations, in some
chapters.

2 End of chapter.

Chapter 2

Background Review

This chapter briefly reviews some background knowledge and re-
lated work of our research. First, we provide background knowledge
about system runtime data, especially system logs. Then in the
following three subsections, we explain the three main problems
studied in this thesis, including log parsing in Section 2.2, log
mining based on log events in Section 2.3, and log mining based on
logged variables Section 2.4. In each subsection, we first introduce
the research field. Then we present the problem description, includ-
ing the concrete problem studied, problem input, problem output,
and its usage in system reliability management. Finally, we review
related literature.

2.1 System Runtime Data

Runtime data are data generated by systems or programs during their
execution. Compared with traditional systems, modern systems are
more complex and large-scale, especially online service systems.
These systems often work in a 24 × 7 manner to serve millions
of users all over the world. For example, a startup company may
put part of its services on an online service system. Any non-trivial
downtime of these systems can lead to revenue loss of both service
providers and services users. However, due to the complexity and

12

CHAPTER 2. BACKGROUND REVIEW 13

large scale, modern systems inevitably encounter failures (e.g., node
failures). Thus, system reliability management methods are highly
in demand. Specifically, developers need to monitor the system
status at runtime, spot potential anomalies, and handle operational
issues efficiently. To achieve these goals, typically, developers
rely on system runtime data, because they are often the only data
available for analysis.

Modern systems have a wide range of runtime data, including
user information, system logs, QoS values, etc. User information
profiles a user, for example, the historical user behaviors of a specific
user. System logs are free-form text generated by the system at
runtime to record system operations. QoS values represent Quality-
of-Service values, which measure the nonfunctional aspect of the
system. Among all these runtime data, system logs are the most
common and often the most important one, because when a user
reports an operational issue, the corresponding system logs will be
sent to the developers accordingly. Besides, QoS values are often
extracted from the variable part of QoS logs.

A log message is printed by a logging statement written by
developers. A typical log message contains two parts: constant part
and variable part. Constant part contains tokens that describe the
system behavior, while variable part records runtime variables in the
program. Example logs are illustrated in Fig. 2.1. The raw logs in
this figure are extracted from logs generated by Hadoop Distributed
File System (HDFS). In this thesis, we call the constant part of a
log message “a log event”, and different log messages has their
own “log events”. We also use “log event” and “log event type”
interchangeable in this thesis. For example, Fig. 2.1 demonstrates
six log event types.

With the prevalence of distributed systems and cloud computing,
log management becomes a challenging problem because of security
assurance requirements and the huge volume of log data. Hong
et al. [43] design a framework to sanitize search logs with strong

CHAPTER 2. BACKGROUND REVIEW 14

privacy guarantee and sufficiently retained utility. Zawoad et al.
[100] propose a scheme to reveal cloud users’ logs for forensics
investigation while preserving their confidentiality. Meanwhile, to
assist log analysts in searching, filtering, analyzing, and visualizing
a mountain of logs, some promising solutions, such as commercial
Splunk [19], and open-source Logstash[18], Kibana [17], have
been provided. These solutions provide many plugins/tools for
monitoring and analyzing popular system logs (e.g., TCP/UDP,
Apache Kafka) and present stunning visualization effects.

2.2 Log Parsing

In this section, we introduce the background knowledge of log
parsing. Log parsing aims at transforming unstructured log mes-
sages into structured log events. System runtime log messages
are unstructured, because these log messages are free-form texts
printed by logging statements written by developers to describe
system operations and runtime system status. However, many log
mining algorithms that automatically mine insights from system
logs require structured input (e.g., a matrix). Thus, we need a log
parser to automatically generate structured log events based on the
unstructured system runtime logs. Then structured input, such as a
matrix, can be easily calculated based on log events.

2.2.1 Problem Description

Essentially, log parsing is a clustering problem, where log messages
with the same log event type are clustered into one log group. After
clustering, we can obtain a number of log groups, say N groups.
Then log parser will generate N log event types by extracting the
log event of each log group. With the generated log events, log
parser can match each log message with a log event type according
to its corresponding log group.

CHAPTER 2. BACKGROUND REVIEW 15

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user/root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-00011.
blk_904791815409399662
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010
2008-11-11 03:41:01 Receiving block blk_824468007158756647 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010
2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114
2008-11-11 03:41:48 PacketResponder 1 for block blk_824468007158756647
terminating
2008-11-11 03:41:48 Received block blk_824468007158756647 of size 67108864
from /10.251.43.210
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.251.43.210:50010 is added to blk_824468007158756647 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Raw Logs

 1 blk_904791815409399662 Event1
 2 blk_904791815409399662 Event2
 3 blk_824468007158756647 Event2
 4 blk_904791815409399662 Event3
 5 blk_904791815409399662 Event4
 6 blk_824468007158756647 Event3
 7 blk_824468007158756647 Event4
 8 blk_824468007158756647 Event5
 9 blk_904791815409399662 Event5
10 blk_904791815409399662 Event6

Strutured Events

Event1 BLOCK* NameSystem.allocateBlock:

Event2 Receiving block src: dest:

Event3 PacketResponder for block
 terminating

Event4 Received block of size from

Event5 BLOCK* NameSystem.addStoredBlock:
 blockMap updated: is added to size

Event6 Verification succeeded for

Log Event Types

1

2

3

4

5

6

7

8

9

10

Figure 2.1: An Illustrated Example of Log Parsing

Technically, log parsing aims at distinguishing the constants and
variables in every log message. The input of a log parser is a
sequence of log messages collected in system runtime. Typically, the
log messages contain timestamp, verbosity level, and raw message
content. The output of a log parser is a sequence of log events.
For example, as illustrated in Figure 2.1, there are 10 unstructured
log messages. These log messages are collected from Hadoop
Distributed File System. They are the input of a log parser. After
log parsing, the parser generates two parts. The first part contains
log event types, which are all the system operations mined from the
unstructured logs. The second part contains a list of log events,

CHAPTER 2. BACKGROUND REVIEW 16

which are represented by event IDs. In practice, developers can
also extract fields of interest and present them in the parsing output,
such as the block ID in Figure 2.1. Developers can generate vectors
for different blocks based on the block IDs and log events. Note
that all the log parsing methods proposed in this thesis only rely
on the log messages as input, and does not require any source code
information. With project source code, we can find out all possible
log event type by statically analyzing the source code. However,
source codes are often inaccessible in practice, for example, systems
that use third-party libraries or online Web services.

2.2.2 Literature Review

Recently, log parsing has been widely studied. Typical log parsing
methods can be either offline or online. Offline log parsers mine
the log event types from historical log data in batch mode, while
online log parsers work in a streaming manner. For both offline and
online log parsers, we can employ heuristic rules based technique
or clustering algorithms. In the next subsections, we will introduce
both heuristic rules based offline log parsers and clustering based
offline log parsers. For online log parser, we focus on heuristic rules
based online methods, because currently there is a lack of clustering
based online log parsers. Finally, we introduce some other log
parsing methods, such as source code based log parsing methods.

Offline Log Parsing Based on Heuristic Rules

Offline log parsing methods parse log messages in batch mode.
Specifically, developers collect historical system logs, and input
a batch of logs into the offline log parser. Then the structured
events can be directly input to subsequent log mining models. In
practices, after obtaining all the log event types from historical logs,
developers can employ those log event types to parse log messages.
Developers can periodically rerun the log parser to mine new log

CHAPTER 2. BACKGROUND REVIEW 17

event types, and update the log event types accordingly.
Heuristic rule-based log parsing methods rely on manually de-

fined rules. Developers mainly learn these rules by studying the
characteristics of system logs. Then, they hardcode these rules and
cluster the unstructured log messages into different log groups by
these rules. In the following, we will introduce two heuristic rules
based log parsing methods: SLCT [88] and IPLoM [64].

SLCT. To the best of our knowledge, SLCT [88] is the first log
parser, which is short for Simple Logfile Clustering Tool. SLCT is
proposed by Vaarandi [88] in 2003. Inspired by association rule,
SLCT parse logs in four steps.

• Step 1: Word vocabulary construction. SLCT makes a pass
over the words in all the logs and counts the occurrence of
them. In this step, the position of the word is also considered.
For example, “send” as the 1st word of a log and “send” as the
2nd word of a log are considered different. Words occur more
than support threshold, say N , are defined as frequent words.

• Step 2: Cluster candidates construction. In this step, SLCT
makes the second pass over all the logs, while at this time it
focuses on frequent words. All the frequent words in a log
will be extracted be the log template of itself. The number of
logs that match a certain log template is counted, and each log
template represents a cluster candidate.

• Step 3: Log template extraction. SLCT goes through all cluster
candidates and log templates whose corresponding cluster con-
tains more than N logs are selected as the output templates.
The logs of clusters which are not selected are placed into
outliers class.

• Step 4: Cluster combination. This step is optional. SLCT
could make a pass through all selected clusters and combine
two clusters if one of them is the subcluster of the other. For

CHAPTER 2. BACKGROUND REVIEW 18

example, cluster “PacketResponder 1 for block * terminating”
is the subcluster of “PacketResponder * for block * terminat-
ing”. Therefore, these two clusters will be combined in this
step.

IPLoM. IPLoM is a heuristic rules-based log parser proposed by
Makanju et al. [64]. It conducts log parsing in a 4-step process based
on heuristic rules.

• Step 1: Partition by event size. Logs are partitioned into
different clusters according to its length. In real world logs, it is
possible that logs belong to one template are of variable length.
In this case, the result of IPLoM should be postprocessed
manually.

• Step 2: Partition by token position. At this point, each cluster
contains logs with the same length. Assuming there are m logs
whose length are n in a cluster, this cluster can be regarded as
an m-by-n matrix. This step based on the assumption that the
column with least number of unique words (split word position)
is the one contains constants. Thus, the split word position is
used to partition each cluster, i.e. each generated cluster has
the same word in the split word position.

• Step 3: Partition by search for mapping. In this step, two
columns of the logs are selected for further partitioning based
on the mapping relation between them. To determine the
two columns, the number of unique words in each column
is counted (i.e. word count) and the two columns with the
most frequently appearing word count are selected. There are
four mapping relations: 1-1, 1-M, M-1, M-M. In the case of
1-1 relations, logs contain the same 1-1 relations in the two
selected columns are partitioned into the same cluster. For 1-M
and M-1 relations, we should first decide whether the M side
column contains constants or variables. If the M side contains

CHAPTER 2. BACKGROUND REVIEW 19

constants, the M side column is used partition logs in 1-M/M-1
relations. Otherwise, the 1 side column is used. Finally, logs in
M-M relations are partitioned into one cluster.

• Step 4: Log template extraction. IPLoM processes through all
the clusters generated in previous steps and generates one log
template for each of them. For each column in a cluster, the
number of unique words is counted. If there is only one unique
word in a column, the word is regarded as constant. Otherwise,
the words in the column are variables and will be replaced by a
wildcard in the output.

Three important parameters of IPLoM are Partition Support
Threshold (PST), Cluster Goodness Threshold (CGT) and Lower
Bound (LB). PST decides whether a newly generated cluster in the
first 3 steps should be regarded as an outlier. CGT indicates whether
a cluster is good enough and could skip step 3. Last but not least, LB
is used in step 3 to decide whether words in the M side are constants
or variables.

The author of SLCT has released its source code written in
C online [7]. IPLoM has not been released. In this thesis, we
implement both SLCT and IPLoM in Python and released them as a
toolkit.

Offline Log Parsing Based on Clustering Algorithms

LKE. Log Key Extraction (LKE) is used in [35, 60], which utilize
both clustering algorithms and heuristic rules.

• Step 1: Log clustering. Weighted edit distance is designed to
evaluate the similarity between two logs,WED =

∑n
i=1

1
1+exi−v .

n is the number of edit operations to make two logs the same,
xi is the column index of the word which is edited by the i-th
operation, v is a parameter to control weight. LKE links two
logs if theWED between them is less than a threshold σ. After

CHAPTER 2. BACKGROUND REVIEW 20

going through all pairs of logs, each connected component is
regarded as a cluster. Threshold σ is automatically calculated
by utilizing K-means clustering to separate all WED between
all pair of logs into 2 groups, and the largest distance from the
group containing smaller WED is selected as the value of σ.

• Step 2: Cluster splitting. In this step, some clusters are further
partitioned. LKE firstly finds out the longest common sequence
(LCS) of all the logs in the same cluster, such as “Receiving
block src: dest:” in log 2 and log 3 in Figure 2.1. The rests of
the logs are dynamic parts separated by common words, such as
“/10.251.43.210:55700” or “blk 904791815409399662”. The
number of unique words in each dynamic part column, which
is denoted as |DP |, is counted. For example, |DP | = 2 for the
dynamic part column between “src:” and “dest:” in log 2 and
log 3. If the smallest |DP | is less than threshold φ, LKE will
use this dynamic part column to partition the cluster.

• Step 3: Log template extraction. This step is similar to the
step 4 of IPLoM. The only difference is that LKE removes
all variables when they generate log templates, instead of
representing them with wildcards.

LogSig. LogSig [85] is a clustering algorithm which parses logs
in three steps.

• Step 1: Word pair generation. In this step, each log is
converted to a set of word pairs. For example, the 10th
raw log in Figure 2.1 is converted to the following word
pairs: (Verification, succeeded), (Verification, for), (Verifica-
tion, blk 904791815409399662), (succeeded, for), (succeeded,
blk 904791815409399662), (for, blk 904791815409399662).
Each word pair preserves the order information of the original
log.

CHAPTER 2. BACKGROUND REVIEW 21

• Step 2: Clustering. LogSig requires users to determine the
number of clusters, say k, which leads to k randomly parti-
tioned clusters of logs at the beginning of clustering. In each
iteration of clustering, LogSig goes through all the logs and
move them to other clusters if needed. For each log, potential
value, which is based on word pairs generated in step 1, is
calculated to decide to which cluster the log should be moved.
The potential value is explained in detail in Section 4.2.2 in
[85]. LogSig keeps clustering until no log is decided to move
in one iteration.

• Step 3: Log template extraction. At this point, there are k
clusters of logs. For each cluster, words in more than half of the
logs are selected as candidate words of the template. To figure
out the order of candidate words, LogSig goes through all the
logs in the cluster and count how many times each permutation
appears. The most frequent one is the log template of the
cluster.

LKE and LogSig have not been released by their authors. In this
thesis, we implement both LKE and LogSig in Python and released
them as a toolkit.

Online Log Parsing

Different from offline log parsers, online log parsers parse log
messages in a streaming manner. Online log parsers are useful
for systems whose codes update frequently. In practice, online log
parsers maintain parsing rules and update them dynamically based
on the incoming logs. Existing online log parsers employ a tree to
encode heuristic rules. The main differences between existing online
log parsers are the tree structure and the tree update mechanism. In
the following, we will introduce SHISO [69] and Spell [31], two
state-of-the-art online log parsers. For both log parsers, we introduce
their tree structure, search phase, and update phase.

CHAPTER 2. BACKGROUND REVIEW 22

SHISO. SHISO is proposed by Mizutani [69]. Its core idea is to
use all the nodes in the tree as index nodes, where each node in the
tree corresponds to a log event type except the root node.

• Tree structure: SHISO’s tree starts with a root node, which
links to several child nodes. The number of child nodes is
controlled by a parameter. For other nodes, we call them index
nodes. Each index node links to its child node, and contains
a log event type. Thus, each index node employed by SHISO
represents a log group.

• Search phase: For an incoming log message, SHISO starts the
search process from the root node. It compares the log message
with the log events stored in all its child node, and find out
the child node whose log event type shares the most similarity
with the incoming log message. If the similarity is larger than a
threshold, the log message belongs to log group represented by
the child node. Otherwise, SHISO checks whether the number
of child nodes equals the maximum number of child node,
which is a model parameter. If not, the incoming log message
will form a new log group, so a new index node will be added
as a child node to the current node. If the number of child
nodes already equals the maximum number, SHISO will go
to the child node that has the largest similarity and iteratively
search its child node. If the lengths (i.e., number of tokens)
of the log message and that of the log event are different,
SHISO thinks the similarity between them is 0. Otherwise,
SHISO calculates the similarity by adding up the similarity
values between tokens in the same position. For example,
the similarity between the first tokens in the log message and
the log event. Then the added up value is divided by 2L,
where L is the length of the log message. To calculate the
similarity between two tokens, SHISO first map each token to
a 4-dimension vector. Each dimension of this vector counts the

CHAPTER 2. BACKGROUND REVIEW 23

number of 4 author-defined chars, including lowercase chars,
uppercase chars, digits, and others. For example, “A123ab”
will be map to vector (2, 1, 3, 0). After mapping, SHISO
calculates the similarity between two vectors based on their
Euclidean Distance.

• Update phase: When a new log message arrives, SHISO will
go through the search phase. However, the update phase is not
called unless a new log event type has been generated. Thus,
it will update either the format of an existing index node, or
generate a new index node. SHISO maintains a log event table,
which contains all existing log events. SHISO calculate the
similarity between the newly generated log event and all the
existing log events, and find out the existing log event that has
the largest similarity. If the largest similarity is larger than a
threshold, the two log events are merged.

Spell. Spell is designed by Du et al. [31]. Spell uses a prefix tree
to guide the parsing process.

• Tree structure: Spell designs a prefix tree to guide the parsing
process. The root node acts as the starting node for the search
process. The root node is linked to child nodes, where each
child node has a token and links to its own child nodes. The
tokens in the tree are employed to accelerate the search process.
During the parsing process, some nodes will be connected to
log groups, while others only provide the index function.

• Search phase: For an incoming log message. Spell provides
two search strategy: prefix tree approach and simple loop
approach. Spell first uses prefix tree approach to find the most
suitable log group. If it does not find any suitable log group,
Spell uses simple loop approach. Prefix tree approach searches
the most suitable log group by comparing the tokens in the
incoming log message and the tokens prefix tree. Firstly, Spell

CHAPTER 2. BACKGROUND REVIEW 24

checks whether a token stored in its child node equals the first
token of the incoming log message. If yes, Spell traverses to
that child node and keep checking for the subsequent tokens in
the log message. The main goal of this process is to find a path
in the prefix tree, where all the tokens along the path form a
subsequence of the incoming log message. If the ratio between
the number of the tokens along the path and the length of the
log message is larger than a threshold, the corresponding log
group (if any) will be selected as the search result. If prefix tree
approach cannot find a suitable log group, Spell employs the
simple loop approach, which linearly compares the similarity
between the log message and all existing log events. The
similarity is calculated by the length of the longest common
subsequence (LCS).

• Update phase: When a log message matches an existing log
group, Spell will update the log event stored in the log group.
Specifically, Spell compares the tokens in the same token
position of log messages and the log event. If the tokens are
different, Spell updates the token in that token position to a
wildcard. When a log message does not match any existing log
group, a new log group is generated with the log message as the
log event. Then, a new path is added to the prefix tree, where
the last node along the path points to the newly generated log
group.

Other Log Parsing Methods

The log parsers introduced above are all data-driven methods that
parse unstructured logs without other project materials, such as
source codes. There are also some other log parsing methods. Xu
et al. [94] propose a log parser based on source code analysis
to extract log events from logging statements. Specifically, they
statically analyze the project source codes, and find out all the

CHAPTER 2. BACKGROUND REVIEW 25

logging statements. Then they extract the constants from the logging
statements and generate parsing rules (i.e., regular expressions)
accordingly. However, source codes are often unavailable or in-
complete to access, especially when third-party components are
employed. Thus, we do not compare our proposed log parsers with
source code based methods. Jiang et al. [48] design a data-driven
method to parse log messages. The core idea is employing clone
detection techniques to cluster similar log messages into log groups.
However, their method requires developers to manually construct
heuristics (e.g., regular expressions) to find out parameters at the
beginning. Different from their work, the log parsers studied in
this thesis aims at distinguishing the constants and variables in the
logs automatically. Hamooni et al. [38] design automated and
parallel log parsing method based on MapReduce. They maintain a
hierarchy of patterns in a tree and give users the flexibility to choose
a level based on their needs. However, this method mainly focuses
on semi-structured logs, which do not contain much free-form text
descriptions about system operations. Thus, in summary, these log
parsers either have different input (e.g, [94, 38]), or requires extra
manual effort (e.g., [48]). The log parsers studied in this thesis
employ only system logs as input, and require limited manual effort.

Many researchers (e.g., [23, 72, 38, 22]) and practitioners (as
revealed in StackOverflow questions [8, 10]) in this field have to
implement their own log parsers to deal with their log data. Our
work (Chapter 3, Chapter 4, and Chapter 5) not only provides
valuable insights on log parsing, but also releases open-source tool
implementations on the proposed log parsers and four representative
log parsers.

2.3 Operational Issues Prioritization via Log Events

Logs, as an important data source, are in widespread use to ensure
system dependability. Typical examples include anomaly detection

CHAPTER 2. BACKGROUND REVIEW 26

[94, 35, 42], program verification [23, 81], problem diagnosis [98,
72], and security assurance [74, 37]. Most of these log mining tasks
employ the parsing results of log parsers as input. Specifically, they
need to know the log event type of each log message. For example,
some anomaly detection methods [94, 42] generate an event count
matrix based on the list of log events output by the log parser. Then
the occurrence frequency of each event type can be calculated easily.

Similarly, operational issues prioritization requires the structured
log events as input. In the following, we will first introduce
the operational issues prioritization process, problem input, and
problem output. Then we review two state-of-the-art log-based
operational issues prioritization technique in detail and other related
log mining tasks.

2.3.1 Problem Description

Essentially, operational issues prioritization is a clustering problem,
where similar issues will be clustered into the same issue group.
In system runtime, developers may receive issues reported by users
because of anomalous system behavior, for example, the response
time rapidly increases. The issue often contains related system in-
formation, including user information, system configuration, system
logs, etc. To address user reported issues, developers mainly inspect
the related system logs and try to identify the potential problem.
Operational issues prioritization techniques aim at accelerating this
process. Specifically, the input is the system logs of all pending
issues, where logs belong to an issue form a log sequence. The
output will be an ordered list of issue groups. Each issue group
contains issues caused by the same potential problem. With this
output, developers can handle the high ranking issue groups first,
instead of randomly selecting issues. By inspecting an entire issue
group, the developer can probably resolve the whole issue group
by inspecting only a few issues insides. Thus operational issues

CHAPTER 2. BACKGROUND REVIEW 27

prioritization techniques can largely facilitate the issue handling
process.

2.3.2 Literature Review

Operational issue prioritization is a new problem that attracts re-
searchers in recent years. The two most closely related methods are
proposed by Shang et al. [81] and Lin et al. [56].

Shang et al. [81] focus on helping developers handle the issues
reported in the deployment phase of big data analytics applications.
They first collect the logs generated by the applications on several
machines with small data. After generating log sequences based
on the task IDs inside, they apply the proposed algorithm to cluster
the log sequences into issue groups. When the system is deployed
on large-scale cloud, the collected logs will go through the same
process, including log sequence generation and clustering. Then
they will compare the issue groups generated from the test data logs
and the large cloud data logs. Only the differences will be reported
to developers for further inspection. To cluster the log sequences,
they only focus on the appearance of different log events without
considering the occurrence frequency of the events. Besides, they do
not consider the order of different events. Essentially, they transform
each log sequence into an event appearance vector that only contains
0 or 1 for its elements. Finally, the log sequences with the exact same
vectors will be clustered into the same group.

Lin et al. [56], which improves the clustering performance of
[81], aims at identifying similar problems (i.e., issues) for online
service systems. With their method, developers can inspect the
issue groups instead of manually inspecting the whole system logs.
Specifically, different from the previous method [81], they count the
occurrence frequency of different log events. Besides, they employ
TF-IDF [80] recalibrate the weights of different log events. Intu-
itively, by using TF-IDF, log events that appear in more instances

CHAPTER 2. BACKGROUND REVIEW 28

will be assigned a lower weight. Then, instead of clustering the issue
with exactly the same vectors, this paper employs the agglomerative
hierarchical clustering algorithm to cluster similar vectors based on
cosine similarity. The cosine similarity is defined as follows:

Similarity(Si, Sj) =
Si · Sj
||Si||||Sj||

=

∑n
k=1 SiEk × SjEk√∑n

k=1(SiEk)2
√∑n

k=1(SjEk)2
(2.1)

where SiEk represents the kth event in the jth sequence vector.
After clustering the log sequences into different issue groups, for
each issue group, they will find out a representative log sequence
by choosing the centroid of the cluster. Then when a new issue
arrives, this method can calculate the cosine distance between the
new issue vector and all existing representative log sequence vector,
and recommend to developers the issue group with the nearest
representative vector.

Both methods [81, 56] introduce employ clustering algorithms
to cluster log sequences into different groups. With these issue
group, developers only need to inspect a number of issue groups
instead of manually handling all the reported issues. Similar to these
two methods, in Chapter 6, we propose a method to accelerate the
issue handling process by clustering. However, we design a novel
clustering framework containing a coarse-grained clustering and a
fine-grained clustering. Besides, we also propose a novel weighting
strategy to recalibrate the weights of different log events.

Besides operational issue handling, there are various reliability
assurance tasks that employ log mining techniques, which will be
briefly introduced in the following. For anomaly detection, Xu et
al. [94] propose a PCA-based model, which is trained by system
logs, to detect runtime anomalies. Fu et al. [35] generate a Finite
State Automaton (FSA) based on log messages to detect anomalies.

CHAPTER 2. BACKGROUND REVIEW 29

Kc et al. [51] detect anomalies by using both coarse-grained and
fine-grained log features. As for program verification, Beschastnikh
et al. [23] propose Synoptic to construct a finite state machine
from logs as system model. Shang et al. [81] analyze logs from
both pseudo and cloud environment to detect deployment bugs for
big data analytics applications. Log analysis also facilitates system
security assurance. Gu et al. [37] leverage system logs to build
an attack detection system for cyber infrastructures. Oprea et al.
[74] employ log analysis to detect early-stage enterprise infection.
Besides, Pattabiraman et al. [75] design an assertion generator based
on execution logs to detect application runtime errors. Log analysis
is also employed in structured comparative analysis for performance
problem diagnosis [72] and time coalescence assessment for failure
reconstruction [29]. As shown in our experiments, the accuracy and
efficiency of log parsing could have a great impact on the whole log
analysis tasks. Thus, we believe our parallel log parsing approach
could benefit future studies on dependability assurance with log
analysis.

2.4 QoS Prediction via Limited QoS Values in Logs

In recent years, Service Oriented Architecture (SOA) has become
popular in software engineering. Developers can combine a number
of existing Web services online to realize a complex system. In this
process, developers first select Web services by functions. However,
the number of Web services that provide similar functions grows
rapidly. Thus, after selecting Web services by functions, developers
need to select the most suitable ones based on their non-functional
properties: Quality-of-Service (QoS) values. Typical QoS values
include response time, throughput, failure probability, etc. For
example, developers can select the Web service with the shortest
response time. However, in practice, a developer usually only called
a few Web services, so she does not know the QoS values of most

CHAPTER 2. BACKGROUND REVIEW 30

Figure 2.2: An Illustrated Example of User-Service Matrix

of the service candidates. Thus, we need QoS prediction method
to predict the QoS values based on the existing values. These QoS
values can be extracted from the logs that record QoS values. In the
following, we introduce the QoS prediction problem, its input, and
output.Then we review literature about QoS prediction.

2.4.1 Problem Description

Based on the existing QoS values, we can form a user-service
matrix, where each row represents a user and each column represents
a service. Thus, each cell in the matrix represents the QoS value
when a user calls a service. As illustrated by Fig. 2.2, in this matrix,
there are four users and five services, and only limited QoS values
are available. This matrix will be the input of QoS prediction. The
output of QoS prediction will be a predicted matrix. Based on the
predicted matrix, developers can select the service with the best QoS
value.

2.4.2 Literature Review

In recent years, service computing [102, 92, 104, 83, 107] has
attracted more and more attention from industry communities as
well as academic circles. Among all topics in service computing,
QoS-aware service selection and service composition are studied in
a large number of literature [21, 33, 44, 50], whose goal is to decide

CHAPTER 2. BACKGROUND REVIEW 31

which candidate services to be used as components in complex
systems. However, most of the research work has a necessary
precondition: QoS values of all candidate services for corresponding
users are already known, which is always not satisfied in real-world
cases. Thus, many researchers begin to focus on QoS prediction
issues, which aims at analyzing existing user-services invocation
records and then predict those unobserved ones.

Collaborative filtering was applied to this problem by Shao et
al. [82] first. In their paper, a user-based collaborative filtering
method was proposed, which predicts a specific user based on
similar users. Zheng et al. [103] designed a hybrid approach to lever-
age both user-based and item-based collaborative filtering. Chen
et al. [26] built a region model before collaborative filtering step,
their method can be tuned to trade off speed and recommendation
accuracy. Tang et al. [87] raised a hierarchical method to predict
QoS values on the user side and service side separately. Different
from previous methods that directly dig out neighbors on all his-
torical records, they seek similar users in the same Autonomous
System (AS) and country first. These collaborative filtering methods
are classified as memory-based collaborative filtering techniques.
Although these methods have a good performance when there are
enough user-service invocation records, they do not perform well
when the matrix becomes bigger and sparser.

Compared with memory-based collaborative filtering methods,
model-based collaborative filtering methods can provide us with
more precise prediction result. The overall idea of model-based
methods is to train a model according to existing data and use
that trained model to predict missing QoS values. Probabilistic
matrix factorization (i.e. matrix factorization in this paper) was
proposed by Salakhutdinov et al. [70]. Lo et al. [59] raised an
extended matrix factorization approach, whose main contribution is
two novel relational regularization terms that can improve prediction
accuracy. They also proposed a location-aware matrix factorization

CHAPTER 2. BACKGROUND REVIEW 32

model [58]. In that work, they designed two user-location-aware
matrix factorization models, each of which extended by a location
regularization term. However, location information of services
is neglected, which is actually helpful in improving prediction
accuracy. In this thesis, the model proposed in Chapter 7 utilizes
geographical information of both users and services simultaneously.
Besides, our model is run in a hierarchical way, which means it can
make use of not only global context, but also local information.

Besides, recent studies focus on enhancing the reliability of Web
service systems. Cubo et al. [28] use dynamic software product
lines to reconfigure service failures dynamically. Service selection
and recommendation are also widely studied [46, 67]. These studies
usually employ QoS (quality of service) values to characterize the
reliability of different Web services. Jurca et al. [49] propose a
reliable QoS monitoring technique based on client feedback. Yao
et al. [95] develop a model with accountability for business and
QoS compliance. Besides, Chen et al. [25] propose a performance
prediction method for component-based applications. Our proposed
online log parser is critical for log analysis techniques, which can
complement with these methods in reliability enhancement for Web
service systems. The log analysis methods can also improve the
reliability of many existing service systems [101, 32].

2 End of chapter.

Chapter 3

Evaluation Study of Log Parsing
and Its Use in Log Mining

In log analysis, before feeding logs into data mining models, logs
need to be parsed by a log parser because of their unstructured for-
mat. This chapter presents an evaluation study on four representative
log parsers. A key finding is that log parsing is important, because
4% errors in parsing could even cause on order of magnitude perfor-
mance degradation in log mining. The main points of this chapter
are as follows. (1) It reviews and evaluates four representative log
parsers in terms of accuracy and efficiency (2) It conducts a case
study on system anomaly detection to evaluate the effectiveness of
log parsers on log mining. (3) It obtains six insightful findings and
release the studied parsers as an open-source toolkit.

3.1 Introduction

Logs are widely used to record runtime information of software
systems, such as the timestamp of an event, the unique ID of a
user request, and the state of a task execution. The rich information
of logs enables system developers (and operators) to monitor the
runtime behaviors of their systems and further track down system
problems in production settings.

With the ever-increasing scale and complexity of modern sys-

33

CHAPTER 3. EVALUATION STUDY 34

tems, the volume of logs is rapidly growing, for example, at a rate of
about 50 gigabytes (around 120∼200 million lines) per hour [68].
Therefore, the traditional way of log analysis that largely relies
on manual inspection has become a labor-intensive and error-prone
task. To address this challenge, many efforts have recently been
made to automate log analysis by the use of data mining techniques.
Typical examples of log mining include anomaly detection [94,
35, 63], program verification [23, 81], problem diagnosis [98, 72],
and security assurance [74, 37]. However, raw log messages are
usually unstructured, because developers are allowed to record a
log message using free text for convenience and flexibility. To
enable automated mining of unstructured logs, the first step is to
perform log parsing, whereby unstructured raw log messages can be
transformed into a sequence of structured events.

Typically, a log message, as illustrated in the following example,
records a specific system event with a set of fields: timestamp
(recording the occurring time of the event), verbosity level (indi-
cating the severity level of the event, e.g., INFO), and raw message
content (recording what has happened during system operation).

2008-11-09 20:35:32,146 INFO dfs.DataNode$DataXceive
r: Receiving block blk_-1608999687919862906 src: /10
.251.31.5:42506 dest: /10.251.31.5:50010

As observed in the example, the raw message content can be
divided into two parts: constant part and variable part. The
constant part constitutes the fixed plain text and remains the same
for every event occurrence, which can reveal the event type of the
log message. The variable part carries the runtime information
of interest, such as the values of states and parameters (e.g., the
IP address and port: 10.251.31.5:50010), which may vary among
different event occurrences. The goal of log parsing is to extract
the event by automatically separating the constant part and variable
part of a raw log message, and further transform each log message
into a specific event (usually denoted by its constant part). In this

CHAPTER 3. EVALUATION STUDY 35

example, the event can be denoted as “Receiving block * src: * dest:
*”, where the variable part is identified and masked using asterisks.
We will use “event” and “template” interchangeably in this paper.

Log parsing is essential for log mining. Traditionally, log parsing
relies heavily on regular expressions to extract the specific log
event (e.g., SEC [54]). However, modern software systems, with
increasing size and complexity, tend to produce a huge volume of
logs with diverse log events. It requires non-trivial efforts for manual
creation and maintenance of regular expression rules. Especially,
when a system constantly evolves, the rules of log parsing will most
likely become outdated very often. For example, Google’s systems,
as studied in [93], have been introduced with up to thousands of new
log printing statements every month. As a result, there is a high
demand for automated log parsing methods, capable of evolving
with the system.

To achieve this goal, recent studies have proposed a number
of data-driven approaches for automated log parsing (e.g., SLCT
[88], IPLoM [62], LKE [35], LogSig [85]), in which historical
log messages are leveraged to train statistical models for event
extraction. Despite the importance of log parsing, we found that, to
date, there is a lack of systematic evaluations on the effectiveness
and efficiency of the automated log parsing methods available.
Meanwhile, except SLCT [88] that was released more than 10 years
ago, there are no other ready-to-use tool implementations of log
parsers. Even with commercial log management solutions, such
as Splunk [19] and Logstash [18], users need to provide complex
configurations with customized rules to parse their logs. In this
context, engineers and researchers have to implement their own
log parsers when performing log mining tasks (e.g., [23, 72, 22]),
which would be a time-consuming yet redundant effort. Besides,
they are likely unaware of the effectiveness of their implementations
compared to other competitive methods, nor do they notice the
impact of log parsing on subsequent log mining tasks.

CHAPTER 3. EVALUATION STUDY 36

To fill this significant gap, in this paper, we perform a systematic
evaluation study on the state-of-the-art log parsing methods and their
employment in log mining. In particular, we intend to investigate the
following three research questions:

RQ1: What is the accuracy of the state-of-the-art log parsing meth-
ods?

RQ2: How do these log parsing methods scale with the volume of
logs?

RQ3: How do different log parsers affect the results of log mining?

Towards this end, we have implemented four widely-employed
log parsers: SLCT [88], IPLoM [62], LKE [35], LogSig [85]. They
are currently available on our Github1 as an open-source toolkit,
which can be easily re-used by practitioners and researchers for
future study. For evaluation, we have also collected five large log
datasets (with a total of over 10 million raw log messages) produced
by production software systems. The evaluation is performed in
terms of both accuracy and efficiency in log parsing. Furthermore,
we evaluate the impact of different log parsers on subsequent
log mining tasks, with a case study on system anomaly detection
(proposed in [94]).

Through this comprehensive evaluation, we have obtained a num-
ber of insightful findings: Current log parsing methods could obtain
high overall accuracy (Finding 1), especially when log messages
are preprocessed with some domain knowledge based rules (Finding
2). Clustering-based log parsing methods could not scale well with
the volume of logs (Finding 3), and the tuning of parameters (e.g.,
number of clusters) is time-consuming (Finding 4). Log mining is
effective only when the parsing accuracy is high enough (Finding
5). Because log mining can be sensitive to some critical events. 4%
parsing errors on critical events can cause an order of magnitude

1https://github.com/cuhk-cse/logparser

CHAPTER 3. EVALUATION STUDY 37

performance degradation in log mining (Finding 6). These findings
as well as our toolkit portray a picture about the current situation of
log parsing methods and their effectiveness on log mining, which we
believe could provide valuable guidance for future research in this
field.

3.2 Log Parsing Overview

This section first provides an overview of log parsing and then
describes four existing log parsing methods. These methods are
widely employed and thus become the main subjects of our study.

3.2.1 Overview of Log Parsing

Fig. 3.1 illustrates an overview of log parsing. The raw log
messages, as shown in the figure, contain ten log messages extracted
from HDFS log data on Amazon EC2 platform [94]. The log
messages are unstructured data, with timestamps and raw message
contents (some fields are omitted for simplicity of presentation).
In real-world cases, a log file may contain millions of such log
messages. The goal of log parsing is to distinguish between constant
part (fixed plain text) and variable part (e.g., blk ID in the figure)
from the log message contents. Then, all the constant message
templates can be clustered into a list of log events, and structured
logs can be generated with each log message corresponding to a
specific event. For instance, the log message 2 is transformed to
“Event2” with a log template “Receiving block * src: * dest: *”.
The output of a log parser involves two files with log events and
structured logs. Log events record the extracted templates of log
messages, while structured logs contain a sequence of events with
their occurring times. Finally, the structured logs after parsing
can be easily processed by log mining methods, such as anomaly
detection [94] and deployment verification [81].

CHAPTER 3. EVALUATION STUDY 38

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010
2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010
2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114
2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Raw Log Messages

1
1

2
3

2

4
6

3

5
7

4

8
9

5

10
6

 1 2008-11-11 03:40:58 Event1
 2 2008-11-11 03:40:59 Event2
 3 2008-11-11 03:41:01 Event2
 4 2008-11-11 03:41:48 Event3
 5 2008-11-11 03:41:48 Event4
 6 2008-11-11 03:41:48 Event3
 7 2008-11-11 03:41:48 Event4
 8 2008-11-11 03:41:48 Event5
 9 2008-11-11 03:41:48 Event5
10 2008-11-11 08:30:54 Event6

Structured Logs

Event1 BLOCK* NameSystem.allocateBlock: *

Event2 Receiving block * src: * dest: *

Event3 PacketResponder * for block * terminating

Event4 Received block * of size * from *

Event5 BLOCK* NameSystem.addStoredBlock:
 blockMap updated: * is added to * size *

Event6 Verification succeeded for *

Log Events

1

2

3

4

5

6

7

8

9

10

Log Parsing

Figure 3.1: Overview of Log Parsing

3.2.2 Existing Log Parsing Methods

Log parsing has been widely studied in recent years. Among all
the approaches proposed, we choose four representative ones, which
are in widespread use for log mining tasks. With the main focus
on evaluations of these log parsing methods, we only provide brief
reviews of them; the details can be found in the corresponding
references.

CHAPTER 3. EVALUATION STUDY 39

1) SLCT

SLCT (Simple Logfile Clustering Tool) [88] is, to the best of our
knowledge, the first work on automated log parsing. The work
also released an open-source log parsing tool, which has been
widely employed in log mining tasks, such as event log mining
[89], symptom-based problem determination [45] and network alert
classification [90].

Inspired by association rule mining, SLCT works as a three-step
procedure with two passes over log messages: 1) Word vocabulary
construction. It makes a pass over the data and builds a vocabulary
of word frequency and position. 2) Cluster candidates construction.
It makes another pass to construct cluster candidates using the word
vocabulary. 3) Log template generation. Clusters with enough log
messages are selected from candidates. Then, the log messages
in each cluster can be combined to generate a log template, while
remaining log messages are placed into an outlier cluster.

2) IPLoM

IPLoM (Iterative Partitioning Log Mining) [64] is a log parsing
method based on heuristics specially designed according to the
characteristics of log messages. This method has also been used
by a set of log mining studies (e.g., alert detection [63], event log
analysis [65] and event summarization [47]).

Specifically, IPLoM performs log parsing through a three-step
hierarchical partitioning process before template generation: 1)
Partition by event size. Log messages are partitioned into different
clusters according to different lengths. 2) Partition by token position.
For each partition, words at different positions are counted. Then the
position with the least number of unique words is used to split the
log messages. 3) Partition by search for mapping. Further partition
is performed on clusters by searching for mapping relationships
between the set of unique tokens in two token positions selected

CHAPTER 3. EVALUATION STUDY 40

using a heuristic criterion. 4) Log template generation. Similar to
SLCT, the final step is to generate log templates from every cluster.

3) LKE

LKE (Log Key Extraction) [35] is a log parsing method developed
by Microsoft, and has been applied in a set of tasks on unstructured
log analysis [35, 60].

LKE utilizes both clustering algorithms and heuristic rules for log
parsing: 1) Log clustering. Raw log messages are first clustered by
using hierarchical clustering algorithms with a customized weighted
edit distance metric. 2) Cluster splitting. A splitting step based
on heuristic rules is performed to further split the clusters. 3) Log
template generation. The final step is to generate log templates from
every cluster, similar to SLCT and IPLoM.

4) LogSig

LogSig [85] is a more recent log parsing method, which has been
validated in [86].

LogSig works in three steps: 1) Word pair generation. Each
log message is converted to a set of word pairs to encode both the
word and its position information. 2) Log Clustering. Based on the
word pairs, a potential value is calculated for each log message to
decide which cluster the log message potentially belongs to. After
a number of iterations, the log messages can be clustered. 3) Log
template generation. In each cluster, the log messages are leveraged
to generate a log template.

3.2.3 Tool Implementation

Among these log parsing methods, we only found an open-source
implementation on SLCT in C language. To enable our evaluations,
we have implemented the other three log parsing methods in Python

CHAPTER 3. EVALUATION STUDY 41

and also wrapped up SLCT as a Python package. For ease of use,
we define standard input/output formats for these log parsers. As
shown in Fig. 3.1, the input is a file with raw log messages, while the
output contains both a file with log events and a file with structured
logs. The output can be easily fed into subsequent log mining tasks.
Currently, all our implementations have been open source on Github,
which can be used as a toolkit for log parsing. We believe our toolkit
could benefit other researchers and practitioners as well.

It is also worth noting that our current implementation targets
at exactly reproducing the log parsing methods (as described in
original work) for our evaluation purposes. As we will show in
Section 3.4.3, LKE and LogSig do not scale well on large datasets.
Although we plan to improve their efficiency in our future work,
users may need to pay more attention when using our current
toolkit.

3.3 Log Mining

In this section, we briefly introduce three representative log mining
tasks and explain how the adopted log parsing step can affect the
performance of these tasks. Further, we describe the details of a
specific log mining task, system anomaly detection, which will be
used for our evaluations.

3.3.1 Overview of Log Mining

Anomaly detection: Logs of Hadoop File System (HDFS) are used
by Xu et al. [94] to detect anomalies in a 203-nodes HDFS. In
this case, they employ source code based log parsers (not evaluated
because it is beyond the scope of this paper) to find out the log events
associated with each block ID, which are further interpreted with a
block ID-by-event count matrix. This matrix is fed into a machine
learning model to detect anomalies of the system. If the log parser

CHAPTER 3. EVALUATION STUDY 42

adopted does not work well, some block IDs will match wrong log
events, which could ruin the generated matrix and lead to failure of
the anomaly detection approach.

Deployment verification: Big data application is usually devel-
oped in pseudo-cloud environment (with several PC nodes) and
finally deployed in a large-scale cloud environment. Runtime
analysis and debugging of such applications in deployment phase
is a challenge tackled by Shang et al. in [81]. To reduce the amount
of log messages which needs to be checked by developers, they com-
pare the log event sequences generated in pseudo-cloud and large-
scale cloud. Only the different log event sequences are reported to
the developers, which greatly alleviates their workload. In this task,
a bad log parser may produce wrong log event sequences. This could
largely degrade the reduction effect because their method is based on
the comparison of log event sequences.

System model construction: Computer systems are difficult to
debug and understand. To help developers gain insight into system
behaviors, Beschastnikh et al. [23] propose a tool called Synoptic
to build an accurate system model based on logs. Synoptic requires
parsed log events as input and generates a finite state machine as the
output system model. If an unsuitable log parser is used, both initial
model building step and model refinement step will be affected.
These may result in extra branches or even totally different layout
of the model.

3.3.2 System Anomaly Detection

To better study the impact of log parsing approaches on the subse-
quent log mining task, we reproduce the anomaly detection method
proposed in [94] on its original HDFS logs while using different
log parsing approaches discussed in Section. 3.2.2. The anomaly
detection method contains three steps: log parsing, event matrix
generation, and anomaly detection.

CHAPTER 3. EVALUATION STUDY 43

Log Parsing

The input of the anomaly detection task is a text file, each line of
which is a raw log message recording an event occurring on a block
in HDFS. In this step, log parsing method is adopted to figure out
two things. One is all the event types appearing in the input file. The
other is the events associated with each block, which distinguished
by block ID. These two are exactly in the two output files of our log
parser modules. We emphasize that the parsing output is not specific
to anomaly detection, but also suitable for other log mining tasks.

Matrix Generation

Parsed results are used to generate an event count matrix Y , which
will be fed into the anomaly detection model. In the event count
matrix, each row represents a block, while each column indicates
one event type. The value in cell Yi,j records how many times event
j occurs on block i. We could generate Y with one pass through
the parsed results. Instead of directly detecting anomaly on Y ,
TF-IDF [80], which is a well-established heuristic in information
retrieval, is adopted to preprocess this matrix. Intuitively, TF-IDF is
to give lower weights to common event types, which are less likely
to contribute to the anomaly detection process.

Anomaly Detection

In this case, anomaly detection is to find out suspicious blocks
that may indicate problems (e.g., HDFS namenode not updated
after deleting a block). The model used is Principle Component
Analysis (PCA) [94], which is a statistical model that captures
patterns in high-dimensional data by selecting representative co-
ordinates (principle components). PCA is used in this problem
because principle components can represent most frequent patterns
of events associated with blocks, which is called normal space Sd.
Specifically, the first k principle components are selected to form

CHAPTER 3. EVALUATION STUDY 44

Sd, while the remaining n−k dimensions form Sa (anomaly space),
where n is the number of columns (total number of event type) of the
matrix. In this task, each row in the event count matrix is a vector
y associated with a block. The intuition of anomaly is the vector
whose end point is far away from normal space. The “distance”
could be formalized by squared prediction error SPE ≡ ||ya||2,
where ya is the projection of y on Sa. ya is calculated by ya =
(I−PP T)y, where P = [v1,v2,..., vk]. A block is marked as anomaly
if its corresponding y satisfies:

SPE = ||ya||2 > Qα,

where Qα is a threshold providing (1− α) confidence level. For
Qα, we choose α = 0.001 as in the original paper [94].

3.4 Evaluation Study

This section presents our study methodology and reports on the
detailed results for the proposed research questions.

3.4.1 Study Methodology

Log Datasets: To facilitate systematic evaluations on the state-of-
the-art log parsing methods, we have used five large log datasets
ranging from supercomputers (BGL and HPC) to distributed sys-
tems (HDFS and Zookeeper) to standalone software (Proxifier), with
a total of 16,441,570 lines of log messages. Table 3.1 provides
a basic summarization of these datasets. Logs are scarce data for
research, because companies are often reluctant to release their
production logs due to confidentiality issue. We obtained three log
datasets, with the generous support from their authors. Specifically,
BGL is an open dataset of logs collected from a BlueGene/L su-
percomputer system at Lawrence Livermore National Labs (LLNL),
with 131,072 processors and 32,768GB memory [73]. HPC is also

CHAPTER 3. EVALUATION STUDY 45

Table 3.1: Summary of Our System Log Datasets
System Description #Logs Length #Events

BGL
BlueGene/L

4,747,963 10∼102 376Supercomputer
High Performance

HPC Cluster 433,490 6∼104 105
(Los Alamos)

Proxifier Proxy Client 10,108 10∼27 8
HDFS Hadoop File System 11,175,629 8∼29 29

Zookeeper
Distributed

74,380 8∼27 80System Coordinator

an open dataset with logs collected from a high performance cluster
at Los Alamos National Laboratory, which has 49 nodes with 6,152
cores and 128GB memory per node [57]. HDFS logs are collected
in [94] by using a 203-node cluster on Amazon EC2 platform. To
enrich the log data for evaluation purpose, we further collected two
datasets: one from a desktop software Proxifier, and the other from
a Zookeeper installation on a 32-node cluster in our lab.

In particular, the HDFS logs from [94] have well-established
anomaly labels, each of which indicates whether or not a request
for a data block operation is an anomaly. The labels are made
based on domain knowledge, which are suitable for our evaluations
on anomaly detection with different log parsers. Specifically, the
dataset with over 11 million log messages records 575,061 operation
requests with a total of 29 event types. Among all the 575,061
requests, 16,838 are marked as anomalies, which we use as ground
truth in our evaluation.

Experimental Setup: All our experiments were run on a Linux
server with Intel Xeon E5-2670v2 CPU and 128GB DDR3 1600
RAM, running 64-bit Ubuntu 14.04.2 with Linux kernel 3.16.0.
We use F-measure [66, 9], a commonly-used evaluation metric
for clustering algorithms, to evaluate the parsing accuracy of log
parsing methods. To calculate F-measure, we manually obtain the

CHAPTER 3. EVALUATION STUDY 46

Table 3.2: Parsing Accuracy of Log Parsing Methods (Raw / Preprocessed)
BGL HPC HDFS Zookeeer Proxifier

SLCT 0.61/0.94 0.81/0.86 0.86/0.93 0.92/0.92 0.89/-
IPLoM 0.99/0.99 0.64/0.64 0.99/1.00 0.99/0.99 0.84/-
LKE 0.67/0.70 0.17/0.17 0.57/0.96 0.78/0.82 0.81/-

LogSig 0.26/0.98 0.77/0.87 0.91/0.93 0.96/0.99 0.84/-

ground truths for all logs of these dataset. It is possible because
we iteratively filter out logs with confirmed event using regular
expression. Experiments about LKE and LogSig are run 10 times
to avoid bias of clustering algorithms, while others are run once
because they are deterministic. We note here that only the parts of
free-text log message contents are used in evaluating the log parsing
methods.

3.4.2 RQ1: Accuracy of Log Parsing Methods

To study the accuracy of different log parsing methods, we use
them to parse our collected real logs. As with the existing work
[85], we randomly sample 2k log messages from each dataset in
our evaluation, because the running time of LKE and LogSig is
too long on large log datasets (e.g., LogSig requies 1 day to parse
entire BGL data). The average results of 10 runs are reported in
Table 3.2. We can observe that the overall accuracy of these log
parsing methods is high (larger than 0.8 in most cases). Meanwhile,
the overall accuracy on HDFS, Zookeeper and Proxifier datasets is
higher than that obtained on the others. We found that this is mainly
because BGL and HPC logs involve much more event types, each of
which has a longer length than other datasets.

Especially, we found that LKE takes an aggressive clustering
strategy, which groups two clusters if any two log messages between
them has a distance smaller than a specified threshold. This is why
LKE has an accuracy drop on HPC dataset, in which it clusters
almost all the log messages into one single cluster in the first step.

CHAPTER 3. EVALUATION STUDY 47

BGL contains a lot of log messages whose event is “generating
core.*”, such as “generating core.2275” and “generating core.852”.
Intuitively, the similarity of these two log messages are 50%,
because half of the words are different. LogSig tends to separate
these log messages into different clusters, which causes its low ac-
curacy on BGL. Particularly, IPLoM leverages some heuristic rules
developed on the characteristics of log messages, while other log
parsing methods rely on well-studied data mining models. However,
we found that IPLoM obtains the superior overall accuracy (0.88)
against other log parsing methods. This further implies the particular
importance of exploiting the unique characteristics of log data in log
parsing, which would shed light on future design and improvement
of a log parser.

Finding 1: Current log parsing methods achieve modest overall
parsing accuracy (F-measure).

Instead of running log parsing methods directly on raw log
messages, developers usually preprocess log data with domain
knowledge. In this experiment, we study the impact of prepro-
cessing on parsing accuracy. Specifically, we remove obvious
numerical parameters in log messages (i.e., IP addresses in HPC
& Zookeeper & HDFS, core IDs in BGL, and block IDs in HDFS).
Proxifier does not contain words that could be preprocessed based
on domain knowledge. Preprocessing is mentioned in LKE and
LogSig; however, its importance has not been studied.

In Table 3.2, the numbers on the left/right side represent the
accuracy of log parsing methods on raw/preprocessed log data. In
most cases, accuracy of parsing is improved. Preprocessing greatly
increases the accuracy of SLCT/LKE/LogSig on one dataset (in
bold). However, preprocessing could not improve the accuracy
of IPLoM. This is mainly because IPLoM considers preprocessing
internally in its four-step process.

Finding 2: Simple log preprocessing using domain knowledge
(e.g. removal of IP address) can further improve log parsing

CHAPTER 3. EVALUATION STUDY 48

accuracy.

3.4.3 RQ2: Efficiency of Log Parsing Methods

In Fig. 3.2, we evaluate the running time of the log parsing methods
on all datasets by varying the number of raw log messages. Notice
that as the number of raw log messages increases, the number of
events becomes larger as well (e.g., 60 events in BGL400 while
206 events in BGL40k). SLCT and IPLoM, which are based on
heuristic rules, scale linearly with the number of log messages
(note that Fig. 3.2 is in logarithmic scale). Both of them could
parse 10 million HDFS log messages within five minutes. For
the other two clustering-based parsing methods, LogSig also scales
linearly with the number of log messages. However, its running
time also increases linearly with the number of events, which leads
to relatively longer parsing time (e.g, 2+ hours for 10m HDFS
log messages). The time complexity of LKE is O(n2), which
makes it unable to handle large-scale log data, such as BGL4m and
HDFS10m. Some running time of LKE is not plotted because LKE
could not parse some scales in a reasonable time (may cause days
or even weeks). To reduce the running time of clustering-based log
parsing method, parallelization is a promising direction.

Finding 3. Clustering-based log parsing methods could not scale
well on large log data, which implies the demand for parallelization.

The accuracy of log parser is affected by parameters. For
example, the number of clusters of LogSig decides the number of
events, which should be set beforehand. For large-scale log data, it
is difficult to select the most suitable parameters by trying different
values, because each run will cause a lot of time. A normal solution
is to tune the parameters in a sample dataset and directly apply them
on large-scale data. To evaluate the feasibility of this approach, we
tune parameters for log parsing methods on 2k sample log messages,
which are used in our parsing accuracy experiment. In Fig. 3.3,

CHAPTER 3. EVALUATION STUDY 49

Figure 3.2: Running Time of Log Parsing Methods on Datasets in Different Size

CHAPTER 3. EVALUATION STUDY 50

Figure 3.3: Parsing Accuracy on Datasets in Different Size

CHAPTER 3. EVALUATION STUDY 51

Table 3.3: Anomaly Detection with Different Log Parsing Methods (16,838
Anomalies)

Parsing Reported Detected False
Accuracy Anomaly Anomaly Alarm

SLCT 0.83 18,450 10,935 (64%) 7,515 (40%)
LogSig 0.87 11,091 10,678 (63%) 413 (3.7%)
IPLoM 0.99 10,998 10,720 (63%) 278 (2.5%)

Ground truth 1.00 11,473 11,195 (66%) 278 (2.4%)

we vary the size of the dataset and evaluate the accuracy of the log
parsing method using these parameters. The results show that the
IPLoM performs consistently in most cases. SLCT is also consistent
in most cases except HPC. The accuracy of LKE is volatile because
of the weakness of its clustering algorithm discussed in Section
3.4.2. LogSig performs consistently on datasets with limited types
of events, but its accuracy varies a lot on datasets with many events
(i.e., BGL and HPC). Thus, for LKE and LogSig, directly using
parameters tuned on sample dataset is not practical, which makes
parameter tuning on large-scale logs time-consuming.

Finding 4. Parameter tuning for clustering-based log parsing
methods is a time-consuming task, especially on large log datasets.

3.4.4 RQ3: Effectiveness of Log Parsing Methods on Log
Mining

To evaluate the effectiveness of log parsing methods on log mining,
we use three log parsers to tackle the parsing challenge of a real-
world anomaly detection task described in Section 3.3.2. In this
task, there are totally 16,838 anomalies, which are found manually
in [94]. The parameters of SLCT and LogSig are re-tuned to provide
good Parsing Accuracy. LKE is not employed because it could
not handle this large amount of data (10m+ lines) in reasonable
time. The evaluation results are illustrated in Table 3.3. Reported
Anomaly is the number of anomalies reported by PCA, while adopt-

CHAPTER 3. EVALUATION STUDY 52

ing different log parsers in the log parsing step. Detected Anomaly
is the number of true anomalies detected by PCA. False Alarm
means the number of wrongly detected anomalies. Ground truth
is the experiment using exactly correct parsed results in anomaly
detection. Notice that even the Ground truth could not detect all
anomalies because of the boundary of the PCA anomaly detection
model.

From Table 3.3, we observe that the parsing accuracy of these
parsing methods are high (0.83 at least). LogSig and IPLoM lead
to nearly optimal results on the anomaly detection task. However,
not all parsing methods lead to optimal results. SLCT presents high
Parsing Accuracy (0.83), but it brings about 7,515 False Alarms in
anomaly detection, which introduces extensive unnecessary human
effort on inspection.

Finding 5. Log parsing is important because log mining is
effective only when the parsing accuracy is high enough.

From Table 3.3, we observe that the parsing accuracy of SLCT
(0.83) and LogSig (0.87) is comparable. However, the performance
of log mining using LogSig as parser is an order of magnitude better
than that using SLCT. Log mining task using SLCT presents 7,515
False Alarms, introducing much more human inspection effort than
that using LogSig, which only leads to 413 False Alarms. Besides,
the log mining tasks using LogSig and IPLoM as parsers produce
comparable results. However, LogSig presents 12% more parsing
errors than IPLoM. These reveal that log mining results are sensitive
to some critical events, which could cause an order of magnitude
performance degradation. These also indicate that f-measure, de-
spite pervasively used in clustering algorithm evaluation, may not
be suitable to evaluate the effectiveness of log parsing methods on
log mining.

Finding 6. Log mining is sensitive to some critical events.
4% errors in parsing could even cause an order of magnitude
performance degradation in log mining.

CHAPTER 3. EVALUATION STUDY 53

3.5 Discussions

Diversity of dataset. Not all datasets (two out of five) used in
our evaluation are production data, and the results may be limited
by the representativeness of our datasets. This is mainly because
public log data is lacking. As a result, we cannot claim that
our results are broadly representative. However, Zookeeper and
HDFS are systems widely adopted by companies for their distributed
computing jobs. We believe these logs could reflect the logs from
industrial companies to some extent. We also mitigate this issue
by generating many sample datasets from the original ones, where
each sample dataset has different properties, such as log size and
the number of log events. The proposed parser POP at least
has consistent accuracy and efficiency on all these datasets, which
demonstrates its robustness. Besides, we thank those who release
log data [94, 57, 73], which greatly facilitates our research.

Diversity of log mining tasks. Results of effectiveness of log
parsing methods are evaluated on anomaly detection, which may
not generalize to other log mining tasks. This is mainly because
public real-world log mining data with labels is scarce. However,
the anomaly detection task evaluated is an important log mining task
widely studied [53, 77], which is presented in a paper [94] enjoying
more than 300 citations. Besides, even conducting evaluation on one
log event mining task, the result reveals that an accurate log parser is
of great importance for obtaining optimal log mining performance.
We will consider to extend our methodology on more log parsing
data and different log mining tasks in our future work.

Distributed Log Parsing. Our experiments show that current
log parsing methods cost a lot of time on big data input. The amount
of log message in industrial companies could be much larger. Log
parsing methods based on heuristic rules are fast but their parsing
result is not good enough to fulfill the need of log mining task.
Thus, to accelerate the parsing process and further improve its

CHAPTER 3. EVALUATION STUDY 54

accuracy, log parsing methods which run in a distributed manner
are in demand. Clustering algorithms which could be parallelized
should be considered.

Logging of Event ID. We could also improve log parsing process
by recording event ID in logs in the first place. This approach is
feasible because developer writing log knows exactly which event a
log message statement match. Thus, adding event ID to log message
is a good logging practice [79] from the perspective of log mining.
Tools that could automatically add event ID into source code may
greatly facilitate the log parsing process.

3.6 Summary

Log parsing is employed pervasively in log mining. However, due
to the lack of studies on performance of log parsing methods, users
often re-design a specialized log parser, which is time-consuming.
In this chapter, we study the performance of four state-of-the-art log
parsing methods through extensive experiments. We also analyze
the effectiveness of the log parsing methods on a real-world log
mining task with 10 million log messages. We provide six valuable
findings on the parsing accuracy of the log parsers, efficiency of the
log parsers, and their effectiveness on log mining. In addition, the
source code of these log parsing methods is released for reuse and
further study.

2 End of chapter.

Chapter 4

Parallel Log Parsing for Large-Scale
Log Data

This chapter presents POP, a parallel log parsing framework that can
utilize the computing power of multiple machines simultaneously.
The key notion is that each machine could mine parsing statistics
locally, and communicate with the center node for the final parsing.
The main points of this chapter are as follows. (1) It presents
the design and implementation of the first parallel log parsing
framework POP. (2) POP employs both specially designed heuristic
rules and hierarchical clustering algorithm. (3) It evaluates POP on
synthetic and real-world datasets and releases the source code of
POP for repeatable research.

4.1 Introduction

Large-scale distributed systems are becoming the core components
of the IT industry, supporting daily use software of various types,
including online banking, e-commerce, and instant messaging. In
contrast to traditional standalone systems, most of such distributed
systems run on a 24 × 7 basis to serve millions of users globally.
Any non-trivial downtime of such systems can lead to significant
revenue loss [13, 12], and this thus highlights the need to ensure
system dependability.

55

CHAPTER 4. PARALLEL LOG PARSING 56

Raw Log Messages

Log
Parsing

Matrix
Generation

Log
Mining

Structured Logs Anomalies/Bugs/… Matrix

Figure 4.1: Overview of Log Analysis

System logs are widely utilized by developers (and operators)
to ensure system dependability, because they are often the only
data available that record detailed system runtime information in
production environment. In general, logs are unstructured text
generated by logging statements (e.g., printf(), Console.Writeline())
in system source code. Logs contain various forms system runtime
information, which enables developers to monitor the runtime be-
haviors of their systems and to further assure system dependability.

With the prevalence of data mining, the traditional method of
log analysis, which largely relies on manual inspection and is labor-
intensive and error-prone, has been complemented by automated log
analysis techniques. Typical examples of log analysis techniques
on dependability assurance include anomaly detection [94, 35, 42],
program verification [23, 81], problem diagnosis [98, 72], and
security assurance [74, 37]. Most of these log analysis techniques
comprise three steps: log parsing, matrix generation, and log mining
(Fig. 4.1). The performance of log parsing plays an important role
in various log analysis frameworks in terms of both accuracy and
efficiency. The log mining step usually accepts structured data (e.g.,
a matrix) as input and reports mining results to developers. However,
raw log messages are usually unstructured because they are natural
language designed by developers. Typically, a raw log message, as
illustrated in the following example, records a specific system event

CHAPTER 4. PARALLEL LOG PARSING 57

with a set of fields: timestamp, verbosity level, and raw message
content.

2008-11-09 20:46:55,556 INFO dfs.DataNode$PacketResp
onder: Received block blk_3587508140051953248 of siz
e 67108864 from /10.251.42.84

Log parsing is usually the first step of automated log analysis,
whereby raw log messages can be transformed into a sequence of
structured events. A raw log message, as illustrated in the example,
consists of two parts, namely a constant part and a variable part.
The constant part constitutes the fixed plain text and represents
the corresponding event type, which remains the same for every
event occurrence. The variable part records the runtime information,
such as the values of states and parameters (e.g., the block ID:
blk 3587508140051953248), which may vary among different event
occurrences. The goal of log parsing is to automatically separate the
constant part and variable part of a raw log message (also known as
log de-parametrization), and to further match each log message with
a specific event type (usually denoted by its constant part). In the
example, the event type can be denoted as “Received block * of size
* from *”, where the variable part is identified and masked using
asterisks.

Traditional log parsing approaches rely heavily on manually
customized regular expressions to extract the specific log events
(e.g., SEC [54]). However, this method becomes inefficient and
error-prone for modern systems for the following reasons. First,
the volume of log grows rapidly; for example, it grows at a rate
of approximately 50 GB/h (120∼200 million lines) [68]. Manually
constructing regular expressions from such a large number of logs
is prohibitive. Furthermore, modern systems often integrate open-
source software components written by hundreds of developers [94].
Thus, the developers who maintain the systems are usually unaware
of the original logging purpose, which increases the difficulty of the
manual method. This problem is compounded by the fact that the

CHAPTER 4. PARALLEL LOG PARSING 58

log printing statements in modern systems update frequently [106]
(e.g., hundreds of new logging statements every month [93]); conse-
quently, developers must regularly review the updated log printing
statements of various system components for the maintenance of
regular expressions.

In Chapter 3, we conduct a comprehensive evaluation of four
representative log parsers (i.e., SLCT [88], IPLoM [62], LKE [35],
LogSig [85]). We do not consider source code-based log parsing
[94], because, in many cases, the source code is inaccessible (e.g.,
in third party libraries). By using five real-world log datasets with
over 10 million raw log messages, we evaluate the log parsers’ per-
formance in terms of accuracy (i.e., F-measure [66, 9]), efficiency
(i.e., execution time), and effectiveness on a log mining task (i.e.,
anomaly detection [94] evaluated by detected anomaly and false
alarm). We determine that, although the overall accuracy of these
log parsing methods is high, they are not robust across all datasets.
When logs grow to a large scale (e.g., 200 million log messages),
these parsers fail to complete in reasonable time (e.g., one hour),
and most cannot handle such data on a single computer. We also
find that parameter tuning costs considerable time for these methods,
because parameters tuned on a sample dataset of small size cannot
be directly employed on a large dataset.

To address these problems, in this chapter, we propose a parallel
log parsing method, called POP, that can accurately and efficiently
parse large-scale log data. Similar to previous papers [88, 62,
35, 85], POP assumes the input is single-line logs, which is the
common case in practice. To improve accuracy in log parsing, we
employ iterative partitioning rules for candidate event generation
and hierarchical clustering for event type refinement. To improve
efficiency in processing large-scale data, we design POP with linear
time complexity in terms of log size, and we further parallelize its
computation on top of Spark, a large-scale data processing platform.

We evaluate POP on both real-world datasets and large-scale

CHAPTER 4. PARALLEL LOG PARSING 59

synthetic datasets with 200 million lines of raw log messages.
The evaluation results show the capability of POP in achieving
accuracy and efficiency. Specifically, POP can parse all the real-
world datasets with the highest accuracy compared with the existing
methods. Moreover, POP can parse our synthetic HDFS (Hadoop
Distributed File System) dataset in 7 min, whereas SLCT requires
30 min, and IPLoM, LKE, and LogSig fail to terminate in reasonable
time. Moreover, parameter tuning is easy in POP because the
parameters tuned on small sample datasets can be directly applied
to large datasets while preserving high parsing accuracy.

• It presents the design and implementation of a parallel log
parsing method (POP), which can parse large-scale log data
accurately and efficiently.

• We evaluate POP on both synthetic and real-world datasets,
which determines its superiority in accuracy, efficiency, and
effectiveness in log mining tasks.

• The source code of POP has been publicly released [14],
allowing for easy use by practitioners and researchers for future
study.

4.2 Parallel Log Parsing (POP)

From the implementation and systematic study of log parsers in-
troduced in Section 2, we observe that a good log parsing method
should fulfill the following requirements: (1) Accuracy. The parsing
accuracy (i.e., F-measure) should be high. (2) Efficiency. The
running time of a log parser should be as short as possible. (3)
Robustness. A log parsing method needs to be consistently accurate
and efficient on logs from different systems.

Thus, we design a parallel log parsing method, namely POP, to
fulfill the above requirements. POP preprocesses logs with simple

CHAPTER 4. PARALLEL LOG PARSING 60

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010
2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010
2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.114
2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.210

2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Raw Log Messages

1
1

2
3

2

4
6

3

5
7

4

8
9

5

10
6

 1 2008-11-11 03:40:58 Event1
 2 2008-11-11 03:40:59 Event2
 3 2008-11-11 03:41:01 Event2
 4 2008-11-11 03:41:48 Event3
 5 2008-11-11 03:41:48 Event4
 6 2008-11-11 03:41:48 Event3
 7 2008-11-11 03:41:48 Event4
 8 2008-11-11 03:41:48 Event5
 9 2008-11-11 03:41:48 Event5
10 2008-11-11 08:30:54 Event6

Structured Logs

Event1 BLOCK* NameSystem.allocateBlock: *

Event2 Receiving block * src: * dest: *

Event3 PacketResponder * for block * terminating

Event4 Received block * of size * from *

Event5 BLOCK* NameSystem.addStoredBlock:
 blockMap updated: * is added to * size *

Event6 Verification succeeded for *

Log Events

1

2

3

4

5

6

7

8

9

10

Log Parsing

Figure 4.2: Overview of Log Parsing

domain knowledge (step 1). It then hierarchically partitions the logs
into different groups based on two heuristic rules (step 2 and 3). For
each group, the constant parts are extracted to construct the log event
(step 4). Finally, POP merges similar groups according to the result
of hierarchical clustering on log events (step 5). We design POP on
top of Spark [11, 99], a large-scale data processing platform using
the parallelization power of computer clusters, and all computation-
intensive parts of POP are designed to be highly parallelizable.

CHAPTER 4. PARALLEL LOG PARSING 61

[18:03:38] chrome.exe, 4381 bytes sent, 6044 bytes received, lifetime 09:14
[16:49:08] chrome.exe, 464 bytes sent, 1101 bytes received, lifetime <1 sec

Figure 4.3: Proxifier Log Samples

4.2.1 Step 1: Preprocess by Domain Knowledge

According to our study on the existing log parsers, simple pre-
processing using domain knowledge can improve parsing accuracy,
so raw logs are preprocessed in this step. POP provides two
preprocessing functions. First, POP prunes variable parts according
to simple regular expression rules provided by developers, for
example, removing block ID in Fig. 4.2 by “blk [0-9]+”. For all
datasets used in our experiment, at most two rules are defined on a
dataset. This function can delete variable parts that can be easily
identified with domain knowledge. Second, POP allows developers
to manually specify log events based on regular expression rules.
This is useful because developers intend to put logs with certain
properties into the same partition in some cases. For example, Fig.
4.3 contains two log messages from Proxifier dataset. The two
logs will be put into the same partition by most of the log parsing
methods. However, developers may want to count the session with
less than 1 second lifetime separately. In this case, POP can easily
extract the corresponding logs based on the regular expression “.*<1
sec.*”. Note that the simple regular expressions used in this step
require much less human effort than those complex ones used by
traditional methods to match the whole log messages.

4.2.2 Step 2: Partition by Log Message Length

In this step, POP partitions the remaining logs into nonoverlapping
groups of logs. POP puts logs with the same log message length
into the same group. By log message length, we mean the number
of tokens in a log message. This heuristic, which is also used by
IPLoM [64], is based on the assumption that logs with the same log

CHAPTER 4. PARALLEL LOG PARSING 62

event will likely have the same log message length. For example, log
event “Verification succeeded for *” from HDFS dataset contains 4
tokens. It is intuitive that logs having this log event share the same
log message length, such as “Verification succeeded for blk 1” and
“Verification succeeded for blk 2”. This heuristic rule is considered
coarse-grained, so it is possible that log messages in the same group
have different log events. “Serve block * to *” and “Deleting block
* file *” will be put into the same group in step 2, because they
both contain 5 tokens. This issue is addressed by a fine-grained
heuristic partition rule described in step 3. Besides, it is possible that
one or more variable parts in the log event contain variable length,
which invalidates the assumption of step 2. This will be addressed
by hierarchical clustering in step 5.

4.2.3 Step 3: Recursively Partition by Token Position

In step 3, each group is recursively partitioned into subgroups, where
each subgroup contains logs with the same log event (i.e., same
constant parts). This step assumes that if the logs in a group having
the same log event, the tokens in some token positions should be the
same. For example, if all the logs in a group have log event “Open
file *”, then the tokens in the first token position of all logs should be
“Open”. We define complete token position to guide the partitioning
process.

Notations: Given a group containing logs with log message
length n, there are n token positions. All tokens in token position i
form a token set TSi, which is a collection of distinct tokens. The
cardinality of TSi is defined as |TSi|. A token position is complete if
and only if |TSi| = 1, and it is defined as a complete token position.
Otherwise, it is defined as an incomplete token position.

Our heuristic rule is to recursively partition each group until all
the resulting groups have enough complete token positions. To
evaluate whether complete token positions are enough, we define

CHAPTER 4. PARALLEL LOG PARSING 63

Group Goodness (GG) as following.

GG =
#CompleteTokenPositions

n
. (4.1)

A group is a complete group if GG > GS, where GS stands
for Group Support, a threshold assigned by developers. Otherwise,
the group is an incomplete group. In this step, POP recursively
partitions the groups if the current group is not a complete group.

Algorithm 1 provides the pseudo code of step 3. POP regards
all groups from step 2 as incomplete groups (line 1). Incomplete
groups are recursively partitioned by POP to generate a list of
complete groups (lines 4∼24). For each incomplete group, if it
already contains enough complete token positions, it is moved to
the complete group list (lines 6∼8). Otherwise, POP finds the
split token position, which is the token position with the lowest
cardinality among all incomplete token positions. Because of its
lowest cardinality, tokens in the split token position are most likely
to be constants. Then POP calculates Absolute Threshold (AT) and
Relative Threshold (RT) (line 11∼12). A token position with smaller
AT and RT is more likely to contain constants. For example, in Fig.
4.4, column (i.e., token position) 1 and 2 have smaller AT (2) and RT
(0.5), so they are more likely to contain constants compared with
column 3, whose AT is 4 and RT is 1. Note that we only need to
calculate AT and RT for the split token position. We demonstrate AT
and RT for all the columns in Fig. 4.4 for better explanation. Thus,
POP regards the tokens as variables only when both AT and RT are

Column AT RT

1 2 0.5

2 2 0.5

3 4 1

1. Send
2. Receive
3. Receive
4. Send

to
from
from

to

10.10.35.01
10.10.35.02
10.10.35.03
10.10.35.04

An Incomplete Group

 Calculate
 AT, RT

Figure 4.4: An Example of AT, RT Calculation

CHAPTER 4. PARALLEL LOG PARSING 64

Algorithm 1 POP Step 3: Recursively partition each group to complete groups.
Input: a list of log groups from step 2: logGroupL; and algorithm parameters:

GS, splitRel, splitAbs
Output: a list of complete groups: completeL

1: incompleteL← logGroupL
2: completeL← List() . Initialize with empty list
3: curGroup← first group in incompleteL
4: repeat
5: Set n← |curGroup|
6: if ISCOMPLETE(curGroup,GS)= true then
7: Add curGroup to completeL
8: Remove curGroup from incompleteL
9: else

10: Find the split token position s
11: Compute AT ← |TSs|
12: Compute RT ← |TSs|/n
13: if AT > splitAbs and RT > splitRel then
14: Add curGroup to completeL
15: Remove curGroup from incompleteL
16: else
17: Partition curGroup to several resultGroup based

on the token value in split token position
18: for all resultGroup do
19: if ISCOMPLETE(resultGroup,GS)= true then
20: Add resultGroup to completeL
21: else
22: Add resultGroup to incompleteL
23: curGroup← next group in incompleteL
24: until incompleteL is empty

25: function ISCOMPLETE(group, gs)
26: Compute token sets for token positions in group
27: Compute GG . by Equation 4.1
28: if GG > gs then
29: return true
30: else
31: return false

CHAPTER 4. PARALLEL LOG PARSING 65

larger than manually defined thresholds (i.e., splitAbs and splitRel
respectively). If all tokens in the split token position are variables,
POP moves the current group to the complete group list, because
it could not be further partitioned (line 13∼15). Otherwise, POP
partitions the current group into |TSs| resulting groups based on the
token value in the split token position (line 17). Among all the result
groups, the complete groups are added into the complete group list,
while the incomplete ones are added to the incomplete group list for
further partitioning (line 18∼22). Finally, the complete group list is
returned, where logs in each group share the same log event type.

4.2.4 Step 4: Generate Log Events

At this point, the logs have been partitioned into nonoverlapping
groups by two heuristic rules. In this step, POP scans all the logs
in each group and generates the corresponding log event, which
is a line of text containing constant parts and variable parts. The
constant parts are represented by tokens and the variable parts are
represented by wildcards. To decide whether a token is a constant or
a variable, POP counts the number of distinct tokens (i.e., |TS|) in
the corresponding token position. If the number of distinct tokens in
a token position is one, the token is constant and will be outputted
to the corresponding token position in a log event. Otherwise, a
wildcard is outputted.

4.2.5 Step 5: Merge Groups by Log Event

To this end, logs have been partitioned into nonoverlapping com-
plete groups, and each log message is matched with a log event.
Most of the groups contain logs that share the same log event.
However, some groups may be over-parsed because of suboptimal
parameter setting, which causes false negatives. Besides, it is
possible that some variable parts in a log event have variable length,

CHAPTER 4. PARALLEL LOG PARSING 66

which invalidates the assumption in step 2. This also brings false
negatives.

To address over-parsing and further improve parsing accuracy,
in this step, POP employs hierarchical clustering [36] to cluster
similar groups based on their log events. The groups in the same
cluster will be merged, and a new log event will be generated by
calculating the Longest Common Subsequence (LCS) [61] of the
original log events. This step is based on the assumption that if logs
from different groups have the same log event type, the generated
log event texts from these groups should be similar. POP calculates
Manhattan distance [52] between two log event text to evaluate their
similarity. Specifically,

d(a, b) =
N∑
i=1

|ai − bi|, (4.2)

where a and b are two log events, N is the number of all constant
token values in a and b, and ai means the occurrence number of the i-
th constant token in a. We use Manhattan distance because it assigns
equal weight to each dimension (i.e., constant). This aligns with our
observation that all constants are of equal importance in log parsing.
Besides, Manhattan distance is intuitive, which makes parameter
tuning easier. POP employs complete linkage [34] to evaluate the
distance between two clusters, because the resulted clusters will be
compact, which avoids clustering dissimilar groups together. The
only parameter in this step is maxDistance, which is the maximum
distance allowed when the clustering algorithm attempts to combine
two clusters. The algorithm stops when the minimum distance
among all cluster pairs is larger than maxDistance.

4.2.6 Implementation

To make POP efficient in large-scale log analysis, we build it on
top of Spark [11, 99], a large-scale data processing platform [55].

CHAPTER 4. PARALLEL LOG PARSING 67

Specifically, Spark runs iterative analysis programs with orders of
magnitude faster than Hadoop Mapreduce [2]. The core abstraction
in Spark is Resilient Distributed Datasets (RDDs), which are fault-
tolerant and parallel data structures representing datasets. Users
can manipulate RDDs with a rich set of Spark operations called
transformations (e.g., map, filter) and actions (e.g, reduce, ag-
gregate). Calling transformations on an RDD generates a new
RDD, while calling actions on an RDD reports calculation result
to users. Spark employs lazy evaluation, so that transformations on
RDDs will not be executed until an action is called. At that time,
all preceding transformations are executed to generate the RDD,
where the action is then evaluated. We build POP on top of Spark
because it is good at parallelizing identical computation logic on
each element of a dataset, and it directly uses the output of one step
in memory as the input to another. In our case, an RDD can represent
a log dataset, where each element is a log message. POP can be
parallelized by transformations and actions, because each POP step
requires computation-intensive tasks that cast identical computation
logic to every log message. To parallelize these tasks, we invoke
Spark operations with specially designed functions describing the
computation logic. In the following, we will introduce the Spark
operations we applied for the five POP steps.

The implementation of POP on Spark is illustrated in Fig. 4.5.
The five rounded rectangles at the bottom represent the five steps of
POP, where the numbered arrows represent the interactions between
the main program and the Spark cluster. The main program is
running in Spark driver, which is responsible for allocating Spark
tasks to workers in the Spark cluster. For a POP Spark application,
in step 1, we use textF ile to load the log dataset from a distributed
file system (e.g., HDFS) to Spark cluster as an RDD (arrow 1).
Then, we use map to preprocess all log messages with a function
as input describing the preprocessing logic on single log message
(arrow 2). After preprocessing, we cache the preprocessed log

CHAPTER 4. PARALLEL LOG PARSING 68

Preprocess by
Domain

Knowledge

Distributed File System

Merge Groups
by Log Event

Worker Worker Worker

Spark
Driver

1

2
3

Partition by Log
Message Length

4 5 6 7

Generate Log
Events

12 13
14

Recursively
Partition by

Token Position

9 8

15

Spark
Cluster

11 10

(Step 1) (Step 2) (Step 3) (Step 4) (Step 5)

Figure 4.5: Overview of POP Implementation

messages in memory and return an RDD as the reference (arrow
3). In step 2, we use aggregate to calculate all possible log message
length values (arrow 4) and return them as a list (arrow 5). Then
for each value in the list, we use filter to extract log messages
with the same log message length (arrow 6), which is returned as
an RDD (arrow 7). Now we have a list of RDDs. In step 3, for
each RDD, we employ aggregate to form the token sets for all
token positions (arrow 8∼9) as described in Section 4.2.3. Based on
the token sets and pre-defined thresholds, the driver program decides
whether current RDD could be further partitioned or not. If yes, we
use filter to generate new RDDs and add them into the RDD list
(arrow 10∼11). Otherwise, we remove it from the list and pass the
RDD to step 4. In step 4, we use reduce to generate log events for
all RDDs (arrow 12∼13). When all log events have been extracted,
POP runs hierarchical clustering on them in main program. We use
union to merge RDDs based on the clustering result (arrow 14).
Finally, merged RDDs are outputted to the distributed file system
by saveAsTextF ile (arrow 15).

The implementation of this specialized POP is non-trivial. First,

CHAPTER 4. PARALLEL LOG PARSING 69

Spark provides more than 80 operations and this number is in-
creasing quickly due to its active community. We need to select
the most suitable operations to avoid unnecessary performance
degradation. For example, if we use aggregateByKey in step 2 and
step 3 instead of aggregate, the running time will be one order of
magnitude longer. Second, we need to design tailored functions as
input for Spark operations, such as aggregate and reduce. Though
we use aggregate in both step 2 and step 3, different functions have
been designed. The source code of POP has been release [14] for
reuse. Note that the existing log parser can also be parallelized, but
they require non-trivial efforts.

4.3 Evaluation

This section presents our evaluation methodology first. Then we
evaluate the performance of POP in terms of its accuracy, efficiency,
and effectiveness on subsequent log mining tasks in different sub-
sections. For each of these three evaluation items, we first briefly
review the evaluation study result obtained in Chapter 3; then we
analyze the evaluation results of POP. Finally, we present parameter
sensitivity analysis and conclude with experimental observations.

4.3.1 Study Methodology

Log Datasets. We used five real-world log datasets, including
supercomputer logs (BGL and HPC), distributed system logs (HDFS
and Zookeeper), and standalone software logs (Proxifier). Table
4.1 provides the basic information of these datasets. Log Size
column describes the number of raw log messages, while #Events
column is the number of log event types. Since companies are
often reluctant to release their system logs due to confidentiality,
logs are scarce data for research. Among the five real-world log
datasets in Table 4.1, three log datasets are obtained from their

CHAPTER 4. PARALLEL LOG PARSING 70

authors. Specifically, BGL is an open dataset of logs collected
from a BlueGene/L supercomputer system at Lawrence Livermore
National Labs (LLNL), with 131,072 processors and 32,768GB
memory [73]. HPC is also an open dataset with logs collected from a
high performance cluster at Los Alamos National Laboratory, which
has 49 nodes with 6,152 cores and 128GB memory per node [57].
HDFS logs are collected in [94] by engaging a 203-node cluster
on Amazon EC2 platform. To enrich the log data for evaluation
purpose, we further collected two datasets: one from a desktop
software Proxifier, and the other from a Zookeeper installation on
a 32-node cluster in our lab. In particular, the HDFS logs from
[94] have well-established anomaly labels, each of which indicates
whether a block has anomaly operations. Specifically, the dataset
with over 10 million log messages records operations on 575,061
blocks, among which 16,838 are anomalies.

Log Parser Implementation. Among the four studied log parsing
methods, we only find an open-source implementation on SLCT in C
language. To enable our evaluations, we have implemented the other
three log parsing methods in Python and also wrapped up SLCT as
a Python package. Currently, all our implementations have been
open-source as a toolkit on Github [14].

Evaluation Metric. We use F-measure [66, 9], a commonly-used
evaluation metric for clustering algorithms, to evaluate the parsing
accuracy of log parsing methods. The definition of parsing accuracy
is as the following.

Parsing Accuracy =
2 ∗ Precision ∗Recall
Precision+Recall

, (4.3)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
, (4.4)

where a true positive (TP) decision assigns two log messages with
the same log event to the same log group; a false positive (FP)

CHAPTER 4. PARALLEL LOG PARSING 71

Table 4.1: Summary of Our System Log Datasets

System Log Size Length #Events Description

BGL 4,747,963 10∼102 376
BlueGene/L
Supercom-
puter

HPC 433,490 6∼104 105

High Per-
formance
Cluster
(Los
Alamos)

HDFS 11,175,629 8∼29 29
Hadoop
Distributed
File System

Zookeeper 74,380 8∼27 80
Distributed
System Co-
ordinator

Proxifier 10,108 10∼27 8
Proxy
Client

decision assigns two log messages with different log events to the
same log group; and a false negative (FN) decision assigns two
log messages with the same log event to different log groups. If
the logs are under-partitioning, the precision will be low because it
leads to more false positives. If a log parsing method over-partitions
the logs, its recall will decrease because it has more false negatives.
Thus, we use F-measure, which is the harmonic mean of precision
and recall, to represent parsing accuracy. To obtain the ground truth
for the parsing accuracy evaluation, we split the raw log messages
into different groups with the help of manually-customized regular
expressions.

Experimental Setting. The experiments of systematic evaluation
on existing log parsers are run on a Linux server with Intel Xeon
E5-2670v2 CPU and 128GB DDR3 1600 RAM, running 64-bit
Ubuntu 14.04.2 with Linux kernel 3.16.0. Experiments of POP

CHAPTER 4. PARALLEL LOG PARSING 72

are run on Spark 1.6.0 with YARN as the cluster controller on 32
physical machines. The cluster has 4TB memory and 668 executors
in total. All 32 physical machines are inter-connected with 10Gbps
network switch. In our experiment, unless otherwise specified, we
use 16 executors, each of which has 25G memory and 5 executor
cores. We set Kryo as the Spark serializer because it is significantly
faster and more compact than the default one [15]. The parameter
setting follows the experience of Cloudera [78], a leading software
company that provides big data software, services and supports. To
avoid bias, each experiment is run 10 times and the averaged result
is reported.

4.3.2 Accuracy of POP

In this section, we first evaluate the accuracy of POP. Then we study
whether POP can consistently obtain high accuracy on large datasets
if parameters tuned on small datasets are employed.

Parsing Accuracy

In this section, we first evaluate the parsing accuracy of existing
parsers with and without preprocessing. Then the parsing accuracy
of POP is explained.

Similar to the existing work [85], we randomly sample 2k log
messages from each dataset in our evaluation, LKE and LogSig
cannot parse large log datasets in reasonable time (e.g., LogSig
requires 1 day to parse the entire BGL data). For each experiment,
we use the same 2k log messages for all 10 executions. These 2k
datasets have been released on our project website [14]. The results
are reported in Table 4.2 (i.e., the first number in each cell). As
shown in the table, the accuracy of existing log parsers is larger
than 0.8 in many cases. Besides, the overall accuracy on HDFS,
Zookeeper and Proxifier datasets is higher than that on BGL and
HPC. We find that this is mainly because BGL and HPC logs involve

CHAPTER 4. PARALLEL LOG PARSING 73

much more event types, and they have more various log length
range compared with HDFS, Zookeeper and Proxifier. For the
preprocessing step, obvious numerical parameters in log messages
(i.e., IP addresses in HPC&Zookeeper&HDFS, core IDs in BGL,
and block IDs in HDFS) are removed. Preprocessing is mentioned
in LKE and LogSig, but its effectiveness has not been studied.

In Table 4.2, the second number in each cell represents the accu-
racy of log parsing methods on preprocessed log data. In most cases,
accuracy of parsing is improved. Preprocessing greatly increases
the accuracy SLCT on BGL, LKE on HDFS, and LogSig on BGL
(in bold). However, preprocessing could not improve the accuracy
of IPLoM. This is mainly because IPLoM considers preprocessing
internally in its four-step process. The parsing accuracy of existing
parsers is summarized as follows.

Simple preprocessing using domain knowledge (e.g., removal of
IP address) improves log parsing accuracy. With preprocessing,
existing log parsers can achieve high overall accuracy. But none of
them consistently generates accurate parsing results on all datasets.

To evaluate the accuracy of POP, we employ it to parse the same
2k datasets. For dataset BGL, HPC, HDFS and Zookeeper, we
set GS to 0.6, splitAbs to 10, splitRel to 0.1, maxDistance to
0. Parameter tuning is intuitive because all these parameters have
physical meanings. Developer can easily find the suitable parameter
setting with basic experience on datasets. For dataset Proxifier, we
set GS to 0.3, splitAbs to 5, splitRel to 0.1, maxDistance to 10.
The parameter setting of Proxifier is different because it contains
much fewer log events (i.e., 8 as described in Table 4.1) compared
with others. Besides, we extract log messages containing text
“<1 sec” in step 1 of POP, which simulates the practical condition
described in Section 4.2.1.

The results are presented in the last line of Table 4.2. We observe
that POP delivers the best parsing accuracy for all these datasets. For
datasets that has relatively few log events (e.g., HDFS and Proxifier),

CHAPTER 4. PARALLEL LOG PARSING 74

Table 4.2: Parsing Accuracy of Log Parsing Methods (Raw / Preprocessed)
BGL HPC HDFS Zookeeper Proxifier

SLCT 0.61/0.94 0.81/0.86 0.86/0.93 0.92/0.92 0.89/-
IPLoM 0.99/0.99 0.64/0.64 0.99/1.00 0.99/0.99 0.84/-
LKE 0.67/0.70 0.17/0.17 0.57/0.96 0.78/0.82 0.81/-

LogSig 0.26/0.98 0.77/0.87 0.91/0.93 0.96/0.99 0.84/-
POP 0.99 0.95 1.00 0.99 1.00

its parsing accuracy is 1.00, which means all the logs can be parsed
correctly. For datasets that has relatively more log events, POP still
delivers very high parsing accuracy (0.95 for HPC). POP has the
best parsing accuracy because of three reasons. First, POP will
recursively partition each log group into several groups until they
become complete groups. Compared with other log parsers based
on heuristic rules (e.g., SLCT), POP provides more fine-grained
partitioning. Second, POP merges similar log groups based on the
extracted log event, which amends over-partitioning. Third, POP
allows developers to manually extract logs with certain properties,
which reduces noise for the partitioning process.

Parameter Tuning

The accuracy of log parsers is affected by parameters. For large-
scale log data, it is difficult to select the most suitable parameters
by trying different values, because each run will cause a lot of time.
Typically, developers will tune the parameters on a small sample
dataset and directly apply them on large-scale data.

To evaluate the feasibility of this approach, we sampled 25
datasets from the original real-world datasets. Table 4.3 shows the
number of raw log messages in these 25 sample datasets, where each
row presents 5 sample datasets generated from a real-world dataset.

We apply parameters tuned on 2k datasets. In Fig. 4.6, we
evaluate the accuracy of the log parsers on the datasets presented in
Table 4.3 employing these parameters. The results show that IPLoM

CHAPTER 4. PARALLEL LOG PARSING 75

Table 4.3: Log Size of Sample Datasets
BGL 400 4k 40k 400k 4m
HPC 600 3k 15k 75k 375k

HDFS 1k 10k 100k 1m 10m
Zookeeper 4k 8k 16k 32k 64k
Proxifier 600 1200 2400 4800 9600

performs consistently in most cases except a 0.15 drop on Proxifier.
SLCT varies a lot on HPC and Proxifier. The accuracy of LKE is
volatile in Zookeeper because of its aggressive clustering strategy.
LogSig obtains consistent accuracy on datasets with limited types
of events, but its accuracy fluctuates severely on datasets with many
log events (i.e., BGL and HPC). The results of existing parsers in
this section are summarized as follows.

Parameter tuning is time-consuming for existing log parsing
methods except IPLoM, because they could not directly use param-
eters tuned on small sampled data for large datasets.

The experimental results of POP are shown in Table 4.4 and Fig.
4.6. We observe that the accuracy of POP is very consistent for
all datasets. The accuracy on Zookeeper is 0.99 for all 5 sampling
levels, which indicates the parameters tuned on 2k sample dataset
lead to nearly the same parsing results. For HPC, HDFS and
Proxifier, the fluctuation of the accuracy is at most 0.02, while the
accuracy is at least 0.95. For BGL, the accuracy has a 0.1 drop
for the last two sampling levels. But POP can still obtain 0.89
accuracy in these two levels, while 0.1 is not a large drop compared
with existing parsers in Fig. 4.6. Compared with existing methods,
POP is the only parser that obtains high accuracy consistently on all
datasets using the parameters tuned on small sampled data.

4.3.3 Efficiency of POP

In this section, we evaluate the efficiency of POP. Specifically, we
first measure the running time of these log parsers on 25 sampled

CHAPTER 4. PARALLEL LOG PARSING 76

Table 4.4: Parsing Accuracy of POP on Sample Datasets in Table 4.3 with
parameters tuned on 2k datasets

BGL 0.98 0.99 0.99 0.89 0.89
HPC 0.95 0.97 0.96 0.96 0.97

HDFS 1.00 0.99 0.99 0.99 0.99
Zookeeper 0.99 0.99 0.99 0.99 0.99
Proxifier 1.00 1.00 1.00 0.99 0.99

datasets with varying number of log messages (i.e., log size) in Table
4.3. Second, we evaluate the running time of these log parsers on
synthetic datasets containing over 200 million log messages, which
is comparable to large-scale modern production systems[68].

Note that running time in this paper means the time used to
run log parsers (i.e., training time). In addition to training time,
we measure the efficiency for parsing a new log message, which
is 173µs for BGL, 108µs for HPC, 36µs for HDFS, 29µs for
Zookeeper, and 20µs for Proxifier. The matching process relies
on regular expressions, thus its time depends on the number of log
events and their lengths. The matching time is similar for different
log parsers.

Running Time on Real-World Datasets

In Fig. 4.7, we evaluate the running time of the log parsing methods
on all datasets by varying the number of raw log messages (i.e., log
size). Notice that as the number of raw log messages increases, the
number of events becomes larger as well (e.g., 60 events in BGL400
while 206 events in BGL40k). Fig. 4.7 is in logarithmic scale,
so we can observe the time complexity of these log parsers from
the slope of the lines. As show in the figure, the running time of
SLCT and IPLoM scale linearly with the number of log messages.
They both could parse 10 million HDFS log messages within five
minutes. However, as the slopes show, their running time increases
fast as the log size becomes larger, because they are limited by the

CHAPTER 4. PARALLEL LOG PARSING 77

400 4k 40k 400k 4m
Log Size of Sample Datasets from BGL

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y

SLCT
IPLoM

LKE
LogSig

POP

600 3k 15k 75k 375k
Log Size of Sample Datasets from HPC

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

ur
ac

y

1k 10k 100k 1m 10m
Log Size of Sample Datasets from HDFS

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc

ur
ac

y

4k 8k 16k 32k 64k
Log Size of Sample Datasets from Zookeeper

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

600 1200 2400 4800 9600
Log Size of Sample Datasets from Proxifier

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

Figure 4.6: Parsing Accuracy on Datasets in Different Size

CHAPTER 4. PARALLEL LOG PARSING 78

400 4k 40k 400k 4m
Log Size of Sample Datasets from BGL

10-3
10-2
10-1
100
101
102
103
104
105

Ti
m

e
(S

ec
)

SLCT
IPLoM

LKE
LogSig

SinglePOP
POP

600 3k 15k 75k 375k
Log Size of Sample Datasets from HPC

10-3
10-2
10-1
100
101
102
103
104
105

Ti
m

e
(S

ec
)

1k 10k 100k 1m 10m
Log Size of Sample Datasets from HDFS

10-3
10-2
10-1
100
101
102
103
104

Ti
m

e
(S

ec
)

4k 8k 16k 32k 64k
Log Size of Sample Datasets from Zookeeper

10-2
10-1
100
101
102
103
104
105

Ti
m

e
(S

ec
)

600 1200 2400 4800 9600
Log Size of Sample Datasets from Proxifier

10-2

10-1

100

101

102

103

104

Ti
m

e
(S

ec
)

Figure 4.7: Running Time of Log Parsing Methods on Datasets in Different Size

CHAPTER 4. PARALLEL LOG PARSING 79

computing power of a single computer. The fast increasing speed
can lead to inefficient parsing on production level log data (e.g.,
200 million log messages). The running time of LogSig also scales
linearly with the number of log messages. However, it requires much
running time (e.g, 2+ hours for 10m HDFS log messages), because
its clustering iterations are computation-intensive and its word pair
generation step is time-consuming. The time complexity of LKE is
O(n2), where n is the number of raw log messages, which makes
it unable to handle some real-world log data, such as BGL4m and
HDFS10m. Running time of some LKE experiments is not plotted
because LKE could not terminate in reasonable time (i.e., days or
even weeks). The running time of existing parsers on real-world
datasets is summarized as follows.

Clustering-based log parsers require much running time on real-
world datasets. Heuristic rule-based log parsers are more efficient,
but their running time increases fast as the log size becomes larger.
These imply the demand for parallelization.

The time complexity of POP is O(n), where n is the number of
raw log messages. In step 1, step 2 and step 4, POP traverses all
log messages once so the time complexity for these steps are all
O(n). In step 3, POP may scan some log messages more than once
due to recursion. However, in the case of log parsing, the recursion
depth can be regarded as a constant because it will not increase as
the number of log messages, which remains small in all our datasets.
Thus, the time complexity of step 3 is also O(n). Finally, the time
complexity of step 5 is O(m2 logm), where m is the number of
log events. We do not consider it in the time complexity of POP,
because m is far less than n. So the time complexity of POP is
O(n+ n+ n+ n+m2 logm) = O(n).

The “SinglePOP” lines represent the running time of the nonpar-
allel implementation of POP on different datasets. We can observe
that the running time of SinglePOP is even shorter than the parallel
implementation of POP. Because the nonparallel implementation of

CHAPTER 4. PARALLEL LOG PARSING 80

POP does not require any data transportation between nodes, which
is required by parallel programs. Besides, the parallel implementa-
tion needs to deploy the runtime environment (e.g., set up the nodes
that will be used) at the beginning, though automatically, will cost
some constant time.

The experimental results of POP are presented in Table 4.5 and
Fig. 4.7. Fig. 4.7 shows that POP has the slowest increasing speed
of running time as the log size becomes larger. Its increasing speed
is even much better (i.e., slower) than linear parsers (i.e., SLCT,
IPLoM, LogSig). For a few cases, the running time of POP even
decreases when the log size becomes larger. This is mainly caused
by two reasons. First, a larger dataset could benefit more from
parallelization than a smaller one. Second, it is possible that a
smaller dataset requires deeper recursion in step 3 of POP, which
increases its running time. Compared with the existing methods,
POP enjoys the slowest running time increase because of its O(n)
time complexity and its parallelization mechanism. It can parse a
large amount of log messages very fast (e.g., 100 seconds for 10
million HDFS log messages). Although its running time is slower
than IPLoM and SLCT in some cases, POP turns out to be more
efficient for two reasons. First, as we can observe from Fig. 4.7, the
running time increase of POP is the slowest, so POP will be faster
than other log parsers when log size is larger. For example, POP is
faster than IPLoM on 10m HDFS dataset. Second, the efficiency of
IPLoM and SLCT is limited by computing power or/and memory
of single computer, while POP is able to utilize multiple computers.
Note that with parallelization, the running time will be reduced as
the number of computers increases. Thus our parser may obtain even
better performance with more computers. However, this increase
will also slow down finally because of the trade-off between reduced
computation time and extra data transmission time.

CHAPTER 4. PARALLEL LOG PARSING 81

Table 4.5: Running Time of POP (Sec) on Sample Datasets in Table 4.3
BGL 71.87 134.48 271.98 268.12 527.63
HPC 46.24 61.29 83.81 119.81 234.92

HDFS 19.82 19.17 29.14 41.03 100.58
Zookeeper 69.62 72.22 60.07 75.56 90.69
Proxifier 18.00 16.08 16.60 21.07 24.22

Running Time on Large-Scale Synthetic Datasets

In this section, we evaluate the running time of log parsers on
very large synthetic datasets, which are randomly generated from
BGL and HDFS. These two datasets are representative because they
include log datasets with a lot and a few log events respectively.
BGL has more than 300 log events, while HDFS has 29. The
synthetic datasets are generated from the real-world datasets. For
example, to generate a 200m synthetic dataset from HDFS dataset,
we randomly select a log message from the dataset each time, and
repeat this random selection process 200 million times. Fig. 4.8
presents the experimental results in linear scale.

In this figure, a result is neglected if its running time is larger
than one hour, because we want to evaluate the effectiveness of
these log parsers in production environment (e.g., 120∼200 million
log messages per hour [68]). Thus, experimental results of SLCT,
IPLoM and POP are plotted, while LKE and LogSig require more
than one hour on these datasets. The running time increase of
IPLoM is the fastest among the plotted three. It requires more than
an hour for two datasets generated from HDFS; therefore, they are
not plotted. Besides, IPLoM requires more than 16G memory when
the synthetic dataset contains 30m or more log messages for both
BGL and HDFS. Because IPLoM needs to load the whole dataset
into memory, and it creates extra data of comparable size in runtime.
SLCT is more efficient than IPLoM, and it requires the least time
on BGL datasets. SLCT only requires two passes across all log
data, and it is implemented in C instead of Python. However, its

CHAPTER 4. PARALLEL LOG PARSING 82

10 30 50 100 150 200
Log Size (m) of Synthetic Datasets from BGL

0

500

1000

1500

2000

2500

Ti
m

e
(S

ec
)

SLCT IPLoM POP

10 30 50 100 150 200
Log Size (m) of Synthetic Datasets from HDFS

0

500

1000

1500

2000

2500

3000

Ti
m

e
(S

ec
)

Figure 4.8: Running Time on Synthetic Datasets

running time increases fast as the log size becomes larger, because
SLCT is limited by the computing power of single computer. The
running time of existing parsers on large-scale synthetic datasets is
summarized as follows.

Clustering-based log parsers cannot handle large-scale log data.
Heuristic rule-based log parsers are efficient, but they are limited by
the computing power or/and memory of a single computer.

For POP, we use 64 executors on BGL datasets and 16 executors
on HDFS datasets, each of which has 16G memory and 5 executor

CHAPTER 4. PARALLEL LOG PARSING 83

Table 4.6: Anomaly Detection with Different Log Parsing Methods (16,838
Anomalies)

Parsing Reported Detected False
Accuracy Anomaly Anomaly Alarm

SLCT 0.83 18,450 10,935 (64%) 7,515 (40%)
LogSig 0.87 11,091 10,678 (63%) 413 (3.7%)
IPLoM 0.99 10,998 10,720 (63%) 278 (2.5%)
POP 0.99 10,998 10,720 (63%) 278 (2.5%)

Ground truth 1.00 11,473 11,195 (66%) 278 (2.4%)

cores. We use more executors on BGL datasets because they require
more recursive partitioning in step 3. We set 16G memory because
this is a typical memory setting for a single computer. We observe
that POP has the slowest growth speed among all three methods.
Besides, POP requires the least running time for HDFS datasets.
Though SLCT requires less time for BGL datasets, its running time
increases faster than POP, which is shown by their comparable
results on 200m log message dataset generated from BGL. Thus,
POP is the most suitable log parser for large-scale log analysis, given
that the size of logs will become even larger in the future.

4.3.4 Effectiveness of POP on Log Mining: A Case Study

Log mining tasks usually accept structured data (e.g., matrix) as
input and report mining results to developers, as described in Fig.
4.1. If a log parser is inaccurate, the generated structured logs will
contain errors, which can further ruin the input matrix of subsequent
log mining tasks. A log mining task with erroneous input tends to
report biased results. Thus, log parsing should be accurate enough
to ensure the high performance of subsequent log mining tasks.

To evaluate the effectiveness of POP on log mining, we apply
different log parsers to tackle the parsing challenge of a real-world
anomaly detection task. This task employs Principal Component
Analysis (PCA) to detect anomalies. Due to the space limit, the

CHAPTER 4. PARALLEL LOG PARSING 84

technical details of this anomaly detection task is described in our
supplementary report [20]. There are totally 16,838 anomalies
in this task, which are found manually in [94]. We re-tune the
parameters of the parsers for better parsing accuracy. LKE is
not employed because it could not handle this large amount of
data (10m+ lines) in reasonable time. Table 4.6 demonstrates the
evaluation results. Reported anomaly is the number of anomalies
reported by log mining model (i.e., PCA) while adopting different
log parsers in the log parsing step. Detected anomaly means
the number of true anomalies detected by PCA. False alarm is
the number of wrongly detected anomalies. Ground truth is an
anomaly detection task with exactly correct parsed results. Notice
that even the ground truth could not detect all anomalies because of
the boundary of the PCA anomaly detection model.

From Table 4.6, we observe that LogSig and IPLoM lead to
nearly optimal results on the anomaly detection task. However,
SLCT does not perform well in anomaly detection with its ac-
ceptable parsing accuracy (0.83). It reports 7,515 false alarms
in anomaly detection, which introduces extensive human effort on
inspection. Furthermore, the parsing accuracy of SLCT (0.83)
and LogSig (0.87) is comparable, but the performance of anomaly
detection using LogSig as parser is one order of magnitude better
than that using SLCT. Anomaly detection task using LogSig only
reports 413 false alarms. These reveal that anomaly detection results
are sensitive to some critical events, which are generated by log
parsers. It is also possible that F-measure, despite pervasively
used in clustering algorithm evaluation, may not be suitable to
evaluate the effectiveness of log parsing methods on log mining.
The effectiveness of existing parsers on the anomaly detection task
is summarized as follows.

Log parsing is important because log mining is effective only
when the parsing result is accurate enough. Log mining is sensitive
to some critical events. 4% errors in parsing could even cause one

CHAPTER 4. PARALLEL LOG PARSING 85

order of magnitude performance degradation in anomaly detection.
The parameters of POP in this experiment are the same as those

tuned for 2k HDFS datasets. We observe that the accurate parsed
results of POP are effective from the perspective of this anomaly
detection task. Although there are still 37% non-detected anomalies,
we think this is the limitation of the anomaly detection model
PCA. Because the anomaly detection task with ground truth as
input provides comparable performance, where 34% anomalies are
not detected. Note that although the performance of the anomaly
detection task with POP as input is the same as that of IPLoM in
Table 4.6, their parsing results are different.

4.3.5 Parameter Sensitivity

POP has four parameters: GS, splitRel, splitAbs, maxDistance.
We will explain these parameters one by one. All the sensitivity
experiments are run on the 2k datasets, which are the datasets used
to evaluate the accuracy of the parsers in Section 4.3.2. Similar
to the parameter setting in our accuracy experiments, for dataset
BGL, HPC, HDFS, and Zookeeper, we set GS to 0.6, splitRel to
0.1, splitAbs to 10, maxDistance to 0; for Proxifier, we set GS to
0.3, splitRel to 0.1, splitAbs to 5, maxDistance to 10. To study the
impact of different parameters, we evaluate the accuracy of POP
while varying the value of the studied parameter.

Impact of GS

According to our definition, GS decides whether a log group is
complete in step 3. If a log group is complete, it will be sent to step
4 without further partitioning. Intuitively, GS is the threshold about
the percentage of columns where all the tokens are the same in a log
group. For example, if we set GS to 0.6, POP will regard log groups
with more than 60% columns having the same tokens respectively
as complete groups. For the log group in Fig. 4.9, two (i.e., the

CHAPTER 4. PARALLEL LOG PARSING 86

first and third) columns have the same tokens in that token position
(i.e., “Send” and “file”) respectively. Its GG (Group Goodness) is
2/3. GG (2/3) is larger than GS (0.6), so this log group is a complete
group.

1. Send
2. Send
3. Send
4. Send

configuration
network

bootstrap
video

file
file
file
file

Figure 4.9: Example Log Group

The sensitivity analysis for GS is demonstrated by Fig. 4.10. We
can observe that the accuracy of POP is high for all datasets if we set
GS in range [0.5, 0.6]. Intuitively, this means a log group is complete
if more than half or 60% of its columns have the same tokens for the
whole column. When GS is smaller, a log group is easier to get sent
to step 4 without further partitioning, which may lower the accuracy
because we may put log messages with different log events into the
same log group. Thus we can observe the relatively lower accuracy
for range [0, 0.3] on HPC and range [0, 0.2] on HDFS. When GS is
larger, a log group has higher probability to go through partitioning
process in step 3, which may lower the accuracy because we may put
log messages with the same log event into different log groups. Thus
we can observe the relatively lower accuracy in range [0.8, 1.0] on
HPC, range [0.8, 1.0] on HDFS and range [0.9, 1.0] on Zookeeper.
To tune GS for a new dataset, we could first set GS to 0.5 or 0.6.
Then we evaluate the accuracy of POP on a sample dataset (e.g.,
2k lines), which is often much smaller than the whole dataset. If
the accuracy is not satisfactory, we can increase or decrease the GS
by 0.1, and evaluate POP’s accuracy on the sample dataset again.
We can repeat this process until the accuracy becomes lower. Then
we select the GS that achieves the highest accuracy on the sample
dataset. According to our parameter tuning experiment (Section

CHAPTER 4. PARALLEL LOG PARSING 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of GS

0.85

0.90

0.95

1.00
A

cc
ur

ac
y

The impact of GS on BGL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of GS

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

The impact of GS on HPC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of GS

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

The impact of GS on HDFS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of GS

0.6

0.8

1.0

A
cc

ur
ac

y

The impact of GS on Zookeeper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of GS

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

The impact of GS on Proxifier

Figure 4.10: Impact of GS

4.2.2 in the revised manuscript), POP can achieve high accuracy
when using the parameters tuned on small sampled data.

Impact of splitRel and splitAbs

Parameter splitRel and splitAbs are used to control the partitioning
of the incomplete log groups in step 3 of POP. For each incomplete
group, POP will try to split the log group based on the tokens in
the split token position. If the tokens in the split token position are
constants, the current group will be partitioned into several groups.
Otherwise, the log group will be sent to step 4. splitAbs is the
threshold about the number of unique tokens (i.e., AT) in a column
(i.e., token position). For example, in Fig. 4.9, the first and third

CHAPTER 4. PARALLEL LOG PARSING 88

column have one unique token, while the second column has four
unique tokens. splitRel is the threshold about the ratio between the
number of unique tokens and the number of tokens (i.e., RT) in a
column. For example, the number of tokens for all the columns
in Fig. 4.9 is four. If RT is larger than splitRel, and AT is larger
than splitAbs, POP regards the tokens in the split token position as
variables, because there are too many unique tokens. Otherwise,
POP regards the tokens as constants.

We conduct the sensitivity analysis experiments for both splitRel
and splitAbs. Since their results are very similar, we demonstrate
the results for splitRel here.

From Fig. 4.11, we can observe that the accuracy of POP is
insensitive to the value of splitRel. There are two main reasons.
First, with a suitable (but easy to find) GS, we can already send some
complete groups to step 4, which provides a lower bound for the
accuracy. Second, splitRel and splitAbs control the partitioning of
incomplete groups together in step 3. Thus with a suitable splitAbs,
changing the value splitRel will not cause big accuracy change. We
provide both splitRel and splitAbs to allow finer tuning by users.
The accuracy of POP has observable change on BGL when varying
the value of splitRel, and the accuracy peaks when splitRel is in
range [0.1, 0.3]. This demonstrates the effectiveness of having both
splitRel and splitAbs.

We also evaluate the impact of splitRel when splitAbs is 0 as in
Fig. 4.12. We can observe that the accuracy of POP is consistent
even we set splitAbs to 0. For BGL, HPC, HDFS, and Zookeeper,
the accuracy is low when both splitRel and splitAbs is 0. Under
this parameter setting, POP always regards the tokens in the split
token position of the incomplete groups as variables. Thus, POP will
send all the incomplete groups to step 4 without further partitioning.
This lead to log groups containing log messages with different log
events, which lowers the accuracy. For the parameter values in range
[0.1, 1.0], POP consistently achieves high accuracy. To set a suitable

CHAPTER 4. PARALLEL LOG PARSING 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.6

0.8

1.0
A

cc
ur

ac
y

The impact of splitRel on BGL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

The impact of splitRel on HPC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

The impact of splitRel on HDFS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

The impact of splitRel on Zookeeper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

The impact of splitRel on Proxifier

Figure 4.11: Impact of splitRel

splitRel (or splitAbs) value, we can first pick a reasonable value,
for example 0.1 (or 10). Then we tune this value by evaluating the
accuracy of POP on small sample datasets. The parameter value that
has the highest accuracy can be used on the original dataset.

Impact of maxDistance

Parameter maxDistance is used in step 5 to merge the similar log
groups based on the log events (i.e., log templates) extracted in step
4. POP calculates the Manhattan distance of log events in step
5 to merge log groups. Intuitively, maxDistance is the maximum
number of different tokens allowed between the farthest two log
events in two merging groups. In our paper, we set maxDistance

CHAPTER 4. PARALLEL LOG PARSING 90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.00

0.25

0.50

0.75

1.00
A

cc
ur

ac
y

The impact of splitRel on BGL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

The impact of splitRel on HPC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

The impact of splitRel on HDFS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

The impact of splitRel on Zookeeper

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of splitRel

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

The impact of splitRel on Proxifier

Figure 4.12: Impact of splitRel (splitAbs=0)

to 0 for BGL, HPC, HDFS, and Zookeeper, where only two groups
with the exactly same log event will be merged. Because POP can
already achieve high accuracy, we do not use a larger maxDistance
value. For Proxifier, if we set maxDistance to 0, the accuracy
is 0.89. Besides, some log groups are over-parsed by step 3 on
Proxifier. Thus, we set maxDistance to 10 to address over-parsing.
We demonstrate the impact of maxDistance on accuracy in Fig.
4.13.

From Fig. 4.13, we can observe that the accuracy peaks when
maxDistance is in range [4, 12]. When maxDistance is in range [0,
4), logs have been over-parsed, so the accuracy of POP is relatively
low. When maxDistance is in range (12, 20], or is larger than 20,

CHAPTER 4. PARALLEL LOG PARSING 91

0 2 4 6 8 10 12 14 16 18 20
Value of maxDistance

0.6

0.8

1.0

A
cc

ur
ac

y

The impact of maxDistance on Proxifier

Figure 4.13: Impact of maxDistance

log groups that contain log messages with different log events are
merged, which lowers the accuracy of POP. To find the suitable
maxDistance, similar to other parameters, we can start with a value,
for example, set maxDistance to 10. Then we tune this parameter by
evaluating the accuracy of POP on a small sampled dataset. After
finding the best parameter, we can directly apply it to the original
dataset.

To pick a suitable value, we could first set the parameter to a
reasonable value according to its physical meaning. Then we tune it
on a small sample dataset by evaluating the resulting accuracy. After
finding the best parameter, we can apply it to the original dataset. We
add Section 4.5 in the revised manuscript to demonstrate the above
parameter analysis results. The sensitivity analysis would greatly
facilitate the parameter setting.

4.3.6 Observations

Among the existing log parsers, LKE has quadratic time complexity,
while the running time of others scales linearly with the number
of log messages. LogSig is accurate on most datasets. IPLoM is
accurate and efficient on small datasets. SLCT requires the least
running time. Although these widely used log parsing methods
have their own merits, none of them can perform accurately and
efficiently on various modern datasets. First, SLCT is not accurate

CHAPTER 4. PARALLEL LOG PARSING 92

enough. Because of its relatively low parsing accuracy, in our
case study in Section 4.3.4, the false alarm rate of the subsequent
anomaly detection task increases to 40%, which causes 7,515 false
positives. Secondly, LKE and LogSig cannot handle large-scale log
data efficiently. Specifically, LKE has quadratic time complexity,
while LogSig needs computation-intensive iterations. Moreover,
LKE and LogSig both require non-trivial parameter tuning effort.
Finally, IPLoM cannot efficiently handle large-scale log data (e.g.,
200 million log messages) due to the limited computing power and
memory of a single computer. Our proposed POP is the only log
parser that performs accurately and efficiently on all the datasets.

4.4 Discussions

Training Log Data. Usually we hope to train our log parser on
as many logs as possible. This can increase the generalizability
of the results obtained by POP. This is also why we propose a
parallel log parsing method that aims for parsing large-scale logs.
However, we agree that in case we have too many historical logs for
processing, sampling is an effective way. We suggest two methods
to sample training data. (1) Using the latest logs. This sampling
method is more likely to get the newest log events produced by new-
version systems. (2) Collecting the logs periodically (e.g., collecting
the logs every single day). This sampling method can allow the
variability of logs. The quantity of sample logs depends on the
training time we can afford. For example, in case of POP, if we
want to finish the training process in 7 minutes for HDFS logs, then
we can use the latest 200 million log messages.

Log Event Changes. Logs change over time, a log message
may not be matched by the current list of log events. To solve
this problem, developers can use POP to periodically retrain on new
training data to update the list. In runtime, if a log message is not
matched by any log events, we mark it as “other events” and record

CHAPTER 4. PARALLEL LOG PARSING 93

it. When retraining, the developer can retrain on the log messages
marked as “other events”, and add the new log events to the log
event list. To avoid the burst of not-matched logs (e.g., a billion
times), we can maintain a counter to remember the number of log
messages marked as “other events” after the latest training. If it is
larger than a threshold, an alarm is reported to call for retraining.

POP for Big Data. We propose the parallel log parser POP
in the manuscript because the existing nonparallel log parsers and
SinglePOP cannot handle the large volume of logs generated by
modern systems in the big data era. We can observe from the
Fig. 4.7 that the increasing speed of SinglePOP’s running time (i.e.,
slope) is faster than POP as the log size becomes larger. The running
time of SinglePOP will be longer than that of POP on production
level log data (e.g., over 200m log messages). For example, the
running time of SinglePOP is already larger than that of POP on
the 10m HDFS dataset as illustrated. Thus, although SinglePOP is
efficient, we need POP, a parallel designed on top of Spark, to handle
production level log data efficiently.

4.5 Summary

This chapter targets automated log parsing for the large-scale log
analysis of modern systems. Based on the result of the evaluation
study in Chapter 3, we propose a parallel log parsing method (POP).
POP employs specially designed heuristic rules and hierarchical
clustering algorithm. It is optimized on top of Spark by using
tailored functions for selected Spark operations. Extensive exper-
iments are conducted on both synthetic and real-world datasets, and
the results reveal that POP can perform accurately and efficiently
on large-scale log data. POP has been publicly released to make it
reusable and thus facilitate future research.

2 End of chapter.

Chapter 5

Online Log Parsing via Fixed Depth
Tree

Although offline log parsers can fulfill the need of many systems by
periodical parser running, some systems expect more accurate and
timely parsing rules mining. To address this problem, this chapter
presents an online log parser, namely Drain. Different from the
offline parsers, Drain can parse incoming logs in a streaming manner
and dynamically updated its parsing rules. The main points of this
chapter are as follows. (1) It presents the design of an online log
parser Drain. (2) It explains the search phase and update phase based
on fixed depth tree. (3) It implements and open-source releases
Drain.

5.1 Introduction

The prevalence of cloud computing, which enables on-demand
service delivery, has made Service-oriented Architecture (SOA) a
dominant architectural style. Nowadays, more and more developers
leverage existing Web services to build their own systems because
of their rich functionality and “plug-and-play” property. Although
developing Web service based system is convenient and lightweight,
Web service management is a significant challenge for both service
providers and users. Specifically, service providers (e.g., Amazon

94

CHAPTER 5. ONLINE LOG PARSING 95

EC2 [1]) are expected to provide services with no failures or SLA
(service-level agreement) violations to a large number of users. Sim-
ilarly, service users need to effectively and efficiently manage the
adopted services, which have been discussed in many recent works
(e.g., Web service monitoring [30]). In this context, log analysis
based service management techniques, which employ service logs
to achieve automatic or semi-automatic service management, have
been widely studied.

Logs are usually the only data resource available that records
service runtime information. In general, a log message is a line
of text printed by logging statements (e.g., printf(), logging.info())
written by developers. Thus, log analysis techniques, which apply
data mining models to get insights of system behaviors, are in
widespread use for service management. For service providers,
there are studies in anomaly detection [94, 35], fault diagnosis
[91, 108] and performance improvement [84, 106]. For service
users, typical examples include business model mining [27, 71] and
user behavior analysis [97, 76].

Most of the data mining models used in these log analysis
techniques require structured input (e.g., an event list or a ma-
trix). However, raw log messages are usually unstructured, because
developers are allowed to write free-text log messages in source
code. Thus, the first step of log analysis is log parsing, where
unstructured log messages are transformed into structured events.
An unstructured log message, as in the following example, usually
contains various forms of system runtime information: timestamp
(records the occurring time of an event), verbosity level (indicate
the severity level of an event, e.g., INFO), and raw message content
(free-text description of a service operation).

081109 204655 556 INFO dfs.DataNode$PacketResponder
: Received block blk_3587508140051953248 of size 67
108864 from /10.251.42.84

Traditionally, log parsing relies heavily on regular expressions

CHAPTER 5. ONLINE LOG PARSING 96

[54], which are designed and maintained manually by developers.
However, this manual method is not suitable for logs generated
by modern services for the following three reasons. First, the
volume of logs is increasing rapidly, which makes the manual
method prohibitive. For example, a large-scale service system
can generate 50 GB logs (120∼200 million lines) per hour [68].
Second, as open-source platforms (e.g., Github) and Web service
become popular, a system often consists of components written by
hundreds of developers globally [94]. Thus, people in charge of
the regular expressions may not know the original logging purpose,
which makes manual management even harder. Third, logging
statements in modern systems updates frequently (e.g., hundreds of
new logging statements every month [93]). In order to maintain a
correct regular expression set, developers need to check all logging
statements regularly, which is tedious and error-prone.

Log parsing is widely studied to parse the raw log messages
automatically. Most of existing log parsers focus on offline, batch
processing. For example, Xu et al. [94] design a method to
automatically generate regular expressions based on source code.
However, source code is often inaccessible in practice (e.g., Web
service components). For general log parsing, recent studies propose
data-driven methods [35, 64], which directly extract log templates
from raw log messages. These log parsers are offline, and limited
by the memory of a single computer. Besides, they fail to align
with the log collecting manner. A typical log collection system
has a log shipper installed on each node to forward log entries in
a streaming manner to a centralized server that contains a log parser
[31]. The offline log parsers need to employ all logs after log
collection for a certain period (e.g., 1h) for the parser training. In
contrast, an online log parser parses logs in a streaming manner, and
it does not require an offline training step. Thus, current systems
highly demand online log parsing, which is only studied in a few
preliminary works [69, 31]. However, we observe that the parsers

CHAPTER 5. ONLINE LOG PARSING 97

proposed in these works are not accurate and efficient enough, which
make them not eligible for log parsing in modern Web service or
Web service based systems.

In this paper, we propose an online log parsing method, namely
Drain, that can accurately and efficiently parse raw log messages
in a streaming manner. Drain does not require source code or any
information other than raw log messages. Drain can automatically
extract log templates from raw log messages and split them into
disjoint log groups. It employs a parse tree with fixed depth to guide
the log group search process, which effectively avoids constructing a
very deep and unbalanced tree. Besides, specially designed parsing
rules are compactly encoded in the parse tree nodes. We evaluate
Drain on five real-world log data sets with more than 10 million raw
log messages. Drain demonstrates the highest accuracy on four data
sets, and comparable accuracy on the remaining one. Besides, Drain
obtains 51.8%∼81.47% improvement in running time compared
with the state-of-the-art online parser [31]. We also demonstrate
the effectiveness of Drain in log analysis by tackling a real-world
anomaly detection task [94].

In summary, our paper makes the following contributions:

• This paper presents the design of an online log parsing method
(Drain), which encodes specially designed parsing rules in a
parse tree with fixed depth.

• Extensive experiments have been conducted on five real-world
log data sets, which determine the superiority of Drain in terms
of accuracy and efficiency.

• The source code of Drain has been publicly released [3],
allowing for easy use by researchers and practitioners for future
study.

CHAPTER 5. ONLINE LOG PARSING 98

A List of Log Groups

 . . .

Length: 4 . . .

Root

Length: 5 Length: 10

Send Receive Starting

Log Event: Receive from node *

Log IDs: [1, 23, 25, 46, 345, …]

Log Group

Root Node Internal Node Leaf Node Log Group

*

Figure 5.1: Structure of Parse Tree in Drain (depth = 3)

5.2 Methodology

In this section, we briefly introduce Drain, a fixed depth tree based
online log parsing method. When a new raw log message arrives,
Drain will preprocess it by simple regular expressions based on
domain knowledge. Then we search a log group (i.e., leaf node
of the tree) by following the specially-designed rules encoded in
the internal nodes of the tree. If a suitable log group is found, the
log message will be matched with the log event stored in that log
group. Otherwise, a new log group will be created based on the log
message. In the following, we first introduce the structure of the
fixed depth tree (i.e., parse tree). Then we explain how Drain parses
raw log messages by searching the nodes of the parse tree.

CHAPTER 5. ONLINE LOG PARSING 99

5.2.1 Overall Tree Structure

When a raw log message arrives, an online log parser needs to search
the most suitable log group for it, or create a new log group. In this
process, a simple solution is to compare the raw log message with
log event stored in each log group one by one. However, this solution
is very slow because the number of log groups increases rapidly in
parsing. To accelerate this process, we design a parse tree with fixed
depth to guide the log group search, which effectively bounds the
number of log groups that a raw log message needs to compare with.

The parse tree is illustrated in Figure 5.1. The root node is in the
top layer of the parse tree; the bottom layer contains the leaf nodes;
other nodes in the tree are internal nodes. Root node and internal
nodes encode specially-designed rules to guide the search process.
They do not contain any log groups. Each path in the parse tree
ends with a leaf node, which stores a list of log groups, and we only
plot one leaf node here for simplicity. Each log group has two parts:
log event and log IDs. Log event is the template that best describes
the log messages in this group, which consists of the constant part
of a log message. Log IDs records the IDs of log messages in this
group. One special design of the parse tree is that the depth of all leaf
nodes are the same and are fixed by a predefined parameter depth.
For example, the depth of the leaf nodes in Figure 5.1 is fixed to
3. This parameter bounds the number of nodes Drain visits during
the search process, which greatly improves its efficiency. Besides,
to avoid tree branch explosion, we employ a parameter maxChild,
which restricts the maximum number of children of a node. In the
following, for clarity, we define an n-th layer node as a node whose
depth is n. Besides, unless otherwise stated, we use the parse tree
in Figure 5.1 as an example in following explanation. In practice,
depth can be tuned on a sample dataset of small size. Usually, depth
will be 3 or 4 according to our experience.

CHAPTER 5. ONLINE LOG PARSING 100

5.2.2 Step 1: Preprocess by Domain Knowledge

According to our previous empirical study on existing log parsing
methods [39], preprocessing can improve parsing accuracy. Thus,
before employing the parse tree, we preprocess the raw log message
when it arrives. Specifically, Drain allows users to provide simple
regular expressions based on domain knowledge that represent
commonly-used variables, such as IP address and block ID. Then
Drain will remove the tokens matched from the raw log message by
these regular expressions.

The regular expressions employed in this step are often very
simple, because they are used to match tokens instead of log mes-
sages. Besides, a data set usually requires only a few such regular
expressions. For example, the data sets used in our evaluation
section require at most two such regular expressions.

5.2.3 Step 2: Search by Log Message Length

In this step and step 3, we explain how we traverse the parse tree
according to the encoded rules and finally find a leaf node.

Drain starts from the root node of the parse tree with the prepro-
cessed log message. The 1-st layer nodes in the parse tree represent
log groups whose log messages are of different log message lengths.
By log message length, we mean the number of tokens in a log
message. In this step, Drain selects a path to a 1-st layer node based
on the log message length of the preprocessed log message. For
example, for log message “Receive from node 4”, Drain traverse to
the internal node “Length: 4” in Figure 5.1. This is based on the
assumption that log messages with the same log event will probably
have the same log message length. Although it is possible that
log messages with the same log event have different log message
lengths, it can be handled by simple postprocessing. Besides, our
experiments in Section 5.3.2 demonstrate the superiority of Drain in
terms of parsing accuracy even without postprocessing.

CHAPTER 5. ONLINE LOG PARSING 101

5.2.4 Step 3: Search by Preceding Tokens

In this step, Drain traverses from a 1-st layer node, which is searched
in step 2, to a leaf node. This step is based on the assumption that
tokens in the beginning positions of a log message are more likely to
be constants. Specifically, Drain selects the next internal node by the
tokens in the beginning positions of the log message. For example,
for log message “Receive from node 4”, Drain traverses from 1-
st layer node “Length: 4” to 2-nd layer node “Receive” because
the token in the first position of the log message is “Receive”.
Then Drain will traverse to the leaf node linked with internal node
“Receive”, and go to step 4.

The number of internal nodes that Drain traverses in this step
is (depth − 2), where depth is the parse tree parameter restricting
the depth of all leaf nodes. Thus, there are (depth − 2) layers that
encode the first (depth − 2) tokens in the log messages as search
rules. In the example above, we use the parse tree in Figure 5.1
for simplicity, whose depth is 3, so we search by only the token in
the first position. In practice, Drain can consider more preceding
tokens with larger depth settings. Note that if depth is 2, Drain only
considers the first layer used by step 2.

In some cases, a log message may start with a parameter, for
example, “120 bytes received”. These kinds of log messages can
lead to branch explosion in the parse tree because each parameter
(e.g., 120) will be encoded in an internal node. To avoid branch
explosion, we only consider tokens that do not contain digits in this
step. If a token contains digits, it will match a special internal node
“*”. For example, for the log message above, Drain will traverse
to the internal node “*” instead of “120”. Besides, we also define
a parameter maxChild, which restricts the maximum number of
children of a node. If a node already has maxChild children, any
non-matched tokens will match the special internal node “*” among
all its children.

CHAPTER 5. ONLINE LOG PARSING 102

5.2.5 Step 4: Search by Token Similarity

Before this step, Drain has traversed to a leaf node, which contains
a list of log groups. The log messages in these log groups comply
with the rules encoded in the internal nodes along the path. For
example, the log group in Figure 5.1 has log event “Receive from
node *”, where the log messages contain 4 tokens and start with
token “Receive”.

In this step, Drain selects the most suitable log group from the
log group list. We calculate the similarity simSeq between the log
message and the log event of each log group. simSeq is defined as
following:

simSeq =

∑n
i=1 equ(seq1(i), seq2(i))

n
, (5.1)

where seq1 and seq2 represent the log message and the log event
respectively; seq(i) is the i-th token of the sequence; n is the
log message length of the sequences; function equ is defined as
following:

equ(t1, t2) =

{
1 if t1 = t2

0 otherwise
(5.2)

where t1 and t2 are two tokens. After finding the log group with the
largest simSeq, we compare it with a predefined similarity threshold
st. If simSeq ≥ st, Drain returns the group as the most suitable log
group. Otherwise, Drain returns a flag (e.g., None in Python) to
indicate no suitable log group.

5.2.6 Step 5: Update the Parse Tree

If a suitable log group is returned in step 4, Drain will add the log ID
of the current log message to the log IDs in the returned log group.
Besides, the log event in the returned log group will be updated.
Specifically, Drain scans the tokens in the same position of the log

CHAPTER 5. ONLINE LOG PARSING 103

Root

Length: 3

Send

Log Event: Send block 44

Log IDs: [1]

Root

Length: 3

Receive

*

Send

block block

Log Event: Send block 44

Log IDs: [1]

Log Event: Receive 120 bytes

Log IDs: [2]

Figure 5.2: Parse Tree Update Example (depth = 4)

message and the log event. If the two tokens are the same, we do not
modify the token in that token position. Otherwise, we update the
token in that token position by wildcard (i.e., *) in the log event.

If Drain cannot find a suitable log group, it creates a new log
group based on the current log message, where log IDs contains
only the ID of the log message and log event is exactly the log
message. Then, Drain will update the parse tree with the new log
group. Intuitively, Drain traverses from the root node to a leaf node
that should contain the new log group, and adds the missing internal
nodes and leaf node accordingly along the path. For example,
assume the current parse tree is the tree in the left-hand side of
Figure 5.2, and a new log message “Receive 120 bytes” arrives.
Then Drain will update the parse tree to the right-hand side tree
in Figure 5.2. Note that the new internal node in the 3-rd layer is
encoded as “*” because the token “120” contains digits.

CHAPTER 5. ONLINE LOG PARSING 104

5.3 Evaluation

5.3.1 Experimental Settings

Log Data Sets

The log data sets used in our evaluation are summarized in Table
5.1. These five real-world data sets range from supercomputer logs
(BGL and HPC) to distributed system logs (HDFS and Zookeeper)
to standalone software logs (Proxifier). Companies rarely release
their log data to the public, because it may violates confidential
clauses. We obtained three log data sets from other researchers with
their generous support. Specifically, BGL is a log data set collected
by Lawrence Livermore National Labs (LLNL) from BlueGene/L
supercomputer system [73]. HPC logs are collected from a high
performance cluster, which has 49 nodes with 6,152 cores and
128GB memory per node [57]. HDFS is a log data set collected from
a 203-node cluster on Amazon EC2 platform in [94]. We also collect
two log data sets for evaluation. One is collected from Zookeeper
installed on a 32-node cluster in our lab. The other are logs of a
standalone software Proxifier.

Table 5.1: Summary of Log Data Sets
System Description #Log Messages Log Message Length #Events

BlueGene/L
Supercomputer

High Performance
Cluster

(Los Alamos)
HDFS Hadoop File System 11,175,629 8~29 29

Distributed
System Coordinator

Proxifier Proxy Client 10,108 10~27 8

80

376

HPC 433,490 6~104 105

BGL 10~1024,747,963

Zookeeper 74,380 8~27

CHAPTER 5. ONLINE LOG PARSING 105

Comparison

To prove the effectiveness of Drain, we compare its performance
with four existing log parsing methods in terms of accuracy, effi-
ciency and effectiveness on subsequent log mining tasks. Specifi-
cally, two of them are offline log parsers, and the other two are online
log parsers. The ideas of these log parsers are briefly introduced as
following:

• LKE [35]: This is an offline log parsing method developed
by Microsoft. It employs hierarchical clustering and heuristic
rules.

• IPLoM [64]: IPLoM conducts a three-step hierarchical parti-
tioning before template generation in an offline manner.

• SHISO [69]: In this online parser, a tree with predefined
number of children in each node is used to guide log group
searching.

• Spell [31]: This method uses longest common sequence to
search log group in an online manner. It accelerates the
searching process by subsequence matching and prefix tree.

Evaluation Metric and Experimental Setup

We use F-measure [66, 9], which is a typical evaluation metric
for clustering algorithms, to evaluate the accuracy of log parsing
methods. The definition of accuracy is as the following.

Accuracy =
2 ∗ Precision ∗Recall
Precision+Recall

, (5.3)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
, (5.4)

CHAPTER 5. ONLINE LOG PARSING 106

Table 5.2: Parameter Setting of Drain
BGL HPC HDFS Zookeeper Proxifier

depth 3 4 3 3 4
st 0.3 0.4 0.5 0.3 0.3

where a true positive (TP) decision assigns two log messages with
the same log event to the same log group; a false positive (FP)
decision assigns two log messages with different log events to the
same log group; and a false negative (FN) decision assigns two
log messages with the same log event to different log groups. This
evaluation metric is also used in our previous study [39] on existing
log parsers.

We run all experiments on a Linux server with Intel Xeon E5-
2670v2 CPU and 128GB DDR3 1600 RAM, running 64-bit Ubuntu
14.04.2 with Linux kernel 3.16.0. We run each experiment 10
times to avoid bias. For the preprocessing step of Drain (step 1),
we remove obvious parameters in log messages (i.e., IP addresses
in HPC&Zookeeper&HDFS, core IDs in BGL, and block IDs in
HDFS). The parameter setting of Drain is shown in Table 5.2.
Besides, we empirically set maxChild to 100 for all experiments.
The number of children of a tree node rarely exceeds maxChild,
because the encoded rules in the parse tree can already distribute
the logs evenly to different paths. We also re-tune the parameters
of other log parsers to optimize their performance, which is not
presented here because of the space limit. We put them in our
released source code [14] for further reference.

5.3.2 Accuracy of Drain

Accuracy demonstrates how well a log parser matches raw log
messages with the correct log events. Accuracy is important be-
cause parsing errors can degrade the performance of subsequent log
mining task. Intuitively, an offline log parsing method could obtain
higher accuracy compared with an online one, because an offline

CHAPTER 5. ONLINE LOG PARSING 107

Table 5.3: Parsing Accuracy of Log Parsing Methods
BGL HPC HDFS Zookeeper Proxifier

LKE 0.67 0.17 0.57 0.78 0.85
IPLoM 0.99 0.65 0.99 0.99 0.85

SHISO 0.87 0.53 0.93 0.68 0.85
Spell 0.98 0.82 0.87 0.99 0.87
Drain 0.99 0.84 0.99 0.99 0.84

Offline Log Parsers

Online Log Parsers

method enjoys all raw log messages at the beginning of parsing,
while an online method adjusts its parsing model gradually in the
parsing process.

In this section, we evaluate the accuracy of two offline and two
online log parsing methods on the data sets described in Table 5.1.
The evaluation results are in Table 5.3. LKE fails to handle the data
sets except Proxifier, because its O(n2) time complexity makes it
too slow for the other data sets. Thus, for the other four data sets,
as with the existing work [39, 85], we evaluate LKE’s accuracy on
sample data sets with 2k log messages randomly extracted from the
original ones, while all parsers are evaluated on the 2k sample data
sets in our previous paper [39].

We observe that the proposed online parsing method, namely
Drain, obtains the best accuracy on four data sets, even compared
with the offline log parsing methods. For data set Proxifier, Drain
also has comparable accuracy (i.e., 0.84) to Spell, which obtains the
highest accuracy (i.e., 0.87) on this data set. LKE is not that good on
some data sets, because it employs an aggressive clustering strategy,
which can lead to under-partitioning. IPLoM obtains high accuracy
on most data sets because of its specially-designed heuristic rules.
SHISO uses the similarity of characters in log messages to search the
corresponding log events. This strategy is too coarse-grained, which
causes inaccuracy. Spell is accurate, but its strategy only based
on longest common subsequence can lead to under-partitioning.
Drain has the overall best accuracy for three reasons. First, it

CHAPTER 5. ONLINE LOG PARSING 108

Table 5.4: Running Time (Sec) of Log Parsing Methods
BGL HPC HDFS Zookeeper Proxifier

LKE N/A N/A N/A N/A 8888.49
IPLoM 140.57 12.74 333.03 2.17 0.38

SHISO 10964.55 582.14 6649.23 87.61 8.41
Spell 447.14 47.28 676.45 5.27 0.87
Drain 115.96 8.76 325.7 1.81 0.27

Improvement 74.07% 81.47% 51.85% 65.65% 68.97%

Offline Log Parsers

Online Log Parsers

compounds both the log message length and the first few tokens,
which are effective and specially-designed rules, to construct the
fixed depth tree. Second, Drain only uses tokens that do not contain
digits to guide the searching process, which effectively avoids over-
partitioning. Third, the tunable tree depth and similar threshold st
allows users to conduct fine-grained tuning on different data sets.

5.3.3 Efficiency of Drain

To evaluate the efficiency of Drain, we measure the running time
of it and four existing log parsers on five real-world log data sets
described in Table 5.1. In Table 5.4, we demonstrate the running
time of these log parsers. LKE fails to handle four data sets in
reasonable time (i.e., days or weeks), so we mark the corresponding
results as not available.

Considering online parsing methods, SHISO takes too much
time on some data sets (e.g., takes more than 3h on BGL). This is
mainly because SHISO only limits the number of children for its tree
nodes, which can cause very deep parse tree. Spell obtains better
efficiency performance, because it employs a prefix tree structure
to store all log events found, which greatly reduces its running
time. However, Spell does not restrict the depth of its prefix tree
either, and it calculates the longest common subsequence between
two log messages, which is time consuming. Compared with the
existing online parsing methods, our proposed Drain requires the

CHAPTER 5. ONLINE LOG PARSING 109

least running time on all five data sets. Specifically, Drain only
needs 2 min to parse 4m BGL log messages and 6 min to parse 10m
HDFS log messages. Drain greatly improves the running time of
existing online parsing methods. The improvements on the five real-
world data sets are at least 51.85%, and it reduce 81.47% running
time on HPC. Drain also outperforms the existing offline log parsing
methods. It requires less running time than IPLoM on all five data
sets. Moreover, as an online log parsing method, Drain is not limited
by the memory of a single computer, which is the bottleneck of most
offline log parsing methods. For example, IPLoM needs to load all
log messages into computer memory, and it will construct extra data
structures of comparable size in runtime. Thus, although IPLoM is
efficient too, it may fail to handle large-scale log data. Drain is not
limited by the memory of single computer, because it processes the
log messages one by one.

Table 5.5: Log Size of Sample Datasets for Efficiency Experiments
BGL 400 4k 40k 400k 4m
HPC 600 3k 15k 75k 375k

HDFS 1k 10k 100k 1m 10m
Zookeeper 4k 8k 16k 32k 64k
Proxifier 600 1200 2400 4800 9600

Because log size of modern systems is rapidly increasing, a log
parsing method is expected to handle large-scale log data. Thus,
to simulate the increasing of log size, we also measure the running
time of these log parsers on 25 sampled log data sets with varying
log size (i.e., number of log messages) as described in Table 5.5.
The log messages in these sampled data sets are randomly extracted
from the real-world data sets in Table 5.1.

The evaluation results are illustrated in Figure 5.3, which is in
logarithmic scale. In this figure, we observe that, compared with
other methods, the running time of LKE raises faster as the log size
increases. Because the time complexity of LKE is O(n2), and the
time complexity of other methods is O(n), while n is the number

CHAPTER 5. ONLINE LOG PARSING 110

of log messages. IPLoM is comparable to Drain, but it requires
substantial amounts of memory as explained above. Online parsing
methods (i.e., SHISO, Spell, Drain) process log message one by
one, and they all use a parse tree to accelerate the log event search
process. Drain is faster than others because of two main reasons.
First, Drain enjoys linear time complexity. The time complexity
of Drain is O((d + cm)n), where d is the depth of the parse
tree, c is the number of candidate log groups in the leaf node, m
is the log message length, and n is the number of log messages.
Obviously, d and m are constants. c can also be regarded as a
constant, because the quantity of candidate log groups in each leaf
node is nearly the same, and the number of log groups is far less
than that of log messages. Thus, the time complexity of Drain
is O(n). For SHISO and Spell, the depth of the parse tree could
increase during the parsing process. Second, we use the specially-
designed simSeq to calculate the similarity between a log message
and a log event candidate. Its time complexity is O(m1 + m2),
while m1 and m2 are number of tokens in them respectively. In
Drain, m1 = m2. By comparison, SHISO and Spell calculate the
longest common subsequence between two sequences, whose time
complexity is O(m1m2).

5.3.4 Effectiveness of Drain on Real-World Anomaly Detection
Task

In previous sections, we demonstrate the superiority of Drain in
terms of accuracy and efficiency. Although high accuracy is nec-
essary for log parsing methods, it does not guarantee good perfor-
mance in the subsequent log mining task. For example, because log
mining could be sensitive to some critical events, little parsing error
may cause an order of magnitude performance degradation in log
mining [39]. To evaluate the effectiveness of Drain on subsequent
log mining tasks, we conduct a case study on a real-world anomaly

CHAPTER 5. ONLINE LOG PARSING 111

400 4k 40k 400k 4m
Log Size of Sample Datasets from BGL

10-2
10-1
100
101
102
103
104
105

Ti
m

e
(S

ec
)

LKE IPLoM SHISO Spell Drain

400 4k 40k 400k 4m
BGL

10-2
10-1
100
101
102
103
104
105

Ti
m

e
(S

ec
)

600 3k 15k 75k 375k
HPC

10-2
10-1
100
101
102
103
104
105

Ti
m

e
(S

ec
)

1k 10k 100k 1m 10m
HDFS

10-2

10-1

100

101

102

103

104

Ti
m

e
(S

ec
)

4k 8k 16k 32k 64k
Zookeeper

10-1

100

101

102

103

104

105

Ti
m

e
(S

ec
)

600 1200 2400 4800 9600
Proxifier

10-2

10-1

100

101

102

103

104

Ti
m

e
(S

ec
)

Figure 5.3: Running Time of Log Parsing Methods on Data Sets in Different Size

CHAPTER 5. ONLINE LOG PARSING 112

detection task.
We use the HDFS log data set in this case study. Specifically, raw

log messages in the HDFS data set [94] records system operations
on 575,061 HDFS blocks with a total of 29 log event types. Among
these blocks, 16,838 are manually labeled as anomalies by the
original authors. In the original paper [94], the authors employ
Principal Component Analysis (PCA) to detect these anomalies.
Next, we will briefly introduce the anomaly detection workflow,
including log parsing and log mining. In log parsing step, all the
raw log messages are parsed into structured log messages. Each
structured log message contains the corresponding HDFS block ID
and a log event. A source code-based log parsing method is used
in the original paper, which is not discussed here because source
code is inaccessible in many cases (e.g., in third party libraries). In
log mining, we first use the structured log messages to generate an
event count matrix, where each row represents an HDFS block; each
column represents a log event type; each cell counts the occurrence
of an event on a certain HDFS block. Then we use TF-IDF [80] to
preprocess the event count matrix. Intuitively, TF-IDF gives lower
weights to common event types, which are less likely to contribute
to the anomaly detection process. Finally, the event count matrix is
fed into PCA, which automatically marks the blocks as normal or
abnormal.

In our case study, we evaluate the performance of the anomaly
detection task with different log parsing methods used in the parsing
step. Specifically, we use different log parsing methods to parse the
HDFS raw log messages respectively and, hence, we obtain different
sets of structured log messages. For example, an HDFS block ID
could match with different log events by using different log parsing
methods. Then, we generate different event count matrices, and fed
them into PCA, respectively.

The experimental results are shown in Table 5.6. In this table,
reported anomaly is the number of anomalies reported by the PCA

CHAPTER 5. ONLINE LOG PARSING 113

s

Table 5.6: Anomaly Detection with Different Log Parsing Methods (16,838 True
Anomalies)

Parsing Reported Detected False
Accuracy Anomaly Anomaly Alarm

IPLoM 0.99 10,998 10,720 (63%) 278 (2.5%)
SHISO 0.93 13,050 11,143 (66%) 1,907 (14.6%)
Spell 0.87 10,949 10,674 (63%) 275 (2.5%)
Drain 0.99 10,998 10,720 (63%) 278 (2.5%)

Ground truth 1.00 11,473 11,195 (66%) 278 (2.4%)

model; detected anomaly is the number of true anomalies reported;
false alarm is the number of wrongly reported ones. We use
four existing log parsing methods to handle the parsing step of this
anomaly detection task. We do not use LKE because it cannot handle
this large amount of data. Ground truth is the experiment using
exactly correct parsed results.

We can observe that Drain obtains nearly the optimal anomaly
detection performance. It detects 10, 720 true anomalies with only
278 false alarms. Although 37% of anomalies have not been
detected, it is caused by the log mining step. Because even when
all the log messages are correctly parsed, the log mining model
still leaves 34% of anomalies at large. Note that although IPLoM
demonstrates the same anomaly detection performance as Drain,
their parsing results are different. We also observe that SHISO,
although has a high parsing accuracy (0.93), does not perform well
in this anomaly detection task. By using SHISO, we would report
1, 907 false alarms, which are 6 times worse than others. This will
largely increase the workload of developers, because they usually
need to manually check the anomalies reported. Among the online
parsing methods, Drain not only has the highest parsing accuracy
as demonstrated in Section 5.3.2, but also obtains nearly optimal
performance in the anomaly detection case study.

CHAPTER 5. ONLINE LOG PARSING 114

5.4 Summary

This paper proposes an online log parsing method, namely Drain,
that parses raw log messages in a streaming manner. Drain adopts
a fixed depth parse tree to accelerate the log group search process,
which encodes specially designed rules in its tree nodes. To evaluate
the effectiveness of Drain, we conduct experiments on five real-
world log data sets. The experimental results show that Drain greatly
outperforms existing online log parsers in terms of accuracy and
efficiency. Drain even obtains better performance than the state-
of-the-art offline log parsers, which are limited by the memory of
a single computer. Besides, we conduct a case study on a real-
world anomaly detection task, which demonstrates the effectiveness
of Drain on log analysis tasks.

2 End of chapter.

Chapter 6

Prioritizing Operational Issues via
Hierarchical Log Clustering

It is error-prone and inefficient for system operators to manually
handle a large number of operational issues every day. To alle-
viate the burden of operators and improve the efficiency of issues
handling, we design an issues prioritization framework based on
hierarchical log clustering. The key point is that similar opera-
tional issues have similar accompanied log sequences. The main
points of this chapter are as follows. (1) It designs an operational
issues prioritization framework, namely POI, based on hierarchical
log clustering. (2) It proposes a novel weighting method Inverse
Cardinality (IC). (3) It conducts experiments on a real-world dataset
to demonstrate the effectiveness of POI.

6.1 Introduction

Modern systems are becoming increasingly large-scale and com-
plex, especially distributed systems. Different from traditional
systems, distributed systems inevitably encounter failures (e.g., node
failure). However, distributed systems often run on a 24× 7 basis to
serve millions of users globally, which highlights the importance of
reliability assurance. To enhance system reliability, one important
task for developers (or operators) is to handle the user-reported

115

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 116

operational issues efficiently.
An operational issue is a system problem reported by a user.

For example, when a user of Amazon EC2 [1] finds that her node
becomes extremely slow, she will report the node slowness as an
issue to Amazon. Typically, a reported issue contains user infor-
mation, system configuration, a log sequence at runtime, etc. To
handle an operational issue, developers mainly inspect the runtime
log sequence to understand the system events that cause the issue.
Specifically, a log sequence is a list of log messages that records
various system events. Based on the log sequence, developers will
identify the system problem, and finally address the problem.

However, as the distributed systems become increasingly large-
scale and complex, the volume of the accompanied logs grows
rapidly as well; for example, it generates at a rate of approximately
50 GB/h (120∼200 million lines) [68]. Thus, traditional operational
issue handling methods based on manual inspection become pro-
hibitive and error-prone. Moreover, not all log messages are useful,
because log messages are printed by logging statements written in
development time. Therefore, most of the log messages record
normal system runtime status, which increases the difficulty of the
manual method. This problem is compounded by the fact that the
number of issues reported in modern distributed systems is large.
Operators may need to handle tons of operational issues every day.
Last but not least, because of the complexity of distributed systems,
operational issues are highly diverse. Intuitively, operators need to
handle the issues that affect more users first, which is hard to achieve
using traditional methods. Thus, an automated operational issue
handling method is highly in demand.

To address this problem, in this chapter, we propose an auto-
mated operational issue prioritization framework, namely POI. POI
clusters all the issues into different issue groups, and prioritize the
issue groups based on the number of issues inside. Thus, compared
with traditional methods, the superiority of POI is two-fold. First,

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 117

with POI, developers only need to inspect several issue groups
instead of tons of issues. Second, developers can focus on the
issue groups with high priority, which guides them to resolve the
problems affecting many users first. This is useful for distributed
systems, which serve millions of users and need to avoid non-trivial
downtime.

We notice that, although the number of operational issues is large,
many of them are similar or even redundant issues, where similar
issues often share similar log sequences. Thus, it is possible to
cluster the similar issues into a group based on the accompanied log
sequences. Specifically, POI contains a coarse-grained clustering
step and a fine-grained clustering step. Besides, to calibrate the
weights of different log events, we design a weighting method In-
verse Cardinality (IC), which is employed in both clustering steps of
POI. We evaluate POI on a real-world dataset collected on Hadoop
Distributed File System (HDFS) [24], which contains 11,175,629
log messages and 16,838 issues. The experimental results show
that POI achieves the highest F-measure [66, 9] and the best issue
coverage. Thus, POI demonstrates its superiority to improve the
efficiency of issue handling via operational issue prioritization.

In summary, this chapter makes the following contributions:

• We design an operational issue handling framework, namely
POI, based on hierarchical log clustering, including a coarse-
grained clustering and a fine-grained clustering.

• We propose a novel weighting method Inverse Cardinality (IC),
which is inspired by the popular weighting method TF-IDF
[80] in texting mining.

• Experiments have been conducted on a real-world dataset. POI
achieves the highest F-measure and the best issue coverage
compared with the existing methods.

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 118

6.2 POI Framework

In this section, we introduce the POI framework in detail, which is
illustrated by Fig. 6.1. We first introduce the input of our framework
with an example. Then we explain the four stages of the POI
framework in difference subsections, including log parsing, vector
generating, log clustering, and issue prioritization.

6.2.1 Raw Logs

Raw logs are log messages printed by logging statements during sys-
tem runtime. Logs are widely employed by developers in reliability
assurance tasks, because they are often the only data available for
post-mortem analysis. When an operational issue is reported by a
user, the related raw logs will be collected and sent to developers
along with the issue. Traditionally, developers identify the problem
hidden behind the issue mainly by inspecting the accompanied raw
logs. Thus, the input of POI is also the accompanied logs. Note that
we do not directly solve the problem hidden by our POI framework.
We think the problem-solving stage still remains in developers’
hand. POI aims at the reduction of human inspection effort on log
messages. POI will present several issue clusters to developers and
assign different priorities. Thus, developers can inspect a few issues
from different issue groups and start with the one with the highest
priority.

6.2.2 Log Parsing

Raw log messages collected with operational issues from the users
are usually unstructured, because developers are allowed to write
free-text log messages in source codes. Specifically, a typical raw
log message (e.g., in Fig. 6.2) contains timestamp (records the
occurring time of an event), verbosity level (indicate the severity
level of an event, e.g., INFO), and raw message content (free-

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 119

Issues

Log
Parsing

Raw Logs

Vector
Generating

Structured
Logs

Log
Clustering

Event Count
Vectors

Issue
Prioritization

Issue Groups

Prioritized
Issue
Groups

Figure 6.1: Overview of Our Approach

text description of a service operation). Log event type, which is
illustrated in green color in Fig. 6.2 explains what system operation
a specific raw log message refers to. To automatically analyze logs,
we have to figure out the log event type first from the unstructured
raw logs. We use the open-source log parsing toolkit provided
by He et al. [39] to extract log event type. We use this toolkit
because it only requires raw logs as input. After parsing, each
raw log message will be transformed into the log event type and
corresponding interested fields. For example, if developers want to
know the log event type and corresponding block ID for the raw
log message in Fig. 6.2, the resulted structured log message will be
“blk 1847751055431572519 Receiving block src: dest:”.

6.2.3 Vector Generating

After parsing raw log messages into structured log events, we need
to further transform them into numerical vectors, which are the input
of our hierarchical clustering step. To do so, we first slice structured
logs into a set of log sequences by a specific field, for example, the

081109 204020 339 INFO dfs.DataNode$DataXceiver:
Receiving block blk_1847751055431572519 src:
/10.251.126.227:39104 dest: /10.251.126.227:50010

Figure 6.2: A Raw Log Message of Hadoop File System (HDFS)

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 120

block ID in the structured log message generated from Fig. 6.2.
Each log sequence records the system operations of an operational
issue. Then for each log sequence, we generate an event count
vector, where each element is the occurrence number of a specific
log event.

6.2.4 Log Clustering

After vectorization, we have numerical vectors, each of which is the
event count vector of a log sequence related to an operational issue.
In this step, we cluster these event count vectors into different groups
by two clustering process: clustering by log event appearance and
clustering by event count. The first clustering is a coarse-grained
procedure, which separates the event count vectors into different
groups based on the appearance of log events. The second clustering
is performed on the results of the first clustering. For each group
produced by the first cluster, POI conducts fine-grained clustering
based on the event count numbers of different log events. At the
end of this step, POI generates different groups of event count
vectors, where each group represents a specific operational issue.
This step is the core technical part of our POI approach, which will
be introduced in detail in the following sections (Section 6.3.2 and
6.3.3).

6.2.5 Issue Prioritization

In this step, we have operational issue groups. The groups will be
sorted by the number of operational issues (i.e., event count vectors)
inside, because developers should fix the issues that affect more
users first. Then the sorted operational issue groups together with
the corresponding logs will be returned to the developers. With
the sorted groups, the developers can easily inspect different kinds
of operational issues instead of manually checking tons of raw log
messages.

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 121

6.3 Methodology

In this section, we introduce the log clustering stage in Fig. 6.1.
POP’s clustering stage contains two clustering step: clustering by
log event appearance and clustering by log event count. First,
we will introduce our proposed novel weighting method Inverse
Cardinality (IC). Then, we will introduce these two steps in detail
in the next two subsections.

6.3.1 Inverse Cardinality

Calculate Cardinality

Directly clustering vectors may cause errors, because some log
events are useless. Typically, such log events often appear in various
system running cases. These log events do not carry much critical
information. For example, a ReceivingBlock() function may print
a log message saying “A package from * received”. Then any
outer code that calls this function will trigger this logging statement,
which makes it appears in various system running cases. However,
these kinds of log events rarely carry information that helps us
separate different operational issues. On the contrary, they can cause
errors, especially false negatives, which puts log sequences with the
same operational issue into different groups. To avoid these errors,
we define ECard as following to remove some potentially useless
log events:

ECard(j) = |{Ai,j : 0 < i ≤ n}| (6.1)

where Ai,j is the value of the j-th element in the i-th event count
vector, n is the number of event count vectors. The ECard(j) is
the cardinality of the set formed by j-th element values of all event
count vectors.

To figure out the importance of different log events, we design a
Inverse Cardinality (IC) weighting technique as following:

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 122

1 3 0 3 0 1

2 3 0 4 0 1

3 1 0 2 0 3

4 1 0 5 0 2

5 0 1 0 1 1
Event Count Matrix

Column ECard

1 3
2 2
3 5
4 2
5 3

1 3 0 0 1

2 3 0 0 1

3 1 0 0 3

4 1 0 0 2

5 0 1 1 1

1 1 0 0 1

2 1 0 0 1

3 1 0 0 1

4 1 0 0 1

5 0 1 1 1

1 1 0 0 1

2 1 0 0 1

3 1 0 0 1

4 1 0 0 1

 (2) Remove
Useless Columns

Event Count Matrix Event Appearance Matrix

(3) Get
Event Appearance

Matrix

5 0 1 1 1

 Candidate Group 1

 Candidate Group 2

Clustering Results

Figure 6.3: An Example of Clustering by Log Event Appearance

IC(j) =

{
log(2) if ECard(j) = 1

log(n
ECard(j) + 1) else

where IC(j) is the weight for column j, n is the number of rows
in this matrix (i.e., number of operational issues in the issue groups).
WhenECard(j) = 1, all the values in the j-th column are the same,
so the j-th column is not helpful in the clustering process. Thus
we give it a low weight. Besides, we use log(2) instead of log(1)
because log(1) may lead to null vectors in the weighted event count
matrix, which do not carry any information. When ECard(j) 6= 0,
the larger the ECard(j), the smaller the IC(j). This aligns with
our intuition that the log event appears in more use cases is less
important.

6.3.2 Clustering by Log Event Appearance

The “Log Clustering” step of POI includes a coarse-grained cluster-
ing and a fine-grained clustering. In this section, we will introduce
the coarse-grained clustering: clustering by log event appearance,
which is illustrated by Fig. 6.3. For the matrices in Fig. 6.3,

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 123

each row represents a vector related to an operational issue, while
a column represents a log event.

Remove Useless Columns

We define removeThred as a log event removing threshold, which
can be tuned by developers. IfECard(j) > rmoveThred, then POI
will remove the j-th column of the event count matrix. For example,
in Fig. 6.3, removeThred = 4, so the third column, whose ECard
is 5, will be removed by POI.

Get Event Appearance Matrix

Similar operational issues will go through similar program paths
in system runtime, and therefore will trigger similar logging state-
ments. Thus, the non-zero columns of their event count vector
should be similar. Besides, for an operational issue, its signature
can be the appearance of one single log event. That means when
a developer spots that particular log event in the log sequence of
an operational issue, the developer can already put the operational
issue in a specific issue group. Based on these two intuitions, we
focus on the event appearance in this substep. We get the event
appearance matrix from the event count matrix by changing the non-
zero elements to 1, which is described in Fig. 6.3.

Clustering

Now we have an event appearance matrix. We calculate the cosine
similarity between any two d-dimensional event appearance vectors
aaa and bbb as following:

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 124

Similarity(aaa, bbb) =
aaa · bbb
||aaa||||bbb||

=

∑d
i=1 aibi√∑d

i=1 a
2
i

√∑d
i=1 b

2
i

(6.2)

Having calculated the similarity between any two event appear-
ance vectors, we employ Agglomerative Hierarchical Clustering
[36] to cluster the event appearance vectors into different groups.
Agglomerative hierarchical clustering regards every single vector as
a group at the beginning. Then it iteratively merges the nearest two
groups until the distance between the two nearest groups is larger
than a distance threshold maxD. Complete linkage is employed
to calculate the distance between two groups, which is the distance
between two vectors in the two groups respectively that are farthest
away from each other. We use complete linkage because we want
the resulted groups compact. At the end of this coarse-grained
clustering step, the operational issues have been clustered into
several groups according to their event appearance vectors. We call
these groups candidate groups. In Fig. 6.3, we have two candidate
groups.

6.3.3 Clustering by Log Event Count

After the coarse-grained clustering, event count vectors have been
clustered into candidate groups, where each contains operational
issues having similar log event appearance. However, different
operational issues may have the same event appearance vectors. To
separate these operational issues, we need to conduct a fine-grained
clustering on the candidate groups generated by the coarse-grained
clustering. In this section, these groups will be further separated into
final operational issue groups by the log event counts. The overview
of this clustering step is illustrated by Fig. 6.4.

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 125

Column ECard

1 2
2 1
3 1
4 3

1 1 0 0 1

2 1 0 0 1

3 1 0 0 1

4 1 0 0 1

(1) Get
Event Count

Matrix 5 0 1 1 1

 Candidate Group 1

 Candidate Group 2

1 3 0 0 1

2 3 0 0 1

3 1 0 0 3

4 1 0 0 2
Event Count Matrix

(2) Calculate
ECard

1 3.27 0.00 0.00 0.84

2 3.27 0.00 0.00 0.84

3 1.09 0.00 0.00 2.52

4 1.09 0.00 0.00 1.68
Weighted Event Count Matrix

Column IC

1.09 (log(4
2

+ 1))

0.69 (log(2))
0.69 (log (2))

0.84 (log(4
3

+ 1))

1

2
3

4

(3) Calculate IC

(4) Get
Weighted Event

Count Matrix

(5) Clustering

1 3 0 3 0 1

2 3 0 4 0 1

3 1 0 2 0 2

4 1 0 5 0 2

5 0 1 0 1 0

Final Issue Groups

1, 2

3, 4

Clustering Results

(6) Get Original Event Count Vectors

(6) Get
Original

Event
Count

Vectors

Figure 6.4: An Example of Clustering by Log Event Count

Get Event Count Matrix

Currently, we have several candidate groups. For flexibility, POI
allows developers to manually set a threshold fineThred to control
the candidate groups that will go through this clustering step.
Specifically, if the number of operational issues in a candidate group
is larger than fineThred, this group will be further separated in
this clustering step; otherwise, this group will be regarded as a
final group. For example, in Fig. 6.4, we set fineThred = 1,
so candidate group 1 is further separated while candidate group 2
is regarded as a final group. For a candidate group that will be
separated, we get the corresponding event count vectors for the event
appearance vectors inside the group. These event count vectors form
a event count matrix. Note that the columns removed in the coarse-
grained clustering step will not be employed in this fine-grained
clustering step, neither.

Calculate Inverse Cardinality (IC)

Directly clustering the event count matrix treats all the log events
equally. However, in practice, some log events are more important

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 126

than others when clustering operational issues. As discussed before,
the log event (i.e., column) with larger cardinality indicates that it
appears in more system runtime cases. Similarly, log event with
small cardinality indicates that it appears in few system runtime
cases. For example, if the cardinality of a log event is 2 and the
possible values are 0 and 1, then probably the log event only appears
in an anomalous case.

Get Weighted Event Count Matrix

After calculating the weight for each column of the event count
matrix, we can transform the event count matrix into a weighted
event count matrix. Specifically, we times each element in column j
by IC(J).

Clustering

After getting the weighted event count matrix, we compute the
cosine similarity (Eq. 6.2) between any two weighted event count
vectors. Then we use agglomerative hierarchical clustering to
separate the vectors in a candidate group into several final groups.
For example, in Fig. 6.4, the candidate group 1 is separated into two
groups.

Get Original Vectors

Finally, for each final issue group, we get the original event count
vector before log event removing and weighting. We also get the
corresponding raw log messages and match them with the event
count vectors (not in Fig. 6.4 for simplicity). Then all the final issue
groups will be output and passed to the Issue Prioritization step in
Fig. 6.1.

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 127

6.4 Evaluation

In this section, we conduct experiments to evaluate the effectiveness
of our proposed POI method. First, the experiment settings are
explained, including dataset, comparison methods, and experiment
environment. Then, we use two evaluation metrics for evaluation.
First, we evaluate the clustering effect of POI via F-measure [9],
because the core technique of POI is hierarchical log clustering.
Second, we evaluate the coverage ability of POI, where the higher
the coverage ability, the less issue inspection effort needed.

6.4.1 Experiment Settings

Log dataset. In the experiments, we use the HDFS logs from
[94] that have well-established system anomaly class labels, which
can be regarded as different operational issues in practice. The
labels are made based on domain knowledge, which are suitable
for our evaluations on prioritizing operational issues. Specifically,
the dataset records anomalous system operations on 16,838 HDFS
blocks (i.e., 16,838 issues) with a total of 26 anomaly types. Each
anomalous HDFS block has exactly one anomaly type, which we use
as ground truth in our evaluation. Our goal is to cluster the issues
with the same anomalous label into the same group.

Comparison. To prove the effectiveness of POI, we compare
it with three representative methods in terms of clustering perfor-
mance and issue coverage. The ideas of these methods are briefly
introduced as follows:

• Random: In this method, we randomly present a subset of
reported issues to developers without prioritization effort. We
regard this method as the baseline method.

• Exactsame: In this method, issues with the exact same event
count vector will be clustered into the same issue group.

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 128

• LogCluster [56]: LogCluster is the state-of-the-art log-based
method that clusters event count vectors into different groups
by hierarchical clustering. It employs IDF (Inverse Document
Frequency) and occurrence in normal issues to weight the log
events. In the experiments, we do not consider the occurrence
in normal issues because it is only used to spot the difference
between log sequences in lab and production environment,
which is not the focus of this paper.

Experimental Setup. We run all experiments on a Linux server
with Intel Xeon E5-2670v2 CPU and 128GB DDR3 1600 RAM,
running 64- bit Ubuntu 14.04.2 with Linux kernel 3.16.0. For the
Random method, we run each related experiment 10 times and use
their average results to avoid bias. For other methods, we run each
related experiment once because they are deterministic.

6.4.2 Evaluation of Clustering Algorithm

Evaluation Metric

We use F-measure (i.e., F1 Score) [9, 66], a commonly-used eval-
uation metric for clustering algorithms, to evaluate the accuracy of
Dedup. The definition is as the following.

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(6.3)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
(6.4)

Recall =
TP

TP + FN
(6.5)

where a true positive (TP) decision assigns two log sequences with
the same issue type to the same group; a false positive (FP) decision
assigns two log sequences with different issue types to the same

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 129

Precision Recall F-measure
Exactsame 1 0.6461 0.7850
LogCluster 0.9559 0.7049 0.8115

POI 0.8904 0.8969 0.8936

Figure 6.5: Evalution of Clustering Ability

group; and a false negative (FN) decision assigns two log sequences
with the same issue type to different log groups. If the log sequences
are under-partitioning, the precision will be low because it leads to
more false positives. If a method over-partitions the log sequences,
its recall will decrease because it has more false negatives. Thus, we
use F-measure, which is the harmonic mean of precision and recall,
to represent parsing accuracy.

Results

The experimental results are illustrated in Fig. 6.5. We do not
evaluate the F-measure of the random method because it is not a
clustering-based method. The random method indicates an opera-
tional issue handling strategy that the developer randomly choose
the next issue from all the candidates. Besides, both LogCluster
and POI have some parameters. We use a brute-force method to
find the parameter that demonstrates the highest F-measure value.
For example, LogCluster needs a distance threshold to control the
maximum cosine similarity among different clusters. Since the
range of cosine similarity is [0, 1], we run LogCluster with the
distance threshold value from 0 to 1, with step size 0.05.

We observe that POI achieves the highest F-measure (i.e., 0.8936)
compared with the state-of-the-art methods, which demonstrate the
superiority of POI’s clustering algorithm. On one hand, we notice
that the precision of Exactsame and LogCluster is slightly higher
than POI. This means that, compared with existing methods, POI

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 130

tends to cluster issues with different issue type into the same group.
On the other hand, we observe that the recall of POI is much higher
than that of Exactsame and LogCluster. This means that the existing
methods will separate issue with the same issue type into different
issue groups, causing unnecessary groups. Thus, although the
precision of existing methods is slightly higher, they may generate
too many unnecessary groups that lead to more human inspection
effort. Since our main goal is to alleviate the burden of developers,
we believe that our method not only achieves the best F-measure,
but is also more practical compared with the others. We will further
evaluate its practicability in next section.

6.4.3 Evaluation of Coverage Ability

The goal of POI is to alleviate the burden of developers on oper-
ational issues handling. Thus, the fewer log sequences developers
need to inspect, the better the prioritization method is. Typical
prioritization methods present a list of issue groups to developers
ordered by the number of issues inside. Then developers inspect
the most important issue group first. When the current issue group
is resolved, developers will head to the next issue group in the list.
Thus, assume that there are n operational issue types and N issues,
the best prioritization technique will generate n issue groups, where
each group contains issues with the same issue type. With the best
prioritization technique, developers can handle all the N issues by
inspecting the n issue groups. We call it perfect coverage, which
means that the groups can cover all the issues. In the contrary, an
imperfect prioritization technique could either generate too many
issue groups (low recall), or lead to more than one issue types in one
issue group (low precision). To better evaluate the coverage ability
of different prioritization techniques, we draw a coverage ability
curve, as in Fig. 6.6.

We evaluate the coverage ability of POI and other three methods

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 131

POI LogCluster Exactsame Random

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6: Coverage Ability Curve of Different Methods

on the same dataset as in the last section. The results are illustrated
by Fig. 6.6. In this figure, the four lines represent the four
prioritization methods. The x-coordinate represents the number of
issues inspected by developers, while the y-coordinate represents the
coverage ratio. For example, assume that we have n issue types, a
method can cover 1

2n issue types after inspecting 10 issues. Then for
this method, we should draw a point at (10, 0.5). For each method,
we draw 45 points. To calculate the issue types that the prioritization
result covers, we go through all the resulted issue groups. We regard
the majority issues in an issue group as the issue type of that group.
For example, if a group contains 100 issues, while 80 issues are issue
type A, then we think this group covers issue A.

Specifically, both POI and LogCluster have parameters. Different
parameter settings will lead to different prioritization performance.

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 132

To draw the coverage figure, we use different parameter settings,
which generates different clustering results. For example, if we use
0.05 as the maximum distance threshold used in both clustering step
of POI, then POI will cluster all the issues into 99 groups, while
these groups cover 21 issue types. Given that the dataset contains 26
issue types, the coverage ratio is 21÷ 26 = 0.81, which is a point in
the figure.

Exactsame does not have parameters. For this dataset, it will
generate 423 issue groups. To draw the coverage line for Exactsame,
we start from the largest issue group, and find out the issue type of
this group, and generate the first point (1, 1

26). Then we find out
the issue type of the second issue group. If the issue type has been
covered before (i.e., the same as the first issue group), the second
point will be (2, 1

26). Otherwise, the second point will be (2, 2
26).

Following this rule, we generate 423 points for our datasets. Then
we select 45 points for clarity and simplicity in Fig. 6.6. For method
Random, we randomly select 423 points and use the same drawing
rule to generate 423 points. Then similar to drawing Exactsame line,
we select 45 points as in Fig. 6.6.

For POI and LogCluster, varying the parameter settings cannot
generate points with arbitrary x-values, because the number of gen-
erated issue groups (i.e., x-value) are decided by both the parameters
and the algorithm. For clarity, we also draw points by the rules
employed by Exactsame and Random.

As illustrated by Fig. 6.6, POI’s coverage ratio is higher than
the other three methods given the same x-value. POI can cover
nearly all issues by 170 issue groups, while LogCluster needs 349
issue groups, Exactsame needs 422 issue groups, and Random needs
much more. These demonstrate the effectiveness of POI on reducing
human effort.

LogCluster also has good coverage ability. However, as we
show in Section 6.4.2, the recall of LogCluster is low, which means
LogCluster generates unnecessary issue groups. Thus, developers

CHAPTER 6. PRIORITIZING OPERATIONAL ISSUES 133

tend to find that the issue type of current issue group has been
identified in prior groups. Compared with LogCluster, Exactsame
achieves higher precision but very low recall. Thus, Exactsame
generates more unnecessary groups. The random line rises quickly
at the beginning, but slows down at around 50. This is because
without any prioritization method, random selection can easily
encounter redundant issues, which wastes human effort.

Besides, POI, LogCluster, and Exactsame all achieve coverage
ratio 1 after developer inspecting 423 issues. This observation shows
that an issue type in our dataset can be easily neglected by methods
except for Exactsame and Random, because the amount of issues
with that issue type is small and their log sequences are similar to
some issues with different issue type.

6.5 Summary

In this chapter, we propose an operational issue prioritization frame-
work POI. Specifically, POI contains a coarse-grained log clustering
and a fine-grained log clustering. Besides, to better calibrate the
weights of event count matrix, we design a novel weighting method
Inverse Cardinality. Extensive experiments have been conducted on
a real-world dataset with 16,838 issues. The experimental results
demonstrated the effectiveness of our framework.

2 End of chapter.

Chapter 7

Location-Based Web Services QoS
Prediction via Historical QoS Logs

In service-oriented development, developers need to employ the
most suitable Web services based on QoS values (e.g., response
time). Most of these values are predicted by QoS values recorded by
limited historical QoS logs. We design a location-based QoS pre-
diction method that applies a novel hierarchical matrix factorization
(HMF) model on historical QoS logs. The main points of this chap-
ter are as follows. (1) It designs a hierarchical matrix factorization
(HMF) model to predict QoS values via limited historical QoS logs.
(2) It leverages location information of both developers and services
in our model. (3) It conducts extensive experiments to demonstrate
the effectiveness of HMF.

7.1 Introduction

Nowadays, more and more Web services designed by different or-
ganizations emerge on the Internet, providing a variety of function-
alities. These Web services are widely employed as components in
complex distributed systems, which greatly reduce software devel-
opment time. But during the developing process, the developer will
often find out a lot of functionally-equivalent Web services due to the
fact that the number of Web services is experiencing a rapid growth.

134

CHAPTER 7. QOS PREDICTION 135

Consequently, Web service recommendation [103, 96] is recognized
as an effective solution to assist developers in determining the most
suitable candidate services.

To facilitate effective Web service recommendation, the quality
of candidate services needs to be assessed from non-functional
properties. Quality-of-Service (QoS) is a group of attributes (e.g.,
response time, throughput, reputation, etc.) that are usually em-
ployed to characterize the non-functional properties of Web ser-
vices [26, 87, 59]. In principle, during Web service recommenda-
tion, services with similar functionalities are compared with each
other automatically based on their QoS properties. Then the most
suitable Web services in terms of user-defined QoS requirements
can be recommended to the user. As a result, the user can just select
from a small list of Web services returned by the recommendation
system instead of struggling in all candidate services.

However, in practice, it is not easy to obtain the QoS values of
all the candidate services, due to the following three reasons: 1)
The QoS values need to be assessed from point of view of users
(i.e., developers), because different users may perceive different
QoS values. 2) Each user usually just invokes a handful of Web
services. Thus developers only have limited historical QoS logs.
3) It is time-consuming and resource-consuming to assess all the
QoS values by invoking candidate services one by one, due to the
large number of users and services. The QoS values of Web services
observed by different users can be represented as a user-service
matrix, whose rows represent users, columns represent services and
entries are observed QoS values. But there are many missing values
in the user-service matrix. To address this problem, QoS prediction
is proposed to get approximated QoS values for those missing values
in the user-service matrix.

Matrix factorization (MF) is a model-based collaborative filtering
method, which has been used to make QoS prediction and widely
studied in recent years. As other model-based collaborative fil-

CHAPTER 7. QOS PREDICTION 136

User

Service

In-region Invocation

Location Region

Cross-region Invocation

Figure 7.1: Web Services Invocation Scenario

tering methods do, matrix factorization trains a model according
to historical invocation records and uses patents found to predict
QoS values for the missing values in the user-item matrix. In
matrix factorization, we suppose that user-perceived QoS values
are determined by a few latent features. These latent features
(e.g. network bandwidth, I/O operations, firewalls) not only affect
users, but also have impact on the service side. Thus, the user-
service matrix is approximated by two low-rank matrices, which
represent the influence of latent features on users as well as services,
respectively. Matrix factorization achieves good performance in
traditional recommendation systems (e.g. movie recommendation
systems) where entries in matrix are user-given ratings on different
items (e.g. movies). Because each existing entity in that matrix
is rated by a specific user, which is subjective, it can reflect the
user’s preference on an item. However, in Web service context, user-
perceived QoS values of services are largely affected by physical
factors. Location is such a key factor. For example, users and
services in close locations tend to have small response time values.
In Fig. 7.1, we have users and services which are in three location
regions. Among all invocations, corresponding QoS values (e.g.

CHAPTER 7. QOS PREDICTION 137

response time values) of invocations in the same location region
are more likely to have higher similarity (they tend to be small)
compared with those cross-region ones.

To make use of the location information and improve the perfor-
mance of our model, we propose a hierarchical matrix factorization
method to predict QoS values for the unobserved user-service pairs.
We firstly make use of clustering methods to separate users and
services into several user-service groups according to their location.
After that, QoS values of these users and services are represented
as local user-service matrices. Different from global matrix which
contains all users and services, local matrices only contain users and
services in the same location region (same as cluster in this chapter).
A simple way to utilize location information is to only conduct
matrix factorization on local matrices and simply put together their
prediction results. However, it will degrade the prediction perfor-
mance because we don’t use any information of global matrix at all.
To utilize both global and local information, our model performs
matrix factorization on local matrices and global matrix sequentially
in each approximation step. This model is run in a hierarchical way
that in each approximation step, we linearly combine the predicted
results of both global matrix and local matrices. Finally, based on
the integrated predicted results, services with the best QoS values
are recommended to corresponding users.

The main contributions of this chapter are as follows:

• We design a hierarchical matrix factorization (HMF) model to
predict QoS values via limited historical QoS logs.

• HMF leverages location information of both developers and
services in our model.

• Extensive experiments have been conducted, which demon-
strates the effectiveness of our proposed HMF model.

CHAPTER 7. QOS PREDICTION 138

2. Clustering Based on Location

1. Form Global User-service Matrix

. . .User-service

Group 1

User-service

Group 2

Local

MF 1

User-service

Group K

Local

MF 2

Local

MF K
. . .

Local Information

Global Matrix Factorization

4. QoS Recommendation

3. Hierarchical Matrix Factorization

Figure 7.2: Framework of Hierarchical Web Service Recommendation System

7.2 Framework of Web Service Recommendation

As we mentioned in Section 7.1, nowadays developers tend to utilize
existing Web services provided by third parties to build complex dis-
tributed systems. An important issue for them is to choose the most
suitable services among all functionally-equivalent ones without
invoking all service candidates by themselves. Our recommendation
system acts as a platform for these users to share their historical
invocation records and obtain believable service recommendation
according to their non-functional needs. The overview of our QoS-
based hierarchical Web service recommendation system is shown in

CHAPTER 7. QOS PREDICTION 139

TU

S 0.8 0.7 0.8 0.5 0.5

0.7 1.1 0.9 0.6 0.5

1.0 0.7 0.9 0.5 0.6

0.3 0.2 0.2 0.1 0.2

1u

2u

3u

4u

1s 2s 3s 4s 5s
0.6 0.4

0.1 1.0

0.8 0.3

0.2 0.1

1.0 0.5 0.8 0.4 0.6

0.6 1.0 0.8 0.6 0.4

0.4 1.0 0.3 0.8

0.6 0.9 0.5 0.8

0.8 1.4 0.7 0.5

0.9 1.7 0.7 0.9

()k TU kS

1

ku

2

ku

1

ks 2

ks
3

ks
4

ks

0.8 0.8 0.8 0.5 0.5

0.7 1.1 0.9 0.6 0.5

1.0 1.0 0.9 0.5 0.7

0.3 0.2 0.2 0.1 0.2

1u

2u

3u

4u

1s 2s 3s 4s 5s

Global Matrix

Local Matrix k

R

globalR

k

localR

0.5 1.0

1.0 0.8

Figure 7.3: An Example of QoS Prediction by Hierarchical Matrix Factorization
(α = 0.8)

Fig. 7.2, which includes these main steps:

1. We collect and formalize existing information of users and ser-
vices, including their IP address, longitude, latitude, invocation
records shared by them, to name a few. Then all existing Web
service invocation records will be used to form a global user-
service matrix. Due to the fact that most of the users only called
a few Web services before, the global matrix is very sparse.

2. In this step, we utilize longitude and latitude information to
map users as well as services into a 2-dimensional space. Then
we cluster all user nodes and service nodes into several user-
service groups according to their coordinates in that space. In
our method, each group contains both users and services, which
coincides with the idea to make use of the location of users and
services at the same time. After clustering, users, services and
their corresponding invocation records in each group can be
used to form a local user-service matrix.

3. The above-mentioned steps can be viewed as preprocessing
steps, whose outcomes are one global matrix and several local
matrices. Then our hierarchical matrix factorization model is
used to predict missing values. In each approximation step,
we firstly perform matrix factorization on all local matrices.

CHAPTER 7. QOS PREDICTION 140

After local matrix factorization, we obtain approximate QoS
values for local matrices, which are referred to local infor-
mation in Fig. 7.2. Then we calculate QoS values in global
matrix. Instead of using only the product of user feature vectors
and service feature vectors like traditional matrix factorization
methods, for QoS values between users and services in user-
service groups, we linearly combine predicted result of global
matrix factorization and local matrix factorization to obtain
the final prediction. User feature vectors and service feature
vectors are columns of low-rank matrices used to perform QoS
prediction during matrix factorization.

4. Now, all unobserved entries in the global matrix are predicted
by our hierarchical matrix factorization model. Thus, our
system is ready to recommend the services with the most
suitable non-functional properties to all users in our system
based on predicted results. For example, if an existing user,
who is the i-th one in our global matrix, wants to find out a Web
service with least response time among functionally-equivalent
candidates. We just need to take out the i-th row from the
global matrix, which can be regarded as a 1-dimensional vector.
The service with the smallest numeric value in this vector will
be recommended to that user.

7.3 Hierarchical Matrix Factorization

7.3.1 Overview

Our hierarchical matrix factorization consists of two main steps,
which are clustering step and prediction step (modeling step). In
clustering step (SubSection 7.3.2), users and services are clustered
into different user-service groups according to their location infor-
mation. In prediction step, our model is trained hierarchically on his-
torical invocation records. There are two procedures in each training

CHAPTER 7. QOS PREDICTION 141

iteration, which are local matrix factorization (SubSection 7.3.3)
and global matrix factorization (SubSection 7.3.4). Local matrix
factorization will be done first and the result of it is used by global
matrix factorization in each iteration.

To explain the “hierarchical” concept clearly, a straightaway
example is given in Fig. 7.3. In this example, we assume there is
one local matrix for simplicity, which means one user-service group
is found by k-means. The calculation of Local Matrix k (Rk

local =
(Uk)TSk) is local matrix factorization, while the remaining part of
this figure is global matrix factorization. In global matrix factoriza-
tion, the product of two low-rank matrices UT and S is calculated at
first, which is Global Matrix in Fig. 7.3. Then we combine Global
Matrix and Local Matrix k to obtain the hierarchical prediction in
this iteration, which is the rightmost matrix in this figure. uk1, uk2 in
Local Matrix k and u1, u3 in Global Matrix are actually the same
users, respectively. sk1,sk2,sk3 and sk4 are corresponding services in
Local Matrix k to s1, s2, s4 and s5 in Global Matrix. Blocks in matrix
containing QoS values between users and services which are both in
the user-service group are marked as grey background, while the
remaining ones are white. In the following, we will focus on block
(u3, s5) in the rightmost matrix. To predict the QoS value R(3, 5)
inside, we calculate in this way:

R(3, 5) = 0.8×Rglobal(3, 5) + (1− 0.8)×Rk
local(2, 4) (7.1)

where Rglobal(3, 5) is the QoS value of (u3, s5) in Global Matrix
and Rk

local(2, 4) is the QoS value of (uk2, s
k
4) in Local Matrix k. The

impact of parameter α will be discussed in Section 7.4.4.

7.3.2 Users and Services Clustering

Location is used in our hierarchical matrix factorization method to
improve prediction accuracy because of these following reasons: (1)
Location information, which is represented by longitude and latitude

CHAPTER 7. QOS PREDICTION 142

in this paper, is an attribute that owned by every user and service. (2)
Longitude and latitude of all users as well as services can be crawled
on the Internet. (3) In Web service context, location does carry
valuable information because geographically-close nodes tend to
share similar network infrastructure, which to an extent affects QoS
values such as response time. Although users and services located
in close places may employ different network configurations, which
also affect QoS values to varying degrees, it has been observed that
this distinction has much less influence than the location informa-
tion [58]. Because matrix factorization performs better on matrix
with smaller variance, users and services are clustered into some
user-services groups according to their longitude and latitude, which
form local matrices in our method.

Since longitude and latitude information is selected to cluster
user nodes and service nodes, now the problem is how to cluster
2-dimensional points into different groups. We chose k-means to
cluster nodes in this problem because it is fast and tends to form
globular clusters, which fits our locational similarity concept well.
One big problem of k-means algorithm is that the clustering effect
is closely related to the choice of initial mean points. However, in
this problem, since user nodes as well as service nodes are all 2-
dimensional, it is convenient for us to visualize all the points and
predefine suitable initial mean points. After clustering, we may
find out some clusters in which the number of users or services is
very limited (close to or even less than the number of latent features
we set in our model). This phenomenon often exists because of
the geographical maldistribution of users or services in real-world
datasets. Users and services belong to those clusters are defined
as outliers. For these outliers, we do not consider them in local
matrix factorization, but they will be used in the global matrix
factorization step. Because too few users or services do not carry
enough information to train the local matrix factorization model
well, which leads to inaccurate prediction results.

CHAPTER 7. QOS PREDICTION 143

7.3.3 Local Matrix Factorization

We employ traditional matrix factorization to perform prediction for
all local user-service matrices. In local matrix factorization, each
local user-service matrix is predicted by two low-rank matrices Uk

and Sk, whose sizes are d×mk and d×nk, where mk is the number
of users, nk is the number of services and d is the number of latent
features in our model. For matrix Uk or Sk, columns represent how
much corresponding latent features will affect QoS values on user
side or service side. Missing QoS values in local user-service matrix
k are predicted by minimizing the following formula:

Lk=
1

2

mk∑
i=1

nk∑
j=1

Ikij(R
k
ij − (Uk

i)
TSkj)

2

+
λku
2
‖Uk‖2F +

λks
2
‖Sk‖2F (7.2)

where Ikij indicates whether QoS value on service j observed by
user i in local matrix k is missing. If it is missing, Ikij will be 0,
otherwise, its value is 1. Rk

ij means the available QoS value that
user i experienced on service j in local matrix k. The rest two terms
are regularization terms that help us get rid of overfitting issues.

To get a local minimum of the objective function in Equ. 7.2, we
apply the gradient descent algorithm on both Uk

i and Skj :

(Uk
i)
′ ← Uk

i − ηku
∂Lk
∂Uk

i

(7.3)

(Skj)
′ ← Skj − ηks

∂Lk
∂Skj

(7.4)

where ∂Lk

∂Uk
i

and ∂Lk

∂Sk
j

are calculated by:

CHAPTER 7. QOS PREDICTION 144

∂Lk
∂Uk

i

=

nk∑
j=1

Ikij((U
k
i)
TSkj −Rk

ij)(S
k
j) + λkuU

k
i (7.5)

∂Lk
∂Skj

=

mk∑
i=1

Ikij((U
k
i)
TSkj −Rk

ij)((U
k
i)
T) + λksS

k
j (7.6)

We set λku = λks in all experiments to reduce the complexity of
our model.

7.3.4 Global Matrix Factorization

As mentioned in Section 7.1, matrix factorization predicts all miss-
ing values by minimizing the error between prediction results and
historical QoS records. In traditional matrix factorization, location
information is not taken into consideration, which to some extent
degrades the performance of the model. But we observed that
the global user-service matrix can actually be regarded as several
user-service groups, where users and services are located in similar
places, and remainders which are geographically far apart from
those groups. Thus, we cluster users and services into user-service
groups according to longitude and latitude, each of which contains
QoS values with small variance that benefits the performance of
matrix factorization. An extreme idea to utilize knowledge given
by local matrices is to only apply matrix factorization model on
those user-service groups independently, which will make fully use
of local information but lead to the loss of global structure. Thus, to
consider both global and local information, it is natural to predict
QoS values by the linear combination of matrix factorization on
global matrix as well as local matrices. Hence, the following term is
designed:

αUT
i Sj + (1− α)R̂k

ij (7.7)

CHAPTER 7. QOS PREDICTION 145

where UT
i and Sj represent global user feature vector and global

service feature vector respectively. R̂k
ij is calculated by (Uk

i)
TSkj ,

which are the corresponding local ones. Notice that although Ui and
Uk
i are related to the same user, the value of i is actually different

because the numbers of users in these two matrices are not equal.
We both use i here just for simplicity and clarity. It is also the case
for Sj and Skj . This term integrates the approximate values given by
global vectors and local vectors, which coincides with the idea to
utilize both global structure and local information at the same time.
α is a tunable parameter that indicates how much global information
we use in our hierarchical model. The value of α is related to the
dataset we use. This term will be integrated into traditional matrix
factorization to obtain our hierarchical model:

L= 1

2

m∑
i=1

n∑
j=1

Iij(Rij − (αUT
i Sj + (1− α)R̂k

ij))
2

+
λu
2
‖U‖2F +

λs
2
‖S‖2F (7.8)

Since some users and services do not belong to any user-service
groups, for those corresponding missing QoS values, we only use
global matrix factorization to perform prediction. To formalize this
concept, α is selected by:

α =

{
1 if ui or sj or both are not in any local groups
αk if ui and sj are both in local group k

(7.9)

Similar to local matrix factorization, we apply gradient descent to
approximate. User feature vectors and service feature vectors are
updated as following:

U ′i ← Ui − ηu
∂L
∂Ui

(7.10)

S ′j ← Sj − ηs
∂L
∂Sj

(7.11)

CHAPTER 7. QOS PREDICTION 146

where ∂L
∂Ui

and ∂L
∂Sj

are calculated by:

∂L
∂Ui

=
n∑
j=1

Iij(αU
T
i Sj + (1− α)R̂k

ij

−Rij)(αSj) + λuUi (7.12)

∂L
∂Sj

=
m∑
i=1

Iij(αU
T
i Sj + (1− α)R̂k

ij

−Rij)(αU
T
i) + λsSj (7.13)

In all experiments, we set λu = λs for simplicity.

7.4 Experiments

7.4.1 Dataset Description

A real-world dataset consisting of 339 users and 5,825 services is
used in all our experiments. This dataset contains much useful
information about users and services, including IP address of each
user, WSDL address of each service, users’ longitude as well as
latitude and so on. This dataset was introduced in detail in a related
paper [105]. However, longitude and latitude information of services
was not published. Thus we obtain their location information by an
iplocation service 1.

7.4.2 Metrics

We use Mean Absolute Error (MAE) and Normalized Mean Ab-
solute Error (NMAE) to measure the prediction accuracy of our
proposed model. The definition of MAE is:

MAE =

∑
ij

|Rij − R̂ij|

N
(7.14)

1http://www.iplocation.net/

CHAPTER 7. QOS PREDICTION 147

where Rij represents the observed QoS value between user i and
service j, while R̂ij denotes the QoS value predicted by our hierar-
chical matrix factorization model between the corresponding user-
service pair. N is the number of missing QoS values in the user-
service matrix. Different from MAE that calculate the absolute
average error, NMAE is the standard MAE normalized by the mean
of expected QoS values [103]:

NMAE =
MAE∑
ij

Rij/N
(7.15)

7.4.3 Comparison

To prove the effectiveness of our hierarchical matrix factorization
method, we ran extensive experiments on state-of-the-art QoS pre-
diction methods and compare our method with them. Here is a brief
introduction about those popular methods:

• UMEAN: UMEAN uses the mean of QoS values perceived by
a user on all services he/she called.

• IMEAN: In this method, we predict a QoS value by calculating
the mean of all existing historical records on that service
observed by different users.

• UPCC: This approach [82] utilize historical invocation records
of similar users to perform prediction.

• IPCC: The overall idea of this approach is the same with
UPCC, but instead of making use of similar users, it pays
attention to digging out some services alike. Then the QoS
values of similar services observed by the specific user are used
in prediction step.

• WSRec: This method [103] is the hybrid one that linearly
combines UPCC and IPCC, which takes advantage of both
similar users and similar services.

CHAPTER 7. QOS PREDICTION 148

Table 7.1: Parameters
Parameter Value
λu, λs 35
λ1u, λ1s 10
λ2u, λ2s 20

Dimensionality 10

Table 7.2: Value of α
Density 0.15 0.20 0.25 0.30

α 0.8 0.8 0.8 0.9

• PMF: This method is proposed by Mnih and Salakhutdi-
nov [70]. The product of two low-rank matrices is used as the
predicted user-service matrix.

• LBR2: Lo et al. [58] considered location of users and add a
related regularization term to PMF model.

Since the user-service matrix is sparse in real-world cases, we
randomly remove some historical records to make our experiments
more realistic. Then we will have some user-service matrices with
different densities. In our experiment, each QoS prediction method
is run on 4 different matrices, whose densities are 15%, 20%, 25%
and 30% respectively. A matrix with 20% density means that there
are 20% available user-service invocation records for us to regard
as training set, while the remaining 80% are ones waiting to be
predicted. K-means algorithm helps us separate all the users and
services into 5 user-service groups. After the check of the number
of users and services in each group, 3 groups are deleted because
there are too few users in them. As we mention in Section. 7.3, the
number of useful groups is significantly related to the distribution
of user nodes and service nodes as well as the number of nodes in
the dataset. The parameters we used in our experiment are listed
in Table. 7.1 and Table. 7.2. For the purpose of simplicity, we set
α1 = α2 in all our experiments, and α is used to represent for these

CHAPTER 7. QOS PREDICTION 149

Table 7.3: Performance Comparison (MAE)
Density Density Density Density

15% 20% 25% 30%
UMEAN 0.8767 0.8735 0.8740 0.8735
IMEAN 0.6823 0.6806 0.6781 0.6789
UPCC 0.5196 0.4911 0.4715 0.4574
IPCC 0.5244 0.4629 0.4389 0.4211

WSRec 0.4999 0.4530 0.4310 0.4147
PMF 0.4626 0.4420 0.4275 0.4173
LBR2 0.4596 0.4404 0.4242 0.4153
HMF 0.4547 0.4327 0.4171 0.4088

Methods

Table 7.4: Performance Comparison (NMAE)
Density Density Density Density

15% 20% 25% 30%
UMEAN 0.9650 0.9608 0.9604 0.9599
IMEAN 0.7512 0.7489 0.7453 0.7461
UPCC 0.5740 0.5368 0.5168 0.5019
IPCC 0.5753 0.5079 0.4814 0.4681

WSRec 0.5501 0.4961 0.4727 0.4593
PMF 0.5091 0.4865 0.4705 0.4595
LBR2 0.5060 0.4846 0.4667 0.4574
HMF 0.5006 0.4766 0.4589 0.4501

Methods

two.
Table 7.3 and Table 7.4 show us the MAE and NMAE of different

methods respectively on 4 matrices with density from 15% to
30%. The MAE and NMAE of all methods decrease as the matrix
density become larger, which means more information of users and
services will benefit the prediction performance. Besides, it is
obvious that the MAE and NMAE of our method are consistently
lower than others under all matrix density settings. That means
our method outperforms others under all circumstances. Thus,
performing matrix factorization hierarchically and making use of
geographical information really help us improve QoS prediction
model in prediction accuracy.

CHAPTER 7. QOS PREDICTION 150

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.456

0.46

0.464

0.468

0.472

0.476

M
A

E

α

(a) Density = 15%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.432

0.436

0.44

0.444

0.448

0.452

M
A

E

α

(b) Density = 20%

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.415

0.419

0.423

0.427

0.431

0.435

M
A

E

α

(c) Density = 25%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.408

0.41

0.412

0.414

0.416

0.418

0.42

0.422

M
A

E

α

(d) Density = 30%

Figure 7.4: Impact of α on MAE

7.4.4 Impact of α

In our hierarchical matrix factorization model, parameter α controls
how much local information we use in QoS prediction procedure. If
α is set to be 1, no local information is taken into consideration. If α
is 0, QoS values, whose corresponding users and services are in the
same user-service group, are predicted by local matrix factorization
independently without any information from global context. That is
to say, we only use historical invocation records of geographically-
close users and services to perform prediction. In a word, α is
utilized to keep a good balance between global context and local
information. To study the influence of α on our model and find an
optimal one, we tune density from 15% to 30%, with a step size 5%.

CHAPTER 7. QOS PREDICTION 151

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.504

0.508

0.512

0.516

0.52

0.524

N
M

A
E

α

(a) Density = 15%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.476

0.48

0.484

0.488

0.492

0.496

N
M

A
E

α

(b) Density = 20%

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.457

0.461

0.465

0.469

0.473

0.477

N
M

A
E

α

(c) Density = 25%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.45

0.452

0.454

0.456

0.458

0.46

0.462

0.464

N
M

A
E

α

(d) Density = 30%

Figure 7.5: Impact of α on NMAE

Fig. 7.4 and Fig. 7.5 show us, under 4 different matrix density
settings, the change of MAE and NMAE as the value of α varies
from 0.4 to 1.0. We can see that given matrix density 15%, 20% or
25%, both MAE and NMAE are the lowest when α is around 0.8.
That means our hierarchical matrix factorization model performs the
best when α = 0.8 for density 15%, 20% or 25%, while for density
30%, α = 0.9 is the most suitable choice.

In this paragraph, we will raise a discussion for the condition that
matrix density is 15%. We observe from the figure that when α is
0.4, both MAE and NMAE are high. As the value of α changes
from 0.4 to 0.8, MAE as well as NMAE drop down sharply at first
but become smoothly as α gets close to the optimal value. That
indicates too little global context usage harms the performance of

CHAPTER 7. QOS PREDICTION 152

1 5 10 15 20 25 30 35 40 45 50
0.41

0.45

0.49

0.53

0.57

0.61

M
A

E

Dimension

 α = 0.4
 α = 0.8

(a) Density = 15%

1 5 10 15 20 25 30 35 40 45 50

0.4

0.44

0.48

0.52

0.56

0.6

0.64

M
A

E

Dimension

 α = 0.4
 α = 0.8

(b) Density = 20%

1 5 10 15 20 25 30 35 40 45 50

0.4

0.44

0.48

0.52

0.56

0.6

0.64

M
A

E

Dimension

 α = 0.4
 α = 0.8

(c) Density = 25%

1 5 10 15 20 25 30 35 40 45 50

0.39

0.43

0.47

0.51

0.55

0.59

0.63

M
A

E

Dimension

 α = 0.4
 α = 0.9

(d) Density = 30%

Figure 7.6: Impact of Dimensionality on MAE

our model. Adding the impact of global context will highly increase
the prediction accuracy at the beginning, but the effect becomes
small when the model is near a balance between local information
and global context. We can also notice that when α is larger than
0.8, the MAE and NMAE get larger, which tells us that ignorance of
local information will lead to the degradation of performance. When
matrix density is 20%, 25% or 30%, the changing tendency and the
reason of the change is similar to what we have just discussed.

7.4.5 Impact of Dimensionality

In our proposed method, dimensionality means the number of latent
features that will affect the user-perceived QoS values on services. If

CHAPTER 7. QOS PREDICTION 153

1 5 10 15 20 25 30 35 40 45 50

0.49

0.53

0.57

0.61

0.65

0.69

N
M

A
E

Dimension

 α = 0.4
 α = 0.8

(a) Density = 15%

1 5 10 15 20 25 30 35 40 45 50

0.46

0.5

0.54

0.58

0.62

0.66

0.7

N
M

A
E

Dimension

 α = 0.4
 α = 0.8

(b) Density = 20%

1 5 10 15 20 25 30 35 40 45 50

0.45

0.5

0.55

0.6

0.65

0.7

N
M

A
E

Dimension

 α = 0.4
 α = 0.8

(c) Density = 25%

1 5 10 15 20 25 30 35 40 45 50

0.44

0.48

0.52

0.56

0.6

0.64

0.68

N
M

A
E

Dimension

 α = 0.4
 α = 0.9

(d) Density = 30%

Figure 7.7: Impact of Dimensionality on NMAE

this parameter is small, it indicates that only a few key latent features
determine QoS value. If dimensionality is set to be a large number, it
is assumed that there are many latent features contribute collectively
to the final prediction result. To study the impact of dimensionality
on our model we tune α = 0.4 and α = 0.8 for matrix density 15%,
20%, or 25%. When density is 30%, α was set to be 0.4 and 0.9.

Fig. 7.6 and Fig. 7.7 illustrate the impact of dimensionality on
MAE and NMAE of our model respectively. Both MAE and NMAE
are high at first and decrease rapidly as dimension increase. It
shows that only few latent features can not lead to a good prediction
result, so we can effectively improve the performance by raising the
dimensionality. However, the speed of decrease slows down as the
dimensionality goes up. When dimensionality exceeds a threshold,

CHAPTER 7. QOS PREDICTION 154

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

0.2

0.4

0.6

0.8

M
A

E

Matrix Density

dim = 10 dim = 30 dim = 50

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

0.2

0.4

0.6

0.8

1

N
M

A
E

Matrix Density

dim = 10 dim = 30 dim = 50

Figure 7.8: Impact of Matrix Density

MAE and NMAE even begin to increase little by little. These can be
explained by following two reasons: (1) If dimensionality is larger
than a threshold, our model comes across the overfitting problem,
which will degrade the performance. (2) The number of users as
well as services in our local user-service groups is smaller than that
of the global matrix. When making use of local information, an
oversize dimensionality will result in bad prediction performance.
Thus the overall prediction accuracy will be affected negatively.

CHAPTER 7. QOS PREDICTION 155

7.4.6 Impact of Matrix Density

In the problem context discussed in this paper, matrix density is
the ratio of the number of observed user-service invocation records
against the product of the number of users and services. It also
indicates how much available information we have to help us make
prediction. To study the effect of matrix density, we set α = 0.8.
Besides, we consider three different values of dimensionality, which
are 10, 30 and 50.

Fig. 7.8 shows us the corresponding MAE and NMAE of our
model from matrix density 2% to 20% with a step size 2%. The
figure illustrates that as the matrix density goes up, the MAE and
NMAE decrease rapidly at first. When matrix density becomes
larger, the speed of decrease slows down. That means, when
there are hardly any historical invocation records in the user-service
matrix, the best way to improve recommendation performance is to
motivate users to report more QoS values or try some services which
have not been called before. But when the number of invocation
records grows larger, it would be better to focus on improvement of
prediction model instead.

7.5 Summary

This chapter presents a new model-based collaborative filtering
method to predict missing QoS values via limited historical QoS
logs. Geographically-close users and services are clustered to
form groups, which makes up several small user-service matrices.
A hierarchical matrix factorization model is designed to integrate
global matrix factorization and local matrix factorization. Experi-
mental results show that our model outperforms the state-of-the-art
methods.

2 End of chapter.

Chapter 8

Conclusion and Future Work

In this chapter, we summarize the main contributions of this thesis
and provide several interesting future directions.

8.1 Conclusion

System reliability management is critical to modern systems. How-
ever, in many cases, traditional approaches relying on manual
inspection are impractical for modern systems, because modern
systems are often complex and large-scale, so the volume of runtime
data (e.g., system logs) is also large. In this thesis, we have
developed novel approaches to automatically handle runtime data of
modern systems, especially system logs, and further analyze these
data in system reliability management.

In particular, in Chapter 3, we conduct an evaluation study on
four representative log parsers in terms of accuracy, efficiency, and
effectiveness on subsequent log mining. Specifically, we evaluate
their accuracy and efficiency on five real-world log datasets with
more than 10 million log messages in total. We evaluate their
effectiveness on subsequent log mining on an HDFS dataset with
16,838 anomalies. Based on the evaluation results, we summarize
six insightful findings to guide the design of log parsers in future.
Moreover, we publicly release the implementation of all studied log

156

CHAPTER 8. CONCLUSION AND FUTURE WORK 157

parsers as a reusable toolkit.
In Chapter 4, we propose a parallel log parsing framework,

namely POP, to parse large-scale system logs for modern systems.
POP contains specially designed heuristic parsing rules and log
group clustering algorithm. We implement POP on top of Spark, a
large-scale data processing platform, with customized functions and
usage of Spark operations. POP outperforms existing log parsing
methods in terms of accuracy on all the five real-world log datasets.
Besides, POP is efficient, and it can parse 200 million HDFS log
messages in 7 mins. The source code of POP has been released for
reuse by researchers and practitioners.

In Chapter 5, we design an online log parsing method, namely
Drain, to parse system logs in a streaming manner. The core idea
of Drain is a fixed depth tree with specially designed heuristic
rules embedded. Drain can parse log messages online and update
its parsing rules dynamically. Drain achieves the highest parsing
accuracy compared with state-of-the-art online parsers. Besides, it
largely improves the efficiency of online parsers. The source code
of Drain has been made open-source for future reuse.

In Chapter 6, we propose an operational issues prioritization
framework, namely POI, to facilitate the operational issues handling
process. Specifically, we cluster issues into issue groups according
to corresponding log sequences, and prioritize them based on the
number of issues inside. Besides, we design a hierarchical log
clustering algorithm, which contains a coarse-grained clustering
and a fine-grained clustering. Extensive experiments have been
conducted on a real-world HDFS issue dataset. The experimental
results show that POI achieves the highest F-measure, and can cover
most issues with same manual effort.

In Chapter 7, we design a location-based hierarchical matrix
factorization method to predict QoS values via limited historical
QoS logs. Based on historical QoS logs, we generate a user-
service matrix, and employ our proposed location-based hierarchical

CHAPTER 8. CONCLUSION AND FUTURE WORK 158

matrix factorization to predict the missing values in the matrix.
Then, based on the predicted QoS values, developers can choose
the most suitable Web services easily. Extensive experiments have
been conducted, and the results show that our method outperforms
existing QoS prediction methods.

In summary, we design novel techniques to automatically pro-
cess and analyze system runtime data, especially system logs.
Specifically, our proposed technique aims at effective and efficient
system reliability management, including an evaluation study on log
parsers, a parallel log parser, an online log parser, an operational
issue prioritization method via log sequences, a location-based QoS
prediction method via QoS logs. Moreover, for ease of reproducing
our research results and to promote future research on related topics,
all implemented methods have been released publicly for reuse in
future.

8.2 Future Work

System reliability management via automatic runtime data analysis
has been widely studied in recent years, and it is a promising
research topic. Although we have proposed a number of novel
techniques that advance the state-of-the-art solutions, there are still
many interesting research directions which are considered as future
work.

What to Log

Logging statements are written by developers to enhance system
reliability. In this thesis, we propose a number of techniques to
assist developers in automated log analysis, including log parsing,
operational issues prioritization, and QoS prediction. However,
writing logging statements of high quality is also an important re-
search field in the first place. A logging statement mainly prints two

CHAPTER 8. CONCLUSION AND FUTURE WORK 159

parts: logging text and runtime variables. Logging text describes
the runtime system behaviors, which will be employed by both de-
velopers and automated log analysis algorithms. Elaborate logging
text can largely facilitate the reliability management process, while
immature text may mislead the developers and further slows down
the whole process.

Thus, Logging text writing is an important problem. However, it
is challenging because currently there is no rigorous specification,
and developers mainly design logging text based on domain knowl-
edge. Besides, modern systems have become large-scale and more
complex. The volume of generated runtime data, especially system
logs, increases rapidly. Logging text needs to be compact.

To address this issue, we plan to explore automated logging
text generation techniques. Logging text usually describes system
operations, which can be summarized with the understanding of the
coding block. Thus, we will manually inspect a number of coding
blocks containing logging statements. Then we will try to design
a specialized sequence-to-sequence model that is trained by coding
blocks extracted from existing open-source projects. Finally, the
trained model can be employed in development to automatically
generate logging text for developers.

Distributed and Parameter-Free Online Log Parsing

Existing log parsing methods mainly have two limitations. Firstly,
current online log parsing methods are designed for single machines,
such as Drain proposed in this thesis. This limitation makes
existing online log parsers inefficient when parsing large-scale logs
for modern systems. Secondly, existing online log parsers require
developers to tune model parameters, such as the maximum distance
between two log messages in the same group. However, a robust
online log parser is expected to dynamically re-tune its parameters.

Designing a distributed and parameter-free online log parser is
challenging. A practical distributed online parser needs to run

CHAPTER 8. CONCLUSION AND FUTURE WORK 160

normally at each node in the system, and it should synchronize with
all the parsers located in different nodes. Besides, existing methods
rely on developers to manually tune the parameters based on their
domain knowledge, because it is difficult to use simple and rigorous
rules that can handle various types of system logs.

In our future work, we will maintain a tree, similar to the
fixed depth tree in Drain, to guide the online parsing processing
in each node. Then, we will explore a method to coordinate all
the trees and synchronize them accurately and efficiently. Besides,
we will study the relationship between the parameters we use and
the characteristics of system logs. For example, the value of a
parameter may be linearly dependent on the number of log messages
in a log group. Finally, we plan to implement the distributed online
log parser on top of a popular distributed system, such as Hadoop
Distributed File System.

AI Software Performance Prediction

Recently, artificial intelligence (AI) techniques have been widely
employed in various research fields, and they are regarded as crucial
components in modern systems. Thus, these components based
on AI techniques are also known as AI services. More and more
industrial companies provide their AI techniques as services online
to facilitate their wide adoption, so the number of functionally
equivalent AI services grows rapidly. From a developer’s perspec-
tive, how to select the best AI service becomes an important yet
challenging problem.

For traditional service, developers can select the best service
according to QoS values (e.g., response time). However, when using
AI services, developers aim at employing the AI service that can
provide the most accurate results, for example, the highest f-measure
for classifiers. Besides, the number of instances (e.g., figures) for AI
task is large. Thus, it is difficult to directly predict the performance
of an AI service on a specific instance.

CHAPTER 8. CONCLUSION AND FUTURE WORK 161

To address this problem, we plan to study automated AI service
performance prediction technique based on limited historical AI ser-
vice invocation history. Specifically, for each AI service invocation,
we will generate a specially designed signature for the instance
submitted. Then, we will store the signature and its corresponding
AI service performance (e.g., accuracy). When a developer wants
to submit her dataset to the AI service, for each instance, we will
find the similar historical instances based on their signatures. Then
based on the similar instances and their AI service performance, our
algorithm will search the most suitable AI service for the instance.

2 End of chapter.

Appendix A

List of Publications

1. Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R.
Lyu. Towards Automated Log Parsing for Large-Scale Log
Data Analysis. IEEE Transactions on Dependable and Secure
Computing (TDSC), accepted.

2. Pinjia He. An End-to-end Log Management Framework for
Distributed Systems. The 36th International Symposium on
Reliable Distributed Systems (SRDS), 2017.

3. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. Online
QoS Prediction for Runtime Service Adaptation via Adaptive
Matrix Factorization. IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), Volume 28, Issue 10, 2017.

4. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. CARP:
Context-Aware Reliability Prediction of Black-Box Web Ser-
vices. The 24th International Conference on Web Service
(ICWS), 2017.

5. Pinjia He, Jieming Zhu, Zibin Zheng, Michael R. Lyu. Drain:
An Online Log Parsing Approach with Fixed Depth Tree. The
24th International Conference on Web Service (ICWS), 2017.

6. Jian Li, Pinjia He, Jieming Zhu, Michael R. Lyu. Software
Defect Prediction via Convolutional Neural Network. The

162

APPENDIX A. LIST OF PUBLICATIONS 163

International Conference on Software Quality, Reliability and
Security (QRS), 2017.

7. Shilin He, Jieming Zhu, Pinjia He Michael R. Lyu. Expe-
rience Report: System Log Analysis for Anomaly Detection
Factorization. The 27th International Symposium on Software
Reliability Engineering (ISSRE), 2016.

8. Pinjia He, Jieming Zhu, Shilin He, Jian Li, Michael R. Lyu.
An Evaluation Study on Log Parsing and Its Use in Log
Mining. The 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2016.

9. Cuiyun Gao, Baoxiang Wang, Pinjia He, Jieming Zhu, Yang-
fan Zhou, Michael R. Lyu. PAID: Prioritizing App Issues for
Developers by Tracking User Reviews Over Versions. The 26th
International Symposium on Software Reliability Engineering
(ISSRE), 2015.

10. Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R.
Lyu, Dongmei Zhang. Learning to Log: Helping Developers
Make Informed Logging Decisions. The 37th International
Conference on Software Engineering (ICSE), 2015.

11. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. A
Privacy-Preserving QoS Prediction Framework for Web Ser-
vice Recommendation. The 22nd International Conference on
Web Service (ICWS), 2015.

12. Pinjia He, Jieming Zhu, Zibin Zheng, Jianlong Xu, Michael
R. Lyu. Location-Based Hierarchical Matrix Factorization
for Web Service Recommendation. The 21st International
Conference on Web Service (ICWS), 2014.

13. Jieming Zhu, Pinjia He, Zibin Zheng, Michael R. Lyu. To-
wards Online, Accurate, and Scalable QoS Prediction for Run-

APPENDIX A. LIST OF PUBLICATIONS 164

time Service Adaptation. The 34th International Conference on
Distributed Computing Systems (ICDCS), 2014.

14. Tong Zhao, Junjie Hu, Pinjia He, Hang Fan, Michael R.
Lyu, Irwin King. Exploiting Homophily-based Implicit Social
Network to Improve Recommendation Performance. The Inter-
national Joint Conference on Neural Networks (IJCNN), 2014.

15. Pinjia He, Jieming Zhu, Jianlong Xu, Michael R. Lyu. A Hi-
erarchical Matrix Factorization Approach for Location-Based
Web Service QoS Prediction. The International Workshop on
Internet-based Virtual Computing Environment (iVCE), 2014.

2 End of chapter.

Bibliography

[1] Amazon ec2 https://aws.amazon.com/tw/ec2/.

[2] Apache hadoop http://hadoop.apache.org/.

[3] Drain source code http://appsrv.cse.cuhk.edu.hk/ pjhe/drain.py.

[4] Google cloud https://cloud.google.com/.

[5] https://venturebeat.com/2017/02/28/aws-is-investigating-s3-
issues-affecting-quora-slack-trello/.

[6] Microsoft azure https://azure.microsoft.com/.

[7] Slct - simple logfile clustering tool.
http://ristov.github.io/slct/.

[8] What is the best log analysis tool that you used?
http://stackoverflow.com/questions/154982/what-is-the-
best-log-analysis-tool-that-you-used, 2008.

[9] Evaluation of clustering http://nlp.stanford.edu/ir-
book/html/htmledition/evaluation-of-clustering-1.html,
2009.

[10] Is there a log file analyzer for log4j files?
http://stackoverflow.com/questions/2590251/is-there-a-
log-file-analyzer-for-log4j-files, 2010.

[11] Apache spark (http://spark.apache.org/), 2012.

165

BIBLIOGRAPHY 166

[12] Facebook loses $24,420 a minute during outages
(http://algerian–news.blogspot.hk/2014/10/facebook-loses-
24420-minute-during.html), 2014.

[13] The cost of downtime at the world’s biggest online re-
tailer (https://www.upguard.com/blog/the-cost-of-downtime-
at-the-worlds-biggest-online-retailer), 2016.

[14] https://github.com/logpai/logparser, 2017.

[15] https://spark.apache.org/docs/latest/configuration.html, 2017.

[16] http://www.edupristine.com/blog/hadoop-ecosystem-and-
components, 2017.

[17] Kibana. http://kibana.org, 2017.

[18] Logstash. http://logstash.net, 2017.

[19] Splunk. http://www.splunk.com, 2017.

[20] Towards automated log parsing for large-scale log data anal-
ysis (supplementary report), 2017.

[21] M. Alrifai and T. Risse. Combining global optimization with
local selection for efficient QoS-aware service composition.
In Proc. 18th Int’l Conf. World Wide Web (WWW’09), pages
881–890. ACM, 2009.

[22] S. Banerjee, H. Srikanth, and B. Cukic. Log-based reliability
analysis of software as a service (saas). In ISSRE’10.

[23] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and
M. Ernst. Leveraging existing instrumentation to automati-
cally infer invariant-constrained models. In ESEC/FSE’11,
2011.

[24] D. Borthakur. Hdfs architecture guide. Hadoop Project
Website, 2008.

BIBLIOGRAPHY 167

[25] S. Chen, Y. Liu, I. Gorton, and A. Liu. Performance pre-
diction of component-based applications. JSS’05: Journal of
Systems and Software, 74(1):35–43, 2005.

[26] X. Chen, Z. Zheng, X. Liu, Z. Huang, and H. Sun. Person-
alized qos-aware web service recommendation and visualiza-
tion. IEEE Transactions on Services Computing, 6(1):35–47,
2013.

[27] H. J. Cheng and A. Kumar. Process mining on noisy logs-
can log sanitization help to improve performance? Decision
Support Systems, 79:138–149, 2015.

[28] J. Cubo, N. Gamez, E. Pimentel, and L. Fuentes. Reconfigu-
ration of service failures in damasco using dynamic software
product lines. In SCC’15: Proc. of the 12nd International
Conference on Services Computing, pages 114–121, 2015.

[29] C. Di Martino, M. Cinque, and D. Cotroneo. Assessing time
coalescence techniques for the analysis of supercomputer
logs. In DSN’12, 2012.

[30] R. Ding, H. Zhou, J. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang,
and T. Xie. Log2: A cost-aware logging mechanism for
performance diagnosis. In ATC’15: Proc. of the USENIX
Annual Technical Conference, 2015.

[31] M. Du and F. Li. Spell: Streaming parsing of system event
logs. In ICDM’16 Proc. of the 16th International Conference
on Data Mining, 2016.

[32] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and
B. Hu. Everything as a service (xaas) on the cloud: origins,
current and future trends. In CLOUD’15: Proc. of the 8th
International Conference on Cloud Computing, pages 621–
628, 2015.

BIBLIOGRAPHY 168

[33] J. El Hadad, M. Manouvrier, and M. Rukoz. TQoS: Trans-
actional and QoS-aware selection algorithm for automatic
web service composition. IEEE Transactions on Services
Computing, 3(1):73–85, 2010.

[34] B. S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster
Analysis. Wiley, 5 edition, 2011.

[35] Q. Fu, J. Lou, Y. Wang, and J. Li. Execution anomaly
detection in distributed systems through unstructured log
analysis. In ICDM’09: Proc. of International Conference on
Data Mining, 2009.

[36] J. C. Gower and G. J. S. Ross. Minimum spanning trees and
single linkage cluster analysis. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 18:54–64, 1969.

[37] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu. Leaps:
Detecting camouflaged attacks with statistical learning guided
by program analysis. In DSN’15, 2015.

[38] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and
A. Mueen. Logmine: Fast pattern recognition for log an-
alytics. In CIKM’16 Proc. of the 25th ACM International
Conference on Information and Knowledge Management,
2016.

[39] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. An evaluation study
on log parsing and its use in log mining. In DSN’16: Proc.
of the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2016.

[40] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. Towards
automated log parsing for large-scale log data analysis. IEEE
Transactions on Dependable and Secure Computing, 2017,
accepted.

BIBLIOGRAPHY 169

[41] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An online log
parsing approach with fixed depth tree. In ICWS’17: Proc. of
the 24th International Conference on Web Services, 2017.

[42] S. He, J. Zhu, P. He, and M. Lyu. Experience report: System
log analysis for anomaly detection. In ISSRE’16: Proc.
of the 27th International Symposium on Software Reliability
Engineering, 2016.

[43] Y. Hong, J. Vaidya, H. Lu, P. Karras, and S. Goel. Collabo-
rative search log sanitization: Toward differential privacy and
boosted utility. IEEE Transactions on Dependable and Secure
Computing (TDSC), 12:504–518, 2015.

[44] A. F. Huang, C.-W. Lan, and S. J. Yang. An optimal QoS-
based web service selection scheme. Information Sciences,
179(19):3309–3322, 2009.

[45] L. Huang, X. Ke, K. Wong, and S. Mankovskii. Symptom-
based problem determination using log data abstraction. In
CASCON’10 Proc. of the Conference of the Center for Ad-
vanced Studies on Collaborative Research, pages 313–326,
2010.

[46] S. Y. Hwang, W. P. Liao, and C. H. Lee. Web services
selection in support of reliable web service choreography. In
ICWS’10: Proc. of the 17th International Conference on Web
Services, pages 115–122, 2010.

[47] Y. Jiang, C. Perng, and T. Li. Meta: Multi-resolution
framework for event summarization. In SDM’14: Proc. of
the SIAM International Conference on Data Mining, pages
605–613, 2014.

[48] Z. Jiang, A. Hassan, G. Hamann, and P. Flora. An automated
approach for abstracting execution logs to execution events.

BIBLIOGRAPHY 170

Journal of Software Maintenance and Evolution: Research
and Practice - Special Issue on Program Comprehension
through Dynamic Analysis (PCODA), 20:249–267, 2008.

[49] R. Jurca, B. Faltings, and W. Binder. Reliable qos monitoring
based on client feedback. In WWW’07: Proc. of the 16th
International Conference on World Wide Web, pages 1003–
1012, 2007.

[50] A. Kattepur, N. Georgantas, and V. Issarny. QoS composition
and analysis in reconfigurable web services choreographies.
In Proc. 20th Int’l Conf. Web Services (ICWS’13), pages 235–
242. IEEE, 2013.

[51] K. KC and X. Gu. Elt: Efficient log-based troubleshooting
system for cloud computing infrastructures. In SRDS’11
Proc. of the 30th IEEE International Symposium on Reliable
Distributed Systems, 2011.

[52] E. F. Krause. Taxicab Geometry. Dover Publications, Revised
edition, 1987.

[53] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-
wide traffic anomalies. In SIGCOMM’04: Proc. of the
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 219–230,
2004.

[54] D. Lang. Using SEC. USENIX ;login: Magazine, 38:38–43,
2013.

[55] J. Li, J. Cheng, Y. Zhao, F. Yang, Y. Huang, H. Chen,
and R. Zhao. A comparison of general-purpose distributed
systems for data processing. In International Conference on
Big Data, BigData, 2016.

BIBLIOGRAPHY 171

[56] Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen. Log cluster-
ing based problem identification for online service systems.
In ICSE’16: Proc. of the 38th International Conference on
Software Engineering, 2016.

[57] L. A. N. S. LLC. Operational data to support and enable
computer science research, 2007.

[58] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu. Collaborative web
service QoS prediction with location-based regularization. In
Proc. 19th Int’l Conf. Web Services (ICWS’12), pages 464–
471. IEEE, 2012.

[59] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu. An extended matrix
factorization approach for QoS prediction in service selection.
In Proc. 9th Int’l Conf. Services Computing (SCC’12), pages
162–169. IEEE, 2012.

[60] J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants
from console logs for system problem detection. In ATC’10:
Proc. of the USENIX Annual Technical Conference, 2010.

[61] D. Maier. The complexity of some problems on subsequences
and supersequences. Journal of the ACM (JACM), 25, 1978.

[62] A. Makanju, A. Zincir-Heywood, and E. Milios. Clustering
event logs using iterative partitioning. In KDD’09: Proc. of
International Conference on Knowledge Discovery and Data
Mining, 2009.

[63] A. Makanju, A. Zincir-Heywood, and E. Milios. Fast entropy
based alert detection in super computer logs. In DSN-W’10:
Proc. of International Conference on Dependable Systems
and Networks Workshops, pages 52–58, 2010.

[64] A. Makanju, A. Zincir-Heywood, and E. Milios. A
lightweight algorithm for message type extraction in system

BIBLIOGRAPHY 172

application logs. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 24:1921–1936, 2012.

[65] A. Makanju, A. Zincir-Heywood, and E. Milios. Investigating
event log analysis with minimum apriori information. In
IM’13: Prof. of International Symposium on Integrated Net-
work Management, pages 962–968, 2013.

[66] C. Manning, P. Raghavan, and H. Schutze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[67] S. Meng, Z. Zhou, T. Huang, D. Li, S. Wang, F. Fei, W. Wang,
and W. Dou. A temporal-aware hybrid collaborative recom-
mendation method for cloud service. In ICWS’16: Proc. of
the 23rd International Conference on Web Services, pages
252–259, 2016.

[68] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. Toward
fine-grained, unsupervised, scalable performance diagnosis
for production cloud computing systems. IEEE Transactions
on Parallel and Distributed Systems, 24:1245–1255, 2013.

[69] M. Mizutani. Incremental mining of system log format.
In SCC’13: Proc. of the 10th International Conference on
Services Computing, pages 595–602, 2013.

[70] A. Mnih and R. Salakhutdinov. Probabilistic matrix factoriza-
tion. In Advances in neural information processing systems,
pages 1257–1264, 2007.

[71] H. R. Motahari-Nezhad, R. Saint-Paul, B. Benatallah, and
F. Casati. Deriving protocol models from imperfect service
conversation logs. TKDE’08: IEEE Transactions on Knowl-
edge and Data Engineering, 20(12):1683–1698, 2008.

[72] K. Nagaraj, C. Killian, and J. Neville. structured comparative
analysis of systems logs to diagnose performance problems.

BIBLIOGRAPHY 173

In NSDI’12: Proc. of the 9th USENIX conference on Net-
worked Systems Design and Implementation, 2012.

[73] A. Oliner and J. Stearley. What supercomputers say: A study
of five system logs. In DSN’07, 2007.

[74] A. Oprea, Z. Li, T. Yen, S. Chin, and S. Alrwais. Dectection
of early-stage enterprise infection by mining large-scale log
data. In DSN’15, 2015.

[75] K. Pattabiraman, G. Saggese, D. Chen, Z. Kalbarczyk, and
R. Iyer. Automated derivation of application-specific error
detectors using dynamic analysis. IEEE Transactions on De-
pendable and Secure Computing (TDSC), 8:640–655, 2011.

[76] N. Poggi, V. Muthusamy, D. Carrera, and R. Khalaf. Business
process mining from e-commerce web logs. In Business
Process Management, pages 65–80. 2013.

[77] H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of
pca for traffic anomaly detection. In SIGMETRICS’07: Proc.
of International Conference on Measurement and Modeling
of Computer Systems, 2007.

[78] S. Ryza. How-to: Tune your apache spark jobs (part 2).
https://blog.cloudera.com/blog/2015/03/how-to-tune-your-
apache-spark-jobs-part-2/, 2015.

[79] F. Salfner, S. Tschirpke, and M. Malek. Comprehensive
logfiles for autonomic systems. In IPDPS’04: Proc. of
the 18th International Parallel and Distributed Processing
Symposium, 2004.

[80] G. Salton and C. Buckley. Term weighting approaches in
automatic text retrival. Technical report, Cornell, 1987.

BIBLIOGRAPHY 174

[81] W. Shang, Z. Jiang, H. Hemmati, B. Adams, A. Hassan, and
P. Martin. Assisting developers of big data analytics applica-
tions when deploying on hadoop clouds. In ICSE’13: Proc. of
the 35th International Conference on Software Engineering,
pages 402–411, 2013.

[82] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-
sonalized QoS prediction forweb services via collaborative
filtering. In Proc. 14th Int’l Conf. Web Services (ICWS’07),
pages 439–446. IEEE, 2007.

[83] M. Silic, G. Delac, and S. Srbljic. Prediction of atomic web
services reliability based on k-means clustering. In Proc.
9th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’13), pages 70–80. ACM, 2013.

[84] Y. Sun, H. Li, I. G. Councill, J. Huang, W. C. Lee, and C. L.
Giles. Personalized ranking for digital libraries based on log
analysis. In WIDM’08: Proc. of the 10th ACM workshop
on Web information and data management, pages 133–140,
2008.

[85] L. Tang, T. Li, and C. Perng. LogSig: generating system
events from raw textual logs. In CIKM’11: Proc. of ACM
International Conference on Information and Knowledge
Management, 2011.

[86] L. Tang, T. Li, L. Shang, F. Pinel, and G. Grabarnik. An
integrated framework for optimizing automatic monitoring
systems in large it infrastructures. In KDD’13: Proc. of
International Conference on Knowledge Discovery and Data
Mining, pages 1249–1257, 2013.

[87] M. Tang, Y. Jiang, J. Liu, and X. Liu. Location-aware collab-
orative filtering for QoS-based service recommendation. In

BIBLIOGRAPHY 175

Proc. 19th Int’l Conf. Web Services (ICWS’12), pages 202–
209. IEEE, 2012.

[88] R. Vaarandi. A data clustering algorithm for mining patterns
from event logs. In IPOM’03: Proc. of the 3rd Workshop on
IP Operations and Management, 2003.

[89] R. Vaarandi. Mining event logs with slct and loghound. In
NOMS’08: Proc. of the IEEE/IFIP Network Operations and
Management Symposium, 2008.

[90] R. Vaarandi and K. Podis. Network ids alert classifica-
tion with frequent itemset mining and data clustering. In
CNSM’10: Proc. of the Conference on Network and Service
Management, 2010.

[91] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraising-
ham. Effective software fault localization using an rbf neural
network. TR’12: IEEE Transactions on Reliability, 2012.

[92] Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou, I. Silva-
Lepe, and T. Mikalsen. Combining quality of service and
social information for ranking services. In Proc. 7th Int’l
Conf. Service Oriented Computing (ICSOC’09), pages 561–
575. Springer, 2009.

[93] W. Xu. System Problem Detection by Mining Console Logs.
PhD thesis, University of California, Berkeley, 2010.

[94] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordon.
Detecting large-scale system problems by mining console
logs. In SOSP’09: Proc. of the ACM Symposium on Operating
Systems Principles, 2009.

[95] J. Yao, S. Chen, C. Wang, D. Levy, and J. Zic. Modelling
collaborative services for business and qos compliance. In

BIBLIOGRAPHY 176

ICWS’11: Proc. of the 18th International Conference on Web
Services, pages 299–306, 2011.

[96] L. Yao, Q. Z. Sheng, A. Segev, and J. Yu. Recommending web
services via combining collaborative filtering with content-
based features. In Proc. 20th Int’l Conf. Web Services
(ICWS’13), pages 42–49. IEEE, 2013.

[97] X. Yu, M. Li, I. Paik, and K. H. Ryu. Prediction of web
user behavior by discovering temporal relational rules from
web log data. In DEXA’12: Proc. of the 23rd International
Conference on Database and Expert Systems Applications,
pages 31–38, 2012.

[98] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, X. Tang,
Y. Zhou, and S. Savage. Be conservative: enhancing failure
diagnosis with proactive logging. In OSDI’12: Proc. of the
10th USENIX Conference on Operating Systems Design and
Implementation, pages 293–306, 2012.

[99] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In NSDI’12: Proc. of the 9th USENIX
conference on Networked Systems Design and Implementa-
tion, 2012.

[100] S. Zawoad, A. Dutta, and R. Hasan. Towards building
forensics enabled cloud through secure logging-as-a-service.
IEEE Transactions on Dependable and Secure Computing
(TDSC), 13:148–162, 2016.

[101] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao,
S. Kumar, D. Pfeffer, B. Aljedia, Y. Ren, M. Griss, S. Rosen-
berg, J. Cao, and A. Rowe. Sensor data as a service–a fed-
erated platform for mobile data-centric service development

BIBLIOGRAPHY 177

and sharing. In SCC’13: Proc. of the 10th International
Conference on Services Computing, 2013.

[102] L.-J. Zhang, J. Zhang, and H. Cai. Services computing. In
Springer and Tsinghua University Press, 2007.

[103] Z. Zheng, H. Ma, M. R. Lyu, and I. King. WSRec: A collab-
orative filtering based web service recommender system. In
Proc. 16th Int’l Conf. Web Services (ICWS’09), pages 437–
444. IEEE, 2009.

[104] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Qos-aware
web service recommendation by collaborative filtering. IEEE
Transactions on Services Computing, 4(2):140–152, 2011.

[105] Z. Zheng, Y. Zhang, and M. R. Lyu. Distributed QoS
evaluation for real-world web services. In Proc. 17th Int’l
Conf. Web Services (ICWS’10), pages 83–90. IEEE, 2010.

[106] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang.
Learning to log: Helping developers make informed logging
decisions. In ICSE’15, 2015.

[107] J. Zhu, P. He, Z. Zheng, and M. R. Lyu. Towards online,
accurate, and scalable qos prediction for runtime service
adaptation. In Proc. 34th Int’l Conf. Distributed Computing
Systems (ICDCS’14). IEEE, 2014.

[108] D. Q. Zou, H. Qin, and H. Jin. Uilog: Improving log-based
fault diagnosis by log analysis. Journal of Computer Science
and Technology, 31(5):1038–1052, 2016.

	Abstract
	Acknowledgement
	Introduction
	Overview
	Thesis Contributions
	Thesis Organization

	Background Review
	System Runtime Data
	Log Parsing
	Problem Description
	Literature Review

	Operational Issues Prioritization via Log Events
	Problem Description
	Literature Review

	QoS Prediction via Limited QoS Values in Logs
	Problem Description
	Literature Review

	Evaluation Study of Log Parsing and Its Use in Log Mining
	Introduction
	Log Parsing Overview
	Overview of Log Parsing
	Existing Log Parsing Methods
	Tool Implementation

	Log Mining
	Overview of Log Mining
	System Anomaly Detection

	Evaluation Study
	Study Methodology
	RQ1: Accuracy of Log Parsing Methods
	RQ2: Efficiency of Log Parsing Methods
	RQ3: Effectiveness of Log Parsing Methods on Log Mining

	Discussions
	Summary

	Parallel Log Parsing for Large-Scale Log Data
	Introduction
	Parallel Log Parsing (POP)
	Step 1: Preprocess by Domain Knowledge
	Step 2: Partition by Log Message Length
	Step 3: Recursively Partition by Token Position
	Step 4: Generate Log Events
	Step 5: Merge Groups by Log Event
	Implementation

	Evaluation
	Study Methodology
	Accuracy of POP
	Efficiency of POP
	Effectiveness of POP on Log Mining: A Case Study
	Parameter Sensitivity
	Observations

	Discussions
	Summary

	Online Log Parsing via Fixed Depth Tree
	Introduction
	Methodology
	Overall Tree Structure
	Step 1: Preprocess by Domain Knowledge
	Step 2: Search by Log Message Length
	Step 3: Search by Preceding Tokens
	Step 4: Search by Token Similarity
	Step 5: Update the Parse Tree

	Evaluation
	Experimental Settings
	Accuracy of Drain
	Efficiency of Drain
	Effectiveness of Drain on Real-World Anomaly Detection Task

	Summary

	Prioritizing Operational Issues via Hierarchical Log Clustering
	Introduction
	POI Framework
	Raw Logs
	Log Parsing
	Vector Generating
	Log Clustering
	Issue Prioritization

	Methodology
	Inverse Cardinality
	Clustering by Log Event Appearance
	Clustering by Log Event Count

	Evaluation
	Experiment Settings
	Evaluation of Clustering Algorithm
	Evaluation of Coverage Ability

	Summary

	Location-Based Web Services QoS Prediction via Historical QoS Logs
	Introduction
	Framework of Web Service Recommendation
	Hierarchical Matrix Factorization
	Overview
	Users and Services Clustering
	Local Matrix Factorization
	Global Matrix Factorization

	Experiments
	Dataset Description
	Metrics
	Comparison
	Impact of
	Impact of Dimensionality
	Impact of Matrix Density

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Publications
	Bibliography

