
Building Reliable Web Services:

Methodology, Composition,

Modeling and Experiment

CHAN Pik Wah

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

Supervised by

Michael R. Lyu

c©The Chinese University of Hong Kong

March 2008

The Chinese University of Hong Kong holds the copyright of this thesis. Any per-

son(s) intending to use a part or whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

Abstract of thesis entitled:

Building Reliable Web Services: Methodology, Composition, Mod-

eling and Experiment

Submitted by CHAN Pik Wah

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in March 2008

One of the latest achievements of the Internet usage is the availabil-

ity of Web services technology and its dependability is becoming

one of the most critical goals in Web related research. In this the-

sis, we propose a design paradigm for reliable Web services and a

Web service composition algorithm. We describe the methods of

dependability enhancement by redundancy in space and redundancy

in time, using Round-robin scheduling technique, N-version pro-

gramming and recovery block. The Web services are coordinated

by a replication manager. It provides a Round-robin algorithm for

scheduling the workload of the Web services and keeps updating the

availability of each Web service. The replication algorithm and the

detailed system configuration are described.

In the paradigm, N-version programming technique is applied to

increase the diversity of the system. As different versions of Web

services or even different versions of their components are abun-

dantly available in the Internet, the combination of different versions

of the Web service or their components is thus becoming critical

i

for enabling different versions in a server application using the N-

version approach. We propose a dynamic Web service composition

algorithm and evaluate with Petri-Net for verification purposes.

Moreover, we model the Web services with Markov chains and

Petri-Nets to demonstrate the performance and reliability of the con-

structed Web services. Also, we develop the mathematical models

to analyze the reliability of the Web services.

Finally, we perform a series of experiments employing several

replication schemes and compare them with a non-redundant single

service. Through the experiments, we evaluate both the reliability

of the Web service paradigm and the correctness of the Web service

composition algorithm.

ii

iii

Acknowledgement

I would like to take this opportunity to express my gratitude to my

supervisor Prof. Michael R. Lyu, for his generous guidance and pa-

tience given to me in the past five years. His numerous support and

encouragement, as well as his inspiring advice are extremely essen-

tial and valuable in my research papers (conference papers published

in ICDAT’2005, Aerospace’2005, ISAS’2006 and ICWS’2007) and

my thesis.

I am also grateful for the time and valuable suggestion that Prof.

Irwin King, Prof. Malek and Prof. Sun have given in marking my

term paper. Without their effort, I will not be able to strengthen and

improve my research project and papers.

I would also like to show my gratitude to the Department of Com-

puter Science and Engineering, CUHK, for the provision of the best

equipment and pleasant office environment required for high quality

research.

Special thanks should be given to Mr. Edward Yau who has given

me valuable suggestions, encouragement and supports. And I would

like to give my thanks to my fellow colleagues, Alex Fok, Jill Law,

Alan Chu, Brian Tuse, Food Lam, KK Lo, Steven Hoi and Wyman

Wong. They have given me support, and a joyful and wonderful

university life.

iv

Finally, I am deeply indebted to my family for their unconditional

love and support over the years.

v

This work is dedicated to my family for the support and patience

vi

Contents

Abstract i

Acknowledgement iv

1 Introduction 1

1.1 Background . 2

1.2 Research Objective 2

1.3 Contribution . 3

1.4 Structure of Thesis 6

2 Literature Review 7

2.1 Introduction . 7

2.2 Web Services . 8

2.2.1 Technologies in Web Services 9

2.2.2 Work-flow of Web Services 11

2.2.3 Problems of Current Web Services 12

2.2.4 Failure Response Stages of Web Services . . 13

2.3 Review on the Methodologies for Reliable Web Ser-

vices . 17

2.3.1 Introduction 17

2.3.2 Fault Tolerance 18

vii

2.3.3 Redundancy 21

2.3.4 Diversity 22

2.4 Web Service Composition 28

2.4.1 WSCI . 28

2.4.2 BPEL . 29

2.4.3 Other Standards 31

2.5 Related Work . 35

2.5.1 Reliable Web Services 35

2.5.2 Web Service Composition 36

2.6 Summary . 37

3 Methodologies for Reliable Web Services 39

3.1 Introduction . 39

3.2 Scheme Details . 39

3.2.1 Round-robin Approach 41

3.2.2 N-version Programming Approach 43

3.2.3 Recovery Block Approach 44

3.3 Roadmap for Experimental Research 46

3.4 Summary . 48

4 Web Service Composition 49

4.1 Introduction . 49

4.2 Web Service Description 49

4.3 Proposed Composition Method 50

4.3.1 Web Service Composition Algorithm 51

4.3.2 Case Study 53

4.4 Verification with Petri-Net 57

4.4.1 BPEL . 57

viii

4.4.2 Building Block of Petri-Net 57

4.5 Summary . 60

5 Reliability Modeling 69

5.1 Introduction . 69

5.2 Modeling with Petri-Net 69

5.2.1 Round-robin 70

5.2.2 N-version Programming 71

5.2.3 Recovery Block 71

5.3 Modeling with Markov Chain 73

5.4 Mathematical Models 75

5.4.1 Round-robin 75

5.4.2 N-version Programming 76

5.4.3 Recovery Block 77

5.5 Summary . 77

6 Experiments 79

6.1 Introduction . 79

6.2 Optimal Parameters 79

6.3 Experiments for the Web Service Paradigm 85

6.3.1 Round-robin 85

6.3.2 N-version Programming Web Services 86

6.3.3 Recovery Block 86

6.4 Experimental Setup 87

6.5 Experimental Results 91

6.5.1 Single Server with Retry 92

6.5.2 Single Server with Reboot 94

6.5.3 Single Server with Retry and Reboot 95

ix

6.5.4 Spatial Replication with Round-robin 95

6.5.5 Spatial Replication with N-version Program-

ming . 95

6.5.6 Spatial Replication with Recovery Block . . 96

6.5.7 Spatial Replication, Retry or Reboot with

Round-robin 96

6.5.8 Spatial Replication, Retry or Reboot with

N-version Web Service 97

6.5.9 Spatial Replication, Retry or Reboot with

Recovery Block 97

6.5.10 Spatial Replication with Round-robin / N-

version / Recovery Block, Retry and Reboot . 97

6.5.11 Comparing the Three Approaches 98

6.6 Verification with Models 98

6.6.1 Petri-Net 99

6.6.2 Markov Chain Model 99

6.7 Experiments for the Web Service Composition Al-

gorithm . 103

6.7.1 Different Versions of Best Route Finding . . 103

6.7.2 Verification with Petri-Net 105

6.7.3 Acceptance Test 105

6.7.4 Experiments on the Proposed Reliable Paradigm105

6.7.5 Experimental Results 107

6.7.6 Discussion 107

6.8 Summary . 110

7 Conclusion and Future Work 111

7.1 Contributions . 112

x

7.2 Future Work . 113

Bibliography 114

xi

List of Figures

2.1 Architecture of Web service 11

2.2 Flow of the failure response of Web services. 14

2.3 The recovery block model. 24

2.4 Operation of the recovery block. 25

2.5 The N-version programming model. 26

2.6 N self-checking programming using acceptance test. 28

3.1 Proposed architecture for dependable Web services. . 40

3.2 Round-robin approach. 41

3.3 Workflow of the Replication Manager 43

3.4 N-version programming Web services approach. . . . 44

3.5 Recovery block approach. 45

4.1 Best Route Finding system architecture. 53

4.2 Composition tree of BRF. 56

4.3 Basic Petri-Net building block – Receive. 60

4.4 Basic Petri-Net building block – Reply. 60

4.5 Basic Petri-Net building block – Wait. 61

4.6 Basic Petri-Net building block – Terminate. 62

4.7 Basic Petri-Net building block – Invoke. 62

4.8 Basic Petri-Net building block – Assign. 63

4.9 Basic Petri-Net building block – Empty. 63

xii

4.10 Structure Petri-Net building block – Pick. 63

4.11 Structure Petri-Net building block – While. 64

4.12 Structure Petri-Net building block – Switch. 65

4.13 Structure Petri-Net building block – Flow. 65

4.14 Structure Petri-Net building block – Sequence. . . . 66

4.15 Composed Petri-Net building block graph. 66

4.16 The Petri-Net of a BRF. 67

5.1 Petri-Net based reliability model for the proposed

system with Round-robin algorithm 70

5.2 Petri-Net based reliability model for the proposed

system with N-version programming 71

5.3 Petri-Net based reliability model for the proposed

system with recovery block 72

5.4 Markov chain based reliability model for the pro-

posed system . 74

6.1 Number of failure with varying timeout period for

retry in a single server 82

6.2 Number of failure with varying polling frequency . . 83

6.3 Summary of different approaches 88

6.4 Throughput of the Web service 100

6.5 Reliability with different failure rate and repair rate

is 0.572 . 101

6.6 Reliability with different fault rates and repair rates . 102

xiii

List of Tables

4.1 Petri-Net building blocks of basic activities 58

4.2 Petri-Net building blocks of structure activities . . . 59

6.1 Number of failure with varying number of tries . . . 80

6.2 Number of failure with varying timeout period for

retry . 80

6.3 Number of failure with varying timeout period for

retry in a single server 81

6.4 Number of failure with varying polling frequency . . 82

6.5 Number of failure with varying number of replicas . 84

6.6 Number of failure with varying load of the server . . 84

6.7 Summary of the experiments 85

6.8 Program metrics of the five versions of Web services 86

6.9 Parameters of the experiments 89

6.10 Experimental results without spatial redundancy . . . 92

6.11 Experimental results with Round-robin 93

6.12 Experimental results with N-version programming . 93

6.13 Experimental results with recovery block 94

6.14 Comparing the three approaches 99

6.15 Model parameters 100

6.16 Program metrics of the 15 versions 104

xiv

6.17 Parameters of the experiments 106

6.18 Experimental results without spatial redundancy . . . 107

6.19 Experimental results with Round-robin 108

6.20 Experimental results with N-version programming . 108

6.21 Experimental results with recovery block 109

xv

Chapter 1

Introduction

A Web service is based on Service-oriented Architectures (SOA)

[26]. This approach simplifies interoperability as the only standard

communication protocols and simple broker-request architectures

are needed to facilitate exchanges of services. Web services are be-

coming more popular and are beginning to pervade all aspects of

life. However, due to our increasing dependency on these services,

the problems of service dependability, security and timeliness are

becoming critical.

Not surprisingly, the use of services, especially Web services, has

become a common practice. The expectations are that services will

dominate the software industry within the next five years.

One important element in the delivery of reliable Web services

is that the software itself should be reliable. To achieve this, soft-

ware needs to be fault-tolerant. Several fault tolerance approaches

have been proposed for Web services in the literature [10, 42, 38, 51,

23, 69], but the field still requires theoretical foundations, appropri-

ate models, effective design paradigms, practical implementations,

and in-depth experimentation. We attack these issues in a unified

1

CHAPTER 1. INTRODUCTION 2

approach in our research, which is aimed at building reliable Web

services with credible modeling and critical analysis.

1.1 Background

Web service is a major trend in the industry for loosely coupled

service-oriented architecture and interoperable solutions across het-

erogeneous platforms and systems. It receives great attention and

adoption by the industry and standard bodies [13, 19, 22, 25, 41, 52,

58]. It is well suited for integrating disparate systems, particularly

those systems evolve over time. By enabling existing enterprise re-

sources through Web services, these enterprises can be expanded to

provide services to a wider variety of clients [40].

1.2 Research Objective

There are many fault-tolerant techniques that can be applied to Web

services including replication and diversity. Replication is one of

the efficient ways for creating reliable systems by time or space re-

dundancy. Redundancy has long been used as a means of increasing

the availability of distributed systems, with key components being

re-executed (replication in time) or replicated (replication in space)

to protect against hardware malfunctions or transient system faults.

Another efficient technique is design diversity. By independently

designing software systems or services with different programming

teams, diversity provides an ultimate resort in defending against per-

manent software design faults.

CHAPTER 1. INTRODUCTION 3

In this thesis, we focus on the systematic analysis of the repli-

cation techniques when applied to Web services. We analyze the

performance and the reliability of the Web services using spatial

and temporal redundancy and study the tradeoffs between them. A

generic Web service system with spatial as well as temporal replica-

tion is proposed and constructed for experiment.

Furthermore, nowadays there are abundant of Web services avail-

able in the Internet. To provide more efficient and suitable services

for different clients, combining different Web services would be an

efficient approach. In this thesis, we propose an dynamic Web ser-

vices composition algorithm and evaluate it with a series of experi-

ments.

1.3 Contribution

Our research work has the following contributions:

• Surveyed on reliability methodologies

• Surveyed on Web services reliability and Web service compo-

sition

• Proposed an architecture for dependable Web services

• Proposed an algorithm for Web services composition

• Developed reliability models for the proposed scheme

• Performed experiments for evaluating the reliability of the sys-

tem and the correctness of the algorithm

CHAPTER 1. INTRODUCTION 4

Surveying on fault tolerance, Web services reliability and Web service com-

position

We perform a complete survey on the current fault tolerance tech-

nologies and the Web services reliability techniques. Currently, there

are few experimental investigations to evaluate the reliability and

availability of Web services systems. We propose a reliable Web

service paradigm and evaluate it with experiments. We also perform

a survey on the Web service composition which enable us to enhance

our system’s reliability.

Proposing an architecture for dependable Web services

In this thesis, we first identify the parameters which impact the Web

services dependability. Then, we describe the methods of depend-

ability enhancement by redundancy in space and redundancy in time.

Furthermore, we perform a series of experiments to evaluate the re-

liability of Web services. To increase the reliability of the Web ser-

vice, we use several replication schemes and compare them with a

single service. The Web services are coordinated by a replication

manager.

Applying Round-robin, N-version programming and recovery block approach

to the paradigm

To increase the reliability of the system, we propose three approaches,

Round-robin [64], N-version programming [45] and recovery block

[64], to be intergraded with our system. Each of them has different

characteristics which improve the reliability of the system in differ-

ent ways.

CHAPTER 1. INTRODUCTION 5

Proposing an algorithm for Web services composition

We propose an algorithm for composing Web services. Together

with an N-version programming Web service, it improves the relia-

bility of the overall system. In the algorithm, WSCI [4] and BPEL

[3] are employed to enable the Web services composition. The com-

position algorithm is verified to be correct and deadlock-free through

the Petri-Nets.

Modeling on proposed scheme

We develop reliability models for our proposed Web service paradigm

by using Markov chains model [24] and Petri-Nets [53]. Through

the models, the reliability, performance and throughput of the pro-

posed paradigm are evaluated and the characteristics of the Web ser-

vices are shown. Also, we develop mathematical models for each

approached of the proposed paradigm. Thus, we can compare and

evaluate the reliability of different approaches.

Experiments

We perform a series of experiments, which are designed for eval-

uating the reliability of the Web services. We apply retry, reboot

and spatial replication with Round-robin, N-version programming

Web services or recovery block to our system. We perform the ex-

periments with different combinations. Also, according to the Web

service composition algorithm proposed, different versions of the

experiment system are composed and the program metrics are mea-

sured. Furthermore, we perform experiments to evaluate the correct-

ness and performance of the composition algorithm.

CHAPTER 1. INTRODUCTION 6

1.4 Structure of Thesis

The thesis is organized as follows. The next chapter introduces the

issues related to Web services, fault-tolerance techniques, and de-

scribes a survey on the current reliable Web service technologies

and Web service composition. We then propose the methodologies

for reliable Web services, present our approaches with a list of key

parameters, describe the architecture and configuration of the sys-

tem, and propose a roadmap for further development and experi-

mentation in Chapter 3. In Chapter 4, we present our dynamic Web

service composition algorithm and analysis with examples. Relia-

bility models of the proposed system are developed and examined

in Chapter 5. Then we document execution of Web service experi-

ments and present the results in Chapter 6. Finally, in Chapter 7 we

draw some conclusions and sketch the future work.

2 End of chapter.

Chapter 2

Literature Review

2.1 Introduction

Web service is a self-contained, modular application built on de-

ployed network infrastructure including XML and HTTP. It uses

open standards for description (Web Service Definition Language,

WSDL), discovery (Universal Description, Discovery, and Integra-

tion, UDDI) and invocation (Simple Object Access Protocol, SOAP).

Web service becomes more popular and fault tolerance becomes es-

sential property for a Web service. There are different proposed ap-

proaches for improving the reliability of the Web services, including

N-version programming, replication, reliable messaging, message

ordering and duplicate elimination.

Let us first have a brief introduction of Web service, and an overview

of state-of-the-arts technologies in reliability and Web service com-

position techniques. Then, a literature review of current reliable Web

service systems and Web service composition is presented.

7

CHAPTER 2. LITERATURE REVIEW 8

2.2 Web Services

The W3C defines a Web service as a software system designed to

support interoperable machine to machine interaction over a net-

work. Web services are frequently just Web APIs that can be ac-

cessed over a network, such as the Internet, and executed on a re-

mote system hosting the requested services.

The W3C Web service definition encompasses many different

systems, but in common usage the term refers to clients and servers

that communicate using XML messages that follow the SOAP stan-

dard. Common in both the field and the terminology is the assump-

tion that there is also a machine readable description of the oper-

ations supported by the server, a description in the Web Services

Description Language (WSDL). The latter is not a requirement of

a SOAP endpoint, but it is a prerequisite for automated client-side

code generation in the mainstream Java and .NET SOAP frame-

works. Some industry organizations, such as the WS-I (Web ser-

vices Interoperability Organization), mandate both SOAP and WSDL

in their definition of a Web service.

Web services are self-contained business functions that operate

over the Internet. They are written to strict open specifications to

work together and with other similar kinds of components.

Web services are useful to business as they enable systems in

different companies to interact with each other, more importantly,

in a far easier way than before. With business needing closer op-

erations between suppliers and customers, engaging in more joint

ventures, and facing the prospect of more mergers and acquisitions,

companies need the capability to link up their established systems

CHAPTER 2. LITERATURE REVIEW 9

quickly and efficiently with other companies. Thus Web services

give companies the capability to do more e-business, with more po-

tential business partners, in more and different ways than before, and

at reasonable cost.

The recent growth in use of the World Wide Web on the Inter-

net has caused a significant increase in the demand on Web services.

Web services have gained high popularity in the development of dis-

tributed application systems. Some critical applications also con-

sider using Web services paradigm due to the benefit of interoper-

ability, reusability, and adaptability. To support critical applications,

existing Web service models need to be extended to assure surviv-

ability.

2.2.1 Technologies in Web Services

A Web service is programmable application logic accessible using

standard Internet protocols. Web services combine the best aspects

of component-based development and the Web. Like components,

Web services represent black-box functionality that can be reused

without worrying about how the service is implemented. Unlike

current component technologies, Web services are not accessed via

object-model-specific protocols, such as DCOM, RMI, or IIOP. In-

stead, Web services are accessed via ubiquitous Web protocols (such

as HTTP) and data formats (such as XML).

A Web service is an interface that describes a collection of oper-

ations that are network-accessible through standardized XML mes-

saging. A Web service performs a specific task or a set of tasks. A

Web service is described using a standard, formal XML notation,

CHAPTER 2. LITERATURE REVIEW 10

called its service description, that provides all of the details nec-

essary to interact with the service, including message formats (that

detail the operations), transport protocols, and location. Web service

descriptions are expressed in WSDL.

The specifications that define Web services are intentionally mod-

ular, and as a result there is no one document that contains them all.

Additionally, there is neither a single, nor a stable set of specifica-

tions. There are a few ”core” specifications that are supplemented

by others as the circumstances and choice of technology dictate, in-

cluding:

SOAP An XML-based, extensible message envelope format, with

”bindings” to underlying protocols. The primary protocols are HTTP

and HTTPS, although bindings for others, including SMTP and XMPP,

have been written.

WSDL An XML format that allows service interfaces to be de-

scribed, along with the details of their bindings to specific protocols.

Typically used to generate server and client code, and for configura-

tion.

UDDI A protocol for publishing and discovering metadata about

Web services, to enable applications to find Web services, either at

design time or runtime.

CHAPTER 2. LITERATURE REVIEW 11

2.2.2 Work-flow of Web Services

A service provider creates a Web service and its service definition

and then publishes the service with a service registry based on a

standard called the Universal Description, Discovery, and Integra-

tion (UDDI) specification.

Once a Web service is published, a service requester may find

the service via the UDDI interface. The UDDI registry provides

the service requester with a WSDL service description and a URL

(uniform resource locator) pointing to the service itself. The ser-

vice requester may then use this information to directly bind to the

service and invoke it.

The architecture of Web Service is shown in Figure 2.1

Service

Registry

Service

Provider

Service

Requestor

P
u
bl

is
h

In
qu

ir
e

Bind

UDDI

WSDL WSDL

HTTP/SOAP
Client

Service

Internet

Figure 2.1: Architecture of Web service

CHAPTER 2. LITERATURE REVIEW 12

Properties of Web services:

• Perform encapsulated business functions using request/reply as

well as business process interactions

• Looser coupling via less reliance on pre-defined interfaces

• Can be mixed and matched to create complete process

• Enable dynamic integration through embedded capability of

service discovery and binding

2.2.3 Problems of Current Web Services

Transaction

Atomicity is not provided. The key point is that HTTP is stateless,

however, business processes or transactions are useful.

Security

Add-on measures such as Encryption are needed to deal with the

insecure Internet transportation.

Interoperability

IBM, Microsoft, intel, BEA and other companies formed the Web

services Interoperability Organization (WS-I), a non-profit organi-

zation for promoting Web services standard. The idea behind WS-I

was not create new standards, but rather to assemble ”profiles” of

standards from the W3C, OASIS and others. The profiles are sets of

related standard against which conformance tests and certifications

can be established.

CHAPTER 2. LITERATURE REVIEW 13

Reliability

The Internet is inherently unreliable. Currently there is no singel un-

derlying transport protocols (HTTP, FTP, SMTP) addresses all reli-

ability issues, namely guaranteed delivery, ordered delivery, and du-

plicate elimination. For collaborative e-business and e-transaction

scenarios, message reliability becomes a critical issue.

Composition

It is often assumed that a business process or application is asso-

ciated with some explicit business goal definition that can guide

a planning-based composition tool to select the right service [50].

Unfortunately, we found that explicit goals are usually not available

from an industrial perspective. A business process model describes

the processing of persistent data objects in discrete process steps.

The real goal of a business often remains implicit in these models

and is rather expressed at a higher level using often using balanced

score cards, while the implicit goal of a business process is the cor-

rect handling or the creation of data objects manifested in persistent

documents [66].

In this thesis, we focus on solving the reliability and composition

problems. We propose reliable paradigm and composition algorithm

for these two issues respectively.

2.2.4 Failure Response Stages of Web Services

Web services will go through different stages when failure occurred

and the failure response of Web services can be classified into differ-

ent stages [46]. When failure occurred, the Web service is confined.

CHAPTER 2. LITERATURE REVIEW 14

Fault detection techniques are applied to find out the failure causes

and the failed components are repaired or recovered. Then, recon-

figuration, restart and reintegration will be performed. The flow of

the failure response of Web service is shown in Figure 2.2 and the

details of each stage are described as follows:

Figure 2.2: Flow of the failure response of Web services.

Fault confinement

This stage limits the spread of fault effects to one area of the Web

service, thus preventing contamination of other areas. Fault confine-

ment can be achieved through use of: fault detection within the Web

CHAPTER 2. LITERATURE REVIEW 15

services, consistency checks and multiple requests or confirmations.

Fault detection

This stage recognizes that something unexpected has occurred in a

Web service. Fault latency is the period of time between the occur-

rence of a fault and its detection. Techniques fall in two classes:

off-line and on-line. With off-line techniques, such as diagnostic

programs, the service is not able to perform useful work while un-

der test. On-line techniques, such as duplication, provide a real-time

detection capability that is performed concurrently with useful work.

Diagnosis

This stage is necessary if the fault detection technique does not pro-

vide information about the fault location.

Reconfiguration

This stage occurs when a fault is detected and located. The Web

services can be composed of different components. When providing

the service, there may be a fault in individual components. The

system may reconfigure its components either to replace the failed

component or to isolate it from the rest of the system.

Recovery

This stage utilizes techniques to eliminate the effects of faults. Two

basic recovery approaches are based on: fault masking, retry and

rollback. Fault-masking techniques hide the effects of failures by

CHAPTER 2. LITERATURE REVIEW 16

allowing redundant information to outweigh the incorrect informa-

tion. Web services can be replicated or implemented with different

versions (NVP). Retry undertakes a second attempt at an operation

and is based on the premise that many faults are transient in nature.

Web services provide services through network; retry would be a

practical approach as requests/reply may be affected by the state of

the network. Rollback makes use of the fact that the Web service op-

eration is backed up (checkpointed) at some points in its processing

prior to fault detection and operation recommences from that point.

Fault latency is important here because the rollback must go back far

enough to avoid the effects of undetected errors that occurred before

the detected error.

Restart

This stage occurs after the recovery of undamaged information.

• Hot restart: resumption of all operations from the point of fault

detection and is possible only if no damage has occurred.

• Warm restart: only some of the processes can be resumed with-

out loss.

• Cold restart: complete reload of the system with no processes

surviving. The Web services can be restarted by rebooting the

server.

Repair

At this stage, a failed component is replaced. Repair can be off-line

or on-line. Web services can be component-based and consist of

CHAPTER 2. LITERATURE REVIEW 17

other Web services. In off-line repair, either the Web service will

continue if the failed component/sub-Web service is not necessary

for operation or the Web services must be brought down to per-

form the repair. In on-line repair, the component/sub-Web service

may be replaced immediately with a backup spare or operation may

continue without the component. With on-line repair Web service

operation is not interrupted.

Reintegration

At this stage the repaired module must be reintegrated into the Web

service. For on-line repair, reintegration must be performed without

interrupting Web service operation.

2.3 Review on the Methodologies for Reliable Web

Services

2.3.1 Introduction

Reliability is a measure of the success with which the system con-

forms to some authoritative specification. Reliability engineering

provides the theoretical and practical tools whereby the probability

and capability of parts, components, equipments, products and sys-

tems to perform their required functions for desired periods of time

without failure, in specified environments and with a desired confi-

dence, can be specified, designed in, predicted, tested and demon-

strated [36].

Reliability includes:

CHAPTER 2. LITERATURE REVIEW 18

• Guaranteed delivery: ensure that all information to be sent ac-

tually received by the destination or error reported.

• Duplicate elimination: ensure that all duplicated information

can be detected and filtered out.

• Ordering: communication between parties consist of several

individual message exchanges. This aspect ensure that Mes-

sage Exchanges are forwarded to the receiver application in the

same order as the sender application issued.

• Crash tolerance: ensures that all information prescribed by the

protocol is always available regardless of possible physical ma-

chine failure.

• State synchronization: if the minimum error point is cancelled

for any reason, then it is desirable for both nodes to set their

state as if there were no communication between the parties.

There are numbers of methods can be applied in the reliability

issues, including:

• Redundancy

• Diversity

The following sections will discuss these techniques.

2.3.2 Fault Tolerance

Fault tolerance is the property that enables a system to continue op-

erating properly in the event of the failure of some of its compo-

nents. If its operating quality decreases at all, the decrease is pro-

CHAPTER 2. LITERATURE REVIEW 19

portional to the severity of the failure, as compared to a naively-

designed system in which even a small failure can cause total break-

down. Fault tolerance is particularly sought-after in high-availability

or life-critical systems.

In this section, we first introduce the concepts related to this tech-

nique [12, 34].

Failures A failure occurs when the user perceives that a software

program is unable to deliver the expected service [32]. The expected

service is described by a system specification or a set of user require-

ments.

Errors An error is part of the system state which is liable to lead to

a failure. It is an intermediate stage in between faults and failures.

An error may propagate, i.e., produce other errors.

Faults A fault, sometimes called a bug, is the identified or hypoth-

esized cause of a software failure. Software faults can be classified

as design faults and operational faults according to the phases of

creation. Although the same classification can be used in hardware

faults, we only interpret them in the sense of software here.

Design faults A design fault is a fault occurring in software design

and development process. Design faults can be recovered with fault

removal approaches by revising the design documentation and the

source code.

CHAPTER 2. LITERATURE REVIEW 20

Operational faults An operational fault is a fault occurring in soft-

ware operation due to timing, race conditions, workload-related stress

and other environmental conditions. Such a fault can be removed

by recovery, i.e., rollback to a previously saved state and executed

again.

Fault avoidance (prevention) To avoid or prevent the introduction of

faults by engaging various design methodologies, techniques and

technologies, including structured programming, object-oriented pro-

gramming, software reuse, design patterns and formal methods.

Fault removal To detect and eliminate software faults by techniques

such as reviews, inspection, testing, verification and validation.

Fault tolerance To provide a service complying with the specifica-

tion in spite of faults, typically by means of single version software

techniques or multi-version software techniques. Note that, although

fault tolerance is a design technique, it handles manifested software

faults during software operations. Although software fault tolerance

techniques are proposed to tolerant software errors, they can help to

tolerate hardware faults as well.

Fault/failure prediction (forecasting) To estimate the existence of faults

and the occurrences and consequences of failures by dependability-

enhancing techniques consisting of reliability estimation and relia-

bility prediction.

CHAPTER 2. LITERATURE REVIEW 21

2.3.3 Redundancy

It is a well-known fact that fault tolerance can be achieved via spa-

tial or temporal redundancy, including replication of hardware (with

additional components), software (with special programs), and time

(with the repetition of operations) [27, 36, 63, 65, 59, 70].

Redundancy can be achieved by replicating hardware modules to

provide backup capacity when a failure occurs, or redundancy can

be obtained using software solutions to replicate key elements of a

business process.

Spatial redundancy can be dynamic or static. Both of them use

replication but in static redundancy, all replicas are active at the same

time and voting takes place to obtain a correct result. The number

of replicas is usually odd and the approach is known as n-modular

redundancy. For example, under a single fault assumption, if ser-

vices are triplicated and one of them fails, the remaining two will

still guarantee the correct result. The associated spatial redundancy

cost is high (three copies plus a voter). The time overhead of man-

aging redundant modules such as voting and synchronization is also

considerably large for static redundancy. Dynamic redundancy, on

the other hand, engages one active replica at one time while oth-

ers are kept in an active or in standby state. If one replica fails,

another replica can be employed immediately with little impact on

response time. In the second case, if the active replica fails, a pre-

viously inactive replica must be initialized and take over the oper-

ations. Although this approach may be more flexible and less ex-

pensive than static redundancy, its cost may still be high due to the

possibility of hastily eliminating modules with transient faults. It

CHAPTER 2. LITERATURE REVIEW 22

may also increase the recovery time because of its dependence on

time-consuming error-handling stages such as fault diagnosis, sys-

tem reconfiguration, and resumption of execution.

2.3.4 Diversity

In any redundant systems, common-mode failures (CMFs) result

from failures that affect more than one module at the same time,

generally due to a common cause. These include design mistakes

and operational failures that may be caused externally or internally.

Design diversity has been proposed in the past to protect redundant

systems against common-mode failures [6, 7, 48] and has been used

in both hardware and software systems [30, 60]. The basic idea is

that, with different designs and implementations, common failure

modes will probably cause different error effects. One of the design

diversity techniques is N-version programming [6], and another one

is Recovery Blocks [55]. The key element of N-version program-

ming or Recovery Block approaches is diversity. By attempting to

make the development processes diverse, it is hoped that the inde-

pendently designed versions will also contain diverse faults that are

non-identical or even may be similar. It is assumed that such diverse

faults will minimize the likelihood of coincident failures.

These multiple versions are executed either in sequence or in par-

allel, and can be used as alternatives (with separate means of error

detection), in pairs (to implement detection by replication checks)

or in larger groups (to enable masking through voting). Three fun-

damental techniques are known as recovery block, N-version pro-

gramming and N self-checking programming.

CHAPTER 2. LITERATURE REVIEW 23

Recovery Block

The recovery block (RB) technique involves multiple software ver-

sions implemented differently such that an alternative version is en-

gaged after an error is detected in the primary version [56, 57]. The

question of whether there is an error in the software result is deter-

mined by an acceptance test (AT). Thus the recovery block uses an

acceptance test and backward recovery to achieve fault tolerance. As

the primary version will be executed successfully most of the time,

the most efficient version is often chosen as the primary alternate and

the less efficient versions are placed as secondary alternates. Con-

sequently, the resulting rank of the versions reflects, in a way, their

diminishing performance.

The usual syntax of the recovery block is as follows. First of all,

the primary alternate is executed; if the output of the primary alter-

nate fails the acceptance test, a backward error recovery is invoked

to restore the previous state of the system, then the second alternate

will be activated to produce the output; similarly, every time an al-

ternate fails the acceptance test, the previous system state will be

restored and a new alternate will be activated. Therefore, the system

will report failure only when all the alternates fail the acceptance

test, which may happen with a much lower probability than in the

single version situation. The recovery block model is shown in Fig-

ure 2.3, while the operation of the recovery block is shown in Figure

2.4.

The execution of the multiple versions is usually sequential. If

all the alternate versions fail in the acceptance test, the module must

raise an exception to inform the rest of the system about its failure.

CHAPTER 2. LITERATURE REVIEW 24

Recovery cache

Primary version

Alternate 1

Alternate N

Acceptance test

Input Output

Figure 2.3: The recovery block model.

N-Version Programming

The concept of N-version programming (NVP) was first introduced

in 1977 [6]. It is a multi-version technique in which all the versions

are typically executed in parallel and the consensus output is based

on the comparison of the outputs of all the versions [48]. In the event

that the program versions are executed sequentially due to lack of

resources, it may require the use of checkpoints to reload the state

before a subsequent version is executed. The N-version software

model is shown in Figure 2.5.

The NVP technique uses a decision algorithm (DA) and forward

recovery to achieve fault tolerance. The use of a generic decision

algorithm (usually a voter) is the fundamental difference of NVP

from the RB approach, which requires an application-dependent ac-

ceptance test. The complexity of the decision algorithm is generally

lower than that of the acceptance test. In NVP, since all the versions

CHAPTER 2. LITERATURE REVIEW 25

Discard

checkpoint

Evaluate

acceptance
test

Execute

alternate

Establish

checkpoint

Restore
checkpoint

New alternate

exists &

deadline not
expiired?

Exit

Entry

Exception

signals

Yes No

Fail

Pass

Recovery Block

Figure 2.4: Operation of the recovery block.

CHAPTER 2. LITERATURE REVIEW 26

Version 1

Version 2

Version N

Decision
AlgoritmInput

Output

Figure 2.5: The N-version programming model.

CHAPTER 2. LITERATURE REVIEW 27

are built to satisfy the same specification, it requires considerable

development effort but the complexity (i.e., development difficulty)

is not necessarily much greater than that of building a single version.

Much research has been devoted to the development of methodolo-

gies that increase the likelihood of achieving effective diversity in

the final product [5, 11, 21, 28].

N-Self Checking Programming

N self-checking programming (NSCP) was developed in 1987 by

Laprie et al. [32, 33]. It involves the use of multiple software ver-

sions combined with structural variations of the recovery block and

N-version programming approaches. Both acceptance tests and de-

cision algorithms can be employed in NSCP to validate the outputs

of multiple versions.

The N self-checking programming method employing acceptance

tests is shown in Figure 2.6. Same as RB and NVP, the versions and

the acceptance tests are developed independently but each designed

to fulfill the requirements. The main difference of NSCP from the

RB approach is in its use of different acceptance tests for different

versions. The execution of the versions and tests can be done se-

quentially or in parallel but the output is taken from the highest-

ranking version that passes its acceptance test. Sequential execution

requires a set of checkpoints, and parallel execution requires input

and state consistency algorithms.

Each design diversity technique, recovery block, N-version pro-

gramming, and N self-checking programming, has its own advan-

tages and disadvantages compared with the others.

CHAPTER 2. LITERATURE REVIEW 28

Version 1

Version 2

Version N

Decision

Algoritm
Input Output

Acceptance

Test 1

Acceptance

Test 2

Acceptance

Test N

Figure 2.6: N self-checking programming using acceptance test.

2.4 Web Service Composition

Composition of Web services has received much interest to sup-

port business-to-business or enterprise application integration [73,

35, 66, 29]. Currently, most of the work is in the description of Web

services, the syntax of their flows, and how they could be executed.

In the future, it is necessary to view Web services in the context

of specifying, validating, and automatically synthesizing complex,

and reactive processes. In this section, we review the state-of-the-art

composition techniques.

2.4.1 WSCI

The Web Service Choreography Interface (WSCI) [4] is an XML-

based interface description language that describes the flow of mes-

sages exchanged by a Web service participating in choreographed

CHAPTER 2. LITERATURE REVIEW 29

interactions with other services.

WSCI describes the dynamic interface of the Web service partic-

ipating in a given message exchange by means of reusing the op-

erations defined for a static interface. WSCI works in conjunction

with the Web Service Description Language (WSDL), the basis for

the W3C Web Services Description Working Group; it can, also,

work with another service definition language that exhibits the same

characteristics as WSDL.

WSCI describes the observable behavior of a Web Service. This

is expressed in terms of temporal and logical dependencies among

the exchanged messages, featuring sequencing rules, correlation, ex-

ception handling, and transactions. WSCI also describes the collec-

tive message exchange among interacting Web Services, thus pro-

viding a global, message-oriented view of the interactions.

WSCI does not address the definition and the implementation

of the internal processes that actually drive the message exchange.

Rather, the goal of WSCI is to describe the observable behavior of

a Web Service by means of a message-flow oriented interface. This

description enables developers, architects and tools to describe and

compose a global view of the dynamic of the message exchange by

understanding the interactions with the web service.

2.4.2 BPEL

Business Process Execution Language (BPEL) [3] for Web services

is an XML-based language designed to enable task-sharing for a

distributed computing or grid computing environment even across

multiple organizations, using a combination of Web services. Writ-

CHAPTER 2. LITERATURE REVIEW 30

ten by developers from BEA Systems, IBM, and Microsoft, BPEL

combines and replaces IBM’s Web services Flow Language (WSFL)

[37] and Microsoft’s XLANG specification. [67]. It is serialized in

XML and aims to enable programming in the large. The concepts

of programming in the large and programming in the small distin-

guish between two aspects of writing the type of long-running asyn-

chronous processes that one typically sees in business processes.

There were ten original design goals associated with BPEL [71]:

1. Define business processes that interact with external entities

through Web Service operations defined using WSDL, and that

manifest themselves as Web services defined using WSDL. The

interactions are abstract in the sense that the dependence is on

portType definitions, not on port definitions.

2. Define business processes using an XML-based language. Do

not define a graphical representation of processes or provide

any particular design methodology for processes.

3. Define a set of Web service orchestration concepts that are

meant to be used by both the external (abstract) and internal

(executable) views of a business process. Such a business pro-

cess defines the behavior of a single autonomous entity, typi-

cally operating in interaction with other similar peer entities.

It is recognized that each usage pattern (i.e. abstract view and

executable view) will require a few specialized extensions, but

these extensions are to be kept to a minimum and tested against

requirements such as import/export and conformance checking

that link the two usage patterns.

CHAPTER 2. LITERATURE REVIEW 31

4. Provide both hierarchical and graph-like control regimes, and

allow their use to be blended as seamlessly as possible. This

should reduce the fragmentation of the process modeling space.

5. Provide data manipulation functions for the simple manipula-

tion of data needed to define process data and control flow.

6. Support an identification mechanism for process instances that

allows the definition of instance identifiers at the application

message level. Instance identifiers should be defined by part-

ners and may change.

7. Support the implicit creation and termination of process in-

stances as the basic lifecycle mechanism. Advanced lifecycle

operations such as ”suspend” and ”resume” may be added in

future releases for enhanced lifecycle management.

8. Define a long-running transaction model that is based on proven

techniques like compensation actions and scoping to support

failure recovery for parts of long-running business processes.

9. Use Web Services as the model for process decomposition and

assembly.

10. Build on Web services standards (approved and proposed) as

much as possible in a composable and modular manner.

2.4.3 Other Standards

Except from the BPEL and WSCI, there are numbers of other ex-

isting standards that is related to Web service composition. In this

section, we are going to briefly introduce some of them.

CHAPTER 2. LITERATURE REVIEW 32

BPML

BPML [1] provides an abstract model and grammar for expressing

abstract and executable business processes. Using BPML, enterprise

processes, complex web services and multi-party collaborations can

be defined. A process in BPML is a composition of activities that

perform specific functions. The process directs the execution of

these activities. It can also be a part of composition by defining

it as a part of its parent process or by invoking from another pro-

cess. Each activity (both simple and complex) in the process has a

context, which defines common behavior for all activities executing

in that context. Hence a process can be defined as a type of com-

plex activity that defines its own context for execution. The BPML

specification defines 17 activity types, and three process types. The

different process types are nested processes which are defined to ex-

ecute within a specific context and whose definitions are a part of

context’s definition, exception processes to handle exceptional con-

ditions in executing parent’s process and compensation processes to

provide compensation logic for their parent processes. Each process

definition may specify any of the three ways of instantiating a pro-

cess: in response to an input message, in response to a raised signal,

or invoked from an activity or schedule. BPML specifications sup-

port importing and referencing service definitions given in WSDL.

It also suggests standardizing BPML documents by using RDF for

semantic meta-data, XHTML and Dublin Core metadata to improve

human readability and application processability.

CHAPTER 2. LITERATURE REVIEW 33

BPSS

ebXML [2] is a global electronic business standard envisioned to

define a XML based framework that will allow businesses to find

each other and conduct business using well-defined messages and

standard business processes. ebXML Business Process Specifica-

tion Schema is a standard for representing models for collaborating

e-business public processes. Using XML syntax the parties involved

in a collaboration can model and agree on the relevant business pro-

cess. ebXML BPSS standard can be used to configure the business

systems to support the commercial collaboration. Hence this spec-

ification determines the actual exchange (identified as patterns) of

business documents and business signals between the partners. A

library of process templates can be created using BPSS definitions

and to support a business process template a user can extract in-

formation from the corresponding BPSS and configure his runtime

system by agreeing on a pattern and a role that collaborates through

a set of choreographed transactions by exchanging Business Docu-

ments. However there is no explicit support for describing how data

flows between transactions, but there is explicit support for specify-

ing quality-of-service semantics for transactions such as authentica-

tion, acknowledgements, non-repudiation, and timeouts.

DAML-S

DAML-S is an initiative to provide an ontology markup language ex-

pressive enough to semantically represent capabilities and properties

of Web services. DAML-S is based on DAML+OIL and the aim is to

discover, invoke, compose, and monitor Web services. It defines an

CHAPTER 2. LITERATURE REVIEW 34

upper ontology appropriate for declaring and describing services by

using a set of basic classes and properties. In DAML-S, each service

can be viewed as a process and its Process Model is used to control

the interactions with the service. Using the processOntology?s sub-

ontologies, ProcessOntology and ProcessControlOntology, it aims

to capture the details of the Web service operation. The Proces-

sOntology describes the inputs, outputs, preconditions, effects, and

component subprocesses of the service. ProcessControlOntology is

used to monitor the execution of a service. However, current version

of DAML-S does not define the ProcessControlOntology. DAML-S

also categorizes three types of processes. The first type is atomic

processes which do not have any subprocesses and can be executed

in a single step. The second type is simple processes which are not

invocable as they are used as abstraction for representing atomic or

composite processes to use them. Composite processes are of third

type which are decomposable into sub-processes. The composite

process uses lot of control constructs to specify how inputs are ac-

cepted and outputs are returned by subprocesses.

WSCL

Web Services Conversation Language (WSCL) allows defining the

external visible behavior of the services by specifying the business

level conversations and public processes supported by a Web ser-

vices. The conversations are defined using XML syntax and the

WSCL document also specifies XML documents that are exchanged

as a part of conversation and the order in which they are exchanged.

WSCL provides a minimal set of concepts necessary for specifying

CHAPTER 2. LITERATURE REVIEW 35

the conversations. The specification states that typically the con-

versation is provided from the perspective of the service provider,

which can also be used to determine the conversation from the per-

spective of the user. Though the conversation is defined from the

service provider’s perspective it separates the conversational logic

from the application logic or the implementation aspects of the ser-

vice.

2.5 Related Work

2.5.1 Reliable Web Services

For reliable Web service, two popular fault tolerance techniques can

be applied: redundancy and diversity. Based on the these fault-

tolerance techniques, a number of reliable Web services techniques

have appeared in the recent literature.

WS-FTM (Web Service-Fault Tolerance Mechanism) is an im-

plementation of the classic N-version model for Web services [42],

which can easily be applied to existing systems with minimal change.

The Web services are implemented in different versions, and the vot-

ing mechanism is conducted in the client program.

FT-SOAP [38], on the other hand, is aimed at improving the re-

liability of the Simple Object Access Protocol (SOAP) when using

Web services. The system includes different approaches to func-

tion replication management, fault management, logging/recovery

mechanism and client fault tolerance transparency. FT-SOAP is

based on the work of FT-CORBA [39], in which a fault-tolerant

SOAP-based middleware platform is proposed.

CHAPTER 2. LITERATURE REVIEW 36

FT-Grid [68] is another design, which is a deployment of design

diversity for fault tolerance in Grid. It is not originally specified for

Web services, but the techniques are applicable to Web services. FT-

Grid allows a user to manually search through any number of public

or private Universal Description, Discovery and Integration (UDDI)

repositories, to select a number of functionally-equivalent services,

to choose the parameters for each service, and to invoke those ser-

vices. The application can then perform voting on the results re-

turned by the services, with the aim of filtering out any anomalous

results.

2.5.2 Web Service Composition

There are a number of techniques to enable the composition of Web

services. The Web Service Choreography Interface (WSCI) [4] is an

XML-based interface description language that describes the flow

of messages exchanged by a Web service participating in chore-

ographed interactions with other services. Business Process Execu-

tion Language (BPEL) [3] for Web services is an XML-based lan-

guage designed to enable task-sharing for a distributed computing

or grid computing environment even across multiple organizations,

using a combination of Web services.

Moreover, a number of Web service composition schemes are

proposed. SWORD [54] is one of the proposed solution. It is a set

of tools for the composition of a class of Web services including

“information-providing” services. In SWORD, a service is repre-

sented by a rule to express that with given certain inputs, the service

is capable of producing particular outputs. A rule-based expert sys-

CHAPTER 2. LITERATURE REVIEW 37

tem is then employed to automatically determine whether a desired

composite service can be realized with the existing services.

When large-scale Web services are available, Chen et al. pro-

pose a structure to handle the composition [18]. Then the mutual

search operations among Web service operations, inputs and out-

puts are studied, and a novel data structure called Double Parameter

Inverted File (DouParaInvertedFile) is proposed to implement these

operations. An algorithm to build DouParaInvertedFile is provided

as well.

Apart from the self-contained algorithm, some algorithms are

based on the current existing standards. In [20], a BPEL-based Web

service composition using high-level Petri-Nets (HPN) approach is

proposed. By analyzing the structure of Web service composition

based on BPEL, the corresponding HPN is constructed. The dy-

namism and occurrence are presented in HPN with guard expres-

sion with colored token. After translation, the equivalent HPN of

the Web service composition based on BPEL can be verified on ex-

isting mature tools.

Although a number of approaches have been proposed to aggre-

gate the Web service, there is a need for a dynamic approach to

compose the increasing number of Web services to provide new ser-

vices. In this thesis, we aim at proposing an innovative dynamic

Web service composition algorithm.

2.6 Summary

Although a number of approaches have been proposed to increase

Web service reliability, there is a need for systematic modeling and

CHAPTER 2. LITERATURE REVIEW 38

experiments to understand the tradeoffs and to verify the reliabil-

ity of the proposed methods. We proposed a framework [16] for

the deployment of reliable Web services, and enhance the scheme

with a Round-robin algorithm, N-version programming and recov-

ery block for Web services [17]. In this thesis, we focus on the sys-

tematic analysis of the replication techniques when applied to Web

services. A generic Web service system with spatial as well as tem-

poral replication is proposed, and its prototype is implemented as an

experimental testbed. Also, there is a lack of dynamic composing

approach. As the number of Web services is rapidly increasing, it

is necessary to have a dynamic composition algorithm to integrate

the new coming Web services with the existing Web services. To

make more versions of Web services to be available for the pro-

posed paradigm, a dynamic Web service composition is developed

and correctness is verified through different experiments.

2 End of chapter.

Chapter 3

Methodologies for Reliable Web

Services

3.1 Introduction

In this section, we propose a design paradigm for reliable Web ser-

vices. Its architecture is shown in Figure 3.1. In our system, a dy-

namic spatial redundancy approach is adopted.

3.2 Scheme Details

In the proposed system, the Web services are replicated in different

servers. We apply three different approaches for managing spatial

replication, including a Round-robin (RR) algorithm, N-version pro-

gramming and recovery block. The replicas are coordinated by the

replication manager. More details will be discussed in the follow-

ing sections. Also, we perform different experiments to evaluate the

reliability of the system.

39

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 40

Figure 3.1: Proposed architecture for dependable Web services.

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 41

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Figure 3.2: Round-robin approach.

3.2.1 Round-robin Approach

In the first approach, the Web servers work concurrently and a Round-

robin algorithm [64] is employed for scheduling the work among the

Web services. The idea is shown in Figure 3.2. The Web service is

replicated on different machines. When there is a Web service fail-

ure, other Web servers can immediately provide the required service.

This replication mechanism shortens the recovery time and increases

the reliability of the system.

The main component of this system is the replication manager

(RM), which acts as a coordinator of the Web services. The replica-

tion manager is responsible for:

1. Creating a Web service.

2. Choosing (with an anycasting algorithm) the best (fastest, most

robust, etc.) Web service [62] to provide the service which is

called the primary Web service.

3. Keeping the availability list of the Web services.

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 42

4. Registering the Web Service Definition Language (WSDL) with

the Universal Description, Discovery, and Integration (UDDI).

5. Continuously checking the availability of the Web services by

using a watchdog.

6. Applying the Round-robin algorithm for the scheduling the work-

load of the Web service.

The replication manager schedules the work of the Web service

using the Round-robin algorithm; therefore, the resources of the sys-

tem can be fully utilized. The replication manager distributes the

work to different Web servers according to the availability of the

servers. The requests are sent to different Web services accordingly.

Whenever the server changes, the replication manager maps the new

address of the Web service providing the service to the WSDL; thus,

the clients can still access the Web service with the same URL. This

failover process is transparent to the users.

The workflow of the replication manager is shown in Figure 3.3.

The replication manager is running on a server, which keeps check-

ing the availability of the Web services by a polling method: namely

it sends messages to the Web services periodically. If it does not

get a reply from the primary Web service, it will select another Web

service to replace the primary one and map the new address to the

WSDL. The system is considered failed if all the Web services have

failed.

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 43

Figure 3.3: Workflow of the Replication Manager

3.2.2 N-version Programming Approach

In the second approach, different versions of the Web service are

employed. As shown in Figure 3.4, the requests from the clients are

forwarded to all versions of the Web services. When all the results

are ready, a voting algorithm is applied to obtain the majority result

and return the answer to the corresponding client.

The architecture of the system is similar to the first approach.

However, the functionality of the replication manager is different.

The replication manager is responsible for:

1. Creating a Web service.

2. Selecting the primary Web service for executing the voting pro-

cedure. Once the selected Web service gets the request, it will

forward the request to all the Web services.

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 44

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Voting

Client

Majority Result

Figure 3.4: N-version programming Web services approach.

3. Keeping the availability list of the Web services.

4. Registering the Web Service Definition Language (WSDL) with

the Universal Description, Discovery, and Integration (UDDI).

5. Continuously checking the availability of the Web services by

using a watchdog.

3.2.3 Recovery Block Approach

In the third approach, different versions of the Web service are em-

ployed in the recovery block scheme. The architecture is shown in

Figure 3.5. Checkpoints are defined in the Web services and the

checkpoints are stored in the recovery cache.

The requests from the clients are sent to the primary Web ser-

vices. The result will be examined by the acceptance test. If it passes

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 45

Recovery cache Acceptance test

Input Output

Primary Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Figure 3.5: Recovery block approach.

the test, the result will be sent to the client. Otherwise, the alternative

service will perform the service by rolling back to the checkpoint of

the previous service.

The architecture of the system is similar to the pervious approaches.

However, the functionality of the replication manager is different.

The replication manager is responsible for:

1. Creating a Web service.

2. Selecting the primary Web service for providing the service to

the client.

3. Caching the checkpoint of the Web service.

4. Keeping the availability list of the Web services.

5. Registering the Web Service Definition Language (WSDL) with

the Universal Description, Discovery, and Integration (UDDI).

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 46

6. Continuously checking the availability of the Web services by

using a watchdog.

7. Running the acceptance test for the Web service, if the test is

passed, send the result to the client. Otherwise, rollback to

the checkpoint and select an alternate Web service to provide

service.

3.3 Roadmap for Experimental Research

We take a pragmatic approach by starting with a single service with-

out any replication. The only approach to fault tolerance in this case

is the use of redundancy in time. If a service is considered as an

atomic action or a transaction in which the input is clearly defined,

no interaction is allowed during its execution, and the outcome has

possible states: correct or incorrect. In this case, the only way to

make such a service fault tolerant is to retry or reboot it. This ap-

proach allows tolerance of temporary faults, but it will not be suf-

ficient for tolerating permanent faults within a server or a service.

One issue is how much delay the user can tolerate, and another issue

is the optimization of the retry or the reboot time.

If redundancy in time is not appropriate to meet dependability

requirements or if the time overhead is unacceptable, the next step

is redundancy in space. Redundancy in space for services means

replication where multiple copies of a given service may be exe-

cuted sequentially or in parallel. If the copies of the same services

are executed on different servers, different modes of operations are

possible:

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 47

1. Sequentially, meaning that we await a response from a primary

service and in case of timeout or a service delivering incorrect

results, we invoke a back-up service (multiple backup copies

are possible). This is also known as dynamic redundancy.

2. In parallel, meaning that multiple services are executed simul-

taneously and if the primary service fails, the next one takes

over. Another variant is that the service whose response arrives

first is taken.

3. There is also a possibility of majority voting using n-modular

redundancy, where results are compared and the final outcome

is based on at leastbn/2 + 1c services agreeing on the result.

This is also known as dynamic redundancy.

If diversified versions of different services are compared, the ap-

proach can be seen as either a Recovery Block (RB) system, where

backup services are engaged sequentially until the results are ac-

cepted (by an Acceptance Test), or an N-version programming (NVP)

system where voting takes place and majority results are taken as the

final outcome. In case of failure, the failed service can be masked

and the processing can continue.

NVP and RB have undergone various challenges and lively dis-

cussions. Critics state that the development of multiple versions

is too expensive and dependability improvement is questionable in

comparison to a single version, provided the development effort

equals the development cost of the multiple versions. We argue that,

in common with the maturity of service-oriented computing tech-

nologies, diversified Web services now predominate and the objec-

CHAPTER 3. METHODOLOGIES FOR RELIABLE WEB SERVICES 48

tions to NVP or RB can be mitigated. Based on market needs, ser-

vice providers are competitively and independently developing their

services and making them available on the market. With an abun-

dance of services available for specific functional requirements, it

is apparent that fault tolerance by design diversity will be a natural

choice. Moreover, NVP can be applied to services not only for de-

pendability but also for higher performance purposes, due to locality

considerations.

Finally, a hybrid method may be used where both space and time

redundancy are applied, and depending on system parameters, a

retry might be more effective before switching to the back-up ser-

vice. This type of approach will require a further investigation.

3.4 Summary

In this chapter, we describe the details of the proposed reliable Web

service paradigm. The architecture and flow of work are presented.

The system improve the reliability of Web service by applying both

spatial and temporal replication. The system is coordinated by a

replication manager and different fault-tolerance techniques are em-

ployed, including Round-robin scheduling algorithm, N-version pro-

gramming and recovery block. Also, the roadmap for experimental

research is presented.

2 End of chapter.

Chapter 4

Web Service Composition

4.1 Introduction

Diversity is one of the key elements in the proposed paradigm. In the

emergence of service-oriented computing, different versions of Web

services or even different versions of their components are abun-

dantly available in the Internet. The combination of different ver-

sions of the Web service or their components is thus becoming crit-

ical for enabling different versions in a server application using the

N-version programming approach. In this section, we propose an al-

gorithm for composing Web services. With an N-version program-

ming Web service approach, the reliability of the overall system is

improved.

4.2 Web Service Description

The description of a Web service is statically provided by WSDL,

including Web service functional prototypes. However, its static na-

ture limits the flexibility for composing Web services. Different Web

49

CHAPTER 4. WEB SERVICE COMPOSITION 50

services provide their services at different time, and so a dynamic

composition approach is necessary for composing different versions

of Web services and making them to be available in the Internet.

In the Web services, the communication mainly depends on the

messages exchange between different Web servers. The Web Ser-

vice Choreography Interface (WSCI) [4] is an XML-based language

for the description of the observable behavior of a Web service in

the context of a collaborative business process or work-flow. WSCI

describes the dynamic interface of the Web Service participating

in a given message exchange by means of reusing the operations

defined for a static interface. It defines the flow of messages ex-

change by a stateful Web service, describing its observable behav-

ior. By specifying the temporal and logical dependencies among

the message exchange, WSCI is employed to describe a service in

such a way that other Web services can unambiguously interact with

the described service in conformity with the intended collaboration.

Though WSCI provides a message-oriented view of the process, it

does not define the internal behavior of the Web service or the pro-

cess.

4.3 Proposed Composition Method

Our proposed service composition method is based on two standard

Web service languages: WSDL and WSCI. WSDL describes the en-

try points for each available service, and WSCI describes the interac-

tions among WSDL operations. WSCI complements the static inter-

face details provided by a WSDL file, as WSCI describes the ways

operations are choreographed and their properties. This is achieved

CHAPTER 4. WEB SERVICE COMPOSITION 51

with the dynamic interface provided by WSCI through which the

inter-relationship between different operations in the context of a

particular operational scenario.

4.3.1 Web Service Composition Algorithm

The flow of the composition procedure is as follows: First, get the

WSDL of the Web service components from UDDI. Then, through

the messages between the Web services, obtain the WSCI of the

components. Afterwards, examine the input and output of the com-

ponents through WSDL and determine the interactions between dif-

ferent components to provide the service through WSCI. Finally,

perform the composition of the Web service with the information

obtained in the composition procedure. The detailed composition

algorithm is shown in Algorithm 1.

In Algorithm 1, we aim to build a tree for the Web service com-

position. We use a bottom-up approach to perform the composition,

that is, we build the composition tree from output to input.

When we get the required output, search the Web services in the

WSDL. In theoperationtag of the WSDL, the output information is

stated. When the desired output is found, that Web service compo-

nent (CPn) is inserted as the root of the tree. Then, if the input of

that operation matches the required input, the searching is finished

and the input is inserted as a child of theCPn. Otherwise, we will

search theactiontag in the WSCI in finding matches to theoperation

in CPn. After theaction is completed, we determine the previous

action. Then, we can find theoperationprototypes in the WSDL. If

the input of this operation matches the required input, then the com-

CHAPTER 4. WEB SERVICE COMPOSITION 52

Algorithm 1 Algorithm for Web service composition
Require: I[n]: required input,O[n]: required output

1: CPn: thenth Web services component

2: for all O[i] do

3: Search the WSDL of the Web services, and find theCPn ’s operation output

= O[i]. Then, insertCPn into the tree.

4: if the input of the operation =I[j] then

5: Insert the input to the tree as the child ofCPn.

6: else

7: Search the WSCI ofCPn, WSCI.process.action = operation.

8: Find the previous action needing to be invoked.

9: Search the operation in WSDL equal to the action.

10: if input of the operation =I[i] then

11: Insert input to the tree as the child ofCPn

12: else

13: go to step(8)

14: end if

15: end if

16: until reaching the root of WSCI and not finding the correct input, search

other WSDL with output =I[j], insertCPm as the child ofCPn and go to

step (7) to do the searching in WSCI ofCPm.

17: end for

CHAPTER 4. WEB SERVICE COMPOSITION 53

position is finished. Otherwise, we will iterate until the root of the

WSCI is reached.

If the desired input is still not found, we will search for the op-

erations in other WSDL whose output is equal to the input ofCPn.

If the next Web service component found isCPm, thenCPm is in-

serted as the child ofCPn. We perform the searching iteratively

and continue to build the tree until all the inputs match the required

input.

4.3.2 Case Study

Data

Internet

Agent

Server

MTR

Data KCR

Data

Agent

Server

MTR

Data KCR

Search

engine

Checkpoint

server

ASP for Web

Window form

for

standalone

program

Figure 4.1: Best Route Finding system architecture.

To illustrate the above procedure, we present the Web services

composition with the Best Route Finding system (BRF) [15] whose

architecture is shown in Figure 4.1. This system suggests the best

route for a journey within Hong Kong by public transport, based

on input consisting of the starting point and the destination. BRF

CHAPTER 4. WEB SERVICE COMPOSITION 54

consists of different components, including a search engine, agent

servers, and the public transport companies. We acquired several

versions of BRF, which are implemented by different teams using

different components. Also, the Web service components may dif-

fer from versions to versions; thus, in this experiment, we try to

compose the Web services from different versions with the WSDL

and WSCI provided therein.

Also, the following shows part of the WSDL specification of the

search engine. The WSDL identifies the input and output parameters

of the services provided by thesearch engineof the system.

<?xml version="1.0" encoding="UTF-8"?>

...

<portType name=BRF">

<operation name=shortestpath">

<input message=

"tns:startpointDestination"/>

<output message="tns:pathArray"/>

</operation>

<operation name=addCheckpoint">

<input message="tns:pathArray"/>

<output message=

"tns:addAcknowledgement"/>

</operation>

...

</operation>

</portType> </definitions>

CHAPTER 4. WEB SERVICE COMPOSITION 55

The following shows part of the WSCI specification of thesearch

engine.

<correlation name=pathCorrelation

property=tns:pathID></correlation>

<interface name=busAgent>

<process instantiation="message">

<sequence>

<action name="ReceiveStartpointDest

role="tns:busAgent

operation="tns:BRF/shortestpath">

</action>

<action name="Receivecheckpoint

role=" tns:busAgent

operation="tns:BRF/addCheckpoint">

<correlate correlation=

tns: pathCorrelation/>

<call process=tns:SearchPath/>

</action>

</sequence>

</process>

...

Based on Algorithm 1, a composition tree is built, giving the re-

sult as shown in Figure 4.2.

CHAPTER 4. WEB SERVICE COMPOSITION 56

Bus Agent

Search

Agent

Train

Agent

Bus :KMB

Starting

P1

Train:MTR

Starting

P2

Figure 4.2: Composition tree of BRF.

CHAPTER 4. WEB SERVICE COMPOSITION 57

4.4 Verification with Petri-Net

To verify the correctness of the composed Web service, Petri-Net

[53] is employed. We first construct a Petri-Net for the Web service

with the information provided in BPEL.

4.4.1 BPEL

By defining and executing business processes involving Web ser-

vices, BPEL enables the top-down realization of Service-oriented

Architecture (SOA) through composition, orchestration, and coordi-

nation of Web services. BPEL provides a relatively easy and straight-

forward way to compose several Web services into new composite

services calledbusiness processes.

After a Web service is composed with the proposed Algorithm 1,

a BPEL is constructed. BPEL describes the composition properties

of the Web service, such as communication and specific behaviors.

A BPEL process specifies the exact order in which participating

Web services should be invoked, either sequentially or in parallel.

With BPEL, conditional behaviors can be expressed. For example,

an invocation of a Web service can depend on the value of a previous

invocation. Also it can construct loops, declare variables, copy and

assign values, define fault handlers, and so on. By combining all

these constructs, the flow of the Web service can be defined.

4.4.2 Building Block of Petri-Net

In the verification process, we employ Petri-Nets to build the model

of the Web service to prevent deadlock and construct dynamic re-

CHAPTER 4. WEB SERVICE COMPOSITION 58

lations. Different building blocks of Petri-Nets are defined accord-

ing to the activities in BPEL schema, including inner-service, intra-

service, inter-activity, and intra-activity. With the defined blocks, we

map the operations or activities specified in BPEL to the Petri-Net

building blocks. Then, a Petri-Net for a specified Web service is

generated. Some major building blocks are defined in Table 4.1 and

Table 4.2, respectively.

Table 4.1: Petri-Net building blocks of basic activities

Building Block type Description

Invoke The Invoke activity directs

a Web service to perform an operation.

Reply The Reply activity matches a

Receive activity. It has the same partner

link, port type, and operation as

its matching Receive. Use a Reply to send

a synchronous response to a Receive.

Empty The Empty activity is a no operation

instruction in the business process.

Assign The Assign activity updates

the content of variables.

Terminate The Terminate activity stops

a business process.

Throw The Throw activity provides one way

to handle errors in a BPEL process.

Wait The Wait activity tells the business

process to wait for a given time period

or until a certain time has passed.

A Web service operation is composed of basic activities (includ-

CHAPTER 4. WEB SERVICE COMPOSITION 59

Table 4.2: Petri-Net building blocks of structure activities

Building Block type Description

While Repeat the same sequence

of activities as long as some

condition is satisfied.

Switch Use ”case-statement” to

produce branches.

Sequence Definition of a series of

steps for the orderly sequence.

Link Link different activities

work together.

Flow A series of steps should be

specified in parallel implementation.

ing Receive, Reply, Assign, Invoke, Empty, Terminate, and Wait)

and structures activities (including While, Switch, Sequence, Link

and Flow. The sample basic activities translation are shown in Fig-

ure 4.3 to Figure 4.9 and the structure activities are shown in Fig-

ure 4.10 to Figure 4.14. With the activities in BPEL, Web services

are described procedurally. In a Petri-Net, aplaceconnected to a

transition intuitively expresses thestatesbefore and after executing

the correspondingaction. Firing a transition means that the corre-

spondingaction is executed. Moreover, Web service invocation is

expressed by entering atokenin a placewhich denotes thestarting

point of the operation.

Figures 4.3 to 4.14 illustrate some Web service operations com-

posed with Petri-Net building blocks. Abuilding blockis presented

by a placewith a tokenwhose type is specified by the block type.

CHAPTER 4. WEB SERVICE COMPOSITION 60

Input
Input transition Receive

Input

message

Finish

Figure 4.3: Basic Petri-Net building block – Receive.

output
Output transition Reply

Output

message

Finish

Figure 4.4: Basic Petri-Net building block – Reply.

An arc is used to link the transition with anotherarc corresponding

to the input or output message consisting of those blocks based on

the relationship defined in Table 4.1 and Table 4.2.

With the Algorithm 1 and BPEL Petri-Net building blocks, Petri-

Nets of different versions of BRF are generated. One of the com-

posed BRF is shown in Figure 4.16. With the constructed Petri-Net,

we perform the operation to check the correctness and verify that the

Web service is deadlock-free.

4.5 Summary

In this chapter, we describe the details of the proposed algorithm for

Web service composition. The composition algorithm makes use of

the WSDL and WSCI. The correctness is checked by the acceptance

CHAPTER 4. WEB SERVICE COMPOSITION 61

Input
Input transition P

Input

message

Finish

FalseRepeat

Condition

True

Figure 4.5: Basic Petri-Net building block – Wait.

CHAPTER 4. WEB SERVICE COMPOSITION 62

Input
P1

0

P2
Input

message

Finish

1 1

Terminate

Figure 4.6: Basic Petri-Net building block – Terminate.

Input
Input transition Branch

Input

message

Output

transition Process
Output

message

Finish

Fault handler
Fault

message

Finish

Output

message

Fault transition

Figure 4.7: Basic Petri-Net building block – Invoke.

CHAPTER 4. WEB SERVICE COMPOSITION 63

Input

Assign
Input

message

Finish

to = from$

Figure 4.8: Basic Petri-Net building block – Assign.

Input

Input

message

Finish

$$

Figure 4.9: Basic Petri-Net building block – Empty.

Input
P1 ready

Finish

M1 transition P1

Message 1

Input
P2 readyM2 transition

Message 2

P2

Figure 4.10: Structure Petri-Net building block – Pick.

CHAPTER 4. WEB SERVICE COMPOSITION 64

While ready
P1 done FinishDone transitionP1

Sequence finish

Condition false

P1 repeat

Repeat
Condition True

Figure 4.11: Structure Petri-Net building block – While.

CHAPTER 4. WEB SERVICE COMPOSITION 65

Input 1

P1 ready

Finish

M1 transition P1

Condition 1

Input 2

P2 readyM2 transition P2

ReadyTransition

Condition 2

Otherwise

Figure 4.12: Structure Petri-Net building block – Switch.

Input

P1 ready

Finish

M1 transition P1

Message 1

P2 readyM2 transition

Message 2

P2

Figure 4.13: Structure Petri-Net building block – Flow.

CHAPTER 4. WEB SERVICE COMPOSITION 66

Sequence

ready P2P1 done
Finish

P1

Figure 4.14: Structure Petri-Net building block – Sequence.

Input
Input transition

Block 1

Block 2

Operation

Finish

(output to block 3)

Finish

(output to block 4)

Figure 4.15: Composed Petri-Net building block graph.

CHAPTER 4. WEB SERVICE COMPOSITION 67

Receive
Input transition Wait

Bus Assign

Train Assign

Invoke

Invoke

Reveive

Reveive

Sequence

Sequence

Reply

Reply

Terminate

Figure 4.16: The Petri-Net of a BRF.

CHAPTER 4. WEB SERVICE COMPOSITION 68

test and the deadlock-free is verified by Petri-Net. We also analyze

the algorithm with case study.

2 End of chapter.

Chapter 5

Reliability Modeling

5.1 Introduction

We develop reliability models of the proposed Web service paradigm

using Petri-Net [53] and Markov chains [24]. The models are de-

scribed in this section. The reliability models are analyzed and ver-

ified using the SHARPE tool [61]. Petri-Net is built to evaluate the

performance of the system, and the Markov chains model is devel-

oped to analyze the system reliability.

Furthermore, we develop a mathematical model for each approach

applied in the reliable Web service paradigm. Thus, the reliability

of the system can be evaluated and compared systemically.

5.2 Modeling with Petri-Net

We analyze different approaches with Petri-Net. With the models,

we evaluate the performance and the throughput of different ap-

proaches in the proposed reliable Web service paradigm.

69

CHAPTER 5. RELIABILITY MODELING 70

5.2.1 Round-robin

In Figure 5.1, we model a system composed of two Web services.

When the messages arrive at the first Web service, a message queue

is formed and the Web service will handle the requests in the mes-

sage queue. In the model, the messages are queued up in thequeue

state. Next, thetokenwill be passed to theserviceand arrive at the

finished jobstate. Then, thetokenis passed toqueue2, which is for

the second Web service.

Figure 5.1: Petri-Net based reliability model for the proposed system with Round-

robin algorithm

The reliability of the service is directly affected by the availability

of the Web server. When the server is down, the two Web services

will not be available. In our system, when the primary server fails,

the backup server will be invoked.

CHAPTER 5. RELIABILITY MODELING 71

5.2.2 N-version Programming

In Figure 5.2, we model the system with N versions of the Web

service. The messages are queued up in thequeuestate. Then, the

tokenwill be passed to servicesservicev1 to servicev5. When the

job is finished, it arrives at thefinished jobstate. Finally, thetoken

is passed to thevotingstate.

Figure 5.2: Petri-Net based reliability model for the proposed system with N-

version programming

5.2.3 Recovery Block

In Figure 5.3, we model the Web service system with recovery block

and checkpointing. The messages are queued up in thequeuestate.

CHAPTER 5. RELIABILITY MODELING 72

Then, thetokenwill be passed to servicesservicev1. When the job

is finished, it arrives at thefinished jobstate. After that, thetokenis

passed to theAcceptance teststate. If it is correct, it finally goes to

thefinishedstate. Otherwise, it will goes to thecheckpointstate and

servicev2state. If it is still failed, the token is passed to theserver

downstate andrepair transition is reached.

Figure 5.3: Petri-Net based reliability model for the proposed system with recov-

ery block

All the models are developed and verified through the tool SHARPE

[61] to be deadlock-free. Afterwards, we perform experiments on

the proposed system and feed the parameters to the models. Thus

we are able to predict the throughput and performance of the sys-

tem. The result and analysis are shown in the next chapter.

CHAPTER 5. RELIABILITY MODELING 73

5.3 Modeling with Markov Chain

In this section, we model our proposed system with Markov chain.

In Figure 5.4(a), the states represents the normal execution state of

the system withn Web service replicas. In the event of a fault caus-

ing the primary Web service to fail, the system will either go into

the other states (i.e.,s − j, which represents the system withn − j

working replicas remaining, if the replication manager responds on

time), or it will go to the failure stateF with conditional probability

(1 − C1). λ∗ denotes the failure rate , i.e. the rate of occurrence

of failures from which recovery cannot be completed, andC1 rep-

resents the probability that the replication manager responds in time

to switch to another Web service.

When the failed Web service is repaired, the system will go back

to the previous state,s−j+1. µ∗ denotes the rate at which successful

recovery is performed in this state, andC2 represents the probability

that the failed Web server reboots successfully. If the Web service

fails, it goes to another Web service. When all Web services fail,

the system enters the failure stateF . λn represents the network fault

rate.

States(s − 1) to (s − n) in Figure 5.4(a) represent the working

states of then Web service replicas and the reliability model of each

Web service is shown in Figure 5.4(b). There are two types of faults

simulated in our experiments:P1 denotes a temporary fault andP2

denotes a permanent fault. If a fault occurs in the Web service, either

the Web service can be repaired withµ1 (to enterP1) or µ2 (to enter

P2) repair rates with conditional probabilityC1. If the fault cannot

be recovered, the system goes to the next state (s− j − 1) with one

CHAPTER 5. RELIABILITY MODELING 74

Figure 5.4: Markov chain based reliability model for the proposed system

CHAPTER 5. RELIABILITY MODELING 75

less Web service replica available. If the replication manager cannot

respond in time, it will go to the failure state. From the graph, two

formulae can be obtained:

λ∗ = λ1 × (1− C1)µ1 + λ2 × (1− C2)µ2 (5.1)

µ∗ = λ1 × µ1 + λ2 × µ2 (5.2)

5.4 Mathematical Models

We analyze the different approaches of the proposed system with

mathematical models in this section. With the models, we evalu-

ate and compare the performance and the correctness of different

approaches in the proposed reliable Web service paradigm.

5.4.1 Round-robin

In Round-robin approach, there are numbers of replicas. We define

the reliability of each replica be

R(n) = χ (5.3)

We define the probability thenth replica is choosen beQ(n).

Thus, the reliability of Round-robin is

p(n) = χQ(n) (5.4)

When retries are allowed in the system, the reliability becomes

CHAPTER 5. RELIABILITY MODELING 76

p(n, r) =
r∑

j=0
χQ(n) (5.5)

wherer is the number of retries.

5.4.2 N-version Programming

In N-version programming, there are numbers of versions in the sys-

tem. We define the reliability of a version as the probability that the

version does not cause to fail on an input. The reliability of a pro-

gram version is

R1vp = χm (5.6)

whereχ is the reliability of each version andm is the number of

success versions in the system [6].

We definepN(i) as the probability that selectedi of N versions

failed and other versions succeed on an input. If the versions fail

independently,

pN(i) = (1− χ)iχN−i, i = 0, 1, . . . , N (5.7)

Thus, this is the reliability of the approach with N-version pro-

gramming.

When retries are allowed in the system, the reliability becomes

pN(i, r) =
r∑

j=0
(1− χ)iχN−i, i = 0, 1, . . . , N (5.8)

wherer is the number of retries.

CHAPTER 5. RELIABILITY MODELING 77

5.4.3 Recovery Block

There are numbers of versions in the system. We define the reliabil-

ity of a version as the probability that the version does not cause to

fail on an input. The reliability of a program version is

R1 = χ (5.9)

In the recovery block, there is an acceptance test in the system.

We define the probability that the testing segment rejects a correct

result ast1 and probability that the testing segment accepts an incor-

rect result ast2 [8, 9].

We definepN(k) as the probability that the recovery block failed

k times and it must be smaller thanN which is the number of ver-

sions in the system. If the versions fail independently,

pN(k) = {(1− χ)t1}kχ(1− t1)(1− t2), k < N (5.10)

When retries are allowed in the system, the reliability becomes

pN(k, r) =
r∑

i=0
{(1− χ)t1}k(i)χ(1− t1)(1− t2), k < N (5.11)

wherer is the number of retries andk(i) is the number of fails in the

ith trial.

5.5 Summary

In this chapter, we develop the model of the proposed reliable Web

service paradigm with Markov chain and Petri-Net. In the follow-

ing chapter, we will perform a series of experiments to evaluate and

CHAPTER 5. RELIABILITY MODELING 78

compare the models developed in this chapter. With the models, we

will compare and analyze the results obtain from the experiments.

The detail will be described in the next chapter. Also, through the

models, we demonstrate the properties of the Web service, including

the reliability, performance and throughput.

2 End of chapter.

Chapter 6

Experiments

6.1 Introduction

In this chapter, we describe the various approaches and experiments

in more detail. We formulate several additional quality-of-service

parameters from the viewpoint of service customers. We propose

a number of fault injection experiments showing both dependabil-

ity and performance with and without diversified Web services. The

outlined roadmap to fault-tolerant services leads to ultra reliable ser-

vices where hybrid techniques of spatial and time redundancy can be

used for optimal.

6.2 Optimal Parameters

There are numbers of parameters can be varied in the system. Before

evaluating the reliability of the system, we try to find the optimal pa-

rameters of the system. To evaluate the parameters in the system, we

perform a set of experiments. Through the experiments, we obtained

a set of optimal parameters setting for the Web service system. The

79

CHAPTER 6. EXPERIMENTS 80

Table 6.1: Number of failure with varying number of tries

Number Number of failure Number of failure

of retries in temporary fault in permanent fault

0 9978 8994

1 25 34

2 0 0

3 0 0

4 0 0

5 0 0

Table 6.2: Number of failure with varying timeout period for retry

Timeout period Number of failure Number of failure

for retry (s) in temporary fault in permanent fault

0 270 8974

2 45 562

5 0 4

10 0 0

20 0 0

parameters we examined include: number of retries, timeout period

for retry, polling frequency, number of replicas and load of server.

The types of fault injected include permanent fault (the server is

down permanently once the fault occurs) and temporary fault (the

fault only occurs randomly). The results are shown in Table 6.1 to

6.6, respectively. In each experiment, a total of 1,000,000 requests

are handled in a 10-days duration.

In Table 6.1, we found that the number of retry depends on the

failure rate of the Web service. If the failure rate of the Web service

is large, the number of retry needed for the application is increased.

CHAPTER 6. EXPERIMENTS 81

Table 6.3: Number of failure with varying timeout period for retry in a single

server
Timeout period Number of failure Number of failure

for retry in temporary fault in permanent fault

0 9826 857998

2 168 846782

3 12 842136

5 0 821634

6 0 324853

7 0 89421

8 0 7124

9 0 687

10 0 2

12 0 0

14 0 0

In Table 6.2, as the timeout period for retry is too short, the

replica cannot reboot on time, causing the number of failures to

increase. Also, another cause of the failure is that the replication

manager cannot respond on time to switch the primary Web service.

There are five tries, and the reboot time for a server is around 50

seconds.

Table 6.3 shows the number of failures varies with timeout period

for retry in a single server and the result is plotted in 6.1. If the

timeout period for retry is too short, the server does not reboot on

time to provide the service again.

Table 6.4 shows the number of failures varies with polling fre-

quency and Figure 6.2 shows the plotted graph. If the polling fre-

quency is low, the replication manager cannot respond on time and

CHAPTER 6. EXPERIMENTS 82

Timeout period

of failure

Figure 6.1: Number of failure with varying timeout period for retry in a single

server

Table 6.4: Number of failure with varying polling frequency

Polling frequency Number of failure Number of failure

(number of requests in temporary fault in permanent fault

per mins)

0 0 712489

1 0 10911

2 0 3045

5 0 523

10 0 1

15 2218 2652

20 14746 12536

CHAPTER 6. EXPERIMENTS 83

Polling frequency

of failure

Figure 6.2: Number of failure with varying polling frequency

CHAPTER 6. EXPERIMENTS 84

Table 6.5: Number of failure with varying number of replicas

Number of Number of failure Number of failure

replicas in temporary fault in permanent fault

No replica 91 8152

2 2 356

3 0 0

4 0 0

Table 6.6: Number of failure with varying load of the server

Load of Number of failure Number of failure

the server in temporary fault in permanent fault

70% 0 0

75% 0 0

80% 26 39

85% 104 141

90% 5128 5258

95% 12149 11258

99.9% 867525 886951

the request will still be sent to the failed server causing the failures

in the system. When the polling frequency increases, the situation

improves. The replication manager can respond on time and reduce

the number of failures.

From Table 6.6, the optimal load of the Web server is 75%. If

the load of the server is too high, the server is not able to handle the

requests, which increases the failure rate of the system.

Also, we performed experiment on the number of failures changes

with the number of replicas where the result is shown in Table 6.5.

From the experiments, we found that three replicas are sufficient to

CHAPTER 6. EXPERIMENTS 85

Table 6.7: Summary of the experiments

Experiment ID 1 2 3 4 5 6 7 8

Spatial replication 0 0 0 0 1 1 1 1

Reboot 0 0 1 1 0 0 1 1

Retry 0 1 0 1 0 1 0 1

reduce the number of failures nearly to zero.

6.3 Experiments for the Web Service Paradigm

A series of experiments are designed and performed for evaluating

the reliability of the Web services. In the system, we apply retry,

reboot and spatial replication with Round-robin, N-version Web ser-

vices or recovery block. We perform the experiments with different

combinations. Table 6.7 shows all the combinations of the experi-

ments.

6.3.1 Round-robin

The Web servers work concurrently and a Round-robin algorithm

[64] is employed for scheduling the work among the Web services.

For different round, different Web service will be the primary server

which provides the service. In our experiment, the Web service is

replication on different machines as shown in Figure 6.3(a). In the

experiment, five replicas are used for providing the service, which

run on different machines with same configuration.

CHAPTER 6. EXPERIMENTS 86

Table 6.8: Program metrics of the five versions of Web services

ID Lines Line without Number of Complexity

comment function

01 2372 1982 47 87

02 2582 2033 26 45

03 3223 3029 78 124

04 5874 5275 80 124

05 4578 4187 47 113

6.3.2 N-version Programming Web Services

In this N-version Web service approach, five different versions of

the Web service are employed. The five different Web services

are implemented by different programming teams with different ap-

proaches and run in different machines with same configuration.

The programming metrics of the five different versions are shown

in Table 6.16.

As shown in Figure 6.3(b), the requests from the clients are for-

warded to all versions of the Web services. The voting algorithm is

run on the primary Web server which is selected by the replication

manager. Once all the results in different versions are ready, the vot-

ing algorithm is applied to obtain the majority result and return the

answer to the corresponding client.

6.3.3 Recovery Block

In the recovery block approach, different versions of the Web ser-

vice are employed. In our experiment, five different versions of the

Web services are used. The architecture is shown in Figure 6.3(c).

CHAPTER 6. EXPERIMENTS 87

Checkpoints are defined in the Web services and the checkpoints are

stored in the recovery cache.

The requests from the clients are sent to the primary Web ser-

vices. The result will be examined by the acceptance test. If it passes

the test, the result will be sent to the client. Otherwise, the alternative

service will perform the service by rolling back to the checkpoint of

the previous service.

6.4 Experimental Setup

In our experiments, we run a variety of Web services in the system

to evaluate the reliability of the proposed fault tolerant techniques

under different situations. Faults are injected in the system using

fault injection techniques similar, for example, to those in [44, 51].

A number of faults may occur in the Web service environment [72].

The types of fault injected include permanent fault (the server is

down permanently once this fault occurs), temporary fault (the fault

only occurs randomly), Byzantine fault [14, 31] and network fault

[43]. A Byzantine fault is an arbitrary fault that occurs during the

execution of an algorithm by a Web service. In our experiment,

several teams implement various versions of the Web service using

a number of algorithms, in which faults are triggered. To generate a

network fault, WS-FIT fault injection is applied. The fault injector

decodes the SOAP message and can inject faults into individual RPC

parameters, rather than randomly corrupting a message, for instance

by bit-flipping.

Our experimental environment is defined by a set of parameters.

Table 6.9 shows the parameters of the Web services in our experi-

CHAPTER 6. EXPERIMENTS 88

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

(a)
Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

Voting

Client

Majority Result

(c)

Recovery cache Acceptance test

Input Output

Primary Service

IIS

Application

Database

Web Service

IIS

Application

Database

Web Service

IIS

Application

Database

(e)

Figure 6.3: Summary of different approaches

CHAPTER 6. EXPERIMENTS 89

Table 6.9: Parameters of the experiments

Parameters Current setting/metric

1 Request frequency 1 req/min

2 Polling frequency 10 per min

3 Number of replicas 5

4 Client timeout period for retry 10 mins

5 Max number of retries 5

6 Failure rateλ number of failures/hour

7 Load (profile of the program) 78.5%

8 Reboot time 10 min

9 Failover time 1 s

10 Communication time to

Computational time ratio 10:1

11 Round-robin rate 1 s

12 Temporary fault probability 0.01

13 Permanent fault probability 0.001

ments.

For each of the approaches described in the pervious section, sev-

eral experiments are performed. In each approach, we compare eight

approaches, as shown in Table 6.7, for providing the Web services.

The details of the experiments are as follows:

1. Single server without retry and reboot. The Web service is pro-

vided by a single server without any replication. No redun-

dancy technique is applied to this Web service.

2. Single server with retry. The Web server provides the service and

the client tries another Web service when there is no response

from the original Web service after timeout.

CHAPTER 6. EXPERIMENTS 90

3. Single server with reboot. The Web service provides the service

and the Web server will reboot when there is no response from

the Web service. Clients will not retry after timeout where there

is no response from the service.

4. Single server with retry and reboot. The Web service provides

the service and the Web server will reboot when there is no

response from the Web service. Clients will retry after timeout

when there is no response from the service.

5. Spatial replication with Round-robin / N-version / Recovery

block. We use a generic spatial replication: For the first ap-

proach, the Web service is replicated on different machines and

the requests are transferred to different Web services according

to the scheduling of the workload by the replication manager.

The replication manager carries out a failover in case of a fail-

ure. For the second approach, five different versions of the Web

service are employed. The requests are sent to all versions and

the majority answer is chosen by voting and sent back to the

client. The client will only submit the request once and will

not retry. For the third approach, different versions of Web ser-

vice is run on different servers and the request is sent to the

primary Web service and the result is pass to the acceptance. If

the result is failed, the backup Web service will be take up the

request and rollback to the checkpoint.

6. Spatial replication with Round-robin / N-version / Recovery

block and retry. This is a hybrid approach which is based on

the approach in experiment 5. However, the clients will retry

CHAPTER 6. EXPERIMENTS 91

after timeout when there is no response from the service.

7. Spatial replication with Round-robin / N-version / Recovery

block and reboot. This is similar to the experiment 5 where

the Web service is run on different machines and the request

is transferred to the server scheduled by the replication man-

ager. In addition, the Web server will reboot when there is no

response from the Web service.

8. Hybrid approach with spatial replication, retry and reboot. This

is the fully hybrid approach. The Web service is run as de-

scribed in experiment 5. The server will reboot when there is

no response from the Web service, and the client will retry after

timeout.

Our experimental system is implemented with Visual Studio .Net

and runs with a .Net framework. The Web server is run on different

machines and the Web service providing the service is chosen by the

replication manager.

6.5 Experimental Results

The Web services were executed for 7 days for each experiment,

generating a total of 10000 requests from the client. A single fail-

ure is counted when the system cannot reply to the client. For the

approach with retry, a single failure is counted when a client retries

five times and still cannot get the result. A summary of the results

with the Round-robin algorithm, N-version programming and recov-

ery block approach are shown in the following tables (Table 6.10 to

Table 6.13).

CHAPTER 6. EXPERIMENTS 92

Table 6.10: Experimental results without spatial redundancy

Experiments

(number of failure / 1 2 3 4

response time(s))

Normal case 5/186 3/192 2/190 3/187

Temporary 1025/190 4/223 1106/231 4/238

Permanent 8945/3000 8847/3000 1064/3000 5/1978

Byzantine failure 315/188 322/208 314/186 326/205

Network failure 223/187 2/227 239/193 3/231

Average 2102/730 1835/770 541/220 68/568

Table 6.10 to Table 6.13 show the improvement of the reliability

of the system with our proposed paradigm. In the normal case, no

failures are introduced into the system. For the other cases, we insert

various kinds of faults into the systems.

When no redundancy techniques are applied on the Web service

system (Exp 1), it is clearly seen that the average failure rate of

the system is the highest. The results from the two different ways

of improving reliability investigated here, i.e. spatial redundancy

with replication and temporal redundancy with retry or reboot, are

described below.

6.5.1 Single Server with Retry

When the system is under temporary fault and network fault, the ex-

periment shows that the temporal redundancy helps to improve the

reliability of the system. For the Web service with retry (Exp 2), the

number of failures is reduced to zero. This shows that the temporal

CHAPTER 6. EXPERIMENTS 93

Table 6.11: Experimental results with Round-robin

Experiments

(number of failure / 5 6 7 8

response time(s))

Normal case 4/188 2/195 3/193 2/190

Temporary 1044/187 3/233 1057/188 2/231

Permanent 5637/3000 5532/3000 213/187 3/191

Byzantine failure 152/189 5/219 187/192 3/194

Network failure 237/193 3/213 206/197 2/192

Average 1415/751 1109/772 333/191 2/199

Table 6.12: Experimental results with N-version programming

Experiments

(number of failure / 5 6 7 8

response time(s))

Normal case 0/189 0/190 0/188 0/188

Temporary 0/190 0/190 0/189 0/187

Permanent 3125/191 3418/192 197/189 0/191

Byzantine failure 0/190 0/191 0/190 0/188

Network failure 0/190 0/192 0/188 0/187

Average 625/190 683/191 40/189 0/188

CHAPTER 6. EXPERIMENTS 94

Table 6.13: Experimental results with recovery block

Experiments

(number of failure / 5 6 7 8

response time(s))

Normal case 0/191 0/189 0/193 0/188

Temporary 0/205 0/203 0/204 0/201

Permanent 3478/215 3245/208 201/211 0/201

Byzantine failure 0/194 0/198 0/195 0/194

Network failure 0/195 0/197 0/198 0/194

Average 696/200 649/199 40/200 0/198

redundancy with retry approach can significantly improve the relia-

bility of the Web service. When a fault occurs in the Web service,

on average, the clients need to retry twice to get the response from

the Web service. However, the response time of the Web service is

increased. Also, when there is a permanent fault, this scheme cannot

reduce the number of failures in the system.

6.5.2 Single Server with Reboot

Another temporal redundancy approach is Web service with reboot

(Exp 3). Our results show that the failure rate of the system is re-

duced when there is a permanent fault, in which case the server will

try to reboot. Once the server finishes rebooting, it can provide the

service again. The resulting failure rate is reduced from 85.3% to

14.0%. For temporary faults, the improvement is not as substantial

as that of the temporal redundancy with retry. This is due to the fact

that, when the Web service cannot be provided, the server will take

CHAPTER 6. EXPERIMENTS 95

time to reboot.

6.5.3 Single Server with Retry and Reboot

With retry and reboot, the failure rate of both temporary and per-

manent cases are reduced. This approach enjoys the advantages of

both algorithms. For temporary faults, the number of failures is re-

duced to zero. For permanent faults, the number of failures is sig-

nificantly reduced from 85.3% to 1%; however, the response time is

also greatly increased.

6.5.4 Spatial Replication with Round-robin

Refer to the Table 6.14, with the spatial replication approach in Exp

5 with Round-robin, the failure rate in the permanent fault is reduced

from 85.3% to 78.3%. The failure rate is reduced because there are

more servers in the system. When a server has failed, the replication

manager will update the availability list and forward the requests to

other servers. However, when all the servers have failed, the system

will not be able to handle the requests from the clients. For the

Byzantine failure, the failure rate is also reduced. This is because,

with the Round-robin algorithm, different servers are employed for

different requests, and so, the failure rate is reduced.

6.5.5 Spatial Replication with N-version Programming

Refer to the Table 6.12, with the spatial replication approach in the

N-version programming of Exp 5, the failure rate of the Web service

is greatly reduced. When a fault occurs in a Web service, other Web

CHAPTER 6. EXPERIMENTS 96

services are still operating, from which the majority result will be

selected and returned to the client. Thus, the fault of a Web service

will be tolerated in the system. When permanent faults occur, the

failure rate is reduced from 85.3% to 21.4% with this scheme. For

Byzantine and network faults, the N-version approach can even re-

duce the failure rate to zero in our experiment. It is noted that in the

N-version approach, the failure rate is much lower than that of the

Round-robin approach. This shows the majority results are normally

more reliable than the results produced by an individual version.

6.5.6 Spatial Replication with Recovery Block

Refer to the Table 6.13, with the spatial replication approach in the

recovery block of Exp 5, the failure rate of reduced greatly. When

the fault occurs in a Web service, it is detected by the acceptance test.

Thus, the system will rollback to the checkpoint and perform the

task again with another service. This approach successfully reduce

the failure rate in most of the situations.

6.5.7 Spatial Replication, Retry or Reboot with Round-robin

In Exp 6 and 7, hybrid approaches with retry (Exp 6) or reboot (Exp

7) are conducted. We find that the failure rate is not much improved

compared with that in Exp 4. However, the average response time

of the Web service is reduced.

CHAPTER 6. EXPERIMENTS 97

6.5.8 Spatial Replication, Retry or Reboot with N-version Web

Service

In Exp 6 and 7, hybrid approaches with retry (Exp 6) or reboot (Exp

7) are conducted. We find that the failure rate is reduced to zero. It

shows that when the N-version programming is applied to the Web

service system together with the temporal replication techniques, the

reliability of the system is improved a lot. This approach is efficient

also. The average response time for the Web service is around 190

seconds, which is more or less the same as the normal case.

6.5.9 Spatial Replication, Retry or Reboot with Recovery Block

In Exp 6 and 7, hybrid approaches with retry (Exp 6) or reboot (Exp

7) are conducted. We find that the failure rate is reduced to zero. The

reliability of the system is improved by the recovery block approach

with temporal replication. However, the response time is a bit longer

than the approach with N-version programming. This is because all

the requests need to pass through the acceptance test before it returns

to the client.

6.5.10 Spatial Replication with Round-robin / N-version / Re-

covery Block, Retry and Reboot

After performing the above experiments, we propose a hybrid ap-

proach for improving the reliability of Web services, including spa-

tial redundancy, retry and reboot. The reliability of the system is

improved most significantly by this approach: The failure rate of the

system is reduced from 85.3% to 0 and the average response time is

CHAPTER 6. EXPERIMENTS 98

shortened. The replication manager keeps checking the availability

of the Web services. When there is a server fault, other servers are

responsible for handling the requests. At the same time, the failed

server will reboot. Thus, the response time for handling the requests

is greatly reduced. In Exp 8, it is demonstrated that this approach

results in the lowest failure rate. This demonstrates that combining

spatial and temporal redundancy in a hybrid approach achieves the

highest gain in reliability improvement of the Web service.

6.5.11 Comparing the Three Approaches

Table 6.14 shows the comparison between different approaches, in-

cluding no spatial replication, Round-robin scheduling approach, N-

version programming and recovery block.X stands for there are

failures in that approach,V stands for there is no failure in that ap-

proach. It is clear that spatial replication helps to improve the reli-

ability of the system. N-version programming and recovery block

approach even achieve zero failure case when it is combined with

the temporal replication.

The detailed performance and reliability comparisons are described

in the following sections with the Petri-Net and Markov chain mod-

elings.

6.6 Verification with Models

In the pervious chapter, we built the Petri-Net and Markov chain

model for the proposed reliable Web services paradigm. We are now

going to use the parameters obtained in the experiments to predict

CHAPTER 6. EXPERIMENTS 99

Table 6.14: Comparing the three approaches

Failure No spatial replication Round-robin N-version Recovery block

Normal case V V V V

Temporary X V V V

Permanent X X V V

Byzantine failure X X V V

Network failure X X V V

the throughput and reliability of the system.

6.6.1 Petri-Net

According to the parameters obtained from the experiments, the per-

formance of the system over time is obtained with the tool SHARPE

and Figure 6.4 shows the result.

6.6.2 Markov Chain Model

Based on the experiments described in the pervious section, we ob-

tain the fault rates and the repair rates of various components in the

system; the results are shown in Table 6.15. The reliability of the

system over time is further calculated with the tool SHARPE. Fig-

ure 6.6 shows the reliability over time at different fault ratesλ∗; the

repair rate is (set at) 0.421 faults/s. Note that the fault rate obtained

from the experiments is 0.03 failure/s. This failure rate is measured

under an accelerated testing environment.

Through the models developed, the characteristic of the system

proposed is shown.

By considering the test compression factor [47], the failure rate of

CHAPTER 6. EXPERIMENTS 100

Figure 6.4: Throughput of the Web service

Table 6.15: Model parameters

ID Description Value

λN Network fault rate 0.05

λ∗ Web service fault rate 0.03

λ1 Temporary fault rate 0.01

λ2 Permanent fault rate 0.001

µ∗ Web service repair rate 0.421

µ1 Temporary fault repair rate 0.995

µ2 Permanent fault repair rate 0.995

C1 Probability that the RM response is on time 0.978

C2 Probability that the server reboots successfully0.978

CHAPTER 6. EXPERIMENTS 101

the system in a real situation will be much less. A similar reliability

curve is plotted with in Figure 6.5 with repair rateµ∗ equal to 0.572

failure/s.

Reliability over Time with repair rate 0.572

Failure Rate

0.025

0.01

0.005

Figure 6.5: Reliability with different failure rate and repair rate is 0.572

Through the model, we confirm that the analysis result agreed

with the experiment in the pervious section. Also, we demonstrates

the properties of the Web service with models, including the relia-

bility and performance.

CHAPTER 6. EXPERIMENTS 102

Reliability over Time with repair rate 0.523

Fault Rate

0.025

0.01

0.005

seconds

Figure 6.6: Reliability with different fault rates and repair rates

CHAPTER 6. EXPERIMENTS 103

6.7 Experiments for the Web Service Composition

Algorithm

In this section, we preform experiments to evaluate the properties,

correctness and performance of the proposed Web service compo-

sition algorithm. We generate different versions of BRF with the

Web service composition algorithm and evaluate with program met-

rics. Furthermore, we perform an acceptance test on the composed

versions to evaluate the correctness of the algorithm.

6.7.1 Different Versions of Best Route Finding

We obtained several versions of BRF, which are implemented by

different teams using different components. Also, the Web service

components may differ between parties; thus, in this experiment, we

try to compose the Web services from different versions with the

WSDL and WSCI provided to create new versions.

According to the Web service composition algorithm described

in Section 3, different versions of BRF are composed. The pro-

gram metrics for 15 versions of BRF are shown in Table 6.16, where

the first 11 versions are implemented by different teams and the

rest are composed by the proposed algorithm. In the experiment,

we recorded the following information of each versions: number of

lines in the program, number of lines without comments, number of

functions, complexity [49], composition time (the time for compos-

ing the version), and deadlock-free checking result.

CHAPTER 6. EXPERIMENTS 104

Table 6.16: Program metrics of the 15 versions

ID Lines Line without Number of Complexity time for Deadlock free Acceptance

comment function composition (s) test

01 3452 3052 59 64 - yes pass

02 2372 1982 47 87 - yes pass

03 2582 2033 26 45 - yes pass

04 3223 3029 78 124 - yes pass

05 2358 2017 34 89 - yes pass

06 4478 3978 56 107 - yes pass

07 1452 1320 38 46 - yes pass

08 5874 5275 80 124 - yes pass

09 3581 3214 45 74 - yes pass

10 4578 4187 47 113 - yes pass

11 2364 2015 36 76 - yes pass

12 2987 2336 65 147 1.48 yes pass

13 4512 3948 75 155 1.74 yes pass

14 3698 3247 60 192 1.58 yes pass

15 4185 3856 34 88 1.62 yes pass

CHAPTER 6. EXPERIMENTS 105

6.7.2 Verification with Petri-Net

Petri-Net of each version are constructed and verified with the SHAPRE

tool. In each version, the Petri-Net is constructed and the results are

shown in 6.16.

6.7.3 Acceptance Test

To test the correctness of the composed Web service, an acceptance

test is prepared. Once the composition is finished, 100 test cases are

run on the system. For the BRF, the acceptance test is designed as

follows.

There are 100 tests cases. In each test, we provide a start point

and a destination. The system will give out the best route with the

transit points, total price and time. For each test case, we have the

solution with which we compare the output from the system.

6.7.4 Experiments on the Proposed Reliable Paradigm

With the composed versions of the Web service, we perform a series

of experiments on our proposed reliable Web service paradigm. We

employed 10 versions Web service in our experiment.

Our experimental environment is defined by a set of parameters.

Table 6.17 shows the parameters of the Web services in our exper-

iments. We have modified some of the parameters and new experi-

ments are performed.

CHAPTER 6. EXPERIMENTS 106

Table 6.17: Parameters of the experiments

Parameters Current setting/metric

1 Request frequency 1 req/min

2 Polling frequency 10 per min

3 Number of versions 15

4 Client timeout period for retry 10 mins

5 Max number of retries 5

6 Failure rateλ number of failures/hour

7 Load (profile of the program) 78.5%

8 Reboot time 10 min

9 Failover time 1 s

10 Communication time to

Computational time ratio 10:1

11 Round-robin rate 1 s

12 Temporary fault probability 0.01

13 Permanent fault probability 0.001

CHAPTER 6. EXPERIMENTS 107

Table 6.18: Experimental results without spatial redundancy

Experiments

(number of failure / 1 2 3 4

response time(s))

Normal case 5/186 3/192 2/190 3/187

Temporary 1025/190 4/223 1106/231 4/238

Permanent 8945/3000 8847/3000 1064/3000 5/1978

Byzantine failure 315/188 322/208 314/186 326/205

Network failure 223/187 2/227 239/193 3/231

Average 2102/730 1835/770 541/220 68/568

6.7.5 Experimental Results

The Web services were executed for 7 days for each experiment,

generating a total of 10000 requests from the client. A single failure

is counted when the system cannot reply to the client. For the ap-

proach with retry, a single failure is counted when a client retries five

times and still cannot get the result. A summary of the results with

the Round-robin algorithm, N-version programming and recovery

block are shown in Table 6.18 to Table 6.21.

Table 6.18 to Table 6.21 shows the improvement of the reliability

of the system with our proposed paradigm. In the normal case, no

failures are introduced into the system. For the other cases, we insert

various kinds of faults into the systems.

6.7.6 Discussion

After composition, a BPEL for that version of Web service would

be created and the corresponding Petri-Net is constructed for dead-

CHAPTER 6. EXPERIMENTS 108

Table 6.19: Experimental results with Round-robin

Experiments

(number of failure / 5 6 7 8

response time(s))

Normal case 5/216 3/225 3/224 1/220

Temporary 1114/215 2/281 1072/218 3/284

Permanent 5682/3000 5362/3000 222/217 3/224

Byzantine failure 142/219 6/259 177/222 2/224

Network failure 229/223 2/253 211/227 2/222

Average 1434/775 1075/804 328/222 2/235

Table 6.20: Experimental results with N-version programming

Experiments

(number of failure / 5 6 7 8

response time(s))

Normal case 0/219 0/220 0/216 0/217

Temporary 0/221 0/222 0/219 0/216

Permanent 3136/221 3427/223 189/229 0/221

Byzantine failure 0/221 0/219 0/220 0/218

Network failure 0/220 0/222 0/218 0/217

Average 627/220 685/221 38/218 0/217

CHAPTER 6. EXPERIMENTS 109

Table 6.21: Experimental results with recovery block

Experiments

(number of failure / 5 6 7 8

response time(s))

Normal case 0/221 0/219 0/224 0/219

Temporary 0/235 0/231 0/237 0/231

Permanent 3473/241 3250/238 201/242 0/231

Byzantine failure 0/224 0/230 0/225 0/224

Network failure 0/225 0/226 0/228 0/224

Average 695/231 650/229 40/231 0/228

lock free-checking. The result is also shown in Table 6.16. With our

proposed composition algorithm, the average Web service composi-

tion time for different versions is 1.605 seconds and all the versions

are deadlock-free. Compare with the existing algorithms, it is 0.3

seconds faster and deadlock-free guaranteed. According to the ac-

ceptance test results, the correctness of our algorithm is good. All

the test cases are passed. Moreover, another advantage of our algo-

rithm is dynamic. Whenever there are new components, our algo-

rithm can be applied to generate new version without rewriting the

specification.

Also, from the experiment, the results agree with the results per-

formed in the pervious section. The proposed paradigm improves

the reliability of the system.

CHAPTER 6. EXPERIMENTS 110

6.8 Summary

In this chapter, we describe the details of experiments on the pro-

posed reliable Web service paradigm and the Web service compo-

sition algorithm. We perform a series of experiments to evaluate

the reliability and performance of the Web services when the pro-

posed paradigm is applied. Through the experiments, we verify that

our Web service paradigm is reliable when both spatial and tempo-

ral replication is employed. Also, we propose to apply Round-robin

scheduling algorithm, N-version programming and recovery block

to our scheme. They further improve the reliability of the system.

Also, we perform the correctness check on the proposed Web ser-

vice composition algorithm. We generate different versions of the

BRF system and perform the acceptance test and deadlock-free test

with Petri-Net.

2 End of chapter.

Chapter 7

Conclusion and Future Work

In this thesis, we surveyed the applicability of replication and design

diversity techniques for reliable Web services and proposed a hybrid

approach for improving the reliability of Web services. Furthermore,

a dynamic service composition algorithm was proposed to enhance

the readiness of different versions of Web services available on the

Web. The correctness of the proposed algorithm is verified through

Petri-Nets. Also, we described a series of experiments to evaluate

the performance and reliability of the proposed Web service system.

From the experiments, we concluded that both temporal redundancy

and spatial redundancy are important for reliability improvement of

Web services, especially when applying the N-version programming

techniques. Thus, modeling techniques by Markov chains provide

further insights into reliability of Web service systems using the pro-

posed fault tolerant mechanisms, which can be deployed in various

industry applications.

111

CHAPTER 7. CONCLUSION AND FUTURE WORK 112

7.1 Contributions

1. We performed a survey on the current state-of-the-art Web ser-

vice techniques, fault tolerance technologies and Web service

composition algorithm.

2. We proposed a reliable Web service paradigm. We describe the

methods of dependability enhancement by redundancy in space

and redundancy in time which improve both the reliability and

performance of the system.

3. We proposed three approaches, Round-robin [64], N-version

programming [45] and recovery block [64], to be intergraded

with our system to increase the reliability of the system,

4. We proposed an algorithm for Web services composition. In

the algorithm, WSCI [4] and BPEL [3] are employed to enable

the compositability of the Web services. The composition al-

gorithm are verified through Petri-Nets. The correctness and

deadlock-free are checked in our proposed scheme. Also, the

performance of the algorithm is better then the existing ones.

5. We performed a series of experiments. A series of experiments

are designed and performed for evaluating the reliability of the

Web service. Also, according to the Web service composi-

tion algorithm proposed, different versions of the experiment

system are composed and the program metrics are measured.

Thus, the correctness and the performance of the proposed al-

gorithm is evaluated.

6. Finally, we developed reliability models of the proposed Web

CHAPTER 7. CONCLUSION AND FUTURE WORK 113

service paradigm using Petri-Net [53] and Markov chains model

[24]. The correctness, reliability and throughput of the pro-

posed paradigm are evaluated with the models built.

7.2 Future Work

In this thesis, we developed a reliable Web service paradigm and a

Web service composition algorithm. Through the experiments, we

verified the correctness and reliability of the system. We can further

enhance the system by including more Web service characteristics

and perform more solid experiments.

Also, Web Services can be applied to many different areas, such

as e-business, aerospace applications, teaching. . . etc. Different ap-

plications have different requirements, such as reliability, perfor-

mance, correctness. . . etc. There are more researches need to be

done to enable them to be realized in the Internet. In this thesis

we only discuss the reliability issue, more work can be done on the

varies areas.

2 End of chapter.

Bibliography

[1] http://www.ebpml.org/bpml.htm.

[2] http://www.ebxml.org/.

[3] A. Alves and e. al. Web services business process

execution language version 2.0. Inhttp://www.oasis-

open.org/committees/documents.php, 2006.

[4] A. Arkin, S. Askary, S. Fordin, W. Jekeli, and e. al.

Web Service Choreography Interface (WSCI) 1.0. W3C,

http://www.w3.org/TR/wsci/, 2002.

[5] A. Avizienis. The methodology of n-version programming. In

M. R. Lyu, editor,Software Fault Tolerance, pages 23–43, New

York, 1995. Wiley.

[6] A. Avizienis and L. Chen. On the implementation of n-version

programming for software fault-tolerance during program exe-

cution. InProc. of First International Computer Software and

Applications Conference, pages 149–155, 1977.

[7] A. Avizienis and J. Kelly. Fault tolerance by design diversity:

Concepts and experiments.IEEE Transactions on Computer,

pages 67–80, Aug 1984.

114

BIBLIOGRAPHY 115

[8] F. Belli and J. Jedrzejowicz. Reliability modelling of fault tol-

erant programs. InProc. of Fifth IASTED International Confer-

ence V Reliability and Quality Control, pages 53–56, Lugano,

Switzerland, 1989.

[9] O. Berman and U. Kumar. Optimisation models for recovery

block schemes.European Journal of Operational Research,

115(2):368–397, 1999.

[10] R. Bilorusets and A. Bosworth. Web services reliable mes-

saging protocol ws-reliablemessaging. Technical report, EA,

Microsoft, IBM and TIBCO Software, Mar 2004.

[11] P. G. Bishop. Software fault tolerance by design diversity. In

M. R. Lyu, editor,Software Fault Tolerance, pages 211–227,

New York, 1995. Wiley.

[12] X. Cai. Coverage-Based Testing Strategies and Reliability

Modeling for Fault-Tolerant Software Systems. PhD thesis, The

Chinese University of Hong Kong, Aug 2006.

[13] D. Caromel, A. Costanzo, D. Gannon, and A. Slominski. Asyn-

chronous peer-to-peerweb services and firewalls. InProc.

19th IEEEInternational Conference Conference on Parallel

and Distributed Symposium, page 183, Apr 2005.

[14] M. Castro and B. Liskov. Practical byzantine fault tolerance

and proactive recovery.ACM Trans. Comput. Syst., 20(4):398–

461, 2002.

[15] P. Chan. Best Route Finding specification.

http://www.cse.cuhk.edu.hk/pwchan/BRF.doc, 2006.

BIBLIOGRAPHY 116

[16] P. Chan, M. Lyu, and M. Malek. Making services fault toler-

ant. InProc. of the 3rd International Service Availability Sym-

posium, volume 4328, pages 43–61, Helsinki, Finland, 15-16

May 2006. Springer.

[17] P. Chan, M. Lyu, and M. Malek. Reliable web services:

Methodology, experiment and modeling. InProc. of IEEE In-

ternational Conference on Web Services, Salt Lake City, Utah,

USA, 9-13 Jul 2007.

[18] Z. Chen, J. Ma, L. Song, and L. Lian. An efficient approach to

web services discovery and composition when large scale ser-

vices are available. InProc. of IEEE Asia-Pacific Conference

on Services Computing (APSCC ’06), pages 34–41, 2006.

[19] W. Chou, G. Wang, L. Li, and F. Liu. Web service enablement

of communication services. InProc. of IEEE International

Conference on Web Services (ICWS 2005), pages 393–400, Jul

2005.

[20] W.-L. Dong, H. Yu, and Y.-B. Zhang. Testing bpel-based web

service composition using high-level petri nets. InProc. of the

10th IEEE International Enterprise Distributed Object Com-

puting Conference (EDOC ’06), pages 441–444, Oct. 2006.

[21] D. E. Eckhardt, Caglavan, Knight, Lee, McAllister, Vouk, and

Kelly. An experimental evaluation of software redundancy as a

strategy for improving reliability.IEEE Transactions on Soft-

ware Engineering, 17(7):692–702, Jul 1991.

BIBLIOGRAPHY 117

[22] S. ECMA-348. Web services description language (wsdl) for

csta phase iii. InProc. 19th IEEEInternational Conference

Conference on Parallel and Distributed Symposium, page 2nd

Edition, Jun 2004.

[23] A. Erradi and P. Maheshwari. A broker-based approach for im-

proving web services reliability. InProc. of IEEE International

Conference on Web Services, volume 1, pages 355–362, 11-15

Jul 2005.

[24] K. Goseva-Popstojanova and K. Trivedi. Failure correlation in

software reliability models.IEEE Transactions on Reliability,

49(1):37–48, Mar 2000.

[25] M. Haines. Web service as information systems innovation:

A theoretical framework for web service technology adoption.

In Proc. of IEEE International Conference on Web Services

(ICWS 2004), pages 11–16, Jul 2004.

[26] S. Jones. Toward an acceptable definition of service [service-

oriented architecture]. IEEE Transactions on Software,

22(3):87–93, May-Jun 2005.

[27] B. Kim. Reliability analysis of real-time controllers with dual-

modular temporal redundancy. InProc. of the Sixth Interna-

tional Conference on Real-Time Computing Systems and Ap-

plications (RTCSA), pages 364–371, 13-15 Dec 1999.

[28] J. C. Knight and N. G. Leveson. An experimental evaluation

of the assumption of independence in multiversion program-

BIBLIOGRAPHY 118

ming. IEEE Transactions on Software Engineering, 12(1):96–

109, Jan 1986.

[29] J. Kwon, K. Park, D. Lee, and S. Lee. Psr : Pre-computing

solutions in rdbms for fastweb services composition search. In

Proc. of IEEE International Conference on Web Services, 2007.

ICWS 2007., pages 808–815, 9-13 Jul. 2007.

[30] J. Lala and R. Harper. Architectural principles for safety-

critical real-time applications. InProc of IEEE, volume 82,

pages 25–40, Jan 1994.

[31] L. Lamport, R. Shostak, and M. Pease. The byzantine gener-

als problem.ACM Trans. Program. Lang. Syst., 4(3):382–401,

1982.

[32] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Architec-

tural issues in software fault tolerance. In M. R. Lyu, editor,

Software Fault Tolerance, pages 47–80, New York, 1995. Wi-

ley.

[33] J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, and C. Hour-

tolle. Hardware and software fault tolerance: definition and

analysis of architectural solutions. InProc. of the 17th Inter-

national Symposium on Fault-Tolerant Computing (FTCS-17),

pages 116–121, Pittsburgh, PA, 1987.

[34] J. C. Laprie and K. Kanoun. Software reliability and system

reliability. In M. R. Lyu, editor,M. R. Lyu, editor, Handbook

of Software Reliaiblity Engineering, pages 27–69, New York,

1996. McGraw-Hills.

BIBLIOGRAPHY 119

[35] F. Lecue, A. Delteil, and A. Leger. Applying abduction in se-

mantic web service composition. InProc. of IEEE Interna-

tional Conference on Web Services, 2007. ICWS 2007., pages

94–101, 9-13 Jul. 2007.

[36] D. Leu, F. Bastani, and E. Leiss. The effect of statically and

dynamically replicated components on system reliability.IEEE

Transactions on Reliability, 39(2):209–216, 1990.

[37] F. Leymann. Web services flow language (wsfl 1.0). Technical

report, Member IBM Academy of Technology, IBM Software

Group, May 2001.

[38] D. Liang, C. Fang, and C. Chen. Ft-soap: A fault-tolerant

web service. Technical report, Institute of Information Science,

Academia Sinica, 2003.

[39] D. Liang, C. Fang, and S. Yuan. A fault-tolerant object service

on corba.Journal of Systems and Software, 48:197–211, 1999.

[40] F. Liu, G. Wang, L. Li, and W. Chou. Web service for dis-

tributed communication systems. InProc. of IEEE Interna-

tional Conference on Service Operations and Logistics, and

Informatics, pages 1030–1035, Jun 2006.

[41] P. Liu and M. Lewis. Uniform dynamic deployment of web

and grid services. InProc. of IEEE International Conference

on Web Services (ICWS 2007), pages 26–34, Jul 2007.

[42] N. Looker and M. Munro. Ws-ftm: A fault tolerance mecha-

nism for web services. Technical report, University of Durham,

19 Mar 2005.

BIBLIOGRAPHY 120

[43] N. Looker, M. Munro, and J. Xu. A comparison of network

level fault injection with code insertion. InProc. of the 29th An-

nual International Computer Software and Applications Con-

ference 2005, volume 1, pages 479–484, 26-28 Jul 2005.

[44] N. Looker and J. Xu. Assessing the dependability of soap-rpc-

based web services by fault injection. InProc. of the 9th IEEE

International Workshop on Object-oriented Real-time Depend-

able Systems, pages 163–170, 2003.

[45] M. Lyu and A. Avizienis. Assuring design diversity in n-

version software: A design paradigm for n-version program-

ming. In H. Pham, editor,Proc. of Fault-Tolerant Software

Systems: Techniques and Applications, IEEE Computer Soci-

ety Press Technology Series, pages 45–54, 1992.

[46] M. Lyu and V. Mendiratta. Software fault tolerance in a clus-

tered architecture: Techniques and reliability modeling. In

Proc. of 1999 IEEE Aerospace Conference, volume 5, pages

141–150, Snowmass, Colorado, 6-13 Mar 1999.

[47] M. R. Lyu, editor.Handbook of Software Reliability Engineer-

ing. IEEE Computer Society Press and McGraw-Hill Book

Company, 1995.

[48] M. R. Lyu, editor. Software Fault Tolerance. John Wiley and

Sons Inc, Apr 1995.

[49] McCabe and J. Thomas. A complexity measure.IEEE Trans-

actions on Software Engineering, 2(4):308–320, Jan 1976.

BIBLIOGRAPHY 121

[50] S. McIlraith and T. Son. Adapting golog for composition of

semantic web services. InProc. of the 8th International Con-

ference on Principles of Knowledge Representation and Rea-

soning, pages 482–493, 2002.

[51] M. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and

P. Narasimhan. Thema: Byzantine-fault-tolerant middleware

for web-service application. InProc. of IEEE Symposium on

Reliable Distributed Systems, Orlando, FL, Oct 2005.

[52] M. Mukarram and e. al. Introducing dynamic distributed coor-

dination in web services for next generation service platform.

In Proc. of IEEE International Conference on Web Services

(ICWS 2004), pages 296–305, Jul 2004.

[53] J. Peterson.Petri Net Theory and the Modeling of Systems.

Prentice-Hall, 1981.

[54] S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for

web service composition. InProc. of International Conference

on World Wide Web 2002, 2002.

[55] B. Randell. System structure for software fault tolerance.IEEE

Transactions on Software Engineering, 1(2):220–232, 1975.

[56] B. Randell. Fault tolerance in decentralized systems. InProc.

the 4th International Symposium on Autonomous Decentral-

ized Systems (ISADS ’99), pages 174–179, Tokyo, Japan, 20-23

Mar 1999. IEEE Computer Society Press 1999.

BIBLIOGRAPHY 122

[57] B. Randell and J. Xu. The evolution of the recovery block

concept. In M. R. Lyu, editor,Software Fault Tolerance, pages

1–21, New York, 1995. Wiley.

[58] J. Rao and e. al. Logic-based web services compositions: from

service description to process model. InProc. of IEEE Interna-

tional Conference on Web Services (ICWS 2004), pages 446–

453, Jul 2004.

[59] W. Rao, A. Orailoglu, and R. Karri. Fault tolerant approaches

to nanoelectronic programmable logic arrays. InProc. of the

37th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks, 2007. DSN ’07, pages 216–224,

25-28 Jun. 2007.

[60] R. Riter. Modeling and testing a critical fault-tolerant multi-

process system. InProc. of the 25th International Symposium

on Fault-Tolerant Computing, pages 516–521, 1995.

[61] R. Sahner, K. Trivedi, and A. Puliafito. Performance

and Reliability Analysis of Computer Systems. An Example-

BasedApproach Using the SHARPE Software Package. Kluwer

Academic Publishers, Boston/London/Dordrecht, 1996.

[62] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Se-

lection algorithms for replicated web servers. InProc. of Work-

shop on Internet Server Performance 98, Madison, WI, Jun

1998.

BIBLIOGRAPHY 123

[63] K. Shen and M. Xie. On the increase of system reliabil-

ity by parallel redundancy.IEEE Transactions on Reliability,

39(5):607–611, Dec 1990.

[64] M. Shreedhar and G. Varghese. Efficient fair queueing using

deficit round-robin. IEEE/AMC Transactions on Networking,

4(3):375–385, Jun 1996.

[65] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A.

Connors. Using process-level redundancy to exploit multiple

cores for transient fault tolerance. InProc. of the 37th An-

nual IEEE/IFIP International Conference on Dependable Sys-

tems and Networks, 2007. DSN ’07, pages 297–306, 25-28 Jun.

2007.

[66] B. Srivastava and J. Koehler. Web service composition — cur-

rent solutions and open problems. InICAPS 2003, 2003.

[67] S. Thatte. Xlang: Web services for business process design.

Technical report, Microsoft, Jun. 2001.

[68] P. Townend, P. Groth, N. Looker, and J. Xu. Ft-grid: A fault-

tolerance system for e-science. InProc. of the UK OST e-

Science Fourth All Hands Meeting (AHM05), Sept 2005.

[69] W. Tsai, Z. Cao, Y. Chen, and R. Paul. Web services-based col-

laborative and cooperative computing. InProc. of Autonomous

Decentralized Systems, pages 552–556, 4-8 Apr 2005.

[70] P. Wang, J. Zhang, and Z. Chang. Fault tolerance of

multiprocessor-structured control system by hardware and soft-

ware reconfiguration. InProc. of International Conference

BIBLIOGRAPHY 124

on Mechatronics and Automation, 2007. ICMA 2007., pages

3745–3749, 5-8 Aug. 2007.

[71] Wikipedia. BPEL. http://en.wikipedia.org/wiki/BPEL.

[72] Y. Yan, Y. Liang, and X. Du. Controlling remote instruments

using web services for online experiment systems. InProc. of

IEEE International Conference on Web Services (ICWS) 2005,

11-15 Jul 2005.

[73] T. Zhou, X. Zheng, and D. Chen. Personalized web service

composition model for non-diploma distance learning. InProc.

of 11th International Conference on Computer Supported Co-

operative Work in Design, 2007. CSCWD 2007., pages 962–

966, 26-28 Apr. 2007.

