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Sequence learning aims to process sequential data such as
text, speech, and video, and discover valuable knowledge from
them. Attention mechanism, as an effective method for de-
pendency modeling, has become an indispensable component
in deep sequence models such as recurrent neural networks
and self-attention networks. However, we believe that the
expressiveness of attention mechanism is not fully exploited, due
to either the application domains or model design deficiencies.
In this thesis, we explore effective ways to improve attention
mechanisms for sequence learning from multiple perspectives.
Our exploration ranges from shallow attention to deep self-
attention, from sequence prediction to sequence generation, and
engages applications from programming languages to natural
language processing.

Firstly, we explore the conventional shallow attention (i.e.,
RNN-based attention) applied to source code completion. We
treat the code completion task as a language modeling problem
and propose a tailored attention mechanism that can exploit
the structure information on program’s abstract syntax tree. To
deal with the out-of-vocabulary (OoV) words in a program, we
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further propose a pointer mixture network that learns to copy
OoV words from local context based on the attention weights.
Experiments on two benchmarked datasets demonstrate the
effectiveness of our proposed methods.

Secondly, we focus on multi-head attention, one of the key
components in self-attention mechanism. Multi-head attention
is appealing for its ability to jointly extract different types
of information from multiple representation subspaces. We
propose two approaches to better exploit such diversity to
improve multi-head attention. On one hand, we introduce a
disagreement regularization to explicitly encourage the diversity
among multiple attention heads. On the other hand, we
propose to better aggregate the information distributed in the
extracted partial-representations with the routing-by-agreement
algorithm. We apply our approaches to the Transformer ar-
chitecture and validate their effectiveness on both machine
translation and language representation tasks.

Thirdly, we continue to explore the popular deep self-attention,
i.e., the Transformer architecture for sequence-to-sequence learn-
ing. The strength of Transformer lies in its ability to capture
different linguistic properties of the input sentence by different
layers and different attention heads. Rather than using the last
layer or linearly combining all attention heads, we study how
to effectively aggregate the representations learned by different
components. Specifically, we propose a bilinear pooling-based
approach with low-rank approximation and first-order exten-
sion. Experiments on machine translation tasks show superior
performances over the baselines.

Lastly, we study how to apply pre-trained attention models
such as BERT to the downstream semantic parsing task, which
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generates executable code directly from natural language ut-
terances. Current semantic parsers are mostly syntax-specific
thus cannot generalize. We propose a model called BERT-
LSTM that employs a pre-trained BERT encoder and a general-
purpose LSTM decoder, to accomplish both effectiveness and
generalization. We further incorporate a pointer network for
copying code tokens from the inputs. We validate BERT-LSTM
on four code generation datasets where the model achieves state-
of-the-art on three of them.

In summary, this thesis targets at designing effective and
customized solutions for improving attention mechanisms in
sequence learning. Extensive experiments on various datasets
across different applications demonstrate the effectiveness of our
proposed methods.
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論文題目：序列學習中有效的注意力機制

作者 ：李建

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

序列學習旨在處理序列數據例如文本、語音和視頻，并從中發

現有用的知識。注意力機制作為一種有效的依賴建模方法，已

被廣泛應用於深度序列模型中比如循環神經網絡和自注意力網

絡。然而，由於不同應用場景的需求和模型本身的缺陷，我們

認為當下的注意力機制並沒有被充分利用。在本論文中，我們

探索了各種改進序列學習中注意力機制的有效方法。我們從各

個方面進行探索，包括淺層注意力和深層自注意力，序列預測

和序列生成，以及編程語言和自然語言處理上的應用。

首先，我們關注傳統基於循環神經網絡的淺層注意力并將其應

用在源代碼補全任務上。我們將代碼補全看做一個自然語言建

模問題并提出一種定制的注意力機制以利用程序抽象語法樹上

的結構信息。為了解決程序中的未登錄詞問題，我們進一步提

出了一個混合指針網絡模型，讓其從局部上下文中基於注意力

權重複製未登錄詞作為預測結果。我們在兩個基準數據集上進

行實驗并驗證了我們方法的有效性。

其次，我們關注自注意力機制中的一個重要模塊：多頭注意

力。多頭注意力的好處在於能同時從多個表示子空間中抽取到

不同的信息。我們提出兩種方法來更好地利用這種差異性來改

進多頭注意力。一方面，我們提出一種差異性約束用來顯示地
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鼓勵多個注意力頭中的差異性。另一方面，我們提出使用協同

路由算法來更好地融合各個子空間中的不同信息。我們將所提

出的方法應用到Transformer模型上，并在機器翻譯和語言表
示實驗上證明了我們方法的有效性。

再其次，我們繼續探索深層自注意力機制，即Transformer模
型應用於序列到序列的學習。Transformer的優點在於能從不
同的層次或不同的注意力頭中抽取到有關輸入語句的不同的語

言學特性。不同於傳統方法只用最後一層表示或者線性結合多

頭表示，我們研究如何有效地融合不同模塊中學習到的表示。

具體地，我們提出一種基於雙線性池化的方法，并做了低階近

似和擴展。在機器翻譯任務上進行的實驗展示了我們方法的有

效性。

最後，我們研究如何將預訓練注意力模型比如BERT應用到下
游的代碼生成任務上。當前的代碼生成模型大多數具有任務專

一性，所以並不能泛化。我們提出一個BERT-LSTM模型用來
同時兼顧代碼生成中的有效性和泛化性。該模型使用一個預訓

練好的BERT編碼器，和一個通用的LSTM解碼器，并進一步
嵌入了指針網絡用來從輸入語句中拷貝代碼。我們在四個公開

的代碼生成數據集上驗證BERT-LSTM，並在其中三個取得了
當前最優成績。

綜上所述，本論文的目標是設計有效和定制的方案來改進序列

學習中的注意力機制。在不同應用和不同數據集上廣泛進行的

實驗證明了我們方法的有效性。
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Chapter 1

Introduction

This thesis presents our research on designing effective attention
mechanisms for sequence learning, which is an important field of
machine learning with a wide range of applications. We provide
a brief overview of the research problems under study in Section
1.1, and highlight the main contributions of this thesis in Section
1.2. Section 1.3 outlines the thesis structure.

1.1 Overview

Sequential data is prevalent in our everyday life. Any data
that arises through the measurement of time series is sequential
data, for example, the rainfall on successive days at a particular
location, the daily values of a stock price, and the acoustic
features at consecutive time frames used for speech recognition,
among others. Sequential data also exists in domains other than
time series such as the sequence of characters and words in an
English sentence, or the sequence of nucleotide base pairs along
a strand of DNA [16].
We are interested in discovering knowledge from sequential data
for various applications, for example, forecasting. Forecasting
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It’s a nice ?Prediction:

It’s a nice day

Translate to French

C'est une belle journée

Generation:

Figure 1.1: The two types of sequence learning tasks.

is the process of predicting the future based on current and
previous data. The major challenge is extracting the patterns
in the sequence of data and then using these patterns to analyze
the future. If we were to hand-code the patterns, it would be
inefficient and error-prone for the large amounts of sequential
data in today’s big data era. As a result, sequence learning
arises as a research topic which automatically finds statistically
relevant patterns among sequential data examples. There are
generally two types of tasks in sequence learning, i.e., sequence
prediction and sequence generation, which are illustrated in
Figure 1.1. Sequence prediction attempts to predict the next
immediate element of a sequence based on all the preceding
elements, such as sentence completion. Sequence generation is
basically the same as sequence prediction but attempts to piece
together a sequence one by one as the way it naturally occurs,
such as machine translation.
A great number of research efforts have been devoted to sequence
learning. As pointed out by Agrawa et al. [1], the core research
problem of sequence learning is dependency modeling, which
can influence the features and meaning of a sequence to a
large extent. To this end, Markov models [16] are proposed
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(a) Markov Model (b) Recurrent Neural Network

(c) RNN with Attention (d) Self-Attention Network

Figure 1.2: Different approaches to dependency modeling. (a) A first-order
Markov chain where the prediction depends only on its prior element. (b)
RNN naturally models the sequentiality. (c) Attention mechanism eases the
hidden state bottleneck in RNN. (d) Self-attention parallelly captures the
dependencies among all elements.

to probabilistically model the dependencies in sequential data.
There is an assumption in Markov models that predictions only
rely on most recent observations, as illustrated in Figure 1.2(a).
As a result, Markov models can effectively capture short-term
dependencies but fail on the long-term [96]. With the recent
success of deep learning in all kinds of areas, Recurrent Neural
Network (RNN) [50] has been adopted for sequence learning. As
shown in Figure 1.2(b), RNN naturally models the sequentiality
thus is able to deal with long sequences. Based on RNN, Long
Short-Term Memory (LSTM) network and encoder-decoder
framework have been developed and are widely employed in
various applications. However, RNN has a so-called hidden
state bottleneck [23], i.e., all prior observations are encoded in
the last hidden vector which suffers from information loss as
the sequence becomes longer. This problem restricts RNN’s
performance on capturing long-term dependencies.
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Attention mechanism [7] is proposed to enhance RNN and
mitigate the hidden state bottleneck. Figure 1.2(c) depicts how
attention works: when predicting the current element, we use
attention weights to denote how strongly it is correlated with
(or attends to) previous elements and take the weighted sum
of previous values to assist current prediction. These shortcut
connections with all prior elements can effectively capture long-
term dependencies. Besides, attention mechanism increases
the interpretability of RNN models by explicitly showing how
much each element contributes to the prediction with the
attention weights. Nowadays, attention mechanism has become
an indispensable component in deep sequence models to improve
dependency modeling.
Despite its effectiveness, RNN with attention still processes the
elements in sequential order which prohibits parallel computa-
tion. This quickly becomes problematic when training on large-
scale sequential data. Self-attention network (SAN) [142] is
proposed to discard the recurrent architecture and rely solely
on attention mechanisms, resulting in increased parallelization
and reduced training time. As illustrated in Figure 1.2(d),
SAN simultaneously learns the dependencies among all elements
through the attention weights, where colored arrows denote
parallel operations. Since there is no sequential architecture, to
encode the order information, SAN also adds positional encoding
to the inputs. Due to its effectiveness and efficiency, SAN
has achieved state-of-the-art on many sequence learning tasks
such as speech recognition and machine translation. As SAN
normally stacks in deep layers, to distinguish it from RNN-based
attention, we term the former as deep attention and the latter
as shallow attention.
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Although conceptually simple and empirically powerful, atten-
tion mechanisms still face challenges when applied for sequence
learning. First, since attention mechanisms are originally
proposed for text data, we may need special designs for other
domains of data. In this thesis, we focus on source code data.
Compared to text data, source code is highly structured since
it has well-defined grammar and syntax. Utilizing the under-
lying syntactic rules can help us further improve the learning
performance. Besides, source code has larger vocabularies than
text data as programmers can define arbitrary variable names,
causing the Out-of-Vocabulary problem. Specifically-designed
solutions are required to tackle such a problem.
Second, attention mechanisms still have design deficiencies.
Previous research has improved the shallow attention from
various aspects, for example, enhancing attention scopes with
global and local attention [99]. Deep self-attention, however, is
not fully explored as the concept is relatively new. Self-attention
generally involves multiple components working together, e.g.,
multiple attention heads and multiple layers. In this thesis,
we explore how to coordinate these components towards better
performance, which is rarely studied by previous work.
Built on deep self-attention, pre-trained attention models (e.g.,
BERT [32], GPT [117]) have recently gained growing popularity.
The core idea is to first train those models on large-scale
text corpus to learn universal language representations, then
fine-tune them on downstream tasks with supervised training.
While considerable efforts have been dedicated to building
better models in the pre-training phase, the fine-tuning phase
is insufficiently investigated as different downstream tasks have
different characteristics.
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Attention for 

Sequence Learning

Shallow 

Attention

Deep 

Attention

Pre-trained 

Attention Models

Code Completion

Code Generation

Multi-Head Attention

Representation Composition

Figure 1.3: Overview of the research in this thesis.

Therefore, the research of this thesis comprises three parts, as
depicted in Figure 1.3. In the first part, we apply shallow atten-
tion (i.e., RNN-based attention) to the source code completion
task by designing tailored structures to exploit the properties of
code. In the second part, we focus on improving deep attention
(i.e., self-attention) based on two design deficiencies, namely
multi-head attention and representation composition. In the
third part, we explore how to apply pre-trained attention models
such as BERT to the downstream code generation task.

1.2 Thesis Contributions

In this thesis, we make contributions to design effective attention
mechanisms for sequence learning in the following ways:

1. Neural Attention and Pointer Networks for Code
Completion

Intelligent code completion has become an essential re-
search task to accelerate modern software development. To
facilitate effective code completion for dynamically-typed
programming languages, we apply neural language models
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by learning from large codebases, and develop a tailored
attention mechanism for code completion. To deal with
the out-of-vocabulary (OoV) words in programs, we further
propose a pointer mixture network which is inspired by
the prevalence of locally repeated terms in program source
code. Based on the context, the pointer mixture network
learns to either generate a within-vocabulary word through
an RNN component, or copy an OoV word from local
context through a pointer component. Experiments on two
benchmarked datasets demonstrate the effectiveness of our
attention mechanism and pointer mixture network on the
code completion task [87].

2. Improving Multi-Head Attention via Exploiting Di-
versity

Multi-head attention is one of the key components in
self-attention mechanism, with the appealing ability to
jointly attend to information from different representation
subspaces at different positions. In this thesis, we propose
two approaches to better exploit such diversity for multi-
head attention. First, we introduce three disagreement
regularizations to explicitly encourage the diversity among
multiple attention heads [85]. Specifically, we respectively
encourage the subspace, the attended positions, and the
output representations associated with each attention head
to be different from other heads. Second, we propose
to better aggregate the diverse information distributed in
the extracted partial-representations with the routing-by-
agreement algorithm [88]. The routing algorithm iteratively
updates the proportion of how much a part should be
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assigned to a whole based on the agreement between parts
and wholes. Experimental results on both machine trans-
lation tasks and sentence encoding tasks demonstrate the
effectiveness and universality of the proposed approaches.

3. Improving Self-Attention Networks via Represen-
tation Composition

Built on stacking of self-attention networks, the Trans-
former architecture has achieved state-of-the-art on many
NLP tasks. The strength of Transformer lies in its abil-
ity to capture different linguistic properties of the input
sentence by different layers and different attention heads.
Rather than using the last layer or linearly combining all
attention heads, in this thesis, we study how to effectively
compose (or aggregate) the representations learned by dif-
ferent components (i.e., multi-layer networks or multi-head
attention) [86]. Specifically, we leverage bilinear pooling
to model pairwise multiplicative interactions among indi-
vidual neurons, and a low-rank approximation to make
the model computationally feasible. We further propose
extended bilinear pooling to incorporate first-order repre-
sentations. Experiments on machine translation tasks show
that our model consistently improves performances over the
baseline. Further analyses demonstrate that our approach
indeed captures more syntactic and semantic information.

4. Pre-trained Attention Models for Code Generation

Semantic parsing is the task to map natural language utter-
ances to logical forms or executable code. The state-of-the-
art semantic parsing models are mostly syntax-specific and
heavily-engineered, thus they are not generalizable. In this
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thesis, we explore how to apply the powerful pre-trained
attention models such as BERT to build semantic parsers
that are both effective and generalizable. Specifically, We
propose a novel BERT-LSTM model that employs a pre-
trained BERT encoder followed by an LSTM decoder.
We also adopt a pointer-generator network to learn to
copy code tokens from the input. We demonstrate the
effectiveness and universality of our model on three code
generation tasks, where BERT-LSTM achieves state-of-the-
are on three of the four datasets. We also highlight several
design principles for code generation, such as the use of
LSTM decoder and greedy decoding, and fine-tuning BERT
parameters.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2

In this chapter, we give a systematic review of the back-
ground knowledge and related work on sequence learn-
ing and attention mechanisms. Firstly, we briefly intro-
duce traditional sequence learning methods in Section 2.1,
including TF-IDF and Markov models. Then, we re-
view neural sequence learning (i.e., deep learning-based)
approaches in Section 2.2, including RNN and LSTM,
sequence-to-sequence learning and attention mechanisms,
as well as pointer networks. After that, we introduce the
self-attention mechanism and the Transformer architecture
in Section 2.3. We also provide recent related studies on
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self-attention. Finally, in Section 2.4, we review pre-trained
attention models and provide the related work.

• Chapter 3

This chapter presents our study on adapting shallow at-
tention for the source code completion task. We develop a
parent attention to exploit the structure information and
a pointer mixture network to solve the OoV problem. In
particular, Section 3.1 introduces the code completion task
and the problems it encounters. We then present our
proposed approaches in Section 3.2 including the parent
attention and pointer mixture network. Section 3.3 shows
the evaluation details covering the datasets, experimental
setup, experimental results, discussions, and case study.
We show some related work on statistical code completion
in Section 3.4 and summarize the chapter in Section 3.5.

• Chapter 4

In this chapter, we explore how to improve multi-head
attention, the core component in deep self-attention. To
this end, we propose disagreement regularizations and
routing-by-agreement algorithms to better exploit the di-
versity among multiple attention heads. Specifically, Sec-
tion 4.1 presents our motivation for exploiting the di-
versity for multi-head attention. Section 4.2 describes
some background knowledge. We elaborate the details of
the two proposed approaches and how to combine them
in Section 4.3. Section 4.4 and Section 4.5 present the
experiments on machine translation and sentence encoding
tasks. Section 4.6 shows some related work and Section 4.7
concludes this chapter.
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• Chapter 5

In this chapter, we continue to explore the deep self-
attention. We propose a low-rank bilinear pooling-based
approach to effectively aggregate the representations learned
by different attention heads or layers. To be specific, we
introduce our motivation for exploiting neuron interactions
with bilinear pooling in Section 5.1. We then present some
background knowledge in Section 5.2. Section 5.3 details
our bilinear pooling approach for information aggregation.
Section 5.4 presents evaluation including system setup,
experimental results and Section 5.5 presents analysis. Sec-
tion 5.6 illustrates some related work on bilinear pooling.
Finally, we summarize this chapter in Section 5.7.

• Chapter 6

This chapter presents our study on fine-tuning pre-trained
attention models on the semantic parsing (i.e., code gener-
ation) task. We design a novel model called BERT-LSTM
that are shown both effective and generalizable across
several datasets. Specifically, Section 6.1 introduces the
background and motivation for building a generalizable se-
mantic parser. Section 6.2 elaborates the details about our
BERT-LSTM model, including the BERT encoder, LSTM
decoder, and pointer network in between. Section 6.3
details our evaluation on four code generation datasets,
consisting of the explanations of datasets and system setup,
the experimental results, and code generation case studies.
We present some related work on the semantic parsing task
in Section 6.4 and conclude this chapter in Section 6.5 with
several empirical finds.
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• Chapter 7

The last chapter summarizes this thesis and provides some
potential future directions for sequence learning with at-
tention mechanisms that deserve further exploration.

2 End of chapter.



Chapter 2

Background Review

This chapter reviews some background knowledge and related
work. We first introduce traditional sequence learning methods
such as Markov models. Then we explain neural (i.e., deep
learning-based) sequence learning approaches including RNN
and attention mechanisms in Section 2.2. Next, we describe
self-attention mechanisms and pre-trained attention models in
Section 2.3 and Section 2.4, respectively. In each subsection, we
first present the technical details, then the related studies.

2.1 Traditional Sequence Learning

A great number of research efforts have been devoted to se-
quence learning. Among them, the simplest method is to treat
the sequential data as independent elements and ignore their
correlations. In this way, the method only counts the elements’
frequencies, which has inspired models like Bag-of-Words and
TF-IDF [119]. TF-IDF refers to term frequency–inverse docu-
ment frequency, which is a numerical statistic that is intended
to reflect how important a word is to a document in a collection
or corpus. TF-IDF has been widely used by search engines as a

13
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central tool in scoring and ranking a document’s relevance given
a user query [17, 132]. Though effective to certain extents, such
methods fail to exploit the sequential dependencies in sequential
data.
As pointed out by Agrawa et al. [1], the core research problem of
sequence learning is dependency modeling, which can influence
the features and meaning of a sequence to a large extent. To this
end, Markov models [16] are proposed to probabilistically model
the dependencies in sequential data. From a probabilistic view,
we can adopt the product rule to denote the joint distribution
for a sequence of elements in the following form:

p(x1, . . . ,xN) =
N∏
n=1

p(xn|x1, . . . ,xn−1). (2.1)

As the above equation is generally intractable, to simplify it, we
can assume that each of the right side conditional distributions is
independent of all prior elements except the most recent one. In
this way, we get the first-order Markov chain, which can express
Equation 2.1 as following:

p(x1, . . . ,xN) = p(x1)
N∏
n=2

p(xn|xn−1). (2.2)

Therefore, the conditional distribution for element xn given all
the prior elements up to time n is conditioned only on the
immediately preceding element xn−1.
To further relax the independent assumption, for example, if
we allow the predictions to depend on previous two elements,
we can obtain the second-order Markov chain as illustrated in
Figure 2.1(a). The joint distribution is now expressed by:

p(x1, . . . ,xN) = p(x1)p(x2|x1)
N∏
n=3

p(xn|xn−1,xn−2). (2.3)
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(a) second-order Markov chain

(b) hidden Markov model

x1 x2 x3 x4

x1 x2 x𝑛−1 x𝑛

z1 z2 z𝑛−1 z𝑛

Figure 2.1: Graphical illustration of (a) a second-order Markov chain where
the prediction depends on the two previous observations, and (b) a hidden
Markov model with {zn} being hidden variables.

Similarly, we can extend the above models to an M th order
Markov chain where the conditional distribution for a particular
element depends on the previous M elements. However, the
cost for such increased flexibility is the much larger number of
parameters in the model. The number of parameters increases
exponentially with M , making the model impractical for larger
values of M .
To overcome the above contradiction between expressiveness
and complexity, hidden Markov model (HMM) [41] is proposed
where the observations are not limited by the Markov assump-
tion to any order. The core idea is to introduce additional latent
variables in addition to the explicit observation. Specifically,
for each observation xn, a corresponding latent variable zn is
introduced. The assumption is that the latent variables form
a Markov chain rather than the observations, as the graphical
structure depicted in Figure 2.1(b). As a result, the joint



CHAPTER 2. BACKGROUND REVIEW 16

distribution for this model is expressed as:

p(x1, . . . ,xN , z1, . . . , zN) = p(z1)
 N∏
n=2

p(zn|zn−1

 N∏
n=1

p(xn|zn).

(2.4)
From the d-separation property, we see that the path connecting
any two observed variables xn and xm always exists via the
latent variables. Therefore, the distribution p(xn|x1, . . . ,xn−1)
for prediction xn given all prior observations does not show any
conditional independence properties. Note that in HMM, the
latent variables {zn} should be discrete.
The HMM has been widely employed in various applications
such speech recognition [67, 116], natural language model-
ing [101], computational finance [130], musical score follow-
ing [112], on-line handwriting recognition [108], transportation
forecasting [168], and biological sequential data analysis like
proteins and DNA [80, 40, 8], etc.

2.2 Neural Sequence Learning

Neural sequence learning refers to deep learning-based ap-
proaches such as RNN and attention mechanisms.

2.2.1 RNN and LSTM

In the last few years, as deep learning achieves success in all
kinds of areas, Recurrent Neural Networks (RNNs) have been
extensively adopted for sequence learning although proposed
many years ago [122]. One of the core challenges for sequence
learning is the variable sequence lengths, as it is impractical
to design models with separate parameters for each length of
the sequence. RNN overcomes this challenge through parameter
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Figure 2.2: Illustration of an unrolled RNN. Figure is from [28].

sharing, which makes it possible to extend and apply the model
to sequences of different lengths and generalize across them. As
illustrated in Figure 2.2, RNN has a cycle connection that can
be unrolled along time steps for arbitrary long sequences. For
each time step, RNN shares the same parameters. Formally, an
RNN cell can be expressed as:

h(t) = f(h(t−1),x(t); θ), (2.5)

where x(t) is the system input and h(t) is the system state (it
is generally called hidden state as it is the hidden units of the
network), transition function f() maps the state at t to the
state at t + 1. The same parameters, i.e., the values of θ used
to parameterize f , are used for all time steps.
Though the chain-like RNNs naturally model sequentiality and
are empirically effective, RNNs still suffer from long-range
dependencies. The basic problem is that during gradient descent
training, the gradients propagated over many time steps tend
to either vanish (most of the cases) or explode [50]. Training
on long-term dependencies will produce exponentially smaller
weights (as multiplying many Jacobians) in comparison to the
short-term ones.
The above problem has been explored in depth by many
studies [62, 38, 12] and many solutions are developed. Among
them, Long Short-Term Memory networks (LSTMs) [63] are
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(a) RNN Cell (b) LSTM Cell

Figure 2.3: Illustration of a standard RNN cell and an LSTM cell. [28]

the most effective one that work tremendously well on a large
variety of problems. The secret ingredient of LSTM is the gating
mechanism, which dynamically decides how much information
should be removed or added to the cell state. Gates are a way
to optionally let information through. They are composed out
of a sigmoid neural net layer which outputs numbers between
zero and one, and a point-wise multiplication operation. An
LSTM cell has three of these gates, namely forget gate, input
gate, and output gate, to protect and control the cell state. We
depict a standard RNN cell and an LSTM cell in Figure 2.3. We
can see that the standard RNN cell only contains a single tanh
layer, while there are four interacting layers in the LSTM cell.
Ct denotes the LSTM cell states.
Formally, an LSTM cell with these gates is expressed as:

ft = σ(Wf · [ht−1, xt] + bf)
it = σ(Wi · [ht−1, xt] + bi)
C̃t = tanh (WC · [ht−1, xt] + bC)
Ct = ft ∗ Ct−1 + it ∗ C̃t
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ot = σ(Wo[ht−1, xt] + bo)
ht = ot ∗ tanh (Ct)

where σ refers to the sigmoid function. ft, it and ot denote the
forget gate, input gate and output gate, respectively.
Besides the above LSTM, there are also many LSTM variants
in the literature. Gated Recurrent Units (GRU) [24] are the
most popular one. It combines the forget gate and input gate
as a single update gate, and merges the cell state and hidden
state. In addition, Gers et al. [48] propose to add “peephole
connections” to LSTM and let the gate layers look at the cell
state. There are other variants like Depth Gated RNNs by Yao
et al. [161] and Clockwork RNNs by Koutnik et al. [79].
Several investigations have been conducted in terms of these
LSTM variants. Greff et al. [52] conduct a nice comparison
across popular variants and find that they are all about the
same. Jozefowicz et al. [71] test more than ten thousand RNN
architectures and find that adding a bias of 1 to the LSTM forget
gate making LSTM the best explored architecture.

2.2.2 Seq2Seq Learning and Attention

With a single RNN/LSTM, we can map an input sequence to
a fixed-size vector or an output sequence of the same length.
However, for many sequence generation applications like ma-
chine translation and question answering, the input and output
sequences are generally not of the same length (though might
be related). In this context, sequence-to-sequence (Seq2Seq)
learning [135] is proposed in which RNNs map a variable-
length sequence to another variable-length sequence, as shown
in Figure 2.4.
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Figure 2.4: An encoder-decoder architecture for Seq2Seq learning. The blue-
colored cell denotes the context vector produced by the encoder and serves
as input to the subsequent decoder.

Sequence-to-sequence learning depends on the encoder-decoder
architecture, composed of an encoder RNN and a decoder RNN.
The encoder (or reader) RNN processes and summarizes the
input sequence as a context vector C. The decoder (or writer)
RNN generates the output sequence conditioned on that fix-
length context vector. The last hidden state of the encoder
RNN is typically used as the context vector that served as input
to the decoder RNN, as the blue-colored cell in Figure 2.4.
The two RNNs are trained jointly to maximize the probability
of generating the correct output sequence based on the input
sequence. There is no constraint that the encoder and decoder
must have the same size of hidden layer.
The limitation of such encoder-decoder architecture is obvious:
the context vector C output by the encoder RNN may have
a dimension that is too small to adequately summarize a
long sequence and tend to forget the earlier inputs. This
problem is also called hidden state bottleneck, which restricts the
performance on capturing long-term dependencies. Attention
mechanism [7] is therefore developed to solve the problem in
the context of machine translation.
As illustrated in Figure 2.5, attention mechanisms add shortcut
connections from each decoder step St to all the encoder hidden
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Context Vec.

Figure 2.5: Illustration of attention mechanism in an encoder-decoder
architecture. αt,i denotes the attention weights.

states h (in addition to the original connection to prior decoder
step), and use attention weights αt,i to denote the connection
strengths. Then the context vector Ct is computed by taking
the sum of all encoder hidden states weighted by the attention
weights. By doing so, the model searches for a set of positions in
the encoder hidden states where the most relevant information
is available, thus effectively captures long-term dependencies.
The above process can be formally expressed by:

Ct =
T∑
i=1

αt,ihi

αt,i = align(yt, xi)

= exp(score(st−1, hi))∑n
i′=1 exp(score(st−1, hi′))

where Ct is the context vector and αt,i denotes the alignment
score between output yt and input xi.
Another benefit of attention mechanism is the increased inter-
pretability by explicitly showing how much each input element
contributes to the prediction with the attention weights.
The encoder-decoder architecture with attention has been ex-
tremely successful in many sequence-to-sequence learning tasks,
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for example, machine translation [7, 99], summarization [109,
124], reading comprehension [126], question answering [139],
semantic parsing [34], and among others. Besides the nat-
ural language processing field, the model also achieves great
success in other areas such as speech recognition [25], image
caption [152, 72, 164] and visual question answering [151, 98].
Machine translation is a typical sequence-to-sequence learning
task and has received a great number of research efforts. The
above Seq2Seq learning and attention mechanism are both
originally proposed for machine translation [135, 7]. Armed with
deep learning techniques, neural machine translation (NMT) has
demonstrated ground-breaking performances over traditional
phrase-based statistical machine translation (SMT) [18]. Many
research works try to further improve the attention mechanism
for NMT. Luong et al. [99] propose local attention to refine the
attention scope, which calculates the relevance with a subset
of the source sentence. Yang et al. [160] enhance the attention
structure by modeling the relationship of a word with its previ-
ous and subsequent attention. Feng et al. [43] propose recurrent
attention mechanism to attain more accurate alignments. Tu et
al. [140] propose the coverage mechanism into the decoder which
adjusts the context vector in NMT by adding coverage informa-
tion during attention calculation, thus improves the adequacy
of translation. Combining several advanced techniques, Google
develops GNMT [148], an industry-level model applied in Google
Translation. To solve the OOV (i.e., rare words) problem in
NMT, Sennrich et al. [125] propose Byte Pair Encoding (BPE)
to split each word into sub-word units during preprocessing,
which are now widely adopted. Following the same idea, word-
piece tokenization is proposed in GNMT [148]. Besides, Ling et
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al. [95] propose character-level NMT as an alternative to deal
with the OOV problem. Convolutional sequence-to-sequence
learning is proposed by Gehring et al. [47] to discard RNNs
and only utilize convolution operations for machine translation.

2.3 Self-Attention Networks

The sequential nature of RNNs precludes parallelization within
the training samples, which becomes critical for long sequences
and large-scale datasets.
Self-attention networks (SANs) [93, 142], as a variant of the
above attention mechanisms, have recently drawn increasing
interests due to their flexibility in parallel computation and the
capability to model both long and short-term dependencies. As
illustrated in Figure 1.2(d), SANs simultaneously calculate the
attention weights between each pair of the tokens in a sequence,
thus capturing long-range dependencies more directly than their
RNN counterpart.
Formally, given an input layer H = {h1, . . . , hn} which is
generally the embedded representations of the input tokens, the
output hidden states of SAN are constructed by correlating (or
attending) to the states of input layer. Specifically, SAN first
transforms the input layer H ∈ Rn×d into queries Q ∈ Rn×d,
keys K ∈ Rn×d, and values V ∈ Rn×d:

Q
K
V

 = H


WQ

WK

WV

 , (2.6)

where {WQ,WK ,WV } ∈ Rd×d are trainable parameter matri-
ces with d being the dimensionality of input states. The output
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layer O ∈ Rn×d of SAN is constructed by

O = Att(Q,K) V, (2.7)

where Att(·) is an attention function, which can be imple-
mented as either additive attention [7] or dot-product atten-
tion [99, 142]. In this thesis, we employ scaled dot-product
attention, which has proved in similar performance with its
additive counterpart but much faster and more space-efficient
in practice [142]:

Att(Q,K) = softmax(QKT

√
d

), (2.8)

where scaling factor d is the dimensionality of layer states.

Transformer Architecture Based on SANs, Vaswani et al. [142]
propose the Transformer architecture, which has achieved record-
setting performances in various applications such as machine
translation and constituency parsing. We illustrate the ar-
chitecture of Transformer in Figure 2.6, which is in essence
an encoder-decoder framework. We can see that both the
encoder and decoder are stacked in N identical layers. Each
layer has two kinds of sub-layers, i.e., multi-head self-attention
mechanism and fully connected feed-forward network. Residual
connection [56] and layer normalization [6] are added around
each sub-layer to facilitate better training. A recent analysis
paper [33] has revealed that the most contributing components
in Transformer are the multi-head attention and multi-layer net-
works. Many follow-up research has been conducted. Therefore,
in the following sections, we present more details and related
studies of the two components.
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Figure 2.6: Illustration of the Transformer architecture.
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2.3.1 Multi-Head Attention

Instead of performing a single attention function as in Equa-
tion 2.7, Vaswani et al. [142] find it beneficial to capture different
context features with multiple individual attention functions.
Specifically, multi-head attention transforms Q, K and V into
H subspaces with different, trainable linear projections:

Qh,Kh,Vh = QWQ
h ,KWK

h ,VWV
h , (2.9)

where {Qh,Kh,Vh} are respectively the query, key, and value
representations of the h-th head. Then individual attention
heads parallelly perform Equation 2.7 to get the output of each
head Oh. The multiple outputs are further combined together
as the final output.
Multi-head attention has shown promising results in many
natural language processing (NLP) tasks, such as machine
translation [142, 33], semantic role labeling [131], dialog [137],
subject-verb agreement task [136]. Previous work shows that
multi-head attention can be further enhanced by encouraging
individual attention heads to extract distinct information. For
example, Lin et al. [93] introduce a penalization term to reduce
the redundancy of attention weights among different attention
heads, and Yang et al. [157] model the interactions among
attention heads through convolution. Yang et al. [155] also
propose local self-attention and show that different attention
heads have different attention scopes. Shen et al. [127] explicitly
use multiple attention heads to model different dependencies of
the same word pair, and Strubell et al. [131] employ different
attention heads to capture different linguistic features of the
sentence. In this thesis, we aim to improve multi-head attention
by exploring more about the diversity.
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2.3.2 Multi-Layer Networks

As shown in Figure 2.6, the Transformer encoder consists of
a stack of N identical layers. Each layer has two sub-layers,
the first is a self-attention network and the second is a fully
connected feed-forward network. In the n-th layer, the outputs
of the first sub-layer Cn

e and the second sub-layer Hn
e are

formally expressed as:

Cn
e = Ln(Att(Qn

e ,Kn−1
e ,Vn−1

e ) + Hn−1
e ),

Hn
e = Ln(Ffn(Cn

e ) + Cn
e ), (2.10)

where Att(·), Ln(·), and Ffn(·) are self-attention network,
layer normalization, and feed-forward network, respectively.
{Qn

e ,Kn−1
e ,Vn−1

e } are query, key and value vectors transformed
from the (n-1)-th encoder layer Hn−1

e . The Transformer decoder
is basically the same but has one more sub-layer to perform
attention between encoder and decoder.
Exploiting multi-layer representations has been well studied in
the computer vision field. He et al. [56] propose a residual
learning framework that adds shortcuts to layers and encourages
gradient flow. Huang et al. [64] further extend the idea by
introducing densely connected layers. Recently, Yu et al. [165]
propose deep layer aggregation strategies to fuse more informa-
tion across layers. Exploiting multi-layer representations has
also been studied in the NLP community. Peters et al. [113]
have found that linearly combining different layers is helpful
and improves their performances on various NLP tasks. In the
context of NMT, several neural network-based approaches to
fuse information across historical layers have been proposed.
Shen et al. [128] propose dense information flow and dense
attention structure to build a densely connected NMT. Dou
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et al. [36] propose to aggregate the NMT layers with iterative
and hierarchical aggregation strategies, as well as routing-by-
agreement algorithm [37]. Bapna et al. [9] propose transparent
attention to ease the optimization of deep NMT models. They
all demonstrate that aggregating deep layers is beneficial for
NMT, which will also be explored in this thesis.

2.4 Pre-trained Attention Models

Recently, the emergence of pre-trained models (PTMs) has
transformed the field of NLP research. Since most PTMs
are built on self-attentional Transformer architecture (e.g., the
Transformer encoder), to make this thesis more consistent, we
also call PTMs pre-trained attention models.
The core of deep learning research is representation learning.
When it comes to natural language, a good representation of
text data should capture the underlying linguistic properties and
common sense knowledge. To this end, researchers have built
increasingly deep and wide neural networks to process text data,
producing large numbers of trainable parameters. However, it
is notoriously hard to train those large neural models given
the limited amounts of labeled text data. Pre-training and
fine-tuning arise as a promising solution to such problem by
making use of the huge unlabeled text data. The main idea
is to first pre-train large models on large-scale unlabeled text
data to learn universal language representations, then fine-tune
those models on downstream specific tasks with limited labeled
data, as illustrated in Figure 2.7. In this way, we can effectively
transfer language knowledge from large unannotated corpus and
prevent model overfitting on limited data.
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Pre-trained Model

Task-Specific Model

General

Language

Representation

Raw Sentence

Figure 2.7: The use of Pre-trained models in NLP.

In the field of computer vision, pre-training has already been
widely adopted. Most models are first pre-trained on the huge
ImageNet dataset, and then fine-tuned further on smaller data
for different tasks. In the field of NLP, we have recently
seen a surge in interests towards PTMs. With pre-training on
the huge text corpus, the model can learn universal language
representations and help with the downstream tasks. Pre-
training also offers the model a better parameter initialization,
which normally speeds up the convergence during training.
In the NLP literature, the first-generation PTMs are Pre-
trained Word Embeddings which are context-independent. The
representative models are Continuous Bag-of-Words (CBOW)
and Skip-Gram (SG) proposed by Mikolov et al. [104].
More recently, with the advancement of computing power and
model architectures (i.e., Transformer), the very deep PTMs
have been proposed to effectively learn universal language
representations. We call them second-generation PTMs as
they are all contextual-dependent. The representative models
include ELMo (Embeddings from Language Models) [113], Ope-
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nAI GPT (Generative Pre-training) [117], BERT (Bidirectional
Encoder Representation from Transformer) [32], ERNIE (En-
hanced Representation through kNowledge IntEgration) [134],
etc. They mainly differ at the pre-training tasks on large text
corpus. BERT employs Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP), while GPT adopts a normal
Language Modeling (LM) objective which predicts the next word
given a sentence. The different pre-training tasks make the
models suitable for different downstream tasks, for example,
BERT for language understanding such as classification while
GPT for language generation.

2 End of chapter.



Chapter 3

Neural Attention and Pointer
Networks for Code Completion

This chapter presents our study on applying LSTM and atten-
tion mechanisms for the source code completion task, which is
essential research to accelerate modern software development.
Specifically, we target at dynamically-typed programming lan-
guages (e.g., Python) and apply neural language models by
learning from large codebases. The main points of this chapter
are as follows. (1) We develop an attention mechanism for
code completion, which makes use of the structure information
(specially, the parent-children information) on abstract syntax
tree. (2) We propose a pointer mixture network for better
predicting OoV words in code completion, which learns to
generate next word from either the global vocabulary or the
local context. (3) We evaluate our models on two benchmarked
datasets (JavaScript and Python). The experimental results
show great improvements upon the state-of-the-arts.

31
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3.1 Introduction

Integrated development environments (IDEs) have become es-
sential paradigms for modern software engineers, as IDEs pro-
vide a set of helpful services to accelerate software development.
Intelligent code completion is one of the most useful features in
IDEs, which suggests next probable code tokens, such as method
calls or object fields, based on existing code in the context.
Traditionally, code completion relies heavily on compile-time
type information to predict next tokens [141]. Thus, it works
well for statically-typed programming languages like Java. Yet
code completion is harder and less supported for dynamically-
typed programming languages such as JavaScript and Python,
due to the lack of type annotations.
To render effective code completion for dynamically-typed lan-
guages, recently, researchers turn to learning-based language
models [58, 146, 15]. They treat programming languages as
natural languages, and train code completion systems by learn-
ing from large codebases (e.g., GitHub). In particular, neural
language models such as Recurrent Neural Networks (RNNs)
can capture sequential distributions and deep semantics, hence
become very popular. However, these standard neural language
models are limited by the so-called hidden state bottleneck: all
the information about current sequence is compressed into a
fixed-size vector. The limitation makes it hard for RNNs to deal
with long-range dependencies, which are common in program
source code such as a class identifier declared many lines before
it is used.
Attention mechanism [7] provides one solution to this challenge.
With attention, neural language models learn to retrieve and
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make use of relevant previous hidden states, thereby increasing
the model’s memorization capability and providing more paths
for back-propagation. To deal with long-range dependencies in
code completion, we develop a tailored attention mechanism
that can exploit the structure information on program’s abstract
syntax tree (AST, see Figure 3.1), which will further be described
in the following.
But even with attention, there is another critical issue called
unknown word problem. In general, the last component of
neural language models is a softmax classifier, with each output
dimension corresponding to a unique word in the predefined
vocabulary. As computing high-dimensional softmax is compu-
tational expensive, a common practice is to build the vocabulary
with only K most frequent words in the corpus and replace other
out-of-vocabulary (OoV) words with a special word, i.e., UNK.
Intuitively, standard softmax based neural language models
cannot correctly predict OoV words. In code completion, simply
recommending an UNK token offers no help to the developers.
The unknown word problem restricts the performance of neural
language models, especially when there are a large number of
unique words in the corpus like program source code.
For our code completion task, we observe that when writing
programs, developers tend to repeat locally. For example, the
variable name my_salary in Figure 3.1 may be rare and marked
as UNK with respect to the whole corpus. But within that
specific code block, it repeats several times and has a relatively
high frequency. Intuitively, when predicting such unknown
words, our model can learn to choose one location in local
context and copy the word at that location as our prediction.
Actually, the recently proposed Pointer Networks [143] can do
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so, which employ attention scores to select a word from the input
sequence as output. Although pointer networks can make better
predictions on unknown words or rare words, they are unable to
predict words beyond the current input sequence, i.e., lacking
the global view. Therefore they may not work well in our code
completion.
In this chapter, to facilitate effective code completion, we
propose a pointer mixture network, which can predict the next
word by either generating one from the global vocabulary or
copying a word from the local context. For the former, we
apply a standard RNN with attention, which we call the global
RNN component. For the latter, we employ a pointer network
which we call the local pointer component. Actually, the two
components share the same RNN architecture and attention
scores. Our pointer mixture network is a weighted combination
of the two components. At each prediction, a switcher is learned
based on the context information, which can guide the model to
choose one component for generating the next word. In this
way, our model learns when and where to copy an OoV word
from the local context as the final prediction. Therefore, the
main contributions of this chapter are the tailored attention
mechanism and pointer mixture network. We evaluate our
models on two benchmarked datasets, namely JavaScript and
Python. The experimental results show great improvements
upon the state-of-the-arts.
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3.2 Methodology

3.2.1 Program Representation

In our corpus, each program is represented in the form of
abstract syntax tree (AST). Any programming language has
an unambiguous context-free grammar, which can be used to
parse source code into an AST. Further, the AST can be
converted back into source code in a one-to-one correspondence.
Processing programs in the form of ASTs is a typical practice in
Software Engineering (SE) [107, 84].
Figure 3.1 shows an example Python program and its corre-
sponding AST. We can see that each AST node contains two
attributes: the type of the node and an optional value. For each
leaf node, “:” is used as a separator between type and value. For
each non-leaf node, we append a special EMPTY token as its value.
As an example, consider the AST node NameLoad:my_salary in
Figure 3.1 where NameLoad denotes the type and my_salary
is the value. The number of unique types is relative small
(hundreds in our corpus), with types encoding the program
structure, e.g., Identifier,IfStatement, SwitchStatement,
etc. There are infinite possibilities for values, which encode
the program text. A value may be any program identifier (e.g.
jQuery), literal (e.g. 66), program operator (e.g., +,-,*), etc.
Representing programs as ASTs rather than plain text enables
us to predict the structure of the program, i.e., type of each
AST node. See the example in Figure 3.1 again, when the next
token is a keyword for, the corresponding next AST node is
For(:EMPTY), which corresponds to the following code block:

for __ in __:
## for loop body



CHAPTER 3. NEURAL ATTENTION FOR CODE COMPLETION 37

In this way, successfully predicting next AST node completes
not only the next token for, but also the whole code block
including some trivial tokens like in and “:”. Such structure
completion enables more flexible code completion at different
levels of granularity.
To apply statistical sequence models, we flatten each AST as a
sequence of nodes in the in-order depth-first traversal. To make
sure the sequence can be converted back to the original tree
structure thus converted back to the source code, we allow each
node type to encode two additional bits of information about
whether the AST node has a child and/or a right sibling. If we
define a word as wi = (Ti, Vi) to represent an AST node, with Ti
being the type and Vi being the value, then each program can be
denoted as a sequence of words wn

i=1. Thus our code completion
problem is defined as: given a sequence of words w1, ..., wt−1,
our task is to predict the next word wt. Obviously, we have two
kinds of tasks: predicting the next node type Tt and predicting
the next node value Vt. We build one model for each task and
train them separately. We call this AST-based code completion.

3.2.2 Neural Language Model

The code completion task can be regarded as a language
modeling problem, where recurrent neural networks (RNNs)
have achieved appealing success in recent years. LSTM [63] is
proposed to mitigate the gradients vanishing/exploding problem
in RNNs, by utilizing gating mechanisms. A standard LSTM cell
is defined as ht = f(xt, ht−1). At each time step t, an LSTM cell
takes current input vector xt and previous hidden state ht−1 as
inputs, then produces the current hidden state ht which will be
used to compute the prediction at time step t.



CHAPTER 3. NEURAL ATTENTION FOR CODE COMPLETION 38

...

...

LSTM

    

...

...

...

LSTM

      

LSTM

  

Attention scores:   

Output distribution:   

  

  

hidden state

context vector

parent vector  

  

Figure 3.2: The attentional LSTM. The inputs fed to each LSTM cell are
composed of two kinds of embeddings (green for Type and yellow for Value).
Here ⊗ represents the element-wise multiplication.

3.2.3 Attention Mechanisms

Standard neural language models suffer from hidden state
bottleneck [21]. To alleviate the problem, attention mechanism
is proposed to retrieve and make use of relevant previous hidden
states. It is incorporated into standard LSTM which we call
attentional LSTM in this chapter, as illustrated in Figure 3.2.

Context Attention Traditional attention mechanism makes use
of previous hidden states within a context window [7], which
we call the context attention. Formally, we keep an external
memory of L previous hidden states, which is denoted as
Mt = [ht−L, ..., ht−1] ∈ Rk∗L. At time step t, the model uses
an attention layer to compute the relation between ht and
hidden states inMt, represented as attention scores αt, and then
produces a summary context vector ct. We design our context
attention for code completion as follows:

At = vT tanh(WmMt + (W hht)1TL), (3.1)
αt = softmax(At), (3.2)
ct = Mtα

T
t , (3.3)
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where Wm,W h ∈ Rk∗k and v ∈ Rk are trainable parameters. k
is the size of the hidden state, i.e. dimension of ht. 1L represents
an L-dimensional vector of ones.

Parent Attention Besides the traditional context attention, we
also propose a parent attention for the AST-based code com-
pletion. Intuitively, different hidden states within the context
window should have different degrees of relevance to the current
prediction. As our sequence is flattened from a tree (i.e., AST,
see Figure 3.1), a parent node should be of great relevance
to a child node. But the flattened AST has lost the parent-
children information. To exploit such structure information,
when flattening the AST, we record the parent location pl of
each AST node, i.e., how many nodes before it. Then at time
step t, our model retrieves a parent vector pt from the external
memory Mt, which is the hidden state at the parent location,
i.e., ht−pl 1. The information of parent code segments can benefit
our model to make more confident predictions.
When predicting next word at time step t, we condition the
decision on not only the current hidden state ht but also the
context vector ct and parent vector pt. The output vector
Gt encodes the information about next token which is then
projected into the vocabulary space, followed by a softmax
function to produce the final probability distribution yt ∈ RV :

Gt = tanh(W g[ht; ct; pt]), (3.4)
yt = softmax(W vGt + bv), (3.5)

where W g ∈ Rk∗3k and W v ∈ RV ∗k are two trainable projection
matrices and bv ∈ RV is a trainable bias vector. Note

1If pl is larger than L, we set pl as 1.
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Figure 3.3: The pointer mixture network. We reuse the attention scores
αt (see Figure 3.2) as the pointer distribution lt. The switcher produces
st ∈ [0, 1] to balance lt and wt. The final distribution is generated by con-
catenating the two scaled distributions. Here ⊕ indicates the concatenation
operation.

that V represents the size of vocabulary and “;” denotes the
concatenation operation.

3.2.4 Pointer Mixture Network

Inspired by the prevalence of locally repeated tokens in program
source code, we propose to leverage the pointer networks to
predict OoV tokens in code completion, by copying a token
from previous input sequence. Specifically, we propose a pointer
mixture network that combines a standard RNN and a pointer
network, as shown in Figure 3.3.
Our pointer mixture network consists of two major components
(global RNN component and local pointer component), and
one switcher to strike a balance between them. For the global
RNN component, it is an attentional LSTM that predicts the
next token from a predefined global vocabulary. For the local
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pointer component, it points to previous locations in local
context according to the learned location weights. Our pointer
mixture network combines the two components by concatenating
the two components’ output vectors. Before concatenation,
the two individual outputs are scaled by a learned switcher
based on the context, thus our model learns how to choose a
certain component at each prediction. Specifically, the switcher
produces a scalar st ∈ [0, 1] which indicates the probability to
use the global RNN component, and then 1−st is the probability
to use the local pointer component.
After concatenating the two scaled vectors, we pick one output
dimension with the highest probability. If this dimension
belongs to the RNN component, then the next token is generated
from the global vocabulary. Otherwise, the next token is copied
from the local context.
Formally, at time step t, the global RNN component produces
a probability distribution wt ∈ RV for the next token xt within
the vocabulary according to Equation 3.5. The local pointer
component points to the locations inside a memory according to
the distribution lt ∈ RL, where L is the length of the memory.
In order to reduce the parameters and accelerate the training,
we reuse the attention scores (see Equation 3.2) as lt in practice.
The switcher is a sigmoid function conditioned on the current
hidden state ht and context vector ct:

st = σ(W s[ht; ct] + bs), (3.6)

where W s ∈ R2k∗1 and bs ∈ R1 are trainable weights. st ∈ [0, 1]
is a scalar to balance wt and lt. Finally, the model completes by
concatenating the two scaled distributions to produce the final
prediction:

yt = [stwt; (1− st)lt]. (3.7)
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JS PY

Training Queries 10.7 ∗ 107 6.2 ∗ 107

Test Queries 5.3 ∗ 107 3.0 ∗ 107

Type Vocabulary 95 330
Value Vocabulary 2.6 ∗ 106 3.4 ∗ 106

Table 3.1: Dataset Statistics

3.3 Evaluation

3.3.1 Dataset

We evaluate different approaches on two benchmarked datasets:
JavaScript (JS) and Python (PY), which are summarized in
Table 3.1. Collected from GitHub, both two datasets are
publicly available2 and used in previous work [15, 120, 97].
Both datasets contain 150,000 program files that are stored in
their corresponding AST formats, with the first 100,000 used
for training and the remaining 50,000 used for testing. After
serializing each AST in the in-order depth-first traversal, we
generate multiple queries used for training and evaluation, one
per AST node, by removing the node (plus all the nodes to the
right) from the sequence and then attempting to predict back
the node.
The numbers of unique node types in JS and PY are 44 and 181
originally. By adding information about children and siblings as
discussed in Section 3.2.1, we increase the numbers to 95 and 330
respectively. As shown in Table 3.1, the number of unique node
values in both datasets are too large to directly apply neural
language models, thus we only choose K most frequent values
in each training set to build the global vocabulary, where K is a

2http://plml.ethz.ch
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free parameter. We further add three special values: UNK for out-
of-vocabulary values, EOF indicating the end of each program,
and EMPTY being the value of non-leaf AST nodes.

3.3.2 Experimental Setup

Configuration Our base model is a single layer LSTM network
with unrolling length of 50 and hidden unit size of 1500. To train
the model, we use the cross entropy loss function and mini-batch
SGD with the Adam optimizer [74]. We set the initial learning
rate as 0.001 and decay it by multiplying 0.6 after every epoch.
We clip the gradients’ norm to 5 to prevent gradients exploding.
The size of attention window is 50. The batch size is 128 and we
train our model for 8 epochs. Each experiment is run for three
times and the average result is reported.
We divide each program into segments consisting of 50 consec-
utive AST nodes, with the last segment being padded with EOF
if it is not full. The LSTM hidden state and memory state are
initialized with h0, c0, which are two trainable vectors. The last
hidden and memory states from the previous LSTM segment are
fed into the next one as initial states if both segments belong to
the same program. Otherwise, the hidden and memory states
are reset to h0, c0. We initialize h0, c0 to be all-zero vectors
while all other variables are randomly initialized using a uniform
distribution over [-0.05, 0.05]. We employ accuracy as our
evaluation metric, i.e., the proportion of correctly predicted next
node types/values.

Preprocessing ad Training Details As each AST node consists of
a type and a value, to encode the node and input it to the LSTM,
we train an embedding vector for each type (300 dimensions) and
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value (1200 dimensions) respectively, then concatenate the two
embeddings into one vector. Since the number of unique types
is relatively small in both datasets, there is no unknown word
problem when predicting next AST node type. Therefore, we
only apply our pointer mixture network on predicting next AST
node value.
For each dataset, we build the global vocabulary for AST node
values with K most frequent values in the training set, and mark
all out-of-vocabulary node values in training set and test set as
OoV values. Before training, if an OoV value appears exactly
the same as another previous value within the attention window,
then we label that OoV value as the corresponding position in
the attention window. Otherwise, the OoV value is labeled as
UNK. If there are multiple matches in the attention window, we
choose the position label as the last occurrence of the matching
value in the window, which is the closest one. For within-
vocabulary values, we label them as the corresponding IDs in
the global vocabulary. During training, whenever the ground
truth of a training query is UNK, we set the loss function to zero
for that query such that our model does not learn to predict UNK.
In both training and evaluation, all predictions where the target
value is UNK are treated as wrong predictions, i.e., decrease the
overall accuracy.
We implement our models using Tensorflow and run our exper-
iments on a Linux server with one NVIDIA GTX TITAN GPU.
Unless otherwise stated, each experiment is run for three times
and the average result is reported.
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3.3.3 Experimental Results

For each experiment, we run the following models for compari-
son, which have been introduced in Section 3.2:

• Vanilla LSTM: A standard LSTM network without any
attention or pointer mechanisms.

• Attentional LSTM: An LSTM network equipped with
our (context and parent) attention mechanism which at-
tends to the last 50 hidden states at each time step.

• Pointer Mixture Network: Our proposed mixture net-
work which combines the above attentional LSTM and the
pointer network.

OoV Prediction We first evaluate our pointer mixture network’s
ability to ease the unknown word problem when predicting next
AST node value. For each of the two datasets, we create three
specific datasets by varying the global vocabulary size K for
node values to be 1k, 10k, and 50k, resulting in different out-
of-vocabulary (OoV) rates. We also measure how often OoV
values can occur in previous context window thus be labeled as
the corresponding positions. We call this measure as localness,
which is the upper-bound of the performance gain we can expect
from the pointer component. We run the above models on each
specific dataset. Table 3.2 lists the corresponding statistics and
experimental results.
As Table 3.2 shows in the column, on each specific dataset, the
vanilla LSTM achieves the lowest accuracy, while the attentional
LSTM improves the performance upon the vanilla LSTM, and
our pointer mixture network achieves the highest accuracy.
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Vocabulary Size (JS) JS_1k JS_10k JS_50k
OoV Rate / Localness 20% / 8% 11% / 3.7% 7% / 2%

Vanilla LSTM 69.9% 75.8% 78.6%
Attentional LSTM (ours) 71.7% 78.1% 80.6%

Pointer Mixture Network (ours) 73.2% 78.9% 81.0%
Vocabulary Size (PY) PY_1k PY_10k PY_50k
OoV Rate / Localness 24% / 9.3% 16% / 5.2% 11% / 3.2%

Vanilla LSTM 63.6% 66.3% 67.3%
Attentional LSTM (ours) 64.9% 68.4% 69.8%

Pointer Mixture Network (ours) 66.4% 68.9% 70.1%

Table 3.2: Accuracies on next value prediction with different vocabulary sizes.
The out-of-vocabulary (OoV) rate denotes the percentage of AST nodes
whose value is beyond the global vocabulary. Localness is the percentage
of values who are OoV but occur in the context window.

Besides, we can see that by increasing the vocabulary size in
JS or PY dataset, the OoV rate decreases, and the general
accuracies on different models increase due to more available
information. We also notice a performance gain by our pointer
mixture network over the attentional LSTM, and the gain is the
largest with 1k vocabulary size. We attribute this performance
gain to correctly predicting some OoV values through the local
pointer component. Therefore, the results demonstrate the
effectiveness of our pointer mixture network to predict OoV
values, especially when the vocabulary is small and the OoV
rate is large.

State-of-the-Art Comparison As there are already prior investi-
gations conducting code completion on the two benchmarked
datasets, to validate the effectiveness of our proposed ap-
proaches, we need to compare them against the state-of-the-art.
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JS PY
TYPE VALUE TYPE VALUE

Vanilla LSTM 87.1% 78.6% 79.3% 67.3%
Attentional LSTM (no parent) 88.1% 80.5% 80.2% 69.8%
Attentional LSTM (ours) 88.6% 80.6% 80.6% 69.8%
Pointer Mixture Network (ours) - 81.0% - 70.1%

LSTM [97] 84.8% 76.6% - -
Probabilistic Model [120] 83.9% 82.9% 76.3% 69.2%

Table 3.3: Comparisons against the state-of-the-arts. The upper part is the
results from our experiments while the lower part is the results from the prior
work. TYPE means next node type prediction and VALUE means next node
value prediction.

Particularly, Liu et al. [97] employ a standard LSTM on the JS
dataset, without attention or pointer mechanisms. Raychev et
al. [120] build a probabilistic model for code based on proba-
bilistic grammars and achieve the state-of-the-art accuracies for
code completion on the two datasets.
Specifically, we conduct experiments on next AST node type
prediction and next AST node value prediction respectively.
For the former, there is no unknown word problem due to the
small type vocabulary, so we only use the vanilla LSTM and the
attentional LSTM. For the latter, we set the value vocabulary
size to 50k to make the results comparable with [97], and employ
all the three models. The results are shown in Table 3.3.
The upper part of Table 3.3 shows our results in this work,
while the lower part lists the results from the prior work. Note
that Liu et al. [97] only apply LSTM on the JS dataset, so
they do not have results on the PY dataset. For next type
prediction, our attentional LSTM achieves the highest accuracy
on both datasets, significantly improving the best records of
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the two datasets. For next value prediction on JS dataset,
our pointer mixture network achieves comparable performance
with Raychev et al.’s [120], which is a probabilistic model
based on domain-specific grammars. However, our approaches
outperform Liu et al. [97] that is also based on neural networks.
On PY dataset, our pointer mixture network for next value
prediction outperforms the previous best record. Therefore,
we conclude that our attentional LSTM and pointer mixture
network are effective for code completion, achieving three state-
of-the-art performances out of the four tasks.

3.3.4 Discussion

More explanations about experimental results. From Table 3.2
and Table 3.3, we observe that the accuracies produced in
JS dataset are consistently higher than the accuracies in PY
dataset, whether in type prediction or value prediction. We
attribute this difference to the fact that JS dataset contains
more data to train the model and fewer categories to predict
than the PY dataset, as shown in Table 3.1. The work by
Raychev et al. [120] also confirms this accuracy gap between
the two datasets. Besides, from Table 3.3 we notice that our
vanilla LSTM outperforms the work by Liu et al. [97] a lot who
also apply a simple LSTM. We think the main reason lies in the
different formulation of loss function, where Liu et al. define
a loss function for both type and value prediction and train a
model for them together. On the contrary, we define one loss
function for each task and train them separately, which is much
easier to train.
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JS_1k PY_1k

Pointer Random Network 71.4% 64.8%
Attentional LSTM 71.7% 64.9%
Pointer Mixture Network 73.2% 66.4%

Table 3.4: Showing why pointer mixture network works.

Why attention mechanism works? When writing programs, it
is quite common to refer to a variable identifier declared many
lines before. In this work, the mean program length (i.e., the
number of AST nodes) is around 1000 in JS dataset and 600
in PY dataset. Therefore in our code completion task, we
need the attention mechanism to capture the long dependencies.
Furthermore, we measure how our proposed parent attention
influence the final prediction by only using the context attention
(see Equation 3.4). As shown in Table 3.3, parent attention can
effectively contribute to the type prediction while has little effect
on the value prediction.

Why pointer mixture network works? In both training and
evaluation, all predictions where the target value is UNK are
treated as wrong predictions. After incorporating the pointer
network, we predict OoV values by copying a value from local
context and that copied value may be the correct prediction.
Thus we observe a performance gain in our pointer mixture
network. However, one may argue that no matter how capable
the pointer component is, the accuracy will definitely increase
as long as we get chances to predict OoV values.
To verify the copying ability of our pointer component, we
develop a pointer random network where the pointer distribution
lt (see Figure 3.3) is a random distribution instead of reusing
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the learned attention scores. We conduct comparisons on value
prediction in JS and PY datasets with 1k vocabulary size. The
results are listed in Table 3.4, where the pointer random network
achieves lower accuracies than the pointer mixture network.
Thus we demonstrate that our pointer mixture network indeed
learns when and where to copy some OoV values. However,
the pointer random network performs even worse than the
attentional LSTM. We think the reason lies in the switcher
which is disturbed by the random noise and cannot always
choose the correct component (i.e., the RNN component), thus
influencing the overall performance.

3.3.5 Case Study

We depict a code completion example in Figure 3.4. In this
example, the target prediction employee_id is an OoV value
with respect to the whole training corpus. We show the top five
predictions of each model. For vanilla LSTM, it just produces
EMPTY which is the most frequent node value in our corpus. For
attentional LSTM, it learns from the context that the target
has a large probability to be UNK, but fails to produce the real
value. The pointer mixture network successfully identifies the
OoV value from the context, as it observes the value appearing
in the previous code.

3.4 Related Work

Statistical Code Completion has been a long-term research topic.
Much of this work is inspired by Hindle et al. [58], who are the
first to demonstrate that real programs written by real people
have rich statistical properties and employed n-gram models to
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class Operator(Employee):
  def __init__(self, name, employee_id):
    super(Operator, self).__init__(name, Rank.OPERATOR)
    self.employee_id = employee_id
    
  def _dispatch_call(self, call, employees):
    for employee in employees:
      employee.take_call(call)

  def record_path(self, base_name):
    return os.path.join(base_name, str(self.   ?   ))

(a) Vanilla LSTM (b) Attentional LSTM (c) Pointer Mixture Network
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Figure 3.4: A code completion example showing predicting an OoV value.

accomplish a code completion task. Tu et al. [141] extend
Hindle et al.’s work by adding a cache mechanism. There is
a body of recent work that explores the application of statistical
learning and sequence models on the code completion task, such
as probabilistic grammars [4, 15, 120]. Recently, neural networks
become very popular to model source code [121, 146, 3]. In
particular, Bhoopchand et al. [14] propose a sparse pointer
mechanism for RNN, to better predict identifiers in Python
source code. Nevertheless, their pointer component targets at
identifiers in Python source code, rather than OoV tokens in
our work. The OoV tokens include not only identifiers but also
other types such as VariableDeclarator. Besides, they directly
serialize each program as a sequence of code tokens, while in our
corpus each program is represented as a sequence of AST nodes
to facilitate more intelligent structure prediction.
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3.5 Summary

In this chapter, we apply neural language models on the code
completion task, and develop an attention mechanism that
exploits the parent-children information on the program’s AST.
To deal with the OoV values in code completion, we propose
a pointer mixture network which learns to either generate a
new value through an RNN component or copy an OoV value
from local context through a pointer component. Experimental
results demonstrate the effectiveness of our approaches.

2 End of chapter.



Chapter 4

Exploiting Diversity for
Multi-Head Attention

Multi-head attention is one of the key components in the
self-attention mechanism, with the appealing ability to jointly
attend to information from different representation subspaces
at different positions. In this chapter, we explore effective
approaches to better exploit such diversity to improve multi-
head attention. The main points of this chapter are as follows.
(1) We propose three disagreement regularizations to explicitly
encourage the diversity among multiple attention heads, which
are respectively applied to the subspace, the attention positions,
and the output representations associated with each head. (2)
We propose to employ the routing-by-agreement algorithm to
better aggregate the diverse information distributed in the
extracted partial-representations. (3) We evaluate our proposed
approaches on machine translation tasks and sentence encoding
tasks where we achieve promising results.

53
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4.1 Introduction

Attention model has become a standard component of today’s
deep learning networks, contributing to impressive results in
machine translation [7, 99], image captioning [152], speech
recognition [25], among many other applications. Recently,
the performance of attention is further improved by multi-head
mechanism [142], which concurrently performs the attention
functions on different representation subspaces of the input
sequence. Consequently, different attention heads are able to
capture distinct properties of the input, which are embedded in
different subspaces [118]. Subsequently, a linear transformation
is generally employed to aggregate the partial representations
extracted by different attention heads [142, 2], producing the
final output representation.
However, the conventional multi-head mechanism may not
fully exploit the diversity among attention heads. First, one
strong point of multi-head attention is the ability to jointly
attend to information from different representation subspaces
at different positions. But currently there is no mechanism to
guarantee that different attention heads indeed capture distinct
information. Second, we believe that information extraction and
information aggregation are both important to produce an infor-
mative representation. We argue that the straightforward linear
transformation is not expressive enough to fully capture the rich
information distributed in the extracted partial-representations.
In this chapter, we propose two strategies to better exploit
the diversity of multi-head attention, namely disagreement
regularization and advanced aggregation function.
In response to the first problem, we introduce a disagreement
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regularization term to explicitly encourage the diversity among
multiple attention heads. The disagreement regularization
serves as an auxiliary objective to guide the training of the
related attention component. Specifically, we propose three
types of disagreement regularization, which are applied to the
three key components that refer to the calculation of information
vector using multi-head attention. Two regularization terms are
respectively to maximize cosine distances of the input subspaces
and output representations, while the last one is to disperse
the positions attended by multiple heads with element-wise
multiplication of the corresponding attention matrices. The
three regularization terms can be either used individually or
in combination.
To address the second problem, we replace the standard linear
transformation in conventional multi-head attention [142] with
an advanced routing-by-agreement algorithm, to better aggre-
gate the diverse information distributed in the extracted partial-
representations. Specifically, we cast information aggregation
as the assigning-parts-to-wholes problem [60], and investigate
the effectiveness of the routing-by-agreement algorithm, which
is an appealing alternative to solving this problem [123, 61].
The routing algorithm iteratively updates the proportion of
how much a part should be assigned to a whole, based on the
agreement between parts and wholes.
In addition, it is natural to combine the two types of approaches
and apply them simultaneously, as the former focuses on ex-
tracting more diverse information while the latter aims to better
aggregate the extracted information.
We evaluate the performance of the proposed approaches on
both machine translation tasks as well as sentence encoding
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tasks. For machine translation, we validate our approaches
on top of the advanced Transformer model [142] on both
WMT14 English⇒German andWMT17 Chinese⇒English data.
Experimental results show that our approaches consistently
improve the translation performance across language pairs while
keeping computational efficiency. For sentence encoding, we
evaluate with the linguistic probing tasks [29], which consist
of 10 classification problems to study what linguistic properties
are captured by input representations. Probing analysis shows
that our approaches indeed produce more informative represen-
tation, which embeds more syntactic and semantic information.
Precisely, our study reveals that:

• Directly applying disagreement regularization on the out-
put representations of multiple attention heads is most
effective.

• The EM routing algorithm shows its superiority on infor-
mation aggregation over the standard linear transformation
and other aggregation algorithms.

• Disagreement regularization and advanced aggregation func-
tion are complementary to each other, as indicated from
analyses in machine translation and sentence encoding.

4.2 Multi-Head Attention

Attention mechanism aims at modeling the relevance between
representation pairs, thus a representation is allowed to build
a direct relation with another representation. Instead of per-
forming a single attention function, Vaswani et al. [142] found it
is beneficial to capture different context features with multiple
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Figure 4.1: Illustration of the multi-head attention, which jointly attends
to different representation subspaces (colored boxes) at different positions
(darker color denotes higher attention probability).

individual attention functions, namely multi-head attention.
Figure 4.1 shows an example of a two-head attention model.
For the query word “Bush”, green and red heads pay attention
to different positions of “talk” and “Sharon”.
Formally, attention function maps a sequence of query Q =
{q1, . . . ,qn} and a set of key-value pairs which are denoted by
{K,V} = {(k1,v1), . . . , (km,vm)} to outputs, where Q ∈ Rn×d,
{K,V} ∈ Rm×d. More specifically, multi-head attention model
first transforms Q, K, and V into H subspaces with different,
learnable linear projections:

Qh,Kh,Vh = QWQ
h ,KWK

h ,VWV
h , (4.1)

where {Qh,Kh,Vh} are respective the query, key, and value
representations of the h-th head. {WQ

h ,WK
h ,WV

h } ∈ Rd× d
H

denote parameter matrices associated with the h-th head, where
d represents the dimensionality of the model hidden states.
Furthermore, H attention functions are applied in parallel to
produce the output states {O1, . . . ,OH}, among them:

Oh = Att(Qh,Kh)Vh, (4.2)

where Oh ∈ Rn× d
H , Att(·) is an attention model to produce
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the alignment matrix A. In this chapter, we use scaled dot-
product attention [99], which achieves similar performance with
its additive counterpart [7] while is much faster and more space-
efficient in practice [142].
Finally, the H output states are concatenated and linear trans-
formed to produce the final state:

Concat: Ô = [O1, . . . ,OH ], (4.3)
Linear: O = ÔWO, (4.4)

where O ∈ Rn×d denotes the final output states, WO ∈ Rd×d is
a trainable parameter matrix.

4.3 Methodology

In this chapter, we propose to better exploit the diversity of
multi-head attention from two perspectives:

• Disagreement Regularization: Conventional multi-head at-
tention conducts multiple attention functions in parallel
(Equation 4.2), while there is no mechanism to guarantee
that different attention heads indeed capture distinct infor-
mation. In response to this problem, we introduce disagree-
ment regularizations to explicitly encourage different atten-
tion heads to extract distinct information (Section 4.3.1);

• Advanced Aggregation Function: As shown in Equations 4.3
and 4.4, the standard multi-head attention uses a straight-
forward concatenation and linear mapping to aggregate
the partial-representations captured by multiple attention
heads. We argue that this straightforward strategy may
not fully exploit the expressiveness of multi-head attention,
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which can benefit from advanced information aggregation.
In this chapter, we exploit a more advanced routing-by-
agreement method to aggregate the information extracted
by different attention heads (Section 4.3.2).

The disagreement regularization encourages multiple attention
functions to extract different information, and advanced ag-
gregation function helps better aggregate the extracted infor-
mation. Therefore, the two approaches are complementary to
each other and can be employed simultaneously, which we will
describe in Section 4.3.3.

4.3.1 Disagreement Regularization

Multi-head attention allows the model to jointly attend to
information from different representation subspaces at different
positions. To further guarantee the diversity, we enlarge the
distances among multiple attention heads with disagreement
regularization. To this end, we introduce an auxiliary reg-
ularization term in order to encourage the diversity among
multiple attention heads. Taking the machine translation task
as example, the training objective is revised as:

J(θ) = arg max
θ

{
L(y|x; θ)︸ ︷︷ ︸
likelihood

+λ ∗D(a|x,y; θ)︸ ︷︷ ︸
disagreement

}
,

where a is the referred attention matrices, λ is a hyper-
parameter and is empirically set to 1.0 in this chapter. The
auxiliary regularization term D(·) guides the related attention
component to capture different features from the corresponding
projected subspaces. Note that the introduced regularization
term works like L1 and L2 terms, which do not introduce any
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new parameters and only influence the training of the standard
model parameters.
Specifically, we propose three types of disagreement regulariza-
tion to encourage each head vector Oh to be different from other
heads:

• Disagreement on Subspaces (Sub.) This disagreement
is designed to maximize the cosine distance between the
projected values. Specifically, we first calculate the cosine
similarity cos(·) between the vector pair V i and V j in
different value subspaces, through the dot product of the
normalized vectors1, which measures the cosine of the angle
between V i and V j. Thus, the cosine distance is defined as
negative similarity, i.e, − cos(·). Our training objective is
to enlarge the average cosine distance among all head pairs.
The regularization term is formally expressed as:

Dsubpace = − 1
H2

H∑
i=1

H∑
j=1

V i · V j

‖V i‖‖V j‖
. (4.5)

• Disagreement on Attended Positions (Pos.) Another
strategy is to disperse the attended positions predicted
by multiple heads. Inspired by the agreement regulariza-
tion [90, 22] which encourages multiple alignments to be
similar, in this chapter, we deploy a variant of the original
term by introducing an alignment disagreement regular-
ization. Formally, we employ the sum of element-wise
multiplication of corresponding matrix cells2, to measure

1We did not employ the Euler Distance between vectors since we do not care the
absolute value in each vector.

2We also used the squared element-wise subtraction of two matrices in our preliminary
experiments, and found it underperforms its multiplication counterpart, which is consistent
with the results in [22].



CHAPTER 4. MULTI-HEAD ATTENTION 61

the similarity between two alignment matrices Ai and Aj

(Att(·) in Equation 4.2) of two heads:

Dposition = − 1
H2

H∑
i=1

H∑
j=1
|Ai � Aj|. (4.6)

• Disagreement on Outputs (Out.) This disagreement
directly applies regularization on the outputs of each at-
tention head, by maximizing the difference among them.
Similar to the subspace strategy, we employ negative cosine
similarity to measure the distance:

Doutput = − 1
H2

H∑
i=1

H∑
j=1

Oi ·Oj

‖Oi‖‖Oj‖
. (4.7)

4.3.2 Advanced Aggregation Function

Information aggregation in multi-head attention (e.g. Equa-
tions 4.3 and 4.4) aims at composing the partial representations
captured by different attention heads to a final representation.
Recent work shows that representation composition benefits
greatly from advanced functions beyond simple concatenation
or mean/max pooling [44, 11, 36]. In this chapter, we cast
information aggregation in multi-head attention as the problem
of assigning-parts-to-wholes, to which an appealing solution is
the routing-by-agreement algorithm, as shown in Figure 4.2.
The routing algorithm consists of two layers: input capsules
and output capsules. The input capsules are constructed from
the transformation of the partial representations extracted by
different attention heads. For each output capsule, each input
capsule proposes a distinct “voting vector”, which represents the
proportion of how much the information is transformed from this
input capsule (i.e. parts) to the corresponding output capsule
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Figure 4.2: Illustration of routing-by-agreement.

(i.e. wholes). The proportion is iteratively updated based on the
agreement between the voting vectors and the output capsule.
Finally, all output capsules are concatenated to form the final
representation.
Mathematically, the input capsules Ωin = {Ωin

1 , . . . ,Ωin
H} with

Ωin ∈ Rn×d are constructed from the outputs of multi-head
attention:

Ωin
h = fh(Ô), (4.8)

where fh(·) is a distinct non-linear transformation function
associated with the input capsule Ωin

h . GivenN output capsules,
each input capsule Ωin

h propose N “vote vectors” Vh→∗ =
{Vh→1, . . . ,Vh→N}, which is calculated by

Vh→n = Ωin
h Wh→n. (4.9)

Each output capsule Ωout
n is calculated as the normalization of

its total input, which is a weighted sum over all the incoming
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Algorithm 1 Iterative Simple Routing.
1: procedure Routing(V, T ):
2: ∀Vh→∗: Bh→n = 0
3: for T iterations do
4: ∀Vh→∗: Ch→n = exp(Bh→n)∑N

n′=1 exp(Bh→n′ )

5: ∀Ωout
n : compute Ωout

n by Eq. 4.10
6: ∀Vh→∗: Bh→n += Ωout

n ·Vh→n

return Ω

“vote vectors” V∗→n:

Ωout
n =

∑H
h=1Ch→nVh→n∑H

h=1Ch→n
. (4.10)

The weight Ch→n with ∑
nCh→n = 1 measures the agreement

between vote vector Vh→n and output capsule Ωout
n , which is

determined by the iterative routing as described in the next
section. Note that ∑H

h=1Ch→n is not necessarily equal to 1. After
the routing process, we concatenate the N output capsules to
form the final representation: O = [Ωout

1 , . . . ,Ωout
N ]. To make

the dimensionality of the final output be consistent with that of
hidden layer (i.e. d), we set the dimensionality of each output
capsule be d

N .
In this chapter, we explore two representative routing mech-
anisms, namely simple routing [123] (Section 4.3.2) and EM
routing [61] (Section 4.3.2), which differ at how the agreement
weights Ch→n are calculated.

Simple Routing

Algorithm 1 lists a straightforward implementation of routing.
Bh→n measures the degree that the input capsule Ωin

h should
be coupled to the output capsule Ωin

h , which is initialized
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as all 0 (Line 2). The agreement weights Ch→n are then
iteratively refined by measuring the agreement between the vote
vector Vh→n and the output capsule Ωout

n (Lines 4-6), which is
implemented as a simple scalar product Ωout

n ·Vh→n (Line 5).
To represent the probability that the output capsule Ωout

n

is activated, we follow Sabour et al. [123] use a non-linear
“squashing” function:

Ωout
n = ||Ωout

n ||2

1 + ||Ωout
n ||2

Ωout
n

||Ωout
n ||

, (4.11)

The scalar product Ωout
n ·Vh→n saturates at 1, which makes it

insensitive to the difference between a quite good agreement and
a very good agreement. In response to this problem, Hinton et
al. [61] propose a novel Expectation-Maximization (EM) routing
algorithm.
Comparing with simple routing, EM routing has two modifi-
cations. First, it explicitly assigns an activation probability
A to represent the probability of whether each output capsule
is activated, rather than the length of vector calculated by a
squashing function (Equation 4.11). Second, it casts the routing
process as fitting a mixture of Gaussians using EM, where the
output capsules play the role of Gaussians and the means of the
input capsules play the role of the datapoints. Accordingly, EM
routing can better estimate the agreement by allowing activated
output capsules to receive a cluster of similar votes.

EM Routing

Algorithm 2 lists the EM routing, which iteratively adjusts the
means, variances, and activation probabilities (µ,σ, A) of the
output capsules, as well as the agreement weights C of the input
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Algorithm 2 Iterative EM Routing.
1: procedure EM Routing(V, T ):
2: ∀Vh→∗: Cl→n = 1/N
3: for T iterations do
4: ∀Ωout

n : M-step(V, C) . hold C constant, adjust (µn,σn, An)

5: ∀Vh→∗: E-step(V, µ,σ, A) . hold (µ,σ, A) constant, adjust Ch→∗

6: ∀Ωout
n : Ωout

n = An ∗ µn

return Ω

capsules (Lines 4-5). The representation of output capsule Ωout
n

is calculated as

Ωout
n = An ∗ µn = An ∗

∑H
h=1Ch→nVh→n∑H

h=1Ch→n
, (4.12)

The EM algorithm alternates between an E-step and an M-
step. The E-step determines, for each datapoint (i.e. input
capsule), the probability of agreement (i.e. C) between it and
each of the Gaussians (i.e. output capsules). The M-step holds
the agreement weights constant, and for each Gaussian (i.e.
output capsule) consists of finding the mean of these weighted
datapoints (i.e. input capsules) and the variance about that
mean.

M-Step for each Gaussian (i.e. Ωout
n ) consists of finding the

mean µn of the votes from input capsules and the variance σn

about that mean:

µn =
∑H
h=1Ch→nVh→n∑H

h=1Ch→n
, (4.13)

(σn)2 =
∑H
h=1Ch→n(Vh→n − µn)2∑H

h=1Ch→n
. (4.14)
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The incremental cost of using an active capsule Ωout
n is

χn =
∑
i

(
log(σi

n) + 1 + log(2π)
2

) H∑
h=1

Ch→n,

where σi
n denotes the i-th dimension of the variance vector σn.

The activation probability of capsule Ωout
n is calculated by

An = logistic
(
λ(βA − βµ

H∑
h=1

Ch→n − χn)
)
,

where βA is a fixed cost for coding the mean and variance
of Ωout

n when activating it, βµ is another fixed cost per input
capsule when not activating it, and λ is an inverse temperature
parameter set with a fixed schedule. We refer the readers to [61]
for more details.

E-Step adjusts the assignment probabilities Ch→∗ for each in-
put Ωin

h . First, we compute the negative log probability density
of the vote Vh→n from Ωin

h under the Gaussian distribution fitted
by the output capsule Ωout

n it gets assigned to:

Ph→n =
∑
i

1√
2π(σi

n)2
exp(−(Vi

h→n − µi
n)2

2(σi
n)2 ).

Again, i denotes the i-th dimension of the vectors {Vh→n,µn,σn}.
Accordingly, the agreement weight is re-normalized by

Ch→n = AnPh→n∑N
n′=1An′Ph→n′

. (4.15)

4.3.3 Combining Together

Coupling different representations with diversity is a well-known
technique to improve the performance [69]. While disagreement
regularization focuses on adjusting the training objective, i.e.
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the loss function, advanced aggregation function aims at mod-
ifying the network architecture. In terms of functionality, they
are also complementary to each other as one improves informa-
tion extraction and the other benefits information aggregation.
Therefore, it is natural to combine the two approaches and apply
them simultaneously. In consideration of computation cost, we
first respectively choose the best strategy from the two kinds
of approach, and then apply them simultaneously by modifying
both training objective and network architecture.

4.4 Evaluation on Machine Translation

In following sections, we evaluate the performance of our ap-
proaches on both machine translation tasks (Section 4.4) and
sentence encoding tasks (Section 4.5). We conduct evaluation
study of the proposed approaches on the benchmark machine
translation tasks, and carry out final evaluation on both trans-
lation and sentence encoding tasks.

4.4.1 Setup

Data We conduct experiments on the widely-used WMT2014
English⇒German (En⇒De) and WMT2017 Chinese⇒English
(Zh⇒En) translation tasks. For the En⇒De task, the dataset
consists of 4.6M sentence pairs. We use newstest2013 as the de-
velopment set and newstest2014 as the test set. For the Zh⇒En
task, we use all of the available parallel data with maximum
length limited to 50, consisting of about 20.6M sentence pairs.
We use newsdev2017 as the development set and newstest2017
as the test set. We employ byte-pair encoding [125] with 32K
merge operations for both language pairs. We use the case-
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sensitive 4-gram NIST BLEU score [111] as evaluation metric,
and bootstrap resampling [77] for statistical significance test.

Models We implement the proposed approaches on top of the
advanced Transformer model [142]. We follow Vaswani et
al. [142] to set the configurations and have reproduced their
reported results on the En⇒De task. The Base and Big models
differ at hidden size (512 vs. 1024) and number of attention
heads (8 vs. 16). All the models are trained on eight NVIDIA
P40 GPUs where each is allocated with a batch size of 4096
tokens.
Transformer consists of three attention components: encoder
self-attention, decoder self-attention and encoder-decoder atten-
tion, all of which are implemented as multi-head attention. For
the information aggregation in multi-head attention, we replace
the standard linear transformation with the proposed routing
mechanisms. We experimentally set the number of iterations
to 3 and the number of output capsules as model hidden size,
which outperform other configurations during our investigation.

4.4.2 Evaluation Study on Disagreement

Effect of Regularization Terms In this section, we evaluate the
impact of different regularization terms on the Zh⇒En task
using Transformer-Base. For simplicity and efficiency, here
we only apply regularizations on the encoder side. As shown
in Table 4.1, all the models with the proposed disagreement
regularizations (Rows 2-4) consistently outperform the vanilla
Transformer (Row 1). Among them, the Output term
performs best which is +0.65 BLEU score better than the
baseline model, the Position term is less effective than the other
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# Regularization Speed BLEUSub. Pos. Out.
1 × × × 1.21 24.13
2 X × × 1.15 24.64
3 × X × 1.14 24.42
4 × × X 1.15 24.78
5 X × X 1.12 24.73
6 X X × 1.11 24.38
7 X X X 1.05 24.60

Table 4.1: Effect of regularization terms, which are applied to the encoder
self-attention only. “Speed” denotes the training speed (steps/second).
Results are reported on the WMT17 Zh⇒En translation task using
Transformer-Base.

two. In terms of training speed, we do not observe obvious
decrease, which in turn demonstrates the advantage of our
disagreement regularizations.
However, the combinations of different disagreement regular-
izations fail to further improve translation performance (Rows
5-7). One possible reason is that different regularization terms
have overlapped guidance, and thus combining them does not
introduce too much new information while makes training more
difficult.

Effect on Attention Components The Transformer consists
of three attention networks, including encoder self-attention,
decoder self-attention, and encoder-decoder attention. In this
experiment, we investigate how each attention network benefits
from the disagreement regularization. As seen from Table 4.2,
all models consistently improve upon the baseline model. When
applying disagreement regularization to all three attention net-
works, we achieve the best performance, which is +0.72 BLEU
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Applying to Speed BLEUEnc Enc-Dec Dec
× × × 1.21 24.13
X × × 1.15 24.78
X X × 1.10 24.67
X × X 1.11 24.69
X X X 1.06 24.85

Table 4.2: Effect of regularization on different attention networks, i.e.,
encoder self-attention (“Enc”), encoder-decoder attention (“Enc-Dec”), and
decoder self-attention (“Dec”). We use Output Disagreement as the regular-
ization term. Results are reported on the WMT17 Zh⇒En translation task
using Transformer-Base.

score better than the baseline model. The training speed de-
creases by 12%, which is acceptable considering the performance
improvement.
In the following sections, we apply the Output Disagreement to
all the three attention networks, which we term “Disagreement”.

4.4.3 Evaluation Study on Aggregation

Table 4.3 lists the results on the En⇒De task with Transformer-
Base. As seen, the proposed routing mechanism outperforms the
standard aggregation in all cases, demonstrating the necessity
of advanced aggregation functions for multi-head attention.

Routing Mechanisms (Rows 3-4) We first apply simple routing
and EM routing to encoder self-attention. Both strategies
perform better than the standard multi-head aggregation (Row
1), verifying the effectiveness of the non-linear aggregation
mechanisms. Specifically, the two strategies require comparable
parameters and computational speed, but EM routing achieves
better performance on translation qualities. Considering the
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# Applying to . . . Routing Para. Speed BLEU 41 Enc E-D Dec
2 × × × n/a 88.0M 1.92 27.31 –
3 X × × Simple +12.6M 1.23 27.98 +0.67
4 X × × EM +12.6M 1.20 28.28 +0.97
5 × X × EM +12.6M 1.20 27.94 +0.63
6 × × X EM +12.6M 1.21 28.15 +0.84
7 X X × EM +25.2M 0.87 28.45 +1.14
8 X X X EM +37.8M 0.66 28.47 +1.16

Table 4.3: Effect of information aggregation on different attention compo-
nents, i.e., encoder self-attention (“Enc”), encoder-decoder attention (“E-
D”), and decoder self-attention (“Dec”). “Para.” denotes the number of
parameters, and “Speed” denotes the training speed (steps/second). Results
are reported on the WMT14 En⇒De translation task using Transformer-
Base.

training speed and performance, EM routing is used as the de-
fault multi-head aggregation method in subsequent experiments.

Effect on Attention Components (Rows 4-8) Concerning the
individual attention components (Rows 4-6), we found that
the encoder and decoder self-attention benefit more from the
routing-based information aggregation than the encoder-decoder
attention. This is consistent with the finding in [136], which
shows that self-attention is a strong semantic feature extractor.
Encouragingly, applying EM routing in the encoder (Row 4)
significantly improve the translation quality with almost no
decrease in decoding speed, which matches the requirement of
online MT systems. We find that this is due to the auto-
regressive generation schema, modifications on the decoder
influence the decoding speed more than the encoder.
Compared with individual attention components, applying rout-
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ing to multiple components (Rows 7-8) marginally improves
translation performance, at the cost of a significant decrease
of the training and decoding speeds. Possible reasons include
that the added complexity makes the model harder to train,
and the benefits enjoyed by different attention components are
overlapping to some extent. To balance translation performance
and efficiency, we only apply EM routing to aggregate multi-
head self-attention at the encoder in subsequent experiments.

Encoder Layers As shown in Row 4 of Table 4.3, applying EM
routing to all encoder layers significantly decreases the training
speed by 37.5%, which is not acceptable since Transformer
is best known for both good performance and quick training.
We expect applying to fewer layers can alleviate the training
burden. Recent studies show that different layers of NMT
encoder can capture different levels of syntax and semantic
features [129, 113]. Therefore, an investigation to study whether
EM routing works for multi-head attention at different layers is
highly desirable.
As shown in Table 4.4, we respectively employ EM routing
for multi-head attention at the high-level three layers (Row 3)
and low-level three layers (Row 4). The translation quality
marginally drops while parameters are fewer and training speeds
are quicker. This phenomena verifies that it is unnecessary to
apply the proposed model to all layers. We further reduce the
applied layers to low-level two (Row 5), the above phenomena
still holds. However, a big drop on translation quality occurs
when the number of layer is reduced to 1 (Rows 6-7). Accord-
ingly, to balance translation performance and efficiency, we only
apply EM routing for multi-head aggregation at the low-level
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# Layers Para. Train BLEU
1 None 88.0M 1.92 27.31
2 [1-6] +12.6M 1.20 28.28
3 [4-6] +6.3M 1.54 28.26
4 [1-3] +6.3M 1.54 28.27
5 [1,2] +4.2M 1.67 28.26
6 [6] +2.1M 1.88 27.68
7 [1] 90.1M 1.88 27.75

Table 4.4: Evaluation of different layers in the encoder, which are imple-
mented as multi-head self-attention with the EM routing based information
aggregation. “1” denotes the bottom layer, and “6” the top layer. Results
are reported on the WMT14 En⇒De translation task using Transformer-
Base.

two layers of the encoder, which we term “Aggregation” in the
following sections.

4.4.4 Combining Together and Main Results

Finally, we validate the proposed disagreement regularization
and advanced information aggregation for multi-head attention
on both WMT14 En⇒De and WMT17 Zh⇒En translation
tasks. The results are concluded in Table 4.5. Our baseline
models, both Transformer-Base and Transformer-Big,
outperform all existing NMT systems on the same data, and
match the results of Transformer reported in previous works,
which we believe make the evaluation convincing.
As seen, incorporating disagreement regularization and ad-
vanced information aggregation consistently improve translation
performance for both base and big Transformer models
across language pairs, demonstrating the efficiency and univer-
sality of the proposed approaches. Combining them together
further improves translation performances, which confirms our
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Architecture En⇒De Zh⇒En
# Para. BLEU # Para. BLEU

Existing NMT systems
Rnn with 8 layers [148] n/a 26.30 n/a n/a
Cnn with 15 layers [47] n/a 26.36 n/a n/a
Transformer-Base [142] 65M 27.3 n/a n/a
Transformer-Big [142] 213M 28.4 n/a n/a
Transformer-Big [54] n/a n/a n/a 24.2

Our NMT systems
Transformer-Base 88M 27.31 108M 24.13
+ Disagreement 88M 28.20⇑ 108M 24.85⇑
+ Aggregation 92M 28.26⇑ 112M 24.68⇑
+ Both 92M 28.41⇑ 112M 24.90⇑

Transformer-Big 264M 28.58 304M 24.56
+ Disagreement 264M 28.96↑ 304M 25.08⇑
+ Aggregation 297M 28.96↑ 337M 25.00↑
+ Both 297M 29.09⇑ 337M 25.12⇑

Table 4.5: Comparing with existing NMT systems on WMT14
English⇒German and WMT17 Chinese⇒English tasks. “↑ / ⇑”: signif-
icantly better than the baseline counterpart (p < 0.05/0.01), tested by
bootstrap resampling.

conjecture that the two approaches are complementary to each
other as one improves information extraction and the other
benefits information aggregation. It is encouraging to see
that Transformer-Base with both approaches even achieves
comparable performance to Transformer-Big, with about
two thirds fewer parameters, which further demonstrates that
our performance gains are not simply brought by additional
parameters.
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4.5 Evaluation on Sentence Encoding

Although we have shown that our proposed disagreement reg-
ularization and advanced information aggregation can improve
NMT systems with respect to the translation quality, we still
have a poor understanding of what they are capturing and
changing from the linguistic perspective. Recently, Conneau et
al. [29] designed 10 probing tasks to study what linguistic prop-
erties are captured by input representations. We conduct these
probing tasks here to study whether our proposed approaches
can benefit multi-head attention to produce more informative
representations.

4.5.1 Setup

Tasks A probing task is a classification problem that focuses on
simple linguistic properties of sentences. “SeLen” is to predict
the length of sentences in terms of number of words. “WC” tests
whether it is possible to recover information about the original
words given its sentence embedding. “TrDep” checks whether an
encoder infers the hierarchical structure of sentences. In “ToCo”
task, sentences should be classified in terms of the sequence of
top constituents immediately below the sentence node. “Bshif”
tests whether two consecutive tokens within the sentence have
been inverted. “Tense” asks for the tense of the main-clause
verb. “SubNm” focuses on the number of the subject of the
main clause. “ObjNm” tests for the number of the direct object
of the main clause. In “SOMO”, some sentences are modified by
replacing a random noun or verb with another noun or verb and
the classifier should tell whether a sentence has been modified.
“CoIn” benchmark contains sentences made of two coordinate
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clauses. Half of the sentences are inverted the order of the
clauses and the task is to tell whether a sentence is intact or
modified.

Data and Models The models on each classification task are
trained and examined using the open-source dataset provided by
Conneau et al. [29], where each task is assigned 100k sentences
for training and 10k sentences for validating and testing. Each
of our probing model consists of 6 encoding layers followed
by a MLP classifier. For each encoding layer, we employ a
multi-head self-attention block and a feed-forward block as in
Transformer-Base, which have achieved promising results
on several NLP tasks [32]. The mean of the top encoding
layer is served as the sentence representation passed to the
classifier. The difference between the compared models merely
lies in the disagreement or aggregation mechanism of multiple
attention heads. As we have conduct evaluation study on
translation task, here we merely evaluate the representative
models in each category. “Disagreement” and “Aggregation”
are assigned output disagreement regularization and EM routing
algorithms respectively, while “Combine” denotes employing the
two mechanisms simultaneously.

4.5.2 Results on Linguistic Probing

Table 4.6 lists the classification accuracies of the three models
on the 10 probing tasks. We highlight the best accuracies under
each category (i.e., “Surface”, “Syntactic”, and “Semantic”) in
bold. Obviously, the proposed models outperform the baseline
system on almost all the probing tasks, verifying that more
informative representations are produced by enhancing multi-
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Task Baseline Disagreement Aggregation Combine
Su

rfa
ce SeLen 95.35 96.47 96.02 96.55

WC 98.03 98.65 98.31 98.87
Ave. 96.69 97.56 97.15 97.71

Sy
nt
ac
tic

TrDep 44.40 46.54 45.77 46.93
ToCo 83.48 84.24 84.05 84.17
BShif 51.45 53.54 50.97 54.26
Ave. 59.77 61.44 60.26 61.78

Se
m
an

tic

Tense 84.57 85.03 85.56 86.07
SubNm 82.80 83.15 85.47 85.84
ObjNm 80.31 80.49 82.46 83.38
SOMO 49.87 49.58 50.09 50.13
CoIn 69.39 68.48 70.21 69.99
Ave. 73.38 73.34 74.76 75.08

Table 4.6: Classification accuracies on 10 probing tasks of evaluating the
linguistic properties (“Surface”, “Syntactic”, and “Semantic”) embedded in
the encoding representation produced by each model. “Ave.” denotes the
averaged accuracy in each type of linguistic tasks.“Disagreement” denotes the
disagreement regularization, “Aggregation” denotes the advanced informa-
tion aggregation, and “Combine” is the combination of the two mechanisms.

head attention networks with disagreement regularization and
advanced information aggregation. Besides, several interesting
observations can be made here.
First, disagreement regularization gains better results on surface
and syntactic tasks than advanced information aggregation,
as indicated with the italic numbers in Table 4.6. Advanced
information aggregation, on the contrary, performs better on
semantic tasks, especially on “SubNm” and “ObjNm” tasks
which are the benchmarks for examining the semantic consis-
tency of the model. This empirical result is consistent with
the conclusion in [29]: as a model captures deeper linguistic
properties, it will tend to forget about some superficial features.
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Second, the combination of the two mechanisms achieves the
best accuracies on almost all tasks, which is on par with the
results in machine translation task. Concerning the three
main categories, the relative improvements over the baseline are
respectively 1.05%, 3.36%, and 2.31%. Together with the first
observation, we can conclude that the two types of approaches
are complementary to each other concerning extracting linguis-
tic information of the input sentence.

4.6 Related Work

The disagreement regularizations are inspired by agreement
learning in prior works, which encourages alignments or hidden
variables of multiple models to be similar. Liang et al. [90]
assign agreement terms for jointly training word alignment in
phrase-based statistic machine translation. The idea is further
extended into other natural language processing tasks such
as grammar induction [91]. Levinboim et al. [83] extend the
agreement for general bidirectional sequence alignment models
with model inevitability regularization. Cheng et la. [22] further
explore the agreement on modeling the source-target and target-
source alignments in NMT model. In contrast to the mentioned
approaches which assign agreement terms into loss function, we
deploy an alignment disagreement regularization by maximizing
the distance among multiple attention heads.
The routing-by-agreement algorithm origins from the capsule
networks [60]. The majority of existing work on capsule
networks has focused on computer vision tasks, such as MNIST
tasks [123, 61], CIFAR tasks [149], and object segmentation
task [82]. The applications of capsule networks in NLP tasks,
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however, have not been widely investigated to date. Zhao et
al. [158] testify capsule networks on text classification tasks and
Gong et al. [49] propose to aggregate a sequence of vectors via
dynamic routing for sequence encoding. Inspired by these suc-
cesses, we apply the routing algorithms to multi-head attention.

4.7 Summary

In this chapter, we propose to better exploit the diversity
of multi-head attention by incorporating disagreement regu-
larization and employing advanced aggregation function. To
this end, we propose several effective and efficient strategies
to implement the disagreement regularization and advanced
aggregation function. We find that the output disagreement
term and EM routing algorithm yield the best performances, and
are complementary to each other. Experimental results on ma-
chine translation tasks and linguistic probing tasks demonstrate
the effectiveness and universality of the proposed approaches,
suggesting that our models produce more informative represen-
tation of the input sentence.

2 End of chapter.



Chapter 5

Representation Composition
for Self-Attention Networks

Built on stacking of self-attention networks, the Transformer
architecture has achieved state-of-the-art on many NLP tasks.
The strength of Transformer lies in its ability to capture different
linguistic properties of the input sentence by different layers and
different attention heads. Rather than using the last layer or
linearly combining all attention heads, in this chapter, we study
how to effectively compose (i.e., aggregate) the representations
learned by different components. The main points of this
chapter are as follows. (1) We propose a bilinear pooling-based
approach with low-rank approximation for information aggre-
gation. (2) We further extend the bilinear pooling approach
with first-order representations. (3) Experiments on machine
translation tasks show that our model consistently improves
performances over the baseline. Further analyses demonstrate
that our approach indeed captures more syntactic and semantic
information.

80
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5.1 Introduction

Deep neural networks (Dnns) have advanced the state of the
art in various natural language processing (NLP) tasks, such
as machine translation [142], semantic role labeling [131], and
language representations [32]. The strength of Dnns lies in
their ability to capture different linguistic properties of the input
by different layers [129, 118], and composing (i.e., aggregating)
these layer representations can further improve performances
by providing more comprehensive linguistic information of the
input [113, 36].
Recent NLP studies show that single neurons in neural models
which are defined as individual dimensions of the represen-
tation vectors, carry distinct linguistic information [10]. A
follow-up work further reveals that simple properties such as
coordinating conjunction (e.g., “but/and”) or determiner (e.g.,
“the”) can be attributed to individual neurons, while complex
linguistic phenomena such as syntax (e.g., part-of-speech tag)
and semantics (e.g., semantic entity type) are distributed across
neurons [30]. These observations are consistent with recent
findings in neuroscience, which show that task-relevant informa-
tion can be decoded from a group of neurons interacting with
each other [106]. One question naturally arises: can we better
capture complex linguistic phenomena by composing/grouping
the linguistic properties embedded in individual neurons?
The starting point of our approach is an observation in neu-
roscience: stronger neuron interactions – directly exchanging
signals between neurons, enable more information processing
in the nervous system [75]. We believe that simulating the
neuron interactions in nervous system would be an appealing
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alternative to representation composition, which can potentially
better learn the compositionality of natural language with subtle
operations at a smaller granularity. Concretely, we propose
to employ bilinear pooling [92], which executes pairwise multi-
plicative interactions among individual representation elements,
to achieve strong neuron interactions. We also introduce a
low-rank approximation to make the original bilinear models
computationally feasible [73]. Furthermore, as bilinear pooling
only encodes multiplicative second-order features, we propose
extended bilinear pooling to incorporate first-order representa-
tions, which can capture more comprehensive information of the
input sentences.
We validate the proposed neuron interaction-based (NI-based)
representation composition on top of multi-layer multi-head
self-attention networks (MlMhSans). The reason is two-fold.
First, MlMhSans are critical components of various SOTA
Dnns models, such as Transformer [142], Bert [32], and
Lisa [131]. Second, MlMhSans involve in compositions of
both multi-layer representations and multi-head representations,
which can investigate the universality of NI-based composition.
Specifically,

• First, we conduct experiments on the machine translation
task, a benchmark to evaluate the performance of neural
models. Experimental results on the widely-used WMT14
English⇒German and English⇒French data show that the
NI-based composition consistently improves performance
over Transformer across language pairs. Compared with
existing representation composition strategies [113, 36], our
approach shows its superiority in efficacy and efficiency.
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• Second, we carry out linguistic analysis [29] on the learned
representations from NMT encoder, and find that NI-based
composition indeed captures more syntactic and semantic
information as expected. These results provide support for
our hypothesis that modeling strong neuron interactions
helps to better capture complex linguistic information via
advanced composition functions, which is essential for
downstream NLP tasks.

This paper is an early step in exploring neuron interactions for
representation composition in NLP tasks, which we hope will be
a long and fruitful journey. We make the following contributions:

• Our study demonstrates the necessity of modeling neuron
interactions for representation composition in deep NLP
tasks. We employ bilinear pooling to simulate strong
neuron interactions.

• We propose extended bilinear pooling to incorporate first-
order representations, which produces a more comprehen-
sive representation.

• Experimental results show that representation composition
benefits the widely-employed MlMhSans by aggregating
information learned by multi-layer and/or multi-head at-
tention components.

5.2 Multi-Layer Multi-Head SAN

In the past two years, MlMhSans based models establish the
SOTA performances across different NLP tasks. The main
strength of MlMhSans lies in the powerful representation
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learning capacity provided by the multi-layer and multi-head
architectures. MlMhSans perform a series of nonlinear trans-
formations from the input sequences to final output sequences.
Specifically, MlMhSans are composed of a stack of L identical
layers (multi-layer), each of which is calculated as

Hl = Self-Att(Hl−1) + Hl−1, (5.1)

where a residual connection is employed around each of two
layers [56]. Self-Att(·) is a self-attention model, which
captures dependencies among hidden states in Hl−1:

Self-Att(Hl−1) = Att(Ql,Kl−1) Vl−1, (5.2)

where {Ql,Kl−1,Vl−1} are the query, key and value vectors that
are transformed from the lower layer Hl−1, respectively.
Instead of performing a single attention function, Vaswani et
al. [142] found it is beneficial to capture different context
features with multiple individual attention functions (multi-
head). Concretely, multi-head attention model first transforms
{Q,K,V} into H subspaces with different, learnable linear
projections:1

Qh,Kh,Vh = QWQ
h ,KWK

h ,VWV
h , (5.3)

where {Qh,Kh,Vh} are respectively the query, key, and value
representations of the h-th head. {WQ

h ,WK
h ,WV

h } denote
parameter matrices associated with the h-th head. H self-
attention functions (Equation 5.2) are applied in parallel to
produce the output states {O1, . . . ,OH}. Finally, theH outputs
are concatenated and linearly transformed to produce a final
representation:

H = [O1, . . . ,OH ] WO, (5.4)
1Here we skip the layer index for simplification.
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where WO ∈ Rd×d is a trainable matrix.

Representation Composition Composing (i.e. aggregating) rep-
resentations learned by different layers or attention heads has
been shown beneficial for MlMhSans [36, 2]. Without loss
of generality, from here on, we refer to {r1, . . . , rN} ∈ Rd

for the representations to compose, where ri can be a layer
representation (Hl, Equation 5.1) or head representation (Oh,
Equation 5.4). The composition is expressed as:

H̃ = Compose(r1, . . . , rN), (5.5)

where Compose(·) can be arbitrary functions, such as linear
combination2 [113, 2] and hierarchical aggregation [36]. Though
effective to some extent, these approaches do not model neuron
interactions among the representation vectors, which we believe
is valuable for representation composition in deep NLP models.

5.3 Methodology

Different types of neurons in the nervous system carry distinct
signals [27]. Similarly, neurons in deep NLP models – individual
dimensions of representation vectors, carry distinct linguistic
information [10, 30]. Studies in neuroscience reveal that stronger
neuron interactions bring more information processing capabil-
ity [75], which we believe also applies to deep NLP models.
In this chapter, we explore the strong neuron interactions
provided by bilinear pooling for representation composition.
Bilinear pooling [92] is a recently proposed feature fusion

2The linear composition of multi-head representations (Equation 5.4) can be rewritten
in the format of weighted sum: O =

∑H
h=1 OhWO

h with WO
h ∈ R d

H×d.
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Figure 5.1: Illustration of (a) bilinear pooling that models fully neuron-wise
multiplicative interaction, and (b) extended bilinear pooling that captures
both second- and first-order neuron interactions.

approach in the vision field. Instead of linearly combining all
representations, bilinear pooling executes pairwise multiplica-
tive interactions among individual representations, to model full
neuron interactions as shown in Figure 5.1(a).
Note that there are many possible ways to implement the neuron
interactions. The aim of this paper is not to explore this
whole space but simply to show that one fairly straightforward
implementation works well on a strong benchmark.

5.3.1 Bilinear Pooling

Bilinear pooling [138] is defined as an outer product of two
representation vectors followed by a linear projection. As
illustrated in Figure 5.1(a), all elements of the two vectors have
direct multiplicative interactions with each other. However,
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in the scenario of multi-layer and multi-head composition, we
generally have more than two representation vectors to compose
(i.e., L layers and H attention heads). To utilize the full second-
order (i.e. multiplicative) interactions in bilinear pooling, we
concatenate all the representation vectors and feed the concate-
nated vector twice to the bilinear pooling. Concretely, we have:

R = |R̂R̂>|WB, (5.6)
R̂ = [r1, . . . , rN ], (5.7)

where |R̂R̂>| ∈ RNd×Nd is the outer product of the concatenated
representation R̂, | · | denotes serializing the matrix into a vector
with dimensionality (Nd)2. In this way, all elements in the
partial representations are able to interact with each other in
a multiplicative way.
However, the parameter matrix WB ∈ R(Nd)2×d and computing
cost cubically increases with dimensionality d, which becomes
problematic when training or decoding on a GPU with limited
memory. For example, a regular Transformer model requires
a huge amount of 36 billion ((Nd)2 × d) parameters for d =
1000 and N = 6. There have been a few attempts to reduce
the computational complexity of the original bilinear pooling.
Gao et al. [45] propose compact bilinear pooling to reduce the
quadratic expansion of dimensionality for image classification.
Kim et al. [73] and Kong et al. [78] propose low-rank bilinear
pooling for visual question answering and image classification
respectively, which further reduces the parameters to be learned
and achieves comparable effectiveness with full bilinear pooling.
In this chapter, we focus on the low-rank approximation for
its efficiency, and generalize from the original model for deep
representations.



CHAPTER 5. REPRESENTATION COMPOSITION FOR SAN 88

5.3.2 Low-Rank Approximation

In the full bilinear models, each output element Ri ∈ R1 can be
expressed as

Ri =
Nd∑
j=1

Nd∑
k=1

wB
jk,iR̂jR̂

>
k

= R̂>WB
i R̂, (5.8)

where WB
i ∈ RNd×Nd is a weight matrix to produce output

element Ri. The low-rank approximation enforces the rank of
WB

i to be low-rank r ≤ Nd [114], which is then factorized
as UiV>i with Ui ∈ RNd×r and Vi ∈ RNd×r. Accordingly,
Equation 5.8 can be rewritten as

Ri = R̂>UiV>i R̂
= (R̂>Ui � R̂>Vi)1r, (5.9)

where 1r is a r-dimensional vector of ones, � represents element-
wise product. By replacing 1r with P ∈ Rr×d, and redefining
U ∈ RNd×r and V ∈ RNd×r, the low-rank approximation can be
defined as

R = (R̂>U� R̂>V)P. (5.10)

In this way, the computation complexity is reduced from O(d3)
to O(d2). And the parameter matrices U, V, and P are now
feasible to fit in GPU memory.

5.3.3 Extended Bilinear Pooling

Previous work in information theory has proven that second-
order and first-order representations encode different types of
information [51], which we believe also holds on NLP tasks. As
bilinear pooling only encodes second-order (i.e., multiplicative)
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interactions among individual neurons, we propose the extended
bilinear pooling to inherit the advantages of first-order represen-
tations and form a more comprehensive representation.
Specifically, we append 1s to the representation vectors. As
illustrated in Figure 5.1(b), we respectively append 1 to the
two R vectors, then the outer product of them produces both
second-order and first-order interactions among the elements.
According to Equation 5.10, the final representation is revised
as:

Rf = (
R̂

1

>U�
R̂

1

>V) P, (5.11)

where R̂ is the concatenated representation as in Equation 5.7.
As a result, the final representation Rf preserves both multi-
plicative bilinear features (as in Equation 5.10) and first-order
linear features (as in Equation 5.4).

5.3.4 Applying to Transformer

Transformer [142] consists of an encoder and a decoder, each
of which is stacked in 6 layers where we can apply multi-layer
composition (excluding the embedding layer) to produce the
final representations of the encoder and decoder. Besides, each
layer has one (in encoder) or two (in decoder) multi-head at-
tention component with H heads, to which we can apply multi-
head composition to substitute Equation 5.4. The two sorts
of representation composition can be used individually, while
combining them is expected to further improve the performance.
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5.4 Evaluation

5.4.1 Setup

Dataset We conduct experiments on the WMT2014 English to
German (En⇒De) and English to French (En⇒Fr) translation
tasks. The En⇒De dataset consists of about 4.56 million
sentence pairs. We use newstest2013 as the development set
and newstest2014 as the test set. The En⇒Fr dataset consists
of 35.52 million sentence pairs. We use the concatenation of
newstest2012 and newstest2013 as the development set and
newstest2014 as the test set. We employ BPE [125] with
32K merge operations for both language pairs. We adopt the
case-sensitive 4-gram NIST BLEU score [111] as our evaluation
metric and bootstrap resampling [77] for significance test.

Models We evaluate the proposed approaches on the advanced
Transformer model [142], and implement on top of an open-
source toolkit – THUMT. We follow Vaswani et al. [142] to set
the configurations and have reproduced their reported results
on the En⇒De task. The parameters of the proposed models
are initialized by the pre-trained Transformer model. We
have tested both Base and Big models, which differ at hidden
size (512 vs. 1024) and number of attention heads (8 vs. 16).
Concerning the low-rank parameter (Equation 5.9), we set low-
rank dimensionality r to 512 and 1024 in Base and Big models
respectively. All models are trained on eight NVIDIA P40 GPUs
where each is allocated with a batch size of 4096 tokens. In
consideration of computation cost, we study model variations
with Base model on the En⇒De task, and evaluate overall
performance with Big model on both En⇒De and En⇒Fr tasks.
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# Model # Para. Train BLEU
1 Transformer-Base 88.0M 2.02 27.31

Existing representation composition
2 + Multi-Layer: Linear Combination +3.1M 1.98 27.77
3 + Multi-Layer: Hierarchical Agg. +23.1M 1.62 28.32
4 + Multi-Head: Hierarchical Agg. +13.6M 1.74 28.13
5 + Both (3+4) +36.7M 1.42 28.42

This work: neuron-interaction based representation composition
6 + Multi-Layer: NI-based Composition +16.8M 1.93 28.31
7 + Multi-Head: NI-based Composition +14.1M 1.92 28.29
8 + Both (6+7) +30.9M 1.87 28.54

Table 5.1: Translation performance on WMT14 English⇒German trans-
lation task. “# Para.” denotes the number of parameters, and “Train”
denotes the training speed (steps/second). We compare our model with
linear combination [113] and hierarchical aggregation [36].

5.4.2 Comparison to Existing Approaches

In this section, we evaluate the impacts of different representa-
tion composition strategies on the En⇒De translation task with
Transformer-Base, as listed in Table 5.1.

Existing Representation Composition (Rows 1-5) For the con-
ventional Transformer model, it adopts multi-head compo-
sition with linear combination but only uses top-layer represen-
tation as its default setting. Accordingly, we keep the linear
multi-head composition (Row 1) unchanged, and choose two
representative multi-layer composition strategies (Rows 2 and
3): the widely-used linear combination [113] and the effective hi-
erarchical aggregation [36]. The hierarchical aggregation merges
states of different layers through a CNN-like tree structure with
the filter size being two, to hierarchically preserve and combine
feature channels.
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As seen, linearly combining all layers (Row 2) achieves +0.46
BLEU improvement over Transformer-Base with almost the
same training and decoding speeds. Hierarchical aggregation
for multi-layer composition (Row 3) yields larger improvement
in terms of BLEU score, but at the cost of considerable speed
decrease. To make a fair comparison, we also implement
hierarchical aggregation for multi-head composition (Rows 4
and 5), which consistently improves performances at the cost
of introducing more parameters and slower speeds.

The Proposed Approach (Rows 6-8) Firstly, we apply our NI-
based composition, i.e. extended bilinear pooling, for multi-
layer composition with the default linear multi-head composition
(Row 6). We find that the approach achieves almost the same
translation performance as hierarchical aggregation (Row 3),
while keeps the training and decoding speeds as efficient as
linear combination. Then, we apply the NI-based approach for
multi-head composition with the default top layer exploitation
(Row 7). We can see that our approach gains +0.98 BLEU
point over Transformer-Base and achieves more improve-
ment than hierarchical aggregation (Row 4). The two results
demonstrate that our NI-based approach can be effectively
applied to different representation composition scenarios.
At last, we simultaneously apply the NI-based approach to the
multi-layer and multi-head composition (Row 8). Our model
achieves further improvement over individual models and the
hierarchical aggregation (Row 5), showing that Transformer
can benefit from the complementary composition from multiple
heads and historical layers. In the following experiments, we
adopt NI-based composition for both the multi-layer and multi-
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Architecture EN⇒DE EN⇒FR
# Para. BLEU # Para. BLEU

Existing NMT systems: [142]
Transformer-Base 65M 27.3 n/a 38.1
Transformer-Big 213M 28.4 n/a 41.8

Our NMT systems
Transformer-Base 88M 27.31 95M 39.28

+ NI-Based Composition 118M 28.54⇑ 125M 40.15⇑
Transformer-Big 264M 28.58 278M 41.41

+ NI-Based Composition 387M 29.17⇑ 401M 42.10⇑

Table 5.2: Comparing with existing NMT systems on WMT14
English⇒German (“EN⇒DE”) and English⇒French (“EN⇒FR”) transla-
tion tasks. “⇑”: significantly better than the baseline (p < 0.01) using
bootstrap resampling [77].

head compositions as the default strategy.

5.4.3 Main Results on Machine Translation

In this section, we validate the proposed NI-based representation
composition on both WMT14 En⇒De and En⇒Fr translation
tasks. Experimental results are listed in Table 5.2. The
performances of our implemented Transformer match the
results on both language pairs reported in previous work [142],
which we believe makes the evaluation convincing.
Incorporating NI-based composition consistently and signifi-
cantly improves translation performance for both base and big
Transformer models across language pairs, demonstrating
the effectiveness and universality of the proposed NI-based
representation composition. It is encouraging to see that
Transformer-Base with NI-based composition even achieves
competitive performance as that of Transformer-Big in
the En⇒De task, with only half fewer parameters and the
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training speed is twice faster. This further demonstrates that
our performance gains are not simply brought by additional
parameters. Note that the improvement on En⇒De task is
larger than En⇒Fr task, which can be attributed to the size
of training data (4M vs. 35M).

5.5 Analysis

In this section, we conduct extensive analysis to deeply under-
stand the proposed models in terms of 1) the linguistic properties
learned by the NMT encoder; 2) the influences of first-order
representation and low-rank constraint; and 3) the translation
performances on sentences of varying lengths.

5.5.1 Linguistic Evaluation on NMT Encoder

Machine translation is a complex task, which consists of both the
understanding of input sentence (encoder) and the generation
of output conditioned on such understanding (decoder). In this
probing experiment, we evaluate the understanding part using
Transformer encoders that are trained on the EN⇒DE NMT
data, and are fixed in the probing tasks with only MLP classifiers
being trained on probing data.
Recently, Conneau et al. [29] designed 10 probing tasks to study
what linguistic properties are captured by representations from
sentence encoders. A probing task is a classification problem
that focuses on simple linguistic properties of input sentences,
including surface information, syntactic information, and se-
mantic information. We have given detailed introduction of the
10 probing tasks in Section 4.5 of the previous chapter. However,
our setting here is a little different from the setting in Section 4.5
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Task Base Ours 4

Su
rf
ac
e SeLen 92.20 92.11 -0.1%

WC 63.00 63.50 +0.8%
Ave. 77.60 77.81 +0.3%

Sy
nt
ac
ti
c TrDep 44.74 44.96 +0.5%

ToCo 79.02 81.31 +2.9%
BShif 71.24 72.44 +1.7%
Ave. 65.00 66.24 +1.9%

Se
m
an

ti
c

Tense 89.24 89.26 +0.0%
SubNm 84.69 87.05 +2.8%
ObjNm 84.53 86.91 +2.8%
SOMO 52.13 52.52 +0.7%
CoIn 62.47 64.93 +3.9%
Ave. 74.61 76.13 +2.0%

Table 5.3: Classification accuracies on 10 probing tasks of evaluating
the linguistic properties (“Surface”, “Syntactic”, and “Semantic”). “Ave.”
denotes the averaged accuracy in each category. “4” denotes the relative
improvement, and we highlight the numbers ≥ 1%.

as we freeze the parameters in NMT encoders. We conduct
probing tasks to examine whether the NI-based representation
composition can benefit the Transformer encoder to produce
more informative representation.
Table 5.3 lists the results. The NI-based composition out-
performs that by the baseline in most probing tasks, proving
that our composition strategy indeed helps Transformer
encoder generate more informative representation, especially at
the syntactic and semantic level. The averaged gains in syntactic
and semantic tasks are significant, showing that our strategy
makes San capture more high-level linguistic properties. Note
that the lower values in surface tasks (e.g., SeLen), are consistent
with the conclusion in [29]: as model captures deeper linguistic
properties, it will tend to forget about these superficial features.
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Figure 5.2: Effect of first-order representation on WMT14 En⇒De transla-
tion task.

5.5.2 Effect of First-Order Representation

As aforementioned, we extend the conventional bilinear pooling
by appending 1s to the representation vectors thus incorporate
first-order representations (i.e. linear combination), and capture
both multiplicative bilinear features and additive linear features.
Here we conduct ablation study to validate the effectiveness
of each component. We respectively experiment on multi-layer
and multi-head representation composition, and the results are
shown in Figure 5.2.
Several observations can be made. First, we notice that by
replacing linear combination with mere bilinear pooling (“NI-
based composition w/o first-order” in Figure 5.2), the trans-
lation performance significantly improves both in multi-layer
and multi-head composition, demonstrating the effectiveness of
full neuron interaction and second-order features. We further
observe that it is indeed beneficial to extend bilinear pooling
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Figure 5.3: BLEU scores on the En⇒De test set with different rank
constraints for bilinear pooling. “Baseline” denotes Transformer-Base.

with linear combination (“NI composition” in Figure 5.2) which
captures the complementary information among them and forms
a more comprehensive representation of the input.

5.5.3 Effect of Low-Rank Constraint

In this experiment, we study the impact of low-rank constraint
r (Equation 5.9) on bilinear pooling, as shown in Figure 5.3. It
is interesting to investigate whether the model with a smaller
setting of r can also achieve considerable results. We examine
groups of multi-head composition models with different r on
the En⇒De translation task. From Figure 5.3, we can see that
the translation performance increases with larger r value and
the model with r = 512 achieves best performance3. Note that
even when the dimensionality r is reduced to 32, our model
can still consistently outperform the baseline with only 0.9M

3The maximum value of r is 512 since the rank of a matrix W ∈ RNd×Nd is bounded
by Nd.
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Figure 5.4: BLEU scores on the En⇒De test set with respect to various
input sentence lengths. “Baseline” denotes Transformer-Base.

parameters added (not shown in the figure). This reconfirms
our claim that the improvements on the BLEU score could not
be simply attributed to the additional parameters.

5.5.4 Length Analysis

We group sentences of similar lengths together and compute
the BLEU score for each group, as shown in Figure 5.4.
Generally, the performance of Transformer goes up with
the increase of input sentence lengths, which is different from
the results on single-layer RNNSearch models (i.e., performance
decreases on longer sentences) as shown in [140]. We attribute
this phenomenon to the advanced Transformer architecture
including multiple layers, multi-head attention and feed-forward
networks.
Clearly, our NI-based approaches outperform the baseline Trans-
former in all length segments, including only using multi-layer
composition or multi-head composition, which verifies our con-
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tribution that representation composition indeed benefits Sans.
Moreover, multi-layer composition and multi-head composition
are complementary to each other regarding different length
segments, and simultaneously applying them achieves further
performance gain.

5.6 Related Work

Bilinear pooling has been well-studied in the computer vision
community, which is first introduced by Tenenbaum et al. [138]
to separate style and content. Bilinear pooling has since
then been considered to replace fully-connected layers in neural
networks by introducing second-order statistics, and applied to
fine grained recognition [92]. While bilinear models provide
richer representations than linear models [51], bilinear pooling
produces a high-dimensional feature of quadratic expansion,
which may constrain model structures and computational re-
sources. To address this challenge, Gao et al. [45] propose
compact bilinear pooling through random projections for image
classification, which is further applied to visual question an-
swering [44]. Kim et al. [73] and Kong et al. [78] independently
propose low-rank approximation on the transformation matrix
of bilinear pooling, which aims to reduce the model size and cor-
responding computational burden. Their models are applied to
visual question answering and fine-grained image classification,
respectively.
While most work focus on computer vision tasks, our work is
among the few studies [39, 31], which prove the idea of bilinear
pooling can have promising applications on NLP tasks.
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5.7 Summary

In this chapter, we propose NI-based representation composition
for MlMhSans, by modeling strong neuron interactions in the
representation vectors generated by different layers and atten-
tion heads. Specifically, we employ bilinear pooling to capture
pairwise multiplicative interactions among individual neurons,
and propose extended bilinear pooling to further incorporate
first-order representations. Experiments on machine translation
tasks show that our approach effectively and efficiently improves
translation performance over the Transformer model, and
multi-head composition and multi-layer composition are comple-
mentary to each other. Further analyses reveal that our model
makes the encoder of Transformer capture more syntactic
and semantic properties of input sentences.

2 End of chapter.



Chapter 6

Pre-trained Attention Models
for Code Generation

Semantic parsing is the task to map natural language utterances
to logical forms or executable code. The state-of-the-art seman-
tic parsers are mostly syntax-specific and heavily-engineered,
thus they are not generalizable. In this chapter, we explore
how to apply the powerful pre-trained attention models such as
BERT [32] to build semantic parsers that are both effective and
generalizable. The main points of this chapter are as follows.
(1) We propose a novel BERT-LSTM model that employs a
pre-trained BERT encoder followed by an LSTM decoder with a
pointer-generator network. (2) We demonstrate the effectiveness
and universality of our model on three code generation tasks,
where BERT-LSTM achieves state-of-the-art on three of the
four datasets. (3) We also highlight several design principles for
code generation, such as the use of LSTM decoder and greedy
decoding, and fine-tuning BERT parameters.

101
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6.1 Introduction

Digital virtual assistants have become increasingly powerful and
popular, giving us the ability to instruct computing devices
using natural language. One of the key challenges for such
virtual assistants is natural language understanding: how to
interpret human languages into machine-understandable rep-
resentations? Works in semantic parsing try to approach
this challenge by mapping natural language to some formal
domain-specific programming languages which are executable
by computers. An illustrative example is shown in Figure 6.1.
These programming languages can be formalisms for querying
databases or knowledge bases [170, 13, 171, 167], commands for
robots or virtual assistants [5, 19], instructions to manipulate
spreadsheets [53], and general-purpose programming languages
like Python and Java [94, 162], among others.
The natural language processing community has been devel-
oping data-driven approaches for semantic parsing, such as
grammar-based probabilistic models [26]. Recently, with the
great success of neural networks, deep learning has been applied
to semantic parsing. Specifically, researchers treat semantic
parsing as a sequence-to-sequence learning problem like neu-
ral machine translation. Attentional neural encoder-decoder
models are generally employed, where the source side learns to
encode the semantics of natural language and the target side
learns to generate the corresponding programming code.
Conventionally, bi-directional LSTM or Transformer network is
adopted as the encoder. As for the decoder, many task-specific
designs have been proposed. Compared to natural language,
program source code has well-defined syntax thus allowing us
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Player Country Points Winnings($)

S. Stricker United States 9000 1260000

K.J. Choi South Korea 5400 756000

R. Sabbatini South Africa 3400 4760000

M. Calca United States 2067 289333

E. Els South Africa 2067 289333

Question: What is the points of South Korea player?

SQL: SELECT Points WHERE Country = South Korea

Answer: 5400

Figure 6.1: An example of the WiKiSQL task. The natural language question
is parsed into a SQL query, and then executed on corresponding table to get
the result.

to design syntax-specific decoders that are tailored to the target
programming languages. For example, Yin et al. [162] propose to
utilize the Abstract Syntax Tree (AST) in Python programming
language and design a tree-structured decoder which reflects
the recursive structure of Python AST. Though effective, such
specifically-designed semantic parsers lose universality and are
hard to generalize to other programming languages.
Meanwhile, the natural language processing community has
recently witnessed a rapid advancement in pre-trained models
(e.g., BERT [32], GPT [117], XLNet [159]), which have proved
to be extremely effective for most language processing tasks.
The core idea is to first train those models on large-scale
text corpus to learn universal language representations, then
fine-tune them on downstream tasks with supervised training.
Since the pre-trained models are mostly built on self-attentional
Transformer networks, we also call them pre-trained attention
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models. Given the universality of those pre-trained models,
one natural question arises: can we utilize the powerful pre-
trained attention models to build neural semantic parsing models
that are both effective and generalizable on many programming
languages?
In this chapter, we propose a model called BERT-LSTM to
achieve such a goal, which is designed with three principles
in mind: simplicity, extensibility, and effectiveness. We try
to add a minimal amount of additional parameters on top of
BERT, to make the most use of pre-training. We also design
our decoder without considering the underlying syntax of target
programming languages to accomplish model generalization.
Specifically, our model uses a pre-trained BERT encoder with a
pooling layer, followed by an LSTM decoder with a pointer-
generator network that can either copy from the input or
generate from a vocabulary.
We evaluate our proposed model on three code generation tasks
(i.e., Almond, Django, WikiSQL), and demonstrate that
BERT-LSTM is capable of generalizing to different domains
and different programming languages while registering strong
performances, achieving state-of-the-art on three of the four
datasets. We also highlight several design principles for better
code generation performances: use LSTM decoder rather than
Transformer decoder, use greedy decoding rather than beam
search, and fine-tune BERT rather than freezing the BERT
parameters.
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6.2 Methodology

Our neural semantic parsing model is a simple yet novel archi-
tecture called BERT-LSTM. It is an encoder-decoder framework
composed of the pre-trained BERT encoder and an LSTM
decoder with attention in between. In this section, we will
elaborate on our model and the rationale for its design. We
depict the overall architecture of the model in Figure 6.2.

6.2.1 Encoder

We adopt the BERT model [32] as the sentence encoder. We
try to add a minimal amount of additional parameters on top
of BERT, in order to make the best use of pre-trained natural
language knowledge.
BERT is a deep Transformer network [142] with only self-
attention mechanism. To encode a sentence, it first splits it into
word-piece sub-tokens x0 . . . xn, then feeds them to a 12-layer
(base model) or 24-layer (big model) Transformer network, to
compute the final contextualized representations of each token
hE,t. BERT is pre-trained on large-scale general English corpus
like Wikipedia with the masked language model objective. We
take the publicly released BERT model and fine-tune it on our
code generation tasks.
We also compute the sentence representation h̄E as a single
vector by averaging the token representations from the top
BERT layer and feeding it to a single-layer feed-forward network:

h̄E = Wpool,outrelu(Wpool,inavg(hE) + bpool)

(where W and b are learnable parameters).
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Figure 6.2: The proposed BERT-LSTM model.

To improve the learning process and regularization, normaliza-
tion and dropout layers are added around the pooling layer.

6.2.2 Decoder

At the time of decoding, our model produces one token of
the executable query or program yt at a time, given the last
time produced code token yt−1. During training, we employ
teacher forcing and set yt−1 as the ground truth of the prior
time step. It is worth noting that our decoder does not contain
any syntax-specific components, thus our model can generalize
to any programming languages, for example, ThingTalk [20],
Python, and SQL, which we will show in the experiments part.
Specifically, the previous code token is first transformed to a
continuous vector through an embedding layer. We subsequently
feed the embedded token to an LSTM cell to compute the LSTM
hidden state hD,t, and then compute the attention scores st
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(which is a list) against each token in the encoder, as well as
the attention value vector vt and the attention context vector
ct, which are formally expressed as follows:

hD,0 = h̄E

c0 = 0
yemb,t = Wembyt−1

hD,t = LSTM(hD,t−1, [yemb,t; ct−1])
st = softmax(hD,thTE)
vt =

∑
t′
st,t′hE,t′

ct = tanh(Watt [vt;hD,t])

(“;” indicates concatenation).
With the hidden state hD,t and context vector ct, the model can
predict an output token over a vocabulary that is built on the
training data.

6.2.3 Pointer Network

However, program source code is often very diverse and the
model may face many entities or variable names that are unseen
during training. To cope with this problem, we adopt a pointer
network [143] and enable the model to either copy from the
input sentence or generate from the vocabulary. The use of
such pointer network allows the model to be mostly agnostic
to specific entity names mentioned in the question, which are
copied verbatim in the generated program code.
Specifically, we employ the pointer-generator network proposed
by See et al. [124]. As shown in following equations, the choice
of whether to copy from the input or to generate from the
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vocabulary is decided by a switch probability γt:

γt = σ(Wγ [yemb,t;hD,t; ct])
pt,w = γt

∑
t′,xt′=w

st,t′ + (1− γt)softmax(Woct)

yt = arg max
w

pt,w

where the final distribution pw predicts the output code token.
During training, our model is trained to maximize the likelihood
of the program code for a given question using teacher forcing.
During inference, the model greedily chooses the token with the
highest probability at each time step.

6.2.4 Discussion

Though BERT-LSTM looks very simple, there are still many
design choices that need to be discussed. First, we choose
LSTM as our decoder. As in the Transformer network for
machine translation [142], a Transformer decoder can also be the
alternative. Second, we employ the greedy decoding strategy.
However, the most popular decoding strategy for text generation
is beam search, which may also work for code generation. Lastly,
there are two ways to exploit BERT representation: fine-tune
it with downstream tasks or freeze it as word embedding while
we adopt the former. In the following experiment part, we will
evaluate all these design choices on the code generation task.

6.3 Evaluation

In this part, we first introduce our datasets and experimental
settings. Then we evaluate the design choices proposed in
Section 6.2.4 on the Almond dataset. Finally, we validate
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our BERT-LSTM on all the four datasets. Note that all
experimental results are averaged over three runs with different
random seeds.

6.3.1 Datasets and Metrics

We conduct experiments on three code generation tasks with
four datasets, i.e., Almond-Restaurant, Almond-People,
Django, and WiKiSQL. The statistics of the four datasets are
shown in Table 6.1, including the train/dev/test set size and the
average question/code length.

Almond This dataset [153] is released by the Almond virtual
assistant [19] team at Stanford University. Each example in
the dataset is composed of a natural language question and the
corresponding ThingTalk code, which is a specially designed pro-
gramming language to manipulate the Almond virtual assistant.
This dataset is further split into two domains, namely Almond-
Restaurant and Almond-People. Almond-Restaurant
contains user questions about restaurant cuisines, ratings, lo-
cations, etc., while Almond-people is about people’s profiles
such as work and education. It is worth noting all questions in
Almond dataset are compositional questions involving multiple
properties of the restaurant or people. So it is quite challenging.

Django This dataset [110] is a collection of lines of Python
code from the Django web framework that each line is paired
with a natural language description. The dataset is very
diverse, exhibiting a wide variety of use cases, such as string
manipulation, iteration, and exception handling.
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Dataset Almond-Res Almond-Ppl Django WiKiSQL

Train 364,193 420,253 15,967 56,324
Development 378 315 996 8,419
Test 415 429 1,801 15,873

Avg. Ques Len 13 15 14 24
Avg. Code Len 23 25 8 6

Table 6.1: Statistics of the datasets. Almond-Res and Almond-Ppl
denote the restaurant and people datasets, respectively. Avg. Ques Len
refers to the average length of questions.

WiKiSQL This dataset [171] contains examples of natural
language questions and annotated SQL queries extracted from
24,241 tables on Wikipedia. Different from prior datasets, each
example here is paired with a table on which the SQL query is
executed to get the answer. An example is shown in Figure 6.1.
However, only table schema (i.e., table column names) is allowed
to use but not the table content. Therefore, we concatenate all
the table column names and the question as a long sentence for
input to the model.

Metrics As is standard in semantic parsing, we use accuracy
as our evaluation metric which is the percentage of correctly
generated program code that exactly matches the ground truth.

6.3.2 Setup

Preprocessing To work with the BERT model, we employ the
WordPiece tokenizer [148] on all natural language questions with
a 30,000 token vocabulary. Note that it is also necessary to apply
the tokenizer on program code since our model tries to copy
input tokens as the output. We adopt the preprocessed Django
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dataset provide by Yin et al. [162] where quoted strings in the
input are substituted with place holders. The preprocessed
WiKiSQL dataset is from Wang et al. [144] with annotations.

Configuration We adopt the uncased Bert-Base model as our
encoder which has 12 layers and 768 hidden sizes. We also set
the LSTM hidden size as 768 and feed the averaged encoder
state as the initial LSTM state. We set the trainable decoder
embedding size as 50. We adopt Adam optimizer [74] and the
standard Transformer learning rate strategy [142]. We set the
training batch tokens for Almond, Django, and WiKiSQL
as 9000, 3000, and 500, respectively. We train all the models for
60000 iterations and choose the best-performing model on the
development set.

6.3.3 Evaluation on Design Choices

As discussed in Section 6.2.4, there are several design choices
need to be evaluated, i.e., LSTM decoder vs. Transformer de-
coder, greedy decoding vs. beam search, and fine-tune BERT vs.
freeze BERT. We set LSTM decoder + greedy decoding + fine-
tune BERT as the standard system. We conduct comparative
experiments on the Almond-Restaurant dataset and show
the results in Figure 6.3.
As the results indicate, our standard system achieves the
highest accuracy among the other strategies. We observe that
when changing the LSTM decoder to Transformer, the model
converges much slower. It is important for the training to
converge quickly as too many updates to the encoder would
reduce the effectiveness of pre-training. We also conjecture the
reason why greedy decoding performs better than beam search
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Figure 6.3: The evaluation results on the design choices.

is due to the fact that program code is less diverse than natural
language. Therefore, in the following experiments, we all adopt
the standard system.
In addition, we conduct another experiment which changes the
fine-tuning BERT to randomly initialized BERT. The decreased
accuracy (66.31%) demonstrates that what benefits in BERT is
the pre-trained natural language knowledge (i.e., the initial pa-
rameters) rather than the large number of trainable parameters.

6.3.4 Results on All Datasets

In this section, we compare our BERT-LSTM model against
several previously published systems as well as some baselines
on the four datasets. To demonstrate the effectiveness of copying
mechanism (i.e., the pointer network in Section 6.2.3), we also
report the model results without copying by setting γt to 0.

Almond Table 6.2 presents results on the two Almond datasets.
MQAN denotes Multi-Task Question Answering Network [102],
which is the previous state-of-the-art semantic parsing model
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Model Almond-Restaurant Almond-People

MQAN [102] 68.92% 75.65%

BERT-LSTM 74.01% 81.93%
– copying 56.76% 59.78%

Table 6.2: Code generation accuracies on the two Almond datasets.

employed by the Almond virtual assistant [20]. MQAN is an
encoder-decoder network consisting of a stack of self-attention,
co-attention, and LSTM layers with Glove and character word
embeddings. It also uses the pointer-generator network for
copying from the inputs. As Table 6.2 shows, our BERT-LSTM
registers 5.09% and 6.28% absolute improvements over MQAN
in accuracy on Almond-Restaurant and Almond-People,
respectively. Given that MQAN is a more complex network,
BERT-LSTM yields better performances by utilizing the pre-
trained natural language knowledge. Without the copying
mechanism, our model drops 17% and 22% accuracy on the two
datasets. The results also indicate that BERT-LSTM is able to
generalize to different domains.

Django Table 6.3 reports results on Django where BERT-
LSTM also achieves state-of-the-art result. Previous methods
in the literature can be divided into two categories: sequence-
to-sequence models and sequence-to-tree models. Except for
the Neural Machine Translation [162] and Latent Predictor
Network [94], all existing methods in Table 6.3 belong to
sequence-to-tree models which implicity or explicitly utilize the
Abstract Syntax Tree of Python language. Our BERT-LSTM,
though very effective, is a sequence-to-sequence model thus
generalizable to other programming languages.
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Model Accuracy

Sequence-to-Tree Network [34] 39.4%
Neural Machine Translation [162] 45.1%
Latent Predictor Network [94] 62.3%
Syntax Neural Model [162] 71.6%
Transition-Based Syntax Parser [163] 73.7%
Coarse-to-Fine Decoding [35] 74.1%

BERT-LSTM 76.48%
– copying 54.07%

Table 6.3: Python code generation accuracies on Django. BERT-LSTM
achieves state-of-the-art result.

Model Accuracy

Sequence-to-Sequence [171] 23.4%
Sequence-to-SQL [171]† 48.3%
SQLNet [154]† 61.3%
Transition-based Syntax Parser [163]† 68.6%
Coarse-to-Fine Decoding [35]† 71.7%
Multi-Task QA Network [102] 75.4%

SQLova [65]†∗ 83.6%
X-SQL [57]†∗ 86.0%
HydraNet [100]†∗ 86.5%

BERT-LSTM∗ 78.49%
– copying 35.99%

Table 6.4: SQL code generation accuracies on WiKiSQL. “†” denotes
syntax-specific models. “*” indicates that the model employs pre-trained
BERT.
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WiKiSQL The experimental results on WiKiSQL are shown
in Table 6.4. The SQL queries in this dataset are highly struc-
tured. Specifically, WiKiSQL queries have the format “SELECT
agg_op agg_col WHERE (cond_col cond_op cond) AND ...”
that is a subset of the SQL syntax. SELECT indicates which
column to be included in the calculation when applying the ag-
gregation operation agg_op on column agg_col. There maybe
zero or multiple WHERE clauses, which specifies the constraints on
column cond_col by the operation cond_op and the condition
value cond. In this way, most of the existing methods are syntax-
specific and yield decent accuracies, as in Table 6.4. Besides, the
state-of-the-art methods also employ the pre-trained BERT as
ours which are shown in the second block.
Our BERT-LSTM registers strong performances on WiKiSQL
compared to existing methods. Without considering the un-
derlying syntax of SQL, BERT-LSTM even outperforms many
syntax-specific models that explicitly reflect the SQL query
structure. Moreover, BERT-LSTM is a neat and simple model
compared to the state-of-the-art ones (in the second block)
which are all heavily-engineered. Therefore, BERT-LSTM is
much easier to be adopted by other researchers.
Note that when removing the copying mechanism, the code gen-
eration accuracy significantly decreases to 35.99%. This result
indicates that, on WiKiSQL, the pointer network dominates
the decoding process and most of the output tokens are copied
from the input questions.

6.3.5 Case Study

We present several code generation examples in Table 6.5. From
top to down, we respectively show examples from Almond,
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Input which restaurants have italian food?
Pred. now => (@org.schema.Restaurant.Restaurant)

filter param:servesCuisine:String =∼
"italian" => notify 4

Input name all the people who have won scholarships.
Pred. now => (@org.schema.Person.Person) filter

param:award:Array(String) contains∼ " =>
notify 7

Ref. now => (@org.schema.Person.Person) filter
param:award:Array(String) contains∼
"scholarships" => notify

Input activate is a lambda function which returns None for any
argument x.

Pred. activate = lambda x : None 4

Input self.plural is a lambda function with an argument n,
which returns result of boolean expression n not equal
to integer 1.

Pred. self.plural = lambda n : len(n) 7

Ref. self.plural = lambda n : int(n!=1)

Input Table has columns: Ballarat_FL Wins Byes Losses
Draws Against, how many Byes have Against of 1076
and Wins smaller than 13?

Pred. SELECT count(Byes) FROM table WHERE Against =
1076 AND Wins < 13 4

Input Table has columns: Conference Division Team City
Home_Arena, which team is in the southeast with a
home at Philips?

Pred. SELECT (Team) FROM table WHERE Conference =
southeast AND Home_Arena = Philips 7

Ref. SELECT (Team) FROM table WHERE Division =
southeast AND Home_Arena = Philips

Table 6.5: Code generation examples. Each dataset has one correct example
and one incorrect example. Copied contents with copying probability > 0.9
are highlighted.
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Figure 6.4: Screenshot of the Almond virtual assistant.

Django, and WiKiSQL, each with one correct instance and
one incorrect instance. We also highlight the predicted contents
with copying probability larger than 0.9. From the table, we
observe that BERT-LSTM is able to learn the correct syntax
and structure of the three programming languages. Most of
the failed cases are due to partial implementation errors (e.g.,
the Almond example) or incorrect understanding of the input
semantics (e.g., the Django and WiKiSQL examples). We
also find that the prediction on WiKiSQL heavily relies on the
pointer network to copy column names and values from input
descriptions, which is consistent with our results in Table 6.4.
BERT-LSTM has been integrated into the Almond virtual
assistant [19] for parsing complex user questions to code which
is subsequently executed. One use case is shown in Figure 6.4.
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6.4 Related Work

Semantic Parsing has been a long-term research topic in the
NLP field, which aims to map natural language utterances
into their structured meaning representations (e.g., executable
queries or logical forms). Previous systems typically learn
lexicalized mapping rules and are guided by grammatical for-
malisms [169, 46, 147, 81]. Recently, neural sequence-to-
sequence systems have been applied on semantic parsing with
promising results [34, 68, 105]. Several approaches have been
proposed to enhance the performance of these models, for
example, data augmentation guided by the grammar [68, 76],
transfer learning [42], utilizing user feedbacks [66], and guiding
generation with information retrieval [55]. Besides, there are
efforts developing structured decoders that exploit the underly-
ing syntax of meaning representations. Dong et al. [34] propose
a model that generates tree-structure in a top-down manner.
Xiao et al. [150] utilize the grammar to constrain the decoding
process. Yin et al. [162, 163] design grammar models for
generating the abstract syntax trees. Dong et al. [35] propose a
two-stage decoding method which first generates a rough sketch
and then fills the missing details.
Researchers have extended semantic parsing to generate domain-
specific programming languages [115] with widespread interests
on the WiKiSQL dataset [171]. Since the SQL queries are
uniformly composed of a SELECT clause and a WHERE clause,
SQLNet [154] independently generates the two components with
a sequence-to-set model which eliminates the order issue in
WHERE conditions. TypeSQL [166] also adopts the sequence-to-
set structure but with an additional “type” information.
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6.5 Summary

In this chapter, we try to utilize the powerful pre-trained
attention models to build neural semantic parsing models that
are both effective and generalizable. We propose BERT-LSTM
which uses a pre-trained BERT encoder followed by an LSTM
decoder with a pointer-generator network. Experimental results
on three code generation tasks demonstrate that BERT-LSTM
can generalize to different domains and different programming
languages. We also show the importance of copying mechanism
in the code generation task through ablation studies. The
findings concluded in this chapter can facilitate future semantic
parsing and code generation studies.

2 End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

As we enter the big data era, there are large amounts of
sequential data generated everyday. We rely on sequence
learning to discover valuable knowledge from sequential data for
various applications, for example, weather forecast. Attention
mechanisms, as an effective method for dependency modeling,
has been widely employed for deep learning-based sequence
models. However, we believe that the expressiveness of attention
mechanisms is not fully exploited, due to either the application
domains or model design deficiencies. In this thesis, we propose
customized solutions to improve attention mechanisms for the
source code domain. We also improve the deep self-attention
by designing better coordination mechanisms for the multiple
attention heads and multiple layers.
In particular, in Chapter 3, we explore the conventional shallow
attention (i.e., RNN-based attention) applied to source code
completion. We treat the code completion task as a language
modeling problem and propose a tailored attention mechanism
that can exploit the structure information on program’s abstract
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syntax tree. To deal with the out-of-vocabulary (OoV) words
in a program, we further propose a pointer mixture network
that learns to copy OoV words from local context based on the
attention weights.
In Chapter 4, we study how to improve multi-head attention,
the core component in deep self-attention. To this end, we
propose three disagreement regularizations and two routing-by-
agreement algorithms to better exploit the diversity among mul-
tiple attention heads. Experiments on both machine translation
and sentence encoding tasks show that our models consistently
outperform the baselines.
In Chapter 5, we continue to explore the deep self-attention.
To effectively aggregate the representations learned by differ-
ent attention heads or layers, we propose a low-rank bilinear
pooling-based approach with first-order extension. We also
extensively analyze our model to show that it indeed captures
more linguistic information of the input sentences.
In Chapter 6, we study how to apply pre-trained attention
models such as BERT to the downstream semantic parsing
task, which generates executable code directly from natural
language utterances. We propose a BERT-LSTM model that
employs a pre-trained BERT encoder and a general-purpose
LSTM decoder. We also adopt pointer network for copying code
tokens. The model achieves state-of-the-are on three of the four
code generation datasets.
In summary, this thesis targets at designing effective and
customized solutions for improving attention mechanisms in
sequence learning. Extensive experiments on various datasets
across different applications demonstrate the effectiveness of our
proposed methods.
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7.2 Future Work

Sequence learning with attention mechanisms has been exten-
sively studied in recent years, and it is a promising research
topic. Although we have proposed a number of novel techniques
that advance the state-of-the-art solutions, there are still many
interesting research directions which can be considered as future
work.

7.2.1 Multi-Modal Attention Models

In this thesis, we have mainly applied attention mechanisms
and sequence learning to process textual data (including source
code). Besides NLP, sequence learning is also employed in many
cross-modal applications where most of them involve visual and
textual data, for example, image captioning. Image captioning
refers to the process of generating textual description based
on the contents of an image which we call image-to-sequence.
Attention mechanisms have been adopted in such a problem,
e.g., hard visual attention [152], to focus on certain parts of
the image when generating the words. However, hard attention
is non-differentiable and requires more complicated techniques
such as variance reduction or reinforcement learning. Therefore,
there is still a lot of work to do to make visual attention smoother
and easier to train.
Recently, there is a surgent interest in cross-modal pre-trained
attention models [89, 133]. The models are pre-trained on some
huge corpus of multi-modal data such as images or videos with
captions, and then fine-tuned on downstream cross-modal tasks
like visual question answering. To adapt the pre-trained models
from unimodal to multi-modal, many research questions need to
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be investigated, for example, how to design the masked language
modeling objective with visual features, how to effectively match
and aggregate visual and textual features, etc.

7.2.2 Model Compression on Large Attention Models

Nowadays, the deep self-attention models like Transformer [142]
and BERT [32] have achieved remarkable success in various
NLP tasks. However, the increasingly deep and large attention
models usually come with hundreds of millions of parameters,
making them difficult to be deployed in real-life applications
that need quick responses and resource-limited devices like
smartphones. Model compression, as a potential approach to
reducing the model size and enhancing computational efficiency,
has drawn growing attention.
There are several directions worth trying. First, model pruning,
which removes less important components (e.g., weights, layers,
and attention heads) of neural networks. Michel et al. [103]
prove that many attention heads in the Transformer architecture
can be pruned during inference time without significantly im-
pacting performances. We can potentially extend their method
to the BERT model for pruning unnecessary attention heads.
We can also draw lessons from computer vision which guide
the model to learn to skip some of the layers [145]. Second,
knowledge distillation [59], in which a small student model is
trained to mimic the behaviors of a large teacher model through
some optimization objectives. Distillation techniques have been
well-studied in the computer vision field and we can extend them
to the large pre-trained attention models.
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7.2.3 Interpretability and Reliability of Attention Mod-
els

Though attention models reach impressive performances in
various sequence learning tasks, like most deep learning models,
the black-box property and non-linear architecture make them
non-transparent for human decision making. Recently, model
interpretation has become a hotspot in deep learning research
which tries to explain the behaviors of deep learning models.
In terms of self-attention mechanism, Yang et al. [156] design
a word order detection task and find that self-attention can
effectively capture word orders in a sentence despite no recurrent
connections. Given the popularity of pre-trained attention
models, their interpretability can be a promising direction. How-
ever, unlike CNNs for images, interpreting pre-trained models
is challenging due to the complex transformer architecture and
language properties. More research efforts are required to better
understand the linguistic and word knowledge captured by pre-
trained models.
Besides, pre-trained attention models like BERT have been
proved vulnerable to adversarial attacks [70]. With the wide
adoption of pre-trained models in production systems, their
reliability issue becomes critical. In particular, we are interested
in designing effective defense mechanisms against adversarial
attacks thus improving the robustness of pre-trained models.

2 End of chapter.
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[76] T. Kočiskỳ, G. Melis, E. Grefenstette, C. Dyer, W. Ling,
P. Blunsom, and K. M. Hermann. Semantic parsing with
semi-supervised sequential autoencoders. In Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1078–1087, 2016.

[77] P. Koehn. Statistical significance tests for machine trans-
lation evaluation. In Proceedings of the 2004 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 388–395, 2004.

[78] S. Kong and C. Fowlkes. Low-rank bilinear pooling for
fine-grained classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 365–374, 2017.

[79] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A
clockwork rnn. arXiv preprint arXiv:1402.3511, 2014.

[80] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and
D. Haussler. Hidden markov models in computational
biology. applications to protein modeling. Journal of
Molecular Biology, 235(5):1501–1531, 1994.



BIBLIOGRAPHY 139

[81] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer.
Scaling semantic parsers with on-the-fly ontology match-
ing. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages
1545–1556, 2013.

[82] R. LaLonde and U. Bagci. Capsules for object segmenta-
tion. arXiv preprint arXiv:1804.04241, 2018.

[83] T. Levinboim, A. Vaswani, and D. Chiang. Model invert-
ibility regularization: Sequence alignment with or without
parallel data. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics (NAACL), pages 609–618, 2015.

[84] J. Li, P. He, J. Zhu, and M. R. Lyu. Software defect pre-
diction via convolutional neural network. In Proceedings
of the 2017 International Conference on Software Quality,
Reliability and Security (QRS, pages 318–328, 2017.

[85] J. Li, Z. Tu, B. Yang, M. R. Lyu, and T. Zhang.
Multi-head attention with disagreement regularization. In
Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 2897–
2903, 2018.

[86] J. Li, X. Wang, B. Yang, S. Shi, M. R. Lyu, and Z. Tu.
Neuron interaction based representation composition for
neural machine translation. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI), 2020.

[87] J. Li, Y. Wang, M. R. Lyu, and I. King. Code completion
with neural attention and pointer networks. In Proceedings



BIBLIOGRAPHY 140

of the 27th International Joint Conference on Artificial
Intelligence (IJCAI), pages 4159–4165, 2018.

[88] J. Li, B. Yang, Z.-Y. Dou, X. Wang, M. R. Lyu, and
Z. Tu. Information aggregation for multi-head attention
with routing-by-agreement. In Proceedings of the 2019
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL), Volume
1 (Long and Short Papers), pages 3566–3575, 2019.

[89] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W.
Chang. Visualbert: A simple and performant baseline
for vision and language. arXiv preprint arXiv:1908.03557,
2019.

[90] P. Liang, B. Taskar, and D. Klein. Alignment by agree-
ment. In Proceedings of the 2006 Conference of the North
American Chapter of the Association of Computational
Linguistics (NAACL), pages 104–111, 2006.

[91] P. S. Liang, D. Klein, and M. I. Jordan. Agreement-based
learning. In Advances in Neural Information Processing
Systems (NeurIPS), pages 913–920, 2008.

[92] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn
models for fine-grained visual recognition. In Proceedings
of the IEEE International Conference on Computer Vision
(ICCV, pages 1449–1457, 2015.

[93] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang,
B. Zhou, and Y. Bengio. A structured self-attentive sen-
tence embedding. In Proceedings of the 2017 International
Conference on Learning Representations (ICLR), 2017.



BIBLIOGRAPHY 141

[94] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann,
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