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Nowadays, a wide variety of online services are emerging on the

Internet, serving many aspects of our daily life including Web

searching, social networking, online shopping, etc. Unlike tradition-

al shrink-wrapped desktop software, most of these online services

are designed as large-scale distributed systems operating on a 24x7

basis. The success of an online service is highly dependent on the

delivered quality of service (QoS), which has direct effects on user

experience and revenues of service providers. However, the ever-

increasing scale and complexity of online service systems, coupled

with the use of Web services, make it an enormous challenge

for service providers to engineer their systems with high quality

guarantees. In this thesis, we propose data-driven approaches to

quality management of online service systems.

Firstly, we propose a Web service positioning framework for

response time prediction of Web services. Response time, as one of

the most important QoS attributes, is critical for many performance

optimization tasks. But it is difficult to acquire comprehensive re-

sponse time information in practice. By leveraging network coordi-

nate systems, our Web service positioning framework achieves joint

response time monitoring and prediction for Web services, which

alleviates the limitation of data sparsity in existing approaches.

Secondly, we propose an online QoS prediction approach for

runtime service adaptation. To meet QoS guarantees, online service
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systems have to become resilient against the QoS variations of

underlying Web services. Runtime service adaptation has been

recognized as a key solution to achieve this goal. To make timely

and accurate adaptation decisions, an effective and efficient QoS

prediction approach is desired to obtain the QoS values of Web

services. Inspired from the matrix factorization model used in

recommender systems, we propose an adaptive matrix factorization

approach to achieve online, accurate, and scalable QoS predictions.

Thirdly, we propose a privacy-preserving QoS prediction frame-

work for Web service recommendation. To enable QoS-based Web

service recommendation, existing studies make use of collaborative

filtering techniques for personalized QoS prediction. However, the

requirement to collect users’ historical QoS data likely puts user

privacy at risk, thus making them unwilling to contribute their usage

data. To cope with this issue, we propose a simple yet effective

privacy-preserving framework by applying data obfuscation tech-

niques, and further develop two representative privacy-preserving

QoS prediction approaches under this framework.

Lastly, we propose a “learning to log” framework to help de-

velopers make informed logging decisions during development.

Logging is a common practice used for runtime service monitoring.

However, currently there is a lack of rigorous specifications for

developers to guide their logging behaviours. Logging has become

an important yet tough decision which mostly depends on the

domain knowledge of developers. Our “learning to log” framework

is able to automatically learn the common logging practices from

existing code repositories and further leverage them for actionable

suggestions to developers.

In summary, this thesis targets at the use of data analytics to gain

actionable insights from service-generated data and further enable

data-driven quality management of online service systems. Exten-

sive experiments on real-world datasets validate the effectiveness

and efficiency of our proposed approaches.
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Chapter 1

Introduction

This thesis presents our research towards data-driven quality man-

agement of online service systems, which is currently an important

field of study and practice in software development and mainte-

nance. We provide a brief overview of the research problems under

study in Section 1.1, and highlight the main contributions of this

thesis in Section 1.2. Section 1.3 outlines the thesis structure.

1.1 Overview

Nowadays, online services play an indispensable role in our daily

life, by providing a wide variety of services including Web search-

ing, social networking, online chatting, online shopping, etc. Unlike

traditional shrink-wrapped desktop software, most of these online

services are designed as large-scale distributed systems operating

on a 24x7 basis to serve millions of users globally. The success

of an online service is highly dependent on the delivered quality of

service (QoS), including availability, reliability, responsiveness, etc.

QoS has direct effects on user experience and revenues of service

providers. Any service outage or degradation of service quality can

lead to user dissatisfaction and cause significant revenue loss. For

example, it is reported that in August 2013, Amazon.com probably

lost $4.8 million after going down for 40 minutes [5], while Google’s

1
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Figure 1.1: A Prototype of Google Search Service

5-minute outage caused about $545K revenue loss and 40% drop in

global website traffic [11]. The high cost of such service incidents

reveals the critical importance of quality management of online

service systems.

With the ever-increasing demand to enable more functionality,

online service systems are becoming more and more large-scale in

size and complex in structure. To allow for flexible development and

maintenance, large-scale online service systems are commonly built

on service-oriented architecture, where invocations of underlying

component services are applied to fulfill complex application logic.

Even more, some services may be developed by third parties and

be provisioned as black-box Web services, which have no access

to source code. As a typical example of online services, Figure 1.1,

provided by Google [4], illustrates the prototype structure of Google

search. As shown in the figure, the Google search service actually

comprises a wide variety of component services. Infrastructure

services such as storage, scheduling, and naming are managed

to support the delivery of various application services including

images, maps, news, Web, videos, blogs, and books. A super root
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service further coordinates these component services and provides

the final aggregated search results to users. Moreover, a spelling

correction service is employed to enhance query inputs of users,

while an ad system is engaged to present relevant ads to users. The

whole online service system involves the composition of all these

component services.

On the other hand, cloud computing has gained much popularity

for provisioning a pool of computational resources on demand to

deliver various large-scale online services over the Internet. Many

cloud providers like Amazon, Google and Microsoft have built

large data centers in geographically distributed locations. For

example, Amazon EC21 currently provisions cloud services over

nine geographically dispersed regions, where users have options

to deploy their applications in different data centers from Virginia,

Oregon, California, Ireland, Singapore, Tokyo, Sydney, São Paulo

and GovCloud. With the prevalence and benefit of cloud computing,

more and more online services (e.g., Twitter, Netflix) are migrated

to cloud computing platforms to achieve reliability and better per-

formance. To better serve millions of users globally, component

services of a large-scale online service system have to be de-

ployed across multiple geographically distributed data centers (e.g.,
[24, 148, 176]), so that resources are located closer to end-users.

The ever-increasing scale and complexity of online service systems,

coupled with the geographical-distribution of different component

services, make it a notoriously challenging task for service providers

to engineer their systems with high quality guarantees.

With all these new challenges, traditional engineering techniques,

such as software testing and modelling in the lab, would not suffice

to deal with service problems in production settings. In many cases,

it is extremely difficult or even impossible to simulate production

environment in the lab. Therefore, even with heavy lab testing,

dynamic production environment may still lead to service failure or

1http://aws.amazon.com/ec2
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Figure 1.2: An Overiew of Data-Driven Service Quality Management

degradation of service quality. Besides, it is also hard to predict

the effects of potential performance optimizations (e.g., dynamic

service deployment) based on lab modelling, without enough per-

formance data acquired in the field.

In this context, data-driven service quality management has re-

cently emerged as a promising solution to deal with practical service

quality problems. Online service systems, with the continuous

operation, are generating a variety of service data. As illustrated in

Figure 1.2, some typical examples of service-generated data include

service logs, quality of service (QoS) information of Web services,

service dependency graphs [169]. These data contain a wealth of

valuable information that can aid in service quality management.

For instance, service logs are usually used as a principal tool of

runtime service monitoring to perform anomaly detection and failure

diagnosis tasks. QoS information, on the other hand, is critical to

many performance optimization tasks, such as latency-aware service

deployment, QoS-aware fault tolerance of Web services, QoS-driven

runtime service adaptation, and so on. Moreover, service relation-



CHAPTER 1. INTRODUCTION 5

ships, which can be denoted as service dependency graphs, also play

an important role in many tasks such as dynamic service deployment

and fault localization. As a result, the objective of this thesis

is to establish a data-driven engineering framework, under which

data-driven approaches are leveraged to gain actionable information

and uncover powerful insights for service quality management of

online service systems. The research of this thesis comprises four

parts. In the first three parts, we focus on the study of QoS

prediction of Web services. In particular, in the first part, we present

response time prediction with a case study on latency-aware service

deployment. In the second part, we propose online QoS prediction

for runtime service adaptation. In the third part, privacy-preserving

QoS prediction is investigated in the scenario of QoS-aware Web

service recommendation. Finally, we propose a learning to log

framework for runtime service monitoring in the fourth part.

1.2 Thesis Contributions

In this thesis, we make contribution to data-driven quality manage-

ment of online service systems in the following ways:

1. Response time prediction of Web services
Response time is one of the most important QoS attributes,

which is critical for many performance optimization tasks. In

practice, it is difficult to acquire comprehensive response time

information from users due to the large overhead for active

measurement. Recent work proposes the use of collaborative

filtering for QoS (and response time) prediction. But these

methods suffer from the data sparsity of available historical

QoS data, which greatly degrades the prediction accuracy.

To address this problem, we propose a Web service posi-

tioning (WSP) framework [174] for response time prediction,

by combining both advantages of collaborative filtering and
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network coordinate systems. To evaluate our approach, we

collect a response time dataset from real-world Web services,

which involves 359,400 response time records between 200

users and 1,597 Web services. The experimental results show

that our WSP framework alleviates the data sparsity problem

and significantly enhances the prediction accuracy. Besides,

this reusable research dataset is publicly released to allow for

reproducing our experiments and to promote future research.

2. Online QoS prediction of Web services
To meet QoS guarantees, online service systems have to be-

come resilient against the QoS variations of underlying Web

services. Runtime service adaptation has been recognized as a

key solution to achieve this goal. To make timely and accurate

adaptation decisions, effective QoS prediction is desired to

obtain the QoS values of Web services. To achieve this goal,

we propose an online, accurate, and scalable QoS prediction

approach [172]. The main contributions are three-fold: (1)

This is the first work to address the problem of QoS prediction

to guide candidate service selection for runtime service adap-

tation; (2) A novel QoS prediction approach, adaptive matrix

factorization (AMF), is proposed by employing techniques of

data transformation, online learning, and adaptive weights; (3)

Comprehensive experiments are conducted based on a real-

world large-scale QoS dataset of Web services to evaluate

our proposed approach in terms of accuracy, efficiency, and

scalability. Moreover, for ease of reproducing our results, we

publicly release our source code and dataset of our study.

3. Privacy-preserving QoS prediction of Web services
To facilitate QoS-based Web service recommendation, existing

studies employ collaborative filtering techniques for person-

alized QoS prediction. These approaches leverage partially

observed QoS values from users to make predictions on the
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unobserved QoS values. However, the requirement to col-

lect users’ QoS data likely puts user privacy at risk, thus

making them unwilling to contribute their historical usage

data. To address the privacy issue in developing practical

Web service recommender systems, we propose a simple yet

effective privacy-preserving framework for QoS prediction of

Web services [173]. Specifically, we make the following key

contributions: (1) This is the first work to cope with the privacy

issue for QoS-based Web service recommendation; (2) We

propose a privacy-preserving collaborative filtering framework,

and further develop two representative privacy-preserving QoS

prediction approaches, P-UIPCC and P-PMF, under this frame-

work; (3) We conduct experiments on a real-world large-scale

QoS dataset of Web services to evaluate the effectiveness of

our proposed approaches. Moreover, we have publicly released

both of our source code and dataset for future study.

4. Learning to log for runtime service monitoring
Logging is a common programming practice of practical im-

portance to collect system runtime information for postmortem

analysis. However, in current practice, there is a lack of

rigorous specifications for developers to guide their logging

behaviours. Logging has become an important yet tough

decision which mostly depends on the domain knowledge of

developers. To reduce the effort on making logging decisions,

we propose a “learning to log” framework [171], which aims to

provide informative guidance on logging during development.

As a proof of concept, we provide the design and imple-

mentation of a logging suggestion tool, LogAdvisor, which

automatically learns the common logging practices on where

to log from existing logging instances and further leverages

them for actionable suggestions to developers. We evaluate

LogAdvisor on two industrial software systems from Microsoft
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and two open-source software systems from Github (totally

19.1M LOC and 100.6K logging statements). The encouraging

experimental results, as well as a user study, demonstrate the

feasibility and effectiveness of our logging suggestion tool.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2
In this chapter, we review some background knowledge and

related work on data-driven quality management of online

service systems. First, we briefly introduce online service

systems, with focuses on the characteristics of service-oriented

architecture, the use of Web service, and the importance of

quality of service. We then review some related studies on

data-driven service quality management, which is the main

objective of this thesis. Finally, we provide some fundamental

background on the techniques of data analytics that we have

used in our work.

• Chapter 3
In this chapter, we present a Web service positioning frame-

work for response time prediction of Web services. The

framework is based on the use of network coordinate systems,

and also incorporates the historical data that is originally used

by existing collaborative filtering based approaches. More

specifically, we first introduce the response time prediction

problem in Section 3.1, and then provide an overview of Web

service positioning framework in Section 3.2. The detailed

response time prediction approach based on WSP framework

is further described in Section 3.3, which comprises four steps:

(1) landmark coordinate computation, (2) Web service coor-

dinate computation, (3) service user coordinate computation,
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and (4) response time prediction. Section 3.4 presents the

data collection from real-world Web services, and provides

the evaluation results of WSP approach compared to existing

approaches. Furthermore, a case study of latency-aware service

deployment is conducted in Section 3.5, which demonstrates

the practical use of response time prediction. Finally, Section

3.6 summarizes this chapter.

• Chapter 4
In this chapter, we present online QoS prediction of Web

services, which is crucial for accurate and timely decision

making in runtime service adaptation. More specifically, we

first introduce the problem and motivation of online QoS

prediction in Section 4.1, and then provide the framework of

QoS-driven service adaptation in Section 4.2. The detailed

online QoS prediction algorithm is further described in Section

4.3, which extends conventional matrix factorization into an

online, accurate, and scalable model, namely adaptive matrix

factorization (AMF). In Section 4.4, we conduct evaluation of

AMF based on a real-world large-scale QoS dataset of Web

services, with detailed results provided in terms of accuracy,

efficiency, and scalability. In addition, we perform a case

study on dynamic request routing in Section 4.5 to demonstrate

the practical use of online QoS prediction for runtime service

adaptation. Finally, Section 4.6 summarizes this chapter.

• Chapter 5
In this chapter, we present a simple yet effective privacy-

preserving Web service recommendation framework and fur-

ther develop two representative privacy-preserving QoS pre-

diction approaches under this framework. In particular, we

introduce the privacy issue in QoS-based Web service recom-

mendation in Section 5.1, and present the proposed privacy-

preserving Web service recommendation framework in Section
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5.2. By use of data obfuscation techniques, in Section 5.3 we

describe two representative privacy-preserving QoS prediction

approaches, namely P-UIPCC and P-PMF. Section 5.4 pro-

vides the evaluation of P-UIPCC and P-PMF with comparison

to UIPCC and PMF, two counterpart QoS prediction approach-

es. Finally, Section 5.5 summarizes this chapter.

• Chapter 6
This chapter presents our work of learning to log for runtime

service monitoring. Learning to log is a data-driven framework

that we propose, with the aim to provide informative sugges-

tions to developers by automatically learning common logging

practices from existing logging instances. More specifically, in

Section 6.1, we provide some key observations that motivate

our work. We further present our learning to log framework

with implementation details of our logging suggestion tool

LogAdvisor in Section 6.2. Section 6.3 provides the compre-

hensive evaluation of LogAdvisor conducted on two industrial

online service systems from Microsoft and two open-source

software systems from Github. We also provide a user study

with developers to validate the effectiveness of LogAdvisor

in Section 6.4. We discuss the limitations in Section 6.5 and

conclude this chapter in Section 6.6.

• Chapter 7
The last chapter summarizes this thesis and provides some

future directions that deserve for further exploration.

To make each chapter self-contained, we may briefly reiterate the

critical contents, such as model definitions and motivations, in some

chapters.

� End of chapter.



Chapter 2

Background Review

This chapter briefly reviews some background knowledge and re-

lated work of our research, including online service systems in

Section 2.1, data-driven service quality management in Section 2.2,

and data analytics in Section 2.3.

2.1 Online Service Systems

Online services are typically used to describe the provision of

online access by users to software services and data over the

Internet. Nowadays, online services play an indispensable role in

our daily life, by providing a wide variety of services including

Web searching, social networking, online chatting, online shopping,

email, online entertainment, e-banking, e-health, just to name a

few [147]. Unlike traditional shrink-wrapped desktop software,

most of these online services are designed as large-scale distributed

systems operating on a 24x7 basis to serve millions of users globally.

Quality of service (QoS) is of vital importance to the successful

delivery of online services. A high-quality online service can offer

pleasant user experience to service customers, and thus contributes

to revenue generation by keeping old customers as well as attracting

new ones. In contrary, any service outage or degradation of service

quality can lead to user dissatisfaction and cause significant revenue

11
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loss. Furthermore, building high-quality online service systems can

save the cost of service maintenance. As a result, there is a high

demand for effective quality management of online service systems.

However, as the user demand to enable more software features

and functions is ever increasing, modern online service systems are

becoming very complex in structure, large-scale in size, and highly

dynamic during operation, which make them more vulnerable to ser-

vice incidents (e.g., service outage and QoS degradation) compared

to traditional software systems. On one hand, large-scale online

service systems are commonly built on service-oriented architecture,

where some components may rely on invocations of underlying Web

services to fulfill complex application logic. Some of them may be

developed and maintained by third-parties, often without any source

code, and invoked over unpredictable Internet connections. On the

other hand, cloud computing has gained increasing prevalence in

recent years for hosting and delivering various online services over

the Internet. As an online service system scales up, it is desired

to provision the online service not only from single data centers

but also spanning across multiple geographically distributed data

centers, so as to extend functions and services with global expan-

sion [148]. The use of Web services, coupled with the geographical-

distribution of different service components, makes it a significant

challenge for service providers to engineer their systems with high

quality guarantees, which thus motivates our research in this thesis.

2.1.1 Service-Oriented Architecture

Service-oriented architecture (SOA) is an increasingly popular ar-

chitectural style for software system development [18], in which

component services are coordinated in a loosely-coupled way to

fullfil complex application logic. Typically, a service-oriented

system is built on SOA with a number of component services and a

workflow. Individual component services are composed together to
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Figure 2.1: An Illustrative Example of Service-Oriented System

form a higher-level functionality, where the interaction relationship

between these component services are defined by the workflow. The

workflow can be specified in BPEL (Business Process Execution

Language) and runs on a BPEL engine, like Apache ODE1.

Figure 2.1 provides a concrete example of a service-oriented

system, which shows a prototype application for online shopping.

It comprises a simplified workflow with five abstract tasks. A

workflow may consist of sequential, branch, parallel, and loop

compositional structures [143]. For simplicity, we only consider

sequential and parallel structures in this example. In detail, a

customer begins with item search and browsing (s1). Then the user

can make an order (s2) and the request is sent to the corresponding

supplier to check the availability of the item. The supplier reserves

the item for the customer and waits for further confirmation. Next

the customer confirms the order (s3), and confirms the shipment

method (s4). Once the order is confirmed, a payment transaction via

online payment service (e.g., paypal) will be launched (s5). After

the payment, the item purchase is completed.

Service-oriented architecture promotes flexibility and resilience

to changes, as service invocations can be accomplished without

considering how the underlying services have been implemented.

Changes to the implementation details by the service provider will

not affect the service user, while the service interface remains stable.

In addition, the use of SOA makes it feasible to build new business

1http://ode.apache.org
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functionality based on existing services not from scratch, which

thus enables features of high re-usability, fast development, and

reduced cost. Due to these attractive features provided by SOA,

many online service systems are currently designed in the SOA

style. For example, Amazon’s e-commerce platform is built on SOA

by composing hundreds of component services hosted world-wide to

deliver functionalities ranging from item recommendation to order

fulfillment to fraud detection [51]. In particular, we target at online

service systems built on SOA in this thesis.

2.1.2 Web Service

Web service is an essential building block of service-oriented archi-

tecture. It is typically designed as a black-box software component,

providing a well-defined functionality to users over the Internet

via some standard interfaces (e.g., XML-RPC, SOAP, REST) [19].

Recent advances in cloud computing as well as dramatic increase

in user demand promote the abundance of available Web services.

Typical examples range from simple operations like retrieving cur-

rency exchange rates, to various Web APIs such as Google Map

API and Dropbox API, to complex processes running customer

relationship management (CRM) systems. The use of such Web

services, integrated with SOA, significantly eases the development

and maintenance of online service systems.

According to the report from seekda.com2 in 2012, there are

totally 7,739 service providers and over 28,600 public Web services

on the Internet. With the widespread of Web services, more and

more providers begin to offer Web services even with equivalent or

similar functionalities. For example, both providers, CDYNE.COM

and WebserviceX.NET, offer equivalent Web services for querying

global weather information [172]. In this context, quality of service

has become an important factor in distinguishing those functionally-

2http://seekda.com
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equivalent Web services. There is an urgent need for QoS assess-

ment of Web services.

2.1.3 Qualtiy of Service

To build high-quality online applications, it is a critical task for

application designers to select appropriate services that fulfill both

functional requirements and non-functional requirements. While

functional requirements specify what a service does, non-functional

requirments are conerned with quality-of-service (QoS) attributes.

The importance of QoS can be also well identified by its various

usages in the literature, such as QoS-based service discovery [151],

QoS-based service selection [143, 25], QoS-based service adapta-

tion [40, 67], and so on. To be specific, we identify the most

representative QoS attributes as follows:

1. Availability: This attribute measures the percentage of time

that a Web service is normally operating during a certain time

interval.

2. Reliability: This attribute measures the percentage of suc-

cessful service invocations out of all the service invocations

requested [158].

3. Response time: This attribute measures the time duration

between a user sending out a service request and receiving a

response.

4. Failure probability: This attribute measures the percentage

of failed service invocations out of all the service invocations

requested, which equals to 1− reliability.

5. Throughput: This attribute measures the data transmission

rate (e.g., kbps) of a service invocation.

6. Price: This attribute measures the cost that a user needs to pay

for a service invocation.
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7. Popularity: This attribute measures how often a service is

requested by users. For example, we can measure popularity

by the number of invocations of a service during a certain time

interval.

8. Reputation: This attribute measures the certainty that a service

behaves as expected from the service description. The reputa-

tion of Web service is concerned with many aspects such as

user ranking, compliance, and verity.

In general, the set of QoS attributes can be divided into two types:

positive QoS attributes (e.g., availability, throughput) and negative

QoS attributes (e.g., response time) [25]. Values of positive at-

tributes need to be maximized, whereas values of negative attributes

should be minimized.

Ideally, the QoS values of services can be directly specified in

the service-level agreements (SLAs) by service providers. However,

except attributes like price, most of the QoS values are time-

varying, which at a large extent depends on the network conditions

and server status. Consequently, many QoS attributes should be

evaluated at runtime. In particular, evaluating real-time QoS values

is notoriously difficult due to the following characteristics.

• Time-varying: QoS attributes like response time and through-

put are time-varying. For instance, due to the impact of varying

server workload and dynamic network conditions, QoS deliv-

ered to users may vary widely during different time periods.

Figure 2.2(a) depicts a real-world example of the response

times of a user at Pittsburgh (IP: 12.108.127.138) invoking a

Web service located at Iran (http://profiles.roshd.
ir/security.asmx?WSDL) over 64 consecutive time s-

lices (at 15-minute interval), where the data is extracted from a

real-world QoS dataset collected in [152]. The curve confirms

that the user-perceived response time fluctuates around an
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Figure 2.2: Real-world Response Time Observations

average QoS value along the time. Therefore, some QoS

attributes should be evaluated at runtime.

• User-specific: The online service systems built on SOA are

typically loosely coupled, where users and services are dis-

tributed at different locations. For instance, the shopping

cart services provided by Amazon.com [51] may be hosted at

different data centers located worldwide. With the increase of

geographic distribution of services, the impact of the network

on user-perceived QoS becomes non-negligible. Thus, users

from different locations may observe different QoS values even

on the same service. Figure 2.2(b) confirms such observa-

tion by a real-world example, which presents the response

times (sorted in ascending order) perceived by 100 randomly-

selected users that invoke the same service. The large variation

of the curve implies that QoS attributes like response time are

user-specific and should be evaluated independently from each

user side.

• Measurement overhead: As mentioned before, real-time QoS

can only be observed at runtime. However, it is infeasible for
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each user to actively measure the real-time QoS values of all

the candidate services by periodical invocations, since it will

incur prohibitively large overhead. First, some Web service

invocations may be charged which heavily increase the cost

of service users. Second, it is time-consuming and resource-

consuming to invoke all the services periodically, as there may

exist a huge number of candidate services.

Due to the unique characteristics of QoS attributes, it becomes

a critical challenge to obtain real-time QoS data without causing

much overhead. In this context, QoS prediction has been emerged

as a key solution to estimate the unknown QoS values by employing

the historical usage data, while requiring no additional service

invocations.

2.2 Data-Driven Service Quality Mangement

In recent years, there is a new trend towards data-driven software

system management. Various data are generated throughout the

software lifecycle, including source code, revision histories, bug

reports, runtime logs, and so forth. These data contain a wealth

of information that can aid software system management tasks.

The goal to explore the potential of such rich data motivates a

large body of research topics related to mining software engineering

data[133, 134], software intelligence [63], and software analytic-

s [145, 146]. Typical examples include defect prediction [77],

method specifications mining [99], bug localization [170], system

failure diagnosis[47], log analysis [58, 98], and so on. All these

studies leverage techniuqes of data analytics (e.g., data mining

and machine learning) to gain actionable information and uncover

powerful insights for better software development and maintenance.

Following this line of research, our work in this thesis focuses main-

ly on data-driven quality management of online service systems,

with a set of unique research problems.
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2.2.1 QoS Management of Web Services

Currently, Web services have widespread use in building loosely-

coupled distributed systems, especially for large-scale online service

systems. Web services aim for black-box service delivery to users,

thus must be designed for both availability and stability. Quality

of service (QoS), as a widely-used criterion to evaluate the non-

functional aspects of Web services, has become a key to the success

of service provision. Any QoS degradation may harm the reputation

of a Web service, and further cause revenue loss of the service

provider. With the prevalence of Web services, QoS management

has become a task of vital importance for Web services. In the

following, we will introduce some specific issues towards this goal.

QoS Evaluation and Prediction

QoS evaluation aims to measure the service quality delivered to

users. With comprehensive QoS evaluations on Web services,

service users are able to obtain accurate information on the non-

functional characteristics of all the Web service candidates, based on

which they can examine whether a service meets their requirements

or make good selection among the services with identical or similar

functionalities. As described in Section 2.1.3, to acquire the QoS

information needed, it is necessary to perform QoS evaluation at

runtime from user side. To achieve so, the most straightforward

way is to directly measure the QoS value of each Web service.

However, it is usually infeasible in practice due to the following

reasons: 1) Active measurements of Web services can bring large

overhead to users, especially when there are a large number of

candidate Web services. 2) Most of service invocations may not be

free, which further increases the cost of service users. 3) Intensive

service invocations for measurement will also consume additional

resources of service providers. As a result, effective and efficient

QoS prediction approaches are highly desired to estimate the QoS
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Figure 2.3: An Illustrative Example of QoS Prediction

values of Web services without the need of any real-world service

invocations.

Inspired from the rating prediction problem encountered in rec-

ommender systems (e.g., movie recommendation in Netflix), recent

studies [161, 150, 45] suggest the use of collaborative filtering for

QoS prediction. By collaborative filtering [123], the observed user

ratings are leveraged to learn user preferences on the unrated movies

or items and further make predictions on the unknown ratings. As

with the user-movie rating matrix collected in a movie recommender

system, users invoking services can produce a user-service QoS

matrix with respect to each QoS attribute. We denote a QoS matrix

by R, whose entry Rij represents the observed QoS value (e.g., re-

sponse time) of user ui invoking service sj . Figure 2.3(b) illustrates

a QoS matrix with four users (u1, ..., u4) and five services (s1, ...,

s5), produced by the user-service invocation graph in Figure 2.3(a).

In practice, the QoS matrix is very sparse (i.e., most of the entries

are unknown), since each user usually invokes only a few services.

As shown in Figure 2.3(b), the grey entries are observed QoS values

(e.g., R11 = 1.4) and the blank entries are unknown QoS values

(e.g., R12 = ?). As a result, the QoS prediction problem can be

modelled as a collaborative filtering problem. The intuition is that

similar users may observe similar QoS values on the same service

because of their shared network, service resources, etc. Figure 2.3(c)

shows the predicted QoS matrix from the observed QoS matrix

in Figure 2.3(b), where the unknown values are approximately
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reconstructed.

In recent literature, many efforts have been invested to achieve

the goal of QoS prediction. According to the techniques and data

used for QoS prediction, we broadly classify existing studies into

the following categories:

• Neighbourhood-based QoS prediction: This type of col-

laborative filtering approaches use the observed QoS data to

compute the similarity values between users or services, and

further leverage them for QoS prediction. Typical examples

include user-based approaches (e.g., UPCC [115]) that leverage

the QoS information of similar users for prediction, item-based

approaches (e.g., IPCC [111]) that employ the QoS information

of similar items (i.e., services) for prediction, and their hybrids

(e.g., UIPCC [161, 162]) that combine user-based and item-

based approaches together for accuracy improvement. These

approaches are easy to implement, but they fail to deal with

the data sparsity problem, which limits their performance in

practice.

• Model-based QoS prediction: Model-based collaborative fil-

tering approaches provide a predefined model to fit the ob-

served QoS data, and then the trained model can be used

to predict the unknown QoS values. Matrix factorization

(e.g., PMF [109]) is one of the most popular model-based CF

approaches, which was first introduced to address the QoS

prediction problem in [79]. Matrix factorization model handles

the sparsity problem well and usually achieves better perfor-

mance than neighbourhood-based approaches. More recently,

some studies such as CloudPred [152], NIMF [164], and LN-

LFM [138] integrate neighbourhood-based and model-based

CF approaches to further improve prediction accuracy.

• Ranking-based QoS prediction: Both neighbourhood-based

and model-based QoS prediction approaches target at estimat-
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ing every QoS value in a user-service QoS matrix as accurately

as possible. However, accurate QoS value predictions do not

necessarily result in accurate QoS ranking of Web services.

Therefore, some recent studies [166, 165] propose to address

the QoS ranking prediction problem instead of direct QoS value

prediction. The ranking prediction results enable users to make

natural selection of top-ranking services.

• Context-aware QoS prediction: Most of previous studies

only make use of historical QoS data for QoS predictions.

However, the historical QoS is usually sparse in practice,

because each user only invokes a few out of all the available

Web services at each time. The data sparsity problem limits

the performance of existing approaches. More recent stud-

ies have attempted to alleviate the data sparsity problem by

employing additional contextual information, such as location

information [45], time information [137, 172], and reputation

information [105]. It has been shown that context-aware

QoS prediction approaches usually provide better prediction

accuracy than previous approaches.

The QoS information obtained by QoS prediction approaches

can be employed in a set of tasks for QoS management of Web

services, such as Web service selection [28, 25, 72, 143], Web

service recommendation [43, 44, 45, 162], fault tolerance of Web

services [159, 168, 160], runtime service adaptation [40, 39, 172],

and so on.

QoS-based Web Service Selection and Recommendation

QoS-based Web service selection and recommendation has recently

attracted much attention from the service computing community, for

providing a promising way to help users select high-quality services

out of all the candidate services according to the user-perceived QoS

values.
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Specifically, Web service selection aims to optimize the overall

QoS of a given composite service by selecting proper component

services from a set of candidate Web services with different QoS

values. Because QoS is a multi-dimensional vector with differ-

ent QoS attributes, including availability, response time, and etc.

Optimize one QoS attribute may lead to degradation of another.

Zeng et al. [143] propose a QoS-aware middleware for Web service

selection, in which integer programming is applied to deriving

the optimal solution. Alrifai et al., further improve the efficiency

of QoS-based Web service selection by either combining global

optimization with local selection [25], or applying skyline operators

for fast computation [26]. More recent work [64] proposes the use

of iterative multi-attribute combinatorial auction, which achieves the

current state-of-the art results in QoS-based Web service selection.

On the other hand, Web service recommendation [82] aims to

leverage recommendation techniques to help users find the appro-

priate service that they need timely. A typical example is the

application of collaborative filtering for QoS prediction, which thus

facilitates QoS-based Web service recommendation [162]. More re-

cent studies further consider location-aware Web service recommen-

dation [45], time-aware Web service recommendation [127, 150],

domain-aware Web service recommendation [132], topic-aware We-

b service recommendation [78].

To enable effective QoS-based selection and recommendation,

a major challenge lies in the difficulty in achieving accurate QoS

predictions, which is the goal of our partial research in this thesis.

QoS-aware Fault Tolerance of Web Services

With the ever-increasing complexity and scale of online services,

it is almost impossible to build fault-free online service systems.

Fault tolerance is one of the major techniques used to build reliable

software systems [81]. With the prevalence of Web services, it is

common that a number of Web services with identical or similar
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functionalities are provisioned by different service providers. Many

studies (e.g., [159, 168, 160]) have suggested the use of these

alternative Web services for fault tolerance.

In the literature, a number of fault tolerance strategies have

been proposed. Typical examples include retry, recovery block, N-

version programming, and so on [156]. Traditionally, software fault

tolerance strategy is determined at design time. Each fault tolerance

strategy may have a different effect on the overall service quality.

However, because of the highly dynamic opertional environment of

online service systems, there is no single fault tolerance strategy

that can handle all situations [156]. In recent work, adaptive fault

tolerance strategies for Web services have been investigated [159],

with the aim to make optimal strategy determination based on

QoS information of alternative services and QoS requirements from

users.

2.2.2 Dynamic Service Deployment

Recently, much attention has been paid on the service deployment

problem in the cloud. Some studies [128, 55, 54, 130] consider

the service deployment problem in a single cloud, where services

are dynamically replicated and mapped into different servers with

various resources to optimize a set of proposed metrics, such as

performance, resource utilization and operational cost.

The service deployment model shares some similar properties

with the popular facility location problem (a.k.a. the k-center prob-

lem), which concerns optimal placement of facilities to minimize

transportation costs. An extensive review of this problem can be

found in [86]. Some classical algorithms (e.g., k-median model)

are also introduced to solve the replica placement problem [104].

Although traditional replica placement algorithms (e.g., [104, 125])

have been extensively investigated in recent literature, these ap-

proaches primarily focus on the scenario of content replicas place-
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ment in content delivery networks with static topology and thus fail

to take the dynamics into consideration in current cloud systems.

With the growing of data center infrastructures, more research

work has been conducted to address the challenge of deploying

services across geo-distributed clouds. However, in most of the

work (e.g., [148, 70, 121, 24, 41]), individual services are inde-

pendently deployed to optimize the corresponding performance and

operational cost. Service dependencies, which is necessary for

online service systems. are not taken into consideration. Zhang et

al. [148] propose a dynamic service placement strategy to adapt to

the fluctuating service demand of different graphical regions so as to

minimize the operational cost while assuring the key performance

requirements. The work [142] identifies the composite service

placement problem with service dependencies in the cloud and solve

the model by evolutionary algorithms. However, it focuses on the

resource optimization from the perspective of cloud providers, and

does not characterize the service deployment across geo-distributed

data centers. Moreover, each service component is only deployed

as one service instance, which is not the case in reality. In [69],

the service co-deployment problem is addressed by modeling it

as an integer programming formulation. However, the integer

programming model fails to scale to large-scale service-oriented

applications deployment problem across multiple data centers, since

its complexity grows exponentially with the number of services and

candidate data centers.

2.2.3 Runtime Service Adaptation

Self-adaptation is a key solution for cloud applications to cope with

the changing operational environments [39]. In contrast to the well-

studied traditional adaptive software systems [110], the dynamic

cloud environment imposes a number of new challenges to the adap-

tation of cloud applications. In service-based cloud applications, the
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Figure 2.4: An Illustrative Example of Service Adaptation

application logic is typically expressed as a workflow with a set of

abstract tasks, as shown in the leftmost panel in Figure 2.4. These

abstract tasks (e.g., A,B,C) are then implemented by invocations to

the underlying component services (e.g., A2, B1, C2) provided in the

cloud. It is expected that the proliferation of cloud computing will

bring substantial deployment of services into the cloud, so that for

each abstract task there are a set of functionally-equivalent candidate

services. Conventional service composition approaches (e.g., [143])

focus on how to make optimal service selection from those candidate

services at design time. However, due to the dynamic nature of

cloud environment, original services may become unavailable, new

services may emerge, and the QoS values of services may change

from time to time, thus leading to violations of SLA (service-level

agreement). In such a setting, QoS-driven service adaptation is

desired. Figure 2.4 presents such an illustrative example, where

services B1, C2 are replaced with services B2, C1 respectively in an

adaptation action, in the cases that the invocation to B1 fails and the

QoS of C2 degrades.

To achieve this goal, a large body of research work has been

conducted in recent literature. For example, the work [90] and [31]

extend BPEL (Business Process Execution Language) engines with

an interception and adaptation layer to enable monitoring and re-

covery of services. The work [36] employs autonomic configuration
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of performance parameter settings to achieve self-adaptation for

online Web applications. Some other work, such as [92] and

[39], provides feasible adaptation mechanisms (e.g., replacing the

component services, or re-structuring the workflows) to support

QoS-driven service adaptation. While most of these studies focus

on adaptation mechanism design, our work targets at another key

challenge, namely online QoS prediction [87], which is also funda-

mental for service adaptation.

Accurate QoS prediction is fundamental for QoS-driven service

adaptation. The predicted QoS values directly impact the service

adaptation decisions. For example, inaccurate predictions may cause

improper adaptations and thus lead to SLA violations. For this

purpose, online monitoring and prediction approaches, as presented

in [129, 27], have been proposed to detect service failures and QoS

deviations of the working services, but QoS prediction on candidate

services is still not well explored. The approach introduced in [67]

proposes to collect QoS values by sampling and invoking the can-

didate services, which is heavily limited by the incurred overhead.

Thus, our work is motivated to address the QoS prediction problem

for candidate services.

2.2.4 Service Logs Mangement

Logs are immensely useful in failure diagnosis. When software

systems fail in the field, in many cases, developers can only rely

on the logged messages to pinpoint the root causes, because it is

notoriously challenging to reproduce production failures in the lab.

Sometimes, it is also infeasible to get access to the failure-triggering

input data due to privacy concerns [140]. Online service systems

are typically deployed in large-scale data centers, logs are used as a

principal tool for troubleshooting the failures because in production

settings. Thus, it has become an industry common practice for

service providers (e.g., Microsoft, Google, IBM, etc.) to actively
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collect their logs for postmortem analysis [140].

Log Management

With the systems scaling up, the volume of logs is rapidly growing,

for example, at a rate of about 50 gigabytes (around 120∼200 mil-

lion lines) per hour [88]. Therefore, log management on such huge

volume of log data becomes a challenging problem. The difficulty

may be further exacerbated by the situation that logs are distributed

in different machines or even different data centers. There is a

high demand for powerful log management infrastructures to assist

log analysts in searching, filtering, analyzing, and visualizing a

mountain of logs. Towards this end, some promising solutions, such

as commercial Splunk3, and open-source Logstash4, Kibana5, have

been provided. All these solutions focus on the management of

exiting logs.

Log Analysis

Logs contain a wealth of information that are useful in aiding

software system maintenance, and, as such, have become an im-

portant data source for postmortem analysis [98]. For instance,

logs have been widely analyzed for various tasks, such as anomaly

detection [58, 135], problem diagnosis [91, 139], program verifica-

tion [112], security monitoring [89], usage analysis [74], etc. In

addition to the usage of logs, Shang et al. [114] studied how to

automatically enrich the produced log messages with development

knowledge (e.g., source code, commits, issue reports) and further

assist users in log understanding. Instead, our work in this thesis

aims to improve the underlying logging practice, thus can potentially

benefit these tasks on log analysis and log understanding.

3http://www.splunk.com
4http://logstash.net
5http://kibana.org
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Logging Practices

Current research has mostly focused on the usage of logs, but little

on logging itself. Two empirical studies [59, 140] have recently been

conducted to characterize the logging practices. Yuan et al. [140]

reported the characteristics of logging modifications by investigating

the revision histories of open-source software systems. Our previous

work [59] focused on studying where developer log through both

code analysis and developer survey at Microsoft, and summarized

five typical categories of logging strategies. Additionally, Shang

et al. [113] studied the relationship between logging characteristics

and the code quality of platform software. All these studies provide

comprehensive logging characteristics that shed insights into our

design of LogAdvisor in Chapter 6.

Towards improving the logging quality, Yuan et al. have recently

pioneered two prior studies: LogEnhancer [141] and ErrLog [139].

LogEnhancer [141] aims to enhance the recorded contents in exist-

ing logging statements by automatically identifying and inserting

critical variable values into them. ErrLog [139] summarizes a

set of generic exception patterns (e.g., exceptions, function-return

errors) that potentially cause system failures, and then suggests

conservative logging to automatically log all of them (e.g., log

all exceptions). Their work takes the first step towards automatic

logging and provides promising results in reducing diagnosis time

of system failures. In our work, we make an initial attempt to help

developers make informed logging decisions.

2.2.5 Privacy Issue

Privacy is an important issue that has raised particular concerns

among many research areas. In the following, we review the privacy

studies related to our research.
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Privacy in Service Composition

In service-oriented architecture, applications are typically built by

composing Web services offered by different service providers. User

information often needs to be shared across the providers to fulfil

an overall application task. This can raise privacy issues between

users and service providers when the selected Web services for

composition have privacy policies that are not compliant with users’

privacy requirements. In this regard, privacy-aware Web service

selection and composition (e.g., [136, 118, 48, 126]) have been stud-

ied. For example, Costante et al. [48] propose an approach to rank

the candidate Web services with respect to the privacy level they

offer. Tbahriti et al. [126] further provide a mechanism to verify and

negotiate privacy constraints between users and service providers

to enable privacy-compatible service composition. Different from

these studies, our work in this thesis aims to address privacy issues

for Web service recommendation.

Privacy in Recommender Systems

In recommender systems [106], users want to gain useful rec-

ommendations without compromising their privacy. To achieve

so, a variety of privacy-preserving collaborative filtering approach-

es [33] have been proposed by using techniques such as random-

ization [100], cryptography [96], anonymization [66], and so on.

Privacy is also of vital importance to the realization of QoS-based

Web service recommendation, where users might not be willing to

disclose their private usage data. However, there is currently a lack

of studies on how to cope with the privacy issues for QoS-based Web

service recommendation. Existing privacy-preserving collaborative

filtering approaches are not directly applicable because of the unique

challenges posed by Web service recommendation. For example,

most of these approaches (e.g., [37, 38, 144]) require multi-party or

peer-to-peer collaboration between users, which is inapplicable to
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service users. Some other approaches (e.g., [85, 96]) are developed

based on trusted server settings, thus cannot be applied to the Web

service recommendation problem. In this thesis, we make the first

attempt to build a privacy-preserving QoS prediction framework for

Web service recommendation.

2.3 Data Analytics

In this section, we briefly introduce some techniques of data analyt-

ics that are closely related to our research in this thesis.

2.3.1 Collaborative Filtering

Collaborative filtering (CF) techniques are currently widely used in

commercial recommender systems, such as movie recommendation

in Netflix6 and item recommendation in Amazon7. The CF model

has been extensively studied in recent years. In recommender sys-

tems, CF works through the rating prediction problem. Specifically,

users likely rate the items that they know about, such as 1∼5 stars for

the moives they have watched or books they have read. As illustrated

in Figure 2.5, the values in grey entries are observed rating data, and

the blank entries are unknown values. For example, the rating value

between user u1 and item i1 is 5, while the rating value between user

u1 and item i5 is missing, because u1 has not rated i5. In practice,

each user usually rate only a small set out of all of the items, due to

the large number of items. As a result, the user-item rating matrix is

very sparse.

The basic idea of CF is to exploit and model the observed data to

predict the unknown values, based on the insight that similar users

may have similar preferences on the same item, and thus have sim-

ilar ratings. To achieve this goal, two types of CF techniques have

6http://www.netflix.com
7http://www.amazon.com
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Figure 2.5: An Example of Rating Matrix

been studied in recent literature: neighbourhood-based approaches

and model-based approaches [123].

Neighbourhood-based approaches: Neighbourhood-based ap-

proaches include user-based approaches (e.g., UPCC) that leverage

the similarity between users, item-based approaches (e.g., IPCC)

that employ the similarity between items, and their fusions (e.g.,
UIPCC [83]). However, neighbourhood-based approaches are in-

capable of handling the data sparsity problem and have high time

complexity.

Model-based approaches: Model-based approaches provide a

predefined compact model to fit the training data, which can be

further used to predict the unknown values. Matrix factoriza-

tion [109] is one of the most popular model-based approaches used

for collaborative filtering. In addition, matrix factorization model

can usually achieve better performance than neighbourhood-based

approaches.

In recent literature, CF has been introduced as a promising

technique for various system engineering tasks, such as service

recommendation [162, 79], system reliability prediction [157], and

QoS-aware datacenter scheduling [52].

2.3.2 Matrix Factorization

Matrix factorization (MF) is a popular model to address the above

collaborative filtering problem, which constrains the rank of the
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Figure 2.6: An Illustrative Example of Matrix Factorization

rating matrix, i.e., rank(R) = d. The low-rank assumption is

based on the fact that the entries of R are largely correlated, thereby

resulting in a low effective rank in R. For instance, close users may

have similar network conditions, and thus experience similar QoS on

the same service. Figure 2.6 illustrates an example that makes use

of matrix factorization for rating prediction. Concretely, factoring

a matrix is to map both users and items into a joint latent factor

space of a low dimensionality d (e.g., d = 2 in Figure 2.6(b)), such

that values of the rating matrix can be captured as inner products of

latent factors in that space. Then the latent factors can be employed

for further prediction on unknown rating values. For example, as

shown in Figure 2.6(c), the predicted rating value between user u1
and item s2 is 0.8.

Formally, latent user factors are denoted as U ∈ R
d×n and latent

item factors as S ∈ R
d×m, which are used to fit the rating matrix

R, i.e., R ≈ UTS. To avoid overfitting, regularization terms that

penalize the norms of the solutions (i.e., U and S) are added. Thus

we aim to minimize the following loss function:

L =
1

2

n∑
i=1

m∑
j=1

Iij(Rij − UT
i Sj)

2
+

λU

2
‖U‖2F +

λS

2
‖S‖2F , (2.1)

where Iij acts as an indicator that equals to 1 if Rij is observed, and

0 otherwise (e.g., I11 = 1 and I12 = 0 in Figure 2.6(a)). λU , λS

are two parameters to control the extent of regularization, and ‖·‖F
denotes the Frobenius norm. Frobenius norm ‖·‖F is a matrix norm.
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Given a matrix A ∈ R
n×m, its Frobenius norm is defined as follows:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2ij (2.2)

where aij is the element of A. When A reduces to a vector, the

Frobenius norm is equivalent to the Euclidean norm.

It is worth noting that Salakhutdinov et al. has provided proper

probabilistic interpretation [109] to the matrix factorization model

in Equation 2.1, which is also known as probabilistic matrix factor-

ization (PMF).

Gradient Descent Algorithm

Gradient descent is a widely used algorithm to find a local minimum

of an objective function in an iterative way. For matrix factorization,

gradient descent works by updating Ui and Sj simultaneously from

random initialization using the following updating rules:

Ui ← Ui − η
∂L
∂Ui

, Sj ← Sj − η
∂L
∂Sj

, (2.3)

In particular, the derivatives of Ui and Sj can be derived from

Equation 2.1 as follows:

∂L
∂Ui

=
m∑
j=1

Iij(U
T
i Sj −Rij)Sj + λUUi, (2.4)

∂L
∂Sj

=
n∑

i=1

Iij(U
T
i Sj −Rij)Ui + λSSj. (2.5)

Hence, the updating rules in Equation 2.3 can be rewritten as

follows:

Ui ← Ui − η
( m∑

j=1

Iij(U
T
i Sj −Rij)Sj + λUUi

)
, (2.6)

Sj ← Sj − η
( n∑

i=1

Iij(U
T
i Sj −Rij)Ui + λSSj

)
. (2.7)
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Algorithm 1: Gradient Descent for MF

Input: The collected rating matrix R, the indication matrix I , and the

model parameters: η, λU and λS . /* Iij = 1 if Rij is
known; otherwise, Iij = 0 */

Output: The rating prediction results: R̂ij , where Iij = 0.

Initialize U ∈ R
d×n and S ∈ R

d×m randomly;1

repeat /* Batch-mode updating */2

foreach (i, j) do /* Compute ∂L
∂Ui

and ∂L
∂Sj

*/3

∂L
∂Ui

←
m∑
j=1

Iij(U
T
i Sj −Rij)Sj + λUUi;

4

∂L
∂Sj

←
n∑

i=1

Iij(U
T
i Sj −Rij)Ui + λSSj;

5

foreach (i, j) do /* Update each Ui and Sj */6

Ui ← Ui − η ∂L
∂Ui

;7

Sj ← Sj − η ∂L
∂Sj

;8

until converge;9

foreach (i, j) ∈ {Iij = 0} do /* Make prediction */10

R̂ij = UT
i Sj;11

Gradient descent works on batch-mode, which needs all the data to

be available. The latent factors Ui and Sj move iteratively by a small

step of the average gradient, i.e., ∂L
∂Ui

and ∂L
∂Sj

, where the step size is

controlled by η.

The detailed algorithm of gradient descent for MF is presented in

Algorithm 1.

Stochastic Gradient Descent Algorithm

The scheme of stochastic gradient descent (SGD) is to update the

stochastically using the sequentially coming data. At each step, the

model can be adjusted by only considering the current data sample.

Thus, SGD naturally provides an online algorithm, where we can

adjust the model using each data sample from the data stream in an

online fashion.

Formally, The loss function L in Equation 2.1 can be seen as the
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Algorithm 2: Stochastic Gradient Descent for MF

Input: Sequentially observed data samples: (ui, sj, Rij), and the model

parameters: η, λu and λs.

Output: The rating prediction results: R̂ij , where Iij = 0.

Initialize U ∈ R
d×n and S ∈ R

d×m randomly;1

repeat /* Online-mode updating */2

foreach (ui, sj, Rij) do3
∂�
∂Ui

← (UT
i Sj −Rij)Sj + λuUi;4

∂�
∂Sj

← (UT
i Sj −Rij)Ui + λsSj;5

Ui ← Ui − η ∂�
∂Ui

;6

Sj ← Sj − η ∂�
∂Sj

;7

until converge;8

foreach (i, j) ∈ {Iij = 0} do /* Make prediction */9

R̂ij = UT
i Sj;10

sum of pairwise loss functions:

L =
n∑

i=1

m∑
j=1

Iij�(Ui, Sj), (2.8)

and the pairwise loss function �(Ui, Sj) with respect to (Ui, Sj, Rij)
is defined as

�(Ui, Sj) =
1

2
(Rij − UT

i Sj)
2
+

λu

2
‖Ui‖22 +

λs

2
‖Sj‖22 , (2.9)

Note that the regularization parameters λu and λs are on different

scale from those in Equation 2.1 . Similarly, we can derive the

following updating equations for each iteration:

Ui ← Ui − η
(
(UT

i Sj −Rij)Sj + λuUi

)
, (2.10)

Sj ← Sj − η
(
(UT

i Sj −Rij)Ui + λsSj

)
. (2.11)

The detailed algorithm of stochastic gradient descent for MF is

presented in Algorithm 2.
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2.3.3 Network Coordinate System

Network coordinate system is originally proposed in [95] to estimate

the network distances (i.e., round-trip times) between pairwise

Internet hosts in peer-to-peer (P2P) distributed networks. Due to

its simplicity and effectiveness, network coordinate system has been

widely studied in recent years. To date, the adoption of network

coordinate systems has benefited a variety of applications, such

as file sharing via Bit-Torrent [120], content distribution networks

(CDN) [30], P2P multimedia streaming [75], shortest distance

estimation in massive social networks [101, 154], etc. For more

applications of network coordinate systems, we refer the reader to a

recent survey [53].

Among various network coordinate systems, triangulated heuris-

tic and global network positioning (GNP) are two widely employed

approaches, due to their simplicity and generality. Triangulated

Heuristic [95] employs a kind of relative coordinates based on

the triangle inequality. A fixed set of landmarks are deployed in

the network as references. Then each ordinary host is assigned

an n-tuple relative coordinate, composed of the network distances

between the ordinary host and the landmarks. Given the relative

coordinate of each host, we can obtain the upper bound U and the

lower bound L of the network distance between two hosts by triangle

inequality. The network distance can be estimated by the convex

combination of U and L (e.g., U+L
2 ). It is reported in [95] that

taking the upper bound U as the network distance prediction result

can achieve better performance. The triangulated heuristic approach

is widely used in online shortest path distance prediction in large

graphs [103].

GNP [95] is a typical landmark-based network coordinate sys-

tem, which embeds the Internet hosts into an Euclidean space for

network distance estimation. After obtaining the coordinate of each

host, the network distance between two Internet hosts can be well
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Figure 2.7: A Prototype of Network Coordinate System

approximated by the corresponding Euclidean distance. First of

all, the landmarks first measure the network distances between each

other and compute their own coordinates by minimizing the sum

of the squared error between the computed Euclidean distances and

the measured distances. Then each ordinary host has to measure

the network distances to the landmarks and minimize the sum of

the squared error to obtain its coordinate. After the coordinates

computation, the Euclidean distance between two Internet hosts can

be used to predict the corresponding unknown network distance.

Figure 2.7 illustrates a prototype of the network coordinate system.

As we can see from the figure, the four Internet hosts are embedded

into a 2-dimensional Euclidean space by assigning each host a

coordinate, and then the original network distances obtains good

estimation results using the corresponding Euclidean distances.

� End of chapter.



Chapter 3

Response Time Prediction of Web
Services

For many online services, response time is one of the most im-

portant QoS attributes to measure the user experience on service

quality. Response time information of Web services is crucial to

conduct performance optimization tasks (e.g., service selection and

service deployment) of large-scale online service systems. In this

chapter, we focus on the study of joint response time monitoring

and prediction of Web services. Specifically, we first introduce the

research problem and motivation of this work in Section 3.1. Then,

we present the framework of Web service positioning in Section 3.2,

and describe the detailed response time prediction algorithm in

Section 3.3. Evaluation results and a case study on our collected

real-world Web service dataset are provided in Section 3.4 and

Section 3.5, respectively. Finally, Section 3.6 concludes this chapter.

3.1 Problem and Motivation

Large-scale online service systems are commonly built on service-

oriented architecture (SOA) [147]. The adoption of SOA enables

flexible system management with its features of loose coupling and

dynamic binding, where invocations of underlying Web services are

applied to fulfilling complex application logic. The use of such

39
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Web services significantly eases the development and maintenance

of online service systems. However, it may also bring non-negligible

influence to the overall system quality, because of its dependence on

the quality of underlying Web services. To build high-quality online

service applications, it is a critical task for application designers to

select appropriate services that fulfill both functional requirements

and non-functional requirements. While functional requirements

specify what a service does, non-functional requirements are con-

cerned with QoS attributes such as availability, reliability, and

performance measures like response time and throughput [163].

With the widespread proliferation of Web services, providers

begin to offer more and more services even with equivalent or

similar functionalities. For example, both providers, CDYNE.COM

and WebserviceX.NET, offer equivalent Web services for querying

global weather information [172]. QoS is an important factor in

distinguishing those similar services, according to which services

can be ranked and selected by application designers. As a result,

there is a high demand for obtaining QoS information of available

services. For many online services, response time, which stands for

the time duration between user sending out a request and receiving

a response, is one of the most important QoS attributes for service

quality management. For example, according to the report in [122],

a half-second delay will cause a 20% drop in Google’s traffic,

and a tenth of a second delay can cause a drop in one percent of

Amazon’s sales. In this chapter, we focus primarily on response

time assessment of Web services.

Unlike quality assessment for traditional shrink-wrapped soft-

ware, it is more challenging for user-perceived service quality

assessment. Service invocations, especially for third-party Web

services, usually rely on the Internet for connectivity. Due to the

heavy influence of dynamic network conditions, users at different

locations may have different QoS experiences even on the same Web

service [72]. Therefore, QoS is user-specific, whereby traditional
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software quality models become ineffective and inappropriate for

QoS assessment of Web services. It is straightforward to mea-

sure the QoS values through direct invocations of Web services.

However, it is infeasible in practice due to the prohibitive overhead

incurred when each user actively invokes a large number of service

candidates over the Internet. As a result, effective QoS prediction

approaches are desired to provide accurate predictions for user-

perceived QoS values of different Web services, without the need

of additional service invocations.

In recent literature, a number of QoS prediction approaches

have been proposed [44, 68, 116, 163]. These approaches apply

collaborative filtering (CF) techqniues to achieve QoS predictions

based on the historical QoS data collected from different users.

With evaluations on real-world QoS datasets, these approaches have

been shown to achieve good overall prediction accuracy under dense

historical QoS data. However, the CF-based approaches suffer

from a major problem that is the sparsity of the available historical

QoS data. For a response time matrix, each row represents a user,

each column represents a Web service, and each entry denotes the

response time of a certain user invoking a certain Web service.

As reported in [163], the performance of CF-based approaches is

significantly degraded when the response time matrix is very sparse.

This is, however, the case in practice, since a user usually invokes

only a few number of the numerous Web service candidates each

time. Therefore, the collected historical response time matrix is

usually sparse. Moreover, influenced by unpredictable network

conditions and dynamic service workload, it is common that user-

perceive response time of a Web service is changing from time to

time. In this case, we cannot make use of out-of-date historical QoS

data for QoS prediction, which further exacerbates the data sparsity

problem.

On the other hand, network coordinate systems (e.g., GNP [95])

are widely used in P2P networks to estimate the network distance
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between pairwise Internet hosts. The basic idea of network coordi-

nate systems is to embed the Internet hosts into a high dimensional

Euclidean space by assigning each host a coordinate in that space,

such that the measured network distances (i.e., latencies) between

hosts can be well approximated by the corresponding Euclidean

distances. In this scheme, after obtaining the coordinates of different

hosts, we can use a simple Euclidean distance to accurately predict

the unknown network distance between any two Internet hosts in

constant time.

Inspired by the success of network coordinate based predic-

tion approaches, we propose a Web service positioning (WSP)

framework [174] to address the data sparsity problem of CF-based

approaches. Our WSP framework combines the advantages of

network coordinate based approaches and CF-based approaches.

More specifically, we first re-design the traditional GNP algorithm

(typically employed in peer-to-peer scenarios) to fit the response

time prediction of Web services in our client-server scenario. Then,

the available historical data of users (these data are employed in CF-

based approaches for making prediction) are adopted to optimize

the coordinate computation of users, which further enhances the

prediction accuracy. Finally, comprehensive experiments are con-

ducted based on our collected response time data from real-world

Web services. The experimental results show that our WSP-based

response time prediction approach achieves significant accuracy

improvements over both the existing network coordinate based

approaches and CF-based approaches.

3.2 Web Service Positioning Framework

To address the data sparsity problem of CF-based prediction ap-

proaches, we propose a Web service positioning (WSP) framework

to make response time prediction for Web services, as illustrated

in Figure 3.1. Built on network coordinate systems, the WSP
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Figure 3.1: A Web Service Positioning Framework for Response Time Prediction

framework targets at collective monitoring and prediction, whereby

the data sparsity issue is mitigated. In the framework, a small

number of landmarks are deployed to periodically monitor the

available Web services and further construct a network coordinate

system. By integrating the available historical QoS data used in CF-

based approaches with the network coordinate model, our proposed

WSP approach combines the advantages of network coordinate

based approaches and CF-based approaches. As a result, our WSP

framework can not only serve for users without valid historical data

(e.g., mobile users) but also enhance the prediction accuracy for

users with sparse historical data.

The WSP framework involves the following procedures of offline

coordinates updating and online response time prediction.

1) Offline Coordinate Updating: a) The deployed landmarks

measure the network distances between each other (e.g., use ping to
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measure the round-trip time), and then construct a network coordi-

nate system by embedding the landmarks into an high-dimensional

Euclidean space such that each landmark obtains a coordinate in

that space. b) The landmarks monitor the available Web services

with periodical invocations. The coordinate of each Web service is

obtained by taking the landmarks as references and embedding each

Web service as a coordinate in the same space.

2) Online Response Time Prediction: a) When a service user

requests for a Web service invocation, it first measures the network

distances to the landmarks (e.g., by ping). Then the measurement

results are used to compute the user’s coordinate. To optimize the

coordinate computation, we also combine the available historical

response time data of this user. b) The user-perceived response times

of all the available Web service candidates can be easily predicted as

the corresponding Euclidean distances between the user’s coordinate

and each Web service’s coordinate. c) Based on the response time

prediction results of Web service candidates, optimal Web service

can be selected for the user. d) The user invokes the optimal Web

service for service invocation, and also obtains the real response

time data of this Web service. e) The response time database is

updated with the new observation to contribute to the coordinate

updating for next Web service selection.

3.3 WSP-based Response Time Prediction

According to the above Web service positioning framework, in

this section, we describe the response time prediction algorithm

in detail. The algorithm involves four steps: landmark coordinate

computation, Web service coordinate computation, service user

coordinate computation, and response time prediction.
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3.3.1 Landmark Coordinate Computation

In our WSP framework, a small number of landmarks are deployed

to build a network coordinate system. Suppose n landmarks are set

up, denoted by L = {li | i = 1, 2, · · · , n}. The network distances

between landmarks are measured using ping messages, and then

transmitted to a central node for coordinate computation. The pair-

wise network distances can be expressed as an n×n distance matrix

as follows:

DL =

⎡
⎢⎢⎢⎣

0 d(l1, l2) · · · d(l1, ln)
d(l2, l1) 0 · · · d(l2, ln)

...
... · · · ...

d(ln, l1) d(ln, l2) · · · 0

⎤
⎥⎥⎥⎦ , (3.1)

where the entry d(li, lj) denotes the network distance between

landmarks li and lj . The distance matrix DL is assumed to be

symmetric along the diagonal, which is set as 0 where li = lj .
The goal of our first step is to build a network coordinate system

by embedding these n landmarks into an m-dimensional Euclidean

space Rm, such that each landmark obtains a coordinate. We denote

it as xli = (x1li, x
2
li
, · · · , xmli ), where xkli ∈ R, 1 ≤ k ≤ m.

To optimize the embedding, we define the objective function to

represent the sum of squared errors between predicted distances and

real distances.

fL(xl1, · · · , xln) =
∑

li,lj∈L,i>j

[d̂(li, lj)− d(li, lj)]
2 , (3.2)

where d̂(li, lj) denotes the predicted network distance that is com-

puted as the Euclidean distance between li and lj as follows:

d̂(li, lj) =
∥∥xli − xlj

∥∥
2
=

√√√√ m∑
k=1

(xkli − xklj)
2
. (3.3)
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However, directly minimizing Equation 3.2 usually suffers from

the overfitting problem. In other words, optimal solutions can lead

to an accurate model with small errors on the landmarks embedding

while having large errors on the unseen data, i.e., the unknown

response time values to be predicted. To address this problem, we

make use of regularization to penalize the norms of the solutions,

expressed as follows:

f
′
L(xl1, · · · , xln, λl) =

∑
li,lj∈L,i>j

[d̂(li, lj)− d(li, lj)]
2

+ λl

n∑
i=1

‖xli‖22 . (3.4)

Note that there are many solutions for minimizing Equation 3.2,

because any rotation or translation of the landmark coordinates

will not influence the inter-landmark distances [95]. In addition

to overcoming the overfitting issue, the regularization term can

also help avoid the coordinate drift of the solution by choosing the

coordinates with the smallest norm. We will further study the impact

of the regularization term in Section 3.4.7.

With this formulation, the optimal coordinates of landmarks

can be obtained by minimizing Equation 3.4, as a generic multi-

dimensional global minimization problem. As with GNP [95], in

this work, we apply simplex downhill algorithm [94] to solve this

minimization problem.

Finally, the coordinates of the n landmarks are obtained and

stored in a management node to provide references to the coordinate

computation of Web services and users. To track the changes

of network conditions, the coordinates of landmarks should keep

updating periodically. For ease of periodical re-computation, we

can simply input the old coordinates as the initialization solution

each time, which can greatly accelerate the convergence of the

minimization problem.

Note that for an m-dimensional Euclidean space, at least m + 1
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landmarks should be used for coordinate computation, as it is impos-

sible to construct an unique Euclidean space with less landmarks.

But it still remains an open question about how to deploy the

landmarks. In our study, we select the landmarks from a set of

candidate nodes using the spectral clustering based approach as

described in [84]. The impact of number of landmarks will be

studied in Section 3.4.5.

3.3.2 Web Service Coordinate Computation

In the WSP framework, a small number of landmarks monitor the

available Web services by periodically invoking them. Suppose

there are w available Web services, denoted by S = {si | i =
1, 2, · · · , w}. Then an n×w matrix composed of network distances

between n landmarks and w Web services can be obtained, which is

expressed as follows:

DLS =

⎡
⎢⎢⎢⎣
d(l1, s1) d(l1, s2) · · · d(l1, sw)
d(l2, s1) d(l2, s2) · · · d(l2, sw)

...
... · · · ...

d(ln, s1) d(ln, s2) · · · d(ln, sw)

⎤
⎥⎥⎥⎦ , (3.5)

where the entry d(li, sj) denotes the network distance between

landmark li and Web service sj .

The network distances to Web services are measured by land-

marks and then transmitted to a management node to compute the

coordinate for each Web service. Therefore, each Web service is

embedded into the same Euclidean space with the landmarks by by

taking the coordinates of the landmarks as references. Given a Web

service sj (1 ≤ j ≤ w), the m-dimensional coordinate xsj can be

obtained by minimizing the following objective function:

fS(xsj , λs) =
∑
li∈L

[d̂(li, sj)− d(li, sj)]
2 + λs

∥∥xsj∥∥22 , (3.6)
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where d̂(li, sj) denotes the predicted network distance between land-

mark li and Web service sj . Likewise, λ
∥∥xsj∥∥22 is the regularization

term.

The minimization of Equation 3.6 can also be cast as a generic

multi-dimensional global minimization problem so that we can solve

it with simplex downhill algorithm. Meanwhile the coordinates of

the available Web services should also update periodically.

3.3.3 Service User Coordinate Computation

Any service user can request our WSP system for optimal Web

service selection. At the beginning, the user measures the network

distances to the landmarks using ping messages, and then transmit

the results to the management node for coordinate computation.

The measured network distances can be denoted as a vector in the

following:

DuL = [d(u, l1), d(u, l2), · · · , d(u, ln)] , (3.7)

where d(u, li) denotes the network distance between the user u and

the landmark li.
To enhance the prediction accuracy, we also incorporate the

advantage of CF-based approaches by making effective use of the

available historical usage data. Suppose the available response

time data between the user u and the Web services is denoted as

{d(u, si) | si ∈ SA}. SA is the Web service set that user u has used

before, where historical usage data are collected. With available

historical data, we propose to minimize the following objective

function to obtain the coordinate of the user, i.e. xu.

fu(xu, λu) =
∑
li∈L

[d̂(u, li)− d(u, li)]
2

+
∑
si∈SA

[d̂(u, si)− d(u, si)]
2 + λu‖xu‖22 , (3.8)



CHAPTER 3. RESPONSE TIME PREDICTION OF WEB SERVICES 49

where d̂(u, li) denotes the predicted network distance between user

u and landmark li, and d̂(u, si) denotes the predicted response time

value between user u and the Web service si in SA. The first part of

the objective function fu(xu, λu) employs the reference information

of landmarks, while the second part takes advantage of the available

historical data. Additionally, the regularization term is integrated in

the third part. The same optimization algorithm, simplex downhill,
is used to solve the problem.

3.3.4 Response Time Prediction

When a new user requests for Web service invocation, it first

measures the network distances to the landmarks, and then send

the results to the central management node, whereby the user’s

coordinate can be obtained according to the above step. After

obtaining the coordinate of the user, as well as the coordinates of

all the monitored Web services, the response time prediction can be

easily made as the Euclidean distance between the coordinates as

follows:

d̂(u, si) = ‖xu − xsi‖2, si ∈ S, si /∈ SA , (3.9)

where d̂(u, si) denotes the prediction value between user u and Web

service si. The conditions si ∈ S, si /∈ SA denote the set of Web

services with unknown response time data.

With the prediction results for all available Web services, the Web

services can be ranked and selected for the user according to user-

perceived response time performance. However, we target primarily

on response time prediction in this section, and refer to Section 3.5

for a detailed case study on latency-aware service deployment to

show the practical use of response time information.
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3.4 Evaluation

This section presents the collection of our Web service dataset and

the experimental results obtained based on this dataset for evaluation

purpose.

3.4.1 Data Collection and Description

To evaluate the response time prediction approach, real-world Web

service data is needed. Although several QoS datasets for Web

services have been collected in the previous work [163], they are

not applicable to this work because of the lack of network distances

among landmarks to construct a network coordinate system. As a

result, we collect a new response time dataset for our evaluation

by use of the PlanetLab platform. PlanetLab1 is an open platform

for system and networking research, currently consisting of 1,353

nodes at 717 global sites. The collected dataset involves response

time records between 200 users (simulated by PlanetLab nodes) and

1,597 Web services. In particular, the pairwise network distances

between the 200 distributed PlanetLab nodes are also collected,

which can be set as landmarks in our WSP approach.

To collect the real-world data of Web services, we first get a list of

588 active PlanetLab nodes via CoMon2 service, since it is common

that some nodes shut down or lose connection of the Internet.

Meanwhile, about 5,800 Web services are obtained by crawling

Web service information from the Internet. To obtain response time

data, we use ping messages to measure the round-trip time (RTT)

from each PlanetLab node to each Web service, assuming that the

service-running time is equivalent for each Web service of the same

functionality. We send 32-byte ping packets continually for ten

times and take the average RTT from all replies as the response

time. Similarly, the network distances among the PlanetLab nodes

1http://www.planet-lab.org
2http://comon.cs.princeton.edu
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Table 3.1: Descriptions of Web Service Dataset

Statistics Values
Number of records 359,400

Number of service users 200

Number of Web services 1,597

Minimal response time 0.008 ms

Maximal response time 2,976.714 ms

Mean of response time 71.984 ms

Standard deviation of response time 64.746 ms

are obtained as well. The raw data is then post-processed to retain

the nodes and Web services that are all reachable. Finally, we are left

with 200 PlanetLab nodes and 1,597 Web services. The relatively

low yield is partially due to the case that some Internet hosts are

ping unavailable, and partially due to the failure of the Internet

connection. Consequently, a 200-by-1597 matrix of response times

and a 200-by-200 matrix of network distances are obtained.

The data statistics of our QoS dataset are summarized in Ta-

ble 3.1. The minimal and maximal values of the response time

data are 0.008 ms and 2.98 s, respectively. The mean and standard

deviation values are 71.984 ms and 64.746 ms, respectively, which

implies that the observed response time values for different service

users have a great variation. For ease of reproducing our experimen-

tal results, and to facilitate future research, we have publicly released

our dataset on our project page3.

3.4.2 Evaluation Metrics

In our experiments, we employ two metrics, Mean Absolute Error
(MAE) and Median Relative Error (MRE), to evaluate the prediction

accuracy of our proposed WSP approach in comparison with other

existing approaches. The two metrics are defined as follows:

• MAE: This metric is widely employed to measure the average

3http://wsdream.github.io/WSP
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prediction accuracy [153], where smaller MAE means better

prediction accuracy.

MAE =

∑
i,j

∣∣∣d̂(ui, sj)− d(ui, sj)
∣∣∣

N
, (3.10)

where d̂(ui, sj) and d(ui, sj) denote the predicted value and the

measured value, respectively, between service user ui and Web

service sj . N is the number of predicted records.

• MRE: This metric is median value of all the pairwise relative

error values.

MRE = Median
i,j

∣∣∣d̂(ui, sj)− d(ui, sj)
∣∣∣

d(ui, sj)
, (3.11)

which means 50% of the relative errors are below MRE. While

MAE focuses on absolute error measurement, MRE evaluates

the relative error. The selection of the evaluation metrics is

dependent on the specific application scenario.

3.4.3 Accuracy Comparison

In this section, in order to evaluate the prediction accuracy of our

proposed WSP approach, we compare our approach with other

existing approaches in the following:

• UPCC: This is a user-based collaborative filtering approach,

which was first introduced to Web service QoS prediction in

[116]. UIPCC exploits the similarity between users to predict

the response time values.

• IPCC: This is a item-based collaborative filtering approach,

which exploits the similarity between Web service items for

Web service QoS prediction in [163].
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• UIPCC: This is a hybrid method, proposed in [163], by

combing both user-based and item-based collaborative filtering

approaches. UIPCC can make full use of the similarity between

users and the similarity between Web service items.

• Triangulation: This is a heuristic approach based on the trian-

gle inequality in the metric space, which is has been described

in Chapter 2. Specifically, we take the the upper bound as the

response time prediction result as indicated in [95].

• GNP: GNP is proposed in [95] as a landmark-based network

coordinate system to estimate network distances between In-

ternet hosts for P2P networks.

In this experiment, we choose 16 nodes as landmarks from

our dataset as did in GNP [95] (the impact of the number of

landmarks will be discussed in Section 3.4.5), while the remaining

184 computer nodes are taken as service users. Therefore, the

measured response time data between 184 service users and 1,597

Web services can be denoted as a 184 × 1597 matrix. As we

mentioned in the previous section, the available historical data is

very sparse. In order to simulate the sparse situation in real world,

we randomly remove entries from the data matrix such that each

user only keeps a few available historical values. In this way, we

vary the matrix density as 0, 5%, 10%, 15%. Particularly, matrix

density = 0 means no historical data of users are employed, such

as for mobile users, whose historical data may vary significantly

due to their high mobility and are not applicable for response time

prediction. Matrix density = 5%, for example, indicates that each

user has 5% (i.e. about 80) response time data out of all the Web

services. The removed entries are used as the expected values to

verify the prediction quality. In the sequel, for simplicity, we set

λl = λs = λu = λ, and denote n as the number of landmarks, m
as the coordinate dimensionality. In this experiment, the parameter

settings are λ = 0.1,m = 10. Each approach is performed 100 times
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Table 3.2: Prediction Accuarcy w.r.t. MAE

Matrix DensityMethods
0 5% 10% 15%

UPCC N/A 33.4439 25.4751 21.2634

IPCC N/A 51.9462 31.3841 26.2708

UIPCC N/A 33.7476 25.3795 21.0852

Triangulation 33.9315 33.9315 33.9315 33.9315

GNP 29.2793 29.2793 29.2793 29.2793

WSP 28.3502 20.6982 20.3531 19.9709
Improvements(%) 3.17% 29.31% 19.80% 5.28%

Table 3.3: Prediction Accuarcy w.r.t. MRE

Matrix DensityMethods
0 5% 10% 15%

UPCC N/A 0.1842 0.1329 0.1051

IPCC N/A 0.3064 0.1674 0.1335

UIPCC N/A 0.1856 0.1317 0.1027

Triangulation 0.1733 0.1733 0.1733 0.1733

GNP 0.1375 0.1375 0.1375 0.1375

WSP 0.1316 0.0972 0.0927 0.0922
Improvements(%) 4.29% 29.31% 29.61% 10.22%

and the average values are reported. In contrast, we set Top-K = 10,

λ = 0.1 for CF-based approaches [163]. The prediction accuracy

of different approaches under two evaluation metrics are shown in

Table 3.2 and Table 3.3.

As we can see from the experimental results, our WSP approach

obtains smaller MAE and MRE results consistently under different

data densities, which indicates that our approach outperforms the

others. The last row of each table shows the percentages of the

accuracy improvements of our WSP approach (marked in bold),

compared with the best of other existing methods (marked with

underline). While CF-based approaches are heavily influenced by

the matrix density, our WSP approach is less sensitive to the matrix

density and obtains good prediction accuracy even under sparse

historical data. For instance, the WSP has about 20% improvement
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compared with the UIPCC method, with 10% historical data. Es-

pecially, for matrix density = 0, the CF-based approaches (UPCC,

IPCC and UIPCC) run into a malfunction (denoted as N/A) while

landmark-based approaches (Triangulation, GNP, and WSP) achieve

good overall prediction accuracy. It implies that our WSP approach

can also serve well for newly joining users or mobile users without

available historical data.

On the other hand, our WSP approach outperforms the tradi-

tional network coordinate based approaches, triangulated heuristic

and GNP, even at matrix density = 0, indicating that our WSP

approach makes improvement based on GNP. We can also see that

the IPCC approach performs worse than the UPCC approach in

our experiments. This is because the IPCC method cannot find

enough similar neighbours as the number of users is much smaller

than the number of Web services. In other words, it is the data

sparsity that significantly degrades the performance of the IPCC

method. The results shown that with the increase of matrix density,

the triangulated heuristic approach and GNP approach have no

performance improvement since they make no use of the historical

data.

To sum up, our proposed WSP approach combines the ad-

vantages of network coordinate based approaches and CF-based

approaches, and achieves better accuracy compared to the existing

prediction methods.

3.4.4 Impact of the Matrix Density

As shown in Table 3.2 and Table 3.3, both the CF-based approaches

and landmark-based approaches are influenced by the matrix den-

sity, that is, the sparsity of the historical data. To further study the

impact of the matrix density on the prediction accuracy, we vary

the matrix density from 0 to 20% at the step of 2.5%, where matrix

density = 0 means making response time predictions without using
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Figure 3.2: Impact of the Matrix Density

historical data, i.e. SA = ∅ in Equation 3.8. In this experiment,

without loss of generality, we set n = 16, m = 10, and λ = 0.1.

The experimental results are shown in Figure 3.2, composed

of MAE and MRE values under different data densities. We can

observe that dense historical data can benefit the prediction perfor-

mance. However, after significantly decreasing when the matrix

density varies from 0 to 2.5%, MAE and MRE both keep steady

with a little reduce when the matrix density becomes denser. In other

words, the prediction performance of WSP approach is less sensitive

to the sparsity of data matrix, as a result, addresses the limitations of

practical data sparsity problem of CF-based approaches.

3.4.5 Impact of the Number of Landmarks

The landmark deployment (e.g., the position and number) is very es-

sential to the performance of our WSP approach. In this experiment,

we select the landmarks from the candidate nodes using the spectral

clustering based approach in [84]. To characterize the impact of

the number of landmarks, we conduct the experiment by varying

the number of landmarks from 11 to 45. We also set m = 10,
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Figure 3.3: Impact of the Number of Landmarks

λ = 0.1 and matrix density = 5%. Note that there should be more

than 11 landmarks for 10-dimensional Euclidean space construction.

The results of MAE and MRE are illustrated in Figure 3.3. We

can observe that the MAE and MRE values both decrease slightly

when the number is less than 20, and then rise when the number

is larger than 25. We can find that the large number of landmarks

may not make for the prediction performance improvement, since

there exist larger errors when embedding the Web services and users

into Euclidean space with too many reference nodes, as a result of

the triangle inequality violations (TIV) of network latencies [84]. In

practice, we can deploy enough landmarks while each Web service

and user only choose n landmarks as references, which can also

avoid the single point of failure of landmarks.

3.4.6 Impact of the Coordinate Dimensionality

Dimensionality is a key factor when embedding the Internet hosts

into an Euclidean space. We may wonder how many dimensions

should be used to construct the coordinate system in WSP. Intuitive-

ly, higher dimensionality contributes to more accurate coordinate
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Figure 3.4: Impact of the Coordinate Dimensionality

computation. To characterize the impact of the dimensionality, we

conduct experiments with our dataset and vary the dimensionality

from 2 to 14 at the step of 2. We also set n = 16, λ = 0.1 and matrix

density = 5%. The experimental results are illustrated in Figure 3.4.

We can observe that both MAE and MRE values decrease with

the increase of the dimensionality of coordinates, but the accuracy

improvement diminishes when the dimensionality is larger than 8.

As a result, higher dimensionality beyond a certain point only makes

little performance improvement.

3.4.7 Impact of the Regularization Term

For accurate response time prediction, we are supposed to minimize

the prediction errors between users and Web services. To address

the overfitting problem when computing coordinates, we introduce

a regularization term to penalize the norms of the solutions which

is widely adopted in machine learning area. In addition, the

regularization term can also avoid the coordinate drift due to the

non-uniqueness of the solution by choosing the coordinates with the

smallest norm.
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Figure 3.5: Impact of the Regularization Term

In this experiment, we vary the λ from 0 to 1, while λ = 0
means no regularization term is used. For other parameters, we set

n = 16,m = 10, and matrix density = 5%. The experimental

results are shown in Figure 3.5. As is shown in the figure, when

λ = 0.1, smaller MAE and MRE values are obtained compared

with λ = 0, indicating that the regularization term can contribute

to the prediction accuracy improvement. However, MAE and MRE

rise with the increase of λ. Therefore, the prediction accuracy is

sensitive to λ, and we set λ = 0.1 in our experiments, which has

been shown to achieve good prediction accuracy.

3.5 Case Study

In this section, we provide a case study on latency-aware service

deployment in geographically-distributed clouds [176] to illustrate

the practical use of response time information obtained by our WSP

framework.
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3.5.1 Latency-Aware Service Deployment

With the prevalence and benefit of cloud computing, many cloud

providers like Amazon, Google and Microsoft have built large data

centers in geographically distributed locations to achieve reliability

and serve millions of users world-wide. For example, Amazon

EC24 nowadays provisions cloud services over nine geographically

dispersed regions, where service providers have options to deploy

their applications in data centers from Virginia, Oregon, Califor-

nia, Ireland, Singapore, Tokyo, Sydney, São Paulo and GovCloud.

Moreover, as the ideas of InterCloud and cloud federation [60, 80]

become mature, more and more geo-distributed data centers will

be cooperatively utilized for the tasks of performance optimization,

operational cost minimization, traffic load balancing, demand spikes

accommodation, and catastrophic recovery.

Among these tasks, a key challenge faced by service providers is

how to scale their applications across these geographically distribut-

ed data centers. That is how to optimize the deployment strategies

to take full advantage of the geo-diversity to achieve better perfor-

mance (e.g., response time) and minimize the operational cost when

serving globally dispersed users. Although service management

framework in a single data center has been well studied, such as auto

scaling and elastic load balancing, there is an absence of efficient

service deployment and management framework for geo-distributed

data centers. In addition to the conventional resource constraints

(e.g., resource capacity, CPU and memory requirements of virtual

machines) and on-demand resource assignment of service deploy-

ment in a single data center, the dynamic pricing [148] in different

data centers and non-negligible time-varying communication laten-

cies between data centers also need to be considered when deploying

applications across multiple data centers. Moreover, the dynamic

service demand and geographical distribution of end users [102]

4http://aws.amazon.com/ec2
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Figure 3.6: The Framework of Service Deployment in Geo-distributed Clouds

further increase the difficulty of this task. As a result, there is high

demand for a dynamic and adaptive deployment strategy to scale

cloud applications into geo-distributed clouds.

In this case study, we present a dynamic service deployment

framework to cope with the deployment of online service systems

across geo-distributed clouds. Online service systems are typically

built ton SOA, which consist of a number of dependent service com-

ponents and data components. Therefore, the deployment should be

aware of these dependencies, since the deployment strategy of each

service will directly impact the performance (e.g., response time)

of the application. To achieve so, in our framework, we focus on

the data center selection problem for each service that takes service

dependencies into account, which is formulated as an optimization

problem. While the original model is a NP-hard problem, we tailor

the genetic algorithm to solve it, which provides a good trade-off

between the computational efficiency and the quality of the result.

3.5.2 Deployment Framework

Figure 3.6 illustrates our dynamic deployment framework, which

aims to periodically optimize the deployment strategies of services

while taking service dependencies into consideration. The process

to deploy service-oriented applications across geo-distributed data
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centers typically involves the following two phases: 1) deciding the

deployment strategy for each service component, i.e., selecting data

centers to deploy each service components; and 2) automatically

deciding the number of service instances for each service running in

the data center. Our framework comprises a two-level management

framework to solve these problems, including a deployment man-

ager in data center level and a local scheduler in service instance

level (either physical server or virtual machine). In the high level

(i.e., the data center level), the deployment manager is employed to

analyze the service dependencies and predict the request demand to

decide the number and locations of each service across data centers.

In the low level (i.e., the service instance level), the local scheduler

is used to automatically scale the service instances according to the

workload assigned to this data center.

• Deployment Manager: The deployment manager is a key

component in our framework to determine the locations of each

service in the geo-distributed clouds. Generally, the service

provider makes an initial deployment and then iteratively im-

prove the deployment. Towards this end, the request logs are

collected and analysed to capture the user demand, and the

network latencies can be measured periodically to adapt to the

network dynamics. As such, the service deployment can be

optimized periodically to improve the application performance,

while service dependencies are considered in addition to the

network condition, cloud service prices, and other additional

constraints (e.g., some data components are required to be

placed in certain data centers for privacy concern). It is worth

mentioning that there is a large body of work demonstrating

the effectiveness of network coordinate systems for network

performance prediction, which can also be incorporated into

our framework to reduce the measurement overhead.

• Local Scheduler: After deploying the services into the s-



CHAPTER 3. RESPONSE TIME PREDICTION OF WEB SERVICES 63

elected data centers, each local scheduler will automatically

scale service instances according to the dynamic request work-

load and route the service requests with load balancing. For

example, we can employ the auto scaling5 and elastic load

balancing6 services in Amazon EC2 to implement the local

scheduler. Furthermore, the request logs will be collected in

each data center (e.g., with the approach proposed in [22]) to

facilitate the log analysis in the deployment manager. In each

local scheduler, the platform-level resource allocation can be

achieved, where the resource constraints of virtual machines

are considered.

For simplicity of presentation, we focus only on the deployment

manager component in this case study. In other words, we address

how to select the candidate data centers for deployment, whereas the

local scheduler problem is well studied in the literature (e.g., [34])

as a resource allocation problem in a single data center.

3.5.3 Deployment Model and Algorithm

Application-level latency (i.e., response time) typically denotes the

time duration starting with a user request sent out and ending with a

response to the user finally received, during which multiple invoca-

tions across services are performed. Generally, it can be computed

as a summation of three elements: the involved communication

delays between user and data centers and also those between data

centers, the involved communication delays inside data centers, and

the processing time for the service request. The second element,

i.e., the communication delays inside data centers, are negligible

compared with the other elements, since machines in a data center

are all connected by high-speed links. In addition, as the processing

time of each service request is only affected by the computing capa-

5http://aws.amazon.com/autoscaling
6http://aws.amazon.com/elasticloadbalancing
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Table 3.4: Notations of Deployment Model

Notations Descriptions
N Number of users

M Number of service components in an application

fij Frequency of invocations between user i and service j

cmj The m-th datacenter deployed by service j

d(i, cmj ) Latency between user i and datacenter cmj

f i
jk

Frequency of invocations between service j and service k for

user i

Cj
Deployment strategy of servie j (the seleted data centers for

service j)

C The set of candidate datacenters

Kj The number of instances of service j

bility of a service instance, we assume each service instance is the

same and the total processing time is constant for each application.

Consequently, for simplicity, we only study the relationship between

the fist element and the service deployment strategy. Note that the

processing time can also be easily incorporated into our following

formulation.

min
N∑
i=1

( M∑
j=1

fij · min
cmj ∈Cj

d(i, cmj )

+
M∑
j=1

M∑
k=1
k 
=j

f i
jk · min

cmj ∈Cj

cnk∈Ck

d(cmj , c
n
k)
)

(3.12)

s.t.

Cj ⊆ C, ∀j = 1, 2, · · · ,M (3.13)

|Cj| = Kj, ∀j = 1, 2, · · · ,M (3.14)

Equation 3.12∼3.14 present the constraint minimization formu-

lation of our deployment model. In this model, the objective func-

tion aims at minimizing the total latencies of all requests including

both user requests and cross-service requests. The notations in the
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model are summarized in Table 3.4.

The intuition of our model is how to decide the deployment

strategy (i.e., the number and locations of selected data centers

for each service) so as to minimize the user-perceived latencies.

In detail, the frequency fij and f i
jk indicates the dependencies

between user-service requests and cross-service requests, as we

jointly consider the sum of their latencies in our objective function.

mincmj ∈Cj
d(i, cmj ) denotes the lowest network latency that user i

can experience when invoking service j. mincmj ∈Cj ,cnk∈Ck
d(cmj , c

n
k)

describes the lowest latency between dependent services j and k
in the invocations. Moreover, the first constraint guarantees that

for each service j the data centers Cj are selected from the whole

candidate set C, while the second constraint ensures each service j
will be deployed into Kj data centers. Kj keeps a trade-off between

the user-perceived latency and the operational cost.

We can see that such a formulation is actually an NP-hard prob-

lem, which can be reduced to a set k-cover problem [56]. In [69],

a service co-deployment model based on integer programming has

been proposed to optimize the deployment strategy with potential

service dependencies. However, the integer programming based

approach suffers from poor scalability, as its complexity grows ex-

ponentially with the number of services and candidate data centers.

Next, we will show how it can be solved efficiently with a genetic

algorithm (GA).

Genetic algorithm is a popular search heuristic originated from

the natural genetic systems to solve optimization problems. The

basic idea of GA is to survive the fittest. Generally, the genetic

algorithm works with a set of genomes called a population, where

each genome is a feasible solution encoded with a string of integers.

And each genome is associated with a fitness value, which indicates

the possibility of survival and reproduction in the next generation

for each individual genome. At each generation, the population

goes through a set of operations, including selection, crossover,
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Figure 3.7: Genome Encoding of Deployment Strategy

mutation and evaluation, to evolve to the next generation. At the

beginning, individuals in the population are selected in pairs as

parents to take the crossover operation for each pair. The crossover

operation randomly cuts off the original genome and swaps the parts

to generate offsprings. Then the offsprings are placed back into the

population to replace the weaker individuals. After the crossover

operation, each genome will be mutated with some probability to

change the genome into a new one. Finally, the evaluation operation

is performed to update the fitness value of each genome. This pro-

cess is repeated until some stop criteria are met (e.g., until the best

fitness value remains unchanged for a given number of generations,

or the maximum number of generations has been reached).

In particular, we tailor the genetic algorithm by encoding the

deployment strategy as shown in Figure 3.7. As we can see, each

service j consists of a set of genes with size Kj , which can be se-

lected from the candidate data center set. We jointly consider all the

service components in a service-oriented application as a genome,

and we can get different genomes by varying the values of the genes,

as the indicator of each data center. For the parents selection, we

use the roulette wheel method, which selects individuals of higher

fitness values with higher probability. We use the classical single-
point crossover operator and real-value mutation operator.
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Figure 3.8: Comparison of Different Deployment Approaches

3.5.4 Results Analysis

To evaluate our proposed deployment model, we conduct experi-

ments based on our newly collected response-time dataset, which

includes 307 geo-distributed PlanetLab nodes and 1,881 public Web

services. For evaluation purpose, we simulate user requests by

randomly generating the request logs from our collected response-

time dataset. By default, we set N = 1881, M = 10, and |C| = 100.

For simplicity, we set all the values of Kj equally and the default

setting is K = 10 for each j. A user of a service s would have

5 request logs. One request of a service would involve on average

5 requests of other services. In addition, the collected latency data

are used to make the simulations realistic. In our evaluation, we

compare our approach to the following four heuristics for service

deployment. The experimental results show that our algorithm

substantially outperforms these heuristic methods.

• Random: In random deployment, the services are deployed

randomly in K data centers.

• OneDC: OneDC is proposed in [22], which deploys all the

services in one data center with the highest performance of all

the candidates. It is commonly employed by many companies
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due to its simplicity, but the advantages of geo-distributed data

centers are not considered.

• AllDC: AllDC simply deploys each service in every data

center. It can be regarded as an extreme baseline, where the

user-perceived latency is minimized with the operational cost

ignored.

• Single Deployment: Single Deployment is proposed in [70],

which optimizes the deployment strategy independently for

each single service. Hence, it does not take service dependen-

cies into account.

We compare the performance of different approaches with the re-

sults shown in Figure 3.8. We can observe that the OneDC heuristic

performs worst, although it is widely employed due to its simplicity.

AllDC can achieve the lowest average latency, yet with the the

highest cost by selecting all the candidate data centers. Compared

with AllDC, our approach obtains competitive performance result

while saving cost by about 15×. The experimental results show

that the end-to-end response time information is immensely useful

in performing service deployment optimization.



CHAPTER 3. RESPONSE TIME PREDICTION OF WEB SERVICES 69

Impact of |C|

To study the impact of |C|, i.e., the number of candidate data centers,

we vary it from 1 to 307, and obtain the latency values. The results

are shown in Figure 3.9. We can see a decreasing trend of the curve.

But such reduction of latency gets smaller as the number of the

candidate data centers increases. As a result, we can improve the

application performance by deploying each service across multiple

data centers, while the cost can be limited by using only a part of

the candidate data centers. The reason is that with more candidates,

our approach can find a better deployment strategy by considering

service dependencies.

Impact of K

In this experiment, we vary the value of K from 1 to 30, to

investigate the impact of K on user-perceived average latency. The

experimental results are shown in Figure 3.10. We can see that the

average latency decrease dramatically with the increasing of K (The

little fluctuation at K = 25 may be caused by the random initial

deployment). This is because with more data centers selected for

service deployment, our approach can take advantage of the geo-

diversity of distributed data centers to improve the performance for

the dispersed users.

3.6 Summary

In this chapter, we propose a network coordinate based Web service

positioning framework for response time prediction, which is one

of the most important QoS properties. A small set of landmarks

are deployed on the Internet to monitor the response times of all

available Web services and provide references to the numerous

service users. By combining the advantages of network coordi-

nate based approaches and collaborative filtering based approaches,
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our WSP framework is able to make accurate predictions on user

perceived response times of Web services. Experimental results

obtained on our collected real-world Web service dataset show that

our proposed WSP approach alleviates the data sparsity problem

of existing approaches and significantly enhances the prediction

accuracy. Besides, our WSP approach can also serve for users

without any available historical data, such as mobile users and new

users, where existing approaches are not applicable.

This work focuses on response time prediction of Web services.

However, there are some other QoS attributes that also deserve

for future investigations to facilitate QoS-driven optimizations of

online service systems. In addition, the limitation of Euclidean

network coordinate systems lies in the triangle inequality violation

problem of response times. Further exploration to mitigate this issue

motivates our study in next chapter.

� End of chapter.



Chapter 4

Online QoS Prediction of Web
Services

With the scale and complexity of online service systems growing

exponentially, it has become a significant challenge to maintain

quality-of-service (QoS) guarantees. To mitigate service outage

and degradation of service quality, online service systems have

to become resilient against the QoS variations of their component

services. Runtime service adaptation has been recognized as a

key solution to achieve this goal. To aid in timely and accurate

adaptation decisions, effective QoS prediction is desired to obtain

the QoS values of component Web services. To achieve so, in this

chapter, we focus on the study of online QoS prediction of Web

services. In detail, we introduce the research problem in Section 4.1,

and present the framework of QoS-driven service adaptation in

Section 4.2. Then, we describe our online QoS prediction approach

in Section 4.3. The evaluation results are reported in Section 4.4, and

a case study is provided in Secton 4.5. Finally, Section 4.6 concludes

this chapter.

4.1 Problem and Motivation

Cloud computing has gained increasing prevalence in recent years

for providing a promising paradigm to host and deliver various

71
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online services over the Internet. However, as these online service

applications scale up, for example, spanning across multiple geo-

graphically distributed data centers [148], a significant challenge

faced by application designers is how to engineer their applications

with self-adaptation capabilities in response to the constantly chang-

ing operational environments, whereby the quality of service (QoS)

can be guaranteed.

Many online service systems have employed service-oriented ar-

chitecture (SOA) as a mechanism for achieving self-adaptation [92],

where component services are composed in a loosely-coupled way

to fulfill complex application logic. For example, Amazon’s e-

commerce platform is built on SOA by composing hundreds of

component services hosted world-wide to deliver functionalities

ranging from item recommendation to order fulfillment to fraud

detection [51]. The features of SOA such as loose coupling and

dynamic binding enable applications to switch component services

without going offline, and thus make it particularly amenable to the

introduction of service adaptation [90]. On the other hand, with the

proliferation of cloud computing, many service providers begin to

offer more and more services in the cloud that provide equivalent

(or similar) functionalities through a well-defined interface (e.g.,
Web service) [147]. Such redundant services can thus be utilized

for service adaptation by replacing the current working services

with the corresponding candidate services in response to unexpected

QoS changes (e.g., unacceptable response time). To achieve so,

knowledge about QoS values of the services is required to make

timely and accurate adaptation decisions, such as when to trigger

an adaptation action, which working services to be replaced, and

which candidate services to employ. In particular, we refer to

working services as the services that are being used by a cloud

application, and candidate services as the alternative services that

have equivalent functionalities.

For an online service system, the working services are frequently
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invoked, thus their QoS values can be collected via monitoring. In

recent literature, existing QoS prediction approaches (e.g., [129,

76, 27]) for service adaptation focus mostly on monitoring (or

predicting) QoS values of the working services, which can help

determine when to trigger an adaptation action and which working

services to be replaced. However, to the best of our knowledge, there

is no work explicitly addressing the problem of QoS prediction on

candidate services for service adaptation, thus making it difficult in

determining which candidate services to employ for an adaptation

action. It is challenging to obtain QoS values of the candidate

services due to the prohibitive overhead for actively measuring a

large number of candidate services at runtime. Besides, some

service invocations may be charged, which further increases the cost

of service invocations. Therefore, it is highly desired to employ

QoS prediction approaches to accurately estimate the QoS values

of candidate services without requiring direct invocations, which is

exactly the goal of our work. In particular, effective QoS prediction

on candidate services needs to fulfill the following requirements.

• Online: The changing and evolving operational environment

introduces a high degree of variability and uncertainty to user-

perceived service quality. For instance, due to the impact

of dynamic network conditions and varying server workload,

the QoS values may vary significantly during different time

periods. Therefore, in order to identify high-quality candidate

services for service adaptation, QoS prediction needs to be

performed in an online fashion.

• Accurate: Ensuring the accuracy of QoS prediction is funda-

mental for service adaptation. Inaccurate predictions may lead

to the execution of improper adaptations or missed adaptation

opportunities. For example, a working service may be wrongly

replaced by a low-quality service. Consequently, we need

accurate QoS prediction approaches, as well as proper metrics
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to evaluate the prediction accuracy.

• Scalable: In the dynamic cloud environment, new services with

different QoS may become available, and existing services may

be discontinued by their providers. Likewise, service users

may often join or leave the environment. In face of the high

churning rate of users and services, QoS prediction approaches

need to scale well to new services and users, and perform

robustly to make accurate predictions.

To achieve these goals, in this chapter, we propose a novel QoS

prediction approach to estimate the QoS values of candidate services

by leveraging historical QoS data collaboratively from different

users. The approach is inspired from the collaborative filtering

model used in recommender systems, with the insight that different

users may use a common set of services and some users may observe

similar QoS on the same service. However, different from the con-

ventional matrix factorization (MF) model applied in recommender

systems, our problem is more specific to the QoS prediction problem

due to the aforementioned stringent requirements. As a result, we

extend the conventional MF model into an online, accurate, and

scalable QoS prediction approach, namely adaptive matrix factoriza-

tion (AMF) [172], by employing techniques of data transformation,

online learning, and adaptive weights. To evaluate our AMF ap-

proach, comprehensive experiments including accuracy comparison,

efficiency analysis, and scalability analysis are conducted based on

a real-world large-scale Web service QoS dataset, which consists

of response time and throughput data between 142 users and 4,500

services over 64 continuous time slices (at an interval of 15 minutes).

The evaluation results provide good demonstration of our approach

in achieving accuracy, efficiency, and scalability. Finally, a case

study is presented to illustrate the use of online QoS prediction.
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Figure 4.1: Framework of QoS-Driven Service Adaptation

4.2 Framework of QoS-Driven Service Adaptation

To build high-quality online service systems, we propose a basic

framework for QoS-Driven service adaptation, as illustrated in

Figure 4.1. In this framework, two modules are integrated to support

QoS-Driven service adaptation.

Execution middleware: An service-oriented system typically

comprises a workflow specified in BPEL and runs on a BPEL
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engine, like Apache ODE1. In order to support QoS-Driven ser-

vice adaptation actions (e.g., replacing component services or re-

structuring workflows), BPEL engines can be enriched with sophis-

ticated functionalities like QoS manager, candidate service manager,

and user-specified adaptation polices. Concretely, candidate service

manager discovers all available candidate services that match their

needs, while QoS manager monitors the QoS values of service

invocations, uploads the observed QoS data, and then obtains the

related QoS prediction results through the interface of QoS predic-
tion service. Based on the QoS prediction results, various adaptation

polices (e.g., when to trigger an adaptation action and, if necessary,

which candidate services to employ) can be plugged in and executed

automatically without causing any downtime of the overall system.

QoS prediction service: This module is designed as a service

working by collaboratively collecting the observed QoS data from

different users and then providing accurate QoS prediction results

for these users transparently through a standard interface. More

specifically, the QoS prediction service works as follows: 1) Input
handling: The observed QoS data are collected and processed as

formatted stream data. The QoS database can be updated according-

ly. 2) Online updating: The AMF model can be updated online by

using the sequentially observed QoS data. 3) QoS prediction: The

QoS prediction results by our AMF model can be provided to users

on demand through the QoS prediction interface. Additionally, a

service manager is desired to provide utilities like service discovery

and service management of available services. Likewise, a user

manager is set up to manage the joining or leaving activities of users.

The framework shows that effective QoS prediction is fun-

damental for successful service adaptation executions in service-

based online service systems, because the performance of service

adaptation is heavily influenced by the QoS prediction results. Thus,

QoS prediction is the main focus of this work.

1http://ode.apache.org
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4.3 Online QoS Prediction

In the previous work, QoS prediction approaches (e.g., [129, 27]) fo-

cus primarily on QoS prediction for working services (that are being

used by a cloud application) by employing techniques such as time

series analysis on historical QoS data. According to the prediction

results, potential SLA violations can be detected, thereby facilitating

adaptation decisions such as when to trigger an adaptation action

and which component services to be replaced. In contrary, our work

focuses on QoS prediction for candidate services to help determine

which candidate services to employ for an adaptation action.

Specifically, as with rating prediction in recommender systems,

historical service invocations can produce a user-service QoS matrix

with respect to each QoS attribute (e.g., response time). This QoS

matrix can be collected from user side in the form of user collab-

oration through our framework. In this matrix, each row denotes

a service user (i.e., a cloud application), each column denotes a

candidate service in the cloud, and each entry denotes the QoS value

observed by the a user when invoking a service. In practice, the QoS

matrix is very sparse, since each user usually only invokes a handful

of services. As in Figure 4.2(b), values in grey entries are observed

QoS data from the user-service invocation graph in Figure 4.2(a),

and the blank entries are unknown QoS values to be predicted. For

example, the response time between user u1 and service s1 is 1.4s,

while the response time between user u1 and service s2 is unknown

because u1 has never invoked s2.
Our goal of QoS prediction is to employ the observed QoS data

to estimate the other unknown values. Formally, suppose there

are n users and m services, we can obtain a sparse QoS matrix

R ∈ R
n×m with respect to each QoS attribute, where Rij denotes

the QoS value between user ui and service sj . As such, the QoS

prediction problem can be modelled as a collaborative filtering

problem that approximately reconstructs the unknown values from
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Figure 4.2: An Example of QoS Prediction by Matrix Factorization

a small number of observed entries [123]. In addition, the QoS

prediction approach should be performed in an online, accurate, and

scalable manner.

4.3.1 Matrix Factorization and Its Limitations

Matrix factorization [109] is a classic model to address the above

collaborative filtering problem, which constrains the rank of the QoS

matrix, i.e., rank(R) = d. The low-rank assumption is based on the

fact that the entries of R are largely correlated, thereby resulting in

a low effective rank in R. For instance, close users may have similar

network conditions, and thus experience similar QoS on the same

service. Figure 4.2 illustrates an example that makes use of matrix

factorization for QoS prediction. Concretely, factoring a matrix is

to map both users and services into a joint latent factor space of a

low dimensionality d (e.g., d = 2 in Figure 4.2(c)), such that values

of the user-service QoS matrix can be captured as inner products of
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latent factors in that space. Then the latent factors can be employed

for further prediction on unknown QoS values. For example, as

shown in Figure 4.2(d), the predicted response time value between

user u1 and s2 is 0.8s.

Formally, latent user factors are denoted as U ∈ R
d×n and latent

service factors as S ∈ R
d×m, which are used to fit the QoS matrix

R, i.e., R ≈ UTS. To avoid overfitting, regularization terms that

penalize the norms of the solutions (i.e., U and S) are added. Thus

we aim to minimize the following loss function:

L =
1

2

n∑
i=1

m∑
j=1

Iij(Rij − UT
i Sj)

2
+

λU

2
‖U‖2F +

λS

2
‖S‖2F , (4.1)

where Iij acts as an indicator that equals to 1 if Rij is observed,

and 0 otherwise (e.g., I11 = 1 and I12 = 0 in Figure 4.2(b)). ‖·‖F
denotes the Frobenius norm [109], and λU , λS are two parameters

to control the extent of regularization. As introduced in Chapter 2,

gradient descent [109] is usually employed to derive the solutions U
and S, by iterating in the following form until convergence:

Ui ← Ui − η
∂L
∂Ui

, Sj ← Sj − η
∂L
∂Sj

, (4.2)

where η is the learning rate controlling how much change to make

at each iteration. After obtaining the latent factors U and S, the

unknown QoS values can then be predicted by their corresponding

inner products: R̂ij = UT
i Sj , where Ii,j = 0.

Although this conventional matrix factorization model performs

well for rating prediction problem in recommender systems, it

is insufficient to address our QoS prediction problem for service

adaptation, due to the following limitations:

• Limitation 1: Due to our observation on a real-world QoS

dataset, we find that different from the coherent value range

of ratings (e.g., 1∼5) in recommender systems, the QoS values
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vary widely (e.g., 0∼20s for response time and 0∼7000kbps
for throughput). Moreover, the distributions of QoS data are

highly skewed with large variances (as shown in Figure 4.6(a))

compared with the rating distribution, which mismatches with

the probabilistic assumption for matrix factorization [109].

Consequently, directly applying the original MF model to QoS

data may significantly degrade its prediction accuracy.

• Limitation 2: Our QoS prediction problem differs from rec-

ommender systems mainly in that QoS values are time-varying

while rating values keep unchanged once being rated. In other

words, existing QoS values will be continuously updated with

newly observed values, or become expired after a time period

without updating. However, conventional MF model primarily

works offline on collected data. Therefore, to adapt to a

newly observed QoS value, the MF model has to be entirely

retrained, which will incur large computation overhead and

make it infeasible to be performed online.

• Limitation 3: Due to the dynamic nature of cloud environment,

both users and services may continuously join or leave the

environment (i.e., churn occurs). However, the MF model

focuses on the user-service QoS matrix with a fixed size (w.r.t.
users and services), thus is not easily scalable to handle new

users and new services without retraining the whole model.

4.3.2 Adaptive Matrix Factorization

To address the above limitations, we propose our new QoS predic-

tion approach, adaptive matrix factorization (AMF), which aims to

be online, accurate, and scalable. To achieve this goal, our AMF

approach integrates three techniques: data transformation, online

learning, and adaptive weights.
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1) Data Transformation

To address Limitation 1 (i.e., skewed QoS value distributions), we

apply a classic data transformation method, Box-Cox transforma-

tion [108], to QoS data. This technique is used to stabilize data

variance and make the data more normal distribution-like in order to

fit the matrix factorization assumption. The transformation is rank-

preserving and performed by using a continuous power function

defined as follows:

boxcox(x) =

{
(xα − 1)/α if α 
= 0 ,

log(x) if α = 0,
(4.3)

where the parameter α controls the extent of the transformation.

For simplicity, we denote R̃ij = boxcox(Rij). Note that R̃max =
boxcox(Rmax) and R̃min = boxcox(Rmin) due to its monotonously

non-decreasing property of Box-Cox transformation. Rmax, Rmin

are the maximal and minimal QoS values respectively, which can

be specified by users (e.g., Rmax = 20s and Rmin = 0 for response

time in our experiments). Similarly, R̃max and R̃min are the maximal

and minimal values after data transformation. Then we map the data

into the range [0, 1] by linear normalization,

rij = (R̃ij − R̃min)
/
(R̃max − R̃min). (4.4)

Especially, when α = 1, the data transformation is relaxed to a

linear normalization, where the effect of Box-Cox transformation

is masked.

To fit the normalized QoS data rij , we employ the sigmoid

function g(x) = 1/(1 + e−x) to map the value UT
i Sj into the range

of [0, 1], as described in [109]. Therefore, the loss function in

Equation 4.1 can be transferred to:

L =
1

2

n∑
i=1

m∑
j=1

Iij(rij − gij)
2 +

λU

2
‖U‖2F +

λS

2
‖S‖2F , (4.5)
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where gij denotes g(UT
i Sj) for simplicity.

However, conventional matrix factorization model minimizes the

sum of squared errors and employs the absolute error metrics (e.g.,
MAE as defined in Section 4.4.2) to evaluate the prediction results.

In practice, absolute error metrics are not suitable for evaluation of

QoS prediction due to the large value range of QoS values. For

instance, given two services with QoS values s1 = 1 and s2 = 100,

the corresponding thresholds for adaptation action are set to s1 > 5
and s2 < 90. Suppose there are two sets of prediction results: (a)

s1 = 8 and s2 = 99, (b) s1 = 0.9 and s2 = 92, we would choose (a)

with smaller MAE if using the MAE metric. However, prediction (a)

will cause a wrong adaptation action due to s1 > 5, while prediction

(b) is more reasonable. Consequently, we propose to employ relative

error to evaluate the prediction results, where the corresponding loss

function is derived as follows:

L =
1

2

n∑
i=1

m∑
j=1

Iij
(rij − gij

rij

)2
+

λU

2
‖U‖2F +

λS

2
‖S‖2F , (4.6)

2) Online Learning

To address Limitation 2 (i.e., time-varying QoS values), online

learning algorithms are required to keep continuous and incremental

updating using the sequentially observed QoS data. For this purpose,

we employ a classic online learning algorithm, stochastic gradient

descent (SGD) [117] to train our AMF model. For each QoS value

observed by user ui for invoking service sj , we have the following

pairwise loss function:

�(Ui, Sj) =
1

2
(
rij − gij

rij
)
2

+
λu

2
‖Ui‖22 +

λs

2
‖Sj‖22 , (4.7)

such that L =
∑n

i=1

∑m
j=1 Iij�(Ui, Sj). ‖·‖2 denotes the Euclidean

norm.
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Figure 4.3: An Example of QoS Prediction by Adaptive Matrix Factorization

Instead of directly minimizing L, SGD relaxes to minimize the

pairwise loss function �(Ui, Sj). By replacing L with � in Equa-

tion 4.2, we can derive the following update equations regarding

each data sample (ui, sj, Rij):

Ui ← Ui − η((gij − rij)g
′
ijSj

/
r2ij + λuUi), (4.8)

Sj ← Sj − η((gij − rij)g
′
ijUi

/
r2ij + λsSj), (4.9)

where g′ij denotes g′(UT
i Sj), and g′(x) = ex/(ex + 1)2 is the

derivative of g(x). η is the learning rate.

As illustrated in Figure 4.3(a)(b), every time when a new data

sample is observed, online updating can be performed on its cor-

responding factors using Equation 4.8 and 4.9. In other words, at

each iteration, user ui can take a small change on feature vector Ui

and service sj can have a small change on feature vector Sj , given a

newly observed data sample (ui, sj, Rij) after user ui invoke service

sj .
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3) Adaptive Weights

To address Limitation 3 (i.e., scalability on new users and services),

we make use of the above online learning algorithm, which can

update the feature vectors incrementally without retraining the w-

hole model. However, the above online learning algorithm may not

perform well under the high churning rate of users and services (i.e.,
continuously joining or leaving the environment). The convergence

is controlled by the learning rate η, but a fixed η will lead to

problems for new users and services. For example, for a new user

u1, if its feature vector U1 is at its initial position, larger η is needed

to help it move quickly to its correct position. But for an existing

service s2 that user u1 invokes, its feature vector S2 may have already

been converged. Adjusting the feature vector (S2) of service s2
according to the user u1 is likely to increase prediction error rather

than to decrease it, since user u1 itself has large prediction error with

its initial feature vector (U1) not converged. Thus, our approach, if

performed online, need to be robust towards the churning of users

and services.

To achieve this goal, we propose to employ adaptive weights

in our AMF model. Although the weighted matrix factorization

has also been studied in [119], our approach differs from it in that

we use adaptive weights instead of fixed weights in the iteration

process. Specifically, we design an adaptive weight to control the

step size at each iteration, depending on the accuracy achieved by the

corresponding user or service. The goal is to mitigate the impact of

new users or services that have high errors with their feature vectors

not converged. Intuitively, an accurate user should not move much

according to an inaccurate service while an inaccurate user need

to move a lot with respect to an accurate service, and vice versa.

For example, if service s1 has an inaccuracy of 10% and service s2
with inaccuracy 1%, when a user invokes both s1 and s2, it should

move less for its feature vector to service s1 compared with service
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s2. As a result, we have two weights wui
and wsj for user ui and

service sj respectively. Then we derive the following loss functions

corresponding to Ui and Sj:

�w(Ui) =
1

2
wui

(
rij − gij

rij
)
2

+
λu

2
‖Ui‖22 , (4.10)

�w(Sj) =
1

2
wsj(

rij − gij
rij

)
2

+
λs

2
‖Sj‖22 , (4.11)

where wui
+ wsj = 1, such that �(Ui, Sj) = �w(Ui) + �w(Sj).

We denote the average error of user ui as eui
and the average error

of service sj as esj . Then we compute the weights wui
, wsj to control

the credence between each other, as follows:

wui
= eui

/(eui
+ esj), wsj = esj/(eui

+ esj). (4.12)

To update eui
, esj , we compute the exponential moving average [10]

at each iteration, which is a weighted average with more weight

(controlling by β) given to the latest data.

eui
= βwui

eij + (1− βwui
)eui

, (4.13)

esj = βwsjeij + (1− βwsj)esj , (4.14)

where eij denotes the relative error between gij and rij:

eij = |rij − gij|
/
rij. (4.15)

We also find that similar weights have been used for controlling

the credence of node in network coordinate system [50], but our

approach is the first to incorporate such weights into matrix fac-

torization. After obtaining the updated weights wui
and wsj at

each iteration, we can derive the following updating equations by

computing the gradients in Equation 4.10 and 4.11:

Ui ← Ui − ηwui
((gij − rij)g

′
ijSj

/
r2ij + λuUi), (4.16)

Sj ← Sj − ηwsj((gij − rij)g
′
ijUi

/
r2ij + λsSj), (4.17)
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With Ui and Sj , we can predict the unknown QoS value Rij

(where Iij = 0) for the service invocation between user ui and

service sj . Finally, a backward data transformation of g(UT
i Sj) is

required, which can be computed according to the inverse functions

for Equation 4.3 and 4.4.

4) AMF Algorithm

After analyzing the ingredients of our AMF model, we can have

a big picture of the algorithm. Figure 4.3 presents an illustrative

example for QoS prediction by using AMF. Different with MF in

Figure 4.2, our AMF approach collects each observed QoS value

in a stream way (Figure 4.3(a)(b)), and keeps online updating

accordingly (Figure 4.3(c)). Then the current QoS valuse can be

predicted using the updated model (Figure 4.3(d)). The pseudo

code of our online updating algorithm for AMF is provided in

Algorithm 3. Specifically, at each iteration, the newly observed

QoS data are collected to update the model (Line 2 ∼ 9), or else

existing data are randomly selected for model updating (Line 11 ∼
15) until convergence. Especially, the online updating operations

are defined as a function OnlineUpdate(tij, ui, sj, Rij) given a data

sample (tij, ui, sj, Rij), according to the steps described in 1) ∼ 3).

Note that for a newly observed data sample, we first check whether

the corresponding user or service is new, so that we can add it to

our model (Line 5 ∼ 7) and keep updating its feature vector using

more observed data on this user or service (Line 8 ∼ 9). As such,

our model can scale to new users and services without retraining the

whole model. Another important point is that we check whether an

existing QoS value has become expired (Line 12), and if so, discard

this value (i.e., in Line 15, set Iij = 0). In our experiment, for

example, we set the expiration time interval to 15 minutes.
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Algorithm 3: Adaptive Matrix Factorization Algorithm

Input: Sequentially observed QoS data samples: (tij, ui, sj, Rij), and all

the model parameters.

Output: QoS prediction results: R̂ij ← (Ui, Sj), where Iij = 0.

repeat /* Continuous and incremental updating */1

Collect newly observed QoS data;2

if receive a new data sample (tij, ui, sj , Rij) then3

Iij ← 1;4

if ui is a new user or sj is a new service then5

Randomly initialize Ui ∈ R
d, or Sj ∈ R

d;6

Initialize eui
← 1, or esj ← 1;7

Update tij, Rij corresponding to ui, sj;8

OnlineUpdate(tij, ui, sj, Rij);9

else10

Randomly pick an existing data sample (tij, ui, sj, Rij);11

if tnow − tij < TimeInterval then12

OnlineUpdate(tij, ui, sj, Rij);13

else14

Existing data sample is obsolete: set Iij ← 0;15

if converged then16

Wait until observing new QoS data;17

until forever;18

OnlineUpdate(tij, ui, sj, Rij): /* Function */19

Normalize Rij by Equation 4.3 and 4.4: rij ← Rij;20

Update wui
, wsj by Equation 4.12: wui

← (eui
, esj), wsj ← (eui

, esj);21

Compute eij by Equation 4.15: eij ← (rij, gij);22

Update eui
, esj by Equation 4.13 and 4.14:23

eui
← (wui

, eij, eui
), esj ← (wsj , eij, esj);

Update Ui, Sj simutaneously by Equation 4.16 and 4.17;24

4.4 Evaluation

In this section, we conduct a set of experiments based on a real-

world Web service QoS dataset to evaluate our AMF approach

from various aspects, including accuracy comparison, impact of

parameters, efficiency analysis, and scalability analysis. All the
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experiments were conducted on a machine with a 3.2 GHz Intel CPU

and 4 GB RAM, running Win7. For ease of reproducing or applying

our approach to future research, we publicly release our source code

and dataset on our project page2.

4.4.1 Data Description

In our experiments, we focus primarily on two QoS attributes:

response time (RT) and throughput (TP). Response time stands for

the time duration between user sending out a request and receiving a

response, while throughput denotes the data transmission rate (e.g.,

kbps) of a user invoking a service.

The data used in our experiment are extracted from a real-world

Web service QoS dataset [152], including both response time and

throughput values. These QoS values are collected by 142 users

invoking 4,500 Web services for 64 consecutive time slices, at an in-

terval of 15 minutes. The users are 142 machines (PlanetLab nodes)

located in 22 countries, and the services are 4,500 publicly available

real-world Web services from 57 countries [152]. Figure 4.4

provides some basic statistics of our dataset. For example, the range

of response time is 0∼20s, and the throughput ranges 0∼7000kbps.

Furthermore, we plot the data distributions of response time and

throughput in Figure 4.6(a). For better visualization, we cut off the

response time beyond 10s and the throughput more than 150kbps. It

is shown that the data distributions are highly skewed. In contrast,

as shown in Figure 4.6(b), we obtain more normal data distributions

through our data transformation in Section 4.3.2.

In addition, we investigate the singular values of the data matrices

of response time and throughput between users and services. The

singular values are computed by a singular value decomposition

(SVD) [17] and then normalized so that the largest singular value

is equal to 1, as illustrated in Figure 4.5. We can observe that except

2http://wsdream.github.io/AMF
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Statistics Values
#Users 142

#Services 4,500

#Time slices 64

#Time interval 15min
RT range 0 ∼ 20s
RT average 1.33s
TP range 0 ∼ 7000kbps
TP average 11.35kbps

Figure 4.4: Data Statistics
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Figure 4.6: Data Distribution Before and After Data Transformation

the first few largest singular values, most of them are close to 0.

This observation indicates that both data matrices are approximately

low-rank, which conforms to the low-rank assumption of matrix

factorization. In our experiment, we set rank d = 10 (i.e., the

dimensionality of Ui, Sj).

4.4.2 Evaluation Metrics

We evaluate the prediction accuracy of our proposed approach in

comparison with other existing approaches by using the following
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metrics.

• MAE (Mean Absolute Error). MAE is widely employed

to measure the average prediction accuracy in recommender

systems, defined as follows:

MAE =
∑
Iij=0

∣∣∣R̂ij −Rij

∣∣∣/N, (4.18)

where Rij is the measured value and R̂ij is the corresponding

predicted value. N is the number of samples that satisfy Iij =
0.

• MRE (Median Relative Error). MRE takes the median value

of all the pairwise relative errors:

MRE = median
Iij=0

∣∣∣R̂ij −Rij

∣∣∣/Rij. (4.19)

• NPRE (Ninety-Percentile Relative Error). NPRE takes the

90th percentile of all the pairwise relative errors.

Due to the large variance of QoS values, in this work, we focus

more on relative error metrics, i.e., MRE and NPRE, which are more

appropriate for QoS prediction evaluation. Many papers report on

MAE, so it is also included for comparison purpose. Nevertheless,

our optimization efforts are not focused on MAE.

4.4.3 Accuracy Comparison

In order to evaluate the prediction accuracy, we compare our AMF

approach with the following approaches that have been introduced

for QoS prediction [162, 164]. It is worth noting that although these

approaches are included for comparison purpose, they cannot be

directly used for runtime service adaptation in practice, due to the

aforementioned limitations.
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• UPCC: This is a user-based collaborative filtering approach [162]

that employs the similarity between users to predict the QoS

values.

• IPCC: This is an item-based collaborative filtering approach [162]

that employs the similarity between services to predict the QoS

values.

• UIPCC: This is a hybrid approach proposed in [162], by

combing both UPCC and IPCC approaches to make full use of

the similarity between users and the similarity between services

for QoS prediction.

• PMF: This is a widely-used implementation of matrix fac-

torization model [109], which we have introduced in Sec-

tion 4.3.1.

As we mentioned before, the available QoS data matrix is sparse

in practice, because each user typically only uses a small number

of candidate services out of all of them. To simulate the sparse

situation, we randomly remove entries from the data matrix at each

time slice so that each user only keeps a few available historical

values. In this way, we vary the matrix density from 10% to 50% at

a step increase of 10%. Matrix density = 10%, for example, indicates

that each user invokes 10% (i.e. about 450) of the services, and each

service is invoked by 10% (i.e. about 14) of the users. For AMF

approach, the preserved data entries are randomized as a QoS data

stream for training. Then the removed entries are used as the testing

data to evaluate the prediction accuracy. In the sequel, for simplicity,

we set λu = λs = λ for AMF. Specifically, in this experiment, we

set d = 10, λ = 0.001, β = 0.3, η = 0.8, α = −0.007 for RT, and

α = −0.05 for TP. Note that the parameters of the other approaches

are also optimized accordingly to achieve their optimal accuracy.

At each time slice, each approach is performed 20 times for each

matrix density (with different random seeds). Then the average
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Table 4.1: Prediction Accuracy w.r.t. MAE

Matrix Density
QoS Approach

10% 20% 30% 40% 50%

UPCC 0.8500 0.7696 0.7313 0.7050 0.6862

IPCC 0.9460 0.8977 0.8573 0.8238 0.7888

UIPCC 0.8482 0.7719 0.7332 0.7057 0.6843

PMF 0.8332 0.7731 0.7443 0.7265 0.7104

AMF 0.7288 0.7034 0.6936 0.6892 0.6863

RT

Improve.(%) 12.5% 8.9% 5.2% 2.2% -0.3%

UPCC 9.5011 8.4699 7.8835 7.5548 7.3504

IPCC 9.6634 8.9234 7.9731 7.4345 7.0241

UIPCC 9.3104 8.3855 7.5166 7.0149 6.6556

PMF 6.0431 5.6822 5.3076 5.0687 4.8068

AMF 5.5427 5.4356 5.2974 5.1901 5.1809

TP

Improve.(%) 8.3% 4.3% 0.2% -2.4% -7.8%

Table 4.2: Prediction Accuracy w.r.t. MRE

Matrix Density
QoS Approach

10% 20% 30% 40% 50%

UPCC 0.6484 0.5425 0.5054 0.4801 0.4610

IPCC 0.7761 0.7525 0.7109 0.6807 0.6446

UIPCC 0.6431 0.5510 0.5181 0.4944 0.4739

PMF 0.5283 0.5269 0.5237 0.5205 0.5099

AMF 0.3096 0.2807 0.2667 0.2587 0.2542

RT

Improve.(%) 41.4% 46.7% 47.2% 46.1% 44.9%

UPCC 1.6503 1.4134 1.2571 1.1595 1.0909

IPCC 0.7859 0.7124 0.6255 0.5855 0.5556

UIPCC 1.4363 1.2611 1.0947 1.0172 0.9628

PMF 0.4699 0.4477 0.4253 0.4012 0.3863

AMF 0.3551 0.3178 0.3007 0.2916 0.2854

TP

Improve.(%) 24.4% 29.0% 29.3% 27.3% 26.1%

values over all the time slices (i.e., 20 × 64 times) are reported.

Table 4.1∼4.3 provides the comparison results over three metrics,

but we focus more on relative error metrics, i.e., MRE and NPRE.

As we can observe, our AMF approach significantly outperforms the

other approaches over MRE and NPRE, while still achieving compa-

rable (or best) results on MAE. The accuracy improvements of our
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Table 4.3: Prediction Accuracy w.r.t. NPRE

Matrix Density
QoS Approach

10% 20% 30% 40% 50%

UPCC 5.4251 4.1452 3.7130 3.4341 3.2375

IPCC 5.7514 5.5029 5.2877 5.0301 4.7026

UIPCC 5.3820 4.3172 3.9556 3.6991 3.4904

PMF 2.8231 3.0672 3.1161 3.3160 3.0427

AMF 0.9728 0.8994 0.8667 0.8502 0.8414

RT

Improve.(%) 65.5% 70.7% 72.2% 74.4% 72.3%

UPCC 17.3322 16.8860 16.8194 16.8934 16.9664

IPCC 11.4606 10.4361 8.8113 8.0981 7.6114

UIPCC 15.0760 14.2780 13.2519 12.8740 12.6269

PMF 2.1754 2.4413 2.4966 2.4129 2.3976

AMF 1.3506 1.0622 0.9607 0.9244 0.9013

TP

Improve.(%) 37.9% 56.5% 61.5% 61.7% 62.4%

AMF approach (marked in bold) against the best of other existing

approaches (marked with underline) are shown in each table. Con-

cretely, for response time (RT) data, AMF achieves 41.4%∼47.2%

improvement on MRE and 65.5%∼74.4% improvement on NPRE

at different matrix densities. Similarly, for throughput (TP) data,

AMF has 24.4%∼29.3% MRE improvement and 37.9%∼62.4%

NPRE improvement. Note that all improvements are computed

as the percentage of how much AMF outperforms the other most

competitive approach. We also find that although UIPCC achieves

higher accuracy over MAE than UPCC and IPCC as reported

in [162], and PMF achieves better performance compared with the

first three approaches as reported in [164], all these approaches

have large errors over MRE and NPRE. Thus, only minimizing the

absolute error may lead to large relative error, which is not suitable

for QoS prediction problem.

To further analyze the benefit of our AMF approach, we plot the

distributions of prediction errors in Figure 4.7. We can observe

that AMF achieves denser distribution around the center 0, while

UIPCC and PMF have flat error distributions, which indicates the
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Figure 4.7: Distribution of Prediction Error
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Figure 4.8: Impact of Data Transformation

better performance of AMF.

4.4.4 Impact of Data Transformation

The impact of data transformation on data distributions has been

illustrated in Figure 4.6. To further evaluate the impact of data

transformation on prediction accuracy, we compare the prediction

accuracy among three approaches, including PMF, AMF(α = 1),

and AMF. In AMF(α = 1), α = 1 indicates that the data
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Figure 4.9: Impact of Matrix Density

transformation is relaxed to a linear normalization procedure, since

the effect of the function boxcox(x) is masked. In contrast, AMF is

our approach with a well-tuned α (e.g., α = −0.007 for response

time and α = −0.05 for throughput). In this experiment, we

also vary the matrix density and then compute the corresponding

MRE values. The results are illustrated in Figure 4.8. We can

observe that the data transformation method has a significant impact

on improving prediction accuracy over MRE. Especially, the PMF

approach aggressively minimizes the absolute error, resulting in

large MRE as shown in Figure 4.8. Besides, AMF improves a lot

in MRE compared with AMF(α = 1) due to the effect of Box-Cox

transformation on QoS data distributions.

4.4.5 Impact of Matrix Density

To present a comprehensive evaluation on the impact of the matrix

density, we vary the matrix density from 5% to 50% at a step

increase of 5%. Besides, we set the other parameters as in Sec-

tion 4.4.3. Figure 4.9 illustrates the evaluation results. We can ob-

serve that as the matrix density increases, better prediction accuracy

can be achieved. In particular, the error decreases dramatically with
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Figure 4.10: Efficiency Result

the increase of matrix density, when the QoS matrix is excessively

sparse (e.g., matrix density = 5%). It shows that the model can

fall into the overfitting problem due to data sparsity. With more

data collected, the overfitting problem can be alleviated, thus further

improving QoS prediction accuracy.

4.4.6 Efficiency Analysis

To evaluate the efficiency of our approach, we compare the conver-

gence time of AMF with two other approaches, UIPCC and PMF.

As we can see in Figure 4.10, despite the long convergence time

for the first time slice, our AMF approach becomes quite fast in the

following time slices because AMF incrementally updates the model

by online learning using sequentially observed data samples. Note

that AMF has a long booting time because it needs a large number

of iterations for convergence from randomly initialized values. After

initial convergence, the online updating on converged values is fast.

In contrast, UIPCC and PMF are more computationally expensive,

since they need to re-train the whole model at each time slice,

which incurs high computational overhead compared to our online

algorithm. Thus, they are more appropriate for one-time training as
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used in traditional recommender system.

4.4.7 Scalability Analysis

To analyze the scalability of our AMF model on new users and

services, we evaluate the prediction accuracy on these new users and

services, as well as the robustness of the prediction results. For this

purpose, we simulate the new users and services from our dataset.

Specifically, we randomly select 80% of users and services from

our dataset at time slice 1 as existing users and services, and then

train the AMF model using their data. After the model converges,

we add the remaining 20% of users and services into the model at

time t = 400s. Ideally, by using our algorithm 1, AMF can scale

well to the new users and services, and perform robustly by keeping

updating the feature vectors of existing users and services with small

weights, and the feature vectors of new users and services with large

weights. Figure 4.11 presents the results, where we can see that the

MRE for the new users and services rapidly decreases after their

joining. However, the MRE for existing users and services still

keep stable, which indicates the robustness of our model under the

churning of users and services. Therefore, our AMF approach shows

good scalability on new users and services.
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Figure 4.12: A Page Request Example in Amazon

4.5 Case Study

In this section, we present a case study of dynamic request routing

for online service systems [175], which demonstrates the practical

use of our online QoS prediction approach.

4.5.1 Dynamic Request Routing

Modern online service systems are typically large-scale and com-

plex in system structures. Each service request encompasses a large

number of interactions between component services, in some cases

across hundreds of machines. Figure 4.12 depicts an example,

taken from [51], of a page request to one of the e-commerce sites

in Amazon. To generate the dynamic Web content, each request

typically requires the page rendering components to invoke other

aggregator components, which in turn query some other data store

components to construct a composite response. These components

are dependent between each other, and thus it is common to have a

large call graph for an online service system [51]. To ensure that the

page rendering engine can provide fluid response for maintaining

seamless page delivery, the call chain between components must
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Figure 4.13: A Prototype of Dynamic Request Routing

have consistently low latency. As the system scale up, the compo-

nents in an online service system have to be deployed across multi-

ple geographically distributed data centers (e.g., [148, 24, 176]),

in order to locate resources closer to end-users. However, such

geographical distribution can bring significant latency variations to

the interactions between components. To build responsive online

services, it is desired to leverage existing redundancy to tolerate

latency variability.

To clarify our motivation in detail, we illustrate a prototype

of dynamic request routing in Figure 4.13. As shown in the

figure, a critical invocation path is given to define the invocation

dependencies between a set of tasks (S1, S2, S3), where each task can

be completed by a corresponding cloud component. A critical path is

typically the invocation path that determines the whole application

latency, and can be identified from the application logic manually

by engineers or using some automatic detection techniques. For

simplicity, we do not elaborate how to construct a critical path here.
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For each component, there are usually many redundant instances

deployed in the cloud, which may be across multiple data centers.

To improve the user experience when serving globally-distributed

users, both application frontend servers and cloud components are

placed at multiple geographically distributed locations to make the

resources closer to end users. End users from different regions

are usually directed to the closest application frontend server when

sending an application request. Given a stream of application

requests from different end users, our objective is to minimize the

user-perceived application latency and tolerate the latency variabili-

ty by performing dynamic request routing for each specific request

from each frontend server. For example, the invocation paths,

depicted in arrows with different colors, illustrate different request

routing strategies while minimizing the length of each path.

In this case study, we present the use of dynamic request routing

framework (namely DR2) to achieve runtime adaptation of service

invocations. The basic idea of DR2 is to make dynamic selection

among available redundant component when routing a traffic of

application requests from different end-users. In this way, although

the latencies between cloud components present high variability, we

aim at minimizing the application latency of the whole call graph for

each request, thus tolerating the low-level component-component

latency variability.

4.5.2 DR2 Architecture

In order to build seamlessly responsive online services, we propose

a dynamic request routing framework by taking advantage of the

redundant components to tolerate the latency variability. Our frame-

work is adaptive, user-centric and scalable, which addresses all the

challenges mentioned above.

The framework is illustrated in Figure 4.14, which includes the

following two phases:
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Figure 4.14: The Framework of Dynamic Request Routing (DR2)

1) Online Latency Prediction: In order to make dynamic request

routing, the precondition is to obtain real-time latency data between

components. To overcome the overhead of active measurement, we

resort to online latency prediction. First, request logs are collected

to passively obtain the historical latency data. Then a matrix

factorization model is trained using newly updated historical data

in an online machine. That is, we assign each user or component

a virtual coordinate, and incrementally update the corresponding

coordinate through an online learning algorithm by using each data

sample. In this way, our approach can adapt to the changes over

time. The updated virtual coordinates can then be used to predict

the latency.

2) Adaptive Component Selection: Given a critical invocation

path, performing dynamic request routing is to make adaptive com-

ponent selection for each task. First, we build an invocation graph of
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(a) Invocation Graph (b) Virtual Graph

Figure 4.15: Graph Construction

available candidate components using the predicted pairwise laten-

cies. Then, we propose an efficient shortest path to find the optimal

component selection strategy for each user, which takes advantage

of the graph characteristics (e.g., DAG). Our algorithm works on

a virtual graph which is transformed from the original invocation

graph, thus reducing much overhead for multiple-user scenarios.

The component selection needs to be performed periodically to

adapt to the changing latency, and the results are stored in the

database as request routing strategies.

When receiving an application request, the end user will be

directed to one of the frontend server, and then a request routing

strategy can be obtained by querying the database. After completing

the request, the historical data of component invocations can be

collected to update the matrix factorization model again.

4.5.3 DR2 Approach

Given a critical invocation path, we can construct an invocation

graph based on the redundant components for each task. Fig-

ure 4.15(a) illustrate an invocation graph example of the critical path

in Figure 4.13. Notice that the number of redundant components for
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Algorithm 4: Adaptive Component Selection

Input: Critical Path, Virtual coordinates: Ui, Sj , Vk

Output: Component selection strategy

Construct the virtual graph VG based on the critical path;1

Topologically sort VG to VG list;2

foreach node v in VG list do /* Initialization */3

if v ∈ user then4

v.out ← Ui; v.in ← none;5

else v.out ← Vk; v.in ← Sj;6

if v is in the last level of the critical path then7

v.latency ← 0;8

else v.latency ← inf;9

v.parent ← none;10

foreach node v in VG list do11

foreach node w in adjacency of v do12

if w.latency lg v.latency + w.out’*v.in then13

w.latency ← v.latency + w.out’*v.in;14

w.parent ← v;15

foreach node v ∈ user do /* Output the selection strategy16

v.path */
add v.parent to v.path;17

each task may be different.

To tolerate the high latency variability and improve the user

experience, it is vital to make optimal component selection to

minimize the application latency in each time slice and periodically

re-optimize the selection strategy. The problem is to find the

shortest path in an invocation graph from the user to the last level of

components of the critical path. As the shortest path experiences the

minimal latency, the components in the shortest path are the optimal

request routing strategy.

Conventionally, for example in service computing, only one user

is considered for each service composition [28]. However, with the

prevalence of cloud computing, the application frontend servers are

usually deployed across many locations to serve end users around
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the world. Hence, there are many users in the invocation graph.

The approaches in the literature do not suffice to deal with this

problem efficiently, since they make component selection for each

user independently. In this way, the complexity will be n times as a

single run for one user, which is quite inefficient.

To address this problem, we propose an efficient algorithm,

which make the component selection collaboratively for all users by

taking full advantage of the structure of invocation graph. To avoid

finding the shortest path from each user, we construct a virtual graph

based on the original invocation graph, as shown in Figure 4.15(b).

In the virtual graph, we reverse the edge direction while keeping the

original weight. Then a virtual node is added as the source node,

thus we can employ the single-source shortest path algorithm. The

objective is to find the shortest path from the virtual node to all the

user nodes. In this way, we can collaboratively find all the needed

shortest paths, which only needs one-time updating.

The detailed algorithm is shown in Algorithm 4. Our algorithm

takes advantage of the property that the virtual graph is a directed

acyclic graph (DAG), where linear-time shortest path algorithm

exists [124].

4.5.4 Results Analysis

In our experiment, we use three datasets: two real-world latency

datasets and one synthetic dataset.

• Dataset1: This dataset collected in [175] contains a 1350×460

user-to-component latency matrix and a 460×460 component-

to-component latency matrix.

• Dataset2: This dataset is extracted from a time-aware Web

service QoS dataset [152], which contains the latency data from

4,532 users and 142 components for 64 time slices.
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Table 4.4: Performance Comparison

Density = 10%Approach
10% 20% 30% 40% 50% 100%

Random 6.444 6.446 6.435 6.431 6.405 6.436

Greedy-M 0.888 0.613 0.517 0.506 0.496 0.656

DR2 0.412 0.269 0.163 0.129 0.089 0

• Dataset3: The first two datasets are used to evaluate the

accuracy of DR2. However, the scale of components is small.

To evaluate the efficiency of our approach on different scales,

we also randomly generate a latency dataset.

Performance Comparison of Component Selection

To evaluate the performance of component selection, we compare

our method with some other approaches in the following:

• Random: This approach is proposed as a baseline, in which

the components are selected randomly from the redundant

candidates.

• Greedy-M: The greedy approach is to route each user request

to the closest component at each step. If there are n users, this

greedy algorithm must be run for n times to get request strategy

for every user, thus is denoted as Greedy-M. (M for multiple)

• Dijkstra-M: This is the most classic algorithm to find the

shortest path, which is also used in [72] as a baseline approach.

Given a original invocation graph, this method also needs to

run multiple times if there are multiple users. We denote it as

Dijkstra-M.

To compare the performance, we use the average relative error

(ARE) metric. Relative error is the predicted error of the application

latency divided by the true latency, while ARE is the average over



CHAPTER 4. ONLINE QOS PREDICTION OF WEB SERVICES 106

Figure 4.16: Performance on Multiple Users

100 randomly generated critical paths. For each method, we use the

same 100 critical paths.

In this experiment, we set the length of critical path to 10, and

each task has 45 components. The results with different densities are

shown in Table 4.4, while both the average and the stand deviation

are reported, since each experiment runs 20 times for each density.

Our performance significantly outperforms the others. As Dijkstra-

M has the same accuracy with DR2, it is omitted for report here.

With the increasing of density, the improvement of the performance

diminishes, especially when density ≥ 30%. Density = 100% is

also listed out since it is the result on the exact pairwise latency. Our

method is totally correct. This column has no std since each run has

the same result.

Performance on Multiple Users

A key feature of dynamic request routing is that there are usually

multiple users, and user-centric request routing is in demand. In

this experiment, we randomly select 15 users and get the average

application latency. User-Noncentric is the method that does not

consider the user-centric property and make the same request routing
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Figure 4.17: Performance Evaluation

for each user. Here it uses the same strategy with DR2 for user

1. Baseline employs the exact pairwise latency for component

selection, and provides a lower bound. The results are shown in

Figure 4.16. We can observe that the application latency has high

variability over users. And our method DR2 can be user-centric and

obtains good performance, while User-Noncentric and Greedy-M

experiences high latency.
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Performance on Multiple Time Slices

To evaluate the performance for tolerating the latency variability, ex-

periments are conducted on dataset2. Static means the static request

routing strategy for all time slices. Here it uses the same routing

strategy with the one of DR2 at time slice 1. From Figure 4.17(a),

we can see that our approach can nearly adapt to the changes and

keep consistently low latency, while the static request routing always

experience high latency.

Impact of the Length of Critical Path

To evaluate the impact of the length of critical path, we vary it from

5 to 45 at a step of 5. In this experiment, we set the number of

components to 10, the data density to 30%. From the result shown

in Figure 4.17(b), we can see that the application latency is linear

with the length of critical path.

Impact of the Number of Components per Task

To evaluate the impact of the number of component per task, we

vary it from 5 to 45 at a step of 5. And also we set the number

of components per task to 10, and the data density to 30%. We

can see from Figure 4.17(c) that the application latency decreases as

the number of components per task becomes larger, except for the

random approach, which does not take advantage of the redundant

components.

Impact of the Matrix Density

To present a comprehensive evaluation on the impact of the matrix

density, we vary the density from 10% to 100% at the step of 10%.

Besides, we set the length of critical path to 10 and the number of

components per task to 45. For each density, 20 runs are performed

and the average is reported, as shown in Figure 4.17(d). We can
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observe that the application latency drops significantly when density

increases and approach to the baseline when density ≥ 80%. The

baseline is the application latency of routing request on exact latency

data (density = 100%). However, the random and greedy-M keep

independent with the matrix density.

The experimental results of this case study show that, the use of

AMF to online latency prediction, DR2 is an effective framework

for tolerating latency variability in online service systems. DR2 has

fast convergence in online latency prediction and high scalability

in adaptive component selection, which substantially outperforms

other approaches.

4.6 Summary

QoS information is fundamental for runtime service adaptation.

This is the first work to address the problem of QoS prediction on

candidate services to guide candidate service selection for runtime

service adaptation. To achieve this goal, a novel QoS prediction

approach, adaptive matrix factorization (AMF), is proposed by for-

mulating the problem as a collaborative filtering model inspired by

recommender system. AMF extends traditional matrix factorization

model with techniques of data transformation, online learning, and

adaptive weights, and thus fulfills the stringent requirements to be

online, accurate, and scalable. Comprehensive experiments are

conducted based on a real-world large-scale QoS dataset of Web

services to evaluate our proposed approach in terms of accuracy,

efficiency, and scalability. In addition, a case study on dynamic

request routing demonstrates the practical use of our online QoS

prediction approach for runtime service adaptation.

However, this work only considers the use of historical usage

data for QoS prediction. In practice, user-perceived QoS values are

influenced by a variety of contextual factors, such as user’s location,

invocation time, and service workload. Future investigations will fo-
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cus on the incorporation of such information for context-aware QoS

prediction, which may potentially achieve further improvements in

prediction accuracy.

� End of chapter.



Chapter 5

Privacy-Preserving QoS Prediction
of Web Services

QoS-based Web service recommendation has recently gained much

attention for providing a promising way to help users find high-

quality services. To facilitate such recommendations, existing

studies suggest the use of collaborative filtering techniques for

personalized QoS prediction. These approaches, by leveraging

partially observed QoS values from users, can achieve high accu-

racy of QoS predictions on the unobserved ones. However, the

requirement to collect users’ QoS data likely puts user privacy at

risk, thus making them unwilling to contribute their usage data to a

Web service recommender system. As a result, privacy becomes a

critical challenge in developing practical Web service recommender

systems. In this chapter, we make the first attempt to cope with

the privacy issue in Web service recommendation. Specifically, we

introduce the research problem in Section 5.1, and propose a simple

yet effective privacy-preserving framework in Section 5.2. Under

this framework, we develop two representative privacy-preserving

QoS prediction approaches in Section 5.3. The evaluation results are

reported in Section 5.4. Finally, Section 5.5 concludes this chapter.
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5.1 Problem and Motivation

In recent years, Web service recommendation [161, 150, 45] has

been proposed as a promising approach to help developers quickly

find desirable services during development of online services. Effec-

tive service recommendation needs to fulfil both functional and non-

functional requirements of users. While functional requirements

focus on what a service does, non-functional requirements are

concerned with the quality of service (QoS), such as response time,

throughput, and failure probability, etc. QoS plays an important role

in Web service recommendation, according to which similar ser-

vices can be ranked and selected for users. Service invocations usu-

ally rely on the Internet for connectivity and are heavily influenced

by the dynamic network conditions. Therefore, users at different

locations typically observe different QoS values even on the same

Web service. To enable personalized Web service recommendation,

QoS evaluation from user side is desired. However, it is a challenge

to acquire user-perceived QoS values of all the services because each

user only has observed QoS values on a few used services. It is also

impractical for each user to actively measure these QoS values due

to the expensive overhead of invoking a large number of services.

To address this issue, collaborative QoS prediction has recent-

ly been proposed, and becomes a key step to QoS-based Web

service recommendation. By applying collaborative filtering (CF)

techniques [123] that are widely used in commercial recommender

systems, unknown QoS can be predicted based on historical usage

data collected from users, eliminating the need of additional service

invocations. In other words, users can contribute their historical QoS

data on the services they have used and receive prediction results on

the QoS values of the services that they have never used before. In

recent literature, a number of collaborative filtering approaches have

been proposed for QoS prediction. Among them, neighbourhood-

based CF approaches (e.g., UIPCC [161]) leverage the similarity
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between users and/or the similarity between services calculated

on the observed QoS data for unknown QoS prediction. Model-

based approaches (e.g., PMF [164], EMF [79]) fit the observed QoS

data with a pre-defined model (e.g., low-rank matrix factorization),

and then utilize the trained model for QoS prediction. Recent

studies have shown that these approaches achieve high accuracy

of QoS predictions and yield encouraging results on Web service

recommendation.

Despite the potential benefits provided by Web service recom-

mender systems, a major impediment to the practical deployment of

such systems lies in their threats to user privacy. To receive effective

recommendations, users are required to supply their observed QoS

values. However, there is currently no policy to protect users from

privacy issues. Malicious recommender systems, for example, may

abuse the data, infer private information from the data, or even

resell the data to a competing user for profits [96]. Even if the

recommender system is not malicious, an unintentional leakage of

such data can expose users to a broad set of privacy issues (e.g.,

QoS data may reveal the underlying application configurations).

This is why application providers are not willing to disclose their

private usage data to the public or a third party. Such privacy threats

limit the QoS data collection from users and hence degrade the

accuracy of Web service recommendation. To encourage broader

user participation, it is desired to consider privacy-preserving ap-

proaches for Web service recommendation that can be made without

revealing private user data. Encryption is a straightforward way to

achieve privacy. However, encryption techniques usually involve

large computational overhead and typically work for distributed

collaborative filtering problems (e.g., homomorphic encryption used

in [38]) where multi-party communication is necessary. This is

inapplicable to our problem because user-to-user communication is

infeasible.

In this chapter, we propose a simple yet effective privacy-preserving
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framework for QoS-based Web service recommendation [173]. Specif-

ically, users are enabled to obfuscate their private data by data

randomization techniques [100] before they expose the data to a

recommender system. In this way, the recommender system can

only collect obfuscated QoS data from users, and thus reduce the

risk to expose user privacy. Our privacy-preserving framework is

generic and can be applied to both the neighbourhood-based collab-

orative filtering approach, i.e., UIPCC [162], and the model-based

collaborative filtering approach, i.e., PMF [164], which are two most

common QoS prediction approaches in recent literature. We further

revamp these two existing QoS prediction approaches based on

our framework, and develop their corresponding privacy-preserving

variants: P-UIPCC and P-PMF. We evaluate these approaches on

WS-DREAM dataset [167], a publicly-available QoS dataset that

has been widely employed for QoS prediction evaluation in the

literature. The experimental results show that while preserving user

privacy, our proposed approaches (P-UIPCC and P-PMF) can still

attain decent prediction accuracy with comparison to the baseline

approaches (UEAN and IMEAN) and the counterpart approaches

(UIPCC and PMF). We also show the tradeoff between the achieved

prediction accuracy and the preserved user privacy.

5.2 Framework of Privacy-Preserving Web Service
Recommendation

Figure 5.1 presents our privacy-preserving Web service recommen-

dation framework. The workflow of this framework can be separated

into two parts executed at user side and server side respectively.

At user side, the observed QoS data of each user undergo a data

obfuscation process in order to protect user privacy as well as

preserve the information required for performing collaborative QoS

prediction. The obfuscated user data are then submitted to the

server for QoS prediction. After receiving the prediction results
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Figure 5.1: Framework of Privacy-Preserving Web Service Recommendation

from the server, a post-processing step is performed to recover

the obfuscated results to the true QoS prediction values. At last,

according to the recovered QoS values, candidate Web services can

be ranked and recommended for the user. On the other hand, at

server side, obfuscated QoS data are collected from different users

in a collaborative way, through which a obfuscated QoS matrix can

be acquired and stored in a QoS database. QoS prediction is then

performed on the obfuscated QoS matrix by using our proposed

privacy-preserving techniques such as P-UIPCC and P-PMF. At

the same time, a list of the available Web services is maintained

at a Web service database, which allows for service ranking and

recommendation for the users.

We propose a general privacy-preserving framework such that

two extended QoS prediction approaches (i.e., PP-UIPCC and PP-

PMF) under this framework can provide accurate recommendation

results and also preserve user privacy. User privacy is preserved by

our framework because: 1) For each user, user data are obfuscated

before being submitted to the server, and the obfuscation settings

are only known to the user itself; 2) For the server, collaborative

QoS prediction is performed based solely on the obfuscated user

data, whereby user-observed real QoS values cannot be inferred.

In this way, our framework enables users with greater control on

their private usage data and less dependence on the server for
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privacy preservation. The privacy-preserving framework is generic

such that both of the representative QoS prediction approaches (i.e.,
UIPCC and PMF) can work well without the need of significant

modifications.

5.3 Privacy-Preserving QoS Prediction

The above framework enables data obfuscation for preserving pri-

vacy, but also poses a challenge in accurate QoS prediction. In

this section, we describe the data obfuscation process in detail, and

then extend two representative QoS prediction approaches (UIPCC

and PMF) into their privacy-preserving variants (P-UIPCC and P-

PMF) accordingly. They are representatives of the two types of QoS

prediction approaches and serve as a basis to develop many more

sophisticated approaches.

5.3.1 Data Obfuscation

The need for privacy preservation has led to the development of

a number of data obfuscation techniques, such as data randomiza-

tion [100], data encryption [96], data anonymization [73]. Due to

the sparse nature of our data, in this work, we make use of data

randomization [100], a simple yet effective way to obfuscate the

data.

The basic idea of data randomization is to add a random value

(i.e., noise) to the true value so that the resulting value becomes

disguised. In this way, when the obfuscated QoS data undergo

further processing, user information regarding real QoS values can

be preserved. Fortunately, although each individual QoS value

becomes disguised, we find that some approximate computations

(e.g., scalar product) on the aggregated data of users can still be

done with decent accuracy.

To make it clear, we now describe the scalar product property of
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data randomization [100] in detail. Let a = (a1, ..., an) and b =
(b1, ..., bn) be true vectors with a mean of zero. We obfuscate these

vectors as a′ = a + ε and b′ = b + δ, where ε = (εn, ..., εn) and δ =
(δn, ..., δn) are random noises generated from a uniform distribution

in [−α, α]. Next, we show that the scalar product between a and b
can be approximated by using the obfuscated vectors a′ and b′: i.e.,
a′b′ ≈ ab. To this end, we have

a′b′ =
n∑

i=1

(ai + εi)(bi + δi) =
n∑

i=1

(aibi + aiδi + biεi + εiδi).

Because a and δ are independent vectors and each has a zero mean,

we have
∑n

i=1 aiδi ≈ 0. Likewise, we have
∑n

i=1 biεi ≈ 0, and∑n
i=1 εiδi ≈ 0. Hence, we derive the following approximation:

a′b′ ≈
n∑

i=1

aibi = ab. (5.1)

With this observation, we find that data randomization can po-

tentially preserve user privacy as well as the usability of the data

for collaborative analysis. Therefore, it is appealing to study how

to apply this data obfuscating technique to performing collaborative

QoS prediction in a privacy-preserving way. To achieve this goal,

we propose a two-step data obfuscation procedure for QoS data

processing. We emphasize that, as shown in our framework in

Figure 5.1, each user performs data obfuscation individually at user

side before contributing the QoS data to the server.

Z-score normalization

To facilitate better randomization of the data, we perform z-score

normalization on the observed QoS data as the first step. Z-score

normalization is a standard normalization method to adjust the

data average and data variance. The normalized data have a zero

mean and unit variance. More specifically, for user u, we denote
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Ru = (Ru1, ..., Rum) as a vector of observed QoS values on m
Web services. Rus > 0 indicates that user u has invoked service

s; otherwise, Rus = 0. We compute the mean (R̄u) and standard

deviation (σu) of this QoS vector Ru:

R̄u =
∑

s∈Iu
Rus/|Iu|, σu =

√∑
s∈Iu

(Rus − R̄u)2/|Iu|, (5.2)

where Iu = {s | Rus > 0} denotes the set of Web services that has

been invoked by user u. Then z-score normalization is performed on

the QoS values with the following equation:

rus = (Rus − R̄u)/σu. (5.3)

The normalization step results in a zero-mean data vector that is well

suited for the following data randomization process.

Data Randomization

As the second step, we perform randomized perturbation on the

normalized QoS vector by:

r′us = rus + εus, (5.4)

where εus is a random value generated from a specified distribution,

for example, uniform distribution in [−α, α]. Especially when

α = 0, the overall data obfuscation process reduces to a z-score

normalization. We further study the effect of different distributions

(e.g., uniform distribution, Gaussian distribution) of random noises

on QoS prediction accuracy in Section 5.4.5.

After data obfuscation, users can submit their obfuscated QoS

data to the server. Given n users and m services, the server can

collect a QoS matrix denoted as r′ ∈ R
n×m with each entry (r′us)

being obtained via Equ. (5.4). Since such data obfuscation process

is performed at user side, the private information such as R̄u and σu
are kept at user side. As a result, the server cannot infer the true QoS

values of the users, and user privacy is preserved.
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Next, we will show how we extend the two representative ap-

proaches (UIPCC and PMF) to perform privacy-preserving QoS pre-

diction based on the obfuscated QoS matrix r′. Note that UIPCC and

PMF have been carefully reported in the related work [162, 164],

so we do not intend to provide the original descriptions but the

necessary extensions from them.

5.3.2 Privacy-Preserving UIPCC (P-UIPCC)

UIPCC (a.k.a. WSRec), first proposed in [161], has been a widely-

studied QoS prediction approach. The key of UIPCC is to compute

the similarity between users and the similarity between services,

after which QoS values contributed by similar users and similar

services can be leveraged to compute the prediction value. Existing

work usually employ Pearson correlation coefficient (PCC) as the

similarity measure. For example, the PCC similarity between user u
and user v is defined as follows:

sim(u, v) =

∑
s∈J (Rus − R̄u)(Rvs − R̄v)√∑

s∈J(Rus − R̄u)2
√∑

s∈J(Rvs − R̄v)2
, (5.5)

where J = Iu ∩ Iv is the set of Web services that are invoked by

both user u and user v. Rus is the true QoS value of user u invoking

service s. R̄u and R̄v are the average QoS values observed by user u
and user v, respectively. From this definition, we have sim(u, v) ∈
[−1, 1], where a larger PCC value indicates higher user similarity.

However, due to the obfuscation of QoS data, at server side we

only have obfuscated QoS value r′us, rather than its true value Rus.

Therefore, we consider to employ r′us to approximately compute the
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similarity value sim(u, v) as follows:

sim(u, v) =
∑

s∈Iu∩Iv
r′usr

′
vs/

√
|Iu||Iv| (5.6)

≈
∑

s∈Iu∩Iv
rusrvs/

√
|Iu||Iv| (5.7)

=

∑
s∈Iu∩Iv (Rus − R̄u)(Rvs − R̄v)

σuσv
√|Iu||Iv|

(5.8)

=

∑
s∈Iu∩Iv (Rus − R̄u)(Rvs − R̄v)√∑

s∈Iu(Rus − R̄u)2
√∑

s∈Iv(Rvs − R̄v)2
. (5.9)

By applying the scalar product property in Equ. (5.1) to Equ. (5.6),

substituting Equ. (5.3) to Equ.(5.7), and substituting Equ. (5.2)

to Equ. (5.8), we derive Equ. (5.9), which is exactly the similarity

measure used for collaborative filtering in the related work [100, 65].

Note that this similarity measure differs slightly from Equ. (5.5)

in the denominator part, but provides a good approximation to it

(as the experiments shown in Section 5.4). Therefore, by using the

obfuscated QoS data, we employ Equ. (5.6) as the approximation of

the similarity between user u and v.

After similarity computation between users, we can identify a set

of top-k similar neighbours (Tu) for each user u. Then the unknown

QoS value, for each entry where r′us = 0, can be estimated as the

weighted average of the QoS values observed by similar neighbours,

i.e.,

r̂Uus =
∑

v∈Tu

sim(u, v)r′vs
/∑

v∈Tu

sim(u, v). (5.10)

In a similar way, we can also leverage the information of similar

services to make QoS prediction:

r̂Sus =
∑

g∈Ts

sim(s, g)r′ug
/∑

g∈Ts

sim(s, g), (5.11)

where Ts is the set of top-k similar services of service s. The

similarity sim(s, g) is further calculated by employing the cosine
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similarity between service s and service g:

sim(s, g) =

∑
u∈Is∩Ig r

′
usr

′
ug√∑

u∈Is∩Ig(r
′
us)

2
√∑

u∈Is∩Ig(r
′
ug)

2
, (5.12)

where Is ∩ Ig represents the set of users that invoke both service

s and service g. Note that the cosine similarity here equals to the

original PCC similarity in UIPCC, because the QoS vectors have

already been normalized during data obfuscation.

At last, as with UIPCC, a convex combination between user-

based QoS prediction and service-based QoS prediction is employed

to enhance the prediction accuracy.

r̂us = λr̂Uus + (1− λ)r̂Sus, (5.13)

where λ controls the combination weight between r̂Uus and r̂Sus.
Especially, when λ = 0, r̂us = r̂Sus, and when λ = 1, r̂us = r̂Uus.

However, this prediction result r̂us is a normalized value that

cannot reveal the prediction on the true QoS. When the user receives

the prediction results from the server, a post-processing step, which

is a re-normalization operation of the z-score normalization, can be

taken to get the final prediction value R̂us:

R̂us = R̄u + σu ∗ r̂us. (5.14)

Note that the post-processing step can be only performed at user side

because R̄u and σu are only known to the user.

5.3.3 Privacy-Preserving PMF (P-PMF)

PMF, or probabilistic matrix factorization [109], as a popular model-

based collaborative filtering approach, has been suggested for QoS

prediction by prior work [79, 164]. PMF works on an essential

assumption of the low-rank structure of the QoS matrix. A matrix

has a low rank when the entries of the matrix are largely correlated.
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In our case, as reported by the related work [162, 164], similar

users usually have similar QoS values on the same Web service.

The goal of PMF is to map n users and m services into a joint

latent factor space with dimensionality d such that each observed

entry of the QoS matrix can be captured as the inner product of the

corresponding latent factors.

Formally, we denote the latent user factors as U ∈ R
d×n whose u-

th column represents the latent factor of user u, and the latent service

factors as S ∈ R
d×m whose s-th column represents the latent factor

of service s. Accordingly, we use UT
u Ss to approximate the observed

QoS value Rus between user u and service s, i.e., Rus ≈ UT
u Ss, or

more precisely,

Rus = UT
u Ss + δus, (5.15)

where UT
u is the transpose of Uu and δus denotes the approximation

error. The goal is to minimize all of the approximation errors.

By taking δus as Gaussian noise [109], the loss function can be

formulated as follows:

L =
1

2

n∑
u=1

m∑
s=1

Ius(Rus − UT
u Ss)

2
+

γ

2
(

n∑
u=1

‖Uu‖2 +
m∑
s=1

‖Ss‖2).
(5.16)

The first part measures the sum of squared approximation errors

between Rus and UT
u Ss, where Ius acts as an indicator that equals

to 1 if Rus is observed, and 0 otherwise. The second part are

regularization terms used to avoid the overfitting problem, where

‖·‖ denotes the Euclidean norm, and γ is a parameter to control the

extent of regularization.

According to the basic PMF model as specified in Equation

(5.15), the specific QoS of user u invoking service s can be ef-

fectively captured by the interaction between Uu and service Ss.

However, some other effects known as biases for determining the

QoS values are independent of user-service interactions. For ex-

ample, the users with high network bandwidth tend to experience
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fast network connections and the services equipped with abundant

system resources likely provide short request-processing time. To

capture these factors associated with either users or services, there

is a suggestion for biased matrix factorization model in [138]:

Rus = μ+ bu + bs + UT
u Ss + δus, (5.17)

where μ is a global bias, and bu and bs measure the user bias and

service bias respectively.

While preserving user privacy, the application of data obfuscation

poses new challenges in modelling the obfuscated QoS data. To

compromise the effect of data obfuscation, we set μ = 0 and bu =
R̄u. Accordingly, we derive the following model:

r′us = b′s + U ′
u
T
S ′
s + δ′us + εus. (5.18)

For ease of presentation, we further denote it as:

r′us = bs + UT
u Ss + δus + εus. (5.19)

This model naturally compromises the effect of z-score normaliza-

tion at user side. By taking both δus and εus as Gaussian noise [109],

the loss function can be expressed as:

L′ =
1

2

n∑
u=1

m∑
s=1

Ius(r
′
us − bs − UT

u Ss)
2

+
γ

2
(

n∑
u=1

bs
2 +

n∑
u=1

‖Uu‖2 +
m∑
s=1

‖Ss‖2). (5.20)

The minimization of this loss function can typically be solved by the

gradient descent algorithm used in [164] or the stochastic gradient

descent algorithm used in [138]. Due to space limits, we omit

the algorithmic description here and refer interested readers to our

supplementary report (see our project page). After obtaining the

solutions with respect to bs, Uu, and Ss, we can make the following

QoS prediction:

r̂us = bs + UT
u Ss. (5.21)
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At last, as with P-UIPCC, a post-processing step in Equa-

tion (5.14) is required to recover the prediction result r̂us to the true

prediction value R̂us. For both P-UIPCC and P-PMF, after obtaining

the predicted QoS values of all the available Web services, we can

recommend to users those services with top-ranked QoS values.

5.4 Evaluation

This section describes the experiments and the corresponding results

of evaluating our privacy-preserving QoS prediction approaches. In

particular, we intend to answer the following research questions.

RQ1: What is the effect of data obfuscation?

RQ2: What is the accuracy of P-UIPCC and P-PMF?

RQ3: What is the tradeoff between accuracy and privacy?

RQ4: What is the effect of distribution of random noises on predic-

tion accuracy?

For reproducibility, we release the source code on our project

page1.

5.4.1 Experimental Setup

In our experiments, we focus mainly on two representative QoS

attributes: response time (RT) and throughput (TP). Response time

measures the time duration between user sending out a request

and receiving a response, while throughput stands for the data

transmission rate of a user invoking a service.

The experiments are conducted based on a publicly-available

QoS dataset of real-world Web services [167]. The dataset was

collected in August 2009, providing a total of 1,974,675 response

1http://wsdream.github.io/PPCF
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Table 5.1: Statistics of QoS Data
QoS #Users #Services Range Average Std.

RT (sec) 339 5,825 0 ∼ 20 0.909 1.973
TP (kbps) 339 5,825 0 ∼ 1000 47.562 110.797

time and throughput records of service invocations between 339

users and 5,825 Web services. The 339 users are simulated by

PlanetLab nodes distributed at 30 countries, while the 5,825 real-

world Web services are crawled from the Internet and are deployed

at 73 countries. Table 5.1 provides a summary of the statistics of the

data.

In our experiments, we represent each type of QoS data by a 339-

by-5825 QoS matrix with each entry denoting the observed response

time/throughput of a specific invocation. In practice, the QoS matrix

is very sparse because each user usually invokes only a handful of

services. To simulate such data sparsity in our experiments, we

randomly remove entries from the full data matrix and only keep

a small density of historical QoS values. Data density = 10%,

for example, indicates that each user invokes 10% of the services,

or each service is invoked by 10% of the users. We leverage the

preserved data entries for QoS prediction, and then use the removed

QoS values as testing data for accuracy evaluation.

To quantize the accuracy of QoS prediction, we employ a stan-

dard error metric, MAE (Mean Absolute Error), which has been

widely used in the existing work (e.g., [79, 164]).:

MAE =
∑

Ius=0

∣∣R̂us −Rus

∣∣/N , (5.22)

where Rus and R̂us denote the observed QoS value and the corre-

sponding predicted QoS value of the invocation between user u and

service s. N is the total number of testing samples to be predicted,

i.e., entries with Ius = 0. A smaller MAE value indicates better

prediction accuracy.
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Figure 5.2: Obfuscated QoS (r′us) v.s. True QoS (Rus)

5.4.2 Effect of Data Obfuscation

The aim of data obfuscation is to perturb the QoS data such that

user privacy regarding the true QoS values can be preserved when

performing collaborative analysis on the server. To understand the

effect of data obfuscation made on QoS data (RQ1), we compare

the obfuscated QoS (r′us) against the corresponding true QoS data

(Rus). As an example, we randomly select a user from our dataset

and provide three scatter plots by using the response time data of

this user. The plots present the relationships between r′us and Rus

under different α settings. α is a parameter to determine the range

of noises εus used to obfuscate the data. Especially, when α = 0, the

data obfuscation reduces to a z-score normalization process. Thus,

Figure 5.2(a) shows linear dependence between r′us and Rus. Z-

score normalization is able to provide basic protection for user data

where the mean and variance properties of QoS data are eliminated.

The data after z-score normalization have a zero mean and unit

variance. As α increases, the obfuscated data become more and

more disordered, As shown in 5.2(a) and (b), the linear correlation

between r′us and Rus is further eliminated. Consequently, a larger α
indicates better protection for user data. Note that we have similar

observations on the throughput data and thus omit the details here.
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5.4.3 Prediction Accuracy

Data obfuscation is useful to perturb the QoS data for preserving

user privacy, but it makes no sense without providing accurate pre-

diction results. We evaluate the accuracy of our privacy-preserving

QoS prediction approaches (P-UIPCC and P-PMF) based on the

obfuscated QoS data, and compare them against the following

baselines and counterpart approaches (RQ2). We emphasize that

these existing approaches require users’ true QoS data and do not

consider privacy issues.

• UMEAN [161]: This is a baseline approach that employs the

average QoS value observed by a user (i.e., the row mean of R)

to predict the unknown QoS of this user invoking other unused

Web services.

• IMEAN [161]: Likewise, this baseline approach employs the

observed average QoS value of a Web service (i.e., the column

mean of R) to predict the unknown QoS of other users invoking

this Web service.

• UIPCC [161, 162]: This is a hybrid approach that combines

both user-based CF approach (UPCC) and item-based CF

approach (IPCC) to make full use of the historical information

from similar users and services for QoS prediction. UIPCC

typically performs better than either UPCC or IPCC.

• PMF [164]: This is a widely-used implementation of the

matrix factorization model [109], which have been introduced

to QoS prediction in [164].

For fair comparisons, we use the original parameters for the

counterpart approaches, as specified in the related work, because

we experiment on the same dataset. To make it consistent with these

settings, most parameters of our approaches are set the same with

them (e.g., k = 10 for top-k neighbours in UIPCC and P-UIPCC).
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Table 5.2: Parameter Settings

Approach RT TP

UIPCC k : 10 λ : 0.1 – k : 10 λ : 0.9 –

P-UIPCC k : 10 λ : 0.9 α : 0.5 k : 10 λ : 0.9 α : 0.5

PMF d : 10 γ : 40 – d : 10 γ : 800 –

P-PMF d : 10 γ : 12 α : 0.5 d : 10 γ : 12 α : 0.5

However, since both P-UIPCC and P-PMF work on obfuscated

(normalized) data, we set different λ and γ values. The detailed

parameters are specified in Table 5.2. We use α = 0.5 in this

experiment and study the effect of α in Section 5.4.4. Additionally,

we vary the data density from 10% to 30% at a step increase of 5%.

Each approach is performed 20 times under each data density (with

different random seeds), and the average MAE results are reported.

Table 5.3 provides the results of prediction accuracy with com-

parisons among different approaches. The results show that, while

both of our approaches preserve decent privacy by data obfuscation

(α = 0.5), they still perform much better than the baselines including

UMEAN and IMEAN, and achieve comparable accuracy with the

counterpart approaches including UIPCC and PMF. In particular,

P-UIPCC sometimes performs better than UIPCC (e.g., 0.569 vs

0.582), which can be attributed to the use of z-score normalization.

Moreover, we observe that even working on obfuscated data, P-

PMF mostly performs better than UIPCC. These encouraging results

indicate the effectiveness of privacy-preserving approaches. In

addition, we can see that the accuracy of these QoS prediction

approaches improves with the increase in data density.

5.4.4 Tradeoff between Accuracy and Privacy

Whereas the goal of our work is to achieve both accuracy and

privacy, there is indeed a tradeoff between them. At one extreme,

users can provide true QoS data to obtain the most accurate QoS

prediction results yet they lose privacy. At another extreme, users
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Table 5.3: Prediction Accuracy w.r.t. MAE

Data Density
QoS Approach

10% 15% 20% 25% 30%

UMEAN 0.875 0.875 0.875 0.875 0.875

IMEAN 0.688 0.683 0.681 0.680 0.679

UIPCC 0.582 0.501 0.450 0.427 0.411

PMF 0.487 0.452 0.431 0.418 0.409

P-UIPCC 0.569 0.537 0.512 0.495 0.482

RT

P-PMF 0.540 0.504 0.478 0.458 0.443

UMEAN 53.835 53.816 53.801 53.804 53.799

IMEAN 26.860 26.716 26.641 26.593 26.571

UIPCC 22.370 20.219 18.928 17.891 17.080

PMF 15.994 14.670 13.924 13.405 13.117

P-UIPCC 23.572 21.324 19.754 18.681 17.953

TP

P-PMF 20.702 18.451 17.351 16.634 16.063

can submit totally false QoS data to preserve privacy but bad

prediction results will be returned. To study such tradeoff between

accuracy and privacy (RQ3), we consider the effect of noise range α
on prediction accuracy, because a larger α indicates better protection

of privacy. Specifically, in this experiment, we set data density =

10% and vary α from 0 to 1 at a step increase of 0.1. Accordingly,

we obtain the prediction accuracy under each α value.

Figure 5.3 presents the experimental results corresponding to re-

sponse time and throughput, respectively. We can observe that both

P-UIPCC and P-PMF degrade in accuracy (i.e., MAE increases)

when α becomes larger, because the utility of data is less preserved.

However, when α is small, e.g., less than 0.6 in Figure 5.3(a),

our privacy-preserving approaches are more accurate than UIPCC.

Even α is as large as 1, which is the variance of data after z-

score normalization, the prediction accuracy is much better than the

baselines (UMEAN and IMEAN). As a result, a balance needs to be

made between the accuracy and privacy that a user wants to achieve.

Additionally, we find that PMF and P-PMF consistently outperform

UIPCC and P-UIPCC. This suggests the superior effectiveness of
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Figure 5.3: Tradeoff between Accuracy and Privacy

model-based approaches in capturing the latent structure of the QoS

data, which conforms to the results reported in [164].

5.4.5 Effect of Distribution of Random Noises

In addition to the impact of noise range, a data randomization

scheme is also subject to the choice of the distribution of random

noises that are used for data obfuscation. In all of the above experi-

ments, the random noises are generated from a uniform distribution

located in [−α, α]. In contrast, in this experiment, we consider a

Gaussian distribution N (0, α) with a mean of zero and a standard

deviation of α. Compared to a uniform distribution, random noises

generated from a Gaussian distribution are unevenly distributed. To

investigate the effect of distribution of random noises (RQ4), we

vary the α value and compare the prediction accuracy of P-UIPCC

and P-PMF with different settings on the distribution of random

noises.

Figure 5.4 presents the results of the accuracy comparison. We

can observe that, for both P-UIPCC and P-PMF, the randomization

scheme with uniform noises performs better than the scheme with

Gaussian noises. In particular, the performance differs significantly
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Figure 5.4: Effect of Distribution of Random Noises

between the two randomization schemes under a large α setting.

The results imply that the distribution of random noises is a crucial

factor for determining the performance of our privacy-preserving

approaches.

5.5 Summary

Privacy is a practical issue to be addressed for QoS-based Web

service recommendation. This work makes an initial effort to deal

with the privacy-preserving Web service recommendation problem.

We propose a generic privacy-preserving framework with the use

of data obfuscation techniques, under which users can gain greater

control on their data and rely less on the recommender system for

privacy protection. We further develop two privacy-preserving QoS

prediction approaches based on this framework, namely P-UIPCC

and P-PMF, as representatives of neighbourhood-based CF ap-

proaches and model-based CF approaches respectively. To evaluate

the effectiveness of P-UIPCC and P-PMF, we conduct experiments

on a publicly-available QoS dataset of real-world Web services. The

experimental results show that our privacy-preserving QoS predic-

tion approaches can still descent prediction accuracy compared with
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the counterpart approaches. We hope that the encouraging results

achieved in this initial work can inspire more research efforts on

privacy-preserving Web service recommendation.

� End of chapter.



Chapter 6

Learning to Log for Runtime
Service Monitoring

Logging is a common programming practice in software develop-

ment, typically issued by inserting logging statements (e.g., printf (),

Console.Writeline()) in source code. As in-house debugging tools

(e.g., debugger), all too often, are inapplicable in production set-

tings, logging has become a principal way to record the key runtime

information (e.g., states, events) of software systems into logs for

postmortem analysis. To facilitate such log analysis, the underlying

logging that directly determines the quality of collected logs is a

matter of vital importance.

Due to the criticality of logging, it would be bad to log too little,

which may miss the runtime information necessary for postmortem

analysis. For example, systems may fail in the field without any

evidence from logs, thus significantly increasing the difficulty in

failure diagnosis [139]. However, it is also not the case that the

more logging, the better. As the practical experiences reported

in [6, 16], logging too much can yield many problems too. First,

logging means more code, which takes time to write and maintain.

Furthermore, logging consumes additional system resources (e.g.,
CPU and I/O) and can have noticeable performance impact on

system operation, for example, when writing thousands of lines to

a log file per second [6]. Most importantly, excessive logging can

133
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produce numerous trivial and useless logs that eventually mask the

truly important information, thus making it difficult to locate the

real issue [16]. As a result, strategic logging placement is desired

to record runtime information of interest yet not causing unintended

consequences.

To achieve so, developers need to make informed logging deci-

sions. However, in our previous developer survey [59], we found

that even in a leading software company like Microsoft, it is difficult

to find rigorous (i.e., thorough and complete) specifications for

developers to guide their logging behaviours. Although we found

a number of online blog posts (e.g., [1, 2, 3, 6, 12, 14]) sharing

best logging practices of developers with deep domain expertise,

they are usually high-level and application-specific guidelines. Even

with logging frameworks (e.g., Microsoft’s ULS [15] and Apache’s

log4net) provided, developers still need to make their own decisions

on where to log and what to log, which in most cases depend on

their own domain knowledge. Therefore, logging has become an

important yet tough decision during development, especially for new

developers without much domain expertise.

Current research has seldom focused on studying how to help

developers make such logging decisions. To bridge this gap, we

propose a “learning to log” framework [171], which aims to au-

tomatically learn the common logging “rules” (e.g., where to log,

what to log) from existing logging instances, and further leverage

them to provide informative guidance for new development. It is

straightforward to build a rule set that can guide developers on

logging, but such a rule set usually requires a large effort to produce

and maintain, which may finally kill its usefulness. Motivated by

our observations (detailed in Section 6.1.2), we extract a set of

contextual features from the source code to construct a learning

model for predicting where to log. Our logging suggestion tool

built on this model, named LogAdvisor, can thus provide actionable

suggestions for developers and reduce their effort on logging. As an
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initial step towards “learning to log”, this work focuses on studying

where to log (or more specifically, whether to log a focused code

snippet), while leaving other aspects (such as what to log) of this

research for future work.

We have conducted both within-project evaluation and cross-

project evaluation on LogAdvisor using two industrial software

systems from Microsoft and two open-source software systems from

GitHub. Additionally, a user study is performed to evaluate whether

the suggestions provided by LogAdvisor can help developers in

practice. The comprehensive evaluation results have demonstrated

the feasibility and effectiveness of our logging suggestion tool.

The remainder of this chapter is organized as follows. Section 6.1

introduces our studied software systems and the motivation of this

work. Section 6.2 provides the overview and the detailed techniques

of learning to log. Section 6.3 reports on the evaluation results, and

Section 6.4 presents our user study. We discuss the limitations in

Section 6.5, and finally conclude this chapter in Section 6.6.

6.1 Problem and Motivation

In this section, we first introduce the subject software systems under

study. Then we provide some key observations on logging practices

and present the motivation of our study.

6.1.1 Subject Software Systems

In our study, we investigate four large software systems, including

two industrial systems from Microsoft (denoted as System-A and

System-B for confidentiality) and two open-source systems from

GitHub (SharpDevelop and MonoDevelop). Each of these systems

contains millions of lines of code (LOC) written in C# language.

C# is one of the popular programming languages that supports

the exception-handling mechanism, where errors are commonly
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Table 6.1: Summary of the Studied Software Systems
Software

Systems Time
Description Version LOC

System-A − Online service − 2.5M

System-B − Online service − 12.7M

SharpDevelop 2001 .NET platform IDE 5.0.2 1.4M

MonoDevelop 2003 Cross-platform IDE 4.3.3 2.5M

Total 19.1M

#Logging #Commits
Software

Logging LOC of #Commits #Patches
Systems Statements Logging Total with Logging with Logging

System-A 23,624 77,945 − − −
System-B 69,057 240,395 − − −
SharpDevelop 2,896 9,261 13,886 4,593 (33.1%) 724 (15.8%)

MonoDevelop 4,996 13,043 29,357 9,437 (32.1%) 1,157 (12.3%)

Total 100.6K 327.6K 43.2K 14.0K (32.4%) 1.9K (13.6%)

handled by using exception constructs (e.g., try-catch, throw) instead

of returning error codes. Note that the source code of all dependent

external submodules is also included for our study.

Table 6.1 provides the summary information of our studied

software systems. Both industrial systems are online service systems

developed by Microsoft, serving a huge number of users globally.

These two systems were also used as subjects in our empirical study

on logging practices [59]. To allow for reproducing and applying

our approach to future research, we choose another two open-

source software systems as subjects. They are two IDE projects,

with SharpDevelop working on .NET platform and MonoDevelop

allowing for cross-platform development. Both of them are selected

due to their popularity (well-known C# projects), active updates

(10000+ commits) and long history of development (10+ years).

Our targeted systems are supposed to have reasonably good log-

ging implementation, because the produced logs by these systems

have mostly met the requirements of usage analysis, troubleshoot-

ing, and operating, after undergoing more than 10 years of evolution.

This is especially true for the industrial software systems, because
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Table 6.2: Logging Statistics of Different Software Entities

Software Source Files Classes

Systems Total #Logged Total #Logged

System-A 4,706 2,027 (43.1%) 10,349 2,788 (26.9%)

System-B 50,036 9,380 (18.7%) 62,954 10,098 (16.0%)

SharpDevelop 8,853 666 (7.5%) 10,869 704 (6.5%)

MonoDevelop 11,567 999 (8.6%) 18,724 1,177 (6.3%)

Total 75.2K 13.1K (17.4%) 102.9K 14.8K (14.4%)

Software Methods Catch Blocks

Systems Total #Logged Total #Logged

System-A 57,578 9,128 (15.9%) 7,580 3,320 (43.8%)

System-B 324,167 30,988 (9.6%) 25,441 5,307 (20.9%)

SharpDevelop 69,108 1,618 (2.3%) 1,346 252 (18.7%)

MonoDevelop 121,982 2,390 (2.0%) 4,041 771 (19.1%)

Total 572.8K 44.1K (7.7%) 38.4K 9.7K (25.3%)

each of them is implemented by a group of experienced developers

at Microsoft, where the code quality has been strictly controlled

by a circle of development activities including code design, code

implementation, code refactoring, peer review, various testing, etc.

Consequently, the source code of these software systems is well

suited for our study on logging practices. All of our code anal-

ysis is conducted based on an open-source C# code analysis tool,

Roslyn [13]. By using Roslyn, we can perform both syntax analysis

and semantic analysis on the source code.

6.1.2 Observations

Pervasiveness of logging

Logging is pervasively used in software development. As we can

see in Table 6.1, our studied systems have a total of 100.6K logging

statements (containing 327.6K lines of logging code) out of 19.1M

LOC. That is, there is a line of logging code in every 58 LOC, as

similarly reported in [135, 140]. By drilling down according to the

type of software entities, as shown in Table 6.2, we find that about
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17.4% of the source files, 14.4% of the classes, 7.7% of the methods,

and 25.3% of the catch blocks are logged, respectively. In addition,

by examining the revision histories of the systems, we find that,

on average, 32.4% of the commits involve logging modifications,

and further, 13.6% of them are modified along with patches1.

Both its pervasive existence and active modifications reveal that

logging plays an indispensable role in software development and

maintenance.

Where to log

The logging decisions can resolve to where to log and what to log.

Where to log determines the locations to place logging statements,

while what to log denotes the contents recorded by these logging

statements. Whereas the goal of “learning to log” is to handle

them both, we study where to log in this work. Our previous

empirical study on where developers log [59] has shown that there

are some typical categories of logging strategies for recording error

sites and execution paths. Error sites indicate some unexpect-

ed situations where the system potentially runs into a problem,

including exceptions and function-return errors. As two typical

ways for error reporting, exception mechanisms are widely used

in modern programming languages (e.g., C#) to handle abnormal

situations, and function-return errors indicate the situation where

an unexpected value (e.g., -1/null/false/empty) is returned from a

function call. We denote their associated code snippets as exception

snippets and return-value-check snippets respectively (as examples

shown in Fig. 6.1(a)(b)). They are the two most common logging

strategies [59] and thus become our focused code snippets. Although

recording information of execution path is crucial for tracking down

root causes from the error sites, existing studies (e.g., control-flow

instrumentation [49, 97]) have been conducted to achieve this goal,

1We identify patches by searching commit logs for keywords such as “fix”, “bug”, “crash” or

issue ID like “#42233”, the same as in [71].
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(a) Exception Snippet

(c) Extracted Contextual Features from Exception Snippet in (a)

(b) Return-value-check Snippet

Figure 6.1: Code Examples and Contextual Features

which are orthogonal to our work.
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/* Example 1: An exception used to determine logic branch*/ 
void AccountConfig(MONOAccount user, string propertyName) {  
    ... 

bool userHasRights = true;      
    try { 
        user.DeleteAccountProperty(propertyName);  
    } 
    catch (UnauthorizedAccessException) { 
        userHasRights = false;  
    } 
    if (userHasRights) { 
        ... 
    } 
} 

/* Example 2: An exception re-thrown */ 
try { 

Type t = Type.GetTypeFromID(guid); 
object instance = Activator.CreateInstance(t); 

} 
catch (Exception e) { 

throw new TestFailedException("Fail to create Com interface.\t: "  
+ Tester.GetExceptionDetails(e)); 

} 

/* Example 3: An exception recovered by retrying */ 
void DWAppOverride(...) { 
   ... 
   Uri UriNew = null; 
   try { 
      UriNew = new Uri(wApp); 
   } 
   catch (UriObjectFormatException) { 
    // Assume http is the scheme and the URL param is the machine name 
      if (UriNew == null) { 
         try { 
            UriNew = new Uri("http://" + wApp); 
         } 
      } 
   } 
} 

Figure 6.2: Code Examples of NOT Logging

Why not log everything

Log information is immensely useful in maintaining software sys-

tems. So the question “why not log everything?” (e.g., Stack-

Overflow questions [7, 9]) does sound reasonable. Yuan et al.

also proposed conservative logging (ErrLog) [139], which logs all

the generic exceptions (e.g., exceptions and function-return errors)

for failure diagnosis. However, as the logging statistics shown in
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Table 6.3, we observed that, in our studied systems, the majority

of exceptions (74.7% on average) and return-value-check snippets

(90.7% on average) are actually not logged. To understand this fact,

we posted our questions on “why not log all exceptions?” to the

mail lists and websites of MonoDevelop [20], SharpDevelp [21] and

StackOverflow [9], and received some valuable feedback from the

developers. According to their feedback, “logging all exceptions

would produce a ton of garbage and make it hard to zoom in

on real issues”, which conforms with our argument (not logging

too much). According to our empirical study in [59], there are

many situations for not logging an exception. Some examples

are illustrated in Figure 6.2. Some exceptions are “expected in

normal operation”, while some others are satisfactorily handled or

“recovered without impacting the user”. In Example 1, when an

“UnauthorizedAccessException” exception is caught, the program

sets the flag “userHasRights” to false and then directs the execution

to the subsequent logic branch. In Example 2, the caught exception

is re-thrown to its caller as a “TestFailedException”, then its caller

would determine whether to log the exception at a higher level.

Example 3 illustrates an example of an exception recovered by

retry. When the program fails to create a Uri object, it uses the

default scheme http to create the object again. In a word, not all

exceptions are “unexpected” (or errors) [6]. Strategic logging needs

to “determine whether or not an exception is worth reporting” [8].

Logging decision and the context

To understand this tradeoff in practice, we attempt to study how

developers make decisions on whether to log a focused code snippet.

Fig. 6.1(a) presents a real-world example of an exception snippet

(i.e., try-catch block). The operations enclosed in the try block

attempt to load the rules from the input string, “assembly”. If

this assembly file cannot be found, an exception with type of

“FileNotFoundException” will occur and then be caught by the
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Table 6.3: Logging Statistics

Software Exception Snippets

Systems #Exception Types #Instances #Logged Instances

System-A 188 7,580 3,320 (43.8%)

System-B 1,657 25,441 5,307 (20.9%)

SharpDevelop 106 1,346 252 (18.7%)

MonoDevelop 220 4,041 771 (19.1%)

Total 38.4K 9.7K (25.3%)

Software Return-value-check Snippets

Systems #Call Types #Instances #Logged Instances

System-A 5,400 43,443 5,127 (13.5%)

System-B 21,624 131,870 15,081 (11.4%)

SharpDevelop 3,221 17,937 476 (2.7%)

MonoDevelop 5,821 37,360 750 (2.0%)

Total 230.6K 21.4K (9.3%)
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Figure 6.3: Distribution of Exception Types/Methods

catch block. Here, the exception has been logged with an error

message by “Console.Error.WriteLine()”. Intuitively, from this

example, we can see that the logging decision is highly dependent on

the context of this code snippet, including the exception type (e.g.,
FileNotFoundException), the invoked methods (e.g., GetFullPath,

GetAssemblyName, Load) in a try block, etc. The contextual

information is crucial because each exception type generally de-

notes one specific type of exceptional conditions while the invoked
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methods indicate the functionality of operations. Driven by this

intuition, we measure the logging ratio of each exception type and

each method. Specifically, the logging ratio, with an exception

type (or an invoked method) is measured by the number of logged

exceptions divided by the number of all the exception snippets with

this exception type (or containing this method). Figure 6.3 illustrates

the bar plot of the distribution of exception types/methods across

the corresponding logging ratios. The results show that a significant

portion of exception types (82%) and methods (86%) have either

high (> 80%) or low (< 20%) logging ratios, which suggests their

high correlations (i.e., either positive or negative correlations) with

logging decisions of developers.

6.1.3 Motivation

With the ever growing scale and complexity of software systems,

it is common that each developer is only responsible for a part of

a system (e.g., one or several components). Logging under this

situation is notoriously challenging, because developers may not

have full knowledge of the whole system. For example, in our

user study (see Section 6.4), 68% of the participants have logging

difficulties. However, there is a lack of rigorous specifications or

tool support for developers to aid their logging decisions. Without

a well-structured logging strategy, it is difficult for developers to

know how to make informed logging decisions, and thus, quite

often, the decisions are made based on their own domain knowledge

(e.g., understanding of system behaviours, logging experience).

Such domain knowledge is seldom documented and it is also hard

to do so, since the logging behaviours of developers may vary

widely, not only from project to project, but also from developer

to developer. Indeed, the pervasively-existing logging instances

together can provide strong indication of the developers’ domain

knowledge embedded with their logging decisions. Thus, we intend
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to explore whether the logging decisions of developers, such as

where to log, can be learnt automatically from these existing logging

instances. If so, the constructed model can represent the common

knowledge of logging and be further built into tool support to

provide valuable suggestions (e.g., whether to log an exception

snippet) for developers. Such a tool can improve the logging quality

as well as reduce the effort of developers. Following this motivation,

we propose “learning to log”.

6.2 Learning to Log

In this section, we present the overview as well as the detailed

techniques of “learning to log”.

6.2.1 Approach Overview

Our goal, referred to as “learning to log”, is to automatically learn

the common logging practice as a machine learning model, and then

leverage the model to guide developers to make logging decisions

during new development. We further implement the proposed

“learning to log” approach as a tool, LogAdvisor. Figure 6.4 presents

the overview of “learning to log”, which can be described as the

following steps:

Instances collection

As the first step, we need to extract data instances (focused code

snippets) from our target projects. There are two types of frequently-

logged code snippets: exception snippets and return-value-check

snippets. As shown in Figure 6.1(a) and Figure 6.1(b), exception

logging records the exception context (e.g., exception message) after

an exception is captured in the catch block, while return-value-check

logging is used to log the situation where an unexpected value (e.g.,
-1/null/false/empty) is returned from a function call. By employing
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Figure 6.4: The Overview of Learning to Log

Roslyn, we extract all these focused code snippets, and use them as

training data to learn the logging practices of developers.

Label identification

As a key step of preparing training data, each data instance (a code

snippet) is labelled “logged” if it contains a logging statement; or

“unlogged”, otherwise. A logging statement denotes a statement that

has an invocation to a logging method (e.g., Console.Writeline()).

We identify logging methods by searching some keywords in all

method names, such as log/logging, trace, write/writeline, etc.

The logging statement identification and labelling procedures are

automatically performed based on Roslyn.

Feature extraction

In our study, we need to extract useful features (e.g., exception

type) from the collected code snippets for making logging decisions,

which is one of the most important steps to determine the perfor-

mance of the prediction model. The details on feature extraction are

described in Section 6.2.2.
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Feature selection

Although features are of vital importance to learn a predictive

model, they can also become an encumbrance. When there are

too many features, some of them are likely redundant or irrelevant

since they provide little useful information or even act as noises to

degrade the prediction performance. Feature selection [61] is a key

technique to remove such redundant or irrelevant features to enhance

the prediction performance as well as shorten the training time.

Model training

Through feature extraction and selection, we can generate a corpus

of feature vectors, where each denotes a vector of feature values

from a data instance. With these feature vectors and their corre-

sponding labels, we can apply a set of machine learning models

(e.g., Decision Tree [131]) to learn the common logging practice.

In our study, we learn the decision on whether to log a focused code

snippet as a classification model.

Logging suggestion

Through the above learning process, we can obtain a predictive mod-

el to perform accurate logging predictions. This predictive model

can be trained offline and further be built into a logging support

tool (namely LogAdvisor) to provide online logging suggestions for

developers. For example, when a developer composes a new piece

of code containing a try-catch block, LogAdvisor can detect and

extract its feature vector in a transparent way. Then LogAdvisor can

predict on whether to log, and provide a logging suggestion for the

developer through IDE (e.g., like the warning message). By using

LogAdvisor, developers can make informed logging decisions.

The above learning workflow is generic and works similarly to

many other machine learning applications in software engineering

(e.g., defect prediction [71, 93, 177]). But the following techniques
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Figure 6.5: Framework of Contextual Feature Extraction

used in our approach are unique in achieving the goal of “learning

to log”.

6.2.2 Contextual Feature Extraction

Feature extraction lies in the core of “learning to log”, because the

quality of extracted features directly determines the performance

of the model. The context information (e.g., the functionality of

operations, the impact of exceptions) of logging points are crucial

for developers to make logging decisions. However, it is challenging

to effectively extract such context information, because the target

code snippet is usually short and linguistically sparse compared to

natural language text. To address this issue, we propose a novel

feature extraction framework, as illustrated in Figure 6.5, which

involves three types of features: structural features, textual features,

and syntactic features.
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Structural features

Source code has a well-defined structure. It is desired to leverage

the structure information of source code to help extract context

information. To achieve this goal, we extract two types of structural

features: error type and associated methods.

Error Type: The error type, such as exception type or call type,

can largely reveal the context of our focused code snippets, which is

highly correlated with logging decisions of developers (as indicated

in Section 6.1.2). For an exception snippet, the exception type

generally denotes one specific type of exceptional conditions with

informative semantic meanings, e.g., “FileNotFoundException” in

Figure 6.1(a). For a return-value-check snippet, the call type is

denoted as the prototype of the checked function, e.g., string Get-
StockIdForImageSpec(string, int) in Figure 6.1(b), which indicates

one specific type of potential function-return errors. Therefore, we

extract error type as a key feature. In particular, there are a number

of catch blocks (approximately 12% in our study) without exception

type explicitly specified by the developer. In this case, we categorize

them into an “UnspecifiedException” type.

Each instance has a single error type, but there exist a wide vari-

ety of error types among the training data. We avoid directly using

each error type as a feature dimension, which can lead to highly

sparse and ineffective feature vectors. Instead, we construct only

one feature dimension as the logging ratio of each error type, that

is, the ratio of logged instances against all the instances within that

error type. Figure 6.1(c) presents an illustration of the contextual

features extracted from the code example in Figure 6.1(a). In this

example, the “FileNotFoundException” type has a logging ratio of

39% regarding training instances in MonoDevelop, so we take the

feature value of error type as 0.39.

Methods: The associated methods of a focused code snippet also

provide indicative information to help understand the functionality
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of the operations. For example, we can figure out the intention of

developers (i.e., to load an assembly file) in the example of Fig-

ure 6.1(a) according to the method names, including LoadRulesFro-
mAssembly, GetFullPath, GetAssemblyName, and Load. Therefore,

we extract these methods as important contextual features.

Specifically, there are two types of methods: the containing

method and the invoked methods. The former is the method that

contains the focused code snippet (e.g., LoadRulesFromAssembly
in Figure 6.1(a)), while the latter includes all the methods that are

invoked by the snippet. The operations can be seen as a sequence

of API method invocations. Thus, instead of using only the methods

within the code snippet, we also track the callee methods. Figure 6.5

provides a prototype of our approach, where the arrows represent the

invocation relationships between methods. For example, Method1
and Method2 are invoked by the focused code snippet, where

Method1 invokes Method3 and Method4, and Method4 further in-

vokes itself and Method6. The extraction of methods continues

tracking down until the invoked method is a system API or external

library API method (e.g., System.IO.Path.GetFullPath) or until a

certain number of levels has been attained. The extraction process

is implemented as a breadth-first search (BFS) variant, where all the

recorded (visited) methods will be skipped. In particular, all the

logging methods are excluded in this process.

Algorithm 5 provides the description of our methods extraction

process in detail. Specifically, line 1∼3 describe that the con-

taining method of focusedSnippet is identified and its method

name is added to methodList. In line 4, all of the syntax nodes

with method declaration type are obtained and stored into a list,

allMethodDeclarations. We put the syntax node focusedSnippet
(with its level number) into a queue in line 5∼6. Then line 7∼20

describe a while loop to extract all of the invoked methods. In line

8∼10, a methodNode is taken out from the queue, and then extract

the directly-invoked methods. Especially, in line 10, any other
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focused snippet in methodNode will be skipped during extraction,

and therefore, the methods enclosed in other focused snippets will be

ignored for the input focusedSnippet. In line 11∼20, we examine

each of the invoked methods, and check whether a method has

already been recorded or it is a system method or external API

method (i.e., not contained in allMethodDeclarations). If yes,

we will skip to next iteration; otherwise, we put the syntax node

of its caller method into the queue for the subsequent extraction.

In particular, we set a parameter maxLevel, which can control the

maximal levels we trace back to extract the invoked methods. For

example, in Figure 6.5, the levels of Method1, Method3, Method6
are 0, 1, and 2, respectively. In our experiment, maxLevel is set to 5

by default, which has shown good results in performance evaluation.

At last, a list of methods (methodList) related to the context of

focusedSnippet is returned in line 21.

After extracting the list of associated methods, we obtain the full

qualified name (e.g., System.IO.Path.GetFullPath) of each method

as a feature dimension, which contains namespace, class name, and

its (short) method name. Figure 6.1(c) provides an example for these

features.

Textual features

Source code is also text. Using code as flat text has been widely

employed in the field of mining software repositories, and its

effectiveness are demonstrated and reported in tasks such as API

mining [155], code example retrieval [29], etc. Driven by these

encouraging results, we also employ the similar approach to extract

textual features from source code text.

More specifically, we extract all the texts in the focused code

snippet excluding method names, such as variables and types. Then

we combine them with the extracted list of structural features (i.e.,
error type and methods) as the full text. In contrast to extracting all

the text directly, our approach not only excludes the text of logging
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Algorithm 5: Methods Extraction Algorithm

/* All the data structures are used as with Roslyn API
and system API in C#. */

Input: An abstract syntax tree: SyntaxTree syntaxTree, a syntax node of the

focused snippet (exception snippet or return-value-check snippet):

SyntaxNode focusedSnippet, the maximal levels to trace back: int
maxLevel

Output: A list of methods: methodList

List<String> methodList ← null;1

Identify the containing method of focusedSnippet;2

Get fullMethodName of the containing method, and add it into methodList;3

/* fullMethodName is comprised of its namespace, class
name, and method name */
Traverse syntaxTree to get allMethodDeclarations;4

Queue<Tuple<SyntaxNode, int> > methodQueue;5

Add (focusedSnippet, 0) into methodQueue; /* trace back level=0 */6

while methodQueue is not empty do7

Take an element (methodNode, level) out of methodQueue;8

List<SyntaxNode> invocationList ← null;9

Add all the methods invoked by methodNode to invocationList; /* Skip10

the methods enclosed in any other focused snippet */
foreach invokedMethod in invocationList do11

Get fullMethodName of invokedMethod;12

if methodList does not contain fullMethodName then /* Visit the13

method that has not been recorded in methodList */
Add fullMethodName into methodList;14

if level > maxLevel then /* Guarantee the maximal15

trace back level to maxLevel */
continue;16

if fullMethodName.StartWith(”System”) then /* Skip17

system methods */
continue;18

if allMethodDeclarations contains fullMethodName then /* Add19

invokedMethod into the queue if it is
user-defined */

Add (invokedMethod, level + 1) into methodQueue;20

return methodList;21

methods, but also includes the names of the callee methods, the
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containing method, as well as their namespaces and classes. With

such text, we can extract the textual features using the bag-of-words

model through a set of widely-used text processing operations: 1)
Tokenization. In our case, we exploit the common use of camel

case and special characters (e.g., “ ”) in naming to split all the

text into terms. This tokenization approach is simple yet effective,

which works well in our studied projects as well as some other

related work [29, 107]. Then we convert all the uppercase characters

into lowercase ones. 2) Stemming. This step is to identify the

ground form of each term, where the affixes and other lexical com-

ponents are removed. For example, “methods” will be stemmed into

“method”. 3) Stop words removal. To get rid of some useless and

noisy terms, we use a list of stop words to filter them, where terms

like “the”, “that” are discarded. Besides, we remove all the terms

with a length smaller than 3, such as “i”, “on”, “is”, etc. 4) Term
weighting. We use the standard TF-IDF [131] weighting scheme to

assign values to each term. Since the use of these techniques in code

processing has been carefully reported in [29, 32, 155], we omit the

details here. In our study, these processing steps are performed using

Weka [62].

Syntactic features

As indicated in Section 6.1.2, there are many situations of not

logging, even for typical error sites such as exceptions and function-

return errors. Some potential errors have no critical impact on

the normal operation of the whole system, some are resolved by

recovery actions such as retry or walk-around, and some others are

explicitly reported (e.g., by setting flags, re-throwing, or returning

special values) to the subsequent or upper-level operations (e.g.,
caller method) to handle.

To capture these contextual factors, we also extract some key

syntactic features from each focused code snippet: 1) SettingFlag.

We identify whether there is an assignment statement with an
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assigned value like -1/null/false/empty. 2) Throw. We identify

whether there is a throw statement. 3) Return. We identify

whether any special value (e.g., -1/null/false/empty) is returned. 4)

RecoverFlag. We check whether there is a new try statement inside.

5) OtherOperation. We check whether there is any other operations

included except the above five ones. 6) EmptyBlock. We find that the

developers sometimes catch and then do nothing. We thus identify

whether the catch block is empty. Note that all these identification

processes have excluded logging statements at the first place, and

all these features have Boolean values. In addition, we employ the

feature LOC to measure the lines of code in the code snippet, and

the feature NumOfMethods to measure the number of the extracted

methods. An example is shown in Figure 6.1(c).

6.2.3 Feature Selection

The above feature extraction process, however, can generate tens of

thousands of features, due to the large vocabulary of methods and

(textual) terms extracted from the data instances. These features

further lead to high-dimensional (e.g., 72K features in System-B)

yet highly-sparse feature vectors, because most of the features are

actually infrequent across all data instances. Furthermore, some

of these features (e.g., textual features parsed from some specific

variable names) may be irrelevant and have negative impact on the

performance of the predictive model.

In such a setting, we make use of a two-step feature selection

process to remove irrelevant features and reduce the dimensionality

of feature vectors. First, we institute a threshold that constraints the

minimum frequency of a feature that occurs across all data instances.

We set the threshold to 5 in our experiments and thus eliminate a

significant number (e.g., 68% in System-B) of infrequent features.

Second, we employ a well-known approach, information gain [23],

to perform further feature selection. Information gain is widely-
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used and effective in text categorization [23]. We carefully set the

minimum information gain to filter out many irrelevant features and

reduce the feature dimensionality to around 1000. This two-step

feature selection process works well in our experiments, so we do

not further evaluate the impact of thresholds on the results.

6.2.4 Imbalance Handling

One critical challenge faced by our model is the high imbalance of

data. For our studied systems, only 25.3% of exception snippets

and 9.3% of return-value-check snippets are logged. This reveals an

imbalance ratio up to 48.8 : 1 between unlogged (majority) instances

and logged (minority) instances. Data imbalance is a common issue

in real-world machine learning applications, and as we will show in

Section 6.3.4, it can heavily influence the prediction performance. In

our study, we employ a state-of-the-art approach, SMO-TE [42], to

balance the data by creating synthetic instances from the minority

class. SMOTE first identifies the k-nearest minority neighbours

(measured by the cosine similarity between their feature vectors)

for each examined minority instance, and then randomly generates

synthetic instances between the instance and its neighbour. As

illustrated in Figure 6.6, three synthetic instances are generated

between the examined instance and its 3-nearest neighbours. The

value k and the number of synthetic instances to generate are set

as user input. In our experiments, we employ the Weka [62]
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implementation of SMOTE.

6.2.5 Noise Handling

Another challenge lies in the data noises. In the framework of

“learning to log”, we implicitly assume good logging quality in the

training data, which therefore facilitates the automatic learning of

good logging “rules” for new development. However, there is no

guarantee about the quality of logging in reality, due to the lack

of “ground truth” on what is optimal logging. Considering the

active maintenance and the long history of evolution of our studied

software systems, it is still reasonable to assume that “most” of the

data instances are enclosed with good logging decisions, while only

a small portion of them may reveal incorrect decisions, which we

refer to as data noises. For example, some instances that deserve

logging are actually not logged, while some others without the need

of logging are logged. These data noises thus have flipped logging

labels.

We attempt to detect and eliminate such data noises, and help the

model learn the common knowledge of logging more effectively.

In many real-world applications, perfect data labels are impossible

(or difficult) to obtain [57]. Kim et al. have proposed a simple

and effective noise detection approach (namely CLNI) for defect

prediction [71]. We adapt this approach to deal with our specific

case, and find that it works well (as demonstrated in Section 6.3.5).

Traditionally, CLNI identifies the k-nearest neighbours for each

instance and examines the labels of its neighbours. If a certain

number of neighbours have an opposite label, the examined instance

will be flagged as a noise. However, we observe a high imbalance

ratio, for example up to 48.8 : 1 in MonoDevelop, between unlogged

(majority) instances and logged (minority) instances. Therefore, the

majority instances tend to dominate the neighbourhood of an ex-

amined instance, which makes the identification of k-nearest neigh-
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bours in CLNI biased to the majority class. To handle this issue, we

apply a state-of-the-art imbalance handling approach, SMOTE [42].

SMOTE balances the data instances by creating synthetic logged

instances as shown in Figure 6.7. Consequently, both classes have

an equal number of data instances, which eliminates the inherent

bias to the majority class when we identify the k-nearest neighbours

of an instance. Next, we quantify each examined instance i with

a noise degree value: ϕi =
∑

j∈Si
wij , where Si denotes the set

of neighbours with opposite label with i, and wij is the weight to

characterize the different impacts of different neighbours in Si. In

contrast to CLNI that uses wij = 1, we take wij as the cosine

similarity between features of i and j. This is based on the intuition

that instances with higher similarity between each other are more

likely to share the same label. Therefore, the greater the value ϕi

is, the higher probability the examined instance i is a noise. For

example in Figure 6.7, ϕi = 2.5. We flag the instances with top

ranked ϕi values and remove them as noises, while leveraging the

remaining data for model training.

6.3 Evaluation

In this section, we conduct comprehensive experiments to evaluate

the effectiveness of LogAdvisor. In particular, we intend to answer

the following research questions.
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RQ1: What is the accuracy of LogAdvisor?

RQ2: What is the effect of different learning models?

RQ3: What is the effect of imbalance handling?

RQ4: What is the effect of noise handling?

RQ5: How does LogAdvisor perform on the “golden set”?

RQ6: How does LogAdvisor perform in the cross-project learning

scenario?

For ease of reproducing and applying our approach to future

research, we release our source code and detailed study materials

(e.g., data, questionnaire) on our project page2.

6.3.1 Experimental Setup

After obtaining the feature vectors and their corresponding logging

labels, we employ Weka [62] to perform model training and eval-

uation. Due to the imbalanced nature of our data, we apply the

Weka implementation of SMOTE [42] to balance the training data

for model construction. By default, we use decision tree (J48) as

the learning model, because of its good performance (Section 6.3.3)

and ease of interpretation. Except for the cross-project evaluation

(Section 6.3.7), all of the experiments are evaluated on all of

the extracted data instances by using the 10-fold cross evaluation

mechanism [131].

As recommended in other related work [46, 149], we evaluate Lo-
gAdvisor using balanced accuracy (BA) [35], which is the average

of the proportion of logged instances and the proportion of unlogged

instances that are correctly classified. BA is calculated as follows:

BA =
1

2
× TP

TP + FN
+

1

2
× TN

TN + FP
, (6.1)

2http://cuhk-cse.github.io/LogAdvisor
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Table 6.4: Balanced Accuracy of Different Approaches

Exception Snippets
Approaches

System-A System-B SharpDev MonoDev

Random 0.499 0.500 0.496 0.503

ErrLog 0.500 0.500 0.500 0.500

Error Type 0.719 0.637 0.724 0.797

Methods 0.672 0.690 0.603 0.678

Textual Features 0.768 0.712 0.719 0.797

Syntactic Features 0.884 0.858 0.779 0.829

LogAdvisor 0.934 0.927 0.846 0.932
Return-value-check Snippets

Approaches
System-A System-B SharpDev MonoDev

Random 0.500 0.494 0.505 0.503

ErrLog 0.500 0.500 0.500 0.500

Error Type 0.743 0.748 0.829 0.813

Methods 0.689 0.699 0.772 0.769

Textual Features 0.814 0.768 0.781 0.808

Syntactic Features 0.762 0.764 0.794 0.758

LogAdvisor 0.903 0.927 0.865 0.918

where TP, FP, TN, and FN denote true positives, false positives,

true negatives, and false negatives, respectively. BA weights the

performance on each of the two classes equally, thus avoiding

inflated performance evaluation on imbalanced data. For example,

with an imbalance ratio of 48.8 : 1 in MonoDevelop, a trivial

classifier that always predict “not logging (unlogged)” can achieve

98% accuracy, but would result in a low balanced accuracy of 49%.

It is also worth noting that although precision, recall, and f-measure

are widely-used metrics for evluating classification performance, we

mainly use these results as references. This is because it is not

easy to distinguish the positive class and the negative class while

both logged and unlogged instances are equally important. This

would lead to ambiguous semantic meanings of these metrics in our

senarios.
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6.3.2 Prediction Accuracy

We compare LogAdvisor with two baseline approaches: random and

ErrLog [139]. By random, we mimic the situation where a developer

has no knowledge about logging and perform the logging decision

with a random probability of 0.5. ErrLog is proposed in [139] that

makes conservative logging (i.e., log all the generic exceptions such

as exceptions and function-return errors) for failure diagnosis. The

results are provided in Table 6.4.

As we can observe, both random and ErrLog have balanced ac-

curacy of approximately 50%. Random logging has equal accuracy

of 50% on either class. ErrLog logs every instance, achieving 100%

accuracy on logged class, and 0% on unlogged class. Overall, the

balanced accuracy of LogAdvisor is high, ranging from 84.6% to

93.4%, indicating high similarity to the logging decisions manually

made by developers. Thus, LogAdvisor can learn a good representa-

tion of the common logging knowledge, and serve as a good baseline

for guiding developers’ logging behaviours towards better logging

practice.

We also evaluate the effect of different contextual features (er-

ror type, methods, textual features, and syntactic features) on the

prediction accuracy, as presented in Table 6.4. We can see that

every type of contextual feature is useful, which leads to much

higher balanced accuracy than random and ErrLog. LogAdvisor, by

combining all these useful features, makes further improvement and

achieves the highest balanced accuracy. These results also reveal

that the contextual features extracted from the focused code snippets

provide good indication of logging practices of developers.

For reference purpose, the results on other metrics such as

precision, recall and F-score are provided in Table 6.5. Under

a random setting, the experiments are run for 100 times and the

average values are reported. As we can observe, for balanced dataset

like System-A (43.8% positives), the F-Score is approximately 0.5.
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Table 6.5: Prediction Accuracy w.r.t. Precision, Recall, and F-Score

System-A System-B
Approaches

Prec. Recall F-Score Prec. Recall F-Score

Random 0.437 0.499 0.466 0.209 0.500 0.295

ErrLog 0.438 1 0.609 0.209 1 0.346

Exception Type 0.639 0.784 0.705 0.307 0.796 0.443

Methods 0.501 0.907 0.646 0.604 0.459 0.522

Textual Features 0.738 0.698 0.718 0.656 0.713 0.683

Syntactic Features 0.816 0.933 0.871 0.695 0.783 0.736

LogAdvisor 0.871 0.921 0.895 0.810 0.869 0.838

SharpDevelop MonoDevelop
Approaches

Prec. Recall F-Score Prec. Recall F-Score

Random 0.188 0.503 0.274 0.191 0.499 0.276

ErrLog 0.187 1 0.315 0.191 1 0.321

Exception Type 0.328 0.853 0.474 0.413 0.903 0.567

Methods 0.519 0.278 0.362 0.529 0.450 0.486

Textual Features 0.588 0.532 0.558 0.606 0.634 0.620

Syntactic Features 0.908 0.587 0.713 0.853 0.671 0.751

LogAdvisor 0.793 0.714 0.752 0.856 0.824 0.839

For other datasets whose data are imbalanced, the F-Score is much

lower. For ErrLog, because of its conservative logging, it will logs

each exception instance, and thus get a recall of 100%. However,

its precision is heavily influenced by the data imbalance, leading

to low F-Score close to the random approach. Our LogAdvisor,

by combining all useful features, achieves a high F-Score with

0.752∼0.895.

6.3.3 The Effect of Different Learning Models

By default, we use decision tree (J48) to train our model, due to

its simplicity as well as its effectiveness shown in our previous

study [59]. We also examine the impact of different learning models

on the prediction accuracy. We have tried a number of popu-

lar learning models, including Naive Bayes, Bayes Net, Logistic

Regression, Support Vector Machine (SVM), and Decision Tree,
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Table 6.6: Balanced Accuracy of Different Learning Models

Exception Snippets
Models

System-A System-B SharpDev MonoDev

Naive Bayes 0.701 0.623 0.686 0.714

Bayes Net 0.729 0.751 0.688 0.862

Logistic Regression 0.881 0.834 0.772 0.858

SVM 0.898 0.886 0.878 0.903

Decision Tree 0.934 0.927 0.846 0.932

Return-value-check Snippets
Models

System-A System-B SharpDev MonoDev

Naive Bayes 0.746 0.766 0.788 0.762

Bayes Net 0.802 0.814 0.845 0.859

Logistic Regression 0.806 0.834 0.856 0.848

SVM 0.815 0.885 0.873 0.877

Decision Tree 0.903 0.927 0.865 0.918

by using their Weka implementations. The evaluation results in

Table 6.6 show that all the learning models lead to overall good

prediction accuracy. In particular, Bayes-based learning models

are based on probability theory. Unlike natural language text, the

features extracted from source code are short and linguistically

sparse, so Bayes-based learning models work slightly worse in our

settings. Logistic Regression is a linear classifier, thus it may not fit

well with our data. Decision Tree achieves the best overall accuracy,

because this algorithm can solve non-linear classification problem.

Furthermore, this algorithm can implicitly perform feature selection,

which removes the redundant or irrelevant features and runs much

faster than SVM for our data.

6.3.4 The Effect of Imbalance Handling

The data we collected from our studied software systems are imbal-

anced between logged instances and unlogged instances. To study

the impact of data imbalance on prediction accuracy, we apply the

state-of-the-art imbalance handling approach (SMOTE) described in

Section 6.2.4 to balance the training data and evaluate the perfor-
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(a) System-A (w = 1.28)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Recall

w/   Over−Sampling
w/o Over−Sampling

(b) System-B (w = 3.7)
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(c) SharpDevelop (w = 4.34)
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Figure 6.8: Impact of Data Imbalance Handling on Prediction Accuracy

mance improvement. Figure 6.8 provides the precision-recall plots

of the prediction results on exception snippets, which present the

trade-off between precision and recall. The weights used in our

experiments are also shown in the figure. For example, we create

synthetic logged instances of System-B by a weight of 3.7. We

can see that System-B, SharpDevelop and MonoDevelop have large

improvement on prediction accuracy, while the improvement on

System-A is small, because the data of System-A is more balanced

compared to the others. The results indicate that our imbalance

handling approach is helpful at improving the prediction accuracy.
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Figure 6.9: Instance Distribution over Noise Degree

6.3.5 The Effect of Noise Handling

To evaluate the effect of noise handling approach, we first study

the instance distribution across the noise degree (ϕi) values, and

then compare the prediction results with noise handling and those

without noise handling. For ease of presentation, we only plot the

instance distribution regarding exception snippets of MonoDevelop

in Fig. 6.9, while the results of other systems are also similar. In

particular, we set the number of nearest neighbours, k, to 5. So ϕi

has a value range of 0 ∼ 5. It shows that the majority (about 88%) of

instances have a noise degree value close to 0, indicating that each

examined instance has the same logging label with almost all of its

nearest neighbours. Only a small proportion of instances are likely

noise data (e.g., those with noise degree ϕi > 3). To some extent,

this reveals the quality of data. In our study, we tune the threshold

and flag about 5% of instances with top ranked ϕi values as noises,

which are removed them in the training phase. As the evaluation

results shown in Fig. 6.10(a)(b), the noise handling approach makes

further improvement on the prediction accuracy. It indicates that

properly removing potential noise data can make our model learn

the common logging knowledge more effectively.
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Figure 6.10: Noise Handling Evaluation Results

Table 6.7: Accuracy on Golden Set

Focused Code Snippets SharpDevelop MonoDevelop

Exception Snippets 0.667 0.902

Return-value-check Snippets 0.789 0.751

Overall 0.750 0.854

6.3.6 Evaluation on Golden Set

Due to the lack of “ground truth” on optimal logging, there is

no guarantee about the logging quality of the collected data, even

though we employ several mature software systems as our subjects.

The logging behaviours of developers can be ad-hoc. In some cases,

developers perform logging as afterthoughts, for example, after a

failure happens and logs are needed. Logging statements may be

added, modified, and even deleted with the evolution of systems, as

reported in [140].

To extract the “golden practice” of logging, we examine the

revision histories of the two open-source projects, and find out the

logging statements that are added or modified along with patches.

We use these logging statements as the “golden set” for evalua-

tion, because they are likely good representatives of useful logging

instances. Specifically, we collect 75 such logging instances in
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SharpDevelop and 135 such logging instances in MonoDevelop,

including a total of 116 exception snippets and 94 return-value-

check snippets. We utilize this golden set as the testing data

to evaluate the performance of LogAdvisor. Table 6.7 show the

accuracy results, with an overall accuracy ranging from 75%∼85%,

which denotes the percentage of logging statements that are covered

by LogAdvisor.

6.3.7 Cross-Project Evaluation

In within-project learning, LogAdvisor leverages the existing log-

ging instances within the same project as training data to construct

the predictive model. The above experiments provide promising

results on the prediction accuracy of within-project evaluation,

strongly indicating that LogAdvisor likely work well in the scenario

of developing some new components in the same project. However,

many real-world projects are small or new, which have limited

training data for model construction. In such cases, it is valuable

to explore whether cross-project learning can help.

In cross-project learning, we enrich the training data by incor-

porating the data instances extracted from a similar project (source
project), and then apply the trained model to the target project for

logging prediction. However, in contrast to within-project learning,

cross-project learning is significantly more challenging [177], such

as handling project-specific features. To address these challenges,

we extract the common features that are shared between projects.

We find that many system APIs and error types are actually common

among different projects. We further leverage these common fea-

tures to evaluate the performance of cross-project learning between

different pairs of our studied systems (one source project for training

and one target project for testing).

Figure 6.11 presents the cross-project evaluation results with

comparison to the within-project evaluation results. The corre-
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Project)

sponding experimental settings are shown in the right panel of the

figure, where we use one project for training and one project for

testing. Especially for within-project evaluation, we use 10-fold

cross evaluation within the same project to evaluate the performance.

Taking System-A as an example, we obtain a balanced accuracy of

93.4% for within-project evaluation (S1), while achieving 81.5%,

76.7% , and 68.0% balanced accuracy by using System-B (S2),

SharpDevelop (S3), and MonoDevelop (S4) as training project

respectively. Overall, the results indicate that the performance of

cross-project learning is largely degraded compared with within-

project learning. The reason is that different projects may follow

different logging practices, and some project-specific knowledge

(e.g., domain exceptions and methods) are challenging to adapt to

other projects. Similar to our intuition, we find that the cross-

project evaluation results among similar projects (e.g., System-

A and System-B, SharpDevelop and MonoDevelop) are slightly

better than the results among dissimilar projects (e.g., System-A

and SharpDevelop, System-B and MonoDevelop). Furthermore,

these results can serve as a baseline for further improvement by

exploring other sophisticated techniques, such as transfer learning

across projects [93].
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6.4 User Study

To further measure the effectiveness of LogAdvisor, we conduct a

controlled user study among engineers from Microsoft and a local IT

company in China. We invited 37 participants in total, including 23

staff developers and 14 interns, who have an average of 4.9 years of

programming experience. In addition, 22 (59%) of them use logging

frequently while 12 (32%) of them use logging occasionally. The

user study is conducted through an online questionnaire, which con-

sists of 11 questions: 5 questions for the background of participants

and their understanding on logging practices, 4 questions for case

studies on logging, and 2 questions for assessment of our logging

suggestion results. For reproducibility, a copy of the questionnaire

is provided on our project page3.

To perform logging case studies, we randomly select 20 excep-

tion snippets and 20 return-value-check snippets from MonoDevel-

op. Half of them are logged, while the other half are not. We remove

the logging statements in code snippets and ask participants to make

logging decisions on whether to log. The original logging labels

made by code owners are taken as the “ground truth”. However,

sometimes, it is hard for participants (not code owners themselves)

to understand the code logic well by reading only a small code

snippet. To mitigate this issue, we group two code snippets with d-

ifferent logging labels (e.g., one logged exception and one unlogged

exception) into a pair. Then we ask the participants to choose which

one is more likely to be logged from the pair, because it is easier

for an participant to make choice through comparison. To evaluate

the effectiveness of LogAdvisor, two groups of pairs are provided:

one group with our logging suggestions, and the other group without

logging suggestions. The suggestion results are provided from our

trained model, with an accuracy of approximately 80% on these

case-study snippets. To make a fair comparison, each participant

3http://cuhk-cse.github.io/LogAdvisor
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marks an equal number of pairs in each group, and each pair is

marked by at least three participants. In particular, we leverage

the online survey system, Qualtrics4, to build 10 questionnaires,

each using 4 different pairs of code snippets. We distribute the

survey links evenly to the participants. Furthermore, we record the

time they spend on making each logging choice using the timing

functionality of Qualtrics.

Results: We evaluate the accuracy that the participants correctly

recover the logging decisions of the code owners. For the group

without logging suggestions, the accuracy is 60%, while the group

with logging suggestions achieves an accuracy of 75%, with a rela-

tive improvement of 25%. As for time consumption, the participants

took 33% less time on average to make a logging choice with our

logging suggestions (28 seconds v.s. 42 seconds). In addition, we

query the feedback from the participants by the question “Do you

think the suggestion result is useful for your logging choice?”, and

70% of participants think it is useful. These results provide a strong

evidence in the effectiveness of our logging suggestion.

6.5 Limitations and Discussion

Logging quality: The approach of “learning to log” works under

the premise that the training data have high logging quality. In

such a setting, the constructed model can represent the common

(and good) logging knowledge and generalize well to predictions

of new instances. However, there is no “ground truth” on what

is high-quality (or optimal) logging. In our study, we assume

that our studied software systems have reasonably good logging

implementations due to their high code quality, active maintenance

and long history of evolution. To a certain degree, it has been

endorsed by our evaluation results (e.g., high prediction accuracy,

positive user feedback). Besides, our noise handling approach can

4http://qtrial.qualtrics.com
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further mitigate the data quality issue by detecting and omitting the

noisy logging instances from the training data, thus improving the

performance of LogAdvisor.

Diversity of subject software systems: Our study was conducted

on four software systems written in C#, thus its validity may be

threatened by the limited diversity of our studied systems. To

mitigate this threat, we choose the subjects including both com-

mercial software systems from a leading software company like

Microsoft and popular open-source software systems on GitHub.

These systems are actively maintained and have a long history

of evolution, which can serve as a representative of real practice.

Besides, two of them are online services while the other two are

IDEs, thus yielding both similar projects and dissimilar projects for

our study. We believe that our approach and the results derived

from these systems are easily reproducible and can be generalizable

to many other software systems. Future studies on more types of

software systems may further reduce this threat.

Where to log v.s. what to log: To achieve good logging quality,

developers need to make informed decisions on both where to log

and what to log. The ideal of “learning to log” is to help developers

resolve both decisions. However, as an initial step towards this

goal, we focus primarily on where to log in this work, because it

is the first logging decision to make and sometimes can determine

(or narrows down) what to log. For example, when developers

decide to log an exception, the contents to be recorded become much

more specific, including the exception message, stack trace, etc.

Besides, a recent study [141] has built an LogEnhancer tool that

can enrich the recorded contents by automatically identifying and

inserting critical variable values into the existing logging statements.

As part of our future work, this tool can be further integrated into

our “learning to log” framework to facilitate log automation, where

LogAdvisor determines where to log and LogEnhancer determines

what to log.
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Potential Improvements: Towards “learning to log”, we still have

a number of potential directions that deserve further exploration

for improvements: 1) Other factors on logging decision. The

logging behaviours of developers can be quite complex and vary

among developers. Also, the logging statements can be dynamically

updated, such as deletion and modification. Thus, additional consid-

eration of factors such as code owner, check-in time and execution

frequency of code may further enhance the performance of logging

prediction. 2) Interdependence of logging statements. Our approach

identifies each logging point sequentially and in isolation. In some

cases, logging at one point may impact another. For example, a

try-catch block may be enclosed in another catch block, and the

exception may be thrown to the upper one to log. Or sometimes,

logging statements at critical points are used together to record the

execution path. Further exploration of a joint inference model (e.g.,
graphical models, Markov chains) may help in this case. 3) Runtime
logging. Current logging statements are mostly statically inserted

into the code. There is a new proposal for runtime logging, in

which whether to log or not can be determined at runtime. For

example, logs may be recorded by adaptive sampling [139] or only

be recorded when encountering some problems (e.g., a failed request

or a long response) [14]. Although such sophisticated runtime

logging mechanism is not supported by our studied systems, it is

a promising direction for exploration to balance utility and overhead

of logging.

6.6 Summary

Strategic logging is important yet difficult for online service system

development. However, current logging practices are not well

documented and cannot provide strong guidance on developers’

logging decisions. To fill this gap, we propose a “learning to log”

framework, which aims to automatically learn the common logging
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practices from existing code repositories. As a proof of concept, we

implement an automatic logging suggestion tool, LogAdvisor, which

can help developers make informed logging decisions on where to

log and potentially reduce their effort on logging. Evaluation results

on both industrial and open-source software systems, as well as a

controlled user study, demonstrate the feasibility and effectiveness

of LogAdvisor. To the best of our knowledge, this study makes

the first attempt to provide automatic logging tool support for

developers. We believe it is an important step towards automatic

logging.

On the other hand, although our experiments have shown strong

evidence on the usefulness of our logging suggestion tool LogAdvi-

sor, it is still a prototype now. In our future work, we will implement

it as a IDE-pluggable tool and demonstrate its real use of logging

suggestion to developers.

� End of chapter.



Chapter 7

Conclusion and Future Work

In this chapter, we summarize the main contributions of this thesis

and provide several interesting future directions.

7.1 Conclusion

Quality management is critical to online service systems. However,

in many cases, traditional engineering approaches are inapplicable

to deal with service quality problems in production. Online service

systems are generating a variety of service data, including quality

of service (QoS) information of Web services, service logs, service

dependency graphs, etc. In this thesis, we have developed data-

driven approaches to gaining actionable insights from such service

data to aid in service quality management of online service systems.

In particular, in Chapter 3, we propose a Web service positioning

(WSP) framework for joint response time monitoring and prediction.

The WSP framework is built by combining both advantages of net-

work coordinate based approaches and collaborative filtering based

approaches. Our WSP framework solves the data sparsity problem

of existing approaches and significantly enhances the prediction

accuracy. We also conduct a large-scale experiment to collect real-

world response time data of Web services and further leverage the

data to verify the effectiveness of our WSP approach. The dataset

172
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includes 359,400 response time values from 200 users on 1,597 real-

world Web services, which is essential to future research in this field.

In Chapter 4, we study the problem online QoS prediction of

Web services. This is the first work to address the problem of QoS

prediction on candidate services to guide candidate service selection

for runtime service adaptation. A novel QoS prediction approach,

adaptive matrix factorization (AMF), has been proposed to achieve

this goal. AMF extends the traditional matrix factorization model

with techniques of data transformation, online learning, and adaptive

weights to achieve accurate, online, and scalable QoS predictions.

Comprehensive experiments are conducted based on a real-world

large-scale QoS dataset of Web services to evaluate our AMF

approach in terms of accuracy, efficiency, and scalability.

In Chapter 5, we conduct the first work to cope with the privacy

issue in QoS-based Web service recommendation. We propose

a simple yet effective privacy-preserving framework, and further

develop two representative privacy-preserving QoS prediction ap-

proaches, P-UIPCC and P-PMF, under this framework. By using

our approaches, QoS-based Web service recommendation can be

made without revealing private QoS data of users. Comprehensive

experiments are conducted on a real-world large-scale QoS dataset

of Web services to evaluate the effectiveness of privacy-preserving

QoS prediction approaches.

In Chapter 6, we propose a “learning to log” framework to help

developers make informed logging decisions during development.

Logging is currently an important yet tough decision which mostly

depends on the domain knowledge of developers. To reduce the

effort on making logging decisions, we provide the design and

implementation of a logging suggestion tool, LogAdvisor, which

automatically learns the common logging practices on where to

log from existing logging instances and further leverages them for

actionable suggestions to developers. Specifically, we identify the

important factors for determining where to log and extract them as
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structural features, textual features, and syntactic features. Then,

by applying machine learning techniques (e.g., feature selection

and classifier learning) and noise handling techniques, we achieve

high accuracy of logging suggestions. We evaluate LogAdvisor on

two industrial online service systems from Microsoft and two open-

source software systems from Github.

In summary, by use of data-driven approaches, we have ad-

dressed some important problems in quality management of online

service systems, including response time prediction of Web services,

online QoS prediction of Web services, privacy-preserving QoS

prediction of Web services, and learning to log for runtime service

adaptation. Moverover, for ease of reproducing our research results

and to promote future research on related topics, all of the data and

source code used in this thesis have been made publicly available.

7.2 Future Work

Data-driven quality management of online service systems is a

promising field of research and practice. Although we have made a

number of significant achievements in this thesis, there are still many

interesting research directions that deserve for future investigations.

Context-Aware Reliability Prediction

Reliability, as one of the most important QoS attributes, measures

the probability of failure-free software operation for a specified

period of time in a specified environment. Reliability prediction

is an important task in software reliability engineering, which can

aid in evaluating software design decisions for building reliable

software systems. Reliability prediction is an important task in

software reliability engineering, which has been widely studied

in the last decades. However, most of these existing models

target at analyzing traditional white-box software systems, where
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the reliabilities of system components are all known or can be

estimated through behaviour models from internal information of

the components. Modelling and predicting user-perceived reliability

of black-box services remain an open research problem.

Nowadays, various Web services are in widespread use in build-

ing online service systems, where each service provides a black-

box functionality via some standard interfaces. To evaluate the

reliability of a (third-party) black-box service, traditional white-box

reliability prediction approaches become inapplicable due to a lack

of its internal behaviour information. In addition, different from

stand-alone software systems, Web services operate over the Internet

and likely serve different users spanning worldwide. Therefore, the

user-perceived service reliability depends not only on the service

itself, but also heavily on the invocation context (e.g., user locations,

service workloads, network conditions). For instance, the user-

perceived reliability may differ from user to user due to different

user locations, and vary from time to time due to dynamic service

workloads and network conditions. In such a setting, context-aware

reliability prediction is an interesting direction for future research.

Automatic Logging

In our thesis, we propose a “learning to log” framework which can

automatically learn common logging practices from existing code

repositories to help developers make informed logging decisions.

This is the first step towards automatic logging, but it is far from

perfect. Current logging of software systems is typically made

manually through developers by inserting static logging statements

into source code, and prints log messages at some fixed program

locations. The quality of logging, therefore, heavily depends on

the expertise of developers who make logging decisions. In many

cases, such logging strategy may be sub-optimal because the logging

behaviours of developers are not collectively optimized, which in

turn leads to redundant or useless logs. In addition, all the logging
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statements, once being inserted by developers, will always print the

same logs for every execution. This is a static logging strategy which

cannot evolve adaptively with runtime operational environment.

However, a software system is rapidly evolving and its operation

context is also constantly changing. On one hand, for modern

software systems, developers are quickly fixing defects and devel-

oping new features, especially under the current agile development

environment. Such rapid development brings in a lot of fresh code,

which deserves more inspection via logging because the code is

less frequently executed. It is desired that the logging strategy can

be evolved too, with old code being less logged while new code

producing more log information. On the other hand, the logging

overhead is closely related to operational environment. For example,

in online service systems, the logging overhead can be rapidly

exposing, when a spike occurs in the number of requests. It will

be more cost-effective to log these user requests adaptively in an

on-demand manner.

It is highly desired that logging points can be placed wisely

at different positions along critical execution paths, but each log-

ging point can dynamically determine whether to log during each

execution according to the operational context. For example, for

online service systems, we can merely log the runtime information

when a request is failed, or else eliminating the log information in

memory directly to reduce the overhead of writing logs into a file.

More research in this direction is necessary to facilitate increased

intelligence and automation in logging.

Massive Log Analysis

For large-scale online service systems, there are typically millions

of users who generate tens of thousands of requests to the system

every second. With the continuous 24x7 operating of these online

systems, we are able to collect massive log data. Logs are extremely

critical in system troubleshooting. When online service systems
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fail in the field, in many cases, developers can only rely on the

logs to pinpoint the root causes, because it is difficult to stop the

system for debugging, or to reproduce the system problems in the

lab due to distributed operational environment and dynamic service

workloads. The log data bring us more complete information of

the system behaviours together with the challenges to store and

analyze. However, in current practice, logs are typically retrieved

by searching for some keyword such as “fail”, “error”, or other

customized regular expressions. There may be a lot of matches

where substantial manual efforts are needed to identify the culprit.

Therefore, manual analysis of system data is lab-intensive, error-

prone, and inefficient. Many organizations are still struggling to

process large amounts of log data and are spending significant

amounts of time analyzing logs for actionable insights.

On the other hand, techniques of data analytic such as machine

learning and data mining have been widely studied over last decades,

yielding a wide variety of applications in bioinformatics, robotics,

image processing, and natural language processing. However, the

use of data analytics in troubleshooting online service systems is

less explored, which deserves for future study. For example, PCA

can be used to reduce the redundant information of logs and extract

effective features, and sparse coding can be used to model different

features that may act as potential root causes for a system problem.

However, to achieve effective and efficient log analysis, there are

several unique challenges to be addressed: (1) Data volume: With

a system scaling up, dealing with a large volume of log data poses

a significant challenge to the efficiency of traditional log analysis

techniques. (2) Unstructured data: To enable the convenience

and flexibility of logging, logs are usually written in natural lan-

guage by developers to indicate the content of each event. The

unstructured nature makes the analysis of such logs very difficult.

(3) Temporal-spatial property: Logs are typically generated as a

type of temporal-spatial data. Each log has a timestamp, which is
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a temporal property. Also, each stamp is generated by a specific

machine, which shows its spatial property. How best it is to leverage

such temporal-spatial properties of logs for troubleshooting has

continued to be a vexing problem.

These challenges may not be even encountered in traditional re-

search in data analytics, but are unique in massive log analysis. Log

analysis is a widely-studied but open problem. More research efforts

are desired to address these unique challenges and further advance

the current log analysis techniques for system troubleshooting, such

as anomaly detection, and system problem diagnosis.

� End of chapter.
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coordinates systems, design, and security. IEEE Communica-
tions Surveys and Tutorials, 12(4):488–503, 2010.

[54] J. Edmondson, A. Gokhale, and D. Schmidt. Approximation

techniques for maintaining real-time deployments informed

by user-provided dataflows within a cloud. In Proc. of the
IEEE Symposium on Reliable Distributed Systems (SRDS),
2012.

[55] P. Fan, Z. Chen, J. Wang, Z. Zheng, and M. R. Lyu. Topology-

aware deployment of scientific applications in cloud comput-



BIBLIOGRAPHY 189

ing. In Proc. of the IEEE International Conference on Cloud
Computing (CLOUD), pages 319–326, 2012.

[56] U. Feige. A threshold of lnn for approximating set cover.

Journal of the ACM, 45(4):634–652, 1998.

[57] B. Frénay and M. Verleysen. Classification in the presence of

label noise: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 25(5):845–869, 2014.

[58] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly

detection in distributed systems through unstructured log

analysis. In Proc. of the IEEE Conference on Data Mining
(ICDM), pages 149–158, 2009.

[59] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,

and T. Xie. Where do developers log? an empirical study

on logging practices in industry. In Proc. of the International
Conference on Software Engineering (ICSE), 2014.

[60] I. Goiri, J. Guitart, and J. Torres. Characterizing cloud feder-

ation for enhancing providers’ profit. In Proc. of the IEEE
International Conference on Cloud Computing (CLOUD),
pages 123–130, 2010.

[61] I. Guyon and A. Elisseeff. An introduction to variable and

feature selection. Journal of Machine Learning Research,

3:1157–1182, 2003.

[62] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten. The weka data mining software: An update.

SIGKDD Exploration Newsletter, 11(1):10–18, 2009.

[63] A. E. Hassan and T. Xie. Software intelligence: the future

of mining software engineering data. In Proc. of the Work-
shop on Future of Software Engineering Research, with the



BIBLIOGRAPHY 190

ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), pages 161–166, 2010.

[64] Q. He, J. Yan, H. Jin, and Y. Yang. Quality-aware service

selection for service-based systems based on iterative multi-

attribute combinatorial auction. IEEE Transactions on Soft-
ware Engineering (TSE), 40(2):192–215, 2014.

[65] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An

algorithmic framework for performing collaborative filtering.

In Proc. of the Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SI-
GIR), pages 230–237, 1999.

[66] T. R. Hoens, M. Blanton, A. Steele, and N. V. Chawla. Reli-

able medical recommendation systems with patient privacy.

ACM Transactions on Intelligent Systems and Technology
(TIST), 4(4):67, 2013.

[67] B. Jiang, W. K. Chan, Z. Zhang, and T. H. Tse. Where to

adapt dynamic service compositions. In Proc. of the ACM
International Conference on World Wide Web (WWW), 2009.

[68] Y. Jiang, J. Liu, M. Tang, and X. F. Liu. An effective

web service recommendation method based on personalized

collaborative filtering. In Proc. of the IEEE International
Conference on Web Services (ICWS), 2011.

[69] Y. Kang, Z. Zheng, and M. R. Lyu. A latency-aware co-

deployment mechanism for cloud-based services. In Proc.
of the IEEE International Conference on Cloud Computing
(CLOUD), pages 630–637, 2012.

[70] Y. Kang, Y. Zhou, Z. Zheng, and M. R. Lyu. A user

experience-based cloud service redeployment mechanism. In

Proc. of the IEEE International Conference on Cloud Com-
puting (CLOUD), pages 227–234, 2011.



BIBLIOGRAPHY 191

[71] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise

in defect prediction. In Proc. of the International Conference
on Software Engineering (ICSE), pages 481–490, 2011.

[72] A. Klein, F. Ishikawa, and S. Honiden. Towards network-

aware service composition in the cloud. In Proc. of the ACM
International Conference on World Wide Web (WWW), pages

959–968, 2012.

[73] W. Klosgen. Anonymization techniques for knowledge dis-

covery in databases. In Proc. of the International Conference
on Knowledge Discovery and Data Mining (KDD), pages

186–191, 1995.

[74] G. Lee, J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy. The

unified logging infrastructure for data analytics at twitter. In

Proc. of the International Conference on Very Large Data
Bases (VLDB), pages 1771–1780, 2012.

[75] S. Lee and S. Sahu. Network distance based coordinate

systems for p2p multimedia streaming. In Proc. of the IEEE
Network Operations and Management Symposium (NOMS),
pages 793–796, 2010.

[76] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.

Monitoring, prediction and prevention of SLA violations in

composite services. In Proc. of the IEEE International
Conference on Web Services (ICWS), 2010.

[77] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Bench-

marking classification models for software defect prediction:

A proposed framework and novel findings. IEEE Transac-
tions on Software Engineering (TSE), 34(4):485–496, 2008.

[78] X. Liu and I. Fulia. Incorporating user, topic, and service

related latent factors into web service recommendation. In



BIBLIOGRAPHY 192

Proc. of the IEEE International Conference on Web Services
(ICWS), pages 185–192, 2015.

[79] W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu. An extended matrix

factorization approach for QoS prediction in service selection.

In Proc. of the IEEE International Conference on Services
Computing (SCC), pages 162–169, 2012.

[80] X. Lu, H. Wang, J. Wang, J. Xu, and D. Li. Internet-based

virtual computing environment: Beyond the data center as a

computer. Future Generation Computer Systems, 29(1):309–

322, 2013.

[81] M. R. Lyu. Handbook of software reliability engineering.

IEEE Computer Society Press, 1996.

[82] M. R. Lyu and L. Zhang. Guest editorial: Recommenda-

tion techniques for services computing and cloud computing.

IEEE Transactions on Services Computing (TSC), 8(3):422–

424, 2015.

[83] H. Ma, I. King, and M. R. Lyu. Effective missing data

prediction for collaborative filtering. In Proc. of the ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR), pages 39–46, 2007.

[84] Y. Mao, L. Saul, and J. Smith. IDES: An internet distance es-

timation service for large networks. IEEE Journal on Selected
Areas in Communications, 24(12):2273 –2284, 2006.

[85] F. McSherry and I. Mironov. Differentially private rec-

ommender systems: Building privacy into the netflix prize

contenders. In Proc. of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD),
pages 627–636, 2009.



BIBLIOGRAPHY 193

[86] M. T. Melo, S. Nickel, and F. S. da Gama. Facility location

and supply chain management - a review. European Journal
of Operational Research, 196(2):401–412, 2009.

[87] A. Metzger, C.-H. Chi, Y. Engel, and A. Marconi. Research

challenges on online service quality prediction for proactive

adaptation. In Proc. of the Workshop on European Software
Services and Systems Research - Results and Challenges (S-
Cube), pages 51–57, 2012.

[88] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. Toward fine-

grained, unsupervised, scalable performance diagnosis for

production cloud computing systems. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 24(6):1245–1255,

2013.

[89] M. Montanari, J. H. Huh, D. Dagit, R. Bobba, and R. H.

Campbell. Evidence of log integrity in policy-based security

monitoring. In Proc. of IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, pages 1–6,

2012.

[90] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive

monitoring and service adaptation for ws-bpel. In Proc. of the
ACM International Conference on World Wide Web (WWW),
2008.

[91] K. Nagaraj, C. Killian, and J. Neville. Structured comparative

analysis of systems logs to diagnose performance problems.

In Proc. of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 26–26, 2012.

[92] V. Nallur and R. Bahsoon. A decentralized self-adaptation

mechanism for service-based applications in the cloud. IEEE
Transactions on Software Engineering (TSE), 39(5):591–612,

2013.



BIBLIOGRAPHY 194

[93] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In

Proc. of the International Conference on Software Engineer-
ing (ICSE), pages 382–391, 2013.

[94] J. Nelder and R. Mead. A simplex method for function

minimization. Computer Journal, 7:308–313, 1965.

[95] T. S. E. Ng and H. Zhang. Predicting internet network

distance with coordinates-based approaches. In Proc. of the
IEEE International Conference on Computer Communica-
tions (INFOCOM), 2002.

[96] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,

and D. Boneh. Privacy-preserving matrix factorization. In

Proc. of the ACM SIGSAC Conference on Computer & Com-
munications Security (CCS), pages 801–812, 2013.

[97] P. Ohmann and B. Liblit. Lightweight control-flow instru-

mentation and postmortem analysis in support of debugging.

In Proc. of the IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 378–388, 2013.

[98] A. J. Oliner, A. Ganapathi, and W. Xu. Advances and

challenges in log analysis. Communications of the ACM
(CACM), 55(2):55–61, 2012.

[99] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. M.

Paradkar. Inferring method specifications from natural lan-

guage API descriptions. In Proc. of the International Confer-
ence on Software Engineering (ICSE), pages 815–825, 2012.

[100] H. Polat and W. Du. Privacy-preserving collaborative filtering

using randomized perturbation techniques. In Proc. of the
IEEE Conference on Data Mining (ICDM), pages 625–628,

2003.



BIBLIOGRAPHY 195

[101] Z. Qi, Y. Xiao, B. Shao, and H. Wang. Toward a distance

oracle for billion-node graphs. In Proc. of the International
Conference on Very Large Data Bases (VLDB), pages 61–72,

2013.

[102] H. Qian. Proximity-aware cloud selection and virtual ma-

chine allocation in iaas cloud platforms. In Proc. of the
International Workshop on Internet-based Virtual Computing
Environment (iVCE), 2013.

[103] M. Qiao, H. Cheng, and J. X. Yu. Querying shortest path

distance with bounded errors in large graphs. In Proc. of the
Conference on Scientific and Statistical Database Manage-
ment (SSDBM), pages 255–273, 2011.

[104] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the

placement of web server replicas. In Proc. of the IEEE
International Conference on Computer Communications (IN-
FOCOM), pages 1587–1596, 2001.

[105] W. Qiu, Z. Zheng, X. Wang, X. Yang, and M. R. Lyu.

Reputation-aware qos value prediction of web services. In

Proc. of the IEEE International Conference on Services Com-
puting (SCC), pages 41–48, 2013.

[106] N. Ramakrishnan, B. J. Keller, B. J. Mirza, A. Y. Grama, and

G. Karypis. Privacy risks in recommender systems. IEEE
Internet Computing, 5(6):54–62, 2001.

[107] R. Saha, M. Lease, S. Khurshid, and D. Perry.

[108] R. M. Sakia. The box-cox transformation technique: A

review. Journal of the Royal Statistical Societys, 41(2):169–

178, 1992.



BIBLIOGRAPHY 196

[109] R. Salakhutdinov and A. Mnih. Probabilistic matrix fac-

torization. In Proc. of the Annual Conference on Neural
Information Processing Systems (NIPS), 2007.

[110] M. Salehie and L. Tahvildari. Self-adaptive software: Land-

scape and research challenges. ACM Transactions on Au-
tonomous and Adaptive Systems, 4(2):14:1–14:42, 2009.

[111] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl.

Item-based collaborative filtering recommendation algorithm-

s. In Proc. of the International World Wide Web Conference
(WWW), pages 285–295, 2001.

[112] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan,

and P. Martin. Assisting developers of big data analytics

applications when deploying on hadoop clouds. In Proc.
of the International Conference on Software Engineering
(ICSE), pages 402–411, 2013.

[113] W. Shang, M. Nagappan, and A. E. Hassan. Studying the rela-

tionship between logging characteristics and the code quality

of platform software. Empirical Software Engineering, 2013.

[114] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang. Un-

derstanding log lines using development knowledge. In Proc.
of IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2014.

[115] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-

sonalized QoS prediction for web services via collaborative

filtering. In Proc. of the IEEE International Conference on
Web Services (ICWS), pages 439–446, 2007.

[116] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. Per-

sonalized QoS prediction for web services via collaborative

filtering. In Proc. of the IEEE International Conference on
Web Services (ICWS), pages 439 –446, 2007.



BIBLIOGRAPHY 197

[117] A. Shapiro and Y. Wardi. Convergence analysis of gradient

descent stochastic algorithms. Journal of Optimization Theo-
ry and Applications, 91:439–454, 1996.

[118] A. Squicciarini, B. Carminati, and S. Karumanchi. A privacy-

preserving approach for web service selection and provision-

ing. In Proc. of the IEEE International Conference on Web
Services (ICWS), pages 33–40. IEEE, 2011.

[119] N. Srebro and T. Jaakkola. Weighted low-rank approxima-

tions. In Proc. of the International Conference on Machine
Learning (ICML), pages 720–727, 2003.

[120] M. Steiner and E. W. Biersack. Where is my peer? evaluation

of the vivaldi network coordinate system in azureus. In

Proc. of the International IFIP TC 6 Networking Conference
(NETWORKING), pages 145–156, 2009.

[121] M. Steiner, B. G. Gaglianello, V. K. Gurbani, V. Hilt, W. D.

Roome, M. Scharf, and T. Voith. Network-aware service

placement in a distributed cloud environment. In Proc. of
the ACM SIGCOMM Conference (SIGCOMM), pages 73–74,

2012.

[122] D. Strom and J. F. van der Zwet. Truth and lies about latency

in the cloud. InterxionTM white paper, 2012.

[123] X. Su and T. M. Khoshgoftaar. A survey of collaborative

filtering techniques. Adv. Artificial Intellegence, 2009.

[124] R. L. R. T. H. Cormen, C. E. Leiserson and C. Stein. Intro-
duction to Algorithms. MIT Press, 3rd edition, 2009.

[125] X. Tang and J. Xu. Qos-aware replica placement for content

distribution. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 16(10):921–932, 2005.



BIBLIOGRAPHY 198

[126] S. Tbahriti, C. Ghedira, B. Medjahed, and M. Mrissa. Privacy-

enhanced web service composition. IEEE Transactions on
Services Computing (TSC), 7(2):210–222, 2014.

[127] G. Tian, J. Wang, K. He, P. C. K. Hung, and C. Sun. Time-

aware web service recommendations using implicit feedback.

In Proc. of the IEEE International Conference on Web Ser-
vices (ICWS), pages 273–280, 2014.

[128] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. Evolutionary de-

ployment optimization for service-oriented clouds. Software:
Practice and Experience, 41(5):469–493, 2011.

[129] C. Wang and J.-L. Pazat. A two-phase online prediction

approach for accurate and timely adaptation decision. In Proc.
of the IEEE International Conference on Services Computing
(SCC), pages 218–225, 2012.

[130] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orches-

trating the deployment of computations in the cloud with

conductor. In Proc. of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 27–27,

2012.

[131] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques (Second Edition). Morgan

Kaufmann Publishers Inc., 2005.

[132] B. Xia, Y. Fan, C. Wu, K. Huang, W. Tan, J. Zhang, and

B. Bai. Domain-aware service recommendation for service

composition. In Proc. of the IEEE International Conference
on Web Services (ICWS), pages 439–446, 2014.

[133] T. Xie, J. Pei, and A. E. Hassan. Mining software engineering

data. In Proc. of the International Conference on Software
Engineering (ICSE), pages 172–173, 2007.



BIBLIOGRAPHY 199

[134] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for

software engineering. IEEE Computer, 42(8):55–62, 2009.

[135] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proc. of the ACM Symposium on Operating Systems
Principles (SOSP), pages 117–132, 2009.

[136] W. Xu, V. Venkatakrishnan, R. Sekar, and I. Ramakrishnan.

A framework for building privacy-conscious composite web

services. In Proc. of the IEEE International Conference on
Web Services (ICWS), pages 655–662. IEEE, 2006.

[137] C. Yu and L. Huang. Time-aware collaborative filtering for

QoS-based service recommendation. In Proc. of the IEEE
International Conference on Web Services (ICWS), pages

265–272, 2014.

[138] D. Yu, Y. Liu, Y. Xu, and Y. Yin. Personalized QoS prediction

for web services using latent factor models. In Proc. of
the IEEE International Conference on Services Computing
(SCC), pages 107–114, 2014.

[139] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,

Y. Zhou, and S. Savage. Be conservative: enhancing failure

diagnosis with proactive logging. In Proc. of the USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 293–306, 2012.

[140] D. Yuan, S. Park, and Y. Zhou. Characterizing logging prac-

tices in open-source software. In Proc. of the International
Conference on Software Engineering (ICSE), pages 102–112,

2012.

[141] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Im-

proving software diagnosability via log enhancement. ACM



BIBLIOGRAPHY 200

Transactions on Computer Systems (TOCS), 30(1):4:1–4:28,

2012.

[142] Z. I. M. Yusoh and M. Tang. Composite saas placement and

resource optimization in cloud computing using evolutionary

algorithms. In Proc. of the IEEE International Conference on
Cloud Computing (CLOUD), pages 590–597, 2012.

[143] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,

J. Kalagnanam, and H. Chang. QoS-aware middleware for

web services composition. IEEE Transactions on Software
Engineering (TSE), 30(5):311–327, 2004.

[144] J. Zhan, C. Hsieh, I. Wang, T. Hsu, C. Liau, and

D. Wang. Privacy-preserving collaborative recommender sys-

tems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, 40(4):472–476, 2010.

[145] D. Zhang, S. Han, Y. Dang, J. Lou, H. Zhang, and T. Xie.

Software analytics in practice. IEEE Software, 30(5):30–37,

2013.

[146] D. Zhang and T. Xie. Software analytics: achievements

and challenges. In Proc. of the International Conference on
Software Engineering (ICSE), page 1487, 2013.

[147] L. Zhang, J. Zhang, and H. Cai. Services Computing:
Core Enabling Technology of the Modern Services Industry.

Tsinghua University Press, 2007.

[148] Q. Zhang, Q. Zhu, M. F. Zhani, and R. Boutaba. Dynamic

service placement in geographically distributed clouds. In

Proc. of the IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 526–535, 2012.

[149] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.

Ensembles of models for automated diagnosis of system



BIBLIOGRAPHY 201

performance problems. In Proc. of the Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks
(DSN), pages 644–653, 2005.

[150] W. Zhang, H. Sun, X. Liu, and X. Guo. Temporal qos-

aware web service recommendation via non-negative tensor

factorization. In Proc. of the International World Wide Web
Conference (WWW), pages 585–596, 2014.

[151] Y. Zhang, Z. Zheng, and M. R. Lyu. Wsexpress: A QoS-

aware search engine for web services. In Proc. of the IEEE
International Conference on Web Services (ICWS), pages 91–

98, 2010.

[152] Y. Zhang, Z. Zheng, and M. R. Lyu. Exploring latent features

for memory-based QoS prediction in cloud computing. In

Proc. of the IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 1–10, 2011.

[153] Y. Zhang, Z. Zheng, and M. R. Lyu. WSPred: A time-aware

personalized QoS prediction framework for web services.

In Proc. of the IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 210–219, 2011.

[154] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao. Orion:

shortest path estimation for large social graphs. In Proc. of the
3rd Workshop on Online Social Networks (WOSN), 2010.

[155] W. Zheng, Q. Zhang, and M. Lyu. Cross-library api recom-

mendation using web search engines. In Proc. of the Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 480–483,

2011.



BIBLIOGRAPHY 202

[156] Z. Zheng and M. R. Lyu. An adaptive qos-aware fault

tolerance strategy for web services. Empirical Software
Engineering, 15(4):323–345, 2010.

[157] Z. Zheng and M. R. Lyu. Collaborative reliability prediction

of service-oriented systems. In Proc. of the International
Conference on Software Engineering (ICSE), pages 35–44,

2010.

[158] Z. Zheng and M. R. Lyu. Personalized reliability prediction

of web services. ACM Transactions on Software Engineering
and Methodology (TOSEM), 22(2):12, 2013.

[159] Z. Zheng and M. R. Lyu. Selecting an optimal fault tolerance

strategy for reliable service-oriented systems with local and

global constraints. IEEE Transactions on Computers (TC),
64(1):219–232, 2015.

[160] Z. Zheng, M. R. Lyu, and H. Wang. Service fault tolerance

for highly reliable service-oriented systems: an overview.

SCIENCE CHINA Information Sciences, 58(5):1–12, 2015.

[161] Z. Zheng, H. Ma, M. R. Lyu, and I. King. WSRec: A collab-

orative filtering based web service recommender system. In

Proc. of the IEEE International Conference on Web Services
(ICWS), pages 437–444, 2009.

[162] Z. Zheng, H. Ma, M. R. Lyu, and I. King. QoS-aware

web service recommendation by collaborative filtering. IEEE
Transactions on Services Computing (TSC), 4(2):140–152,

2011.

[163] Z. Zheng, H. Ma, M. R. Lyu, and I. King. QoS-aware

web service recommendation by collaborative filtering. IEEE
Transactions on Services Computing (TSC), 4(2):140–152,

2011.



BIBLIOGRAPHY 203

[164] Z. Zheng, H. Ma, M. R. Lyu, and I. King. Collaborative web

service qos prediction via neighborhood integrated matrix

factorization. IEEE Transactions on Services Computing
(TSC), 6(3):289–299, 2013.

[165] Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, and J. Wang. QoS

ranking prediction for cloud services. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 24(6):1213–1222,

2013.

[166] Z. Zheng, Y. Zhang, and M. R. Lyu. Cloudrank: A QoS-

driven component ranking framework for cloud computing. In

Proc. of the IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 184–193, 2010.

[167] Z. Zheng, Y. Zhang, and M. R. Lyu. Investigating QoS

of real-world web services. IEEE Transactions on Services
Computing (TSC), 7(1):32–39, 2014.

[168] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King. Component

ranking for fault-tolerant cloud applications. IEEE Transac-
tions on Services Computing (TSC), 5(4):540–550, 2012.

[169] Z. Zheng, J. Zhu, and M. R. Lyu. Service-generated big data

and big data-as-a-service: An overview. In Proc. of the IEEE
International Congress on Big Data, pages 403–410, 2013.

[170] J. Zhou, H. Zhang, and D. Lo. Where should the bugs

be fixed? more accurate information retrieval-based bug

localization based on bug reports. In Proc. of the International
Conference on Software Engineering (ICSE), pages 14–24,

2012.

[171] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang.

Learning to log: Helping developers make informed logging

decisions. In Proc. of the International Conference on Soft-
ware Engineering (ICSE), pages 415–425, 2015.



BIBLIOGRAPHY 204

[172] J. Zhu, P. He, Z. Zheng, and M. R. Lyu. Towards online,

accurate, and scalable qos prediction for runtime service

adaptation. In Proc. of the IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 318–327,

2014.

[173] J. Zhu, P. He, Z. Zheng, and M. R. Lyu. A privacy-preserving

qos prediction framework for web service recommendation.

In Proc. of the IEEE International Conference on Web Ser-
vices (ICWS), pages 241–248, 2015.

[174] J. Zhu, Y. Kang, Z. Zheng, and M. R. Lyu. WSP: A network

coordinate based web service positioning framework for re-

sponse time prediction. In Proc. of the IEEE International
Conference on Web Services (ICWS), pages 90–97, 2012.

[175] J. Zhu, Z. Zheng, and M. R. Lyu. DR2: dynamic request

routing for tolerating latency variability in online cloud ap-

plications. In Proc. of the IEEE International Conference on
Cloud Computing (CLOUD), pages 589–596, 2013.

[176] J. Zhu, Z. Zheng, Y. Zhou, and M. R. Lyu. Scaling service-

oriented applications into geo-distributed clouds. In Proc. of
the International Workshop on Internet-based Virtual Com-
puting Environment (iVCE), pages 335–340, 2013.

[177] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Mur-

phy. Cross-project defect prediction: a large scale experiment

on data vs. domain vs. process. In Proc. of the Joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 91–100, 2009.


