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The rapid emergence of cloud services and systems has made them
indispensable components of the modern digital landscape. Lead-
ing cloud providers like AWS, Microsoft Azure, and Google Cloud
Platform operate on an immense scale, serving billions of users
and businesses globally. Ensuring the reliability of these cloud
systems is paramount, as service interruptions can lead to sig-
nificant financial impacts. Despite the high priority placed on
system reliability, the complexity and scale of cloud environments
pose substantial challenges to incident management.

To address these challenges, this thesis explores intelligent re-
liability management for cloud systems through data-driven ap-
proaches. Our research is driven by the heterogeneous data gener-
ated by cloud systems, including logs, metrics, alerts, and tickets.
We present three significant contributions:

First, we propose Prism, a method to enhance system observ-
ability in virtualized cloud environments by inferring functional
clusters of instances with similar communication and resource us-
age patterns. This approach addresses the challenge of degraded
observability due to virtualization, which complicates the correla-
tion of issues across different layers. Prism employs a coarse-to-
fine strategy: initially, it uses communication patterns to coarsely
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divide instances into smaller chunks (trace-based partitioning),
followed by fine-grained clustering within each chunk based on
resource usage patterns (metric-based clustering). By identifying
these functional clusters, Prism provides deeper insights into the
relationships between instances and their functionalities, aiding in
timely detection and mitigation of issues.

Second, we introduce SeaLog, a scalable and adaptive log-
based anomaly detection method. SeaLog leverages the combined
strengths of large language models (LLMs) and traditional ma-
chine learning techniques to effectively address the challenges of
resource constraints and adaptability in dynamic cloud environ-
ments. It consists of a lightweight detection agent that efficiently
filters normal log data and forwards only suspicious logs to a back-
bone analyzer. The backbone analyzer, powered by LLMs, com-
prehends log semantics to identify anomalies, leveraging extensive
training on natural language corpora to handle unseen logs and
ensure adaptability. Additionally, both components incorporate
human feedback to enhance their adaptability over time. SeaLog
addresses the impracticality of existing methods in production en-
vironments by optimizing for computational and space efficiency,
ensuring accurate, lightweight, and adaptive log-based anomaly
detection in real-world cloud environments.

Third, we develop a solution, iPACK, for incident-aware du-
plicate ticket aggregation by leveraging cloud-side runtime in-
formation (i.e., alerts). This approach addresses the challenge
of efficiently managing and aggregating duplicate support tickets
caused by incidents, which is essential to reduce the burden on
support engineers and resolve issues more efficiently. Our method
involves preprocessing alerts into more coarse-grained events to
reduce redundancy, using graph-based incident profiling to fil-
ter noisy events and link those caused by the same incident, and
implementing an attentive interaction network to correlate tick-
ets with responsible events. By leveraging relationships between
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alerts and tickets, this method allows us to aggregate semantically
different tickets through alert-alert and ticket-alert links, address-
ing the diverse symptom descriptions and varied usage scenarios
that traditional semantic similarity-based methods fail to capture.

In summary, this thesis leverages data analytics and machine
learning techniques to improve the reliability management of cloud
systems in large scale. Our proposed methods—Prism, SeaLog,
and iPACK—demonstrate promising results in enhancing system
observability, anomaly detection, and incident management, ulti-
mately contributing to more reliable and efficient cloud services.
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摘要 ：

雲服務和系統的迅速興起使其成為現代數位環境中不可或
缺的組成部分。領先的雲提供商如亞馬遜，微軟和谷歌在全球

範圍內運營，服務數十億用戶和企業。確保這些雲系統的可靠
性至關重要，因為服務中斷可能會導致重大財務損失。儘管雲

廠商始終高度重視雲系統的可靠性，但雲環境的複雜性和巨大

的規模仍然給事故的管理帶來了巨大挑戰。本論文通過數據驅

動的方法探討了雲系統的智能可靠性管理。我們的研究基於雲
系統生成的異構數據，包括日誌、指標、鏈路、告警和工單。

我們提出了三個重要的貢獻：

首先，我們提出了Prism，一種通過推斷具有相似通信和資
源使用模式的實例功能集群來增強虛擬化雲環境中系統可觀測
性的方法。這種方法緩解了由於虛擬化導致的雲係統可觀測性

下降的問題，這導致跨不同層的問題關聯變得複雜，難以追溯

根因。Prism採用一種粗到細的策略：首先使用通信模式將實
例粗略地劃分為較小的塊，然後在每個塊內根據資源使用模式
進行細粒度聚類（基於指標的聚類）。通過識別這些功能集

群，Prism能夠深入了解實例之間的關係及其功能，有助於及
時檢測和緩解雲係統中潛在的問題。
其次，我們介紹了SeaLog，一種可擴展且自適應的基於日

誌的異常檢測方法。SeaLog結合了大型語言模型（LLMs）和
傳統機器學習技術的優勢，有效解決了動態雲環境中資源限制
和適應性的挑戰。它包含一個輕量級檢測代理，可以高效過濾

正常日誌數據，並僅將可疑日誌轉發到骨幹分析器。骨幹分析
器由大模型驅動，可以理解日誌語義以識別異常，利用大量自

然語言語料庫的訓練來處理未見過的日誌並確保適應性。此
外，這兩個組件都整合了人類反饋以增強其隨時間變化的適應
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性。SeaLog通過優化計算和空間效率，緩解了現有方法在生產
環境中的不實用性，確保了在實際雲環境中準確、輕量且自適
應的基於日誌的異常檢測。
第三，我們提出了一種名為iPACK的解決方案，用於通過

利用雲端運行時信息（即告警）來實現重複工單聚合。這種可
以有效管理和聚合由事件引起的重複工單，這可以高效地減少
支持工程師的負擔，提升問題解決效率。我們的方法包括將告
警預處理為更粗粒度的事件以減少冗餘，使用基於圖的事件
分析來過濾噪聲事件並鏈接由同一事件引起的告警，並實施

一個專注的交互網絡來將工單與負責的事件相關聯。通過利

用告警和工單之間的關係，這種方法使我們能夠通過“告警-告
警”和“工單-告警”鏈接來聚合語義不同的工單，解決傳統語義
相似性方法未能捕捉到的重複工單。

總之，本論文通過數據分析和機器學習技術，提升了雲系

統的可靠性監控和工程。我們提出的方法Prism, SeaLog和iPACK，
在增強系統可觀測性、異常檢測和事故管理方面展現了良好的

效果，最終有助於提供更可靠和高效的雲服務。
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Chapter 1

Introduction

1.1 Overview

Cloud services and systems are rapidly emerging as essential com-
ponents in the modern digital landscape, driven by a vast and
expanding market projected to reach $832.1 billion by 2025 [72].
Typical cloud providers such as Microsoft Azure, Amazon Web
Services (AWS), and Google Cloud Platform (GCP) operate on
an immense scale, serving billions of users and businesses glob-
ally. AWS, the market leader, boasts over a million active cus-
tomers, including major corporations, startups, and government
agencies. Microsoft Azure supports over 95% of Fortune 500 com-
panies [113]. These platforms collectively power a significant por-
tion of the internet, providing critical infrastructure and services
to a vast and diverse user base. Ensuring the reliability of these
cloud systems is of paramount importance, as any service inter-
ruption can have significant financial impacts. According to a
Parametrix report1, an AWS outage happening on the “us-east-1”
region could cost more than one-third of Fortune 500 companies
$3.4 billion in 24 hours and $7.8 billion in 48 hours. A 24-hour
halt across multiple AWS regions could result in a $9.5 billion
loss, escalating to $20.2 billion in 48 hours. Cloud providers have

1https://www.parametrixinsurance.com/in-the-news/fortune-500-vulnerable-to-cloud-
risks-could-suffer-losses-of-20-billion

1



CHAPTER 1. INTRODUCTION 2

placed a high priority on improving the reliability of their systems,
recognizing the critical importance of maintaining uninterrupted
service for their vast and diverse user base.

Monitoring is foundational for ensuring the reliability and per-
formance of cloud systems. Leading cloud providers like AWS,
Microsoft Azure, and Google Cloud Platform integrate a wide ar-
ray of monitoring tools within their services to continuously track
system health and performance. These tools generate a wealth of
data, including logs [35, 108], metrics [144, 171], traces [169, 180],
alerts [111, 174], and tickets [47, 57], which provide deep insights
into system operations. By analyzing this data, cloud providers
can quickly identify and address potential issues, optimize re-
source utilization, and maintain high levels of service availability.

When an incident (i.e., unexpected interruption or downgrade
of services) occurs, on-call engineers (OCEs) typically use basic
tools to analyze the generated data, identify the root cause, and
diagnose the issue. For example, if a major e-commerce plat-
form hosted on AWS experiences a significant slowdown, engi-
neers would begin by examining the logs for any error messages
or anomalies. They might notice a spike in CPU usage metrics
and trace logs indicating a specific service or microservice is con-
suming excessive resources. By correlating these findings with
recent changes or deployments, such as a new software update or
configuration change, they could identify that a recent update in-
troduced a memory leak causing the service to degrade. With this
diagnosis, they can roll back the update or apply a patch to resolve
the issue, restoring normal service performance. This analysis of
logs, metrics, and traces is critical for pinpointing the exact cause
of the problem. Such a manual practice has two major limita-
tions. (1) It can be time-consuming and prone to human error,
as engineers must sift through vast amounts of data, including
logs, metrics, and traces, to identify the root cause of a prob-
lem. This process can lead to delays in resolving issues, resulting
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in prolonged service disruptions. (2) It requires in-depth domain
knowledge of cloud infrastructure and applications, which can be
challenging to maintain given the rapid evolution and complexity
of cloud technologies.

However, the vast amounts of data generated by cloud systems
also present opportunities to address these limitations in a data-
driven paradigm. By leveraging machine learning, deep learning,
and even large language models, we can automate the analysis
and correlation of data from various sources. Nevertheless, it is
challenging to develop these solutions in real-world cloud systems.
We summarize the challenges as follows:

• Large Scale of Cloud Systems: Cloud environments often en-
compass thousands of servers, virtual machines, and numer-
ous applications running simultaneously. Managing and pro-
cessing the sheer volume of data generated in such large-scale
systems requires significant computational resources and so-
phisticated algorithms that can handle high-dimensional data
efficiently.

• Complicated Dependency Between Different Cloud Compo-
nents: Cloud systems are composed of numerous intercon-
nected components, such as databases, storage systems, net-
working elements, and various services. These components
often have intricate dependencies, making it difficult to iso-
late issues and understand their ripple effects across the sys-
tem. Developing models that can accurately capture and
analyze these dependencies is a complex task.

• Fast-Evolving Environment: Cloud technologies and infras-
tructures are constantly evolving, with frequent updates, new
features, and changes in configurations. This rapid evolution
poses a challenge for maintaining and updating AI models,
as they must continuously adapt to new patterns and behav-
iors in the system. Ensuring that machine learning and deep
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learning models remain effective in such a dynamic environ-
ment requires ongoing retraining and validation.

• Model Interpretability: Ensuring that AI models are inter-
pretable and their predictions understandable by human op-
erators is crucial for gaining trust and facilitating their adop-
tion. Complex models, such as deep learning networks, often
lack transparency, making it difficult to explain their deci-
sions.

• Data Availability and Privacy Concerns: Cloud vendors are
often highly concerned about data privacy and security, which
leads to restrictions on the availability of detailed operational
data. As a result, only limited low-level data is accessible to
external AI systems. This restricted access makes it chal-
lenging to gain comprehensive insights into the cloud envi-
ronment.

We conduct research on intelligent reliability management of
cloud systems to address these challenges, covering the compre-
hensive pipeline of cloud systems, as illustrated in Figure 2.1. Our
studies are driven by the heterogeneous data generated by cloud
systems. First, we propose a method called Prism to gain more in-
sights from limited fundamental data and improve system observ-
ability. Prism infers functional clusters among large-scale virtual
instances, facilitating the identification of reliability issues in cloud
systems. Second, we present a synergistic approach named Sea-
log, which fuses large language models (LLMs) with traditional
machine learning methods to detect log-based anomalies in an
evolving environment. Finally, we introduce iPACK, a solution
designed to optimize the ticket and alert processing procedure by
linking them together. This integration helps support engineers
significantly reduce duplicate efforts during an incident. Through
these innovative approaches, we aim to enhance the reliability
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and efficiency of cloud systems, addressing the challenges posed
by their scale, complexity, and dynamic nature.

1.2 Thesis Contributions

We summarize the contribution of this thesis as follows:

1. System Observability Enhancement via Inferring Func-
tional Clusters

Cloud systems typically use virtualization techniques to ab-
stract hardware resources, such as computation, storage, and
networks, into instances (e.g., virtual machines). This ar-
chitecture provides flexibility and elasticity, allowing tenants
to subscribe to various instances to run services with differ-
ent functionalities, enabling the creation of complex and cus-
tomizable applications. However, virtualization introduces
significant challenges in ensuring cloud system reliability by
degrading system observability. The additional abstraction
layer between hardware and applications makes it difficult to
correlate issues across different layers. Despite using moni-
tors to collect runtime data, cloud vendors still view instances
as isolated black boxes, lacking insight into application de-
ployment across the infrastructure. This complicates assess-
ing the impact of platform-level issues on applications.

To tackle the problem of degraded system observability in
virtualized cloud environments, we propose identifying func-
tional clusters of instances, where each cluster contains in-
stances with similar functionalities. We first present a pi-
lot study on the internal services of a cloud provider (e.g.,
Huawei Cloud) using only external monitoring data to iden-
tify instances with similar communication and resource usage
patterns. We then develop a clustering solution called Prism,
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which employs a coarse-to-fine strategy: first, we use com-
munication patterns to coarsely divide instances into smaller
chunks (trace-based partitioning), and then we perform fine-
grained clustering within each chunk based on resource usage
patterns (metric-based clustering). This method enhances
system reliability by providing deeper insights into the rela-
tionships between instances and their functionalities, aiding
in timely detection and mitigation of issues, and efficiently
handling the large scale of cloud systems.

2. Scalable and adaptive log-based anomaly detection.

Logs in cloud systems, like those in traditional software sys-
tems, are invaluable for understanding system functional-
ity and identifying issues, making log-based anomaly detec-
tion essential for cloud management. However, existing ap-
proaches face significant challenges. Traditional machine learn-
ing methods, such as isolation forest (IF), support vector
machine (SVM), decision tree (DT), and logistic regression
(LR), along with recent deep learning methods that extract
semantic information from logs, although effective on bench-
mark datasets, are impractical for production environments.
This impracticality stems from two main issues: resource
constraints and adaptability. These solutions often priori-
tize detection accuracy without optimizing for computational
and space efficiency, making them unsuitable for resource-
constrained cloud instances. Additionally, deep learning meth-
ods require GPUs for real-time inference, which are not al-
ways available, and transmitting large-scale log data to cen-
tralized nodes incurs significant network and I/O overhead.
Furthermore, the adaptability of these methods is limited,
as they struggle to handle evolving log data due to frequent
software updates, leading to performance degradation in real-
world scenarios.
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To tackle the limitations of existing studies, we propose a
scalable and adaptive log-based anomaly detection method
named SeaLog. SeaLog integrates the strengths of large lan-
guage models (LLMs) and traditional machine learning meth-
ods to address resource constraints and adaptability issues. It
consists of a lightweight detection agent that efficiently filters
normal log data and forwards only suspicious logs to a back-
bone analyzer. The backbone analyzer, powered by LLMs,
comprehends log semantics to identify anomalies, leveraging
extensive training on natural language corpora to handle un-
seen logs and ensure adaptability. Additionally, both com-
ponents incorporate human feedback to enhance their adapt-
ability over time. By combining the lightweight efficiency of
traditional machine learning with the semantic understand-
ing and few-shot learning capabilities of LLMs, SeaLog pro-
vides an accurate, lightweight, and adaptive solution for log-
based anomaly detection in real-world cloud environments.

3. Incident-aware duplicate ticket aggregation

Cloud platforms serve millions of users who submit support
tickets when encountering technical problems. These tick-
ets, submitted by customers, include a textual description
of the issue and some basic attributes. Timely assistance is
crucial for cloud providers to avoid user dissatisfaction and
financial loss. Incidents, or unexpected service interruptions,
are inevitable in large-scale cloud platforms and can trig-
ger numerous support tickets, many of which may be dupli-
cates reported in a distributed and uncoordinated manner.
Efficiently aggregating these duplicate tickets is essential to
reduce the burden on support engineers and resolve issues
more efficiently. Existing solutions for aggregating duplicate
support tickets in cloud systems have significant limitations.
They primarily rely on measuring the semantic similarity be-
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tween the textual descriptions of tickets using natural lan-
guage processing techniques. However, these approaches are
inadequate because customers using the same service may
encounter different issues due to various usage scenarios, and
multiple services can be impacted by the same incident, lead-
ing to diverse symptom descriptions in tickets. Consequently,
relying solely on textual descriptions is insufficient for accu-
rately clustering duplicate tickets caused by the same inci-
dent.

To tackle these limitations, we propose introducing cloud-
side runtime information (alerts) to facilitate ticket aggre-
gation. By leveraging the relationships between alerts and
tickets, we can accurately cluster duplicate tickets caused
by the same incident. This approach involves preprocessing
alerts into more coarse-grained events to reduce redundancy,
using graph-based incident profiling to filter noisy events and
link those caused by the same incident, and implementing an
attentive interaction network to correlate tickets with respon-
sible events. This method allows us to aggregate semantically
different tickets through alert-alert and ticket-alert links, ad-
dressing the diverse symptom descriptions and varied usage
scenarios that traditional semantic similarity-based methods
fail to capture.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

1. Chapter 2: Reliability Management in Cloud Sys-
tems

Chapter 2 introduces the background and challenges of reli-
ability management in cloud systems. Section 2.1 describes
the typical architecture of cloud systems. Section 2.2 then
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discusses common practices for managing reliability in these
systems. Finally, Section 2.3 presents intelligent solutions
that can be integrated into reliability management practices.

2. Chapter 3: Review on Intelligent Cloud Reliability
Management

Chapter 3 reviews fruitful studies on cloud reliability man-
agement in the literature. We cover a range of approaches
including metric-based analysis, log-based analysis, incident
management, and support ticket management. Additionally,
we discuss the limitations of these studies in this section
which we try to address in the following sections.

3. Chapter 4: Functional Cluster Identification

Observability is fundamental to ensuring cloud reliability.
However, the virtualization of cloud environments can de-
grade observability. Chapter 4 proposes a method called
Prism to infer functional clusters based on limited available
data while protecting users’ privacy. Specifically, Section 4.1
first introduces the problem and summarizes the contribu-
tions made in improving cloud observability. Then, Sec-
tion 4.2 presents a pilot study based on the analysis of data
collected from Huawei Cloud to motivate our method design.
The following Section 4.3 describes the details of the pro-
posed method, Prism. Section 4.4 provides a comprehensive
evaluation of the proposed method. Section 4.5 validates the
usefulness of Prism using two real-world cases. Section 4.6
discusses the threats to the validity of this study. Finally,
Section 4.7 summarizes this chapter.

4. Chapter 5: LLM-enhanced Log Anomaly Detection

Log data is a crucial source of information that captures
software runtime details, assisting developers in the diagno-
sis of various problems. Automatic anomaly detection on
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log data has also played a key role in monitoring cloud sys-
tems. However, existing solutions are often either inefficient
or not adaptive. In Chapter 5, we propose a scalable and
adaptive solution called Sealog to address these limitations.
Specifically, Section 5.1 provides a general introduction to
the problem of log-based anomaly detection and summarizes
our contributions. Then, Section 5.2 elaborates on the de-
tailed background of this problem and our motivation. Next,
Section 5.3 introduces the design details of Sealog, aiming
to achieve both scalability and adaptiveness. Section 5.4 ex-
tensively evaluates our method. Section 5.5 shares our ex-
perience in validating Sealog in Huawei Cloud. Section 5.6
discusses threats to the validity of this study. Finally, we
summarize this chapter in Section 5.7.

5. Chapter 6: Incident-aware Ticket Aggregation

Support tickets are submitted by customers seeking assis-
tance from cloud providers. However, when unexpected fail-
ures occur in cloud systems, a large number of users can
be affected, leading to numerous tickets being received by
cloud providers. It is crucial to aggregate duplicate tickets
to reduce the processing effort. In Chapter 6, we propose
an incident-aware ticket aggregation solution called iPACK.
Specifically, Section 6.1 provides an overview of the prob-
lem of ticket aggregation and summarizes our contributions.
Following this, Section 6.2 presents a motivating example to
illustrate the need for our method design. Section 6.3 then
introduces the two-stage linking strategy of iPACK. In Sec-
tion 6.4, we provide a comprehensive evaluation using real-
world data collected from Azure. Additionally, Section 6.5
discusses the industrial experience of evaluating iPACK within
Azure. Section 6.6 addresses the threats to the validity of this
study. Finally, Section 6.7 summarizes this chapter.
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6. Chapter 7: Conclusion and Future Work In this chap-
ter, we summarize this thesis and discuss our future work.
We plan to focus on LLM-driven diagnosis in large-scale dis-
tributed systems. Additionally, we aim to explore methods
to enhance the reliability of LLM training systems.

2 End of chapter.



Chapter 2

Reliability Management in Cloud
Systems

Reliability management is a critical aspect of maintaining robust
and dependable cloud systems. It encompasses a range of practices
and methodologies aimed at ensuring that services remain avail-
able, performant, and resilient under various conditions. One of
the key frameworks that support reliability management in mod-
ern cloud environments is Site Reliability Engineering (SRE). SRE
is a practical discipline that merges software engineering with IT
operations to ensure scalable and highly reliable software systems.
Originating at Google, SRE focuses on defining Service Level Ob-
jectives (SLOs), managing error budgets, and emphasizing au-
tomation, monitoring, and proactive incident management. SRE
roles include site reliability engineers and managers, who work
to improve system reliability, efficiency, and scalability through
engineering practices and collaboration between development and
operations teams. While SRE offers significant benefits like im-
proved reliability and efficiency, it requires the engineers to have
a diverse skill set and careful balancing of priorities for a cloud
provider.

As cloud systems, such as those provided by Azure and AWS,
grow increasingly larger, SRE faces significant challenges, particu-
larly in maintaining reliability. The sheer scale of modern cloud in-

12
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frastructures demands advanced automation, sophisticated moni-
toring, and proactive incident management to ensure system sta-
bility. Balancing the need for rapid development with stringent
reliability goals becomes more complex, requiring SRE teams to
continuously innovate and adapt their practices to manage the
heightened demands of expansive cloud environments effectively.
To address the large scale and complexity of cloud systems and
ensure reliability, tools for real-time monitoring and automatic
analysis have been developed and extensively studied. In addi-
tion, mature cloud systems, such as Azure, have established stan-
dard reliability data management protocols. In the following, we
first introduce the hierarchical architecture of typical cloud sys-
tems in Section 2.1. Then we introduce the common reliability
management framework of modern cloud systems in Section 2.2.
Finally, we introduce how intelligence can be integrated within
this framework 2.3.

2.1 Architecture of Typical Cloud Systems

Cloud computing services are generally categorized into three pri-
mary models: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). Each model of-
fers varying levels of control, flexibility, and management to meet
different business needs. IaaS provides the fundamental build-
ing blocks of computing infrastructure, PaaS offers a platform
for developing and deploying applications, and SaaS delivers fully
functional software applications over the internet.

Infrastructure as a Service (IaaS) Layer. IaaS is the most ba-
sic cloud service model, providing virtualized computing resources
over the internet. It offers essential infrastructure components
such as virtual machines, storage, and networking. Users can rent
these resources on a pay-as-you-go basis, which allows for signif-
icant cost savings compared to maintaining physical hardware.
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IaaS provides high flexibility and scalability, enabling businesses
to quickly scale up or down based on demand. However, users are
responsible for managing the operating systems, applications, and
middleware, which requires technical expertise. Examples of IaaS
providers include Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud Platform (GCP).

Platform as a Service (PaaS) Layer. PaaS sits atop IaaS and
offers a higher level of abstraction, providing a platform that al-
lows developers to build, deploy, and manage applications without
worrying about the underlying infrastructure. PaaS includes de-
velopment tools, middleware, database management systems, and
runtime environments, which streamline the application develop-
ment process. This model enhances productivity by simplifying
the complexities associated with hardware and software manage-
ment, allowing developers to focus solely on coding and appli-
cation logic. PaaS is particularly useful for collaborative projects
and continuous integration/continuous deployment (CI/CD) work-
flows. Examples of PaaS providers include Google App Engine,
Microsoft Azure App Service, and Heroku.

Software as a Service (SaaS) Layer. SaaS is the most compre-
hensive cloud service model, delivering fully functional software
applications over the internet. Users can access these applications
via web browsers, eliminating the need for installation, mainte-
nance, and management of the software. SaaS applications are
typically subscription-based, offering features like automatic up-
dates, scalability, and accessibility from any location with internet
connectivity. This model is ideal for businesses looking to reduce
the burden of IT management and focus on core activities. SaaS
covers a wide range of applications, including customer relation-
ship management (CRM), enterprise resource planning (ERP),
email, collaboration tools, and specialized industry-specific soft-
ware. Examples of SaaS providers include Salesforce, Microsoft
Office 365, and Google Workspace.



CHAPTER 2. RELIABILITY MANAGEMENT IN CLOUD SYSTEMS15

Infrastructure-as-a-Service Layer
Compute Networking Storage

Physical Machine

Platform-as-a-Service Layer
Container Orchestration Cloud DB

Software-as-a-Service Layer
MicroserviceApplication Function

Users

MetricLog Trace

Alert Incident

Monitor

Monitoring data

Detection

Triage

Mitigation

Resolution

Postmortem

Customer 
Tickets

Support 
Request

Support
Engineers

Incident 
management

Virtual Machine

Abstraction

Abstraction

Figure 2.1: Reliability Management of Cloud Systems

Cross-layer Interactions. Within a cloud provider, the inter-
action between IaaS, PaaS and SaaS is a seamless integration
where each layer builds upon the capabilities of the one beneath
it. IaaS provides the essential virtualized resources such as com-
puting power, storage, and networking, forming the foundation.
PaaS leverages these IaaS resources to offer a managed environ-
ment with development tools and middleware, simplifying the pro-
cess of creating and deploying applications. SaaS, in turn, utilizes
the underlying PaaS and IaaS layers to deliver fully functional
software applications over the internet, accessible to end-users
without the need to manage any infrastructure. This hierarchical
interaction ensures flexibility, scalability, and efficiency, enabling
cloud providers to offer comprehensive and integrated cloud solu-
tions.
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2.2 Real-time Monitoring, Automatic Alerting
and Quick Response

Real-time Monitoring

Cloud system monitoring is a critical practice in managing and
maintaining the health, performance, and security of cloud-based
applications and infrastructure. It involves continuously observing
and analyzing the various components of a cloud environment to
ensure they are functioning optimally and to quickly identify and
address any issues that arise. Specifically, typical monitoring prac-
tice continuously collects metrics, logs, and traces generated by
various components within the cloud environment. Metrics pro-
vide quantitative measurements such as CPU utilization, memory
usage, disk I/O, and network traffic, offering insights into resource
performance and health. Logs capture detailed records of events,
including application operations, system events, and security in-
cidents, providing a chronological account of activities. Traces
track the flow of requests through distributed systems, helping to
identify bottlenecks and failures by capturing the lifecycle and per-
formance of requests across different services. Tools like Amazon
CloudWatch [4], Azure Monitor [111] and Google Cloud Opera-
tions Suite [44] facilitate effective cloud system monitoring. By
leveraging these tools, organizations can proactively detect and
resolve issues, optimize performance, ensure security and compli-
ance, and manage costs, ultimately maintaining an optimal cloud
environment.

Automatic Alerting

Automatic alerting is a pivotal component of cloud system mon-
itoring, enabling organizations to promptly react to anomalies
and potential issues before they escalate into significant problems.
This process involves setting up predefined thresholds and condi-
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tions on various metrics, logs, and traces to trigger alerts when
deviations from expected behavior are detected.

Metrics-Based Alerting : Monitoring the health of cloud sys-
tems using metrics is a critical practice to ensure the reliabil-
ity, performance, and availability of cloud services. Specifically,
metrics denote quantitative measures that provide insights into
the performance and health of cloud systems. Examples include
CPU usage, memory utilization, disk I/O, network latency, and
error rates. In particular, another time-series data, i.e., Key Per-
formance Indicators (KPIs) are more often tied to business ob-
jectives and service level agreements (SLAs). Examples include
uptime percentage, response time, transaction throughput, and
user satisfaction scores. Alerts can be configured based on spe-
cific metrics or KPIs. For instance, if CPU usage exceeds a certain
percentage, an alert can be triggered to notify the operations team
of potential resource saturation.

Log-Based Alerting : Logs are detailed records of events that
occur within a cloud environment, capturing a wide range of in-
formation about the operations, errors, and activities of appli-
cations and systems. These logs are crucial for understanding
the behavior and performance of cloud services, as they provide
a chronological account of events that can be analyzed to diag-
nose issues, track user activities, and ensure security compliance.
Logs can include application logs, system logs, and security logs,
each providing different perspectives on the state and health of
the cloud environment. Log-based alerting involves monitoring
these logs for specific patterns, keywords, or anomalies that indi-
cate potential problems or security threats. Alerts are produced
when predefined conditions are met, such as the occurrence of er-
ror messages, multiple failed login attempts, or unusual activity
patterns. For example, an alert can be configured to trigger if
there are repeated instances of a particular error code within a
short time frame, indicating a recurring issue that needs immedi-
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Title:
Creation Time: Region:
Owning Service:

us-west-22022/7/25 12:14:26
Web Hosting Service

Alert: 83749105

Monitor ID:
Severity: Medium

Owning Component : d3f4a1b7c2Web Server Instance

Status: Active

High CPU Utilization (>95%) on Web Server.

Source Data: linkTroubleshooting guide: link

Figure 2.2: An Example of Alerts

ate attention.
Trace-Based Alerting : Traces provide a detailed view of the

flow of requests through various services and components in a
distributed cloud environment, capturing the lifecycle and per-
formance of each request. This information is crucial for under-
standing the end-to-end journey of requests, identifying bottle-
necks, and diagnosing performance issues or failures in complex,
microservices-based architectures. Traces typically include spans,
which are individual units of work within a trace, detailing start
and end times, duration, and any errors encountered. Trace-based
alerting denotes monitoring these traces for specific performance
metrics, anomalies, or error patterns that could indicate poten-
tial issues. Alerts are produced when predefined conditions are
met, such as unusually high latency, increased error rates, or un-
expected changes in the request flow. For example, an alert can
be configured to trigger if the response time for a critical service
exceeds a certain threshold, indicating a performance degradation
that requires immediate investigation.

Alerts produced from different data sources share a similar for-
mat. An alert in a cloud environment typically contains several
key pieces of information to help the recipient quickly understand
the nature of the issue and take appropriate action as shown in
Figure 2.2. For example, an alert might be named “High CPU
Utilization on Web Server” with a severity level of “Critical” and
a timestamp indicating when it was triggered. It would detail
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the specific metric that caused the alert, such as CPU utiliza-
tion exceeding 90% for five consecutive minutes, and provide the
current value, like 95%. The alert would identify the affected re-
source, including its type (e.g., virtual machine), ID, name, and re-
gion. Contextual information would include historical data show-
ing CPU utilization over the past hour, related metrics like mem-
ory utilization and network traffic, and recent logs and traces that
highlight relevant events and request flows. The alert would also
offer recommended actions, such as investigating recent deploy-
ments, scaling up resources, optimizing application performance,
and notifying relevant team members. Notification channels would
be specified, indicating that the alert can be sent via email, SMS,
and integrated into an incident management system and involve
quick response of on-call engineers (OCEs). Additional informa-
tion might include links to troubleshooting guides and support
contacts, and a visualization such as a CPU utilization graph to
aid in quick assessment. This structured format ensures the alert
is comprehensive, actionable, and easy to understand, enabling
quick and effective responses to potential issues in the cloud envi-
ronment.

Quick Response

Quick response to alerts is crucial for minimizing downtime and
mitigating the impact of issues on cloud-based applications and
services. Once an alert is triggered, it is essential to have a well-
defined process for responding to and resolving the issue. When
a serious failure occurs, it often generates multiple related alerts,
which can be grouped together into a single incident to provide
a comprehensive view of the issue. This incident is then automat-
ically assigned to the appropriate on-call engineer or team based
on predefined escalation policies, ensuring that the right person-
nel are notified and can take immediate action. This process helps
identify and address issues within the cloud systems efficiently, en-
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suring that even complex failures are managed effectively.
In addition to internal alerts and incidents, issues can also

be identified through customer-reported support tickets. Cus-
tomers may report problems by submitting support tickets through
a customer support portal. Support engineers review these tickets,
prioritize them based on severity and impact, and respond with
appropriate solutions. In cases where the issue aligns with an
existing alert or incident, support engineers collaborate with the
OCEs to ensure a coordinated response. This correlation between
support tickets and internal alerts helps in accurately identifying
and resolving issues that may impact customers.

After an issue is resolved, a postmortem review can be con-
ducted to analyze the root cause, assess the effectiveness of the
response, and identify areas for improvement. This review pro-
cess helps refine alerting rules, response procedures, and overall
system resilience. By establishing a streamlined process for quick
response, organizations can effectively manage and resolve issues,
ensuring minimal disruption to their cloud services and maintain-
ing high levels of customer satisfaction.

2.3 Intelligent Site Reliability Engineering

Manual processing of reliability data in cloud systems presents sig-
nificant challenges, primarily due to the scale and complexity of
modern cloud environments. With numerous components gener-
ating vast amounts of data in the form of metrics, logs, and traces,
it becomes increasingly difficult for human operators to effectively
monitor, analyze, and respond to issues in real-time. The sheer
volume of data can overwhelm teams, leading to missed alerts, de-
layed responses, and potential system failures. Additionally, the
complexity of distributed systems, with their intricate dependen-
cies and interactions, makes it challenging to accurately diagnose
problems and identify root causes manually. This can result in
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inefficient troubleshooting, prolonged downtimes, and increased
operational costs.

To address these challenges and enhance operational efficiency,
it is essential to leverage intelligent and automatic analysis of
reliability data. By incorporating advanced analytics, machine
learning, and automation tools, organizations can proactively de-
tect anomalies, predict potential issues, and streamline incident
response processes. Intelligent systems can continuously analyze
large datasets, identify patterns, and provide actionable insights
faster and more accurately than manual methods. Embracing
these technologies not only improves the reliability and perfor-
mance of cloud systems but also allows teams to focus on strate-
gic initiatives and innovation, ultimately driving better business
outcomes.

2.3.1 Metric-based Monitoring and Analysis

In modern cloud systems, the sheer volume and diversity of met-
rics generated can be overwhelming, making it essential to im-
plement automatic anomaly detection and clustering techniques.
Automatic anomaly detection helps identify unusual patterns or
behaviors in real time, ensuring prompt responses to potential is-
sues. Simultaneously, metric-based clustering groups similar data
points, enabling the identification of patterns, trends, and anoma-
lies at scale. Together, these techniques aim to provide deeper
insights into system performance and usage patterns, facilitating
more informed decision-making and resource optimization.

Metric-based Anomaly Detection

Metric-based anomaly detection is a technique used to identify un-
usual patterns or behaviors in system metrics, indicating potential
issues such as hardware failures, security breaches, or performance
bottlenecks. It involves monitoring various quantitative measures
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like CPU usage, memory utilization, and network latency to de-
tect deviations from the norm. Techniques for anomaly detec-
tion include statistical methods (e.g., Z-score, moving average),
machine learning (e.g., supervised, unsupervised learning), time
series analysis (e.g., ARIMA), and deep learning (e.g., RNNs, au-
toencoders). The process involves data collection, preprocessing,
baseline establishment, anomaly detection, alerting, and continu-
ous evaluation.

Metric-based Clustering

Metric-based clustering is a technique that groups similar data
points based on specific metrics or features, aiding in the identi-
fication of patterns, trends, and anomalies within cloud systems
and IT infrastructure. By employing clustering algorithms such
as K-Means, hierarchical clustering, DBSCAN, and Gaussian Mix-
ture Models, organizations can optimize resource allocation, de-
tect anomalies, analyze performance, and plan capacity. The pro-
cess involves collecting and preprocessing data, selecting relevant
features, choosing an appropriate algorithm, training the model,
and interpreting the results. Metric-based clustering enhances sys-
tem understanding, enables proactive management, and improves
efficiency by identifying and grouping similar workloads and usage
patterns.

2.3.2 Log-based Monitoring and Analysis

Log data in a cloud environment is generated at a large scale
and often consists of unstructured free text written by engineers,
making it challenging to be handled by machine learning-based
solutions directly. To manage this complexity, log parsing is es-
sential as it transforms unstructured logs into structured formats,
enabling more effective feature extraction and learning. Once
parsed, the structured log data can be utilized for log-based anomaly



CHAPTER 2. RELIABILITY MANAGEMENT IN CLOUD SYSTEMS23

Log Parsing

Timestamp Component Level Log Templates Parameters

Sep 18 08:45:36 LabSZ sshd[24200] INFO Running task <*> in stage <*> (TID <*> ) 1.0 | 0.0 | 0

Sep 18 08:45:37 LabSZ sshd[24200] INFO Started reading broadcast variable <*> 0

Sep 18 08:47:01 LabSZ sshd[24241] INFO Running task <*> in stage <*> (TID <*> ) 2.0 | 0.0 | 1

Sep 18 08:47:22 LabSZ sshd[24265] DEBUG Partition <*> not found, computing it rdd_2_1

Sep 18 08:49:35 LabSZ sshd[24301] DEBUG Partition <*> not found, computing it rdd_2_2

1.Sep 18 08:45:36 LabSZ sshd[24200] INFO Running task 1.0 in stage 0.0 (TID 0).
2.Sep 18 08:45:37 LabSZ sshd[24200] INFO Started reading broadcast variable 0.
3.Sep 18 08:47:01 LabSZ sshd[24241] INFO Running task 2.0 in stage 0.0 (TID 1).
4.Sep 18 08:47:22 LabSZ sshd[24265] DEBUG Partition rdd_2_1 not found, computing it.
5.Sep 18 08:49:35 LabSZ sshd[24301] DEBUG Partition rdd_2_2 not found, computing it.

……

Raw Logs

Log Parsing Results

Figure 2.3: An Example of Log Parsing

detection, identifying unusual patterns that may indicate system
issues, and log-based root cause analysis, pinpointing the underly-
ing causes (root cause-indicating components and logs) of a failure.

Log Parsing

Log parsing aims to transform unstructured free text into a struc-
tured format that can be easily analyzed. This process automat-
ically extracts log templates (or log events) and log parameters
from raw log entries as shown in Figure 2.3. Log templates rep-
resent the fixed part of the log message, while log parameters are
the variable parts that change with each log entry. For example,
consider the raw log message: “User user4bxs failed to login due
to incorrect password.”, its log template is “User * failed to login
due to incorrect password.”
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Log-based Anomaly Detection

Log-based anomaly detection aims to identify unusual patterns or
behaviors within log data, which can indicate potential issues such
as system failures, security breaches, or performance bottlenecks.
This approach leverages the structured data obtained through log
parsing to detect anomalies in both the sequence and parameters
of log entries.

Sequence Anomaly Sequence anomaly detection focuses on iden-
tifying deviations in the order or structure of log events. In a typ-
ical system, certain sequences of log entries are expected based
on normal operational workflows. For example, a successful lo-
gin sequence might include events such as “User authentication
initiated”, “User credentials verified”, and “User login successful”.
If an unexpected sequence occurs, such as "User authentication
initiated" followed by "User login failed," it could indicate an
anomaly. Detecting such sequence anomalies helps in identifying
abnormal behaviors or potential issues in the system’s processes.

Parameter Anomaly Parameter anomaly detection involves iden-
tifying unusual values or patterns in the parameters extracted
from log entries. Each log entry contains specific parameters, such
as user IDs, timestamps, error codes, and resource usage metrics
(e.g., request latency). By analyzing these parameters, it is pos-
sible to detect anomalies that deviate from the expected range or
pattern. In general, it is common to extract the parameters and
utilize a metric-based anomaly detection solution to detect such
parameters. For instance, if the parameter “response time” in a
web server log consistently exceeds the normal threshold, it could
indicate a performance issue or a potential bottleneck. Detecting
parameter anomalies enables the identification of issues at a gran-
ular level, facilitating more precise and effective troubleshooting.
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Log-based Root Cause Analysis

Log-based root cause analysis (RCA) aims to identify the under-
lying causes of issues or anomalies within a system by analyzing
log data. This technique leverages the structured information ob-
tained through log parsing to trace the sequence of events and
pinpoint the exact origin of a problem. The process usually con-
sists of collecting and preprocessing log data from various sources,
correlating events to build a comprehensive timeline, and utiliz-
ing log-based anomaly detection to identify unusual patterns. By
analyzing these correlated events and anomalies, the root cause
of the issue can be traced back to the initial triggering event or
condition. In practice, visualization tools and detailed reporting
help represent the sequence of events and the identified root cause
clearly, providing actionable insights. For example, in a scenario
where a web application experiences intermittent downtime, log-
based RCA might reveal that a misconfigured database connection
pool is unable to handle peak traffic, leading to server crashes. By
automatically identifying and addressing such root causes, OCEs
can quickly execute actionable mitigation steps, reduce downtime,
and improve the overall reliability of cloud systems.

2.3.3 Incident and Support Ticket Management

Incident Management

Incident management in cloud systems is a critical process that
involves identifying, analyzing, and resolving incidents to restore
normal service operations as quickly as possible and minimize the
impact on business operations. In cloud environments, where in-
frastructure and applications are hosted on remote servers, inci-
dent management becomes even more crucial due to the complex-
ity and scale of these systems. The incident management process
typically includes the following steps:
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• Detection: Incidents are detected and reported through mon-
itoring tools, automated alerts, or user reports. Cloud sys-
tems often use sophisticated monitoring solutions to detect
anomalies and trigger alerts.

• Triage: Once an incident is detected, it undergoes a triage
process to assess its severity and impact on the business.
During triage, incidents are classified and prioritized, with
high-priority incidents that affect critical services or a large
number of users being addressed first.

• Mitigation: Before fully resolving the incident, immediate
actions are taken to mitigate its impact and prevent further
damage. This could involve temporary fixes, isolating af-
fected components, or redirecting traffic to maintain service
availability.

• Resolution and Recovery: The team implements a solution
to not only recover from the failure but also fix the underly-
ing bugs causing the incident. This may involve rolling back
changes, applying patches, fixing code defects, restarting ser-
vices, or reallocating resources to ensure that the issue is fully
resolved and does not recur.

• Postmortem Analysis: A postmortem analysis is conducted
to analyze the incident and the response process. The goal is
to identify lessons learned and implement changes to prevent
similar incidents in the future.

The incident management lifecycle in cloud systems can accu-
mulate a vast amount of historical data, e.g., triage history and
incident reports. This wealth of information provides a valuable
foundation for developing intelligent and data-driven methods to
enhance the detection, analysis, and resolution of incidents. By
leveraging this data, we are allowed to design advanced algorithms
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Category: Virtual Machine\control plane
Creation Time: Product Name:2024/5/25 12:13:46 Virtual Machine
Summary: Region: us-west-2Cannot create instance.

Ticket: 2024052505 Status: Open

Detailed description: …...

Figure 2.4: An Example of Support Tickets.

and machine learning models to automate and optimize various
aspects of incident management, leading to more efficient opera-
tions and improved system reliability.

Support Ticket Management

Support ticket management is another perspective from the user
side within IT and customer service operations, aimed at track-
ing, managing, and resolving customer or user issues efficiently.
A support ticket is a documented record of a problem, request,
or inquiry submitted by a user, typically through a helpdesk or
support portal (e.g., Azure Support [110]). Each ticket contains
detailed information about the issue, including the user’s contact
information, a description of the problem, and any relevant at-
tachments or logs. Similar to incident management, the support
ticket management process generally includes the following steps:

• Ticket Creation: Users submit their issues via various chan-
nels such as email, web forms, phone calls, or chat. The
support system automatically creates a ticket for each sub-
mission, assigning it a unique identifier.

• Categorization and Prioritization: Tickets are categorized
based on the type of issue (e.g., technical support, billing,
general inquiry) and prioritized according to their urgency
and impact on the user or business operations.
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• Assignment: Tickets are assigned to appropriate support
agents or teams based on their expertise, availability, and
the ticket’s priority. This ensures that issues are handled by
the most qualified personnel.

• Investigation and Resolution: Support agents investigate the
issue by gathering additional information, diagnosing the prob-
lem, and implementing a solution. This may involve trou-
bleshooting, consulting documentation, or escalating the ticket
to higher-level support if necessary.

• Closure: Once the issue is resolved, the ticket is closed, and
the user is informed. The resolution is documented within
the ticket for future reference and knowledge base updates.

• Post-Resolution Review: Periodically, closed tickets are re-
viewed to identify trends, recurring issues, and areas for im-
provement in the support process. This helps in refining sup-
port strategies and enhancing overall service quality.

This process can also generate a wealth of data, including de-
tailed descriptions of issues, resolutions, and user interactions. By
leveraging Natural Language Processing (NLP) methods, we are
allowed to analyze this data to identify common problems, au-
tomate ticket categorization, predict issue resolution times, and
even provide automated responses for frequently asked questions.
Utilizing NLP can significantly enhance the efficiency and effec-
tiveness of the support ticket management pipeline, leading to
quicker resolutions and improved user satisfaction.

2 End of chapter.



Chapter 3

Literature Review on Intelligent
Cloud Reliability Management

In this chapter, we review existing studies on intelligent site re-
liability engineering in the literature. Fruitful studies have been
conducted in this area. Our goal is to provide a comprehensive
overview of these studies, highlighting their contributions and also
discussing their limitations.

3.1 Metric-based Analysis

Metric-based Anomaly Detection

Anomaly detection on metrics has been a hot topic and is widely
studied. Hundman et al. [60] leveraged LSTM without expert-
labeled telemetry anomaly data to detect anomalies in multivari-
ate metrics of spacecraft based on prediction errors. Malhotra
et al. [107] proposed an LSTM-based encoder-decoder network to
reconstruct the “normal” time series with high probabilities. An-
other way to model normal patterns is to learn the distribution
of input data like deep generative models [43] and deep Bayesian
network [143]. Donut [157] employed Variational AutoEncoder
(VAE) to generate the normal hidden state of seasonal metrics
without expert-labeled data. Donut successfully detects anoma-

29
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lies in seasonal metrics with various patterns and data quality, but
incurs high time complexity in the training phase. To reduce the
training complexity, DAGMM [182] simplifies the hidden state
as a combination of several Gaussian distributions. USAD [9]
improves the autoencoder framework by incorporating adversar-
ial samples to speed up the training phase. OmniAnomaly [136]
employs a stochastic recurrent neural network to capture the nor-
mal patterns of multivariate time-series by simulating normal data
distribution through stochastic latent variables. Similar to Hund-
man et al. [60]’s approach, OmniAnomaly provides interpretations
based on the reconstruction probabilities of its constituent uni-
variate metric. However, the generalization capability of these
generative approaches with implicit modeling is degraded when
they encounter severe noise in temporal metrics, which is very
common in industrial production systems.

Metric-based Clustering

Clustering is crucial to handle the large volume of metrics gener-
ated from cloud systems. For example, Kane et al. [73] employ
Principal Component Analysis (PCA) to transform multivariate
metric data into univariate time series before clustering. Li et
al. [91] proposed ROCKA, a robust and rapid metric clustering
algorithm based on shape-based distance [125], designed to han-
dle the challenges of large-scale anomaly detection, such as noise
and phase shifts. ROCKA clusters metrics based on their under-
lying shapes, achieving high accuracy and reducing model train-
ing time with minimal performance loss. More recently, Zhang
et al. [170] developed OmniCluster, a system instance cluster-
ing method that combines a one-dimensional convolutional au-
toencoder with a novel three-step feature selection strategy. This
approach efficiently clusters system instances, significantly reduc-
ing the training overhead of anomaly detection models. However,
these studies primarily focus on improving the accuracy of cluster-
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ing rather than considering efficiency. They often require pairwise
distance computations before performing clustering, which makes
it challenging to scale to the cloud environment with tens of mil-
lions of metrics.

3.2 Log-based Analysis

Log Parsing

Log parsing has emerged as an active research topic in recent
years [52,67,74,181]. Existing log parsers can be divided into two
main groups: syntax-based and semantic-based. Syntax-based log
parsers are further categorized into three types: Frequency-based
parsers [31, 117, 141, 142] utilize frequent patterns of token posi-
tions or n-gram information to distinguish templates and parame-
ters in log messages. Similarity-based parsers : These parsers [50,
134, 139] compute similarities between log messages to cluster
them and then extract the constant parts of log messages. Heuristics-
based parsers : These parsers [34,53,68,105,109,114,146] use var-
ious heuristic algorithms or data structures to identify log tem-
plates based on designed characteristics. Semantic-based parsers
achieve higher parsing accuracy by mining semantics from log mes-
sages, which is crucial for some downstream tasks [62, 90]. These
methods typically require labeled log data for model training or
tuning. For example, some semantic-based parsers [62, 90, 100]
formulate log parsing as a token classification problem using bidi-
rectional long short-term memory networks, while LogPPT [82]
fine-tunes a pre-trained language model (e.g., RoBERTa) for log
parsing. However, recent benchmark studies [67, 74] have high-
lighted the inadequacy of these log parsers in handling large-scale,
complex log data. To tackle this problem, recent studies have be-
gun exploring LLMs for log analysis. Le et al. pioneered the
investigation of LLM performance in log parsing, demonstrating
their potential [81] . Xu et al. proposed LogDiv, a method lever-
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aging the in-context learning (ICL) capability of LLMs for more
accurate log parsing [158].

Log-based Anomaly Detection

Prior research related to log-based anomaly detection can be broadly
categorized into two classes, machine learning (ML)-based meth-
ods and deep learning (DL)-based methods.

Machine learning-based methods include the use of prin-
cipal component analysis (PCA) by Xu et al. [161] for mining sys-
tem problems from console logs and the work of Lou et al. [101],
who detects system anomalies by mining invariants among log
messages. Lin et al. [93] proposed LogCluster, which recommends
representative log sequences for problem identification by cluster-
ing similar log sequences. He et al. [54] proposed Log3C, which
incorporates system monitoring metrics into the identification of
high-impact issues in service systems. Loglizer [55] provides a
comprehensive evaluation of using ML-based methods for log-
based anomaly detection. Deep learning-based methods for
log-based anomaly detection have been approached through var-
ious methods. One such method, proposed by Du et al. [35], is
Deeplog, which utilizes a Long Short-Term Memory (LSTM) net-
work to model log sequences. LogAnomaly [108] further utilizes
log count vectors and log semantic vectors to model log sequences
more comprehensively. However, both Deeplog and LogAnomaly
are trained in an unsupervised manner, which has been shown
to be less effective than supervised models [80]. Typical super-
vised solutions include a CNN-based approach [102] and GRU-
based LogRobust [172]. Since labeled data is usually insufficient
due to the labor-intensive nature of manual labeling, the semi-
supervised method, PLElog [163], addresses this problem via label
probabilistic estimation. DL-based methods utilize different neu-
ral network structures (i.e., LSTM and Transformers) to capture
patterns from historical log messages. However, these structures
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are too complex in terms of time and space complexity to be de-
ployed locally in an instance. Additionally, these methods still
encounter accuracy degradation when logs change.

3.3 Incident Management

Researchers have devoted sustained efforts on empirical studies [25,
30, 48, 58, 96] of cloud incidents in the last few years. Gunawi et
al. [48] discussed why outages still take place in cloud environ-
ments by analyzing headline news and public postmortem reports
of 32 popular Internet services. Huang et al. [58] discussed their
experiences with gray failure in production cloud-scale systems
and demonstrated its broad scope and consequences. Chen et
al. [25] presented a comprehensive study on how alerts and in-
cidents are managed in large-scale public cloud systems. Cloud
alerts are notoriously blamed for their great volume. In general,
there are two threads of studies proposed towards resolving the
challenge. The major thread aims to correlate alerts that are
caused by the same incident [147] [47] [174]. Given a large num-
ber of alerts happening, Chen et al. [20] empirically found that
only a small portion of alerts matters and proposed to prioritize
alerts based on historical data. Chen et al. [23] [24] proposed
to predict the link between two alerts by combining alert textual
information and the topology information among alerts (i.e., the
topology of components that generate these alerts). These studies
either require experts’ manual annotations [19] [23] or precise sys-
tem topology [174] [28]. With large language models (LLMs) be-
coming increasingly popular, they have significantly enhanced the
processing of incidents. The pioneering study by Ahmed et al. [2]
explored fine-tuning the GPT-3 model to recommend mitigation
steps for incidents. Additionally, using GPT-3.x for automatic un-
derstanding and summarization of incidents has shown promising
results in cloud systems [69]. Microsoft has also introduced RCA-
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Copilot [22], an LLM-based tool deployed for root cause analysis
in real-world cloud systems, further demonstrating the potential
of LLMs in improving incident management.

3.4 Support Ticket Management

Issue reports, including app reviews, user feedback, bug reports,
test reports, GitHub issues, support tickets, etc., are crucial for
service providers to gain a better understanding of their cus-
tomers’ experiences. A large body of research has been devoted
to the analysis of issue reports, covering topics such as dupli-
cate bug reports detection [145] [119] [178] [15], emerging issue
detection [38] [177] [39] bug reproduction [176] [16], bug report
summarization [129] [87] and empirical studies [76] [183] [104].
Most existing studies focus on natural language text informa-
tion such as titles and descriptions. In addition, some latest at-
tempts [51] [94] [29] proposed to jointly consider multi-modality
features, e.g., text and images (e.g., app screenshots), which has
become a recent hot trend in the research direction. However,
these studies primarily focus on customer-side issue reports and
do not fully address the complexities of ongoing alerts and inci-
dents within cloud systems. In this thesis, we aim to bridge the
gap between cloud alerts and user support tickets by integrat-
ing both sources of information. By correlating real-time alerts
from cloud infrastructure with user-reported issues, our approach
seeks to enhance the efficiency and accuracy of ticket processing.
This holistic view enables a more comprehensive understanding
of incidents, leading to quicker resolutions and improved service
reliability.

2 End of chapter.



Chapter 4

Functional Cluster Identification

Ensuring the reliability of cloud systems is critical for both cloud
vendors and customers. Cloud systems often rely on virtualiza-
tion techniques to create instances of hardware resources, such as
virtual machines. However, virtualization hinders the observabil-
ity of cloud systems, making it challenging to diagnose platform-
level issues. How to improve system observability and provide
more insights for system maintenance is critical. In this chapter,
we introduce providing more insights for observability by inferring
functional clusters of instances with a non-intrusive solution called
Prism. The remainder of this chapter is organized as follows. Sec-
tion 4.1 provides the problem background and contributions we
made. In Section 4.2, we conduct a pilot study to motivate our
method design. Then Section 4.3 introduces the detailed design
of the proposed solution Prism. Section 4.4 elaborates the evalu-
ation results of Prism based on the real-world data collected from
Huawei Cloud. Then Section 4.5 provides two industrial cases
demonstrating the usage scenarios of Prism. Section 4.7 summa-
rizes this chapter.
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Figure 4.1: The Abstraction of Cloud Systems

4.1 Problem and Contributions

Cloud systems typically leverage virtualization techniques to ab-
stract hardware resources (as shown in Figure 4.1), such as com-
putation, storage, and networks, into instances (e.g., virtual ma-
chines), serving as basic components of cloud services [64,106,156].
Such architecture provides flexibility and elasticity for tenants to
subscribe to various instances to run services with different func-
tionalities e.g., machine learning and database services. This, in
turn, enables them to create complex and customizable applica-
tions.

However, just as each coin has two sides, such practice makes
it more challenging to ensure the reliability of cloud systems. In
particular, virtualization degrades the observability of the sys-
tem, i.e., the ability to understand the system’s internal execution
state. Virtualization introduces an additional layer of abstraction
between the underlying hardware and the running applications,
making it difficult to correlate the problems across different lay-
ers [147]. For example, an issue at the application layer may be
caused by problems either within the instance itself or with the
underlying hardware.

To enhance system observability, a common practice for cloud
vendors is deploying a variety of monitors to collect runtime in-



CHAPTER 4. FUNCTIONAL CLUSTER IDENTIFICATION 37

formation of each instance [20, 25, 42, 98], which record only data
related to reliability issues without touching users’ privacy. The
monitoring data are then utilized for downstream maintenance
tasks. For example, communication traces, which record net-
work packet transmissions between instances (e.g., the source and
destination IP addresses and port numbers), are often used to
identify abnormal network behaviors, such as network attacks
and excessive traffics [8, 63, 70, 118, 159]. On the other hand,
performance metrics, such as CPU utilization and memory us-
age, are commonly utilized for detecting anomalies and localizing
faults [27, 164,173].

The monitoring data have provided valuable insights to ensure
the reliability of individual instances. However, cloud vendors still
view instances as distributed black boxes without knowing how
an application is deployed across the infrastructure [124]. Conse-
quently, it can be challenging to assess the impact of issues at the
platform level (such as instance or hardware problems) on applica-
tions that are deployed on top of them. For example, packet losses
in individual instances are commonplace in cloud systems and are
generally ignored, as they seldom impact customer applications.
However, when multiple instances, all supporting the same appli-
cation, concurrently experience packet losses, it likely indicates
a more significant issue that users may encounter, such as inter-
ruptions due to network disconnections. The limited awareness of
relationships between instances complicates the detection of such
problems, thereby impeding timely mitigation efforts.

To bridge this gap and improve the system observability, we
propose to infer functional clusters of instances, where each clus-
ter contains the instances having similar functionalities. With this
additional knowledge, cloud vendors can enhance the reliability
of the cloud by improving various downstream management and
maintenance tasks (to be detailed in section 4.5). However, there
are two major challenges that we need to overcome to achieve this
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goal. The first challenge is that only limited information is avail-
able. As mentioned before, cloud vendors cannot access tenants’
private data, including logs and source codes. A non-intrusive so-
lution that relies solely on external data (e.g., traces and metrics)
is required. The second challenge is the large scale of instances
in cloud systems. A typical cloud system can consist of millions
of instances in total [124], resulting in an enormous amount of
data for analysis. Valuable insights are concealed within the vast
and noisy data of cloud systems, making it difficult to reveal the
hidden function clusters.

To tackle the first challenge and explore a feasible non-intrusive
solution, we first conduct a pilot study on the services deployed in
Huawei Cloud. For privacy reasons, we only use internal services
of Huawei Cloud without touching tenants’ instances. Specifically,
we utilize a total of 3,062 internal instances covering services with
397 types of functionalities and study whether different function-
alities can be identified simply based on external monitoring data.
Our study uncovers that instances having similar functionalities
share similar communication and resource usage patterns. Com-
munication patterns mean that instances with similar purposes
may frequently communicate with the same set of destinations,
reflected in their communication traces. We find that 75% of in-
stances within the same functional clusters have a high overlap
(≥ 0.7) in their communicated destinations. Conversely, for 92%
of instances with different functionalities, the overlap is only less
than 0.2. Additionally, despite the large scale of instances, 99.1%
of instances communicated with a limited number of destinations
(fewer than 50), indicating a strong locality in communication pat-
terns. Resource usage patterns, on the other hand, denote that
instances with similar functionalities would demonstrate compara-
ble resource consumption, which is reflected in their metrics. For
example, a machine learning service is expected to exhibit greater
CPU usage, while instances running an in-memory database like
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Redis would primarily require more memory. We find that most
(∼75%) of instance pairs with the same functionalities have high
metric-based similarities (≥ 0.8), while the similarities decrease
for those instances having different functionalities.

Motivated by the two kinds of inherent patterns of the in-
stances, we formulate the identification of functional clusters as
a clustering problem. Intuitively, we aim to cluster the instances
by harmoniously integrating the communication patterns and re-
source usage patterns. To achieve this goal and alleviate noises
within the tremendous data, we propose Prism, which adopts a
coarse-to-fine clustering strategy. Prism consists of two compo-
nents, i.e., trace-based partitioning and metric-based clustering.
In the trace-based partitioning step, we leverage the communica-
tion patterns to coarsely divide the entire large set of instances
into smaller chunks. This step helps limit the comparison space
within each chunk, thus reducing the complexity of the subsequent
clustering process and eliminating noises introduced by instances
from other clusters. In the metric-based clustering step, we per-
form fine-grained clustering by comparing the resource usage pat-
terns of instances in a pairwise manner. This step allows us to
carefully group instances within the same functional cluster.

To evaluate Prism, we conduct extensive experiments on two
datasets collected from the production environment of Huawei
Cloud, a top-tier cloud provider serving global customers. To eval-
uate the generality of Prism, these datasets were procured from
two regions of Huawei Cloud, each covering a diverse set of func-
tionalities. The experimental results show that Prism achieves a
v-measure of ∼0.95, surpassing existing state-of-the-art solutions,
and is robust to parameter changes. Moreover, Prism is both
scalable and efficient, with a linear time complexity, enabling it to
handle a substantial number of instances. Furthermore, we have
deployed Prism in Huawei Cloud, and we share two real-world
use cases to demonstrate the usefulness of functional clusters in
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maintaining Huawei Cloud. In the first case, functional clusters
showcase the ability to detect vulnerable application deployments
that may be at risk of disruption due to hardware failures. The
second case shows how functional clusters can aggregate minor
packet loss errors across instances, thus enabling the identifica-
tion of latent issues that are not observable at either the instance
or region level. We summarize our contributions as follows:
• We conduct a pilot study to understand the characteristics of

functional clusters across over 3,000 instances based on a real-
world cloud system, Huawei Cloud (Section 4.2). Our findings
reveal two clues for identifying functional clusters (i.e., commu-
nication patterns and resource usage patterns).

• We design a non-intrusive solution called Prism to identify func-
tional clusters in large-scale cloud systems, which is able to ef-
fectively capture and integrate the inherent communication and
resource usage patterns among instances (Section 4.3).

• Extensive experiments are conducted on two real-world indus-
trial datasets (Section 4.4). Our results demonstrate that Prism
is effective, efficient and practically useful in identifying func-
tional clusters in industrial cloud systems. Our dataset and
code are made public to benefit the community1.

4.2 Pilot Study

In this section, we present a pilot study to understand the charac-
teristics of instances that can facilitate the identification of func-
tional clusters.

Specifically, we conduct the pilot study across over three thou-
sand internal instances in Huawei Cloud, aiming to find clues to
uncover the valuable functional clusters. We conduct manual in-
spections in collaboration with the corresponding teams within

1https://github.com/OpsPAI/Prism
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Huawei Cloud to understand their functionalities. We obtain ser-
vices covering 397 types of functionalities in total, and more de-
tails about this dataset are in §4.4.1.

Communication Pattern

The communication pattern serves as an indicator that instances
within the same functional cluster tend to exhibit comparable net-
work behaviors, as evidenced by the communication traces they
generate. As inspired by [124], instances within the same func-
tional clusters might communicate with similar destinations. To
investigate this, we combine every two instances and compute
the overlap of their destinations through Jaccard similarity [152].
Then, we compare the similarities within the same clusters and
across different clusters.

Fig. 4.2-(a) presents the comparison results of communication
pattern similarities within or across clusters, where we can observe
a significant difference between them. When examining instances
within the same cluster, we find that 50% of the instance pairs
demonstrate more than 0.8 similarity and over 75% of them ex-
hibit more than 0.6 similarity. In contrast, when comparing in-
stance pairs from different clusters, over 75% of the pairs exhibit
a similarity score of 0, indicating no overlap between their desti-
nations. Additionally, 96% of the pairs have a similarity score of
<0.4, indicating that instances from different clusters rarely com-
municate with the same destinations. However, for some cross-
cluster instances, there is still a little overlap in their destinations.
These destinations are usually common services such as network
gateway and authentication that are shared by multiple applica-
tions.

To further understand the communication patterns, we study
how many different destinations one instance can frequently com-
municate with. Fig. 4.2-(b) shows the results. We can find that
even though there are thousands of instances in total, the ma-
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Figure 4.2: Results of the Study on Communication and Resource Usage
Patterns.

jority of the instances only communicate with a small number of
destinations. For example, 84.3% of instances communicate with
1 to 5 instances, and 99.1% of instances communicate with less
than 50 instances. This suggests a strong locality of instances,
i.e., most instances tend to communicate with a small set of other
instances frequently.

Resource Usage Pattern

Intuitively, instances within the same functional cluster should
observe similar patterns in their resource consumption (i.e., re-
source usage patterns). To investigate whether resource usage
patterns can be utilized to uncover functional clusters, we analyze
the similarities in the metric data among instances, either within
the same functional cluster or across different clusters. Thus, we
compare the multivariate metric similarity on two instances using
the multivariate dynamic time warping (DTW) distances [116], a
distance metric to compare a pair of time series that may vary in
timing.

Fig. 4.2-(c) shows the distribution of resource usage pattern
similarities among instances, either within or across functional
clusters. We can observe that the similarities of instance pairs
within clusters are generally large, with over 75% of such pairs ex-
hibiting 0.7 similarity or higher. In contrast, instance pairs across
clusters display smaller similarities, with 92% of pairs across dif-
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ferent clusters possessing less than 0.2 similarity. However, it is
worth noting that there is a small portion (≤10%) of cross-cluster
instance pairs that have high metric-based similarities, with a
value of ≥0.8. This is reasonable since instances having differ-
ent functionalities could behave similarly, e.g., have a high CPU
utilization. Nevertheless, it still suggests that leveraging the sim-
ilarities between instance metrics is promising in distinguishing
their functional clusters.
Summary. We summarize our findings as follows.
• Instances that belong to the same functional cluster exhibit

comparable communication patterns, as evidenced by the con-
siderable overlap in their communication destinations. Further-
more, the analysis reveals that the majority of instances inter-
acted with a limited number of other instances, indicating a
strong locality of instances.

• Instances within clusters generally exhibit high similarities in
their resource usage patterns, while instance pairs across clus-
ters show smaller similarities.

• While communication and resource usage patterns provide valu-
able insights, they are not entirely reliable indicators for distin-
guishing between different functional clusters, as some noises in
the form of cross-cluster instances with high similarities in both
patterns are observed.

4.3 Methodology

4.3.1 Overview

The goal of this chapter is to design a non-intrusive solution to
discover functional clusters among massive instances in a large-
scale cloud system. The input is an entire set of instances and
their associated monitoring data, i.e., communication traces and
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Figure 4.3: The Overall Workflow of Prism

performance metrics. The output of our approach is multiple clus-
ters, where each cluster represents a functional cluster consisting
of instances that have similar functionalities.

To achieve this goal, we propose Prism, an automated ap-
proach that can effectively discover functional clusters based on
both the communication patterns and resource usage of instances.
Fig. 4.3 illustrates the overall workflow of Prism, which comprises
two main components: trace-based partitioning and metric-based
clustering. Given a set of instances, Prism adopts a two-stage
clustering process, which progressively divides the entire set of
instances to coarse-grained chunks, then fine-grained functional
clusters. Specifically, the trace-based partitioning step is inspired
by the strong locality of communication patterns, as shown in
section 4.2. Based on communication patterns, Prism first sep-
arates all instances into different chunks. Instances in the same
chunk share similar communication destinations. By dividing the
complete instances set into multiple small chunks, we can reduce
the noises introduced from other instances during the subsequent
fine-grained clustering step. For each chunk, metric-based cluster-
ing is then applied to generate fine-grained clusters by measuring
the similarities of monitoring metrics of instances. Finally, in-
stances belonging to the same resultant cluster are considered to
have similar functionalities. Such a coarse-to-fine design avoids
pairwise comparisons between a large number of instances and
reduces noises between instances, making Prism salable and prac-
tical for large-scale cloud systems.
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It is important to note that Prism relies solely on external mon-
itoring data and does not access any of the tenants’ private data,
which ensures that there are no privacy concerns. While we can
infer which instances have similar functionalities, we cannot iden-
tify the specific type of the functionalities in use. This approach
maintains our tenants’ confidentiality.

4.3.2 Trace-based partitioning

As studied in section 4.2, instances sharing the same functional
clusters are more likely to communicate with a similar set of des-
tination hosts. Thus, the trace-based partitioning of Prism mea-
sures the communication pattern similarity and divides instances
into coarse-grained chunks.
Data Preprocessing. Let xi represent an instance in the cloud
system. Communication traces can be represented as tuples of the
form (xsrc, xdst), where xsrc and xdst represent the instances that
communicate with each other. By analyzing the communication
traces, we can obtain the destination set of each instance, denoted
by Si = (x1, x2, x3, ...), which contains all the instances that have
communicated with xi. However, as demonstrated in section 4.2,
instances with dissimilar functionalities may share common des-
tinations, such as network gateways, which can introduce noise
when comparing the communication patterns between instances.
To mitigate this issue, we remove instances that interact with more
than 100 different instances, which is rare as shown in Fig. 4.2-(b).
Jaccard Similarity-based Partitioning. Next, we divide all
instances into chunks by measuring how much their destination
sets overlap. To achieve this, a straightforward solution is to cal-
culate the Jaccard similarity [140] of destination sets of every pair
of instances, which is denoted as J(xi, xj) =

|Si∩Sj |
|Si∪Sj | , i.e., the ratio

of the size of their intersection to the size of their union. How-
ever, it requires conducting pairwise comparisons between millions
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of instances in a large-scale cloud system. This process can be ex-
tremely time-consuming and may render the approach unfeasible
in practice.

To address this issue, we propose to leverage locality-sensitive
hashing (LSH) [85] to enable efficient partitioning. LSH is a tech-
nique developed for identifying similar items in large datasets. Its
idea involves hashing the items into signatures such that similar
items are more likely to be assigned to the same bucket. Given a
query, LSH can efficiently return similar items with a sub-linear
time cost without pairwise comparison with the entire instance
set. In our context, we combine LSH with the MinHash func-
tion, which allows items with high Jaccard similarities put into
the same buckets [12].

Algorithm 1 describes the trace-based partitioning process. First,
we extract the destination sets S of each instance from historical
communication traces (lines 1-5). Second, for each instance xi, we
apply MinHash function to its destination set Si to obtain the hash
signature. The hash signature is then inserted into the LSH model
(lines 7-10), which assigns the item to a bucket. Third, for each
instance xi, we search its nearest neighbors Ni within the buckets
produced by the LSH model (lines 12-14). Here, a manual-defined
threshold θLSH ∈ [0, 1] is included, where a smaller θLSH value al-
lows more dissimilar neighbors to be included. After that, we
group the instance xi with its neighbors Ni based on the Disjoint-
set data structure U (lines 15-19). This data structure U provides
two efficient operations, i.e., U.findSet that find the set that con-
tains a specific item and U.unionSet that merge two disjoint sets.
If we find the sets containing xi and containing xj are disjoint (line
16), we merge these two sets (line 17) since xi and xj are similar.
In this way, we progressively divide the entire set of instances into
multiple disjoint sets (i.e., chunks) managed by U . Finally, we
can obtain all the instance chunks C by enumerating the records
in U (line 21).
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Algorithm 1: Trace-based Partitioning
Input: List of instances: X = {x1, x2, ..., xl}; Communication trace

records: R = {r1, r2, ..., rt}; Similarity threshold: θLSH
Output: Multiple instance chunks: C = {C1, C2, ...}
Init: S ← Empty list of feature sets; MLSH ← empty LSH model; U ←

Disjoint-set data structure
1 // (1) Construct feature sets
2 for i← 1 to t do
3 xsrc, xdst ← ri
4 S[xsrc].insert(xdst)
5 end
6 // (2) Build the LSH model
7 for each instance xi ∈ X do
8 Si ← S[xi]
9 MLSH .insert(MinHash(Si))

10 end
11 // (3) Search neighbors and build chunks
12 for each instance xi ∈ X do
13 Si ← S[xi]
14 Ni = MLSH .search(Si, θLSH) // find neighbors
15 for each instance xj ∈ Ni do
16 if U .findSet(xi) != U .findSet(xj) then
17 U .unionSet(xi, xj) // merge xi and neighbors
18 end
19 end
20 end
21 C ← U.getAllSets()

The trace-based partitioning algorithm is highly efficient for
two reasons. First, we bypass the expensive pairwise similarity
computation for all the instances by using LSH with MinHash.
Secondly, we leverage the disjoint-set data structure to merge
similar instances into chunks efficiently. The findSet and union-
Set operations of the disjoint-set data structure can be completed
within nearly constant time complexity, which further ensures the
efficiency of the merging process. Moreover, the number of neigh-
bors Ni (line 14) is generally fewer than 50, which is much smaller
than the total instance number X (line 12) due to the locality of
communication patterns (Fig. 4.2-(b)), which improves Prism’s
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scalability, making it feasible for large-scale cloud systems like
Huawei Cloud.

4.3.3 Metric-based Clustering

Trace-based partitioning tends to group as many instances as pos-
sible together, which can inevitably include instances with differ-
ent functionalities to the same chunk. The reason is that instances
from different clusters can still communicate to the same destina-
tions (as studied in section 4.2), and this leads to overlap of the
destination sets of these instances, which may be wrongly grouped
together.

To address this problem, we further group these instances by
utilizing more fine-grained monitoring metrics that record detailed
runtime information of instances (i.e., resource usage patterns as
studied in section 4.2). Each instance is monitored via multiple
dimensions to ensure its reliability, producing multivariate met-
rics, including CPU utilization rate, network incoming/outgoing
bytes rate, disk read/write request rate, and disk read/write bytes
rate. In the following, we aim to calculate a metric-based distance
for each pair of instances. Then, we can cluster those instances
that are close to each other.
Data Preprocessing. We apply the following preprocessing
techniques to the raw metric data collected to remove noises and
normalize the data within a comparable scale. First, we regard
apparent extreme values as anomalous noises within the metric
data because these values can bias the subsequent distance com-
putation step. For each metric, we replace the data points that
are out of the three-sigma range with the average value of the
nearest ten points. Next, since the amplitude scales of different
metrics are different, e.g., network-related metrics are highly vari-
able and may range from tens of bytes to millions of bytes. This
can make the produced distances incomparable between instances
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with different network traffic volumes. To address this issue, we
apply natural logarithm to these metrics following [124] to make
it more robust to its variance. The logarithm only solves the issue
of highly variable amplitudes but does not ensure that the data
points fall within the same range. Therefore, finally, we apply
min-max normalization to scale each of the metrics to the range
of 0-1, allowing comparison across different metrics. Formally, us-
ing y to denote a metric time series, the normalized values can be
calculated as y′ = y−min(y)

max(y)−min(y) .
Metric-based Distance Calculation. For an instance x, its
preprocessed monitoring metrics form a group of multivariate time
series represented as a matrix Mi ∈ Rn×k, where n is the number
of timestamps and k is the number of metrics used. We measure
the metric-based similarity of two instances using a distance that
simultaneously considers all the multivariate metrics of them. To
achieve this, we first compare each metric, then aggregate the
distances to produce an overall distance.

Specifically, we adopt dynamic time warping (DTW) distances
for distance measurement [116]. The reason we use DTW is to
overcome the problem that the monitoring metrics of different in-
stances can have time shifts, namely, these time series may not be
aligned in terms of the collection timestamps, making traditional
distance measures such as Euclidean distance ineffective. In con-
trast, DTW allows for flexible matching of similar patterns in the
time series, even when they occur at different timestamps. Based
on the DTW calculation, the overall distance d(xi, xj) between
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two instances xi and xj can be formulated as follows:

d(xi, xj) =
k∑

u=1

ω(i, j)u ×DTW
(
Mi(:, u),Mj(:, u)

)
, (4.1)

ω(i, j)u =
ω(i, j)′u∑k
v=1 ω(i, j)

′
v

, (4.2)

ω(i, j)′u =
1

2

(
σ(Mi(:, u)) + σ(Mj(:, u))

)
, (4.3)

where u denotes the metric in concern, Mi/j(: .u) is the uth column
of the corresponding metric matrix. In particular, we use ω(i, j)u
as a weight associated with the uth metric to measure the impor-
tance of each metric. Each weight is calculated as the average
of the standard deviation (i.e., σ(·)) of the two metrics of corre-
sponding instances as shown in Equation 4.3, which is normalized
to the range of 0 to 1 across different metrics using Equation 4.2.
In doing this, we reduce the weight of the metrics that barely fluc-
tuate (e.g., two instances keep the CPU utilization rate around
80%), since these metrics are less informative in representing the
characteristics of instances. In contrast, if two metrics are simul-
taneously changing following the same trend, they are more likely
to indicate instances performing the same functionalities.
Clustering Algorithm. We then apply a clustering algorithm
in each chunk based on the metric-based distances to produce
more fine-grained clusters (i.e., functional clusters). Specifically,
we choose the hierarchical agglomerative clustering (HAC) [120]
algorithm because it allows us to adjust the number of produced
clusters via setting a distance threshold, i.e., θHAC . The clustering
algorithm starts by considering each instance as a single cluster
and then iteratively merges the closest pairs of clusters until a
user-defined threshold θHAC is reached. In this process, we use
complete linkage [32] to find the closest pair of clusters, i.e., the
distance between two clusters is defined as the maximum DTW
distance between any pair of instances in the two clusters.
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While HAC requires the computation of distances between in-
stances in a pairwise manner, it is still efficient since HAC is ap-
plied separately in each chunk. Recall that chunks are produced
by the trace-based partitioning step, and each chunk only contains
tens of instances because of the locality of communication patterns
(as shown in section 4.2). Therefore, the computation within each
small chunk can significantly reduce the computation cost, mak-
ing our framework scalable to a large number of instances in cloud
systems.

4.4 Evaluation

We evaluate Prism by answering the following research questions
(RQs):
• RQ1: How effective is Prism in clustering instances having sim-

ilar functionalities?

• RQ2: How does each component contribute to the overall per-
formance of Prism?

• RQ3: What is the parameter sensitivity of Prism?

• RQ4: What is the efficiency of Prism?

4.4.1 Experimental Setting

Dataset. We evaluate Prism using two datasets collected from
the production environment of Huawei Cloud. To evaluate the
generalizability of Prism, the two datasets (A and B) are collected
from two different geographically isolated regions with different
numbers of users. The detailed statistics of the two datasets are
listed in Table 4.1. These datasets only include instances that are
subscribed by internal customers, where we are able to manually
inspect their functionalities by collaborating with corresponding
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Table 4.1: Dataset Statistics

Datasets # Functionalities # Instances # Traces # Metrics

Dataset A 292 2,035 100.2 M 7.25 M

Dataset B 105 1,027 121.6 M 3.71 M

Total 397 3,062 212.6 M 10.96 M

teams. We select the instances running on our production envi-
ronment that are most frequently invoked according to their com-
munication traces. Then, we reach the owners of these instances
to figure out the concrete functionalities these instances support,
and we finally obtain 3,062 labeled instances. Although we are
unable to fully cover all instances within the Huawei Cloud due
to the manual effort required, our datasets encompass a diverse
range of functionalities (397 types in total), such as databases,
disaggregated memory, authentication servers, search engines, and
machine learning algorithms. Such diversity would help evaluate
whether a clustering algorithm can generalize to different func-
tionalities. Additionally, these functionalities can belong to dif-
ferent applications. For example, while various applications may
each have their own databases, these database functionalities are
distinguished from one another in our datasets since they are uti-
lized by distinct applications that serve diverse workloads (e.g.,
databases of an online shopping application and a face recogni-
tion application). For the monitoring data, traces are extracted
from the network packet transmission records, while metrics are
collected at five-minute intervals. Given the extensive usage and
frequent communication of instances, we ultimately collect hun-
dreds of millions of traces. In terms of metrics, the total number
of points is 10.96 million for all instances. We have made our
datasets publicly available in our GitHub repository. However,
due to confidentiality concerns, the actual functionality names
have been anonymized and are represented as “cluster_ID”.
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Evaluation Metrics. We use the metrics homogeneity, com-
pleteness and V-measure to evaluate the effectiveness of Prism in
grouping the instances within the same functional cluster. These
metrics have been widely adopted in evaluating the quality of
clustering results in previous studies. Homogeneity measures the
proportion of instances in the same cluster that share the same
ground truth labels. Completeness, on the other hand, measures
the proportion of instances with the same ground truth labels
that are grouped into a single predicted cluster. V-measure is a
harmonic mean of homogeneity and completeness, providing an
overall indicator for clustering performance considering the trade-
off between these two metrics.
Competitors. We select the competitors from recent studies:
• OSImage is a basic baseline that uses the name of the op-

erating system (OS) image to differentiate between instances.
Cloud providers offer various pre-installed OS images to cater
to diverse customer needs. For example, an OS image named
deeplearning-pytorch-2.0 implies that the instance is designed
for executing deep learning applications.

• CloudCluster [124] clusters instances based on their pairwise
traffic matrix in cloud projects to determine the functional struc-
ture of the cloud service. It normalizes each row of the traf-
fic matrix by feature scaling, then reduces its dimensionality
through low-rank approximation. Finally, HCA is employed to
group all instances.

• ROCKA [91] aims to cluster instances by using their monitor-
ing metrics. ROCKA first normalizes the metrics to eliminate
amplitude differences. It then uses shape-based distance (SBD)
as a distance measure, which is robust to phase shift and effi-
cient for high-dimensional time series data. Then, clusters are
created based on DBSCAN algorithm.

• OmniCluster [170] clusters instances based on multivariate met-
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Table 4.2: Effectiveness of Functional Cluster Discovery

Methods Dataset A Dataset B
Homo. Comp. V Meas. Homo. Comp. V Meas.

OSImage 0.238 0.894 0.376 0.258 0.889 0.400
CloudCluster 0.346 0.748 0.473 0.369 0.753 0.495

ROCKA 0.831 0.882 0.856 0.875 0.900 0.887
OmniCluster 0.932 0.862 0.896 0.944 0.877 0.909

Prism 0.976 0.916 0.945 0.979 0.922 0.950

rics of each instance. It employs a one-dimensional convolu-
tional autoencoder (1D-CAE) to extract the low-dimensional
features of all metrics. These features are selected based on
their periodicity and redundancy. Finally, it uses HAC to di-
vide all instances into different clusters.

4.4.2 Experimental Results

Effectiveness in functional cluster Discovery (RQ1)

In this RQ, we evaluate the accuracy of the functional clusters
discovered by Prism in comparison with state-of-the-art baseline
methods. To achieve this, we apply Prism and baseline methods
to cluster instances in the dataset of A and B. We present the
results of our experiments in terms of homogeneity (Homo.), com-
pleteness (Comp.), and v-measure (V Meas.) in Table 4.2, where
we highlight the best V Meas. with boldface and the second-best
ones with underline.

It can be observed that Prism outperforms three state-of-the-
art baseline methods, namely CloudCluster, ROCKA, and Om-
niCluster, by a significant margin, achieving V-measures of 0.945
and 0.950 on datasets A and B, respectively. These results indi-
cate that Prism can achieve the best balance between homogeneity
and completeness. This can be attributed to the fact that Prism
effectively integrates communication and resource usage patterns
to discover functional clusters. Unlike Prism, baseline methods
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Table 4.3: Contribution of Different Components in Prism

Methods Dataset A Dataset B
Homo. Comp. V Meas. Homo. Comp. V Meas.

Prism 0.976 0.916 0.945 0.979 0.922 0.950
Prism w/o Metrics 0.462 0.920 0.615 0.463 0.949 0.622
Prism w/o Traces 0.949 0.869 0.907 0.915 0.893 0.904

typically focus on either trace or metric data, leading to worser
performance. Specifically, OSImage exhibits low homogeneity but
high completeness, as using only image names to separate in-
stances can overly group instances with different functionalities
that share the same images. While CloudCluster outperforms OS-
Image in v-measure, it falls short of other metric-using baseline
methods, suggesting that metric similarities are more effective in
distinguishing functionalities than communication trace similari-
ties.

Answer to RQ1: Prism outperforms all state-of-the-art com-
parative methods in revealing the functional clusters across two
different datasets, achieving a v-measure of 0.945 and 0.950 in
dataset A and B.

Contribution of Each Component (RQ2)

In this RQ, we evaluate each component’s contribution to Prism’s
overall performance. We created two Prism variants and com-
pared them with the original approach across datasets A and B.
The first, Prism w/o metrics, eliminates metric-based clustering,
relying solely on communication destination similarity. The sec-
ond, Prism w/o traces, omits trace-based partitioning, directly
applying the HAC algorithm to cluster instances based on resource
usage patterns.

We present the comparison results in Table 4.3, from which
we make the following observations. (1) Removing either of the
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two components can adversely affect the performance of Prism,
underscoring the necessity of integrating both communication and
resource usage patterns. (2) The V-measure of Prism w/o metrics
is significantly lower than that of Prism and Prism w/o traces,
primarily due to its low homogeneity. This suggests that the
trace-based partitioning step over-clusters many instances that
should be separated. The communication pattern alone is not dis-
tinctive enough because instances having different functionalities
should still communicate with some common instances, such as
network gateway and proxy services (as illustrated in Fig. 4.2-(a)).
Nonetheless, the use of solely communication patterns achieves the
best completeness score, implying that it barely separates clusters
that should be grouped. (3) Prism w/o traces has the lowest com-
pleteness score, indicating that it can overly split clusters apart,
but it has a considerably high homogeneity. This observation
implies that Prism harnesses the benefits of both performance
metrics and communication traces, achieving the optimal balance
between homogeneity and completeness.

Answer to RQ2: The variants, Prism w/o metrics and Prism
w/o traces, each sacrifice either homogeneity or completeness.
Yet, Prism effectively combines communication traces and met-
ric data, yielding the highest v-measure, i.e., a balanced perfor-
mance in completeness and homogeneity.

Parameter Sensitivity (RQ3)

In the design of Prism, we identify the following two parameters
that are manually selected and potentially affect the performance
of Prism. For clarity, we present the evaluation results in Dataset
B; similar results are obtained in dataset A.
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Figure 4.4: Parameter Sensitivity of Prism

LSH threshold (θLSH)

In Section 4.3.2, we utilize LSH algorithm to perform a search for
similar neighbors during the trace-based partitioning step. The
LSH algorithm groups similar items together into the same bucket
with high probability, but it cannot guarantee that all items in
the same bucket are actually similar; therefore, θLSH is utilized to
filter dissimilar items within each bucket.

We varied the value of θLSH from 0 to 1 with a step size of
0.1 and evaluated the performance of Prism. The results, shown
in Fig. 4.4(a), indicate that the V-measure remains stable with
only a slight decrease as θLSH increases, which is primarily due to
the decrease in completeness. This is because the LSH algorithm
has already grouped similar items together into different buckets.
Furthermore, since the communication patterns of most instances
are distinct from one another, as depicted in Fig. 4.2-(a), there are
only a small number of dissimilar items in the same bucket. As a
result, adjusting θLSH does not significantly affect the clustering
results.
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HAC threshold (θHAC)

In Section 4.3.3, HAC is used for clustering instances within each
chunk, where the parameter θHAC controls the granularity of clus-
tering: a smaller value of results in more fine-grained clusters,
while a larger value results in fewer, coarser clusters.

We enumerated the value of θHAC from 0 to 1 with a step
size of 0.1 and evaluated the performance of Prism. The results
are shown in Fig. 4.4(b). We observed that increasing θHAC can
increase completeness and decrease the homogeneity. This is be-
cause larger clusters are generated when θHAC is larger. The best
v-measure is achieved when θHAC is around 0.4. Subsequently,
there is a slight decrease in homogeneity, while the v-measure re-
mained stable. This decline in homogeneity is due to the inclusion
of more dissimilar instances in a cluster, thereby reducing its ho-
mogeneity. Nevertheless, the preceding trace-based partitioning
step groups similar instances together, resulting in a limited num-
ber of dissimilar instances. Hence, the overall performance is not
significantly affected.

Answer to RQ3: Prism is not significantly sensitive to the
parameters θLSH and θHAC . This is because the trace-based
partitioning step already groups similar instances together and
separates dissimilar instances based on their communication pat-
terns. Thus, adjusting these two parameters only has a minor
effect on the clustering results.

Efficiency of Prism (RQ4)

In this section, we assess the efficiency of Prism in the context
of large-scale cloud systems with millions of instances that are
frequently created, deleted or updated. To this end, we apply
them to 1,000 / 5,000 / 10,000 / 50,000 / 100,000 instances and
record the time needed (in seconds) to complete the clustering
process.
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Table 4.4: Efficiency Comparison with Increasing Scales of Instances

Methods # Instances
1,000 5,000 10,000 50,000 100,000

CloudCluster 0.9 23.87 78.65 1768.7 5585.7
ROCKA 80.7 1981.8 7850.3 - -

OmniCluster 31.7 264.6 1048.6 26531.8 -

Prism w/o Metrics 3.9 19.1 40.2 195.1 392.4
Prism w/o Traces 80.3 2066.1 8232.3 - -

Prism 18.2 89.4 183.9 929.2 1912.7

Table 4.4 presents the results, from which we can make the
following observations: (1) ROCKA, OmniCluster, and Prism
w/o Traces require increasingly more time as the number of in-
stances increases, and they cannot complete the clustering pro-
cess within a reasonable time when clustering 100,000 instances.
This is mainly because these methods require pair-wise similarity
computation based on instance metrics, resulting in a quadratic
growth in time complexity as the number of instances increases.
OmniCluster mitigates this issue by reducing the dimensionality
of metrics, requiring less time than the other two methods. (2)
CloudCluster and Prism w/o Metrics are more efficient than other
baseline methods. Prism w/o Metrics is more efficient because we
optimize efficiency using pair-wise comparison with LSH and Min-
Hash, as described in Section 4.3.2. (3) Prism is less efficient than
Prism w/o Metrics since it requires an additional metric-based
clustering step. In addition, when the number of instances is fewer
than 10,000, CloudCluster outperforms Prism because the time re-
quired by Prism to build the LSH index is dominant. However,
as the number of instances increases to 100,000, Prism’s efficiency
becomes superior to other baselines, being four times faster than
CloudCluster. This is attributed to the coarse-to-fine clustering
process, which limits pairwise distance computation within small
chunks. Therefore, the time cost of Prism only increases linearly
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with the instance numbers.

Answer to RQ4: Compared with state-of-the-art solutions,
Prism is the most efficient solution when processing a large num-
ber of instances (e.g., 100,000). Moreover, thanks to the coarse-
to-fine strategy of Prism, its time cost increases linearly with an
increasing number of instances, making it scalable for handling
massive instances in cloud systems.

4.5 Industrial Experience

In this section, we share our experience in applying Prism to
a real-world cloud system (i.e., Huawei Cloud), which aims to
demonstrate the practical usefulness of Prism. Generally, cus-
tomers usually subscribe instances from Huawei Cloud in a batch
manner, e.g., thousands of instances. These customers can then
concentrate on the development and deployment of a variety of ser-
vices across these instances, while the cloud providers handle the
often tedious tasks of maintenance and operation to ensure sys-
tem reliability. Due to privacy concerns, on-site engineers from
Huawei Cloud can only rely on limited runtime information of
these instances (e.g., network packet drop rate) to monitor their
health states [20, 86, 98]. However, without knowing how cus-
tomers’ applications are organized in these instances, we observe
that some potential threats in the deployment or underlining er-
rors may be missed, which may later cause service interruptions,
consequently impacting the overall availability of the deployed ap-
plications [124]. To address this problem, in Huawei Cloud, we
adopt Prism to reveal functional clusters in the massive instances
hosted by Huawei Cloud. These functional clusters provide addi-
tional information regarding the structure of service deployment
across the instances, thus enabling us to conduct more comprehen-
sive and fine-grained monitoring of the cloud system. We present
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Figure 4.5: Case I: Vulnerable Deployment Identification

two primary usage scenarios of functional clusters within Huawei
Cloud: vulnerable deployment identification and latent issue dis-
covery.

4.5.1 Vulnerable Deployment Identification

Functional clusters can help cloud providers identify instances
with vulnerable deployments. Specifically, a vulnerable deploy-
ment refers to a scenario where all instances, having the same
functionalities, are deployed on the same physical machines. In
such case, once a failure happens on this physical machine (e.g.,
disk failure [96]), the entire functionality can be interrupted. In
contrast, if these instances were distributed across different phys-
ical machines, only a subset of the instances would be affected in
the event of a failure, thereby preventing a complete shutdown
of the functionality. However, due to the abstraction of physical
resources into instances, customers often deploy their applications
within these instances without understanding how these instances
are distributed across actual physical machines. On the other
hand, cloud vendors possess knowledge of the mapping between
instances and physical machines; yet, they are often unaware of
the organization of functionalities across these instances due to
privacy concerns. Given the vast number of instances in a cloud
system, manually identifying vulnerable deployments poses a sig-
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nificant challenge for on-site engineers.
To fill in this gap, we apply Prism to identify functional clusters

to help detect potentially vulnerable deployments. Fig. 4.5 pro-
vides a concrete example. The left-hand side presents a black-box
view of instance deployment from a cloud vendor’s perspective,
where only the information about which instances are deployed
on which physical machines is known. In contrast, the right-hand
side displays instances with functional clusters. With this knowl-
edge, we can identify three functionalities: a functionality includ-
ing A and B (marked as yellow), a functionality including D and
E (marked as red), and a functionality including C, F, and G
(marked as green). The deployment of the yellow functionality
is potentially vulnerable because both A and B are deployed on
physical machine P1. In contrast, the other two functionalities
are more reliable since their instances are deployed across two dif-
ferent physical machines, making them resilient to the failure of
either machine. It is worth noting that although Prism can hardly
pinpoint what specific functionality of an instance serves, it can
identify the instance group having the same functionalities, which
facilitates automatic vulnerable deployment identification without
violating privacy policies.

We have applied Prism in Huawei Cloud to discover functional
clusters for around 3,000 internal instances and identified eight
cloud services with vulnerable deployments. We then contacted
the corresponding teams, confirmed the existence of the vulner-
able deployments, and assisted in migrating the instances across
different physical machines for improved resilience. In the future,
our goal is to broaden the adoption of Prism to benefit a wider
group of users and help enhance the reliability of their application
deployment.
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Figure 4.6: Case II: Latent Issue Discovery

4.5.2 Latent Issue Discovery

The second typical use case of Prism in Huawei Cloud is to iden-
tify latent network issues that may not be discovered by tradi-
tional monitoring methods. Modern cloud providers have been
equipped with various monitoring tools to ensure the quality of
their network services (e.g., flow logging of AWS [7]). It is essential
for such monitoring tools to comprehensively discover underlining
problems in the cloud systems that can affect user experience,
but without firing too many false alarms to distract the on-site
engineers.

One crucial type of network monitoring is to monitor the packet
loss of each instance. Packet loss, which denotes network packets
that are accidentally dropped, can usually occur in any instance
of a cloud system. However, they may not necessarily indicate
a problem, as these errors could be caused by transient network
congestion and may not affect users’ experience. Considering the
vast number of instances in a large-scale cloud system, a significant
number of packets could be lost every minute. This presents a
challenge for cloud vendors in converting this fragmented packet
loss data into actionable alarms for on-site engineers.

To address this problem, we resort to the aggregation of packet



CHAPTER 4. FUNCTIONAL CLUSTER IDENTIFICATION 64

loss data from a selected group of instances, using an appropriate
granular approach to identify potential problems. The underly-
ing assumption here is that simultaneous packet losses occurring
within a group of instances are more likely to impact user appli-
cations. For instance, if all instances within a region experience
packet loss within a short time frame, it strongly suggests a re-
gional network issue. However, one large region can contain mil-
lions of instances, and consequently, grouping by a region might
fail to reveal local issues for a particular application. Another
possible solution is to utilize the metadata (e.g., the TenantID of
the customer) to group instances. Nonetheless, there could still
be tens of thousands of instances associated with the same iden-
tifiers [124]. For example, all instances subscribed to by the same
enterprise customer would share the same identifier.

Prism enables a more effective approach, which is to aggregate
lost packets in the granularity of the (approximated) functional
clusters, which can reveal latent issues that may not be visible
at neither a coarser level (e.g., regional level) nor a finer level
(e.g., instance level). Fig. 4.6 shows the changes in the number
of lost packets (normalized) calculated at either the region grain
(left-hand side) or functionality grain (right-hand side). We can
observe that while the numbers of packet loss barely change for
the whole region, some functionalities (i.e., Cluster-1 and Cluster-
2) experience sudden increases in packet loss. This indicates that
there may be latent issues affecting the performance of those spe-
cific functionalities, which are unnoticed if monitored at the region
level. We then contact the corresponding teams and confirm that
Cluster-1 and Cluster-2 correspond to machine learning and stor-
age functionalities, respectively. We then validate these latent
issues, and both functionalities experience interruption due to un-
stable network states, as evidenced in their log messages shown
in Fig. 4.6. This highlights the potential of Prism in facilitating
identifying issues that customers are experiencing without access-
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ing their private data, which allows cloud vendors to provide more
comprehensive monitoring to enhance the reliability of the cloud
systems.

Enhanced Cloud Monitoring Based on Prism. To sum-
marize, these two use cases demonstrate that functional clusters
can be utilized with existing monitoring tools and enable identi-
fying vulnerable deployment and discovering latent issues auto-
matically. Prism plays a crucial role to provide comprehensive
and precise functional clusters for large-scale instances. With the
significant growth of modern cloud systems, instances experience
frequent dynamic changes, including creation, deletion, and mi-
gration. In this context, Prism can be utilized to efficiently cap-
ture relations between instances. Unlike using pre-defined and
rule-based monitoring [47, 86], Prism is adaptive to the frequent
evolution of cloud applications. By continuously monitoring met-
rics like packet loss and the distribution of instance deployments,
the monitoring system can effectively detect anomalies, such as
sudden spikes in packet loss or scenarios indicating vulnerable de-
ployments. This enables prompt alerts to the on-site engineers of
relevant teams, resulting in shorter response time and more effi-
cient issue resolution. Overall, the effectiveness and efficiency of
Prism significantly contribute to improving the overall monitoring
and management of instances in modern cloud systems.

4.6 Threats to Validity

External Validity. The primary external threat of this study is
the investigated object. The datasets are collected from Huawei
Cloud, as there are no publicly available datasets that include both
instance data and corresponding functionality labels. However,
Huawei Cloud is a world-leading cloud provider with a vast scale.
The data collected from the production environment records real
behaviors of instances and covers a broad range of functionalities
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from two large regions as detailed in §4.4.1. Therefore, the Huawei
Cloud evaluation is representative and convincing. The data used
by Prism, which includes traces and metrics, is typically collected
by modern cloud vendors like AWS [4] and GCP [44]. This sug-
gests that our solution could be applied to similar cloud systems,
potentially benefiting cloud customers globally.

Internal Validity. The primary internal factors that could
potentially compromise validity are implementation and parame-
ter setting. To address the implementation threat, we closely fol-
lowed the original papers for baseline approaches that lacked open-
sourced code and re-implemented them accordingly. To minimize
this threat further, we utilized several mature libraries (e.g., scikit-
learn) for implementing the core algorithms. Moreover, both our
proposed methods and the baseline methods were subject to rigor-
ous peer code review. To mitigate the parameter setting threat, we
fine-tuned the baseline methods utilizing a grid-search approach,
subsequently selecting the most optimal results.

4.7 Summary

This chapter presents an approach to enhance the observability
of cloud systems by inferring functional clusters of instances. To
achieve this, we conduct a pilot study based on the real-world
datasets collected in Huawei Cloud, indicating that communica-
tion patterns and resource usage patterns are two essential in-
dicators for revealing functional clusters. Motivated by our find-
ings, we propose a non-intrusive, coarse-to-fine clustering method,
Prism, which effectively integrates both communication and re-
source usage patterns. Experiments on two industrial datasets
are conducted to evaluate Prism. Our results show that Prism
outperforms state-of-the-art solutions with a v-measure of 0.95;
and Prism can efficiently process massive instances. Furthermore,
we share our experiences in applying Prism in Huawei Cloud. Two
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cases, i.e., vulnerable deployment identification and latent issue
discovery, demonstrate the usefulness of Prism in improving the
reliability of Huawei Cloud.

2 End of chapter.



Chapter 5

LLM-enhanced Log Anomaly
Detection

System logs play a critical role in maintaining the reliability of
software systems. Fruitful studies have explored automatic log-
based anomaly detection and achieved notable accuracy on bench-
mark datasets. However, when applied to large-scale cloud sys-
tems, these solutions face limitations due to high resource con-
sumption and lack of adaptability to evolving logs. In this Chap-
ter, we present an accurate, lightweight, and adaptive log-based
anomaly detection framework, namely Sealog. The remainder
of this chapter is organized as follows. Section 5.1 provides the
problem background and contributions we made. In section 5.2,
we conduct an empirical analysis to motivate our method design.
Then section 5.3 introduces the method design of the proposed so-
lution Sealog. Section 5.4 elaborates evaluation results of Sealog
based on the real-world data collected from Huawei Cloud. De-
ployment experience of Sealog in Huawei Cloud is also shared in
Section 5.5. Section 5.6 discusses threats to validation. Section 5.7
summarizes this chapter.

68
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5.1 Problem and Contributions

Ensuring the reliability of cloud systems is a critical task [20, 25,
48], since a small period of downtime could result in significant
financial loss for both cloud vendors and their customers [18]. A
preliminary step to safeguard reliability is timely and accurate
detection of suspicious system behaviors, i.e., anomaly detection.
Similar to traditional software systems, logs in cloud systems pro-
vide valuable insights into the system’s functioning and poten-
tial issues. Log-based anomaly detection, i.e., timely identifying
anomalous log messages for prompt resolution of issues, has been
widely recognized as an essential task of cloud system manage-
ment [26,54–56,181].

Existing approaches typically adopt machine learning or deep
learning-based techniques to identify anomalous logs. Traditional
machine learning-based approaches primarily consider statistical
information (e.g., log occurrence counts) and apply models such
as isolation forest (IF) [95], support vector machine (SVM) [92],
decision tree (DT) [21], and logistic regression (LR) [10], to iden-
tify anomalies. Besides, recent studies have explored the use of
deep learning methods to process logs. Such approaches typically
extract semantic information from log messages through word em-
bedding [162,172] or Bidirectional Encoder Representations from
Transformers (BERT) [79], and perform anomaly detection ac-
cordingly.

Although previous studies have demonstrated impressive per-
formance on benchmark datasets, they are not practical for pro-
duction cloud systems due to the following two reasons. First,
previous solutions tend to pursue a high detection accuracy while
overlooking the optimization of computation and space complex-
ity. Cloud systems often use instances (i.e., virtual machines)
to host customers’ applications. Conducting log anomaly detec-
tion for each instance enables close monitoring of its health sta-
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tus. However, as customers’ applications already take up most
resources of the instances, there are limited resources left to run
an anomaly detector, which renders existing solutions impracti-
cal. For instance, deep learning-based methods [79, 172] require
heterogeneous accelerators (e.g., GPUs) [115, 148] to allow real-
time inference, which may not be available to every instance.
A straightforward approach is to transmit the log data to cen-
tralized compute nodes with abundant computational resources,
which subsequently return the detection results. However, in-
stances in a cloud can produce extensive amounts of log data
(e.g., Azure reported that 5 billion log messages are generated per
day [146]), that are distributed across different clusters and data-
centers. Transmitting such large-scale distributed logs to compute
nodes could cause additional network and I/O overhead, which is
prohibitively expensive and time-consuming.

The second reason is that previous approaches struggle to be
sufficiently adaptive to deal with diverse and evolving log data. In
cloud systems, frequent launches of new software versions result
in changes to logging statements over time. For instance, Google
has reported that there are thousands of newly added logging
statements due to software updates every month [160]. Existing
methods typically train models to learn anomaly patterns from
historical log data, which can hardly be adjusted to unseen logs,
causing performance degradation. To address this problem, a re-
cent study [172] exploits the semantic similarity between historical
logs and new logs, enabling the algorithm to transfer knowledge
about anomalies from historical data to new data for anomaly
identification. However, logs in real systems are complicated, and
whether the assumption (i.e., new logs share similar semantics
with the historical ones) holds has not been well investigated.

In this chapter, we conduct a study on the logs in Huawei Cloud
to better understand the characteristics of logs in production cloud
systems. We observe that an instance could generate several gi-
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gabytes of logs daily, while only very limited resources (e.g., one
CPU core and 200MB memory) are left for a plug-in anomaly de-
tection process. Besides, logs are evolving and have low semantic
similarities. Specifically, during a one-month-long development
cycle of 20 microservices, approximately 14.5% of new logs are
introduced on average. When comparing the semantic similarities
between two versions of the same microservice, we find that more
than 90% of log message pairs share little semantic similarity. This
implies that learning semantics from previous logs is not adaptive
enough to handle new logs. Based on these findings, we can sum-
marize that a practical log-based anomaly detection method for
cloud systems should be accurate, lightweight, and adaptive. It
is non-trivial to achieve all the above three requirements simul-
taneously. Lightweight anomaly detection methods (e.g., logistic
regression [10]) cannot effectively handle newly occurring anoma-
lous logs (i.e., not adaptive). On the other hand, existing “adap-
tive” attempts (e.g. RobustLog [172]) rely on compute-intensive
neural networks to apply learned semantic information to new logs
(i.e., not lightweight). Additionally, neither type of method has
the few-shot ability for swift adaptation, meaning they cannot
handle log data dissimilar to historical data which is common in
real-world scenarios.

Our work. Inspired by the recent development of large lan-
guage models (LLMs), we propose to integrate the superior few-
shot ability of LLMs and traditional machine-learning methods in
a synergistic manner to meet these demanding requirements si-
multaneously. Specifically, we propose a novel log-based anomaly
detection framework, named Sealog, which consists of two compo-
nents i.e., (1) a lightweight detection agent, and (2) an accurate
and adaptive backbone analyzer. The backbone analyzer, pow-
ered by LLMs, is designed to identify anomalies by directly com-
prehending the semantics of logs. Since LLMs have been trained
on extensive natural language corpus, it becomes feasible to ef-
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fectively identify anomalies even for unseen logs, hence achieving
adaptiveness. However, solely querying LLMs is too expensive
to analyse the entire set of logs, especially considering that each
query to LLMs would incur charges based on the length of input
data, and it is time-consuming to process a large dataset. To
overcome this issue, our framework involves a lightweight detec-
tion agent to interact with the backbone analyzer. The agent can
filter the majority of normal log data efficiently and forward a
limited number of suspicious logs to the backbone analyzer for
semantic-based analysis. In doing this, the detection agent can
be deployed within resource-constrained instances without incur-
ring voluminous network transmitting costs. Additionally, we al-
low both detection agent and backbone analyzer to take human
feedback, which further enhances the adaptability of Sealog to
evolving log data in practice.

To evaluate the performance of Sealog, we conduct extensive
experiments on two widely used public datasets and an indus-
trial dataset collected from the production environment of Huawei
Cloud. The experimental results demonstrate that compared with
state-of-the-art solutions, Sealog achieves the best performance
(0.949 to 0.993 F1 scores) in the setting where log data do not
evolve. In addition, Sealog retains a high and stable accuracy
even if log messages evolve. Moreover, compared with existing
methods, the Sealog is 2× to 5× faster and its detection agent
consumes only 5% to 41% memories. This chapter makes the
following contributions:
• We propose Sealog, the first synergistic framework fusing the

advantages of machine-leaning approaches and LLMs for log-
based anomaly detection. It comprises a lightweight detection
agent and a backbone analyzer to meet practical requirements,
i.e., accurate, lightweight, and adaptive.

• We conduct extensive evaluations of Sealog on both public and
industrial datasets. The results demonstrate that Sealog out-
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performs state-of-the-art methods in processing fixed or evolv-
ing log data, runs 2× to 5× faster and only consumes 5% to
41% of the memory resource.

• We have deployed Sealog in a real-world cloud system (i.e.,
Huawei Cloud) for twelve months, which demonstrates stable
performance (i.e., 0.9 F1 on average) running in our production
environment. We share our experience and open-source Sealog
to benefit the community.

5.2 Background and Motivation

In this section, we first discuss the background of log-based anomaly
detection. Then, we conduct a study to understand the attributes
of logs in cloud systems, from which we derive the industrial re-
quirements that guide our method design.

5.2.1 Log-based Anomaly Detection

The goal of log-based anomaly detection is to identify the log mes-
sages that may indicate a system problem in the runtime. In the
literature, most studies adopt a two-step paradigm i.e., log pars-
ing and anomaly detection [26, 55, 80]. In the log parsing step,
these methods obtain log templates by identifying the constant
and variable parts. For instance, consider the raw log message
“Finished task 0.0 in stage 6.0 (TID 247).” Its log template would
be “Finished task ∗ in stage ∗ (TID ∗),” where the parameters
– “0.0, 6.0, 247” are replaced with ‘∗’. The sequence of log tem-
plates is then processed through various downstream methods to
conduct anomaly detection. For example, the library Loglizer [55]
applies various machine learning-based methods (e.g., logistic re-
gression and decision tree) to detect anomalies based on the count
distribution characteristics of templates.
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Although log-based anomaly detection methods have long been
recognized as an important problem for software maintenance,
their practical application in cloud scenarios is still understudied.
Unlike traditional software, cloud systems have a larger scale, gen-
erating massive volumes of diverse logs from millions of physical
and virtual instances. We investigate the log data characteristics
in Huawei Cloud through the following study.

5.2.2 Characteristics of Log Data in Cloud Systems

In the following study, we aim to understand the characteristics
of log data in a typical cloud system, i.e., Huawei Cloud; then
summarize practical requirements for log-based anomaly detection
methods in cloud systems.

Massive and Distributed Log Data.

The huge volume of logs has been widely recognized as an essen-
tial challenge in recent studies [99, 146]. Addressing this issue is
increasingly challenging within the context of the widely adopted
microservice architecture of cloud systems [65]. For instance, an
application may comprise hundreds of microservices [103, 179],
with each one generating tens of gigabytes of log data per day
as it supports a large number of users. Transmitting the com-
plete log data of each microservice to a centralized machine for
automated analysis is typically impractical, as it can consume
significant network bandwidth and can also lead to time delays
in promptly identifying anomalies in the runtime. Therefore, it
is crucial to directly conduct log-based anomaly detection in a
distributed manner within each instance. However, an instance’s
main functionality (e.g., video stream) usually can consume most
of the resources, leaving very limited resources for plug-in pro-
cesses such as log-based anomaly detection. For example, in
Huawei Cloud, we find that most instances allocated for control
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Figure 5.1: Statistics of Log Messages in Huawei Cloud

plane services (used for management and coordination of various
resources) have only ∼200MB memory and a single CPU core that
can be allocated to an anomaly detector without adversely affect-
ing the main functionality running on the instance. Therefore, it
is crucial for the anomaly detector to be lightweight enough, en-
abling it to be deployed locally within the instances for continuous
monitoring.

Diverse and Evolving Log Data.

Log data can evolve frequently due to software changes. Though
previous studies have attempted to address this problem [61],
they rely on semantic similarity between unseen and seen logs.
However, this may not hold in cloud systems which have signifi-
cantly diverse log data. To better understand the characteristics
of log evolution in Huawei Cloud, we collected log data generated
by 20 microservices of the same application from 01/02/2023 to
01/03/2023. Then, we study the following two aspects:

(1) How many log templates are shared across different mi-
croservices?

To answer this question, we obtain the templates of the col-
lected log data by running a log parser Drain [53] following pre-
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vious studies [146,172]. Subsequently, we form pairs of every two
microservices and compute their template overlapping using Jac-
card similarity, which is the ratio between the number of common
templates and the total number of unique templates in the two
microservices. As depicted in Figure 5.1(a), approximately 40%
of microservice pairs exhibit no overlapping log templates. Fur-
thermore, the proportion of pairs with a similarity measure of less
than 0.5 constitutes roughly 80% of the total pairs. This shows
that microservices with different functionalities tend to log differ-
ently, though they share a small number of log templates as they
may involve some common components while developing.

(2) How similar are the logs in terms of semantics while the
software is evolving?

Moreover, we also investigate the evolution of log semantics
over time. To achieve this, we partition all log data based on the
date of 15/02/2023 and then proceed to calculate the semantic
similarity between each pair of log messages before and after this
particular time point within each microservice. Specifically, we
utilize the OpenAI embedding service [122] to obtain a seman-
tic vector for each log message. Then, we measure the semantic
similarity of two log messages in terms of the cosine similarity of
their corresponding semantic vectors. We plotted the cumulative
distribution function (CDF) of the normalized similarities, which
range from 0 to 1, for these log pairs in Figure 5.1(b). The fig-
ure illustrates that the majority of log pairs (over 95%) exhibit
similarities of less than 0.5. These findings indicate that software
updates have the potential to introduce new log messages that
differ significantly from historical logs.

In summary, log data in cloud systems exhibits diversity, with
different microservices having distinct logs, and undergoes evolu-
tion, as new logs display minimal semantic similarities with old
ones. Consequently, previous studies focusing on transferring old
semantics to new ones may be ineffective. This underscores the
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need for a method capable of adaptively accommodating the evolv-
ing log semantics in cloud systems.

Insights: In addition to accuracy, a practical log-based
anomaly detector needs to be lightweight enough for deploying
as a plug-in of resource-constrained instances. Furthermore, it
needs to be adaptive to evolving log semantics, enabling effec-
tive identification of anomalies within the dynamic landscape of
cloud environments.

5.3 Methodology

5.3.1 Overview

Figure 5.2 provides an overview of the workflow of Sealog. First,
the complete set of raw input logs is processed by a detection agent
to identify suspicious log windows. We design a lightweight n-
gram probabilistic tree (NPT) to serve as the core of the detection
agent. Its primary objective is to efficiently filter out the major-
ity of normal logs, thereby leaving a limited number of suspicious
log windows for further analysis. Second, a backbone analyzer
determines anomaly and provides explanation by leveraging the
zero/few-shot capabilities [13] of large language models (LLM),
such as ChatGPT [123], which can comprehend the semantics of
log messages and facilitate accurate and adaptive anomaly detec-
tion. In addition, we employ in-context learning (ICL) [13] [158]
to learn from historical fault for more precise decisions (anoma-
ly/normal) and explanations. Finally, the anomalies are sent to
on-site engineers for confirmation, and the confirmed cases (the
raw log window and its groundtruth label) are archived into a
fault library. These cases serve as continuous feedback to enhance
the accuracy of both the detection agent and backbone analyzer,
further enhancing the adaptiveness of our framework Sealog. The
synergy between the detection agent and backbone analyzer is
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Figure 5.2: The Overall Workflow of Sealog

pivotal in Sealog. The detection agent efficiently filters out the
majority of normal logs, allowing for more accurate and adaptive
analysis through the use of more resource-intensive computation
methods (e.g., LLM). This is because only a small number of
queries require analysis, leading to decreased bandwidth, token
costs, and analysis time.

5.3.2 Detection Agent

The aim of detection agent is to filter the majority of normal
cases and retaining a small number of suspicious cases. Further-
more, the detection agent prioritizes recall over precision, aiming
to capture as many suspicious cases as possible. This emphasis
on recall is crucial, as any undetected suspicious cases would not
be forwarded to the backbone analyzer, leading to the irreversible
omission of anomalies. However, this will not result in a substan-
tial increase in the number of cases forwarded to the backbone
analyzer, as anomalies are significantly less frequent than normal
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cases by definition. To achieve this while ensuring efficiency, we
propose an n-gram probabilistic tree (NPT) as the core of the de-
tection agent. In the following, we introduce the construction of
NPT and anomaly detection based on it.

NPT Construction

The goal of NPT is to efficiently find unusual words or tem-
plate patterns within system logs, which barely appear when the
software system is running in a normal state [168], i.e., suspicious
anomalies. Existing anomaly detectors either adopt deep learning-
based methods that are not lightweight enough [26,35,79], or uti-
lize traditional machine-learning methods that cannot effectively
accommodate unseen logs [55]. Consequently, they are unable to
achieve the goal of the detection agent due to their limitations.

To address these limitations, we design a simple yet effective
structure, namely NPT, which serves the dual purpose of pars-
ing logs and identifying suspicious anomalies. Additionally, it has
the capability to incorporate newly labeled data for adaptation
(e.g., avoid duplicate false-positive samples to query the back-
bone analyzer). Particularly, we detect anomalies in the granu-
larity of log windows (e.g., 10 minutes). Given one log window,
the NPF is constructed in three phases: preprocessing, signature-
based grouping and sequential clustering.

Preprocessing. For an input log message li, we follow a com-
mon practice [146, 181] to use pre-defined regular expressions to
extract parameter fields such as IP address and URL. After that,
we tokenize the log message with non-alphanumeric splitters (i.e.,
any characters that are not letters or numbers), generating log
tokens (or words) denoted as l̂i = [w1, w2, ...].

Signature-based Grouping. We then compute a grouping signa-
ture for each log message to roughly group similar logs together.
The widely-adopted log parser Drain [53] adopt common prefix
words to achieve this, assuming that these logs are more likely to
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belong to the same template. However, this assumption may not
hold true for complex log data in practical scenarios. Instead, we
utilize grouping signatures with a less stringent assumption. Each
group signature comprises three parts: i.e., inherent attributes,
top-frequent tokens, and its splitter set. (1) Inherent attributes,
such as logging levels (e.g., INFO and DEBUG) and components,
are considered because log messages with different levels or orig-
inating from different components are more likely to belong to
separate templates. (2) Top-frequent tokens, typically the most
frequently occurring K tokens within a log message (usually with
K=3), are included in the log signature. This is because they of-
ten represent constant parts of a log template [99], with English
stopwords excluded. (3) The splitter set consists of unique non-
alphabetical tokens within a log message, representing its format.
For example, in the log message “user=root,delay=10,stat=queued”
the unique splitters are “=”. We use the splitter set because logs
with the same templates often share the same format [66], such
as the presence of “=,” indicating a key-value format. Those logs
sharing the same grouping signature are sent to the same leaf node
in the NPT.

Sequential Clustering. In practice, the proposed grouping sig-
natures can already lead to leaf nodes containing cohesive log mes-
sages. Then, we are allowed to directly adopt lightweight sequen-
tial clustering [99] in each leaf node to generate more fine-grained
log clusters effectively. Each log cluster comprises a template and
its corresponding mark. The template is derived by analyzing the
logs sequentially assigned to the cluster. The mark is an annota-
tion indicating whether this template represents an anomaly or a
normal event, as determined by human feedback. The mark is set
to null by default if no feedback is given.

Specifically, as shown in Figure 5.3 (right-hand side), each log
message tries matching with existing log clusters. If it cannot
match with any log cluster, it forms a new cluster, with the tem-
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plate being the log message itself. Otherwise, the log message is
assigned to an existing log cluster, and the log template associated
with the cluster is updated. This is achieved by comparing the
words of the existing log template with the arriving log message.
The differing words are treated as parameters and marked as ∗ in
the updated log template.

NPT-based Anomaly Detection

After processing a log window with the NPT, we detect anomalies
by determining whether the window contains unusual words (i.e.,
at word level) or sequence patterns (at template level). To achieve
this efficiently, we propose to extract word-level and template-level
LRU (least recently used) sketches to inform decisions. The core
idea behind the LRU sketches is to maintain a compact data struc-
ture that continuously tracks whether a specific word or template
combination has recently become unusual.

LRU-Sketch Computation. We use LRU sketches to capture
anomalies at both the word level and template level. For sim-
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Table 5.1: Content of Word-level LRU Sketch

Symbol Content

C(ngwi ) Total count of n-gram words ngwi .

Ca(ng
w
i )

Total count of n-gram words ngwi that are shown in
abnormal windows.

Cn(ng
w
i )

Total count of n-gram words ngwi that are shown in
normal windows.

plicity, we will only explain the word-level LRU sketch and its
corresponding anomaly detection procedure, omitting the detailed
discussion of the template level, which follows a similar approach.
Specifically, the word-level LRU sketch is computed utilizing data
from the most recently observed log windows within a specific
time period. Each sketch comprises multiple variables detailed in
Table 5.1. Specifically, ngwi represents the n-gram word, which
is defined as a contiguous sequence of n words derived from a
log template, denoted as ngwi = {wi, ..., wi+n−1}, and C(ngwi ) de-
notes its total count in the most recent seen windows. In addition,
we use Ca(ng

w
i ) and Cn(ng

w
i ) to denote the total occurrences of

ngwi shown in abnormal windows or normal windows, respectively.
We continuously update these statistics in the least recently used
manner, e.g., by only considering data observed within the past
ten days to mitigate the impact of outdated information.

Suspicious Anomaly Identification. We then identify suspicious
anomalies based on the LRU sketch, which is formulated as a bi-
nary classification problem (i.e., anomaly or normal). Specifically,
we propose a streaming classifier based on Bayes’ theorem [11],
designed to run efficiently and with minimal parameter require-
ments, making it memory-friendly.

After a log message L is assigned to a log cluster in NPT,
we extract its associated statistic data stored in the LRU Sketch
based on its n-grams. We then perform the following computation,
where we omit the superscript w for simplicity:
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p(y = 1|L) = p(y = 1)×
∏
i

p(ngi|y = 1)) (5.1)

p(y = 0|L) = p(y = 0)×
∏
i

p(ngi|y = 0)), (5.2)

p(ngi|y = 1) = Ca(ngi)+α∑
j ngj+α×u , p(ngi|y = 0) = Cn(ngi)+(1−α)∑

j ngj+(1−α)×u ,(5.3)

where y denotes the label for anomaly detection. p(y = 1)
and p(y = 0) are the prior probabilities for anomalous or normal
log windows, respectively. These probabilities are calculated as
the ratio of the number of anomalous (or normal) log windows to
the total number of log windows encountered so far. The item
p(ngi|y = 1)) is the likelihood of the ith n-gram indicating an
anomaly as described in Equation 5.3. The LRU sketches are
typically initialized using labeled training data following existing
studies [79,172]. This data can be gathered from historical failures
or through fault injection [83, 84]. Furthermore, our LRU-Sketch
design can continue to evolve by updating Table 5.1 after new
labeled data (feedback) becomes available.

In practice, unseen n-gram words can appear and their statis-
tics are not recorded for anomaly computation. To mitigate this
issue, inspired by the Lidstone smoothing [153], we propose to in-
troduce a parameter α ∈ [0, 1] to compute the likelihood as shown
in Equation 5.3. Here, u is the number of unique n-gram words
(i.e., vocabulary size). In particular, we intentionally set a larger
parameter, e.g., α = 0.8. In doing this, when dealing with unseen
n-gram words, we have both Ca(ngi) = 0 and Cn(ngi) = 0. A
large α tends to increase p(ngi|y = 1) more than p(ngi|y = 0).
Hence, we regard new n-gram words as having a much higher likeli-
hood of indicating anomalies. This design is crucial because those
missed anomalies cannot be revisited by the subsequent backbone
analyzer. Therefore, the detection agent must apply a lenient
standard to identify suspicious anomalies.

Finally, we average both word-level and template-level anomaly
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scores to obtain the final anomaly scores, i.e., p̄(y = 1|L) and
p̄(y = 0|L). We then normalize each of the anomaly scores within
the range of [0, 1] by dividing them with their summation. This
normalization process allows for better comparison and more in-
tuitive interpretation of the anomaly scores. Particularly, if a log
template has been confirmed as an anomaly or not, i.e., it has a
non-null mark value (e.g., 0 or 1), we directly use the mark as
the anomaly score. Then, we introduce a querying threshold, de-
noted as θquery for the detection agent. The detection agent will
only raise a query when the normalized anomaly score p̄(y = 1|L)
exceeds θquery. This allows us to control the number of queries
raised by the detection agent.

5.3.3 Backbone Analyzer

We have deliberately designed the detection agent to be lightweight
to efficiently process large amounts of log data. However, this ap-
proach can inevitably result in false positive alarms, particularly
when encountering unseen tokens or sequence patterns in the log
data. To tackle this issue, we propose utilizing large language
models (LLM) as a backbone analyzer to analyze the detection
agent’s suspicious results and make more accurate predictions.
The reason for adopting LLM is that it has been pre-trained with
an extensive corpus (e.g., source code, software documents, and
bug reports [175]). This enables LLM to comprehend the log
data reported by the detection agent by reasoning with the ex-
isting knowledge it has acquired. While directly processing the
entire set of log data with LLM is inefficient and costly, the Sea-
log framework allows us to leverage the power of LLMs once the
detection agent has filtered out the majority of normal log data,
assuming that anomalies are rare in most software systems [80].

However, LLMs were originally designed for open-world ques-
tioning and answering, rather than specifically for the task of log-
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based anomaly detection. In order to make LLM suitable for our
specific task and to provide it with domain-specific knowledge,
we adopt LLM with in-context learning (ICL) as the backbone
analyzer of Sealog. ICL provides LLM with examples to make
LLM learn from the contextual information in the examples and
make answers according to the format in the examples, which
has been proved to enhance the reasoning ability of LLM signif-
icantly [13, 40]. Specifically, our LLM-based backbone analyzer
has three steps: example retrieval, prompt formulation and LLM
querying.

Example Retrieval

Previous studies have shown that examples that are semantically
similar to the query are more effective than random ones [40,
158]. We follow this idea in our backbone design. For every query
window q, we select K nearest neighbors (KNN), which are the
most similar log windows, from a candidate library of annotated
training logs. To achieve this, we first embed all log windows in
the training data as a library of semantic vectors using the OpenAI
Embedding service [122], denoted as V = {v1, v2, ...}. Similarly,
each query q is also embedded as a semantic vector vq. We then
retrieve K examples whose semantic vectors in V are closest to
vq measured by Euclidean distance d(vi, vj) =

√∑
u(viu − vju)2.

By doing this, we are able to select K examples that have similar
semantics to q, which facilitates LLM’s prediction of q.

In practice, computing Euclidean distances directly by compar-
ing vq with every vector in V can be time-consuming, particularly
when V is large and continues to grow as more cases are accu-
mulated during the operations of on-site engineers. To accelerate
the retrieval process, we accelerate the similarity search based on
FAISS (Facebook AI Similarity Search) [71]. FAISS can build in-
dices for vectors in V and partition the vector space into smaller
subspaces, allowing for faster search within these subspaces.
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Figure 5.4: Processing Suspicious Windows with Backbone Analyzer

Prompt Formulation

The prompt for LLM comprises three components, as depicted in
Figure 5.4. First, there is the instruction, which defines the log-
based anomaly detection task and establishes the desired output
format for LLM. Specifically, we regulate the output of LLM us-
ing JSON format, enabling precise parsing of LLM’s decisions and
excluding any irrelevant text generated by LLM. (2) the examples
that are used to provide demonstrations for LLM. In the exam-
ple demonstration, we order the examples by placing the more
similar examples close to the query. As highlighted by recent
studies [40, 158], this approach can facilitate LLM with learning
relationships between the examples and the query, thus improv-
ing the overall performance of LLM. (3) the query that should be
predicted by LLM. The log messages for prediction are directly
appended after the instructions and examples. Due to space limi-
tations, we include the specific details of the prompt in our repli-
cation package.
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LLM Querying

We then utilize the constructed prompt to query an LLM (e.g.,
GPT-3.5). The responses obtained from the backbone include a
decision regarding whether the input is classified as an anomaly
or normal. Those anomalies are reported to on-site engineers
for prompt mitigation. Additionally, the responses provide cor-
responding explanations that aim to aid on-site engineers in con-
firming the classifications. After a case is confirmed, the input
log window and its confirmed label are stored in the fault library
to facilitate future analysis. Additionally, we allow engineers to
annotate each log template as an anomaly or not, which is saved
in the mark within the log cluster, further enhancing the adap-
tiveness of Sealog.

Despite our empirical observations in Section 5.2.2 suggesting a
minimal overlap in semantics among log entries, our methodology
essentially differs from prior research [172]. The retrieved exam-
ples are instrumental in illustrating the anomaly detection process
and the expected structure of the output [40]. Our strategy ac-
tively seeks out the most closely related examples to maximize the
effectiveness of the ICL process to enhance LLM.

5.3.4 Deployment

Real-world deployment of Sealog consists of two phases: offline
warming-up and online detection. The offline warming-up phases
provide the detection agent and backbone with labeled log data
for training. Specifically, for the detection agent, these log data
are processed to construct the initial NPT structure and LRU
sketches. For the backbone analyzer, these log data are used to
build the candidate library. During the online detection phase,
the NPT continuously processes streaming log messages and raises
suspicious logs to the backbone analyzer. The backbone analyzer
conducts ICL-based reasoning by referring to cases retrieved from
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the candidate library. Once a decision is made by the backbone
analyzer and confirmed by on-site engineers, they are provided as
feedback for future analysis. In Section 5.5, we share more details
regarding our practical experience with the real-world deployment
of Sealog.

5.4 Evaluation

We answer the research questions (RQs) in this section.
• RQ1: How effective is Sealog under the offline setting?

• RQ2: How effective is Sealog under the online setting?

• RQ3: How does the number of queries affect the performance
of Sealog?

• RQ4: What is the time and space efficiency of Sealog?

5.4.1 Experimental Setting

Dataset

We evaluate Sealog on two widely-used public benchmarking datasets
and one industrial dataset from the production environment of
Huawei Cloud. Table 5.2 provides the statistics of these datasets.
Specifically, the BGL (Blue Gene/L) dataset is a supercomput-
ing system log dataset collected by Lawrence Livermore National
Labs (LLNL) [56,121]. The Thunderbird dataset originates from a
Thunderbird supercomputer at Sandia National Labs (SNL) [56,
121]. Although existing studies often use 10 million continuous
lines from the Thunderbird dataset for evaluation [79, 80], they
do not specify which 10 million logs they employed; therefore, we
use the first 10 million logs in this study. The industrial dataset
is collected from the production environment of Huawei Cloud.
It contains one month-long log data generated by 20 internal mi-
croservices that offer various functionalities such as API Gateway,
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user management, auto-scaling, load balancing, and more. Expe-
rienced engineers from our site reliability engineering (SRE) team
assist us in labeling the dataset based on their historical diag-
nostic reports. These reports record the starting times of actual
system issues, which facilitate accurately identifying the anoma-
lous log messages manually. After a thorough labeling process, we
obtained a log data dataset with approximately 1.5 million lines
of log messages covering a wide range of system problems. We list
the details of 103 types of failures in our replication package.

Evaluation Metrics

We calculate four measures: TP (true positive), which is the num-
ber of correctly predicted anomaly windows; FP (false positive),
which is the number of predicted anomaly windows that are actu-
ally normal; TN (true negative), which is the number of correctly
predicted normal windows; and FN (false negative), which is the
number of predicted normal windows that are actually anomalous.
Based on these numbers, we calculate precision (PC)= TP

TP+FP and
recall (RC) = TP

TP+FN and F1 scores=2×PC×RC
PC+RC .

Comparative Methods

We have selected the following state-of-the-art studies as our com-
parative methods:
• Loglizer (IF/LR/DT) [55] is a log-based anomaly detection

library encompassing a variety of machine learning (ML) meth-
ods, including isolation forest (IF), linear regression (LR), deci-
sion tree (DT), etc.

• DeepLog [35] employs a Long Short-Term Memory (LSTM)
model as its core component. DeepLog takes windows of log
messages as input and predicts the next log event. Anomalies
are detected if the prediction differs from the actual event.
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Table 5.2: Statistics of Evaluation Datasets

Dataset BGL Thunderbird Industry

# Log messages 4,747,963 10,000,000 1,488,073

# Templates 456 1,504 3,241

# Train windows
(anomaly ratio)

2,884
(21%)

416
(55%)

3,048
(13%)

# Test windows
(anomaly ratio)

722
(24%)

105
(30%)

933
(18%)

• LogAnomaly [108] aims to detect anomalies by combining log
count vectors and log semantic vectors, which also utilizes a
forecasting-based mechanism to reflect anomalies.

• LogRobust [172] aims to capture the meaning of log messages
using word embeddings to handle the challenge of constantly
changing log messages. Each log message is encoded as a repre-
sentation based on word vectors using an attention-based Bidi-
rectional LSTM.

• NeuralLog [79] aims to bypass the log parsing step; instead,
NeuralLog extracts semantic meaning from raw log messages
and represents them as vectors to detect anomalies using a
Transformer-based classification model.

Implementation Details

We implemented the prototype of Sealog with approximately 1000
lines of Python code for easy use in Huawei Cloud. We utilize
ChatGPT (gpt-turbo-3.5-0301) as the LLM in the backbone ana-
lyzer, which is widely recognized for its advanced language under-
standing capabilities. For the baselines, NeuralLog and Loglizer,
we directly utilized the code provided by the respective authors.
Additionally, for DeepLog, LogAnomaly, and LogRobust, we uti-
lized the DeepLoglizer library [26] for implementation. We set
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Table 5.3: Experimental Results of End-to-end Offline Anomaly Detection

Method BGL Thunderbird Industry
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

IF 0.125 0.615 0.208 0.291 0.968 0.448 0.176 0.994 0.299
LR 0.738 0.437 0.549 0.842 0.516 0.640 0.818 0.655 0.727
DT 1.000 0.570 0.726 1.000 0.839 0.912 0.942 0.788 0.858

DeepLog 0.241 0.895 0.380 0.295 1.000 0.456 0.358 0.909 0.513
LogAnomaly 0.268 0.862 0.409 0.307 1.000 0.470 0.360 0.927 0.519
RobustLog 0.942 0.961 0.951 1.000 0.710 0.830 0.984 0.764 0.860
NeuralLog 0.881 0.886 0.883 0.713 0.719 0.715 0.889 0.895 0.887

Sealog 0.994 0.991 0.993 1.000 0.903 0.949 1.000 0.931 0.964

K=3 and evaluate the settings of important parameter θquery for
Sealog in Section 5.4.2. For baseline methods, we utilize the de-
fault parameters provided by the original source code. We use
the same window setting for the public dataset as in [80], namely,
using a fixed window size of one hour without overlapping. For
the industrial dataset, we use 10 minutes as the window size for
real-time anomaly detection.

5.4.2 Experimental Results

Effectiveness under Offline Setting (RQ1)

In this RQ, we evaluate the effectiveness of Sealog in an offline set-
ting, where the training and testing sets are fixed. We evaluate the
overall performance of Sealog as well as the performance of each of
its components. Following the setting of previous studies [79,80],
we split the whole dataset in chronological order, with the first
80% data for training and the remaining 20% data for testing,
and keep them fixed. We use the training data for warming up
Sealog as described in 5.3.4 and training the baseline methods.
Testing data is used for evaluation. The statistics of training and
testing data are shown in Table 5.2.

The evaluation results are presented in Table 5.3, the high-
est F1 score is emphasized in bold, and the second-best score is
underlined. We can make the following observations: (1) Unsu-
pervised methods (IF, DeepLog, and LogAnomaly) show signifi-
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cantly lower effectiveness than supervised approaches in terms of
F1 score. This is mainly because they assume that all training
data is normal. As a result, during the inference phase, these
methods classify every window containing unseen log templates
as anomalies, resulting in high recall but low precision. (2) Super-
vised methods achieve a better balance between recall and preci-
sion by learning from labeled data. Furthermore, with sufficient
labels, ML-based methods (i.e., DT) can still achieve comparable
or better performance (on Thunderbird) compared to DL-based
methods. The above two observations are consistent with the re-
cent empirical studies [26, 80] that benchmark existing DL-based
methods. (3) Sealog attains the highest F1 score across all three
datasets, ranging from 0.949 to 0.993. This result demonstrates
the effectiveness of the collaboration of the detection agent and the
backbone analyzer. We then discuss their individual effectiveness
in section 5.5.

Answer to RQ1. Sealog achieves the best overall performance
among all state-of-the-art baselines across three benchmarking
datasets, demonstrating that Sealog can effectively fuse the re-
sults of the detection agent and the backbone analyzer.

Effectiveness under Online Setting (RQ2)

In this RQ, we would like to evaluate whether Sealog can adapt
to evolving log data within an online setting. Based on the results
of RQ1, we select the most effective model (i.e., RobustLog and
NeuralLog) as strong baselines for this RQ. To simulate a scenario
where new log messages are received, we divide the BGL and
Industry datasets into six even chunks (numbered from 0 to 5) in
chronological order, each containing log messages with different
templates. Note that the results of the Thunderbird dataset are
similar to those of the BGL dataset, so it is excluded to save space.
In practice, on-call engineers must verify suspicious logs reported
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Figure 5.5: Experimental Results of Online Anomaly Detection

by an anomaly detector, which naturally provides labeled data
allowing us to continue training a model on the fly. To mimic this
scenario, we train the models using one chunk and then evaluate
the trained models on the next chunk (e.g.,, training with chunk
0 and testing with chunk 1), resulting in five evaluation results.
While RobustLog and NeuralLog were not initially designed for
receiving streaming feedback, we enable them to perform online
training by continuously adapting to the incoming chunk, ensuring
a fair comparison with Sealog.

Figure 5.5 presents the experimental results. Our observa-
tions are as follows: (1) Sealog consistently achieves the high-
est F1 scores across all chunks for both datasets, demonstrating
its successful adaptation to new chunks and maintaining stable
performance. (2) RobustLog’s performance significantly declines
from chunk 1 to chunk 4 in both datasets, indicating that it ex-
periences catastrophic forgetting [37] when accommodating new
chunks. Nevertheless, its performance improves in the 5th chunk
on the BGL dataset, as chunks 4 and 5 share considerable data
overlap, enabling RobustLog to detect the most recent anomalies.
Conversely, the Industry dataset is more complex and has less
overlap between chunks, resulting in substantially lower perfor-
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Figure 5.6: Anomaly Detection Performance w.r.t. the Number of Queries

mance for RobustLog compared to other models. (3) NeuralLog
shows more consistent performance than RobustLog because of its
transformer architecture, which has more parameters to remember
observed data and address the issue of catastrophic forgetting.

Answer to RQ2. Sealog consistently surpasses the strong base-
line methods (RobustLog and NeuralLog) under the setting that
logs are evolving. The results demonstrate that Sealog can meet
the requirements of being adaptive.

Impact of Query Number (RQ3)

In this RQ, we aim to study how the number of queries affects
the effectiveness of Sealog. Specifically, we warm up the detection
agent with only 50% of the training data for BGL and industry
datasets, mimicking the scenario that the model might not be
well trained initially. Then, we use the same test set as in RQ1 to
evaluate the detection agent. While testing, we vary the number
of queries sent to the backbone analyzer by tuning the threshold
to issue a query, i.e., θquery in the range of [0, 1] with a step size
of 0.1.

The results are presented in Figure 5.6. We can obtain the



CHAPTER 5. LLM-ENHANCED LOG ANOMALY DETECTION 95

following observations: (1) Fewer queries are launched when in-
creasing the threshold θquery. With fewer queries, the performance
of Sealog is degraded. However, even if no query is launched (i.e.,
setting θquery = 1), the detection agent can still achieve around
0.73 F1 score for BGL and 0.82 for industry data, respectively.
(2) To achieve the highest F1, the detection agent only queries
the backbone analyzer fewer than 80 and 190 times on BGL and
Industry datasets with millions of log lines, respectively. For the
industry dataset, it indicates at most 6 queries per day can be
raised. This shows that the detection agent can filter out most
normal cases and involve the compute-intensive backbone analyzer
conservatively.

Answer to RQ3. The performance of the detection agent im-
proves as the amount of feedback increases. Owing to the NPT-
based anomaly detection approach, most normal log messages
are filtered out, resulting in only 190 queries in total (i.e., 6
queries per day) for the industry dataset.

Time and Space Efficiency (RQ4)

(1) Time efficiency We measure the time required to perform
anomaly detection on the complete BGL test set in comparison
with all baseline methods. For DL-based methods, we set them
to evaluation mode without backpropagation. Additionally, since
online-generated logs are not pre-parsed, we include the time re-
quired to parse raw log messages using Drain [53] for baseline
methods. Note that I/O time is excluded for all methods, and
all methods are executed without GPU acceleration, which may
not be available when resources are constrained. For Sealog, we
account for the time taken by the detection agent and backbone
analyzer. The detection agent’s time includes all steps from pre-
processing to anomaly detection. To simulate a real-world de-
ployment scenario, all queries sent to the backbone analyzer are
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Figure 5.7: Experimental Results of Time and Space Efficiency Comparison

conducted asynchronously, allowing the execution of the detection
agent to proceed without being blocked. The backbone analyzer’s
time is calculated as the total time needed to process all queries.
Note that the communication time between the detection agent
and the backbone analyzer is negligible due to the limited number
of small-size queries launched.

Figure 5.7(a) presents the comparison results. Since LR, IF,
and DT present similar efficiency, their values are averaged and
denoted as Loglizer in the figure. We can observe that: (1) Sea-
log achieves comparable efficiency to Loglizer, being 2 to 5 times
faster than other deep learning-based methods. While Sealog re-
lies on a costly LLM as the backbone for accuracy, it also ensures
efficiency because the LLM only needs to process a small number
of queries from the detection agent. As shown in Figure 5.7(a), it
takes around 10 seconds to process all the queries asynchronously.
(2) DeepLog and LogAnomaly with similar LSTM-based archi-
tectures exhibit comparable performance. In contrast, RobustLog
and NeuralLog require more time than others, as they involve a
greater number of parameters.

(2) Space efficiency We use Memory Profiler [36] to monitor the
memory usage of each method when processing a single log win-
dow, as anomaly detection is usually performed on a window-by-
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window basis. Figure 5.7(b) displays the comparison results. Sea-
log demands the least memory during log processing, using only
5% to 41% of the memory consumed by DL-based methods. This
is primarily because Sealog only needs to store the NPT structure
in memory, which is typically sparse. Loglizer demonstrates com-
parable space efficiency to Sealog, since it only stores the count
vector of a log window, and the subsequent ML-based method
(e.g., LR) is memory-efficient. DL-based methods require storing
a large number of parameters (e.g., network parameters), result-
ing in higher memory usage. NeuralLog, which adopts a heavy
transformer architecture, consumes the most memory among the
methods.

Answer to RQ4. When compared to recent deep learning-
based methods, Sealog is 2 to 5 times faster and requires only
5% to 41% of the memory consumed by the baselines. These
results demonstrate that Sealog meets the requirement of being
lightweight for practical anomaly detection.

5.5 Industrial Experience

We share our experience deploying Sealog in product X, a unified
data center management. This platform offers multiple function-
alities, including streamlined service orchestration, robust security
measures, and access control mechanisms. Product X comprises
multiple components, each consisting of hundreds of microser-
vices. In the early stage of product X, we conduct log analysis
in a centralized manner, where all log data are transmitted to a
high-performance server for manual analysis or utilizing tools like
log parser [181] to assist in the analysis process. This approach
was suitable when the product had a smaller scale, generated a
limited amount of log data, and had a smaller number of issues
to address. However, with the deployment of the product and
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Figure 5.8: Practical Application of Sealog in Huawei Cloud

the increased customer number, the requirements for log analysis
become more demanding (as described in Section 5.2.2).

To meet these practical requirements, we have adopted Sealog
for monitoring product X. Currently, 135 microservices within
product X have been equipped with Sealog over a period of twelve
months. The deployment of Sealog in Product X is illustrated
in Figure 5.8(a). The detection agent’s time and space efficiency
allows for local deployment alongside each microservice. Once a
suspicious anomaly is detected, the agent forwards it to a centrally
deployed backbone analyzer for detailed analysis. For confidential-
ity reasons, during the online deployment, we utilize an internal
LLM maintained by Huawei Cloud. Finally, if the LLM agrees
that these anomalies are true, these anomalies together with ex-
planations are raised as alerts to a central alert panel, enabling
on-site engineers to take prompt mitigation measures. After the
on-site engineers confirm the reported anomalies, these anoma-
lies serve as valuable feedback to continuously improve the overall
framework. During the past twelve months, Sealog has resulted
in less than 10% false positives, and the interpretable results have
been well-recognized by the on-site engineers for convenient con-
firmation.
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To assess the performance of Sealog in deployment, we gathered
log data generated by these microservices over a six-week period
(08/08/2023 to 12/09/2023). Then, we compared the prediction
results of Sealog with manually annotated groundtruth provided
by on-site engineers. The results are shown in Figure 5.8(b). In
the first week, we solely deployed the detection agent, which re-
sulted in a high recall but relatively low precision. This outcome
was anticipated as we aimed to set a lenient threshold to capture
most anomalies, regardless of the cost of increased false positive
predictions. Starting from the second week, we deployed the feed-
back mechanism and the backbone analyzer. After that, the over-
all performance of Sealog improved, indicating the effectiveness of
the feedback loop and the backbone analyzer.

Ideally, LLMs would provide direct feedback to the local agent
and avoid the need for human intervention. However, even with
advanced LLMs like ChatGPT, correct predictions cannot always
be guaranteed. Therefore, we still involve on-site engineers for
confirmation in our real-world deployment. However, with the
assistance of the LLM-based backbone analyzer, the manual effort
required for confirmation has been significantly reduced. This is
particularly beneficial for newly employed engineers who may not
be familiar with the system yet. Looking ahead, we believe that
the proposed Sealog framework can benefit from advancements
in LLM to automate the operation process of large-scale cloud
systems.

5.6 Threats to Validity

We identify the following threats to the validity of our study.
The cloud system under study. Our motivation for a

lightweight and adaptive method is driven by real-world scenarios
in a single cloud system. However, Huawei Cloud is a representa-
tive world-leading cloud provider with a vast scale. Besides, our
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findings in Section 5.2.2 are consistent with previous studies re-
ported by other cloud vendors e.g., Azure [146]. Additionally, we
also adopt public datasets for evaluation. Hence, the evaluation
results should be compelling.

The LLMs under study. We use LLM as a backbone an-
alyzer in the Sealog framework. It is important to note that the
performance and characteristics of LLMs can differ between imple-
mentations. We chose the most representative and publicly avail-
able LLM (GPT-3.5) to ensure reproducibility. However, Sealog
is designed as a general framework, allowing LLMs to be replaced
as necessary, thus enabling Sealog to benefit from advancements
in LLM technology.

Implementation and parameter settings. We have imple-
mented several measures to mitigate these threats. First, we have
employed peer code review while implementing Sealog, and for the
baseline methods, we have utilized open-sourced code released by
the original paper or highly-rated replications on GitHub. Second,
we have used the hyperparameters recommended by the original
authors wherever available. Third, to ensure the reproducibility
of our results, we have made our code and partial data publicly
available.

5.7 Summary

In this chapter, we presented Sealog, a lightweight and adap-
tive log-based anomaly detection framework designed for practical
cloud systems. Sealog utilizes a detection agent for lightweight
anomaly detection in a streaming manner. We also incorporate
large language models (LLMs) as a backbone analyzer, to provide
more accurate and adaptive analysis. Experimental results on two
public datasets and an industrial dataset from CloudX showed
that Sealog is effective, achieving F1 scores between 0.949 and
0.993. Moreover, Sealog maintained high and consistent accuracy,
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even in the presence of evolving log data i.e., adaptive. Addi-
tionally, Sealog is 2× to 5× faster and requires only 5% to 41%
memory resources compared to existing methods i.e., lightweight.
With the advantages of Sealog, we have deployed this framework
in our production environment for twelve months. Our analysis
shows that Sealog can continuously maintain a high performance
(∼0.9 F1 score) over time. To benefit the community, we share
our experience in deploying Sealog in Huawei Cloud and make
Sealog publicly available.

2 End of chapter.



Chapter 6

Incident-aware Ticket
Aggregation

Customers of cloud systems frequently submit support tickets to
seek assistance from cloud providers when they encounter tech-
nical issues. To maintain user satisfaction, it is crucial for cloud
providers to address these tickets promptly. However, during in-
cidents, the overwhelming volume of customer tickets can make it
challenging for support engineers to manage them effectively. A
significant portion of these tickets may be duplicates, and tradi-
tional semantic similarity-based methods often fall short of iden-
tifying all duplicates due to the diversity and complexity of the
issues. In this chapter, we introduce iPACK, a solution designed to
aggregate duplicate tickets during incidents by leveraging cloud-
side monitoring information (i.e., alerts). The remainder of this
chapter is organized as follows. Section 6.1 provides the back-
ground of the problem and outlines our contributions. In Sec-
tion 6.2, we present a motivating example to highlight the chal-
lenges and inspire the design of our methodology. Section 6.3
details the design of the proposed iPACK solution. Section 6.4
discusses the evaluation results of iPACK, based on real-world
data collected from Azure. Following this, Section 6.5 showcases
industrial case studies that demonstrate the practical applications
of iPACK. Finally, Section 6.7 summarizes the chapter.

102
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6.1 Problem and Contributions

In the era of Cloud Computing, cloud platforms such as Amazon
AWS, Microsoft Azure, and Google Cloud Platform serve millions
of users worldwide. When customers encounter a technical prob-
lem with the platform; they often resort to cloud providers for help
by submitting a support ticket (ticket for short), which consists
of a textual issue description and some basic attributes (e.g., date
and product name). From the cloud provider’s perspective, once
a ticket is received, it is essential to provide timely assistance to
customers to avoid user dissatisfaction and financial loss [6] [112].

In practice, incidents (i.e., unexpected service interruptions)
are inevitable for large-scale cloud platforms [96] [30]. Though
much effort has been devoted to ensuring the reliability of cloud
systems [86] [174] [133], customers could still be impacted by in-
cidents. For a large-scale cloud platform serving millions of cus-
tomers, incidents could trigger a large number of tickets, among
which many could be duplicate as the tickets are reported in a
distributed and uncoordinated manner. To reduce the burden of
support engineers, it is essential to precisely and comprehensively
aggregate the tickets, i.e., clustering the duplicate tickets caused
by the same incident. By doing this, the support team can resolve
the tickets more efficiently.

To aggregate the tickets caused by the same incident, a com-
mon practice is to check if multiple tickets with similar symptom
descriptions are reported within a short period. The intuition
behind this is that customers using the same functionalities or
services tend to encounter similar problems if they are caused
by the same incident (e.g., service unavailability). Most existing
studies on duplicate issue report detection measure the seman-
tic similarity between two reports based on their textual descrip-
tions, using natural language processing techniques such as word
frequency [138] [137] [177], word embedding [166] [14], topic mod-
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eling [15], and pretrained model [49]. Such semantic similarity-
based approaches work well for traditional software systems (e.g.,
NetBeans [78], Eclipse and Firefox [77]). However, they are sub-
optimal for aggregating duplicate tickets in cloud systems due
to the large-scale and heterogeneous architecture of cloud sys-
tems [30] [164] [147]. The main reason is that customers of cloud
systems could encounter distinct issues (with distinct symptoms)
caused by the same incident. On the one hand, customers using
the same service may experience different issues due to various us-
age scenarios. For example, when the control plane of the virtual
machine (VM) service is problematic, the customers could com-
plain about various problems related to VM creation, upgrade or
deletion, depending on their particular scenarios. On the other
hand, multiple services can be impacted by the same incident
due to the notorious failure propagation problem [86] [147] [28] in
cloud systems. For example, when an infrastructure-level service
(e.g., a storage service) is interrupted, other services depending
on it (e.g., VM and Web application) can be impacted too. As
a result, customers using different services may observe different
symptoms and submit tickets with dissimilar descriptions. Conse-
quently, it is insufficient to tackle this problem by solely utilizing
textual descriptions of tickets.

To address existing studies’ limitations, we propose introduc-
ing cloud-side runtime information, i.e., alerts, to facilitate ticket
aggregation in cloud systems. Modern cloud systems widely adopt
monitors to continuously detect anomalies (unexpected behaviors)
of cloud systems [4] [111] [46]. Once an anomaly is detected, an
alert describing the anomaly will be fired to notify on-call en-
gineers for inspection promptly. The services (and their inter-
nal components) are interdependent in cloud systems [164] [147];
therefore, when an incident impacts multiple components or ser-
vices, multiple alerts will be triggered within a short period [174]
[25], that is, these alerts are correlated with each other (i.e., alert-
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alert relation). According to our study in Azure, the correlated
alerts caused by most (93%) incidents are fired within four hours.
On the other hand, a particular issue of a component (e.g., prob-
lematic API for VM allocation) in cloud systems can reflect a
particular customer-side issue (e.g., cannot create a VM). So, it
is possible to find a responsible alert within the component that
captures the issue resulting in the ticket (i.e., ticket-alert rela-
tion). In Azure, we find that for 92% of customer tickets; the
alert system has already fired responsible alerts that cause these
tickets before the tickets are submitted.

Motivated by these two kinds of relations, we propose to for-
mulate the ticket aggregation problem in cloud systems as a two-
stage linking problem, i.e., alert-alert linking and ticket-alert link-
ing. Intuitively, if the same incident triggers multiple interlinked
alerts and these alerts are further linked to different tickets, then
we consider these tickets should be aggregated (i.e., caused by the
same incident). In doing this, it is possible to aggregate semanti-
cally different tickets via alert-alert links.

However, designing such a framework mainly faces two chal-
lenges originating from the large scale and complexity of cloud
systems: First, alerts are massive and noisy. The main reason is
that cloud systems consist of a large number of interdependent
services. Each service adopts comprehensive monitors to capture
any abnormal patterns to ensure its reliability [19]. These moni-
tors could be sensitive. As a result, various alerts are continuously
fired every second [86], so it is challenging to correctly identify and
link alerts that are relevant to the ongoing incident. Second, the
features of both alerts and tickets have high cardinality, which
means each of their features consists of too many unique values.
When considering linking alerts and tickets, the number of fea-
ture combinations grows exponentially due to the high cardinality.
Consequently, it is hard to identify effective feature combinations
between them and conduct correct correlation.
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In this chapter, we propose iPACK to address these challenges.
Specifically, iPACK mainly consists of three steps, i.e., alert pars-
ing, incident profiling and ticket-event correlation. The first two
steps address the first challenge, and the third step addresses the
second challenge. In the alert parsing step, we preprocess (parse)
alerts as more coarse-grained events to reduce redundant alerts.
Next, in the incident profiling step, we propose GIP (graph-based
incident profiling) to automatically filter noisy events and link
events caused by the same incident. As a result, each incident
is represented as an event graph by considering alert-alert rela-
tions. Afterward, in the ticket-event correlation step, we propose
AIN (attentive interaction network) to correlate a ticket to a re-
sponsible event by considering ticket-alert relations. Finally, we
aggregate these tickets that are linked to the events within the
same event graph (i.e., incident), which are provided to CSS (cus-
tomer support service) team to accelerate processing the tickets.

This work makes the following major contributions:
• We are the first to propose to introduce cloud runtime infor-

mation (i.e., alerts) to aggregate duplicate tickets. We propose
iPACK to leverage the alert-alert relations and ticket-alert re-
lations to achieve this goal.

• We evaluate iPACK on three datasets collected from the pro-
duction environment of Azure. The evaluation results show that
iPACK outperforms state-of-the-art methods by 12.4%∼31.2%,
which confirm the effectiveness of iPACK. We also share our
industrial experience of applying iPACK in a large-scale cloud
platform, Azure.
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Category: Kubernetes\container creation\cannot create
Creation Time: Product Name:2022/7/25 15:34:42 Kubernetes
Summary: Region: West USError deploying the container.

Ticket: 2022072505

Title:
Creation Time: Region:
Owning Service:

West US2022/7/25 12:14:26
Kubernetes

Alert: 21456282

Monitor ID:
Severity: Medium

Owning Component:

Status: Open

68ba52c9fKubernetes\Scheduler

Status: Active

Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.

Figure 6.1: An Example of An Alert and Its Resultant Ticket

6.2 Motivation

6.2.1 Background

Alert Alerts are fired by monitors that continuously detect anoma-
lies in cloud systems, which automatically notify on-call engineers
for investigation [164] [165] [25]. An alert has many attributes as
presented in Fig. 6.1 (top), including alert ID, title, creation time,
region, owning service, owning component, severity, monitor ID,
etc. The title is generated by following a template pre-defined by
engineers. The severity indicates how serious the issue is, which
has three levels, i.e., low, medium and high. A service (owning
service) consists of many components (owning component), where
each component has its own functionality or feature.

Alert-Ticket Linkage As presented in Fig. 6.1 (bottom), a sup-
port ticket usually contains attributes such as ticket ID, creation
time, summary, region, product name, and category. The sum-
mary is free text written by customers in natural language. The
region is where the customer’s product is deployed. The cate-
gory is a coarse-to-fine text description initially selected by the
customer, which facilitates triaging a ticket to a proper support
engineer. In addition, a ticket may also include a long detailed
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description (hidden in the figure).
Modern cloud platforms adopt similar schemes of alerts and

support tickets described above. For example, CloudWatch of
AWS [4], Alerting of GCP [46] and Azure Monitor [111] share
similar alerting mechanisms, and their alerts carry similar at-
tributes. Besides, their ticket management systems require similar
attributes from customers as in Fig. 6.1, i.e., AWS Support [5],
Google Support Hub [45], and Azure Support [45]. In this work,
we only leverage the common features that all these popular cloud
platforms own to ensure generalizability.

6.2.2 Alert-Alert Relation

The alert-alert relation denotes that two alerts could be correlated
if they are caused by the same incident. The relation originates
from the hierarchical structures of modern cloud systems that con-
sist of inter-dependent components or services [19]. When an inci-
dent happens, multiple components or services could be impacted
due to failure propagation [147] [25], which will fire alerts within
a short period associated with the same incident. During the di-
agnosis of an incident, in Azure, on-call engineers will manually
mark these alerts and assess the severity of the incident according
to the number of customers impacted. According to the diagno-
sis history in Azure from 2020/01/01 to 2022/06/01, as shown
in Fig. 6.2(a), we found incidents with a higher severity tend to
affect more services. Especially, 70% of high-severity incidents
affect more than one service. We studied the resultant alerts of
historical incidents. We calculated the max alert duration of the
incidents (i.e., the time interval between the earliest and the lat-
est alerts triggered by the incident). As shown in Fig. 6.2(b), we
found that the max alert duration of 93% of incidents is within
four hours. This serves as evidence to automatically identify the
correlated alerts within an incident (in Section 6.3.3).
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Figure 6.2: Statistics of Alert and Incident Data in Azure
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6.2.3 Ticket-Alert Relation

The ticket-alert relation denotes that a ticket can correlate with a
responsible alert inside the cloud systems. When a particular type
of issue happens inside the cloud system (alerts are also fired), the
customer could experience particular problems. Fig. 6.1 presents
an example. If the API PUT (for container allocation) in the
Kubernetes services is degraded, the customer can experience an
error when deploying a container. In Azure, if a ticket is related to
a cloud-side issue, the support engineers are required to annotate
the responsible alert ID after diagnosis. Based on the annotated
alert-ticket pairs collected from 2020/01/01 to 2022/06/01, we
study the time interval between alert generation and ticket sub-
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mission. Fig. 6.3 shows the results, where a negative time interval
indicates that an alert is fired before the ticket is submitted. We
found around 92% of tickets have responsible alerts fired before
customers submit the tickets. This allows us to correlate respon-
sible alerts for most tickets in runtime (in Section 6.3.4).

6.2.4 A Motivating Example

We present a real-world incident in July 2021 in Azure and its
resultant tickets as a motivating example. The impact of the inci-
dent started at 05:08 AM (UTC). It was caused by the availability
loss of the DiskRP (disk resource provider) service that provides a
control plane service for managed disks. Since its gateway queue
was full, a large proportion of incoming requests were rejected.
As a consequence, services relying on DiskRP experienced inter-
ruptions. On-call engineers’ diagnosis confirmed that three ser-
vices were impacted, i.e., virtual machine (VM), Databricks, and
Kubernetes (K8S). Customers using these services were affected,
which led to overwhelming tickets. As shown in Fig. 6.4, the
ticket numbers of the services simultaneously increased right after
the impact started, which implies the three services could be im-
pacted by the same incident concurrently. In particular, the CSS
team received around four times the number of tickets than usual
within a short period and assigned twice the number of support
engineers to handle these tickets. We list some samples of alerts
and tickets related to this incident in Table 6.1. These tickets
(t1 ∼ t8) carry dissimilar semantics due to different use scenar-
ios and services for different customers. Therefore, it is hard to
know that these tickets are actually caused by the same incident,
rendering the difficulty for support engineers to group them and
handle the burst of tickets efficiently.

We propose to aggregate these tickets by simultaneously lever-
aging the aforementioned alert-alert relations and ticket-alert rela-
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Table 6.1: Alerts Caused by The Same Incident and The Resultant Tickets

Service
Tickets Alerts

Category Summary Component Title

VM
VM/Scale Update t1: Virtual machine scale sets resize issue. Resource

Provider
a1 : VMStart Failures exceed 300 times.

VM/VM Start t2: Server did not start on time.

Databricks
Databricks/Job Issue t3: Unable to open cluster of Databricks. Control

Plane
a2 : Databricks cluster creation fails.

Databricks/Cluster Launch t4: Unable to provision clusters.

K8S
K8S/Cluster Update t5: Unable to autoscale. Resource

Scheduler
a3 : The PUT operation success rate <80%.

K8S/Cluster Update t6: Cannot upgrade node pool, stuck. a4 : CPU utilization exceeds 90%.

tions. We take Table 6.1 as an example to elaborate our intuition.
First, we need to know what alerts are triggered by an incident,
i.e., profiling the incident. In this example, we link the alerts
a1 − a2 − a3 via capturing the alert-alert relations (i.e., they are
caused by the same incident). Second, we need to know what
tickets are caused by these alerts, namely, linking a1 − (t1, t2),
a2 − (t3, t4), and a3 − (t5, t6). Finally, because the alerts a1 ∼ a3
are linked as an incident and t1 ∼ t6 are further linked to these
alerts, we can aggregate t1 ∼ t6 as the same cluster even though
they possess dissimilar semantics.
Challenges. To achieve this, iPACK should address the following
two challenges originated from the large scale and complicated
architecture of cloud systems [86] [147] [19].

Challenge 1: Massive and noisy alerts. Cloud systems could
contain thousands of interdependent services. These services are
closely monitored from various aspects to capture any unexpected
behaviors. For example, there could be hundreds, even thousands
of high-severity alerts reported in Azure per day. Some alerts
are regular alerts that are reported frequently (due to sensi-
tive monitoring rules) and periodically (due to periodical moni-
toring). These regular alerts are generally not related to a partic-
ular cloud incident and only report usual system runtime status
such as CPU/memory usage rate (e.g., a4 in Table 6.1). In con-
trast, indicative alerts are caused by an actual problem of cloud
systems. For example, the alerts a1 ∼ a3 in Table 6.1 are indica-
tive alerts. It is challenging to identify the indicative alerts and
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correctly link them among massive and noisy alerts.
Challenge 2: High feature cardinality. High feature cardinality

refers to a situation where a feature has a large number of unique
values. For example, the feature category of a ticket has more
than 3,000 options, and the features component and monitor ID
of alerts have more than 2,000 and 10,000 options, respectively.
Using traditional one-hot encoding [89] methods to process these
features would lead to a high-dimensional feature space, resulting
in the curse of dimensionality [150]. Additionally, linking alerts
to tickets requires the consideration of various combinations of
features between them. However, due to the high feature cardi-
nality, the number of possible combinations grows exponentially,
making it difficult to identify the most effective combinations that
accurately reflect the correlation between alerts and tickets. This
constitutes a significant challenge in our work.

6.3 Methodology

6.3.1 Overview of iPACK

The goal of iPACK is to aggregate duplicate tickets that are caused
by the same cloud incident among all tickets. Due to the large
scale and heterogeneous architecture [30] [164] [147] of cloud sys-
tems, it is insufficient to solely consider the textual similarity of
tickets to achieve this goal. To address this problem, we introduce
cloud run-time information (i.e., alerts) and formulate it as a two-
stage linking problem. Intuitively, iPACK first finds links between
alerts by leveraging alert-alert relations. These inter-linked alerts
constitute a graph to represent an incident. Then iPACK identifies
the tickets that are caused by these alerts according to ticket-alert
relations. The tickets linked to the alerts within the same graph
(i.e., incident) are aggregated. Thus, we can aggregate the tickets
with dissimilar semantics via the bridge of alert-alert links.
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Figure 6.5: The Overall Framework of iPACK.

As shown in Fig. 6.5, iPACK consists of three steps: alert pars-
ing, incident profiling and ticket-event correlation. In the alert
parsing step, we parse alerts as more coarse-grained events to re-
duce redundant alerts. Next, in the incident profiling step, we
propose a graph-based incident profiling (GIP) method to remove
the regular events (i.e., parsed regular alerts) and link correlated
indicative events. Then, in the ticket-event correlation, we pro-
pose an attentive interaction network (AIN) to correlate a ticket to
an event. Finally, if two tickets are correlated to the events within
the same event graph (i.e., the same incident), we aggregate the
tickets as the same cluster. The results of the ticket aggregation
are presented to the CSS (Customer Support Services) team to
streamline the ticket processing process and improve efficiency.
This allows support engineers to send out batch notifications to
potentially affected customers and provide quick guidance for ser-
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vice recovery. Additionally, the results can aid on-call engineers
in conducting impact assessments, including identifying affected
services and determining the extent of customer impact caused by
the incident (e.g., number of affected customers).

6.3.2 Alert Parsing

The title of an alert is generated following an engineer-specified
template. Monitors may be triggered multiple times during an in-
cident causing massive redundant alerts. To reduce the volume of
alerts and avoid redundancy, we parse each alert to its correspond-
ing template and aggregate the alerts sharing the same template
as an event. Take a1 in Table 6.1 as an example; multiple simi-
lar alerts can fire concurrently such as “VMStart Failures exceed
100/150/200/250 times”, which are aggregated as “VMStart Fail-
ures exceed ∗ times”.

We formulate this problem as the well-studied log parsing prob-
lem [181] following [147]. We propose to customize a widely-
adopted log parsing algorithm, Drain [53] to parse the alerts into
templates (events). Drain works by extracting the common parts
of alert titles from each group of alerts, where the group is de-
termined by calculating the overlap of words. To enhance Drain
in our scenario, we observe that if two alerts are reported by dif-
ferent monitors or belong to different components, the two alerts
must have distinct templates. Therefore, we first divide all alerts
into different partitions according to both monitor ID and owning
component. We then apply Drain in each partition to extract the
templates. In this way, we can reduce the noises in each partition
and also accelerate the processing by parallel computing. Finally,
each alert is parsed as an event, which introduces two features,
i.e., event template and event ID (a hash value of its template).
Within a fixed time window (Section 6.3.3), for events sharing the
same template, we reserve the latest event and discard the rest of
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the events to reduce its volume. The following steps are applied
to events instead of raw alerts.

6.3.3 Incident Profiling

The goal of this step is to represent an incident via linking the
correlated events that are caused by the same incidents. In doing
this, the linked events can then be used to bridge semantically
different tickets in the next step (Section 6.3.4).

To learn relations between events, some existing solutions lever-
age manual annotations [19] [23], which are not practical because
such labels are hard to obtain and usually insufficient in real-
world practice. While there are unsupervised solutions [174] [28],
they require prior knowledge (e.g., the precise topology of cloud
services) to estimate alert relations. However, such prior knowl-
edge is usually inaccurate and requires extensive efforts to collect,
update and validate [164] [28] [19].

We propose an unsupervised approach, i.e., Graph-based Incident
Profiling (GIP), which does not rely on prior knowledge. The
input is a series of events within a time window, and the out-
put is one or multiple graphs of the events. Each graph profiles
an incident containing indicative events related to the incident.
GIP has a static event relation learning step and a dynamic event
graph construction step. Intuitively, if two events are correlated,
these events are more likely to be triggered within a short pe-
riod frequently in the history [28] [19]. We model such frequent
patterns in the first static event relation learning step. Then, in
the dynamic event graph construction step, we dynamically link
the events possessing the learned frequent patterns and remove
regular events in the runtime.
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Static Event Relation Learning

In this step, we assign a static score to each event pair weighing
how likely they co-occur in history. To this end, we first collect a
series of historical events in chronological order. Then we apply
a four-hour-long sliding time window on these events with a step
size of one hour. We adopt four hours as the window length be-
cause it can cover most alerts within an incident according to our
study in Section 6.2.2. The one-hour step size allows us to intro-
duce enough new events for learning the static event relations and
avoid separating co-occurred events into two different windows.
Each window wi contain multiple events, i.e., wi = [e1, e2, e3, ...].
If two events appear in the same window, we count it as a co-
occurrence. Based on these windows, we compute the point-wise
mutual information (PMI) score [154] for each event pair, which is
a popular metric to measure co-occurrence associations [126] [167].
Formally, the PMI value for the event pair (ei, ej) is :

PMI(ei, ej) = log
p(ei, ej)

p(ei)p(ej)
, (6.1)

where p(ei, ej) =
C(ei,ej)

M , p(ei) = C(ei)
M . C(ei, ej) denotes the

number of windows that contain both ei and ej, and C(ei) is
the number of windows that contain ei. M is the total number of
windows. A higher PMI value indicates two events are more likely
to co-occur in history, and a positive PMI value indicates they are
more likely to co-occur than appear individually. We use d(ei, ej)
to denote the pre-computed PMI value for the event pair (ei, ej).

Dynamic Event Graph Construction

We then dynamically construct event graphs in the runtime by
utilizing the learned static PMI values. The input to this step is
the events collected within the latest four-hour-long time window.
The output is one or more event graphs, each of which contains
correlated events caused by the incident.
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Algorithm 2: Dynamic Event Graph Construction
Input: Pre-computed PMI values in d, a window of latest events

wj = [e1, e2, e3, ...], hyper-parameter µ ∈[0,1]
Output: go = {g1, g2, ...}
Init: g ← Empty undirected graph; r ← Empty list

1 for i← 1 to l do
2 for j ← i to l do
3 if d(ei, ej) > 0 then
4 g.AddWeightedEdge((ei, ej), weight=d(ei, ej))
5 end
6 end
7 end
8 for each node ei ∈ g do
9 W = GetWeightsOfOutEdges(ei)

10 AscendingSort(W)
11 γ = SearchKneePoint(W) // Kneedle algorithm
12 if γ < µ then
13 g.RemoveNode(ei)
14 end
15 end
16 go ← GetSubGraphs(g)

Intuitively, we aim to link the events with high PMI values
because they are possibly caused by the same ongoing incident in
the runtime, considering they frequently co-occur in history. How-
ever, regular (noisy) events tend to co-occur with various types of
events because they frequently appear regardless of whether there
is an incident. In contrast, indicative events only frequently co-
occur with only a small portion of events. Based on the difference
between regular events and indicative events, we propose a novel
algorithm to prune the regular events automatically, and the re-
maining indicative events are correlated. The pseudocode of the
algorithm is shown in Algorithm 2. First, we link every pair of
events with positive PMI values constituting a single initial event
graph g with the PMI values as weights of edges (line 1 ∼ 7).
Then, for each node, we calculate a knee point (i.e., γ in Algo-
rithm 2) based on the PMI values of all its out edges, i.e.,W (line
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9 ∼ 11). Specifically, we adopt the Kneedle algorithm [131] to
calculate γ. A small γ for a node denotes that most PMI val-
ues of its linked neighbors are large, namely, the node frequently
co-occurs with many neighbors (events). This implies that the
node is more likely to be a regular event. Therefore, we remove
the node if its γ is less than a threshold µ (line 12 ∼ 14). As
revealed by previous studies [174] [20], regular events make up a
large portion of all events. Therefore, we empirically set µ = 0.8
to remove most events aggressively, which turns out to be effec-
tive in our scenario (Section 6.4.2). Finally, we extract subgraphs
(i.e., connected component [149]) from the the pruned graph g

(line 16).

6.3.4 Ticket-Event Correlation

After profiling incidents as several event graphs (i.e., event-event
linking), we correlate each ticket to the event that captures the
internal cloud issue resulting in the ticket (i.e., event-ticket link-
ing). If two tickets are correlated to inter-linked events (i.e., they
are caused by the same incident), we can then aggregate them as
the same cluster.

We mainly address the challenge caused by the high cardinal-
ity of features of tickets and events (Section 6.2.4). Inspired by
factorization machine [130] in the field of recommendation sys-
tems, we propose an attentive interaction network (AIN), which
decomposes feature combinations as Hadamard products of low-
dimension feature embeddings. In this way, we bypass directly en-
coding the exponentially-growing feature combinations with high-
dimension feature vectors. The input of AIN is a ticket-event pair
and the output is a probability representing how likely the input
pair is correlated. Fig. 6.6 shows the overall framework of AIN
composed of three layers, i.e., embedding layer, attentive interac-
tion layer, and prediction layer, which are elaborated as follows.
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Embedding Layer. The embedding layer represents all fea-
tures (fi for a ticket feature and f̂i for an event feature) as train-
able vectors (i.e., embeddings) denoted as vi ∈ Rk, where k is a
user-defined hyper-parameter. For summary of tickets and event
template of events (denoted as f1 and f̂1 in Fig. 6.6), we resort
to the power of pretrained model BERT (Bidirectional Encoder
Representations from Transformers) [33] to embed their seman-
tics as vectors. We exclude the detailed ticket description since
it potentially introduces noises, and the summary already pro-
vides the essential part [166] [49] [145]. The remaining features
are initialized as random vectors.

Attentive Interaction Layer. After each feature is asso-
ciated with an embedding vector, the attentive interaction layer
models the feature combination of two features as the Hadamard
product (i.e., element-wise product denoted as ⊙) of their corre-
sponding embedding vectors. For u = x ⊙ y we have ui = xiyi.
The attentive interaction layer models combinations of features
across a ticket and an event, formally,

z =
n∑
i

m∑
j

aij(vi ⊙ vj), (6.2)

where n and m are the numbers of ticket and event features, re-
spectively. To identify the effective feature combinations for dif-
ferent ticket-event pairs, AIN computes an importance score aij
for each combination result vi⊙ vj in Equation (6.2). Afterwards,
these feature combinations are summarized as a single representa-
tion z ∈ Rk by computing their weighted average. The importance
weight aij is calculated as follows:

âij = hTϕ(W(vi ⊙ vj) + b), (6.3)

aij =
eâij∑n

i

∑m
j eâij

, (6.4)
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Figure 6.6: The Overall Framework of AIN.

Equation (6.3) denotes a fully-connected (FC) neural network that
takes the combination of two features as input and outputs their
(unnormalized) importance weight. where ϕ(x) = max(0, x) is
the ReLU activation function. hT ∈ Rr, W ∈ R(r×k) and b ∈ Rr

are trainable parameters. r is a hyper-parameter that denotes the
size of the hidden layer. Equation (6.4) normalizes the importance
weights to [0, 1]. The importance weights control how much each
feature combination contributes for prediction. For example, in
Equation (6.2), for aij close to 1, its corresponding feature combi-
nation will dominate the summarized vector z. This means that
the prediction mostly depends on the feature combination of vi

and vj. In addition, the weights are automatically learned by the
FC in Equation 6.3, we actually force AIN to select the effective
feature combinations when learning from the data.

Prediction Layer. We formulate ticket-event correlation as
a binary classification problem. Particularly, to calculate the cor-
relation probability p, an FC neural network is applied on z, i.e.,
p = σ(wT

o z + bo), where wo ∈ Rk and bo ∈ R are trainable pa-
rameters, and σ(x) = 1

1+e−x is the Sigmoid function producing a
probability within the range of [0, 1]. To update all trainable pa-
rameters, we utilize the popular Adam optimizer [75] to minimize
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the following binary cross-entropy loss LBCE via fitting training
data with N ticket-event pairs.

LBCE = −
N∑
i

(
yilog(pi) + (1− yi)log(1− pi)

)
, (6.5)

where yi = 1 for positive (i.e., correlated) ticket-event pairs and
yi = 0 for negative (i.e., unrelated) pairs. The positive samples are
collected by extracting the responsible alert ID of a ticket from its
resolution text written by support engineers (Section 6.2.3). So,
such data is gradually accumulated during the daily work rou-
tine of support engineers, which does not incur additional manual
effort for data labeling. We then randomly sample the same num-
ber of negative pairs. The features used are event template, event
ID, severity, monitor ID, owning service, owning component for
events, and product name, category, summary for tickets.

6.3.5 Deployment

iPACK consists of offline parts (pre-computed) and online parts
(serving online continuously) for deployment in the could systems.
The offline parts include alert parsing, static event relations learn-
ing and AIN training. The online parts conduct alert parsing,
dynamic event graph construction, and ticket-event correlation
utilizing the trained AIN. The details are as follows.

Offline Parts

Intuitively, the offline parts leverage the historical data to pre-
pare intermediate data (e.g., PMI values) or model (e.g., AIN)
for online use. Specifically, iPACK parse all collected alerts to
events (Section 6.3.2). Then, static event relations learning is con-
ducted (Section 6.3.3), which computes PMI values for all event
pairs. The PMI values are then stored in a Redis database for
reference. After that, AIN is trained using historical ticket-event
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pairs. Azure continuously collects the alert and ticket data; in
order to capture the latest system update (e.g., new alerts), the
offline parts are executed periodically (e.g., once every month).

Online Parts

In the online deployment, iPACK is periodically executed (e.g.,
every five minutes) and pushes its latest analysis results to the CSS
team. Support engineers can also manually trigger iPACK when
needed (e.g., a large volume of tickets are received). Considering
cloud services and customers are physically isolated in different
regions, iPACK is applied separately in different regions. Once
executed, iPACK collects the latest alerts and tickets within the
latest four-hour-long time window to analyze. We can reduce the
great volume of ticket-event pairs by filtering with region and
time. The tickets and alerts in the same time window and region
constitute a chunk.

In each chunk, after parsing alerts as events, GIP is applied to
link events as event graphs (i.e., incidents). Then, we apply AIN
to link each ticket to one of the events. For each ticket, AIN recom-
mends a list of events ranked by the associated correlation proba-
bilities. Note that we exclude the tickets whose largest probability
in the ranked list is smaller than a confidence threshold θ = 0.8,
because they are more likely caused by a customer-side issue (e.g.,
incorrect configurations). Next, tickets that are correlated to the
events within the same event graph are aggregated as a cluster.
Based on the aggregation results, on the one hand, on-call engi-
neers can conduct impact assessment (i.e., how many customers
are impacted) for an incident; on the other hand, the CSS team
can avoid duplicate manual inspection and make batched commu-
nication to customers. (e.g., provide the latest mitigation progress
of the internal incident).
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6.4 Evaluation

We answer the following research questions (RQs) to evaluate the
performance of iPACK:
• RQ1: How effective is iPACK in aggregating duplicate tickets

caused by the same incident?

• RQ2: How effective is AIN in correlating a ticket to the respon-
sible event?

• RQ3: How does graph-based incident profiling (GIP) impact
the effectiveness of iPACK?

6.4.1 Experimental Setting

Dataset

We collect the datasets from the production environment of Azure
from 2020/01/01 to 2022/06/01. To evaluate the generality of
iPACK, we collect three datasets from different physically iso-
lated regions (i.e., A, B, and C), which cover 81 services serving
different numbers of customers. Each dataset is collected from
tens of services and includes hundreds of incidents and hundreds
of thousands of alerts. For each incident, the datasets contain tens
of to hundreds of resulting tickets. Note that we hide the specific
figures of the dataset statistics due to the confidential policy of
Azure. We use the data before 2022/01/01 to compute PMI val-
ues (Section 6.3.3) and train AIN (Section 6.3.4). The data after
the date is used for evaluation.

Comparative solutions

Recent studies have been working on user feedback analysis such
as duplicate bug report detection [145] [119] [178] [15] [17] and
emerging issue detection [38] [177] [39]. We select the following
state-of-the-art approaches as our comparative solutions:
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Table 6.2: Effectiveness of Aggregating Duplicate Tickets Caused by the
Same Cloud Incident

Methods Dataset A Dataset B Dataset C
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Categorization 0.930 0.205 0.336 0.943 0.373 0.535 0.925 0.207 0.338
iFeedback 0.901 0.590 0.713 0.876 0.473 0.614 0.886 0.626 0.733

LWE 0.862 0.453 0.594 0.824 0.515 0.634 0.861 0.672 0.755
BERT 0.884 0.587 0.705 0.854 0.710 0.775 0.843 0.629 0.720

LinkCM 0.931 0.507 0.657 0.892 0.538 0.671 0.901 0.628 0.740

LinkCM w/ GIP 0.900 0.685 0.778 0.886 0.756 0.816 0.899 0.809 0.852
iPACK 0.912 0.960 0.935 0.882 0.861 0.871 0.899 0.888 0.894

Categorization. We aggregate tickets by referring to their
feature category, i.e., if two tickets share the same category, then
they are aggregated into the same cluster.

iFeedback. iFeedback is proposed and adopted by WeChat
in their production environment [177], which targets aggregating
similar user feedback by identifying frequent word combinations
(and groups of combinations). For example, if the word com-
bination of “pay” and “fail” bursts, an issue may happen to the
payment feature of the product.

LWE. LWE [15] is a method integrating Latent Dirichlet Al-
location (LDA) and word embeddings to leverage the advantages
of both techniques. LWE first utilizes LDA to represent all tick-
ets and roughly identify candidates of duplicated tickets. Then,
the candidates are represented using word embeddings to conduct
more fine-grained clustering.

BERT. BERT [33] is a popular pretraining model in natural
language processing and has shown its power in capturing the
semantics of user feedback in recent studies [49] [97] [155]. Because
these studies do not directly aggregate user feedback, in this work,
we adopt BERT to first represent the tickets as dense vectors,
based on which we use agglomerative hierarchical clustering [151]
to aggregate tickets.

LinkCM. LinkCM [47] is proposed to facilitate the triage of
a customer-reported alert by matching it with an alert of cloud
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systems. LinkCM learns the correlation by purely fusing the ti-
tles between the report and alert via a decomposable attention
mechanism and transfer learning. In our scenario, if two tickets
are correlated to the same event by LinkCM, they are grouped
together. LinkCM can also link a ticket to an event as AIN does,
so we combine GIP with LinkCM (i.e., LinkCM w/ GIP) as a
strong baseline for comparison.

Implementation Details

We have implemented iPACK with approximately 3000 lines of
Python code and packaged it as a serverless function [164] for
ease of use in Azure. The iPACK system is deployed on a CentOS
Linux server with 60GB of RAM and an Intel(R) Core(TM) i7-
5930K CPU @ 3.50GHz. The AIN component of iPACK is trained
and tested with the GPU acceleration of an NVIDIA GeForce
GTX TITAN X. We have set the default hyper-parameters of the
AIN as k=128 and r=256, and the model is trained until its train-
ing loss stops decreasing for ten continuous epochs, using an early
stopping approach. As for the comparative solutions, as they are
not open-sourced, we have followed the implementation in their
respective papers and leveraged well-established libraries to ensure
accuracy. For example, we have used AllenNLP [3] for LinkCM,
scikit-learn [132] and gensim [127] for LWE, and HuggingFace [59]
for BERT.

Evaluation Metrics

Metrics for evaluating ticket aggregation (RQ1 and RQ3).
Given a sequence of tickets, our approach assigns a unique cluster
ID, denoted as "incident-number" to tickets that are caused by
the same incident. Tickets that are not related to a cloud-side
issue are marked with the cluster ID "non-incident". To evaluate
the accuracy of our ticket aggregation, we use the widely accepted
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Rand Index [1,41,128] for pair-wise comparison in clustering. We
conduct pair-wise comparisons between the ground-truth cluster
ID and the predicted cluster ID for all tickets. The results are used
to calculate the following metrics: True Positives (TP), which are
pairs of duplicate tickets correctly predicted to have the same clus-
ter label; True Negatives (TN), which are pairs of non-duplicate
tickets correctly predicted to have different cluster labels; False
Positives (FP), which are pairs of non-duplicate tickets wrongly
predicted to have the same cluster label; and False Negatives (FN),
which are pairs of duplicate tickets wrongly predicted to have dif-
ferent cluster labels. Based on the results, we use the following
metrics to evaluate the aggregation results: precision = TP

TP+FP ,
recall = TP

TP+FN , and F1 score = 2 · precision · recall
precision + recall .

Metrics for evaluating ticket-event correlation (RQ2).
The correlation of tickets with an event, referred to as AIN in
Section 6.3.4, is a crucial component of iPACK. This component
generates a ranked list of potential responsible events for a given
ticket based on the probability scores (as determined by AIN’s
output) in descending order. To assess the accuracy of this step,
we use the metric Acc@K (accuracy@K). For each ticket, if the
actual ground-truth event appears within the top-K positions of
the list, we consider the ticket to be a "hit". The Acc@K metric
is calculated as the ratio of the number of hit tickets to the total
number of tickets, represented as Acc@K = # of hit tickets

# of all tickets . In
our evaluation, we consider three values of K (i.e., 1, 2, and 3)
and also compute the average of these three metrics to provide a
comprehensive assessment.

6.4.2 Experimental Results

The Effectiveness of iPACK (RQ1)

In this RQ, we aim to evaluate how accurately iPACK can aggre-
gate the duplicate tickets by comparing it with all comparative so-
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lutions (Section 6.4.1). The evaluation is conducted using datasets
A, B and C and the results are reported in terms of precision, re-
call, and F1 score. Precision reflects the degree of correctness in
the clustering results, while recall represents the completeness of
the results. The F1 score is a balance between precision and recall
and provides a comprehensive measure of the overall performance
of the approach. The results are presented in Table 6.2. The high-
est F1 score is emphasized in bold, and the second-best score is
underlined.

We can make the following observations: (1) iPACK achieves
the best F1 score across all three datasets, i.e., 0.935, 0.871, and
0.894, outperforming the second-best methods by 31.2%, 12.4%
and 18.4% in dataset A, B and C, respectively. (2) Categoriza-
tion can achieve the highest precision (0.930∼0.943) although its
recall is considerably low (0.205∼0.373). The reason is that the
ticket feature category is defined in a fine-grained manner by sup-
port engineers in Azure. Therefore, it tends to aggressively split
the complete set of duplicate tickets into many small groups, lead-
ing to a low recall score. However, tickets in each such small group
share precisely similar semantics as evidenced by the high preci-
sion. (3) iFeedback, LWE, and BERT show lower precision but
higher recall than Categorization. The reason is that these meth-
ods can capture more coarse-grained semantic similarity between
tickets. Consequently, they can generate larger clusters (higher re-
call) but introduce additional noises (lower precision) (4) LinkCM
can achieve a higher precision among all baseline methods except
Categorization. Moreover, after combining with GIP, LinkCM w/
GIP can increase its recall because more tickets are aggregated
together through event-event linking. However, it still under-
performs iPACK in terms of the overall F1 score because LinkCM
cannot correlate a ticket to an event as accurately as iPACK does
(will show in RQ2). For instance, LinkCM may associate a cluster
of similar tickets with the wrong event. Therefore, even though
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related events are linked together, similar tickets are separated
into different clusters, resulting in high precision but low recall.

Answer to RQ1. iPACK achieves the best F1 score among
all state-of-the-art baselines across three datasets collected from
different regions. iPACK slightly sacrifices precision compared
with the Categorization method but achieves the highest F1
score 0.871∼0.935, outperforming state-of-the-art methods by
12.4%∼31.2%.

The Effectiveness of Ticket-event Correlation (RQ2)

In this RQ, the focus is on evaluating the accuracy of the ticket-
event correlation step of iPACK, i.e., the proposed attentive in-
teraction Network (AIN). The performance of AIN is compared
with LinkCM [47] and four popular machine learning algorithms:
LR (logistic regression), SVM (support vector machine), RF (ran-
dom forest), and LightGBM (light gradient boosting machine).
Additionally, the contribution of the attentive feature interaction
component to AIN is studied.

To ensure a fair comparison, categorical features are repre-
sented as one-hot vectors, which are then concatenated with the
representation of textual features extracted using BERT. This al-
lows for a consistent input feature representation for all models
compared. A variant of AIN is also developed by removing its
attentive feature interaction component (referred to as "AIN w/o
atten." in Table 6.3). This variant instead concatenates all feature
embeddings into a single feature vector as the input for the pre-
diction layer, as illustrated in Fig. 6.6. For clarity, this experiment
is conducted using all pairs of ticket-event data from datasets A,
B and C. We compare AIN with the baselines and its variant in
terms of Acc@1, Acc@2, Acc@3 and the average of these metrics.

We can make the following observations in the results shown
in Table 6.3: (1) The proposed AIN model outperforms all base-
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Table 6.3: Effectiveness of Correlating a Ticket to An Event

Models Acc@1 Acc@2 Acc@3 Average

LR 0.519 0.657 0.733 0.636
SVM 0.332 0.409 0.493 0.411
RF 0.563 0.684 0.761 0.669

LightGBM 0.658 0.723 0.832 0.712
LinkCM 0.743 0.769 0.882 0.798

AIN w/o atten. 0.673 0.762 0.824 0.753
AIN 0.817 0.907 0.936 0.887
∆(%) +21.4% +19.0% +13.6% +17.8%

line models in terms of all four evaluation metrics. Notably, AIN
achieves the highest Acc@1 score of 0.817, indicating its supe-
rior ability in accurately linking tickets to events and facilitating
more effective ticket aggregation. (2) The introduction of the
attentive feature interaction component results in significant im-
provements in AIN’s performance, with a 21.4% increase in Acc@1
and a 17.8% increase in the average accuracy. This demonstrates
that the component plays a crucial role in identifying effective
feature combinations for accurate ticket-event linking. (3) Inter-
estingly, AIN w/o atten. underperforms LinkCM and achieves
similar performance as LightGBM. The reason is that AIN w/o
atten. adopts simple concatenation of feature embedding, which
fails to capture effective feature combinations. (4) LinkCM can
outperform other baseline methods since its decomposable atten-
tion mechanism is able to capture the semantic matching between
tickets and events. On the other hand, the relatively low Acc@1
scores of LR, SVM, RF and LightGBM may be due to the sparsity
and high dimensionality of the input features. However, RF and
LightGBM exhibit improved accuracy over LR and SVM, as they
alleviate these problems through feature selection.

Answer to RQ2. AIN outperforms all other baseline methods
by a large margin in correlating a ticket to the event that causes
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Figure 6.7: The Effectiveness of Graph-based Profiling (GIP)

it. The proposed attentive feature combination is the key to
achieve the performance, which improves the average accuracy
of AIN by 17.8%.

The impact of graph-based incident profiling (GIP) (RQ3)

We propose GIP to reduce regular events (noisy events) and link
correlated indicative events to profile an incident, which bridges
the tickets linked to the events even though they are semantically
different. We evaluate its impact on iPACK using the union of
all three datasets as in RQ2. We conduct the evaluation from the
following two aspects:

(1) The ratio of events reduced. GIP builds a fully-connected
event graph (link every two events with positive PMI values) and
then prunes this graph via Algorithm 2. We measure the effec-
tiveness of GIP with the ratio of nodes and edges that are pruned
(reduced). Fig. 6.7 (left) presents the ratio of nodes and edges
in the event graph without or with GIP (we normalize the ratio
for better presentation). We can observe that only 2% of nodes
and 0.2% of edges remain after using GIP, which shows GIP can
reduce the large volume of events effectively.

(2) The impact on the overall performance in aggregating du-
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plicate tickets. Though GIP can reduce the number of events, we
aim to further evaluate whether it can accurately remove the reg-
ular events and link the correlated events as expected. To achieve
this, we compare the ticket aggregation performance of iPACK
with or without GIP. After removing GIP, we regard those tickets
linked to the same event by AIN as belonging to the same cluster.
The results are shown in Fig. 6.7 (right). We can observe that
after applying GIP, its precision drops slightly, but the recall is
largely improved. As a result, the overall F1 score is improved
by 18.9%, from 0.743 to 0.884. This indicates that only a small
portion of events are not correctly linked; however, more duplicate
tickets are accurately aggregated via event-event linking.

Answer to RQ3. GIP can greatly boost the overall perfor-
mance of iPACK. On the one hand, GIP reserves only 2% nodes
and 0.2% edges in the pruned event graph. On the other hand,
GIP accurately reserves and links the indicative events and im-
proves the F1 score from 0.743 to 0.884.

6.5 Industrial Experience

In this section, we share our industrial experience by presenting a
success case and a failure case from the real-world deployment of
iPACK in Azure.

A Success Case

In September 2021, a datacenter maintenance activity resulted
in the accidental shutdown of a water tower pump, which is a
critical component of cooling systems. To prevent overheating and
potential damage to users’ data, the maintenance personnel had
to shut down the downstream storage hardware. This caused a
storage service disruption, leading to cascading impacts on several
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dependent services such as the SQL DB and Workflow App, and
triggering alerts.

The CSS team received a substantial number of tickets describ-
ing a wide range of issues in response to these events. To assist
with the situation, iPACK continuously collected and analyzed
the generated alerts and tickets. The partial output of iPACK’s
analysis is presented in Fig. 6.8. iPACK successfully linked the
storage alert with corresponding alerts from SQL DB and Work-
flow App, as demonstrated by the red arrows in Fig. 6.8. Ad-
ditionally, the tickets caused by these events were linked to their
respective root cause events, as depicted by the blue arrows. This
allowed the tickets to be aggregated, despite their semantic differ-
ences, and the results were pushed to the support engineers. With
the information provided by iPACK, support engineers were able
to initiate batch communications with potentially impacted cus-
tomers and avoid duplicative manual inspections. Throughout the
resolution process, the customers were continuously informed of
the mitigation progress of the incident.
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A Failure Case

iPACK could sometimes fail when it cannot find responsible alerts
in the cloud systems for a ticket. In August 2021, the CSS team
received multiple tickets complaining of 503 (service unavailable)
errors when the customers were using Web Services. Though the
tickets were suspected to be caused by an internal issue due to
their similar symptoms, iPACK did not correlate them with any
alert. Only around five hours after the first ticket had been re-
ceived, a related alert was fired and correlated by iPACK. Ac-
cording to the after-the-fact analysis of on-call engineers, the root
cause of this incident turned out to be bad configurations of a
Canary (gray) release for a few tenants. The developers did not
configure a specific monitor for each of the tenants but monitored
all tenants as a whole. As a result, the monitor was not sensitive
enough and only triggered when most of the tenants’ requests
failed. Nevertheless, iPACK continuously runs and could still
correlate the alert with the resultant tickets after the alert was
finally fired. In this way, iPACK can potentially discover such
under-monitoring cases and guide the configuration of monitors
to improve system reliability [88]. Fortunately, such cases (tickets
submissions before alerts) are rare in Azure with comprehensive
monitoring according to our study (Section 6.2.3).

6.6 Threats to Validity

External Validity. The study’s object is the primary external
threat. The data was collected from Azure, as there is no publicly
available dataset containing customer tickets and a large number
of alerts. However, Azure is a world-leading cloud provider with
a vast scale. The data covers a broad range of services from vari-
ous regions (Section 6.4.1). Hence, the evaluation in Azure should
be representative and convincing. Furthermore, iPACK leverages
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the common features provided by the most popular cloud ven-
dors, making it capable of generalizing to similar cloud systems,
potentially benefiting cloud customers globally.

Internal Validity. Implementation and parameter setting are
key internal threats to validity. As the baseline approaches are
not open-sourced, we re-implemented them closely following the
original papers, using mature libraries for core algorithms (Sec-
tion 6.4.1). Both proposed and baseline methods underwent peer
code review. For parameter setting, we conducted a grid-search
to select the best results.

6.7 Summary

This chapter tackles the problem of aggregating duplicate cus-
tomer support tickets for cloud systems. Previous solutions that
mainly rely on customer-side information (i.e., textual similarity
between tickets) are sub-optimal for tickets of large-scale cloud
systems. The main cause is the complexity of cloud systems
that consist of many inter-dependent services, where the cus-
tomers may experience distinct issues even though they are af-
fected by the same incident. To overcome this limitation, we
propose iPACK to leverage alerts of cloud systems to facilitate
ticket aggregation. Specifically, we propose graph-based incident
profiling (GIP) to model alert-alert relations and attentive inter-
action network (AIN) to model alert-ticket relations, respectively.
In this way, we can aggregate the tickets that are linked to the
same incident (linked alerts) even though they carry dissimilar
semantics. We evaluate iPACK based on three datasets collected
from the real-world production environment in a large-scale cloud
vendor, Azure. iPACK outperforms state-of-the-art methods by
12.4%∼31.2% across the three datasets.

2 End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Cloud systems have become immensely popular, significantly sup-
porting our daily activities by providing scalable and accessible
computing resources. As a result, ensuring their reliability is of
paramount importance to maintain seamless and uninterrupted
services. However, achieving high reliability in cloud systems is a
formidable challenge due to their vast scale and inherent complex-
ity. This thesis delves into our research efforts aimed at addressing
these challenges, exploring innovative approaches and solutions to
enhance the reliability of cloud systems in the face of their ever-
growing demands and intricate architectures.

In chapter 4, we address the critical challenge of improving the
observability of cloud systems, which is complicated by the virtu-
alization techniques that obscure insights into system operations.
Our study on Huawei Cloud reveals that instances with similar
functionalities exhibit distinctive communication and resource us-
age patterns, enabling their identification despite limited access
to tenant data. To leverage these patterns, we propose Prism, a
framework that clusters instances based on their communication
and resource usage data through a coarse-to-fine strategy. Exten-
sive experiments demonstrate Prism’s superior performance and
scalability, achieving high accuracy in clustering instances. Prism

135
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has been successfully validated in Huawei Cloud, where it has
enhanced system observability and reliability by identifying vul-
nerable application deployments and aggregating minor errors to
detect latent issues.

In chapter 5, we identify the limitations of existing log-based
anomaly detection methods, which often struggle with resource
constraints and adapting to evolving log data. Our study based on
log data collected from Huawei Cloud highlights these issues, re-
vealing that traditional methods are either too resource-intensive
or insufficiently adaptive. To overcome these challenges, we pro-
pose SeaLog, a novel framework that integrates the efficiency of
traditional machine-learning approaches with the adaptive capa-
bilities of large language models. SeaLog consists of a lightweight
detection agent and a backbone analyzer, which together pro-
vide accurate, resource-efficient, and adaptive anomaly detection.
Our extensive experiments demonstrate SeaLog’s superior perfor-
mance in both fixed and evolving log data scenarios, and its suc-
cessful deployment in Huawei Cloud over twelve months confirms
its practical effectiveness.

In chapter 6, we address the challenge of aggregating dupli-
cate support tickets in cloud computing platforms. We identify
the limitations of traditional semantic similarity-based methods
in handling diverse user reports of the same incident. To over-
come this, we introduce iPACK, a solution that utilizes cloud-side
runtime alerts to link and aggregate tickets through alert-alert
and ticket-alert linking, enhancing deduplication accuracy. Eval-
uated on Azure datasets, iPACK demonstrated a significant im-
provement over existing methods, outperforming them by 12.4%
to 31.2%. This innovative approach not only streamlines customer
support operations but also offers a scalable solution for manag-
ing the complexities inherent in large-scale cloud systems. We also
discussed success and failure cases in real-world usage of iPACK.

To summarize, this thesis addresses key research problems in



CHAPTER 7. CONCLUSION AND FUTURE WORK 137

enhancing the reliability management of large-scale cloud systems.
We begin by improving the observability of cloud systems through
the inference of functional clusters using an efficient solution called
Prism. Next, we introduce SeaLog, an LLM-enhanced log-based
anomaly detection method, to produce more accurate alerts. Fi-
nally, we present iPACK, a comprehensive tool for managing sup-
port tickets and alerts to better understand incidents. These stud-
ies are conducted using real-world data collected from production
environments of cloud systems. To benefit the community, we
have made our data and code publicly available if possible.

7.2 Future Work

Ensuring the reliability of software systems is always crucial. This
thesis primarily focuses on enhancing the monitoring and man-
agement of reliability data. As large language models (LLMs) are
reshaping the world and gaining significant importance across var-
ious domains, new opportunities and challenges arise in this era of
LLMs. Consequently, my future work will explore how to better
utilize LLMs to improve the reliability of cloud systems and, con-
versely, how to enhance the reliability of LLM systems themselves.
By addressing these interconnected aspects, we aim to advance the
overall robustness and dependability of both cloud and LLM sys-
tems. Specifically, the first future work involves leveraging LLMs
for more intelligent diagnosis of distributed systems, i.e., LLM-
enhanced Distributed Diagnosis. Given the extensive knowledge
and powerful capabilities of LLMs, we can utilize and adapt this
knowledge to enable automatic diagnosis for cloud systems, thus
enhancing their reliability and efficiency. The second future work
focuses on the better monitoring and optimization of LLM train-
ing systems, i.e., Monitoring and Diagnosis of LLM Training Sys-
tems. Managing LLM systems presents unique challenges due to
their complexity, scale, and resource demands. Therefore, it is
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crucial to develop smarter monitoring and analysis techniques to
ensure the optimal performance and stability of LLM training sys-
tems.

7.2.1 LLM-driven Distributed Diagnosis

Distributed systems, such as large-scale cloud systems, are com-
posed of multiple interdependent services or components, mak-
ing their diagnosis particularly complicated. Existing solutions
have tackled these problems by utilizing machine learning-based
methods to automate the diagnosis process of distributed sys-
tems [84, 135, 168]. However, such paradigm often struggle with
addressing unseen cases and lack interpretability. To overcome
these limitations, we plan to harness the power of large language
models (LLMs) for diagnosing distributed systems. LLMs offer
several advantages: (1) they possess a vast amount of knowledge
that allows them to generalize and reason about unseen cases, (2)
they can provide human-readable explanations for their outputs,
enhancing interpretability, and (3) they can interact with real-
world systems through techniques such as tool learning. How-
ever, there are several challenges to address in this LLM-driven
paradigms, especially in large-scale cloud systems.

• First, current LLMs often lack domain-specific knowledge.
While LLMs are trained on vast amounts of general data,
they may not possess the nuanced understanding required
for specific domains such as cloud infrastructure. For in-
stance, diagnosing a complex issue in a distributed database
system might require specialized knowledge about database
internals, network protocols, and specific cloud service con-
figurations, which general LLMs might not have. This limi-
tation can hinder their ability to provide accurate diagnoses
or actionable insights in highly specialized contexts.

• Second, current LLMs struggle to handle long contexts ef-
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fectively. Distributed systems generate extensive logs and
telemetry data that span large time frames and multiple com-
ponents. For example, identifying a root cause might require
correlating events from logs that span several days or involve
multiple services. Current LLMs have limitations in process-
ing such long sequences of data, often truncating or missing
critical information, which can lead to incomplete or inaccu-
rate analyses.

• Third, current LLMs are not efficient enough for real-time ap-
plications in large-scale cloud systems. The computational
resources required to run LLMs are substantial, and their
inference times can be prohibitive for real-time diagnostics.
For example, during a critical system outage, waiting for an
LLM to process and analyze logs could delay the resolution,
exacerbating downtime and financial losses. Moreover, the
energy consumption and costs associated with running these
models at scale can be significant, making them impracti-
cal for continuous monitoring and diagnosis in a production
environment.

To address these challenges, we plan to utilize a combination
of Retrieval-Augmented Generation (RAG), tool learning, and the
fusion of traditional machine learning-based methods. RAG can
enhance domain-specific knowledge by retrieving relevant infor-
mation from specialized databases and incorporating it into the
LLM’s responses, thereby improving its accuracy and relevance in
cloud system diagnostics. Tool learning enables LLMs to interact
with external tools, such as log analyzers and monitoring systems,
allowing them to handle long contexts by delegating specific tasks
to more specialized tools. This approach ensures that the LLM
can focus on generating insights and explanations without being
overwhelmed by extensive data. Additionally, by fusing LLMs
with traditional machine learning-based methods, we can lever-
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age the strengths of both paradigms. Traditional methods can
efficiently process large volumes of data and identify patterns,
while LLMs can provide interpretability and reasoning capabili-
ties. This hybrid approach aims to create a more robust, efficient,
and intelligent system for diagnosing and managing large-scale
cloud systems.

7.2.2 Reliability of LLM Training Systems

The reliability of LLM training systems is both crucial and chal-
lenging due to the immense computational demands and the com-
plexity of the infrastructure required. The vast number of param-
eters in modern LLMs necessitates significant computing power,
which in turn requires larger computing clusters equipped with
numerous high-performance devices and networks. Furthermore,
as the size of model parameters and the number of training ma-
chines increase, so does the likelihood of failures during training.
The synchronization requirements of the training process mean
that even a local fault on a single GPU can cause the entire train-
ing process to fail. For example, Meta recently reported that dur-
ing three months of training the OPT model, they encountered
failures that led to over 35 manual restarts, 70 automatic restarts,
and 100 cycling hosts, mostly due to infrastructure issues. These
failures significantly impacted training efficiency and increased the
workload for engineers, highlighting the critical need for more in-
telligent monitoring and diagnosis for LLM training systems.

To improve the reliability of LLM training systems, we plan to
focus on two key directions: proactive fault tolerance and reactive
fault management. Proactive fault tolerance aims to enhance sys-
tem reliability through both system design and failure prediction.
System design focuses on increasing redundancy in computation
and training state, ensuring that the system can continue function-
ing even if some components fail. Additionally, failure prediction
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will provide a proactive approach to mitigate the damages caused
by potential failures, allowing for preemptive actions before issues
escalate.

Reactive fault management will concentrate on quick fault di-
agnosis, involving two main components: Observability Data Col-
lection and Optimization, and Knowledge-Empowered Fault Di-
agnosis. Observability Data Collection and Optimization will aim
to reduce the cost and performance overhead associated with mon-
itoring the system, ensuring that necessary data is gathered with-
out significantly impacting performance. Knowledge-Empowered
Fault Diagnosis will leverage accumulated knowledge to facilitate
the analysis of recurring failures, enabling faster and more accu-
rate identification and resolution of issues.

2 End of chapter.
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