
Efficient Data Structures and
Algorithms for Practical
Resource Disaggregated

Data Centers

SHEN, Jiacheng

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
May 2024

Thesis Assessment Committee

Professor LEE Pak Ching (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor XU Qiang (Committee Member)

Professor CHEN Haibo (External Examiner)

2

Abstract of thesis entitled:
Efficient Data Structures and Algorithms for Practical Re-

source Disaggregated Data Centers
Submitted by SHEN, Jiacheng
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in May 2024

Data centers are heading towards disaggregation to gain better
resource efficiency. From mainframes to clusters of commod-
ity servers, from versatile homogeneous clusters to specialized
heterogeneous clusters, we have witnessed many successful dis-
aggregation practices in the history of data center evolution. All
these approaches decouple hardware into smaller management
units, improving flexibility in resource management and achiev-
ing better resource efficiency.

Unfortunately, in today’s data centers, resources are still cou-
pled in individual monolithic servers, leading to severe resource
under-utilization. Resource disaggregation is proposed to achieve
better resource efficiency by taking disaggregation one step for-
ward. It achieves near-optimal flexibility in resource manage-
ment by decoupling hardware from monolithic servers into in-
dependent network-connected resource pools. However, such an
architecture remains impractical due to its performance issues.
Programs suffer from severe performance degradation since their
data structures and algorithms are not suitable to the disaggre-
gated architecture with loosely coupled hardware.

In this thesis, we address the performance issue by design-
ing efficient data structures and algorithms native to the dis-

3

aggregated architecture. We specifically focus on disaggregated
memory (DM), the central part of resource disaggregation, and
design data structures and algorithms for in-memory storage
systems over DM, i.e., memory-disaggregated storage systems.
Our work covers the data structure and algorithm design for
three main components of a memory-disaggregated storage sys-
tem, i.e., memory management, index, and fault tolerance.

First, memory management of a memory-disaggregated stor-
age system involves memory allocation and executing caching
algorithms, which are the joint effort of data structures and algo-
rithms. However, existing memory allocation and caching algo-
rithms are designed for monolithic-server-based storage systems,
which cannot adapt to DM with asymmetric compute power be-
tween the compute and memory pool. We design a two-level
memory allocator and the first client-centric caching framework
on DM to achieve efficient memory management. We integrate
the two approaches into Ditto, the first memory-disaggregated
caching system. Ditto shows up to 9× higher throughput than
the state-of-the-art caching systems under YCSB workloads.

Second, for index data structures, we focus on range indexes.
Existing range indexes on DM treat the memory pool as disks
and use B+ trees as the index data structure. They suffer from
suboptimal performance due to the inherent I/O size amplifi-
cation of B+ trees. We propose SMART, a high-performance
radix-tree-based range index on DM that has nearly no I/O
size amplifications. SMART further addresses the challenges re-
garding concurrency control with a hybrid concurrency control
scheme and reduces amplifications in I/O numbers with a read
delegation and write combining scheme. SMART outperforms
existing approaches by up to 6.1× under YCSB workloads.

Third, reliability is critical to memory-disaggregated storage
systems. Unfortunately, existing fault tolerance algorithms can-
not adapt to the complicated failure situations on DM due to

4

the isolated compute and memory failures. Moreover, they suf-
fer from suboptimal performance due to their severe I/O am-
plifications and high concurrency control overhead. To achieve
reliability with high performance, we design high-performance
replication and logging algorithms native to DM. We adopt these
two algorithms in FUSEE, the first fully memory-disaggregated
storage system. Our evaluation results show that FUSEE per-
forms up to 10× better than existing approaches.

Last but not least, we present DMC the industrial practice in
Huawei Cloud that uses DM to improve the memory efficiency
of its distributed caching service. We integrate some of the
above memory management and indexing data structures and
algorithms into DMC. We close the gap between academia and
industry by introducing our design principles, design decisions,
and lessons learned from our experience.

In summary, this thesis contributes to both academia and
industry by making resource disaggregation more practical in
a bottom-up manner. To industry, we promote the deploy-
ment of DM in cloud data centers by investigating the design
of a production-level memory-disaggregated caching service. To
academia, we provide guidelines on efficient data structures and
algorithm design for resource-disaggregated data centers and
show the benefits of disaggregating an in-memory storage sys-
tem. Comprehensive experiments confirm the effectiveness and
efficiency of our proposed methods.

5

論文題目 : 面向資源分離式數據中心的高效數據結構和算
法設計
作者 : 沈家誠
學校 : 香港中文大學
學系 : 計算機科學與工程學系
修讀學位 : 哲學博士
摘要 :
數據中心正步入解耦合時代以獲得更好的資源效率。從大型機
到商品服務器集群，從通用同構集群到專用異構集群，我們在
數據中心演進的歷史上見證了許多成功的解耦合實踐。所有這
些方法都將硬體解耦成更小的管理單位，提高資源管理的靈活
性，並實現更好的資源效率。
不幸的是，在當今的數據中心，資源仍然耦合在單體式服

務器中，帶來嚴重的資源浪費。順應數據中心解耦合的趨勢，
近年來提出了資源解耦合架構來進一步提升數據中心資源利
用率。它將硬體從單一的服務器解耦為獨立的網絡連接的資源
池，從而實現資源管理的最佳靈活性。然而，由於在其上運行
程序的嚴重性能問題，這種架構仍然沒有廣汎應用。這種性能
問題的核心是因爲現有的數據結構和算法不再適合於硬體鬆散
耦合的解耦合架構。
在這篇論文中，我們通過設計更適合於解耦架構的數據結

構和算法來解決性能問題。我主要關注内存分離架構，並為内
存分離架構上的存儲系統設計數據結構和算法。我們的工作涵
蓋了内存分離存儲系統的三個主要組件的數據結構與算法設
計，即，内存管理，索引，和容錯。
首先，内存分離的存儲系統的内存管理涉及 1）分配内存空

間，以及 2）執行緩存替換算法。然而現有内存分配以及緩存
替換算法面向基於單體式服務器的存儲系統設計，無法適應分
離式内存架構中計算池與内存池中不對稱的算力。我們設計了

6

一個兩級内存分配器以及首個以客戶端爲中心的緩存替換框架
來實現分離式内存架構上高效的内存管理。我們將這兩個技術
應用在首個内存分離的緩存系統 Ditto 中。實驗表明 Ditto 比
現有方法在 YCSB 負載下有超過 9 倍的性能提升。
其次，對於索引數據結構，我們主要關注範圍索引。現有

分離式内存架構上的範圍索引方法將内存池看作磁盤，並沿用
了基於 B+樹的範圍索引數據結構，其性能受制於 B+樹嚴重
的 I/O 粒度放大。我們提出 SMART ，一個基於基數樹的内
存分離架構下的高性能範圍索引。我們通過使用基數樹避免了
B+ 樹的 I/O 粒度放大，并且通過混合并發控制和讀代理和寫
合并技術解決了在分離式内存上構建基數樹帶來的竝髮控製和
多次 I/O 的挑戰。實驗表明 SMART 相比現有方法帶來了至
多 6.1 倍的性能提升。
此外，可靠性也是内存分離架構上的存儲系統的重要要求。

然而，現有的故障處理算法無法適應由分離式内存中計算與内
存錯誤解耦合帶來的多種錯誤情況。而且現有容錯算法在關鍵
路徑上引入了過多的 I/O 導致系統性能下降。爲了在保證性
能的同時具有可靠性，我們提出了内存分離架構下高性能的數
據副本和日志算法。我們將這兩個算法應用到了 FUSEE 中，
并且通過實驗證明了這兩個算法的有效性。實驗表明，相較於
現有方法，FUSEE 能帶來至多 10 倍的性能提升。
最後，我們介紹了華為雲設計内存分離的緩存服務的工業

實踐（DMC ）。我們研究了現有華為雲分佈式緩存服務的内存
利用率問題，介紹了指導 DMC 設計的核心需求和思想，並討
論了我們在此過程中學到的經驗教訓。此外，在 DMC 的設計
與實現中應用到了上述内存管理和索引數據結構和算法，證明
我們設計的有效性。
綜上，本文討論了在資源解耦合數據中心上設計高效數據

結構與算法的指導思想，證明了將存儲系統内存分離之後帶來
的的好處，並通過我們的工程實踐一定程度上推進了内存分離
架構在現有數據中心的部署進度。我們通過全面的實驗確認了
我們提出的方法的有效性和效率。

7

Acknowledgement

First and foremost, I would like to express my gratitude to my
supervisor, Prof. Michael R. Lyu. He supported me in exploring
research topics in systems and encouraged me whenever I en-
countered some difficulties. He is always patient in guiding me
to achieve my goal and his help is without any reservations. His
encouragement and guidance are essential to my Ph.D. study. I
truly learned a lot from him not only in doing impactful research
but also in being a nice person.

I appreciate Prof. Patrick P.C. Lee and Prof. Qiang Xu at
The Chinese University of Hong Kong for their precious time to
serve as my thesis assessment committee members. Their com-
ments and suggestions throughout my Ph.D. study are essential
to this thesis. I also appreciate Prof. Haibo Chen at Shanghai
Jiao Tong University for kindly serving as the external examiner
and also for his great comments on this thesis.

I’m grateful to have the opportunity to work with my ex-
cellent collaborators at The Chinese University of Hong Kong,
Fudan University, Sun Yat-Sen University, and Huawei Cloud. I
thank Prof. Yangfan Zhou at Fudan, Dr. Pengfei Zuo at Huawei,
and Prof. Yuxin Su at SYSU. They always provide insightful
suggestions and help me with their profound experiences in sys-
tems research. I also thank Mr. Xuchuan Luo at Fudan and Dr.
Tianyi Yang at CUHK, with whom we did many fascinating and
meaningful works. It is always a pleasure to discuss interesting
ideas and research papers with them.

8

I want to thank all my peer students in Prof. Michael R.
Lyu’s and Prof. Yangfan Zhou’s research groups. Especially my
good friends who worked at Huawei Cloud and Fudan, Zhuang-
bin Chen, Jiazhen Gu, Jinyang Liu, Yichen Li, Zhihan Jiang,
Junjie Huang, Xuchuan Luo, Yunzhe Zhang, Ruiying Zeng, and
Bowen Yang. We had plenty of good times together in Hong
Kong, Shenzhen, and Shanghai. Discussing with them is crucial
to my mental health.

I want to convey my heartfelt appreciation to Ms. Siqi Han,
who is not only my cherished girlfriend but also my closest con-
fidant. Her comprehension of my choices, her patience during
my absence, her encouragement during my moments of desola-
tion, and the joyous, invaluable moments we’ve spent together
all served as my source of motivation and inspiration. It is for-
tunate to have her during my Ph.D. study.

Finally, I am immensely grateful to my family. They encour-
age me to pursue my dream and provide their unconditional love
throughout the entire process. There are no words to express
my gratitude to my parents, Ms. Xuhui Chen and Mr. Jianming
Shen. I dedicate this thesis to them.

9

Dedicated to my family.

10

Contents

Abstract 3

Acknowledgement 8

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Contributions 5
1.3 Thesis Organization 8

2 Background and Related Work 11
2.1 Resource-Disaggregated Data Centers 11

2.1.1 Limitations of Server-Centric Data Centers 12
2.1.2 Resource Disaggregation 15
2.1.3 Memory Disaggregation 17
2.1.4 The Performance Issue 19

2.2 Data Structures and Algorithms for Resource Dis-
aggregation . 20
2.2.1 Guidelines for Data Structures and Algo-

rithms for Resource Disaggregation 20
2.2.2 Limitations with Existing Data Structures

and Algorithms 23
2.3 Memory-Disaggregated Storage Systems 24

2.3.1 In-Memory Storage Systems 24
2.3.2 Challenges over Disaggregated Memory . . 28

2.4 Related Works 30

11

2.4.1 Resource Disaggregation 30
2.4.2 Memory Disaggregation 31
2.4.3 Memory-Disaggregated Storage Systems . 32

3 Efficient Memory Management Data Structures
and Algorithms 34
3.1 Introduction . 35
3.2 Challenges . 38

3.2.1 Remote Memory Allocation 39
3.2.2 Executing Caching Algorithms on DM . . 39
3.2.3 Dynamic Resource Changes Affect Hit Rate 41

3.3 The Ditto Design 44
3.3.1 Overview 44
3.3.2 Two-Level Memory Allocation 46
3.3.3 Client-Centric Caching Framework 48
3.3.4 Distributed Adaptive Caching 53
3.3.5 Discussions 60

3.4 Evaluation . 60
3.4.1 Experimental Setup 61
3.4.2 Q1: Elasticity 64
3.4.3 Q2: Efficiency 67
3.4.4 Q3: Adaptivity 68
3.4.5 Q4: Flexibility 75
3.4.6 Q5: Contribution of Each Technique . . . 75

3.5 Related Work . 77
3.6 Summary . 79

4 A High-Performance Range Index Data Structure 80
4.1 Introduction . 81
4.2 Background . 83

4.2.1 B+ Trees on Disaggregated Memory . . . 83
4.2.2 Radix Tree 84

4.3 Analysis of Tree Indexes Built on DM 85

12

4.3.1 Motivations: B+ Tree vs. ART on DM . . 86
4.3.2 Challenges: ART on DM 90

4.4 SMART Design 92
4.4.1 Hybrid ART Concurrency Control 93
4.4.2 Read Delegation and Write Combining . . 100
4.4.3 ART Cache 104
4.4.4 Operations 105
4.4.5 Discussion 106

4.5 Evaluation . 108
4.5.1 Experimental Setup 108
4.5.2 Performance Comparison 109
4.5.3 Factor Analysis for SMART Design 112
4.5.4 Sensitivity 115

4.6 Related Work . 117
4.7 Summary . 117

5 Efficient Fault Tolerance Algorithms 119
5.1 Introduction . 120
5.2 Background and Motivation 122

5.2.1 Semi-Memory-Disaggregated Storage Sys-
tem . 122

5.3 Challenges . 124
5.3.1 Client-Centric Index Replication 125
5.3.2 Metadata Corruption 126

5.4 The FUSEE Design 127
5.4.1 Overview 127
5.4.2 RACE Hashing 128
5.4.3 Two-Level Memory Allocation 129
5.4.4 The SNAPSHOT Replication Protocol . . 130
5.4.5 Embedded Operation Log 135
5.4.6 Optimizations 138

5.5 Failure Handling 139
5.5.1 Failure Model 140

13

5.5.2 Memory Node Crashes 140
5.5.3 Client Crashes 142
5.5.4 Mixed Crashes 143

5.6 Evaluation . 143
5.6.1 Experiment Setup 143
5.6.2 Microbenchmark Performance 145
5.6.3 YCSB Performance 147
5.6.4 Fault Tolerance & Elasticity 150

5.7 Related Work . 152
5.8 Summary . 153

6 Industrial Practice: Productionizing a Memory-
Disaggregated Caching Service 154
6.1 Introduction . 155
6.2 Background and Motivation 158

6.2.1 Huawei Cloud’s DCS 158
6.2.2 Opportunity: Disaggregated Memory . . . 163

6.3 Overview and Design Principles 164
6.3.1 Overview 164
6.3.2 Design Choice 1: Replication 165
6.3.3 Design Choice 2: Data Sharding 168
6.3.4 Design Choice 3: Compute-Side Cache . . 170

6.4 Caching Service Instance 172
6.4.1 Cache Engine 173
6.4.2 Data Instance Client 174

6.5 The UMO Memory Pool 178
6.5.1 On-Demand Allocation 179
6.5.2 Copy-Free Memory Region Migration . . . 180
6.5.3 On-Demand Connection Management . . 182

6.6 Evaluation . 183
6.6.1 Performance 184
6.6.2 Elasticity and Fault-Tolerance 186
6.6.3 Memory Efficiency 189

14

6.7 Lessons Learned and Future Directions 190
6.8 Related Work . 192
6.9 Summary . 193

7 Conclusion and Future Work 194
7.1 Conclusion . 194
7.2 Future Work . 196

7.2.1 Disaggregating Existing Programs 197
7.2.2 Disaggregating Future Programs 198

8 List of Publications 200

Bibliography 203

15

List of Figures

1.1 The high-level overview of a memory-disaggregated
storage system and the contributions of the thesis. 4

2.1 The CPU and memory utilization of Google, Al-
ibaba, and Huawei Cloud data centers. 13

2.2 The architecture of a resource-disaggregated data
center. 15

2.3 The overall architecture of memory disaggregation. 17
2.4 Resource disaggregation as a Von Neumann ma-

chine. 21
2.5 Resource disaggregation as a large-scale parallel

machine. 21
2.6 Resource disaggregation as a tiered memory sys-

tem. 22
2.7 Resource disaggregation as a heterogeneous dis-

tributed system. 22
2.8 The general architecture of an in-memory storage

system on monolithic servers. 25
2.9 The performance of Redis when adjusting resources. 26
2.10 The architecture of a memory-disaggregated stor-

age system. 28

3.1 The cost of maintaining caching data structures
on DM. 40

3.2 Hit rates under different numbers of clients under
different applications. 42

16

3.3 Hit rates of LRU and LFU on the same workload
with different cache sizes. 42

3.4 The effect of concurrent clients on hit rates. . . . 42
3.5 The overview of Ditto. 44
3.6 The two-level memory management scheme. . . . 46
3.7 The sample-friendly hash table structure. 52
3.8 Adaptive caching on monolithic servers. 53
3.9 The structure of a lightweight history entry. . . . 55
3.10 The logical FIFO queue structure. 56
3.11 Inserting and evicting a history entry. 57
3.12 The lazy weight update scheme. 59
3.13 The throughput of Ditto when dynamically ad-

justing compute and memory resources. 65
3.14 The throughput and tail latency of caching sys-

tems on DM. 66
3.15 The throughput of CliqueMap, Redis, and Ditto

with more CPU cores on MN. 66
3.16 Penalized throughputs under different real-world

workloads. 69
3.17 Hit rates under different real-world workloads. . . 70
3.18 The relative hit rate of Ditto, Ditto-LRU, and

Ditto-LFU on 33 workloads. 72
3.19 The penalized throughput and hit rate under a

changing workload. 72
3.20 The relative hit rates under different proportions

of clients assigned to LRU and LFU applications. 73
3.21 The relative hit rates of Ditto and CliqueMap

when dynamically adding the number of concur-
rent clients. 73

3.22 The hit rate under dynamic cache sizes. 74
3.23 The throughput and hit rates of 12 algorithms. . 74
3.24 Contributions of different techniques on the web-

mail workload. 75

17

3.25 The YCSB-C performance of Ditto with different
FC Cache sizes. 75

3.26 The throughput of Ditto with different memory
allocation methods. 77

4.1 The optimization process from the basic radix
tree to ART. For clarity, hexadecimal partial keys
are shown. NODE_256 is simply an array of 256
pointers, which is not shown due to the space
limitation. 84

4.2 The read performances of Sherman and ART un-
der the YCSB C workload (100% read). (a) The
throughput bottleneck with no cache. (b) The
impact of key size and span size with no cache.
(c) The peak throughput with various sizes of
caches. (d) The latency deterioration with ex-
cess requests. 88

4.3 (a) The write performance of ART under the
YCSB insert workload (100% insert) with no cache.
(b) The performance degradation caused by cache
thrashing under the YCSB A workload (50% read
+ 50% update) with sufficient caches. (c-d) The
inter-client redundant I/Os on DM in terms of
reads and writes. 90

4.4 The overview of SMART. 93
4.5 The structure of the internal node and the leaf

node in SMART. The reverse pointer and the in-
header Typenode field are used for cache validation. 94

4.6 A step-by-step example of inserting several new
keys into SMART with 8-bit partial keys. For
clarity, hexadecimal partial keys are shown and
reverse pointers are omitted. Each thick dotted
box indicates an atomic CAS. 97

18

4.7 The processes of the read delegation and the write
combining on SMART respectively. 101

4.8 The structure of the ART cache. 104
4.9 The structure of the variable-sized leaf node. . . . 106
4.10 The performance comparison of tree indexes on

DM under YCSB workloads of integer keys. . . . 109
4.11 The performance comparison of tree indexes on

DM under YCSB workloads of string keys. 110
4.12 The scalability of tree indexes under the YCSB

A workload of integer keys. 111
4.13 The performance of scan under the YCSB E work-

load of integer keys with different value sizes. . . 111
4.14 The factor analysis of overall performance on SMART.114
4.15 Comparison of HOCL, E-HOCL, and RDWC un-

der the YCSB A workload. 115
4.16 Cache efficiency of SMART under the YCSB C

workload of string keys with different cache sizes. 115
4.17 The sensitivity analysis. 116

5.1 Two architectures of memory-disaggregated stor-
age systems. (a) The semi-disaggregated archi-
tecture (Clover [192]). (b) The fully disaggre-
gated architecture proposed in this work. 123

5.2 The throughput of Clover with an increasing num-
ber of metadata server CPUs. 125

5.3 The throughput of Derecho [90] and lock-based
approaches. 125

5.4 The FUSEE overview (MMI, Index, and KV ob-
jects have multiple replicas, i.e., R0, R1, and R2.
R0 is the primary replica.). 127

5.5 The structure of an index replica. 128
5.6 The SNAPSHOT replication protocol. 130
5.7 The organization of the embedded operation log. 135

19

5.8 The embedded log entry. 136
5.9 The workflows of different KV requests. INSERT: 1⃝

write the KV object to all replicas and read the primary index
slot. 2⃝ CAS all backup slots. 3⃝ write the old value to the
log header. 4⃝ CAS the primary slot. UPDATE & DELETE: 1⃝
write the KV object, read the primary slot, and read the KV
object according to the index cache. 2⃝ CAS backup slots. 3⃝
write the old value to the log header. 4⃝ CAS the primary slot.
SEARCH: 1⃝ read the primary slot and the KV object according
to the index cache. 2⃝ read the KV object on cache misses. . . 139

5.10 The CDFs of different KV request latency under
the microbenchmark. 146

5.11 The throughputs of microbenchmark. 147
5.12 The throughput of FUSEE under different KV

sizes. 147
5.13 The scalability of FUSEE under different YCSB

workloads. 148
5.14 The throughput with different numbers of MNs. . 149
5.15 Throughput under different SEARCH-UPDATE ratios.149
5.16 Throughput under different adaptive cache thresh-

olds. 149
5.17 Median operation latency of FUSEE, FUSEE-NC

and FUSEE-CR under different replication factors.150
5.18 YCSB throughput under different replication fac-

tors. 151
5.19 YCSB-C throughput under a crashed memory

node. 152
5.20 The elasticity of FUSEE. 152

6.1 The architecture of Huawei Cloud DCS. 159
6.2 The CDF of the memory utilization of all nodes

in the production cluster. 159

20

6.3 The breakdown of memory utilization in the pro-
duction cluster. 159

6.4 The CDFs of the over-provisioned memory and
the utilization of the provisioned memory in the
production cluster. 160

6.5 The CDFs of the proportion of stranded memory
and provisioned CPU in the production cluster. . 161

6.6 The overview of DMC. 164
6.7 Design choices regarding replication in DMC. . . 166
6.8 Design choices regarding data sharding in DMC. . 168
6.9 The architecture of a DMC instance. 173
6.10 The memory-disaggregated hash table structure. . 175
6.11 The overview of the UMO memory pool. 178
6.12 The throughput and 75th percentile latency of

DCS and DMC under YCSB and Twitter work-
loads. 185

6.13 Throughput with different compute-side caches. . 185
6.14 Throughput when migrating a memory region. . . 185
6.15 The throughput of DMC under horizontal scaling. 187
6.16 The throughput of DMC under vertical scaling. . 187
6.17 The throughput of DMC under MN and CN fail-

ures. 188
6.18 The improvement on memory utilization of DMC. 189

21

List of Tables

2.1 Characters of data structures and algorithms for
existing systems. 23

3.1 The recorded access information. 46
3.2 Real-world workloads used in the evaluation. . . . 61
3.3 LOCs of different caching algorithms on Ditto. 75

4.1 Read and write amplification factors of different
trees. 86

5.1 Client recovery time breakdown. 153

6.1 The design choices of compute-side cache. Each
slot indicates which option is better. The under-
lined is chosen by DMC. AC and DC refer to the
address cache and the data cache. WB and WT
stand for write-back and write-through strategy.
I and E are the abbreviations for inclusive and
exclusive caches. C and R refer to coherent and
relaxed coherence. 170

6.2 The statistics of instance sizes in the production
cluster. 180

22

Chapter 1

Introduction

1.1 Overview

Data centers that host huge computing resources and execute
various applications are influencing billions of people’s daily
lives. Resource efficiency of data centers is critical for users to
get cheap computing resources to execute various applications.
Reviewing the history of data center evolution, our data centers
are constantly heading towards disaggregation, i.e., breaking
hardware into smaller management units, to gain better resource
efficiency. In the 1980s, data centers transformed from the
mainframe architecture, a huge machine hosting abundant CPU,
memory, and disks, to clusters of homogeneous servers [168].
Hardware resources in homogeneous clusters are then disaggre-
gated into specialized heterogeneous clusters to better host the
various heterogeneous hardware and satisfy applications with
diverse resource requirements, e.g., disaggregated storage clus-
ters [9, 48, 46] and GPU farms [49].

Unfortunately, today’s data centers still suffer from severe
resource under-utilization due to the resource coupling in their
server-centric architecture. For decades, the basic unit that al-
locates and executes programs in data centers is a monolithic
server, i.e., a single machine that consolidates various types
of hardware devices required to execute a program. Data cen-

1

CHAPTER 1. INTRODUCTION 2

ter resource allocation and management thus become a complex
multi-dimensional bin-packing problem since programs designed
for monolithic servers typically cannot leverage resources across
server boundaries [177, 199, 163]. While distributed systems can
exploit resources on multiple servers, they are still restricted by
the physical boundaries of servers since they are composed of
multiple processes on different servers. According to our analy-
sis of resource utilization traces in Google, Alibaba, and Huawei,
the average CPU and memory utilization is only about 50% due
to the severe fragmentation during resource alloation [47, 45].

The idea of resource disaggregation is proposed to achieve
better resource efficiency by taking disaggregation one step fur-
ther [177, 171, 180, 230, 131]. It breaks the boundaries of mono-
lithic servers by managing different types of hardware into au-
tonomous network-connected resource pools, e.g., CPU pools,
GPU pools, DRAM pools, etc. Such an architecture greatly
simplifies resource management since resources can be flexibly
combined and allocated to different applications from different
resource pools, improving overall resource efficiency. Resource
elasticity can also be improved since resources can be indepen-
dently adjusted inside their resource pools without affecting the
execution of existing applications [199]. Moreover, the failure
domain becomes more fine-grained, i.e., CPU failures no longer
lead to the unavailability of the entire server together with in-
memory data, potentially improving system reliability [227].

However, adopting the resource-disaggregated architecture in
real-world data centers is challenging due to its severe perfor-
mance issues. Applications suffer from 1.6× to 10× slow down
due to the amplified communication latency between different
hardware components [73]. While the communication latency
can be reduced by advancements in the hardware layer, the la-
tency will still be larger than inside single servers due to the
larger physical distance between hardware components. Conse-

CHAPTER 1. INTRODUCTION 3

quently, the performance issue must be addressed in the software
layer by designing better systems.

We identify that the major performance bottlenecks in the
software layer are the unsuitable data structures and algorithms.
Existing data structures and algorithms are designed for mono-
lithic servers with the assumption that hardware components
are closely coupled on the same motherboard. They suffer from
severe I/O amplifications, expensive concurrency control over-
head, and cannot fully exploit various heterogeneous hardware
characters to achieve better performance.

This thesis addresses this performance issue in a bottom-up
manner by designing high-performance data structures and al-
gorithms native to the disaggregated architecture. Under this
guideline, our work concentrates on exploring the synergy be-
tween disaggregated memory (DM) and in-memory storage sys-
tems, i.e., memory-disaggregated storage systems. First, DM
is the central part of resource disaggregation and is gaining in-
creasing attention from both academia and industry [177, 171,
199, 200]. It decouples CPU and memory from monolithic servers
into network-connected compute and memory pools. Second, in-
memory storage systems, e.g., Memcached [139] and Redis [166],
are widely adopted in today’s cloud data centers to accelerate
application performance. It is beneficial for cloud providers to
port in-memory storage systems to DM due to their severe mem-
ory under-utilization. Moreover, they contain many fundamen-
tal data structures and algorithms that can be applied in many
other systems on DM, e.g., memory management and index.

Figure 1.1 shows the high-level architecture of a memory-
disaggregated storage system and the major contributions of
this thesis. The contributions of this thesis are two-fold. First,
we design high-performance data structures and algorithms for
memory-disaggregated storage systems. We then describe and
address the real-world challenges in productionizing a memory-

CHAPTER 1. INTRODUCTION 4

Index

Objects

Memory-Disaggregated
Storage System

Faults
Efficient fault tolerance algorithms

3

High-performance memory allocation and
caching data structures and algorithms

1

A high-performance range index data structure
2

A production-level disaggregated caching service
4

Real-World Deployment

Thesis Contributions

High-Performance Data Structures and Algorithms

Figure 1.1: The high-level overview of a memory-disaggregated storage sys-
tem and the contributions of the thesis.

disaggregated caching service.
For the data structures and algorithms design, this thesis

designs efficient data structures and algorithms for three ma-
jor components of a memory-disaggregated storage system, i.e.,
memory management, index, and fault tolerance. In
terms of memory management, we design a two-level mem-
ory allocator to efficiently allocate memory spaces to store ob-
jects and a client-centric caching framework to execute various
caching algorithms with high performance and high hit rates.
Both approaches are integrated into Ditto, the first memory-
disaggregated caching system. In terms of index data struc-
tures, we design SMART, a high-performance range index on
DM. SMART innovatively adopts a radix tree as the range in-
dex data structure to reduce the severe I/O size amplifications
of traditional B+-tree-based approaches. Finally, in terms of
fault tolerance algorithms, we design an embedded opera-
tion log scheme and a high-performance client-centric replica-
tion protocol to deal with the failures in the compute and mem-
ory pools, respectively. These two techniques are adopted in
FUSEE, the first fully memory-disaggregated key-value store
that can achieve both high performance and high reliability.

CHAPTER 1. INTRODUCTION 5

As for dealing with real-world challenges in production, we
first statistically analyze the memory under-utilization issues
of a production distributed caching service (DCS) cluster in
Huawei Cloud. We identify the huge benefit we can get by dis-
aggregating the DCS and introduce DMC, the industrial prac-
tice of Huawei Cloud that uses DM to improve the memory
efficiency of its DCS. We integrate our designed memory man-
agement techniques into DMC and evaluate it with thorough
experiments. Our discussions on design principles, design de-
cisions, and lessons learned to close the gap between academia
and industry in the field of memory disaggregation.

1.2 Thesis Contributions

This thesis contributes to both academia and industry to achieve
a practical resource-disaggregated data center.

First, to academia, we provide guidelines on how to design ef-
ficient data structures and algorithms for disaggregated memory
and memory-disaggregated storage systems.

• Efficient memory management data structures and
algorithms.
Memory management for a memory-disaggregated caching
system involves 1) allocating memory spaces to store ob-
jects and 2) executing caching algorithms to keep hot ob-
jects in memory. Existing memory allocation and caching
algorithms are designed for monolithic-server-based stor-
age systems. They rely on the CPUs in the memory pool
of DM to execute the memory management computation,
which incurs severe performance degradation due to the
asymmetric and weak compute power in the memory pool.
Moreover, achieving high cache hit rates on DM is difficult
due to the changing resources and data access patterns.

CHAPTER 1. INTRODUCTION 6

We design Ditto, the first memory-disaggregated caching
system that simultaneously achieves efficient memory allo-
cation and high cache hit rates. First, a two-level memory
allocator is proposed to efficiently allocate memory from the
memory pool. The two-level memory allocator separates
the memory allocation data structures into compute-light
and compute-heavy components and schedules them to the
compute and memory pools according to their asymmetric
compute capabilities. An adaptive client-centric caching
framework is then proposed to execute various caching algo-
rithms with high efficiency and achieve high cache hit rates.
The client-centric caching framework approximates various
caching algorithms with sampling and adopts a lightweight
machine-learning algorithm to select the best caching algo-
rithm according to the current workload. Extensive evalu-
ation under YCSB and real-world Twitter workloads shows
the effectiveness and performance of Ditto.

• A high-performance range index data structure.
Range index is widely adopted by storage systems to con-
duct both point queries and range queries. Existing range
indexes on DM are constructed with B+ trees, which sac-
rifice I/O sizes to reduce I/O numbers. However, the am-
plified I/O sizes waste the limited network bandwidth in
the memory pool and become a severe performance bottle-
neck on DM when multiple compute nodes simultaneously
access the memory pool.
We propose SMART, a high-performance range index on
DM. SMART innovatively adopts a radix tree as a range
index data structure on DM, which has nearly no amplifi-
cations in I/O sizes due to the fine-grained tree nodes. We
further address two challenges regarding concurrency con-
trol and the amplified number of I/O operations when con-

CHAPTER 1. INTRODUCTION 7

structing a high-performance radix tree on DM. SMART
introduces a hybrid concurrency scheme to achieve effi-
cient concurrency control and a read delegation and write
combining scheme to further reduce the number of con-
current I/O operations. We use extensive evaluation under
YCSB workloads to show the effectiveness and performance
of SMART.

• Efficient fault-tolerance algorithms.
Memory disaggregation introduces new challenges in terms
of fault tolerance due to the physically decoupled but log-
ically coupled failures of CPU and memory. Specifically,
data could be lost when there are failures in the memory
pool, affecting the execution of user requests in the com-
pute pool. Besides, failures in the compute pool can cor-
rupt data in the memory pool due to the partially executed
operations, compromising system correctness.
We propose FUSEE, the first fully memory-disaggregated
storage system that achieves reliability with high perfor-
mance. To avoid data loss under memory pool failures,
we design a client-centric replication algorithm to repli-
cate data in the memory pool with a bounded number of
network I/Os and efficient rule-based conflict resolution.
To deal with data corruption caused by compute pool fail-
ures, we propose an embedded operation log scheme to re-
cover the corrupted data. The embedded logging algorithm
stores log entries together with data to reduce the addi-
tional I/Os to maintain logs on operation critical paths.
Extensive evaluation under YCSB workloads shows the ef-
fectiveness and performance of FUSEE.

Second, to industry, our work promotes the deployment of
disaggregated memory in cloud data centers and shows a great

CHAPTER 1. INTRODUCTION 8

improvement in terms of memory efficiency by disaggregating a
distributed caching service.

• Deployment experiences.
Many cloud providers offer distributed caching services (DC-
Ses) to speed up various cloud applications. We statistically
analyze the severe memory under-utilization issues of a pro-
duction DCS cluster and identify the potential benefit of
porting DCS to DM. We introduce Disaggregated Memory
Caching (DMC), a production-level memory-disaggregated
caching service in Huawei Cloud. We close the gap between
academia and industry by discussing the requirements, de-
sign principles and choices, and lessons learned from our ex-
perience. Thorough experimental results show that DMC
improves memory utilization by up to 2.6 times with less
than 9% performance loss introduced by DM.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2: Background and Related Work
Chapter 2 introduces resource disaggregation, scopes the
problem we try to solve, and discusses the related works
in the literature. Specifically, we first introduce the over-
all architecture of resource and memory disaggregation in
Section 2.1. We then discuss general principles of designing
high-performance data structures and algorithms native to
the disaggregated data center in Section 2.2. We intro-
duce in-memory storage systems over disaggregated mem-
ory, i.e., memory-disaggregated storage systems, in Sec-
tion 2.3 and discuss related works in Section 2.4.

CHAPTER 1. INTRODUCTION 9

• Chapter 3: Efficient Memory Management Data
Structures and Algorithms
In Chapter 3, we introduce our data structure and algo-
rithms design to achieve high-performance memory man-
agement for memory-disaggregated storage systems. We
introduce the challenges of managing memory and summa-
rize our contributions in Section 3.1. We elaborate on the
challenges in detail with experiments in Section 3.2. We
introduce Ditto in Section 3.3, the first caching system on
DM, and elaborate on its data structures and algorithms
for remote memory allocation and caching algorithms ex-
ecution. We evaluate Ditto with thorough experiments in
Section 3.4, discuss the related works in Section 3.5, and
summarize the chapter in Section 3.6.

• Chapter 4: A High-Performance Range Index
In Chapter 4 we present SMART, a high-performance radix-
tree-based range index on disaggregated memory. We dis-
cuss the issues with existing range indexes on DM and sum-
marize our contributions in Section 4.1, introduce existing
B+-tree-based range indexes in Section 4.2.2. We analyze
issues with existing approaches in Section 4.3 and introduce
the design of SMART in Section 4.4. Finally, we evaluate
SMART in Section 4.5, introduces the related works in Sec-
tion 4.6, and conclude the chapter in Section 4.7

• Chapter 5: Efficient Fault Tolerance Algorithms
This Chapter handles the complex failure situations on
DM with efficient replication and logging algorithms. Sec-
tion 5.1 discusses the challenges of achieving fault tolerance
with high performance on DM. Existing approaches are in-
troduced in Section 5.2. We present FUSEE in Section 5.4,
the first fully memory-disaggregated key-value store that

CHAPTER 1. INTRODUCTION 10

achieves reliability with high efficiency, and introduces the
failure handling process in Section 5.5. We evaluate FUSEE
with comprehensive experiments in Section 5.6, discuss the
literature in Section 5.7, and summarize the chapter in Sec-
tion 5.8.

• Chapter 6: Industrial Practice: Productionizing a
Memory-Disaggregated Caching Service
Chapter 6 introduces our industrial practice of production-
izing a memory-disaggregated caching service. We first
summarize the major requirements for a production-level
memory-disaggregated caching service in Section 6.1 Then,
we introduce the existing distributed caching service in
Huawei Cloud and discuss its issues in Section 6.2. We
discuss our design principles and introduce our design in
detail in Sections 6.3, 6.4, and 6.5. Finally, we evaluate
our design in Section 6.6, introduce related works in Sec-
tion 6.8, and summarize the chapter in Section 6.9.

• Chapter 7: Conclusion and Future Work
We conclude this thesis in Chapter 7 and talk about some
interesting future directions. We envision a practical resource-
disaggregated data center where various programs can exe-
cute on the disaggregated hardware with high performance
and propose to achieve a better trade-off between perfor-
mance and compatibility to achieve this goal.

2 End of chapter.

Chapter 2

Background and Related Work

Outline

This chapter introduces the background and related
work for this thesis. We first introduce resource dis-
aggregation, memory disaggregation, their motivations
and performance issues in Section 2.1. We then high-
light three key aspects of designing high-performance
data structures and algorithms, i.e., I/O amplifications,
concurrency control, and asymmetric compute capabil-
ities, in Section 2.2. Section 2.3 introduces memory-
disaggregated storage systems and their three major
components, i.e., memory management, data indexing,
and fault tolerance. Finally, we introduce the related
work regarding resource disaggregation, memory disag-
gregation, and memory-disaggregated storage systems,
in Section 2.4.

2.1 Resource-Disaggregated Data Centers

In this section, we first motivate resource disaggregation by dis-
cussing the limitations of server-centric data centers. We then
introduce resource disaggregation and memory disaggregation,

11

CHAPTER 2. BACKGROUND AND RELATED WORK 12

as well as their performance issues.

2.1.1 Limitations of Server-Centric Data Centers

The server-centric architecture, i.e., using monolithic servers to
deploy and manage resources, has been dominating data centers
for decades [225]. However, two trends in modern data center
hardware and software are making this architecture problematic.

First, from the hardware perspective, due to the slowdown
of Moore’s law and the diminishing of Dennard scaling, modern
data centers are embracing heterogeneous and domain-specific
compute and storage devices. Heterogeneous compute devices,
e.g., Google TPU [94], FPGA [161], AWS Nitro [10], GPU,
and programmable switches [155], provide higher computing effi-
ciency with lower energy consumption than general-purpose pro-
cessors, improving the overall cost-efficiency of the entire data
center. Meanwhile, various heterogeneous storage devices with
different speeds and capacities, e.g., SSDs [142], persistent mem-
ory [87], disks, and even glasses [13], are deployed to satisfy the
storage requirements for different applications.

Second, from the software perspective, today’s data centers
are hosting various types of applications. These applications ex-
hibit more diverse requirements concerning the types and quan-
tities of hardware resources. For instance, typical data analytics
applications, e.g., Hadoop [15] and Spark [16], require strong
CPUs, large memory, and large storage to efficiently conduct
data computations, while the emerging AI applications [111,
219, 203] mostly rely on strong GPUs to achieve high paral-
lelism in model training and inference.

Satisfying these two trends in server-centric data centers suf-
fers from the following three critical issues, i.e., poor resource
efficiency, poor hardware elasticity, and coarse-grained failures.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

0 5 10 15 20 25
Time (Days)

0.00

0.25

0.50

0.75

1.00
Ut

iliz
at

io
n

CPU
Memory

(a) Google.

0 2 4 6 8 10
Time (Hours)

0.00

0.25

0.50

0.75

1.00

Ut
iliz

at
io

n

CPU
Memory

(b) Alibaba.

1 2 3 4 5 6 7
Time (Days)

0.00

0.20

0.40

0.60

Ut
iliz

at
io

n

Memory

(c) Huawei Cloud.

Figure 2.1: The CPU and memory utilization of Google, Alibaba, and Huawei
Cloud data centers.

1) Poor resource efficiency. Server-centric data centers
consolidate various heterogeneous hardware in individual mono-
lithic servers. They manage hardware resources by creating mul-
tiple virtual machines (VM) on the deployed physical servers.
Considering 1) monolithic servers as physical boundaries for re-

CHAPTER 2. BACKGROUND AND RELATED WORK 14

source management and 2) the diverse resource requirements for
various cloud applications, data center resource allocation and
management becomes a complex multi-dimensional bin pack-
ing problem [225]. We analyze the average CPU and memory
utilization of three well-known cloud providers, i.e., Google, Al-
ibaba, and Huawei Cloud. For Google and Alibaba, we ana-
lyze 29-day and 10-hour CPU and memory utilization traces,
respectively. For Huawei Cloud, we analyze a 7-day memory
utilization trace. As shown in Figure 2.1, the average CPU and
memory utilization accounts for only 50%. Half of the resources
are wasted due to severe resource fragmentation and strand-
ing [123]. Specifically, resource fragmentation refers to small
pieces of resources that are insufficient to satisfy any applica-
tion requirements. The stranded resources are those on physical
servers that cannot be leveraged to create VMs due to the lack
of another resource on the same physical server [123].

2) Poor hardware elasticity. Hardware elasticity refers
to the convenience of reconfiguring hardware inside data centers.
The emerging heterogeneous hardware devices and the varying
resource requirements for modern data center applications make
hardware elasticity more critical than ever. Adding new de-
vices to support new applications and adjusting the resource
proportions inside existing monolithic servers to better satisfy
application requirements is demanding for cloud providers. Un-
fortunately, in today’s server-centric data centers, reconfiguring
hardware after they have been installed in monolithic servers
is difficult and inconvenient [177, 65, 161]. Data center own-
ers have to plan out server reconfigurations in advance so that
applications executing inside these servers are not affected.

3) Coarse failure domain. Achieving high reliability is
a basic requirement for both data center hardware and soft-
ware [187, 77, 217]. However, the failure unit in existing server-
centric data centers is usually coarse-grained [177, 199], i.e., the

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Here comes resource disaggregation

Can we decouple resources from monolithic servers?

Server

Datacenter Networks

Server

Server Server

Resource
Disaggregation

7

CPU Pool Mem Pool

Storage Pool

High-Performance Interconnect

Resource efficiency
 Resources can be allocated flexibly
 Mitigate fragmentation & eliminate stranding

Improved elasticity
 Resources can be scaled independently

Fine-grained failure domain
 Hardware failures are isolated from each other

Figure 2.2: The architecture of a resource-disaggregated data center.

entire server becomes unusable or unavailable when a hardware
component of the server fails, leading to the crashes of applica-
tions. Unfortunately, according to the previous analysis [173],
motherboard, CPU, memory, and power supply failures account
for more than 50% of hardware failures in server-centric data
centers. System reliability in today’s server-centric data centers
is compromised due to the coupled hardware failures.

2.1.2 Resource Disaggregation

Resource disaggregation is advocated as a promising architec-
ture for next-generation data centers. It can satisfy the hard-
ware and software trends and address all the previous issues
with the server-centric architecture [177, 199, 171]. As shown
in Figure 2.2, in a resource-disaggregated data center, hardware
resources are decoupled from individual monolithic servers and
maintained as independent autonomous resource pools. These
resource pools are interconnected with high-performance data
center networking techniques so that different hardware compo-
nents can communicate and cooperate with each other.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

The resource disaggregated architecture addresses all the pre-
vious issues introduced by monolithic servers by providing more
flexibility in resource management. First, data center resource
allocation is greatly simplified since hardware resources are no
longer coupled in a single server. Resource efficiency can be
improved since data center owners can freely allocate and com-
bine resources in different resource pools for various applica-
tions. Second, the hardware elasticity can also be improved
since the decoupling of hardware components makes it possi-
ble to scale different types of hardware resources independently
without affecting the execution of existing applications. New
types of hardware devices can be conveniently deployed by cre-
ating a new resource pool and connecting to the data center
network. Finally, disaggregating hardware resources creates a
more fine-grained failure domain since the failures of different
hardware components are isolated by the network.

Such an architecture is enabled by the advances in networking
devices in the following three aspects:

High-speed network. Over the past decade, data center
networks become more and more scalable. The speed of net-
working devices has grown over an order of magnitude. Existing
high-performance networking techniques, e.g., InfiniBand [86]
and remote direct memory access (RDMA) [79], have already
reached 400 Gbps and ultra-low latency, e.g., sub-800 nanosec-
ond latency [151]. Such high bandwidth is already comparable
to the main memory bus in monolithic servers [177]. With the
main memory bus facing a bandwidth wall [170], line rate net-
work bandwidth in the future is even predicted to exceed local
DRAM bandwidth [191].

Network-integrated devices. There is a trend in the hard-
ware design to move network interfaces closer to hardware com-
ponents, e.g., Intel OmniPath [52], RDMA [79], and NVMe over
Frabrics [183]. More and more hardware devices will be able to

CHAPTER 2. BACKGROUND AND RELATED WORK 17

95

CPU Pool

Memory Pool

High-Performance Interconnect

weak

weak

Figure 2.3: The overall architecture of memory disaggregation.

access networks directly without the help of additional general-
purpose processors, e.g., CPUs. This makes the idea of network-
attached hardware possible in resource disaggregation.

Stronger hardware processing capabilities. Modern
hardware devices are having more processing capabilities [86,
189, 52, 150], which enables software logic to be offloaded to
hardware, e.g., offloaded network stacks [86], offloaded network
functions [178], and even offloaded storage systems [122]. The
powerful on-device processing capabilities shift the computing
paradigms in modern data centers from CPU-centric to XPU-
centric [88], making it possible to create autonomous resource
pools in the resource-disaggregated architecture.

2.1.3 Memory Disaggregation

Disaggregated memory (DM) [127, 199, 171, 230, 180, 131, 179]
is the most widely-discussed topic in the resource disaggrega-
tion research. As shown in Figure 2.3, DM decouples the CPU
and DRAM of monolithic servers into independent compute and
memory pools. The compute pool contains multiple compute

CHAPTER 2. BACKGROUND AND RELATED WORK 18

nodes (CN) with abundant CPUs. Each CN is also equipped
with a small amount of DRAM to serve as the runtime cache.
The memory pool consists of memory nodes (MN), each host-
ing a large amount of DRAM. A small number of weak CPU
cores are installed in each MN to serve lightweight management
tasks, i.e., network connection and memory management. The
compute pool and the memory pool are connected with high-
performance CPU-bypass networks with high bandwidth and
microsecond-scale latency, e.g., InfiniBand [86] and CXL [185].

The memory pool provides the compute pool with both data
management and data access interfaces. The data management
interfaces, i.e., ALLOC and FREE, allow CNs to allocate and free
memory spaces, which are implemented with the weak CPU
cores in the memory pool. The implementation of data access
interfaces, i.e., READ, WRITE, ATOMIC_CAS (compare and swap),
and ATOMIC_FAA (fetch and add), relies on the interconnect tech-
niques. The CPU-bypass feature of the interconnect enables the
memory pool to implement the data access interface with high
throughput and low latency, without being bottlenecked by the
weak CPUs on MNs. Without loss of generality, in this the-
sis, we assume that the compute pool and memory pool are
connected with RDMA networking. However, the techniques
in this thesis are also compatible with other types of intercon-
nects as long as they provide the aforementioned data access
and management interfaces.

The disaggregated memory architecture inherits all the bene-
fits of the resource-disaggregated architecture, i.e., higher mem-
ory efficiency, better CPU and memory elasticity, and fine-
grained failure domain. Achieving memory disaggregation is
also an urgent task due to the expensive memory prices and the
low memory utilization in today’s data centers.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

2.1.4 The Performance Issue

Unfortunately, we are not seeing the large-scale deployment of
the resource-disaggregated architecture in real-world data cen-
ters due to the severe performance issues. The performance
overhead is rooted in both hardware and software. First, in
the hardware layer, although advanced networking technolo-
gies greatly improve communication bandwidth, the communi-
cation latency is still an order of magnitude higher than that
inside a single server. On DM, this amplified latency greatly in-
creases the overhead of accessing remote memory, causing poor
performance. Even worse, the communication latency for the
resource-disaggregated architecture will stay lower than that on
monolithic servers due to the amplified physical distance be-
tween hardware components. Consequently, the performance
issue has to be addressed in the software layer.

From the software perspective, there are two ways to ex-
ecute applications over a resource-disaggregated data center,
i.e., top-down approaches [177, 127, 171, 199] and bottom-up
approaches [230, 228, 201]. Top-down approaches achieve disag-
gregation in an intermediate layer, e.g., OS [177] and language
runtimes [171, 199]. Programs can be executed over these in-
termediate abstractions without any modifications. However,
such approaches suffer from up to 10 times performance degra-
dation since the high-level abstractions in the intermediate layer
greatly amplifies the communication overhead between the hard-
ware components.

This thesis follows a bottom-up approach that designs appli-
cations and systems native to the resource-disaggregated archi-
tecture, e.g., storage systems [223, 230], vector databases [89],
databases [35]. For the bottom-up approach, the key perfor-
mance bottleneck lies in the data structure and algorithms. It
is reported that improper data structures and algorithm design
severely degrade system performance, inducing more than 15

CHAPTER 2. BACKGROUND AND RELATED WORK 20

times slow down [230, 228, 201, 131]. We discuss the guidelines
for designing data structures and algorithms in the following
section (Section 2.2).

2.2 Data Structures and Algorithms for Re-
source Disaggregation

Designing efficient data structures and algorithms for the resource-
disaggregated architecture requires us to understand the char-
acters the new architecture. In this section, we first introduce
the guidelines for efficient data structure and algorithm design
by analyzing and comparing the resource-disaggregated archi-
tecture with some well-known systems. We then discuss the
limitations of existing data structures and algorithms.

2.2.1 Guidelines for Data Structures and Algorithms
for Resource Disaggregation

We highlight three critical aspects when designing efficient data
structures and algorithms for resource-disaggregated data cen-
ters. Specifically, high-performance data structures and algo-
rithms for resource-disaggregated data centers have to simul-
taneously achieve 1) high-performance concurrency control, 2)
efficient I/O, and 3) fully exploited asymmetric compute capa-
bilities of heterogeneous hardware. We summarize these princi-
ples by comparing the resource-disaggregated architecture with
several well-known architectures.

To begin with, the key idea of resource disaggregation is to
break the boundaries of resource management. In this perspec-
tive, the entire data center is managed as a huge monolithic
server. As shown in Figure 2.4, similar to the canonical Von
Neumann architecture, the heterogeneous computing devices are
just like the compute unit and the various storage media are just

CHAPTER 2. BACKGROUND AND RELATED WORK 21
The disaggregated architecture is like…

11

CPU

Mem NVM

GPU

SSD

DPU

Disk

FPGA

High-Performance Networks

Compute Units

Memory and Storage Units

A data center scale big computer

Figure 2.4: Resource disaggregation as
a Von Neumann machine.

The disaggregated architecture is like…

12

CPU

Mem NVM

GPU

SSD

DPU

Disk

FPGA

High-Performance Networks

The compute unit:
• A large-scale parallel machine
• Need to optimize concurrency

Processes/threads

A data center scale big computer

Memory and Storage Units

Concurrent data accesses

Figure 2.5: Resource disaggregation as
a large-scale parallel machine.

like the memory and storage unit. Starting from this, we gain a
deeper understanding by separately analyzing the compute unit
pool, memory and storage unit pool, and the physical construc-
tion of the disaggregated data center.

The compute unit pool. From the perspective of the com-
pute unit pool, a resource-disaggregated data center holds a
huge number of heterogeneous computing devices. As shown
in Figure 2.5, all these computing devices uniformly access the
memory and storage unit pool with high-performance networks.
Such an architecture is similar to multi-processor parallel
machines [82], where data accesses are highly concurrent and
possibly conflicting. Consequently, data structures and algo-
rithms for resource disaggregation have to efficiently resolve con-
flicts to achieve high-performance concurrency control.

The memory and storage unit pool. From the perspec-
tive of the memory and storage unit pool, there are various dif-
ferent storage media, as shown in Figure 2.6. Different storage
media have different characters in terms of speed and capacity,
making the entire architecture resemble the memory hierar-
chy in tiered memory systems [103, 214]. Similar to the
tiered memory systems, data structures and algorithms for re-

CHAPTER 2. BACKGROUND AND RELATED WORK 22
The disaggregated architecture is like…

13

CPU GPU DPU FPGA

High-Performance Networks

The compute unit:
• A large-scale parallel machine
• Need to optimize concurrency

Disk Pool

A data center scale big computer

The storage unit:
• Yet another tiered memory system
• Need to optimize I/O

Processes/threads

I/O Bounded

Memory Pool

NVM Pool

SSD Pool

Figure 2.6: Resource disaggregation as
a tiered memory system.

The disaggregated architecture is like…

14

CPU GPU DPU FPGA

High-Performance Networks

The compute unit:
• A large-scale parallel machine
• Need to optimize concurrency

The storage unit:
• Yet another tiered memory system
• Need to optimize I/O

The physical construction:
• An asymmetric distributed system
• Need to optimize asymmetry

A data center scale big computer

NVM
Node

Mem.
Node

SSD
Node

SSD
Node

Disk
Node

Disk
Node

Storage Nodes

Compute Nodes

Figure 2.7: Resource disaggregation as
a heterogeneous distributed system.

source disaggregation are also I/O bounded since all data access
has to go through the network with higher latency and lower
bandwidth. Consequently, data structures and algorithms for
resource disaggregation also have to achieve I/O efficiency by
reducing the numbers and sizes of I/O operations.

The physical construction. Finally, from the perspec-
tive of the physical construction of a resource-disaggregated
data center, the basic unit is still servers, as shown in Fig-
ure 2.7. Fundamentally, we are dealing with distributed sys-
tems [15, 16, 139] and thus facing the same challenges, i.e., high
coordination overhead between nodes. However, the resource-
disaggregated architecture cannot be directly viewed as a dis-
tributed system since servers in a resource-disaggregated data
center are specialized and heterogeneous. Different servers host
different devices and resources to achieve better resource flexi-
bility. Consequently, data structures and algorithms for resource
disaggregation also have to exploit and optimize the computation
over various heterogeneous devices to gain better performance.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

Table 2.1: Characters of data structures and algorithms for existing systems.

Systems Concurrency I/O Asymmetry

Parallel Machines
Tiered Memory Systems

Distributed Systems

2.2.2 Limitations with Existing Data Structures and
Algorithms

Unfortunately, existing data structures and algorithms suffer
from suboptimal performance over the resource-disaggregated
architecture since cannot simultaneously achieve all these re-
quirements, as illustrated in Table 2.1.

First, in large-scale parallel machines, many concurrent data
structures and algorithms are designed to achieve high concur-
rency, e.g., concurrent hash tables [84, 110, 61] and concurrent
linked lists [140]. They design lock-based and lock-free algo-
rithms to efficiently resolve conflict in data accesses and achieve
high-performance concurrency control. However, they assume a
uniform memory access model where all data are already loaded
in the memory. When executing over the resource disaggregated
architecture they suffer from severe I/O amplifications due to
their multiple numbers of remote memory accesses. Meanwhile,
they are designed for single machines without considering the
asymmetry between servers.

Second, there are many I/O efficient data structures and al-
gorithms for tiered memory systems, e.g., B+ trees [146, 201].
They leverage the locality in the data structure and algorithm
computation to reduce the numbers and sizes of I/O operations.
However, these data structures are not optimized to achieve high
concurrency due to their coarse-grained locks [146, 201]. Mean-
while, they also do not consider leveraging the asymmetric het-

CHAPTER 2. BACKGROUND AND RELATED WORK 24

erogeneous devices in various servers.
Finally, there are also many high-performance data structures

and algorithms designed for distributed systems, e.g., garbage
collection [3], replication [194, 154], etc. They reduce the num-
ber of I/O operations by reducing the number of cross-node
communications and achieve high concurrency by sharding data
to multiple servers and dealing with these data individually [16,
166]. However, existing distributed computing data structures
and algorithms assume a symmetric architecture where all nodes
have comparable compute and storage capabilities. Executing
these data structures and algorithms over resource-disaggregated
data centers also cannot fully exploit the capabilities of hetero-
geneous devices to achieve high performance.

2.3 Memory-Disaggregated Storage Systems

Memory-disaggregated storage systems, i.e., in-memory storage
systems over disaggregated memory, is gaining attention in both
academia and industry due to their better resource efficiency
and elasticity. This section first introduces in-memory storage
systems and then introduces the challenges of constructing such
a system over disaggregated memory.

2.3.1 In-Memory Storage Systems

In-memory storage systems, e.g., Memcached and Redis, are
widely adopted in modern cloud data centers to serve as an in-
termediate caching layer. They provide upper-level applications
with easy-to-use GET and SET interfaces to access data with high
throughput and low latency.

Figure 2.8 shows the architecture of a typical in-memory stor-
age system. There are multiple client threads in upper-level ap-
plications and multiple server nodes. Data are typically parti-

CHAPTER 2. BACKGROUND AND RELATED WORK 25

KV KV KV

Index
Memory

KV KV KV

Index
Memory

Clients Monolithic Servers

Network
Requests

Figure 2.8: The general architecture of an in-memory storage system on
monolithic servers.

tioned among all server nodes. Each server manages local mem-
ory with a memory allocator to store objects with variable sizes
and a cache engine to only keep hot objects in the limited mem-
ory space. All objects are organized with an index to efficiently
locate data when serving requests. Besides, objects are repli-
cated among various servers with a data replication protocol to
achieve high availability on node failures.

When executing GET and SET requests, clients send RPC re-
quests to the node that contains the primary replica of the re-
quired data. When serving GET requests, the server searches its
local index and returns the required data. When serving SET
requests, the server first allocates new memory space to hold
the newly written objects or evict an object when the memory
is full. The index is then modified to reflect this object modifi-
cation. The written data is synchronized to all nodes containing
its backup replica according to the replication protocol. On node
failures, requests are routed to nodes that contain the backup
replica of the requested data.

Unfortunately, existing in-memory storage systems inherit
the issues with the server-centric architecture.

CHAPTER 2. BACKGROUND AND RELATED WORK 26

Figure 2.9: The performance of Redis when adjusting resources.

1) Resource inefficiency. Resources of existing in-memory
storage systems on monolithic servers, e.g., Redis [60], Mem-
cached [139], ElastiCache [60], MemoryStore [75], are allocated
with fix-sized virtual machines (VMs) with both CPU and mem-
ory, e.g., 1 CPU with 2 GB DRAM, to facilitate resource man-
agement over monolithic servers. During dynamic resource scal-
ing, resources are wasted when coupled CPU and memory are
allocated, but only CPU or memory needs to be dynamically
increased. Moreover, applications’ resources requirements must
be rounded up to fit in these fix-sized VMs, causing low resource
utilization in the entire datacenter [19].

2) Poor resource elasticity. Existing in-memory storage sys-
tems shard data to multiple monolithic servers to leverage more
CPU and memory resources and achieve higher throughput [126,
60, 75, 166]. Cached data have to be resharded and migrated
when new VMs are added to the caching cluster. The migration
cost [63] is unavoidable when either CPU or memory needs to
be adjusted due to the coupled allocation of CPU and mem-
ory on monolithic servers. The performance gain when increas-
ing resources and the resource reclamation after shrinking re-

CHAPTER 2. BACKGROUND AND RELATED WORK 27

sources is delayed for minutes due to the time-consuming data
migration [112]. Moreover, the throughput drops and latency
increases due to the consumption of additional CPU cycles and
network bandwidths spent on moving data [109, 164].

Figure 2.9 shows the migration cost on Redis [166], the back-
end of many cloud caching services [60, 75], during resource ad-
justments under the read-only YCSB-C workload [50] with 10
million 256B key-value pairs. We first use 32 Redis nodes, each
with 1 CPU core and 1 GB DRAM, then add 32 more nodes
after 3 minutes of execution, and shrink back to 32 nodes after
3 minutes of stable execution with 64 nodes. We launch all 64
Redis nodes initially to calculate the pure cost of data migra-
tion and use 512 client threads to get the maximum throughput.
When scaling to 64 nodes, Redis takes 5.3 minutes to migrate
data. The throughput drops up to 7%, and the 99th percentile
latency increases up to 21% in the process. When shrinking back
to 32 nodes, the resource reclamation is delayed for 5.6 minutes
due to data migration. Such migration cost is unavoidable even
if using advanced migration techniques [109, 63] since CPU and
memory are allocated in a coupled manner in VMs and objects
are sharded to individual VMs.

3) Coupled failures. Finally, the reliability of existing in-
memory caching systems is restricted by the coupled failure in
server-centric data centers. Specifically, in a monolithic server,
when a CPU fails data in the memory on the same server be-
comes unavailable. The situation is similar when it comes to
memory failures. The reliability would become better if CPU
and memory failures can be handled separately.

Due to all these issues, it is gaining increasing attention in
both academia and industry to port in-memory storage sys-
tems over disaggregated memory, i.e., constructing memory-
disaggregated storage systems [119, 179, 180].

CHAPTER 2. BACKGROUND AND RELATED WORK 28

C
o

m
p

u
te

 P
o

o
l

M
em

o
ry

 P
o

o
l

Cache

Compute Node

Client threads

Cache

Compute Node

Client threads

READ / WRITE / ATOMIC

Memory Node Memory Node

Index

Objects

Figure 2.10: The architecture of a memory-disaggregated storage system.

2.3.2 Challenges over Disaggregated Memory

Figure 2.10 shows the architecture of a memory-disaggregated
storage system. There is a compute pool and a memory pool.
CNs in the compute pool contain abundant CPUs executing
multiple threads to execute user requests. A small local mem-
ory is installed to serve as the runtime cache for these client
threads. There are multiple MNs in the memory pool, each
equipped with large memory space and a weak CPU core to ex-
ecute management tasks. Both objects and the index are scat-
tered and replicated among all MNs.

Three challenges have to be addressed to make memory-
disaggregated storage systems practical.

1) Remote memory management. Memory manage-
ment involves efficiently allocating memory spaces and execut-
ing caching algorithms. Both involve the maintenance of expen-
sive memory management data structures and algorithms, e.g.,
free lists for memory allocation, and heaps or lists for caching
algorithms [153, 193, 92]. Unfortunately, existing memory man-

CHAPTER 2. BACKGROUND AND RELATED WORK 29

agement data structures and algorithms are designed with the
assumption that both the memory and the data structures are
maintained locally with low concurrency. They suffer from se-
vere concurrency control overhead and amplifications in I/O
numbers when being executed over disaggregated memory.

2) Efficient data indexing. The performance of the index
data structure is critical to the efficiency of the request serving
efficiency of the entire memory-disaggregated storage system.
Unfortunately, existing approaches on DM overlook the mem-
ory character of the disaggregated memory pool. They treat
remote memory as local high-performance disks due to the sim-
ilar latency and bandwidth and increase I/O sizes to reduce the
number of I/O operations [201, 229]. Consequently, they suffer
from suboptimal performance since they induce severe waste in
network bandwidths when executing over disaggregated memory
with highly concurrent requests and limited network bandwidth.

3) Efficiently handling complex failures. Adopting
memory disaggregation is a double-edged sword. On the one
hand, it isolates the failures of compute and memory resources,
potentially improving reliability. On the other hand, it intro-
duces more complicated failure situations, e.g., CNs and MNs
can fail separately [14]. Efficiently handling all these failures
is critical to achieve high reliability and availability. Unfor-
tunately, existing data replication and logging algorithms suf-
fer from severe I/O amplifications, resulting in severe overhead
when executing on disaggregated memory.

In this thesis, we address all these challenges by designing
data structures and algorithms native to DM that can simulta-
neously achieve high-performance concurrency control, efficient
I/O, and optimized for asymmetric hardware.

CHAPTER 2. BACKGROUND AND RELATED WORK 30

2.4 Related Works

This section introduces the related work in terms of resource dis-
aggregation, memory disaggregation, and memory-disaggregated
storage systems.

2.4.1 Resource Disaggregation

The idea of resource disaggregation has been discussed for decades.
Recent works focus on two main fields, i.e., improving existing
systems for storage disaggregation and exploring the disaggre-
gation of a broader spectrum of devices.

The idea of storage disaggregation is first explored in the field
of resource disaggregation due to the requirement to improve
storage efficiency and the increase in network bandwidth [11].
In modern cloud data centers, block storage is commonly vir-
tualized and disaggregated to meet various application require-
ments [9, 48, 46]. Works in this field typically focus on achieving
good performance according to the characteristics of the stor-
age device, i.e., HDDs and SSDs. In terms of disaggregating
traditional HDDs, Parallax [205], Blizzard [141], and Petal [117]
provides a virtual block interface for operating systems and ap-
plications. They all focus on achieving higher performance and
In terms of disaggregating traditional HDDs, systems like Par-
allax [205], Blizzard [141], and Petal [117] focus on the better
implementation of distributed virtual block store with high per-
formance and other features like replication and failure recov-
ery. Snowflake constructs an elastic query engine with disaggre-
gated object store in cloud data centers [197]. For SSDs, sys-
tems like Gimbal [142], disaggregated flash [106], CORFU [24],
and FAWN [12], explores systems design to achieve high perfor-
mance combining the block-access characters of novel SSDs. All
these works are orthogonal to this thesis since this thesis focuses
on the design of data structures and algorithms for in-memory

CHAPTER 2. BACKGROUND AND RELATED WORK 31

storage systems over disaggregated memory. Meanwhile, dis-
aggregated memory is byte-addressable, which is fundamentally
different compared with disks or SSDs.

Another thread of work focuses on the management of var-
ious heterogeneous disaggregated hardware. Among them, Le-
goOS [177] is the first work towards the management of hard-
ware resources for disaggregated data centers. It proposes the
idea of splitkernel, a new OS architecture to manage various
hardware and connect them to the RDMA network. Super-
NIC [178] is another approach that disaggregates network re-
sources and computation with advanced FPGA-based Smart-
NICs. There are also works that manages disaggregated hard-
ware resources in serverless platforms to make serverless plat-
forms more resource efficient [51, 157]. These works majorly
focuses on making hardware resource disaggregation possible,
which is complementary to this thesis where we address the
performance issues.

2.4.2 Memory Disaggregation

Memory disaggregation is the core of existing resource disaggre-
gation research. Existing work on disaggregated memory can be
classified into top-down and bottom-up approaches.

Top-down approaches achieve memory disaggregation with
existing system intermediate abstraction layers, e.g., operating
systems [128, 76, 149, 8, 163, 124], language runtimes [171, 199,
80, 200, 227, 162], and co-designed systems software [127, 189,
185, 118, 202, 81, 178]. Operating-systems-based approaches
view disaggregated memory pool as a fast swap device [149, 8].
They enable a process in a monolithic server to leverage memory
resources in other servers by swapping in and out 4 KB memory
pages. However, they suffer from poor performance since they
amplify fine-grained remote memory accesses into 4 KB memory

CHAPTER 2. BACKGROUND AND RELATED WORK 32

pages. Runtime-based approaches [171, 199, 80] address this
issue by enabling object-level swap in and out. However, the
high-level abstraction hides the real memory organization detail
from user programs, resulting in poor performance.

Bottom-up approaches port individual applications to the
disaggregated memory architecture from scratch. Applications
like key-value stores [192, 119, 180], transactional storage sys-
tems [55, 223, 56], compilers [102], and vector databases [89] are
ported to the disaggregated memory to enjoy the larger memory
spaces and the better resource efficiency.

All these approaches are orthogonal to this thesis. This thesis
focuses on the data structures and algorithm design for systems
over disaggregated memory. The technique is applicable to both
system software and upper-level applications. For instance, the
proposed memory management data structures can also be ap-
plied to disaggregated operating systems and language runtimes
to achieve better performance. Also, the proposed index data
structure can be applied to many bottom-up systems over dis-
aggregated memory.

2.4.3 Memory-Disaggregated Storage Systems

Existing works on memory-disaggregated storage systems can
be classified into two categories. The first explores different sys-
tems architectures to better exploit the benefits of disaggregated
memory. Clover [192] and Dinomo [119] are the state-of-the-art
memory-disaggregated storage systems. Clover [192] adopted an
architecture that decouples the data and control plane so that
the data access can be more efficient. Dinomo [119] partitions
the ownership of data to compute nodes to achieve better elastic-
ity and scalability. Different from their architecture, approaches
in this thesis are designed for a memory-disaggregated storage
system that adopts a shared everything architecture, which is

CHAPTER 2. BACKGROUND AND RELATED WORK 33

complementary to these works.
The second thread of work explores efficient data structures

and algorithms design [230, 201, 229]. Race hashing [230] is
the state-of-the-art hash table over disaggregated memory. It
achieves high performance by batching RDMA requests and
achieves a high load factor by sharding data to multiple buck-
ets with multiple hash functions. Sherman [201] and FG [229]
are B+ trees for disaggregated memory. The former reduces
lock contention with a hierarchical lock design and the latter
achieves better performance with fine-grained tree node parti-
tions. Different from existing works on designing and improving
dedicated data structures, this thesis identifies and summarizes
the general principles for high-performance data structure de-
sign. Besides, we design new data structures and algorithms
for memory management and fault tolerance, and we further
improve the performance of existing range indexes on DM.

2 End of chapter.

Chapter 3

Efficient Memory Management
Data Structures and
Algorithms

Outline

Memory management is critical to a high-performance
memory-disaggregated storage system. Unfortunately,
existing data structures and algorithms for memory
management are unsuitable for disaggregated memory
(DM) due to their severe amplifications in I/O numbers
and the high concurrency control overhead. This chap-
ter describes the design and implementation of Ditto,
the first memory-disaggregated caching system that can
efficiently manage memory in the memory pool. Specif-
ically, Ditto proposes a two-level memory allocation
scheme to achieve high-performance memory allocation
and a client-centric caching framework to efficiently
execute various caching algorithms. Moreover, a dis-
tributed adaptive caching scheme is proposed to achieve
high cache hit rates by adapting to changing workloads
and resources on DM.

34

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 35

3.1 Introduction

Efficient memory management is critical to achieving high per-
formance for memory-disaggregated storage systems [192, 55].
First, existing memory-disaggregated storage systems adopt an
out-of-place update manner [230, 119]. Memory needs to be al-
located from the memory pool before objects can be inserted and
updated, making memory allocation on the critical path that can
affect performance [192, 230]. Besides, memory-disaggregated
storage systems need to identify and keep hot objects in the ex-
pensive disaggregated memory pool with limited capacities [166,
139, 27, 169]. This requires executing caching algorithms with
high performance and achieving high cache hit rates.

However, existing data structures and algorithms for mem-
ory management are constructed for monolithic-server-based in-
memory storage systems. They suffer from severe I/O amplifi-
cations, high concurrency control overheads, and cannot achieve
high cache hit rates on DM with loosely coupled and dynami-
cally changing compute and memory resources.

Specifically, three challenges have to be addressed to achieve
practical memory management on DM.

1) Centralized memory allocation. For in-memory storage
systems over monolithic servers, memory is allocated and man-
aged directly with the CPU on the same monolithic server. They
use various data structures, e.g., linked lists [107], trees [221],
etc., to organize and quickly locate free memory blocks. Unfor-
tunately, these data structures and algorithms are unsuitable
for disaggregated memory due to their severe I/O amplifica-
tions and high concurrency control overhead. First, memory
nodes (MNs) in the memory pool cannot handle the compute-
heavy fine-grained memory allocation for variable-sized objects
due to their weak compute power [192, 81]. Besides, allocating
memory directly from the compute nodes (CNs) in the compute

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 36

pool suffers from multiple numbers of I/Os and high concur-
rency control overhead due to the large number of concurrent
CNs and the multiple numbers of memory accesses to maintain
memory allocation data structures [118].

2) Bypassing remote CPUs hinders the execution of caching
algorithms. In-memory storage systems use various caching al-
gorithms under different workloads [166, 27, 139]. Caching al-
gorithms monitor the hotness of cached objects and select evic-
tion victims by maintaining the hotness information in various
caching data structures, e.g., queues [93], heaps [169], etc. Since
data access changes object hotness, existing caching algorithms
rely on the CPUs of caching servers, where all data accesses
are executed, to monitor object hotness and maintain caching
data structures [139]. However, on DM, clients in the compute
pool bypass CPUs in the memory pool when accessing objects.
Evaluating object hotness becomes difficult due to the lack of
a centralized hotness monitor on data paths. Evicting objects
also becomes inefficient since caching data structures have to be
maintained with multiple network I/Os from the compute pool,
where the data accesses are executed. Moreover, supporting var-
ious caching algorithms for different workloads [166, 27] is even
more difficult on DM since different caching algorithms evict ob-
jects with specified rules and tailored data structures [93, 193].

3) Changing resources affects hit rates of caching algorithms.
Cache hit rates closely relate to the data access patterns [195]
and the cache size [169]. On DM, both attributes change when
dynamically adjusting compute or memory resources. Specifi-
cally, data access patterns change with the number of concurrent
clients (i.e., compute resources), and the cache size changes with
the allocated memory spaces (i.e., memory resources). As a re-
sult, the best caching algorithm that maximizes hit rate changes
dynamically with resource settings. In-memory storage systems
with fixed caching algorithms cannot adapt to these dynamic

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 37

features of DM and can lead to inferior hit rates.
We address these challenges with Ditto1, an elastic and adap-

tive memory-disaggregated caching system. First, to achieve
efficient remote memory management, Ditto employs a two-
level memory management scheme that splits the memory man-
agement data structures into compute-light and compute-heavy
components. The compute-light coarse-grained memory blocks
are managed by MNs with weak compute power, and the compute-
heavy fine-grained objects are handled by clients on CNs with
strong compute capabilities. Second, we propose a client-centric
caching framework to efficiently execute various caching algo-
rithms on DM. The framework employs distributed hotness mon-
itoring and sample-based eviction to achieve high performance.
The distributed hotness monitoring uses one-sided RDMA verbs
to record the access information from distributed clients in the
compute pool, uses eviction priority to formally describe object
hotness, and assesses objects’ eviction priorities by applying pri-
ority calculation rules on the recorded access information. The
sample-based eviction scheme selects eviction victims by sam-
pling multiple objects and selecting the one with the lowest pri-
ority on the client side without maintaining remote data struc-
tures [166]. Since the key difference among different caching
algorithms are their definitions of eviction priorities, various
caching algorithms can be integrated by defining tailored prior-
ity calculation rules with little coding effort. Finally, we propose
a distributed adaptive caching scheme to achieve high cache hit
rates under dynamically changing resources. Ditto simultane-
ously executes multiple caching algorithms and uses regret min-
imization [69, 71, 220], an online machine learning algorithm, to
perceive their performance and select the best one according to
the current resource setting.

We implement Ditto and evaluate its performance with both
1DMC is a Pokémon that can arbitrarily change its appearance.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 38

synthesized and real-world workloads [108, 184, 215]. Ditto is
more elastic than Redis regarding resource efficiency and the
speed of resource adjustments. On YCSB and real-world work-
loads, Ditto outperforms CliqueMap [182], the state-of-the-art
key-value cache, by up to 9× and 3.6×, respectively. Moreover,
Ditto can flexibly extend 12 widely-used caching algorithms with
12.5 lines of code (LOC) on average. The implementation of
Ditto is open-source available at: https://github.com/dme
msys/Ditto.git.

The contributions of this work include the following:

• We design a two-level memory management scheme that
leverages both MNs and CNs to efficiently allocate and
manage the disaggregated memory pool.

• We propose a client-centric caching framework where vari-
ous caching algorithms can be integrated flexibly and exe-
cuted efficiently on DM.

• We propose distributed adaptive caching to provide high
hit rates by selecting the best caching algorithm according
to the dynamic resource change and various data access
patterns on DM.

• We implement Ditto and evaluate it with various work-
loads. Ditto outperforms the state-of-the-art approaches
by up to 9× under YCSB synthetic workloads and up to
3.6× under real-world workloads.

3.2 Challenges

This section elaborates on the challenges in terms of memory
management and executing caching algorithms.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 39

3.2.1 Remote Memory Allocation

The key challenge of allocating memory from the disaggregated
memory pool is where to execute the memory allocation com-
putation, i.e., maintaining memory allocation data structures.
There are two possible memory management approaches on DM,
i.e., compute-centric ones and memory-centric ones [118].

The compute-centric approaches store the memory manage-
ment metadata on MNs and allow clients to allocate memory
by directly modifying the metadata with remote memory ac-
cesses. Unfortunately, such an approach suffers from severe
I/O amplifications and concurrency control overhead. Specif-
ically, maintaining memory allocation data structure typically
requires multiple remote memory accesses, e.g., popping free
blocks from linked lists. Moreover, clients’ access have to be syn-
chronized since the memory management metadata are shared
by all clients.

The memory-centric approaches manage all memory alloca-
tion data structures with the compute power on MNs. Such ap-
proaches are also infeasible since the weak memory-side compute
power can be easily overwhelmed by the frequent fine-grained
object allocation requests from clients. Although there are sev-
eral approaches that conduct memory management on DM, they
all target page-level memory allocation and rely on special hard-
ware, e.g., programmable switches [118] and SmartNICs [81],
which are orthogonal to our problem.

3.2.2 Executing Caching Algorithms on DM

Existing caching algorithms are designed for server-centric in-
memory storage systems where all data are accessed and evicted
by the server-side CPUs in a centralized manner. Such a setting,
however, no longer holds on DM since 1) memory-disaggregated
storage systems are client-centric, where clients directly access

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 40

(a) Single-client performance. (b) Multi-client throughput.

Figure 3.1: The cost of maintaining caching data structures on DM.

and evict the cached data in a CPU-bypass manner, and 2) the
compute power in the memory pool of DM is too weak to execute
caching algorithms on the data path. Two problems need to be
addressed to execute caching algorithms on DM.

The first problem is how to evaluate the hotness of cached
objects in the client-centric setting. Existing caching algorithms
assess objects’ hotness by monitoring and counting all data ac-
cesses [193, 18, 34]. The monitoring can be trivially achieved
on server-centric in-memory storage systems since the CPUs of
monolithic caching servers access all data. However, on DM, ac-
cesses to cached objects cannot be monitored either in the mem-
ory pool or on clients because 1) RDMA bypasses the CPUs in
the memory pool, and 2) individual clients in the compute pool
are not aware of global data accesses.

The second problem is how to efficiently select eviction vic-
tims on the client side. Caching algorithms maintain various
caching data structures, e.g., lists [193], heaps [18, 34], and
stacks [92], to reflect the hotness of cached objects and select
eviction victims based on these data structures. The data struc-
tures are maintained by the CPUs of in-memory storage servers
on each data access since access changes object hotness. How-
ever, the maintenance of caching data structures has to be ex-
ecuted by clients in the compute pool since clients directly ac-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 41

cess objects with one-sided RDMA verbs. Maintaining these
data structures thus becomes inefficient due to the multiple
I/Os on the critical path. Besides, locks are required to ensure
the correctness of caching data structures under concurrent ac-
cesses [139]. System throughput will be severely bottlenecked by
the microsecond-scale lock latency and the network contention
caused by iteratively retying on lock failures [201].

To illustrate the problem of maintaining caching data struc-
tures, we compare the performance of a linked-list-based LRU
key-value cache (KVC), a key-value cache with sharded LRU
lists (KVC-S), and a key-value store (KVS) on DM [180] under
the read-only YCSB-C benchmark [50]. All approaches use a
lock-free hash table to index cached objects. KVC maintains
a lock-protected linked list to execute LRU. KVC-S shards the
LRU list into 32 sub-lists to avoid lock contention and sleeps 5
us on lock failures to reduce the wasted RDMA requests on lock
failures. Figure 3.1a shows the throughput and latency of the
three approaches with a single client, ruling out lock contention.
The throughput of KVC and KVC-S is only 23% of that of KVS,
and the tail latency is more than 4.5× higher due to the addi-
tional RDMA operations on the critical path of data accesses.
Figure 3.1b shows their throughput with growing numbers of
client threads. The throughputs of KVC and KVC-S drop with
more than 32 client threads because the RNIC of the MN is
overwhelmed by the useless RDMA_CASes on lock-fail retries. The
throughput of KVC-S drops more mildly due to the 5 us backoff
on lock failures.

3.2.3 Dynamic Resource Changes Affect Hit Rate

Hit rates of caching algorithms closely relate to the data ac-
cess patterns and the cache size [169]. However, both aspects
are affected when dynamically adjusting compute and memory

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 42

Figure 3.2: Hit rates under differ-
ent numbers of clients under dif-
ferent applications.

Figure 3.3: Hit rates of LRU and
LFU on the same workload with
different cache sizes.

(a) The CDF of relative hit rate changes
on 74 workloads.

(b) Hit rates under different number of con-
current clients.

Figure 3.4: The effect of concurrent clients on hit rates.

resources, making the best caching algorithm that maximizes
the hit rate changes accordingly. Since DM enables resources
to be adjusted fleetly and frequently, the effect of changing re-
source settings is amplified. In-memory storage systems with
fixed caching algorithms cannot adapt to these dynamic features
of DM and can lead to inferior hit rates.

1) Changing compute resources affects hit rates.
For memory-disaggregated storage systems, applications execute
multiple client threads on CPU cores in the compute pool to ac-
cess cached data in the memory pool. The access pattern on
cached objects is the mixture of access patterns of all applica-
tions. The change in compute resources, i.e., the number of
client threads of an application, alters the overall mixture of

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 43

access patterns and affects the hit rate of individual caching
algorithms in two ways.

First, the percentage of the data accesses of an application
in the mixture changes with the number of client threads. The
overall access pattern on the cached objects thus changes since
applications have dissimilar access patterns [44]. Figure 3.2
shows the simulation result on a single machine with two ap-
plications under varying numbers of client threads. One appli-
cation executes an LRU-friendly workload and the other exe-
cutes an LFU-friendly one from the FIU block trace [108]. The
hit rates of LRU and LFU are affected by the change of the
compute resources in applications, where LFU exhibits a better
hit rate when the LFU-friendly application has more compute
resources and vice versa.

Second, the number of concurrent clients in an application
changes the original access pattern of a workload due to concur-
rent executions. We simulate on 74 real-world workloads from
Twitter [215] and FIU [108] with numbers of clients ranging from
1 to 512. Figure 3.4a shows the cumulative distribution function
(CDF) of the relative hit rate change in these workloads. The
relative hit rate change is calculated as hmax−hmin

hmax
, where hmax

and hmin are the highest and lowest hit rates of a workload un-
der different numbers of clients. As we increase the number of
client threads, 80% of workloads have 60% hit rate change in
LRU and 21% in LFU. Meanwhile, the best caching algorithms
on 36% of workload change with the varying number of concur-
rent clients. Figure 3.4b shows an example FIU trace where the
hit rate of LFU performs better with a small number of concur-
rent clients but becomes inferior to LRU when the number of
clients increases.

2) Changing memory resources affects hit rates.
Changing memory resources leads to changing cache sizes of
caching systems on DM. For individual workloads, the best

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 44

Two-Level Memory Allocation

Client Memory PoolEvict

Client-Centric Caching
Framework

Distributed Adaptive
Caching

Caching Algorithms
(LRU, LFU, ...)

Candidates

Victim

Client

Evict

hash(Object ID)

Object

Objects

Hash Table

Get / Set

N
et

w
or

k

N
et

w
or

k

Figure 3.5: The overview of Ditto.

caching algorithm that maximizes the hit rate changes with
cache sizes [169], e.g., one workload can be LRU-friendly with a
small cache size but becomes LFU-friendly under bigger cache
sizes. Our simulation finds that the best algorithm changes in
22 of the 74 real-world workloads when the cache size changes.
Figure 3.3 shows an example FIU trace where LRU performs
better with small caches and LFU performs better with larger
cache sizes.

Consequently, it is necessary for caching systems on DM to
dynamically select the best caching algorithm according to the
changing resource settings. However, achieving adaptivity is
difficult on DM due to its decentralized and distributed nature,
as we will introduce in § 3.3.4.

3.3 The Ditto Design

3.3.1 Overview

Figure 3.5 shows the overall architecture of Ditto. Ditto adopts
a hash table to organize objects stored in the memory pool. The
hash table stores pointers to the addresses of the cached objects.
Following existing architectures of storage systems on DM [182,

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 45

180], applications execute on CNs and each application owns a
local Ditto client as a subprocess. Each Ditto client has multiple
threads on dedicated cores and applications communicate with
Ditto clients with local shared memory to execute Get and Set
operations. Under this architecture, applications can freely scale
compute resources by adding or removing the number of threads
and CPU cores assigned to Ditto. The adjustment on compute
resources is independent against cached data because there is no
need to increase or decrease the cache size in the memory pool
when adding or reducing CPU cores.

Ditto clients execute Get and Set operations with one-sided
RDMA verbs similar to RACE hashing [230], the state-of-the-art
hashing index on DM. For Gets, a client searches the address of
the cached object in the hash table and fetches the object from
the address with two RDMA_READs. For Sets, a client searches the
slot of the cached object in the hash table with an RDMA_READ,
writes the new object to a free location with an RDMA_WRITE, and
atomically modifies the pointer in the slot with an RDMA_CAS.

Ditto adopts a two-level memory allocator (§ 3.3.2), a client-
centric caching framework (§ 3.3.3) and a distributed adaptive
caching scheme (§ 3.3.4) to achieve efficient memory manage-
ment on DM. The two-level memory allocator allocates memory
blocks with high performance to efficiently execute the out-of-
place insert and update operations. The client-centric caching
framework efficiently executes multiple caching algorithms on
DM by selecting multiple eviction candidates of various caching
algorithms. The distributed adaptive caching scheme uses ma-
chine learning to learn the characteristics of the current data
access pattern and evicts the candidate selected by the caching
algorithm that performs the best.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 46

Table 3.1: The recorded access information.

Name Description Global? Stateful?

size Object size ! %

insert_ts Insert timestamp ! %

last_ts Last access timestamp ! %

freq The number of accesses ! !

latency Access latency % %

cost Cost to fetch the object
from the storage server % %

Memory Region 0 Memory Region 1

Block 0 Block 1

Memory Region n

Block Allocation Table Block n

16-MB Memory Blocks

Free Bit Map Object 0 Object n

MN-side
Client-side

C
or
as
e-
G
ra
in
ed

Fi
ne

-G
ra
in
ed

Size Class 0

Size Class n Block 2

Block 0 Block 1

8-Byte Each Block

Block 0 Block 1

Block 2

Memory Block ALLOC/FREE

KV pair

KV Pair
ALLOC/FREE

Figure 3.6: The two-level memory management scheme.

3.3.2 Two-Level Memory Allocation

As discussed in Section 3.2, the key challenge of DM manage-
ment is that conducting the management tasks solely on clients
or on MNs cannot satisfy the performance requirement of fre-
quent memory allocation for KV requests. Ditto addresses this
issue via a two-level memory management scheme. We split the
server-centric memory management computations into compute-
light coarse-grained allocation and compute-heavy fine-grained
allocation and execute on MNs and clients accordingly.

To manage the huge memory space in the disaggregated mem-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 47

ory pool, Ditto partitions the 48-bit memory space on multiple
MNs. Similar to FaRM [55], Ditto shards the memory space on
MNs into 2 GB memory regions and maps each region to an MN
with consistent hashing [100].

Figure 3.6 shows the two-level memory allocation of Ditto.
The first level is the coarse-grained MN-side memory block allo-
cation with low computation requirements. Each MN partitions
its local memory regions into coarse-grained memory blocks,
e.g., 16 MB, and maintains a block allocation table ahead of each
region. The block allocation table records a client ID (CID) that
allocates each block in a region. Clients allocate memory blocks
by sending ALLOC requests to MNs. On receiving an ALLOC re-
quest, an MN allocates a memory block from one of its memory
regions, records the client ID in the block allocation table, and
replies with the address of the memory block. The second level
is the fine-grained client-side object allocation. Specifically, each
client manages the blocks allocated from MNs exclusively with a
slab allocator [28]. The client-side slab allocators split memory
blocks into objects of distinct size classes. An object is always
allocated from the smallest size class that fits it.

The allocated objects can be freed by any client. To efficiently
reclaim freed memory objects on client sides, Ditto stores a free
bit map ahead of each memory block, as shown in Figure 3.6,
where each bit indicates the allocation state of one object in the
memory block. The free bit map is initialized to be all zeros
when a block is allocated. To free an object, a client sets the
corresponding bit to ‘1’ in the free bit map with an RDMA_FAA
operation. By reading the free bit map, clients can easily know
the freed objects in their memory blocks and reclaim them lo-
cally. Ditto frees and reclaims memory objects periodically us-
ing background threads in a batched manner to avoid the addi-
tional RDMA operations on the critical paths of KV accesses.
The correctness of concurrently accessing stored objects and re-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 48

claiming memory spaces is guaranteed by checking the key and
the CRC of each object whenever they are accessed [230].

3.3.3 Client-Centric Caching Framework

The client-centric caching framework addresses the challenges
of evaluating object hotness and selecting eviction candidates
when executing caching algorithms on DM.

First, to assess the hotness of cached objects, Ditto records
objects’ access information and decides objects’ hotness by defin-
ing and applying priority functions to the recorded access in-
formation. Specifically, Ditto associates each object with a
small metadata recording its global access information, e.g., ac-
cess timestamps, frequency, etc. The metadata is updated col-
laboratively by clients with one-sided RDMA verbs after each
Get and Set. On the client side, Ditto offers two interfaces
to integrate caching algorithms, i.e., priority functions (double
priority()) and metadata update rules (void update()). Both
functions take the recorded metadata as input. The priority
function maps the metadata of an object to a real value indicat-
ing its hotness. Since the key difference between caching algo-
rithms is their definition of object hotness, various caching algo-
rithms can be integrated by defining different priority functions
with the priority interface. To support as many algorithms
to be simply integrated with the priority interface as possible,
we summarize the access information commonly used by exist-
ing caching algorithms [159] in Table 3.1 and record them in
Ditto by default.

For advanced caching algorithms that require more access in-
formation, we allow algorithms to extend and define their own
rules to update the metadata with the update interface. List-
ing 3.1 shows an example implementation of LRU-K [153]. LRU-
K evicts objects with the smallest timestamp at its last Kth ac-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 49

cess. We split the last_ts field into K timestamps with lower
precision and construct a ring buffer with the freq counter. If
the object is accessed more than K times, then its priority is
its last Kth access timestamp, which is indexed by (freq −K +
1) mod K. Otherwise, we return the insert_ts of the object
to achieve FIFO eviction in the access buffer [93]. We resort
to storing the modified timestamp of LRU-K with cached ob-
jects if we need to simultaneously execute LRU-K with caching
algorithms that rely on last_ts, e.g., LRU.

Second, to efficiently select eviction candidates of various
caching algorithms on DM, Ditto adopts sampling with client-
side priority evaluation. The overhead of maintaining expensive
caching data structures is then avoided. Specifically, on each
eviction, Ditto randomly samples K objects in the cache and
applies the defined priority functions to the access information
of the sampled objects. The eviction victim is approximated as
the object with the lowest priority among K sampled objects.

However, such a framework suffers from severe amplifications
in the number of I/O operations due to the multiple number of
RDMA operations spent on recording access information and
sampling objects. Ditto proposes a sample-friendly hash table
and a frequency-counter cache to reduce the overhead of sam-
pling objects and recording access information on DM.

Sample-friendly hash table

The sample-friendly hash table reduces the overhead of record-
ing access information and sample objects on DM. Specifically,
sampling objects on DM suffers from high access latency because
multiple RDMA_READs are required to fetch the metadata of ob-
jects scattered in the memory pool. Moreover, updating access
information affects the overall throughput because these addi-
tional RDMA operations consume the bounded message rate of
RNICs in the memory pool.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 50

Listing 3.1: The pseudocode of LRU-K.
def update (Metadata m) :

m. f r e q += 1
idx = m. f r e q % K
m. l a s t _ t s [idx] = current_timestamp ()

def p r i o r i t y (Metadata m) :
i f m. f r e q < K:

return m. i n s e r t _ t s
idx = (m. f r e q − K + 1) % K
return m. l a s t _ t s [idx]

The sample-friendly hash table co-designs the sampling pro-
cess with the hash index to address these two problems. First,
instead of storing all metadata together with objects, Ditto
stores the most widely used metadata (i.e., the default ones) to-
gether with the slots in the hash index but retains the metadata
extensions required by advanced caching algorithms in objects.
With the co-designed hash table, sampling can be conducted
with only one RDMA_READ by directly fetching continuous slots
with a random offset in the hash table. Second, Ditto reduces
the number of I/Os on updating object metadata by organizing
access information according to their update frequency. The
well-organized access information enables multiple access infor-
mation to be updated with a single RDMA_WRITE.

Hash table structure. Figure 3.7 shows the structure of
the sample-friendly hash table. The hash table has multiple
buckets with multiple slots. Each slot consists of two parts, i.e.,
an atomic field and a metadata field. The atomic field is similar
to the slot of Race Hashing [230], which is 8-byte in length and
modified atomically with RDMA_CASes when objects are inserted,
updated, or deleted. The atomic field contains a 6-byte pointer
referring to the address of the object, a 1-byte fp (fingerprint)
accelerating object searching, and a 1-byte size recording the

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 51

size of the stored object. Similar to RACE hashing [230], we use
a 1-byte size field and measure the sizes of objects in the gran-
ularity of 64B memory blocks. For large objects, Ditto stores
the remaining data in a second memory block that links to the
first one. The metadata field records the access information re-
quired by most caching algorithms, as summarized in Table 3.1.
An additional hash field is recorded for the distributed adaptive
caching scheme, which will be discussed in § 3.3.4.

Access information organization. Ditto organizes the
stored access information in two ways to reduce the number of
RDMA operations on metadata updates. First, Ditto reduces
the number of access information that has to be included in the
metadata by distinguishing local and global information. Global
information has to be maintained collaboratively by all clients
and thus must be included in the metadata. Local information
can be decided locally by distributed clients and hence does not
need to be included. The latency and cost are local information
because we assume that the latency and cost are approximately
the same among clients and can be estimated based on the size
of objects and the latency and cost of accessing other objects.
Second, global information is further classified into stateless and
stateful information. Stateless information is updated by over-
writing its old value, while stateful information is updated based
on its old value. For instance, the insert_ts and last_ts are
stateless because the old timestamps are no longer useful. The
freq is stateful because it is always updated to increase by 1.
Ditto groups the stateless information together in the metadata
so that they can be updated with a single RDMA_WRITE. The
stateful information is updated with RDMA_FAAs.

Frequency-counter cache

A client-side frequency-counter (FC) cache is proposed to fur-
ther reduce the overhead of updating metadata. With the sample-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 52

Slot Slot Slot Slot

fp size hash insert_ts last_ts freq
1B 1B 6B 8B 8B 8B 8B

Bucket Bucket Bucket Bucket
Sample-Friendly Hash Table

Object ID

hash(obj_ID)

pointer

Atomic Field Metadata Field

Figure 3.7: The sample-friendly hash table structure.

friendly hash table, updating metadata still requires two RDMA
operations, i.e., an RDMA_WRITE to update the stateless informa-
tion and an RDMA_FAA to update the stateful freq. These RDMA
operations consume the message rate of the RNIC and thus limit
the overall throughput of Ditto. Besides, executing RDMA_FAA
on DM is expensive due to the contention in the internal locks
of RNICs [96]. The FC cache aims to reduce the number of
RDMA_FAA on metadata updates.

The FC cache stems from the idea of write-combining on
modern processors [53]. In modern processors, several write
instructions in a short time window are likely to target the same
memory region, e.g., a 64-byte cache line. The write combining
scheme adopts a buffer to absorb writes to the same region in a
short time window and convert them into a single memory write
operation to save memory bandwidths.

Similar to write-combining, Ditto employs an FC cache as the
write-combining buffer. The FC cache contains entries recording
the object ID, the address of the slot in the hash table and the
delta value of the counter. We track the insert time of each cache
entry to ensure that the frequency counters in the memory pool
do not lag too much. Each time an object is accessed, its update
to the frequency counter is buffered in the FC cache. The update
to the remote frequency counter is deferred until a cache entry

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 53

LRU List
(Expert 1)

LFU Heap
(Expert 2) Candidates

wLRU wLFU

Weights

Ev
ic

tio
n

H
is

t.

Miss Key

Eviction Process Adaptive Process

Eviction
Victim

3
1 2

4 5

Figure 3.8: Adaptive caching on monolithic servers.

is evicted.
There are two situations when an entry will be evicted from

the FC cache. First, if the space of the FC cache is full, an
entry with the earliest insert timestamp will be evicted. Sec-
ond, if the buffered delta value of an object is greater than a
threshold t, the entry will be evicted. On entry eviction, the
buffered counter value is added to the slot metadata with a sin-
gle RDMA_FAA according to the recorded slot address, reducing
the number of RDMA_FAA to up to 1/t.

3.3.4 Distributed Adaptive Caching

Adaptive caching on monolithic servers is proposed to adapt
to changing data access patterns in real-world workloads. Ditto
proposes a distributed adaptive caching scheme to adapt to both
changing workloads and dynamic resource settings on DM. The
key problem is how to achieve adaptive caching in a distributed
and client-centric manner on DM.

Recent approaches on monolithic servers formulate adaptive
cache as a multi-armed bandit (MAB) problem [169, 195, 17,
138]. As shown in Figure 3.8, caching servers simultaneously ex-
ecute multiple caching algorithms, named experts in MAB [17].
Each expert is associated with a weight, reflecting its perfor-
mance in the current workload. The execution of the adap-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 54

tive caching consists of an eviction and an adaptive process.
During the eviction process, each expert proposes an eviction
candidate according to their own caching data structures (1⃝).
Eviction victims are then decided opportunistically according to
the weights of the experts (2⃝), i.e., candidates of experts with
higher weights are more likely to be evicted. The metadata of
the evicted object, i.e., the object ID and the experts choosing it
as a candidate, are inserted into a fix-sized FIFO queue named
eviction history (3⃝). During the adaptive process, existing ap-
proaches use regret minimization [69, 71, 220] to adjust expert
weights. Specifically, when a missed object ID is found in the
eviction history (4⃝), the weights of experts deciding to evict the
object are decreased (5⃝). Intuitively, finding a missed object
ID in the eviction history is a regret because a more judicious
eviction decision could have rectified the cache miss [195].

Two challenges have to be addressed to achieve adaptive
caching on DM. First, maintaining the global FIFO eviction
history is expensive due to the high I/O amplifications when
accessing remote data structures on DM, as mentioned in § 3.2.
Second, managing expert weights on distributed clients is costly
since clients need to be synchronized to get the updated weights.

The distributed adaptive caching scheme addresses these DM-
specific challenges. First, Ditto evaluates multiple priority func-
tions with the client-centric caching framework to simultane-
ously execute multiple caching algorithms on DM. Second, to
avoid maintaining an additional FIFO queue on DM, Ditto em-
beds eviction history entries into the hash table with a lightweight
eviction history (§ 3.3.4). Finally, to efficiently update and uti-
lize expert weights on the client side, Ditto proposes a lazy
weight update scheme to avoid the expensive synchronization
among clients (§ 3.3.4).

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 55

Slot

fp 0xFF hash last_ts freq
1B 1B 6B 8B 8B 8B 8B

Bucket
Slot SlotHist Entry

expert_bmap

Atomic Field Metadata Field

Hist ID

Figure 3.9: The structure of a lightweight history entry.

Lightweight eviction history

The eviction history on monolithic servers needs to maintain an
additional FIFO queue and an additional hash index to organize
and index history entries [169, 195]. The lightweight eviction
history adopts two design choices to reduce I/O amplifications
of maintaining these additional data structures on DM. First,
it uses an embedded history design that reuses the slots of the
sample-friendly hash table to store and index history entries. No
additional space needs to be allocated and no additional hash
index needs to be constructed for history entries. Second, the
lightweight eviction history proposes a logical FIFO queue with
a lazy eviction scheme to efficiently achieve FIFO replacement
on history entries. No additional FIFO queue needs to be main-
tained to evict history entries.

Embedded history entries. Figure 3.9 shows the structure
of an embedded history entry of the lightweight history. His-
tory entries are stored in the slots of the sample-friendly hash
table with three differences. First, the size stores a special value
(0xFF) to tag the slot as a history entry. We use 0xFF in-
stead of 0 since we use 0 to indicate empty slots. Second, the
pointer field stores a 6-byte history ID instead of the address of
the object. Finally, the history entry uses the insert_ts of the
slot to store a bitmap indicating which experts have decided to
evict the object (expert_bmap). Besides, each entry stores the
hash value of the evicted object ID in the hash field to check if

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 56

Slot Slot

Global History
Counter: 110

Hist. ID: 104

Sample-Friendly Hash Table

Logical Circular Buffer
(Length=248)

Logical FIFO Queue
(Length=10)

History Entry

Valid History Entries
Expired History Entry

(110 - 96 > 10)

Hist. ID: 96

History Entry
Hist. ID: 109

History Entry

Figure 3.10: The logical FIFO queue structure.

a missed object is contained in the eviction history. The hash
value is written to the metadata when the object is inserted
into the cache and will not be modified until its history entry is
evicted from the FIFO eviction history.

The logical FIFO queue. The logical FIFO queue simu-
lates FIFO eviction without actually maintaining a FIFO queue
on DM. It is constructed with a global history counter and the
history IDs in history entries. The global history counter is a 6-
byte circular counter that generates history IDs for new history
entries. It is stored in an address in the memory pool known
to all clients. The history IDs of history entries are acquired by
atomically reading the global history counter and increasing it
by one (i.e., atomic fetch-and-add). As shown in Figure 3.10,
the global history counter and history IDs of history entries can
be viewed as locations in a logical circular buffer with 248 en-
tries. Combined with the size of the FIFO eviction history, the
logical FIFO queue is then constructed, where the global his-
tory counter is the tail of the FIFO queue and the history IDs
represent the location of history entries in the queue.

Figure 3.11 shows the operations of the lightweight history:
History insertion. A client inserts a history entry when it

decides to evict a victim object from the cache. The client first

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 57

Slot

Hist Entry fp 0xFF hash last_ts freqHist ID

Fp Hash last_ts freq

RDMA CASInsert
Hist Entry

RDMA WRITE
(async)

expert_bmap

Slot

Global History
Counter

ExpiredEvict
Hist Entry Check Validity

New Objectpointer

Slot fp hash last_ts freqinsert_tspointersize

Figure 3.11: Inserting and evicting a history entry.

acquires a history ID by performing an RDMA_FAA on the global
history counter, which atomically returns the current value of
the counter and increases it by one. Then the client issues an
RDMA_CAS to atomically modify the size and the pointer in the
slot of the victim object to be 0xFF and the acquired history ID,
respectively. The expert bitmap is then asynchronously written
to the insert_ts field of the slot metadata with an RDMA_WRITE.

Lazy history eviction. Ditto adopts a lazy eviction scheme to
achieve FIFO eviction on history entries, i.e., expired history
entries are kept in the history for a while before their evictions.
To prevent clients from accessing expired history entries, Ditto
proposes a client-side expiration checking mechanism. Suppose
the global history counter is v1, the history ID is v2, and the
size of the FIFO history is l. If v1 > v2, the history entry is in-
valid when v1 − v2 > l. Otherwise, the history entry is invalid if
v1+248−v2 > l, considering the wrap-up of the 48-bit global his-
tory counter. The actual evictions happen when inserting new
objects into the cache. As shown in Figure 3.11, when inserting
new objects, the expired slots are considered empty slots and
are overwritten to be ordinary slots, which transparently evicts
the history entry.

Regret collection. A regret is defined as a client finding an
object to be missed in the cache but contained in the eviction

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 58

history. The embedded history entry makes collecting regrets
the same process as searching objects in the cache. When a client
searches for an object, it calculates the hash value of the object
ID, locates a bucket based on the hash value, and iteratively
matches the slots in the bucket to see if the pointed object has
the same object ID as the target. During the process, clients
also match the hash value of the encountered history entries in
the bucket. Regrets can then be collected if the object has not
been found but a history entry has a matching hash value.

Lazy expert weight update

Ditto formulates the problem of cache replacement as MAB and
uses regret minimization to dynamically adjust the weights of
experts. When a regret is found, i.e., a missed object hits in the
eviction history, the weights of the experts that evicted the ob-
ject should be penalized. Suppose expert Ei made a bad eviction
decision and the decision is the t-th entry in the eviction history.
The weight of the expert is then updated to be wEi

= wEi
· eλ∗dt,

where λ is the learning rate and dt is the penalty. The penalty
eλ∗d

t is related to the position of the entry in the FIFO history
because an older regret should be penalized less, where d is a
fixed discount rate2. The challenge of updating weights on DM
is that regrets are no longer collected and expert weights are
no longer used in a centralized manner by monolithic caching
servers. Updating and using expert weights from distributed
clients incurs nonnegligible overhead due to the high synchro-
nization overhead on DM [192].

The idea of the lazy weight update scheme is to let clients
batch the regrets locally and offload the weight update lazily to
the weak CPUs of MNs. In this way, the frequency of updat-
ing weights is reduced and the overhead of synchronization is

2Similar to [195], the discount rate is 0.0051/N , where N is the cache size.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 59

History Hit

Client Memory Pool

Object Miss

Get(Object ID) Hash Table
hash(obj_id)

Expert Weights Penalty Buffer

Expert Weights

Regrets

Sync Weights Send Penalties Update Weights

Controller

Collect regret
& Manage weights

Figure 3.12: The lazy weight update scheme.

avoided. Meanwhile, the weak controller of MNs will not be-
come a bottleneck due to the infrequent update.

Figure 3.12 shows the process of the lazy expert weight up-
date scheme. Each client maintains expert weights locally to
make eviction decisions. When a client finds a missed object hit
in the eviction history, it applies the penalty to the local expert
weights according to the history bitmap in the history entry.
The penalties are recorded in a penalty buffer. When the num-
ber of buffered penalties exceeds a threshold, the client sends
all the penalties to the controller of the memory node holding
the expert weights with an RDMA-based RPC request. On re-
ceiving clients’ penalties, the controller of the MN first applies
the penalties to the global expert weights and then replies the
updated global weights to clients.

To reduce the bandwidth consumption of transferring the
penalties over the network, Ditto compresses the penalties using
the attribute of exponential functions. Specifically, the sum of
the penalties is stored in the penalty buffer and transferred to
the MN instead of a list of individual penalties.

With the lazy weight update scheme, clients’ eviction deci-
sions are made on local weights, which are not always synchro-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 60

nized with global weights. However, such asynchrony does not
affect the adaptivity of Ditto, as shown in our experiments.

3.3.5 Discussions

Metadata extensions. As mentioned in § 3.3.3, Ditto stores
extended metadata together with cached objects for advanced
caching algorithms. In this situation, the extended metadata is
stored as a metadata header ahead of each object. The update
and priority functions take all metadata, i.e., the default ones
in the hash table and the extended ones in the metadata header,
as input and call user-defined metadata update and priority cal-
culation rules to deal with the extended metadata. After ex-
ecuting Get and Set operations, an additional RDMA_WRITE is
required to update the metadata stored with objects. Finally,
on cache eviction, additional RDMA_READs are required to fetch
the metadata header to calculate eviction priorities.
Security and fairness issues. Since Ditto clients and ap-
plications cooperate closely on the same CNs, it is possible that
some malicious users can manipulate Ditto clients to make them
disproportionately advantaged against other users’ applications.
We can enforce security techniques, e.g., control flow integrity
(CFI) [1], on standalone Ditto clients to prevent Ditto clients
from being manipulated. We can also integrate the expected
delaying technique [160] in Ditto clients to ensure that applica-
tions fairly share the cache.

3.4 Evaluation

The evaluation of Ditto answers the following questions:
• Q1: How elastic is Ditto compared with caching systems

on monolithic servers?

• Q2: How efficient is Ditto in managing memory on DM?

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 61

Table 3.2: Real-world workloads used in the evaluation.

Workload Workload Type # Requests
IBM Object Store 10 - 40 million
CloudPhysics Block IO 50 million
Twitter-Transient Transient key-value cache 10 million
Twitter-Storage Storage key-value cache 10 million
Twitter-Compute Compute key-value cache 10 million
webmail Block IO 7.8 million

• Q3: How adaptive is Ditto to real-world workloads and the
changing resources on DM?

• Q4: How flexible is Ditto in integrating various caching
algorithms on DM?

• Q5: How does each design point contribute to Ditto?

3.4.1 Experimental Setup

Testbed. Without explicitly mentioning, we evaluate Ditto
with 9 physical machines (8 CNs and 1 MN) on the Clem-
son cluster of CloudLab [57]. Each machine has two 36-core
Intel Xeon CPUs, 256 GB DRAM, and a 100Gbps Mellanox
ConnectX-6 NIC. All machines are connected to a 100Gbps Eth-
ernet switch. In all our experiments, we use a single physical
machine and use one CPU core to simulate the memory pool of
DM with weak compute power [192, 180]. Ditto is compatible
with memory pools with multiple MNs as long as the memory
pool offers the required interfaces presented in §2.2. Besides, we
use up to 32 cores on CNs, with each executing a client thread
because they are on the same NUMA node with the RNIC.
Workloads. We evaluate Ditto with both YCSB synthetic
workloads [50] and real-world key-value traces [184, 215, 108].
For YCSB synthetic workloads, we use 4 core workloads: A (50%

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 62

GET, 50% UPDATE), B (95% GET, 5% UPDATE), C (100%
GET), and D (95% GET, 5% INSERT). For all four workloads,
we pre-generate 10 million keys with 256-byte key-value pairs,
load these generated keys by sharding them to all clients, and ex-
ecute the corresponding workloads. The requests are generated
with Zipfan distribution with θ = 0.99. For real-world key-value
traces, we use workloads from IBM [64], CloudPhysics [198],
Twitter [215], and FIU [108], as shown in Table 3.2. The IBM
trace is collected from IBM Cloud Object Storage [64]. We ig-
nore traces with less than 10 million requests since they have too
few unique objects and use all 23 traces in our experiments. The
CloudPhysics dataset includes block I/O traces on VMs with
different CPU/DRAM configurations [198]. We use the first 10
traces with more than 50 million requests to evaluate Ditto.
For the Twitter traces, we randomly select three traces, i.e.,
Twitter-Compute, Twitter-Storage, and Twitter-Transient, from
a compute cluster, a storage cluster, and a transient caching
cluster, respectively. The webmail trace is a 14-day storage I/O
trace collected from web-based email servers. We use webmail as
a representative FIU trace similar to existing approaches [169].
In our experiments, we randomly select traces to accelerate our
evaluation to show the performance of Ditto in different use
cases, i.e., block IO, KV cache on different clusters, and object-
store. We truncate traces to allow concurrent trace loading from
32 independent clients on a single CN.
Implementations. We implement Ditto with 20k LOCs. We
use LRU and LFU, the two most widely used caching algorithms,
as two experts in the distributed adaptive caching scheme. These
two caching algorithms are chosen as adaptive experts since ex-
isting adaptive caching schemes have found that using a recency-
based and a frequency-based caching algorithm can adapt to
most workloads [169, 195]. For memory management, we use a
two-level memory management scheme [180] so that clients can

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 63

dynamically allocate memory spaces in the MN. We pre-register
all memory on the MN to its RNIC to eliminate the overhead of
memory registration on the critical path of memory allocation.
Parameters. The parameters of Ditto include the number of
samples, the size of lightweight eviction history, the threshold
and size of the FC Cache, and the learning rate and the num-
ber of batched weight updates of distributed adaptive caching.
Specifically, the number of samples affects the precision of ap-
proximating caching algorithms with sampling. We sample 5
objects on cache eviction according to the default value of Re-
dis [166]. The size of the lightweight eviction history exhibits
a tradeoff between the speed of adaptation and the metadata
overhead. Setting the history size larger makes adaptation faster
since more penalties can be collected during execution. In re-
turn, a larger history size requires more space to store history
entries. We set the history size as the cache size (calculated in
the number of objects) according to LeCaR [195]. The thresh-
old of FC Cache can affect the precision of LFU. We set the FC
cache threshold to 10 and set the FC cache size to 10MB accord-
ing to our grid search. The superior hit rates in our experiments
show that using 10 as the FC threshold does not affect hit rates
much. Finally, we configure the learning rate of Ditto to be
0.1 and update global weights every 100 local weight updates
according to our grid search.
Baselines. We compare Ditto with Redis [166], CliqueMap [182],
and Shard-LRU. First, we use Redis, one of the most widely
adopted in-memory caching systems that support dynamic re-
source scaling [166, 60], to show the elasticity of Ditto. Second,
we use CliqueMap, the state-of-the-art RDMA-based KV cache
from Google, to show the efficiency and adaptivity of Ditto.
CliqueMap initiates RDMA_READs on the client side to directly
Get cached objects, and relies on server-side CPUs to execute
Set operations. Since Gets involves only one-sided RDMA_READs,

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 64

no access information can be recorded. Clients of CliqueMap
record access information locally and send the information to
servers periodically to enable servers to execute caching algo-
rithms. We implemented an LRU (CM-LRU) and LFU (CM-
LFU) version of CliqueMap according to its paper due to no
open-source implementations. We disable the replication and
fault-tolerance of CliqueMap to focus on comparing the exe-
cution of caching algorithms. Finally, we use Shard-LRU, a
straightforward implementation of a caching system on DM, to
show the effectiveness of the client-centric caching framework of
Ditto. Clients of Shard-LRU maintain lock-protected LRU lists
in the memory pool with one-sided RDMA verbs. We shard ob-
jects into 32 LRU lists according to their hash values and force
clients to sleep 5 us on lock failures to mitigate lock and net-
work contention. By default, we use one CPU core on MNs to
simulate the poor compute power in the memory pool. Each
CPU core on CNs exclusively runs a client thread.

3.4.2 Q1: Elasticity

To show the elasticity of Ditto, we run the same experiment
as in § 2.3 and force Ditto to use the same amount of CPU or
memory resources as Redis on the YCSB-C workload.

Compared with Redis, the elasticity of Ditto is improved in
both resource utilization and speed of resource adjustments.
First, due to the decoupled CPU and memory on DM, Ditto
can adjust CPU cores and memory spaces separately in a fine-
grained manner. Resources can be allocated precisely according
to the dynamic demands of applications. Second, Ditto does
not require data migration when adjusting resources, making
the performance gain and resource reclamation more agile than
Redis. The throughput of Ditto improves immediately from 5
Mops to 8.5 Mops with 32 more CPU cores added and resumes

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 65

Figure 3.13: The throughput of Ditto when dynamically adjusting compute
and memory resources.

immediately back to 5 Mops as we shrink the number of CPU
cores back to 32. The throughput doesn’t scale linearly as we
add CPU cores due to the extra overhead of coroutine schedul-
ing on CNs. The median latency stabilizes at 12 us and the 99th
percentile latency fluctuates slightly around 14 to 21 us. As for
adjusting memory spaces, the throughput stabilizes on 5 Mops
and the tail latency stays on 14 us. Besides, the throughput of
Ditto is more than 2 times higher than that of Redis during the
experiment. This is because Ditto allows CPU cores to equally
access all data, avoiding a single core becoming the performance
bottleneck. However, Redis shards data to VMs, which makes
the CPU core of some VMs bottleneck the throughput of the
entire caching cluster on the skewed YCSB workloads.

Besides, Ditto does not require more client-side computation
than Redis. In the experiment, clients of Ditto consume 32 CPU
cores on the CN. In contrast, clients of Redis consume on average

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 66

(a) YCSB A (b) YCSB B

(c) YCSB C (d) YCSB D

Figure 3.14: The throughput and tail latency of caching systems on DM.

(a) YCSB A (write-intensive) (b) YCSB C (read-only)

Figure 3.15: The throughput of CliqueMap, Redis, and Ditto with more CPU
cores on MN.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 67

36.3 CPU cores out of 128 assigned cores on two CNs. This is
because the Redis client library spends CPU cycles to encapsu-
late and decapsulate data according to the Redis communication
protocol and network protocols. Moreover, Ditto saves compute
power regarding the overall CPU utilization since Redis servers
consume an additional 32 cores on the MN.

3.4.3 Q2: Efficiency

To show that Ditto can efficiently manage memory on DM, we
evaluate the throughput and tail latency of Shard-LRU, CliqueMap,
and Ditto in the case of no cache misses on YCSB benchmarks.
We vary the number of clients from 1 to 256, with each CN
holding up to 32 clients.

As shown in Figure 3.14, Shard-LRU is bottlenecked by its
remote lock contention even if the sharded LRU list and the 5 us
back-off scheme mitigate the lock and network contention. The
throughput of CliqueMap is limited by the weak compute power
of MNs. For write-intensive workloads (YCSB A), the CPU of
the MN is overwhelmed by frequent Sets. For read-intensive
workloads (YCSB B, C, and D), the CPU of the MN is busy with
merging the object access information received from clients. The
overall performance is affected by the periodic synchronization of
access information and the amplified network bandwidth when
sending the access information from clients to the MN.

For all workloads, Ditto is bottlenecked by the message rate
of the RNIC on the MN. It achieves 10.5, 13.1, 13.2, and 13.0
Mops respectively on YCSB A, B, C, and D workloads, which
is up to 9× higher than Shard-LRU and CliqueMap. Com-
pared with Shard-LRU, Ditto records the access information
and selects eviction victims in a lock-free manner, eliminating
the expensive lock overhead on DM. Compared with CliqueMap,
Ditto accesses data and maintains access information with one-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 68

sided RDMA verbs, preventing the weak compute power on the
MN from becoming the throughput bottleneck on both write-
intensive and read-intensive workloads. However, Ditto per-
forms worse than CliqueMap under the write-intensive YCSB-A
workload with a single client, i.e., the first point in Figure 3.14a.
This is because the Sets of CliqueMap use only a single RTT,
while Ditto needs three RTTs to search the remote hash table,
read the object, and modify the pointer in the hash table.

Figure 3.15 shows the performance of CliqueMap, Redis, and
Ditto under YCSB-A and YCSB-C workloads with increasing
numbers of MN-side CPU cores under 256 clients. We shard the
LRU list (and the LFU heap) of CliqueMap into 128 shards to
avoid server-side lock contention. The throughput of Ditto stays
the same since Ditto does not rely on compute power on MNs to
execute data accesses. With the same compute resource in the
compute pool, CliqueMap consumes more than 20 additional
cores to get comparable performance with Ditto on YCSB-C.
Ditto achieves 3.3× higher throughput than CliqueMap on the
write-intensive YCSB-A workload since CliqueMap relies only
on the server-side compute power to execute Set operations and
maintain caching data structures. The throughputs of Redis
on both workloads are bottlenecked by the CPU core of the
hottest data shard due to the skewed YCSB workloads. Redis
performs slightly better than CliqueMap on YCSB-A workload
with more CPU cores since its sample-based eviction eliminates
the overhead of maintaining caching data structures locally.

3.4.4 Q3: Adaptivity
Adapt to real-world workloads

To show the adaptivity of Ditto on real-world workloads with

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 69

(a) Webmail (b) Twitter-Transient

(c) Twitter-Storage (d) Twitter-Compute

(e) IBM

Figure 3.16: Penalized throughputs under different real-world workloads.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 70

(a) Webmail (b) Twitter-Transient

(c) Twitter-Storage (d) Twitter-Compute

(e) IBM

Figure 3.17: Hit rates under different real-world workloads.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 71

different affinities of caching algorithms, we evaluate the through-
put and the hit rate of real-world workloads with different cache
sizes. For all traces, we use 256-byte object sizes and set cache
sizes relative to the size of each workload’s footprint, i.e., all
unique data items accessed, similar to [169]. For each workload,
we use 64 clients to first execute 10 seconds to warm up the
cache and then let all clients iteratively run the workload for 20
seconds to calculate the hit rate and the throughput. We use
a penalized throughput to simulate real-world situations where
caching systems cooperate with a distributed storage system.
For each Get miss, we force clients to sleep for 500 us before
inserting the missed object into the cache with Set. The penalty
simulates the overhead of fetching data from distributed storage
services and 500 us is selected according to the latency of the
state-of-the-art distributed storage systems [210, 132, 156].

We compare Ditto with four baseline approaches. We use
CM-LRU and CM-LFU to show the performance of precise LRU
and LFU implementation with CliqueMap on DM. We introduce
Ditto-LRU and Ditto-LFU to show the performance of Ditto
with only a single caching algorithm.

Since Ditto is an adaptive caching framework that can exe-
cute various caching algorithms and dynamically adapt to the
best one based on workloads and resource settings, the perfor-
mance of Ditto largely depends on the candidate caching algo-
rithms configured by users. We configure Ditto to execute LRU
and LFU as examples to show its adaptivity. Under workloads
that are friendly to either LRU or LFU, the performance of Ditto
should be bounded by Ditto-LRU and Ditto-LFU and approach
to the better one since it adaptively selects the better one among
the two algorithms.

Figures 3.16 and 3.17 show the penalized throughput and
the hit rates under five real-world key-value traces. In all five
workloads, the hit rate and penalized throughput of Ditto can

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 72

Figure 3.18: The relative hit rate of
Ditto, Ditto-LRU, and Ditto-LFU on
33 workloads.

Figure 3.19: The penalized through-
put and hit rate under a changing
workload.

effectively approach the better one of Ditto-LRU and Ditto-
LFU. Meanwhile, Ditto outperforms CliqueMap in all workloads
due to higher hit rates and the higher throughput upper-bound.
Particularly, the throughput of CliqueMap is bounded by the
compute power on the MN under the Twitter workloads, where
the hit rates are high. One exception is the throughput of CM-
LRU in Figure 3.16a, which has comparable throughput with
Ditto. This is because all approaches are bounded by the hit
rate on the webmail workload and CM-LRU has a slightly lower
hit rate compared with Ditto. For most of the workloads, the
throughput of Ditto is lower than that of Ditto-LRU when their
hit rates are the same due to the additional overhead of adaptive
caching, i.e., accessing and increasing the global history counter.
However, the overhead is less than 5%, which is acceptable com-
pared with the up to 63% performance gain of using an inferior
caching algorithm, since users do not know in advance which
caching algorithm performs better.

Figure 3.18 shows the box plot of relative hit rates of Ditto,
max(Ditto-LRU, Ditto-LFU), and min(Ditto-LRU, Ditto-LFU)
normalized over random eviction on 33 IBM and CloudPhysics
workloads. The hit rate of Ditto significantly exceeds min(Ditto-
LRU, Ditto-LRU) and approaches the box of max(Ditto-LRU,
Ditto-LFU), showing the adaptivity of Ditto.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 73

Figure 3.20: The relative hit
rates under different proportions
of clients assigned to LRU and
LFU applications.

Figure 3.21: The relative hit rates
of Ditto and CliqueMap when dy-
namically adding the number of
concurrent clients.

Under changing workloads that iteratively switch between
LRU- and LFU-friendly, Ditto should outperform both Ditto-
LRU and Ditto-LFU. We show the performance of the four ap-
proaches on a synthetic changing workload used in [195]. The
workload is synthesized to have four phases that periodically
switch back and forth from being favorable to LRU to being
favorable to LFU. As shown in Figure 3.19, Ditto outperforms
all baselines on both penalized throughput and hit rate because
only Ditto can adapt to workload changes.

Adapt to dynamic resource adjustments

To show the adaptivity of Ditto on DM, we evaluate its hit rates
with dynamically changing compute and memory resources on
the same workload as Figures 3.2, 3.3, and 3.4b, i.e., webmail.
Adapt to changing compute resources. Figure 3.20 shows
the relative hit rates normalized to Ditto-LRU under different
proportions of clients allocated to two applications with LRU
and LFU access patterns. The hit rate of Ditto-LFU is higher
when the LRU portion is less than 0.4, while Ditto-LRU per-
forms better when the LRU portion grows higher. The hit rate
of Ditto is higher than that of Ditto-LRU with a low LRU por-

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 74

Figure 3.22: The hit rate under dy-
namic cache sizes.

Figure 3.23: The throughput and
hit rates of 12 algorithms.

tion and becomes close to Ditto-LRU with a high LRU portion,
indicating the adaptivity of Ditto. Besides, Ditto can adapt to
the change of access pattern when multiple clients concurrently
execute the same workload. Figure 3.21 shows the relative hit
rates of Ditto and CliqueMap normalized to Ditto-LRU under
dynamically increasing numbers of concurrent clients3. The hit
rate of Ditto stays above the hit rates of both Ditto-LRU and
Ditto-LFU because there are access pattern changes in the web-
mail workload, and only Ditto can adapt to these changes.
Adapt to changing memory sizes. Figure 3.22 shows the
hit rate of Ditto when we dynamically increase the memory
space. The hit rate of Ditto approaches Ditto-LRU for most
cases, outperforming Ditto-LFU. When the cache size is 20%
and 30% footprint size, the hit rate of Ditto-LFU exceeds Ditto-
LRU. Ditto performs better than both approaches because it
can adaptively adjust its algorithm according to the affinity of
caching algorithms on different cache sizes.

3The absolute hit rates in Figures 3.18, 3.20, and 3.21 can be found in our open-source
repository.

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 75

Figure 3.24: Contributions of differ-
ent techniques on the webmail work-
load.

Figure 3.25: The YCSB-C perfor-
mance of Ditto with different FC
Cache sizes.

Table 3.3: LOCs of different caching algorithms on Ditto.

Algs. LRU LFU MRU GDS LIRS FIFO
LOC 9 9 9 14 12 9

Algs. SIZE GDSF LRFU LRUK LFUDA HYPERBOLIC
LOC 9 14 17 23 14 11

3.4.5 Q4: Flexibility

To show that Ditto can flexibly integrate various caching al-
gorithms, we integrate 12 commonly used caching algorithms
into Ditto and evaluate their throughput, hit rate, and cod-
ing effort. Since evaluating the feasibility of executing different
caching algorithms is independent of workloads, we only show
the throughput and hit rates on the webmail workload in Fig-
ure 3.23. Among all the algorithms, SIZE exhibits the best
throughput and hit rate, while MRU exhibits the worst. All
these algorithms can be easily implemented in Ditto with less
than 23 lines of code, as shown in Table 3.3.

3.4.6 Q5: Contribution of Each Technique

We show the contribution of techniques proposed in the chapter
by gradually disabling each technique of Ditto. Due to the space

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 76

limit, we show the performance of different techniques without
miss penalties on the webmail workload in Figure 3.24. Ditto
performs similarly on other workloads and more results can be
found in our open-source repository. The sample-friendly hash
table (SFHT) improves the overall throughput by 42% since it
reduces the number of RDMA operations on data paths when
updating the access information and sampling objects. The
lightweight history scheme (LWH) improves the throughput by
13% due to the reduced number of RTTs when maintaining evic-
tion history. Finally, the lazy weight update scheme (LWU) and
the frequency-counter cache (FC) contribute to 4% of the over-
all throughput because the reduced number of RDMA requests
saves the message rate of the RNICs on MNs.

Figure 3.25 shows the performance of Ditto under the YCSB-
C benchmark with 256 clients and different FC cache sizes. We
limit FC cache size in MB since the size of each cache entry
varies with the size of its recorded object ID. We only show the
result under YCSB-C due to the space limit. Ditto performs
similarly on other workloads and more results can be found in
our open-source repository. The throughput increases from 10
Mops to 13.2 Mops with increased sizes of the FC cache since
more RDMA_FAAs can be cached locally to save the message rate
of RNICs. The tail latency drops from 28 us to 21 us due to
the reduced number of RDMA operations and less contended
network. Also, the performance gain of the FC cache becomes
insignificant when the size of the FC cache exceeds 5 MB, indi-
cating that the FC cache can improve overall performance with
small additional memory consumption on clients.

Figure 3.26 shows the performance of Ditto under YCSB-A
write-intensive and YCSB-C read-only workloads with differ-
ent memory allocation techniques. We execute this experiment
with the following experiment setting due to the lack of the same
nodes on CloudLab. We use 16 CNs and 2 MNs, each equipped

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 77

YCSB-A YCSB-C
Workloads

0

5

10

15

Th
ro

ug
hp

ut
 (M

op
s/

s) Two-Level Allocation
MN-Only Allocation

Figure 3.26: The throughput of Ditto with different memory allocation meth-
ods.

with an 8-core Intel Xeon E5-2450 processor, 16 GB DRAM,
and a 56 Gbps Nvidia ConnectX-3 IB RNIC. The throughput of
Ditto is lower than the previous setting since the RNIC has lower
bandwidth. To show the effectiveness of the two-level memory
allocation scheme, we compare Ditto with an MN-centric mem-
ory allocation scheme, as shown in Figure 3.26. The YCSB-A
throughput drops 90.9% due to the limited compute power on
MNs, while the YCSB-C throughput remains the same since no
memory allocation is involved in the read-only setting.

3.5 Related Work

In-Memory Caching Systems. Many approaches aim at im-
proving the performance of Memcached [139] and Redis [166],
the two most popular in-memory caching systems. Some [42, 43,
172] optimize the hit rate under objects of varying sizes. Oth-
ers [165, 148, 216, 66, 126] improve memory efficiency and over-
all throughput. The work closest to Ditto is CliqueMap [182],
an RDMA-based caching system. It uses one-sided RDMA_READ
for Get operations and RPC for Set operations, improving the
throughput due to the higher bandwidth and CPU-bypass na-
ture of one-sided RDMA_READ. However, all these approaches are

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 78

designed and optimized for monolithic servers, which inevitably
inherit the elasticity issues of monolithic servers. Ditto exhibits
better elasticity by leveraging the hardware benefits of DM.

RDMA-Based KV stores. There are two types of RDMA-
based KV stores, i.e., server-centric and hybrid ones. The for-
mer uses RDMA to construct fast RPC primitives and rely on
server CPUs to access data [97, 95, 55, 126]. The latter uses
one-sided RDMA verbs to execute Get operations and relies on
server CPUs to execute Set operations [207, 206, 143]. Com-
pared with these approaches, Ditto achieves efficient in-memory
caching without relying on server-side CPUs. Besides, the de-
sign of Ditto is not limited to RDMA. Other interconnects are
also compatible.

Caching Algorithms. Caching algorithms distinguish the
hotness of objects using recency [193, 222], frequency [59] and
other access information [27], or combining various informa-
tion together [25, 27, 34, 18] to get higher hit rates. Recently,
there are many machine-learning-based adaptive caching algo-
rithms [138, 17, 169, 195]. Among them, CACHEUS [169] is the
most related. It uses regret minimization to adaptively select a
better caching algorithm. However, all these caching algorithms
are designed for server-centric caching systems to optimize spe-
cific workloads. Ditto, on the one hand, is designed for caching
systems on DM where clients directly access data without in-
volving CPUs in the memory pool. On the other hand, Ditto
is an adaptive caching framework where multiple caching algo-
rithms can be integrated and adaptively selected according to
workload and resource change.

Disaggregated Memory Management. MIND [118] and
Clio [202] are the two state-of-the-art memory management ap-
proaches on DM. But they both rely on special hardware to
manage memory spaces. The two-level memory management of
Ditto resembles the hierarchical memory management of The

CHAPTER 3. EFFICIENT MEMORY MANAGEMENT 79

Machine [113, 67]. The difference is that Ditto focuses on fine-
grained fine-grained object allocation with commodity RNICs,
while The Machine relies on special SoCs and directly manages
physical memory devices.

3.6 Summary

This chapter introduces efficient memory management data struc-
tures and algorithms for memory-disaggregated storage systems.
We propose a two-level memory allocator to efficiently allocate
memory space, and a client-centric caching framework to effi-
ciently execute various caching algorithms. Both approaches
are the joint effort of data structure and algorithm design. We
reduce the I/O amplifications, optimize concurrency control,
and adapt to the asymmetric compute capabilities to achieve
high performance. We integrate our proposed memory manage-
ment data structures and algorithms in Ditto, the first memory-
disaggregated caching system. Experimental results show that
Ditto outperforms the state-of-the-art caching system on mono-
lithic servers by up to 9× on YCSB synthetic workloads and
3.6× on real-world key-value traces.

2 End of chapter.

Chapter 4

A High-Performance Range
Index Data Structure

Outline

Range indexes are fundamental building blocks for
memory-disaggregated storage systems. A range index
can query both single keys and all keys within a given
range. Unfortunately, existing range indexes on disag-
gregated memory (DM) treat remote memory as high-
performance disks and use B+ trees as their underly-
ing data structures. Consequently, they suffer from se-
vere amplifications in I/O sizes since B+ trees sacri-
fice I/O sizes to reduce the number of I/O operations.
The performance for the B+-tree-based range indexes
on DM is suboptimal since accessing the coarse-grained
B+ tree nodes wastes the bounded bandwidth of the
memory pool. This chapter introduces SMART, a high-
performance range index data structure tailored for DM
that achieves minimal I/O size amplifications. More-
over, SMART also achieves high-performance concur-
rency control and adapts to DM with asymmetric com-
pute power.

80

CHAPTER 4. RANGE INDEX DATA STRUCTURE 81

4.1 Introduction

Range indexes are fundamental building blocks for memory-
disaggregated storage systems to conduct range queries [201,
229]. Existing approaches treat the disaggregated memory pool
as disks and use B+ trees as range indexes [201, 229] to reduce
the number of I/O operations to access remote memory. How-
ever, B+ trees sacrifice I/O sizes to reduce the I/O numbers,
resulting in suboptimal performance due to the severe amplifi-
cations in I/O sizes.

Specifically, B+ tree nodes are coarse-grained. When reading
or writing an key-value object, one should traverse B+ trees with
coarse-grained tree nodes. Multiple irreverent keys, pointers,
and objects are fetched from the memory pool to the compute
pool through network I/O, inevitably amplifying the network
bandwidth consumption. As the network bandwidth is gener-
ally the bottleneck of disaggregated memory (DM) [96], the am-
plified bandwidth consumption leads to low overall throughput
and high access latency. Our experimental study shows that the
I/O size amplification can dramatically degrade the throughput
of Sherman [201], the state-of-the-art B+ tree index on DM. The
throughput is 10.8× lower than the theoretical bound of RNICs
under the YCSB workloads [50].

This chapter attacks the severe I/O size amplifications in
existing range index data structures on DM. We propose that
radix trees are more suitable to serve as range indexes than B+
trees on DM due to their better I/O efficiency. Compared with
B+ trees, radix trees have smaller I/O size amplifications since
they do not store the entire keys in internal nodes. Moreover,
radix trees can further reduce I/O size by adaptively adjust-
ing the sizes of their internal nodes, i.e., adaptive radix trees
(ARTs) [120]. However, constructing radix trees on DM intro-
duces new challenges in terms of concurrency control and addi-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 82

tional amplifications in I/O numbers.
(1) Expensive and complicated concurrency control.

Existing ARTs rely on locks to ensure correctness under concur-
rent accesses [121]. However, on DM, locks are more expensive
than in local memory due to an order of magnitude higher re-
mote memory access latency. In addition, compute-side caches
are required on DM to reduce operation latency. Traditional
lock-free read-copy-update (RCU) schemes for radix trees intro-
duce frequent changes in the addresses of cached nodes, leading
to severe cache thrashing.

(2) Redundant I/Os deteriorate the throughput. Us-
ing radix trees generates multiple small-sized remote memory
read and write I/Os when traversing and modifying the tree
data structure. Many of these I/Os are redundant when mul-
tiple clients on the same compute node concurrently traverse
the tree. Since RNICs in the disaggregated memory pool have
bounded IOPS (I/O per second) [186], these redundant I/Os can
waste the limited IOPS and result in suboptimal performance.

To address the above challenges, we propose SMART, a
diSaggregated-meMory-friendly Adaptive Radix Tree. First,
for better concurrency control, we present a hybrid ART concur-
rency control scheme with a lock-free internal node design and a
lock-based leaf node design to achieve high performance without
cache thrashing. To mitigate the amplifications in I/O numbers,
we propose a read delegation and write combining (RDWC) tech-
nique to reduce computing-side redundant I/Os.

We implement SMART from scratch and evaluate it using
the YCSB benchmark [50]. Compared with Sherman [201],
the state-of-the-art B+-tree-based range index on DM, SMART
achieves up to 6.1× higher throughput and 1.4× lower latency
for typical write-intensive workloads and 2.8× higher through-
put with similar latency for read-only workloads. The code of
SMART is available at https://github.com/dmemsys/SMART.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 83

In summary, this chapter makes the following contributions:

• We propose that radix trees are better range index data
structures on DM, based on our theoretical analysis and
experimental results.

• We present the first memory-disaggregated radix tree, SMART,
with a hybrid ART concurrency control scheme and a read-
delegation and write-combining technique.

• We implement SMART and evaluate it using YCSB work-
loads [50]. The evaluation results demonstrate the efficacy
and efficiency of SMART.

4.2 Background

4.2.1 B+ Trees on Disaggregated Memory

Existing range indexes on DM are variants of the B+ tree, in-
cluding FG [229] and Sherman [201]. FG is the first RDMA-
based index supporting DM. It uses a B-link tree structure and
completely leverages one-sided verbs to perform index opera-
tions, with RDMA-based spin locks for concurrency control.
Since FG directly ports the spin-lock-based concurrency con-
trol and B-link tree node designs on monolithic servers to DM,
its performance suffers from severe network contention on lock
retries and I/O amplifications for write operations.

Sherman [201] is the state-of-the-art B+ tree on DM that ad-
dresses the network contention and write amplification issues of
FG. First, it addresses the network contention on lock-fail retires
with a hierarchical on-chip lock (HOCL) scheme. The network
requests on lock-fail retries are reduced with a local lock table
shared among clients on the same CN. Second, it mitigates the
write amplification by allowing fine-grained modification to B+

CHAPTER 4. RANGE INDEX DATA STRUCTURE 84

meta.

meta.

0300

00 05 FF... ...

0200 FF

32 CC00 FF

7D00 FF

3C00 FF

key: 716
(0x0002CC)key key

05 FF... ...

32 CC00 FF

key: 716
(0x0002CC)

key

key

05

32

key: 716
(0x0002CC)

key

key

Header

Header

ART

Path Compression

NODE_4

NODE_4

00HeaderNODE_4

4 partial keys 4 child pointers

02 03 FF

00HeaderNODE_16

16 partial keys 16 child pointers

02 03 FF

HeaderNODE_48

child index array 48 child pointers
01 02 FF

Header

Header

00

00

CC

Figure 4.1: The optimization process from the basic radix tree to ART. For
clarity, hexadecimal partial keys are shown. NODE_256 is simply an array of
256 pointers, which is not shown due to the space limitation.

tree nodes with a two-level version mechanism. Therefore, Sher-
man achieves much better performance than FG. Unfortunately,
the throughput of Sherman is still limited by its lock-based con-
currency control and I/O size amplifications for read operations,
which we will analyze in Section 4.3.

4.2.2 Radix Tree

The radix tree is a widely adopted tree index structure. It stores
the segmented key in the search path over the tree rather than
storing the whole key in the internal node. Specifically, each in-
ternal node in the radix tree consists of an array of child pointers.
Each pointer is associated with a segment of bits of the whole

CHAPTER 4. RANGE INDEX DATA STRUCTURE 85

key, called partial key, as shown in Figure 4.1.
Path compression. Path compression is an optimization

method for the radix tree to reduce tree height by removing in-
ternal nodes that only contain one single child node, and can be
implemented in three ways [120]: 1) The optimistic method
directly drops the partial keys in removed nodes and stores a
depth value to ensure the subsequent traversal process instead.
2) The pessimistic method stores all the partial keys of re-
moved nodes in the header of the subsequent node. 3) The
hybrid method integrates the two methods above by storing
partial keys into the fixed-sized header of the subsequent node,
together with a depth value to ensure the subsequent traversal
if some partial keys overflow from the header.

Adaptive radix tree (ART). ART [120] is the state-of-the-
art variant of the 8-bit-span radix tree, designed to optimize the
memory utilization of traditional radix trees. Traditionally, an
internal node of a radix tree has all 256 pointers representing all
possible partial keys. Many pointers are empty due to the sparse
key distribution [120], wasting memory space in these internal
nodes. ART addresses the issue by proposing four variant inter-
nal node sizes with different numbers of pointers, i.e., 4, 16, 48,
and 256. It dynamically chooses the best-fit internal node struc-
ture to reduce memory consumption. As for concurrency con-
trol, ART is synchronized using a lock-based algorithm, i.e., the
read-optimized write exclusion (ROWEX) protocol [121], which
suffers from severe lock contentions when executing on DM.

4.3 Analysis of Tree Indexes Built on DM

In this section, we first theoretically and experimentally compare
B+ trees with a vanilla ART (§ 4.3.1). We then present the
challenges of designing ART on DM (§ 4.3.2).

All the experiments in this section are conducted with 8 CNs

CHAPTER 4. RANGE INDEX DATA STRUCTURE 86

Table 4.1: Read and write amplification factors of different trees.

ART B+ Tree Sherman

Read M1+E
E

= 1.10 M2+S·E
E

= 32.7 M2+S·(M3+E)
E

= 33.0

Write M1+E
E

= 1.10 M2+S·E
E

= 32.7 M3+E
E

= 1.01

and 1 MN, each equipped with a 100Gbps Mellanox ConnectX-
6 RNIC. Each CN launches 32 clients with one shared 600MB
cache. We use YCSB workloads [50] with 60 million entries,
32-byte string keys, and 64-byte values, which is typical in real-
world workloads [215, 21].

4.3.1 Motivations: B+ Tree vs. ART on DM

The main problem of B+ trees on DM is their severe amplifi-
cations in I/O sizes. In internal nodes, the B+ tree stores the
whole keys. In leaf nodes, the B+ tree stores multiple keys to-
gether. Without optimizations, the B+ tree needs to read and
write the entire nodes during each index operation. In the fol-
lowing, we first theoretically compare the I/O size amplifications
of ART with the B+ tree and the write-optimized B+ tree (i.e.,
Sherman [201]). We then experimentally show the performance
impacts due to the I/O size amplifications for read operations.

Theoretical Analysis

The I/O size amplification factors of different tree structures
are shown in Table 4.1, respectively. We assume the internal
nodes are cached and no node split occurs for brevity. M1 and
M2 denote the metadata size of the leaf node of the radix tree
and B+ tree, respectively. M3 denotes the size of the additional
metadata (i.e., entry-level versions) that Sherman applied to
each key-value object. S denotes the span size of the B+ tree

CHAPTER 4. RANGE INDEX DATA STRUCTURE 87

node. E denotes the key-value item size.
The amplification factor is defined as the ratio of bandwidth

consumption from the server and bandwidth returned to the ap-
plication. Without optimizations, when a client reads or writes
a single object in a range index, the whole leaf node should be
read or written. We use the same size of the key-value objects,
i.e., 96 bytes, for all trees as an example.

The leaf node of the ART contains one object with its meta-
data. In our implementation, 10 bytes of metadata is enough
for each item in ART. The I/O size amplification factors are
M1+E

E = 10B+96B
96B = 1.10.

The leaf node of the B+ tree contains S objects together with
their metadata. The metadata at least includes two fence keys
(2 ·32B), a valid bit, a lock bit, a 1-byte level field, and two 7-bit
versions [201], i.e., 67 bytes in total. We use the default span
size in Sherman, which is 32. The read and write amplification
factors are M2+S·E

E = 67B+32·96B
96B = 32.7.

For Sherman, each key-value object in the leaf node is sur-
rounded by a pair of 4-bit entry-level versions. Thus the read
amplification factor is M2+S·(M3+E)

E = 67B+32·(1B+96B)
96B = 33.0.

When writing an object without node splitting, the client only
requires to write back the modified item with its associated
entry-level versions. Thus the write amplification factor is M3+E

E =
1B+96B

96B = 1.01.

Experimental Results

To show the impact of I/O size amplifications, we compare the
performances of Sherman and ART under the YCSB-C read-
only workloads. The impact of is similar for write operations.
We observe that the amplification leads to low throughput and
high latency of B+ trees on DM.

Observation 1: The throughput of the B+ tree is
bounded by network bandwidth. The memory-side network

CHAPTER 4. RANGE INDEX DATA STRUCTURE 88

(a) (b)

(c) (d)

Figure 4.2: The read performances of Sherman and ART under the YCSB
C workload (100% read). (a) The throughput bottleneck with no cache. (b)
The impact of key size and span size with no cache. (c) The peak through-
put with various sizes of caches. (d) The latency deterioration with excess
requests.

bandwidth is generally the performance bottleneck for B+ trees
on DM [96]. The I/O size amplifications of B+ trees cause
more bandwidth consumption for each request, exacerbating the
network bottleneck and resulting in low throughput.

As shown in Figure 4.2a, with an increasing number of clients,
the limited bandwidth prevents the throughput of Sherman and
ART from continually rising. With the same RNIC bandwidth,
Sherman has a lower peak throughput than ART due to the se-
vere I/O size amplifications. As shown in Figure 4.2b, the larger
the key size or the span size (i.e., the number of keys stored in
a leaf node), the larger the amplification, which decreases the

CHAPTER 4. RANGE INDEX DATA STRUCTURE 89

peak throughput of Sherman.
A compute-side cache is usually used for caching the inter-

nal nodes of the B+ tree on DM. As shown in Figure 4.2c,
with the increasing size of the cache, the throughput of Sher-
man keeps bounded by the bandwidth bottleneck and finally
saturates at 4.17 Mops/s. The bandwidth consumption from
the server equals the maximum network bandwidth of 100 Gbps
(12.5 GBps), and the bandwidth returned to the application is
4.17 Mops/s ·96B = 0.39 GBps. Thus the measured read am-
plification factor of Sherman is 12.5 GBps / 0.39 GBps = 32.1,
which is close to our theoretical analysis in § 4.3.1.

In contrast, without the read amplification from leaf nodes,
the throughput of ART reaches about 45 Mops/s, which is the
IOPS upper bound of the RNIC we use. This indicates that
ART can make full use of the RNIC capacity and achieve the
best resource efficiency as DM desires.

Observation 2: The latency of the B+ tree is wors-
ened by early network congestion. Network congestion
occurs when compute-side requests saturate the bandwidth or
IOPS upper bound of RNICs. As the number of clients keeps
growing, excess client requests need to queue up across the net-
work, which results in latency deterioration. The I/O size am-
plifications make B+ trees consume the bandwidth rapidly, ex-
pediting the process of network congestion.

As shown in Figure 4.2d, with the increase of throughput,
the latency of Sherman and ART is stable in the beginning and
then experiences a sudden surge due to the network congestion.
Moreover, with the same memory-side RNIC bandwidth, Sher-
man has a much smaller inflection point (i.e., the throughput
threshold that triggers network congestion) than ART. As a re-
sult, Sherman shows an extremely high latency with relatively
few clients. By contrast, ART has a high tolerance to this la-
tency deterioration thanks to its small amplifications.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 90

(a) (b)

(c) (d)

Figure 4.3: (a) The write performance of ART under the YCSB insert work-
load (100% insert) with no cache. (b) The performance degradation caused
by cache thrashing under the YCSB A workload (50% read + 50% update)
with sufficient caches. (c-d) The inter-client redundant I/Os on DM in terms
of reads and writes.

4.3.2 Challenges: ART on DM

Although ART is more beneficial in terms of I/O size amplifica-
tions than B+ trees on DM, we still need to address two critical
challenges in terms of concurrency control and I/O number am-
plifications to make it a practical range index.

Challenge 1: Lock-based concurrency control of ART
causes poor write performance. Existing ART adopts lock-
based algorithms to perform synchronization [121]. However,
lock operations are expensive on DM and lead to poor write
performance, as shown in Figure 4.3a. Specifically, unlike local
memory, each lock operation on DM requires additional network

CHAPTER 4. RANGE INDEX DATA STRUCTURE 91

transmission (e.g., RDMA_CAS). Furthermore, existing locks busy
waits at the entry point when there are conflicts, causing fre-
quent RDMA operations on retrying to get the lock. This also
limits the overall throughput due to the limited IOPS of RNICs.

One feasible solution is to design lock-free algorithms. How-
ever, lock-free design is also not a good choice for ART. Specif-
ically, an out-of-place update scheme is required for lock-free
algorithms to update items larger than 8 bytes. It atomically
compares and swaps the corresponding 8-byte addresses instead
of modifying the items in place, as the latter cannot be re-
alized atomically. However, in high-concurrency scenarios, a
mass of out-of-place updates lead to frequent changes in the ad-
dresses of items. This leads to severe cache coherence issues
since the old addresses of the items have been cached in other
CNs. Even worse, in skewed workloads, the addresses of hot
items are changed repeatedly, resulting in cache trashing.

To verify this, we evaluate the two update schemes in ART
with the YCSB A write-intensive workload, as shown in Fig-
ure 4.3b1. The out-of-place scheme exhibits an average of 19.1%
invalid cached addresses of leaf nodes, which results in a 44.5%
throughput drop compared with the in-place scheme.

Challenge 2: Inter-client redundant I/Os on DM
waste the limited IOPS of RNICs. ART can achieve bet-
ter throughput compared with B+ trees due to its small-sized
read and write operations. However, we find that there are re-
dundant I/Os that waste the limited IOPS of RNICs in the DM
architecture, hindering ART from achieving a high throughput.
Specifically, taking read operations as an example, when several
clients on the same CN read the same key-value item concur-
rently, they send identical RDMA_READs across the network. This
is a duplication of effort since all these requests do the same

1To eliminate the impact of concurrency conflicts, we scatter the update part of work-
loads among clients without intersection.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 92

transmission work.
To measure the extent of underlying inter-client redundant

reads, we launch various numbers of clients on the same CN.
Each client continuously issues 1 KB RDMA_READs, with their
destination addresses following a Zipfian distribution of skew-
ness 0.99 (i.e., the same as YCSB’s). As shown in Figure 4.3c,
during each read time window, the average number of redundant
RDMA_READs increases with the number of clients and achieves
up to 0.48 with 64 clients, implying 48% read performance im-
provement potential.

As for inter-client redundant writes, we issue RDMA_WRITEs
continuously with lock-based concurrency control via RDMA_CASes
from each client. As shown in Figure 4.3d, during each write
time window (including lock acquirement and release), the av-
erage number of redundant RDMA_WRITEs grows and reaches up
to 3.3, indicating around 330% write performance improvement
space with 64 clients. Interestingly, the number of redundant
writes is more than reads since redundant writes inevitably ex-
acerbate the concurrency conflicts, leading to a longer write time
window and thus more redundant writes in return. The near-
exponential growth of redundant RDMA_CASes rapidly saturates
the IOPS upper bound of RNICs, leading to poor performance.

4.4 SMART Design

We propose SMART, a high-performance ART for DM. Fig-
ure 4.4 shows the overview of SMART. To improve the efficiency
of concurrency control (Challenge 1), we present a hybrid ART
concurrency control scheme. The scheme contains a lock-free in-
ternal node design and a lock-based leaf node design to achieve
high write performance without cache thrashing (§ 4.4.1). To
save the limited IOPS of RNICs (Challenge 2), we propose a
read-delegation and write-combining (RDWC) technique to elim-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 93

Memory Memory

CNs
MNs

Clients

cached nodes

KV KV KV KV

ART Cache (§4.4.3)

lock-free

reverse pointer
child pointer

Insert / Search / Update / Delete / Scan (§4.4.4)

lock-based

Hybrid ART Concurrency
Control (§4.4.1)

Clients

cached nodes

RDWC (§4.4.2)

ART Cache (§4.4.3)

RDWC (§4.4.2)

Figure 4.4: The overview of SMART.

inate inter-client redundant I/Os (§ 4.4.2). We further design
an ART cache to reduce operation latency and achieve better
performance (§ 4.4.3). Lastly, we summarize the operations that
SMART supports (§ 4.4.4).

4.4.1 Hybrid ART Concurrency Control

In this section, we first describe the data structures and con-
current operations of the hybrid concurrency control scheme in
SMART. We then introduce RDMA-related optimizations.

Tree Node Data Structures

Lock-free internal node. As the addresses of internal nodes
change more infrequently, internal nodes do not cause cache
thrashing like leaf nodes. Hence, it is feasible for lock-free inter-
nal nodes to achieve high performance. We modify the internal
nodes of ART as follows.

(1) Homogeneous adaptive internal node. As illus-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 94

HeaderNODE_X:

X slots

Partial Key Leaf Typenode Child Pointer

Partial Key Leaf Lenleaf Child Pointer

8bit

Slot Slot Slot

1bit 5bit 48bit

Slot:

8B

2bit

8B

Depth Sizearray Array of Partial KeysTypenode

Reverse Pointer

Header:

8B

8bit 5bit 3bit 6B

Leaf = 0

Leaf = 1

parent node
child leaf / internal node

(a) The homogeneous adaptive internal node with the pessimistic 8-byte header.

ValidReverse Pointer
8B

Key ValueChecksum Lock
1bit 8B 1Bfixed size7bit

(b) The update-in-place leaf node with the rear embedded optimistic lock.

Figure 4.5: The structure of the internal node and the leaf node in SMART.
The reverse pointer and the in-header Typenode field are used for cache vali-
dation.

trated in Figure 4.1, a naive ART stores partial keys and child
pointers separately. Such a heterogeneous design makes it hard
to design a lock-free algorithm since the separated partial key
and child pointer should be modified atomically. Besides, it
incurs additional read amplification due to the inflexible fixed-
sized internal nodes.

We come up with a homogeneous internal node design that
embeds the partial keys into slots. First, this enables a child
pointer to be modified together with its corresponding partial
key atomically, laying the foundation for lock-free algorithms.
Second, the read amplification can be reduced since internal
nodes can have an arbitrary number of slots.

As shown in Figure 4.5a, an internal node of SMART consists
of an 8-byte reverse pointer, several 8-byte slots, and an 8-byte
header. The reverse pointer is used for cache validation, which

CHAPTER 4. RANGE INDEX DATA STRUCTURE 95

will be presented in § 4.4.3. As for each slot, apart from the
embedded 8-bit partial key and the 48-bit child pointer, we add
a 1-bit Leaf field to indicate whether the pointer is pointing
to a leaf node. When Leaf is set, a Lenleaf field is provided,
which is used to support variable-sized keys (§ 4.4.5). When
Leaf is unset, there is a 5-bit Typenode field to indicate the
type of the following internal node. Note that SMART mainly
uses the Typenode to reduce the network bandwidth consumption
rather than memory consumption. When fetching an internal
node, SMART can RDMA_READ only the required number of slots
according to the Typenode field, reducing the read amplification
and thus saving the network bandwidth.

(2) Pessimistic 8-byte header of the internal node.
We choose the pessimistic method for path compression since
both the optimistic and hybrid methods need two tree traversals
to insert a nonexistent key. One entire tree traversal is required
to search for the nonexistent key since not all compressed partial
keys are stored in the header. The other traversal executes the
actual insertion. In contrast, the pessimistic method can insert
the nonexistent key through one traversal.

Besides, following previous designs [121, 134], we fixed the
header size to 8 bytes, which can be changed atomically. If
some partial keys overflow from the header, we store them in
an empty following node. Although this may increase the tree
height, we can mitigate this with the help of cache (§ 4.4.3).

As shown in Figure 4.5a, a header consists of an 8-bit Depth

field, a 5-bit Typenode field, a 3-bit Sizearray field, and a 6-byte
array of partial keys. The Depth field indicates the start position
for matching the target key. The Typenode field is used for cache
validation, which will be illustrated in § 4.4.3. The Sizearray
field records the length of the partial key array, where at most
six partial keys can be stored.

Lock-based leaf node. In-place update schemes are pre-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 96

ferred as it does not cause cache thrashing. To adopt the in-place
update, lock-based concurrency control for the leaf node is re-
quired. This is acceptable since locks are fine-grained, as each
leaf node in the radix tree only contains one key-value item. We
design the leaf node structure as follows for concurrency control.

(1) Checksum-based update-in-place leaf node. The
in-place update scheme overwrites the leaf node at the same ad-
dress, causing conflicts among readers and writers. To avoid
conflicts, we adopt an optimistic lock in each leaf node with a
checksum-based consistency check mechanism [143, 201], where
the fixed-sized key-value object in the leaf node is protected by
a checksum. For write-write conflicts, an exclusive lock is used
to synchronize the writers. As for read-write conflicts, when
a writer modifies the leaf node, the checksum is re-calculated
based on the new content of the leaf node and written with the
new content. The readers verify the checksum after reading the
leaf node and retry their operations when they find the check-
sums do not match.

(2) Rear embedded lock. To further reduce the over-
head of locks, we combine the lock release with the writing back
of the updated leaf node by embedding the lock into each leaf
node. Therefore, the two remote memory I/Os can be reduced
to one single RDMA_WRITE. Particularly, to avoid premature lock
release, we ensure that the lock release is always triggered af-
ter the completion of writing back. We achieve this by placing
the lock at the rear of a leaf node, which leverages the in-order
delivery property of RNICs [55].

As shown in Figure 4.5b, a leaf node of SMART consists of
an 8-byte reverse pointer, a V alid bit, an 8-byte checksum, a
1-byte rear lock, and a fixed-sized key-value item. The reverse
pointer is used for cache validation, which will be illustrated in
§ 4.4.3. The V alid bit is used to indicate the deleted state.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 97

00

56
N4 12 341 2

FF 7D

k1 k2 k3

node A

empty slot

k1: 0x123456CF
k2: 0x1234FF37
k3: 0x12347D94
k4: 0x12346494

tree root

(a) Initial state.

00

56
N4 12 341 2

FF 7D

k1 k2 k3

node A

k4: 0x12346494
k4

64

normal insert
existing leaf

k5: 0x123456CC

(b) Normal insert of k4.

00

56
N4 12 341 2

FF 7D

k1

k2 k3

node A

k4

64

k5: 0x123456CC
k1: 0x123456CF

CF
N44 0

CC

k5

leaf split

mismatching

node B

k6: 0x120577AC

(c) Leaf split when inserting k5.

00

56 FF 7D

k1

k2 k3

node A

k4

64

CF
N44 0

CC

k5

k6: 0x120577AC

34
N41 1

05
12

k6

header split

no empty slot

N43 0

node B

node C

k7: 0x123477FF

①

②

(d) Header split when inserting k6.

00

56
N83 0

FF 7D

k1

k2 k3

node A

k4

64

CF
N44 0

CC

k5

34
N41 1

05
12

k6

k7: 0x123477FF

77

k7

node type switch

node B

node C

①
②

②

(e) Node type switch when inserting k7 .

Figure 4.6: A step-by-step example of inserting several new keys into SMART
with 8-bit partial keys. For clarity, hexadecimal partial keys are shown and
reverse pointers are omitted. Each thick dotted box indicates an atomic CAS.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 98

Concurrent Operations

Based on the above structural modifications, we demonstrate
essential write-related sub-operations with a step-by-step exam-
ple, as shown in Figure 4.6. Except for the in-place leaf update,
all the sub-operations are lock-free. The complete operation
process will be described in § 4.4.4.

Normal insert. During an insert, the target partial key
may not be in the internal node yet. As shown in Figure 4.6b,
after the WRITE of the new leaf node (k4), the client CASes the
first empty slot in the node, together with the new partial key.
If the CAS fails, the client checks whether the return value (i.e.,
a new value of the slot written by a concurrent client) contains
the target partial key. If yes, the client continues to traverse the
tree following the return pointer. Otherwise, the client tries the
insert again with the next empty slot.

Leaf split. If an existing leaf node is found during an insert,
a leaf split is needed as shown in Figure 4.6c. Specifically, the
client first calculates the rest of the longest common key prefix
of the two leaf nodes (k5 and k1). Then it allocates sufficient
sequentially connected internal nodes to store the common key
prefix in their headers. The last internal node will contain two
child pointers pointing to the old and new leaf nodes. All inter-
nal nodes and the new leaf node can be written in parallel, after
which the client CASes the parent slot to point to the first new
internal node. If the CAS fails, the client continues to traverse
following the return pointer.

Header split. If a mismatching for in-header partial keys
is found, a header split is required as shown in Figure 4.6d.
Specifically, the client allocates a new NODE_4 pointing to the
split internal node and new leaf node (k6), with its header storing
the matched part of partial keys. The new internal and leaf node
can be written in parallel. Then the client CASes the parent slot
to make it point to the new internal node (1⃝). If CAS succeeds,

CHAPTER 4. RANGE INDEX DATA STRUCTURE 99

the redundant in-header old partial keys are removed via an
additional CAS (2⃝). Otherwise, the client continues to traverse
following the return pointer.

Note that the correctness of concurrent searches can be guar-
anteed by the in-header Depth value, which indicates the start
position for matching the current key. A concurrent search
READs the parent node and then the child node. Therefore, there
are two situations of read-write conflicts. First, the READ of the
parent node occurs after the CAS of the parent slot (1⃝), while
the READ of the child node occurs before the CAS of the split
header (2⃝). In this situation, redundant in-header partial keys
are read, which does not affect the correctness. Second, the for-
mer READ occurs before the former CAS (1⃝), while the latter
READ occurs after the latter CAS (2⃝). In this case, the reader
re-reads the parent slot if finding partial keys missing according
to the Depth value.

Node type switch. To avoid copy-on-write (COW) over-
head and additional cache coherence introduced by out-of-place
updates (Challenge 1), we conduct an in-place node type switch.
This is feasible thanks to the homogeneous adaptive internal
node design (§ 4.4.1). To be specific, we pre-allocate the con-
tiguous space of NODE_256 on MNs for each internal node. This
consumes a little additional memory but enables lock-free oper-
ations during the node type switch. When neither a matching
partial key nor an empty slot is found in the current internal
node, the client can try to CAS the following empty slots one by
one, whose addresses are behind the node (1⃝) as shown in Fig-
ure 4.6e. After a successful CAS, the current best-fit node type
can be determined by the index of the newly inserted slot. The
client then tries to update the two old Typenode values (on the
header and the parent slot) with the new one via two concurrent
CASes (2⃝), making the newly inserted leaf visible by subsequent
search. If both CASes succeed or fail with return values contain-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 100

ing Typenode values larger than or equal to the expected one,
the node type switch is finished. Otherwise, the client retries
the CASes.

In-place leaf update. To update a leaf node, the client first
acquires the rear embedded lock in the leaf node. It then WRITEs
back the updated leaf node with the re-calculated checksum and
the unset lock, after which the in-place leaf update is finished
with the lock properly released.

RDMA-related Optimizations

To further optimize performance on DM, SMART adopts the
following RDMA-related optimizations [96].

Inline write. For small-sized WRITE (e.g., writing internal
nodes smaller than NODE_16 or leaf nodes), the INLINE flag is
set, enabling the RNIC to encapsulate payload into the work
queue entry (WQE) and thus reducing PCIe overhead.

Unsignaled verbs. As for writing commands allowing asyn-
chronous execution (e.g., CAS of the header during header split),
SMART unsets the SIGNALED flag to reduce the overhead of
polling RDMA completion queues.

Doorbell batching. If a client issues multiple WQEs to the
same queue pair (e.g., to the same MN), a doorbell batching is
conducted to reduce PCIe overhead.

4.4.2 Read Delegation and Write Combining

We propose a read-delegation and write-combining (RDWC)
technique on DM to eliminate inter-client redundant I/Os in
terms of reads and writes, respectively.

Hash-based local locks. The inter-client redundant I/Os
on each CN occur among the concurrent read and write oper-
ations on the same key or address. Therefore, computing-side
local locks are needed to collect the concurrent operations.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 101

C
ac

he
 S

ea
rc

h

Lock R R

R

R

Tr
ee

 T
ra

ve
rs

al

Le
af

 R
ea

d

R

conflict

Yes

NoYes

No

Delegated Read

Time Window

Normal Read

Concurrent
Reads

lock fail

①

③

②

computing-side memory-side

(a) Read delegation.

Le
af

 L
oc

k

C
ac

he
 S

ea
rc

h
Lock W W

W

W

Tr
ee

 T
ra

ve
rs

al

Le
af

 R
ea

d

W

conflict

lock fail

Le
af

 W
rit

e

Le
af

 U
nl

oc
k

Yes

Yes

No

No

Combined Write
write

write

read

WCB Time Window

Normal Write

Concurrent
Writes

①

②

③

computing-side memory-side

(b) Write combining.

Figure 4.7: The processes of the read delegation and the write combining on
SMART respectively.

We maintain the local locks in each CN as a table, similar to
the local lock table of HOCL in Sherman [201]. However, unlike
Sherman, which maintains each local lock for a coarse-grained
global lock, SMART maintains each local lock for a key (i.e.,
fine-grained leaf node). It is challenging to store all such locks
in each limited computing-side memory. To address this, we use
hash-based local locks, where a lock corresponds to a set of keys
with the same hash value.

We dynamically maintain a unique key in each local lock
to solve the hash-conflict problem of our hash-based scheme.
Specifically, the first client who acquires a local lock successfully

CHAPTER 4. RANGE INDEX DATA STRUCTURE 102

will record its target key as the unique key of this local lock. The
subsequent clients who fail to acquire this local lock will conduct
a hash-conflict check by comparing their target key with the
unique key. If the target key is exactly the same as the unique
key, the client can be involved in the read delegation or write
combining. Otherwise, a hash conflict is found, and the client
should execute a normal remote read or write on its own for
correctness. The unique key is freed when the first client releases
the local lock.

Read delegation. To reduce inter-client redundant I/Os for
reads, a delegation client can be elected on each CN to execute
the same read, and then share its READ result with other waiting
clients. The first client who acquires the local lock successfully
is the delegation client and the subsequent clients who fail to ac-
quire the lock are the waiting clients. The relationship between
the delegation client and the waiting clients is similar to that
between the first cache miss and the subsequent delayed cache
hits in the cache system [22].

We implement this as shown in Figure 4.7a. After acquiring
the corresponding local lock successfully, the delegation client
records its target key as the unique key and then conducts the
remote tree search (i.e., including cache search, tree traversal,
and leaf node read), which is the time window of read delegation
(1⃝). During the time window, the subsequent clients failing
to acquire the local lock first execute the hash-conflict check
by comparing their target key with the unique key. If a hash
conflict is found, the client executes a normal tree search by
itself (2⃝). Otherwise, it pushes itself into a read-waiting queue
and waits for the search result from the first client (3⃝). Finally,
the delegation client shares its search result with the waiting
clients and releases the local lock.

Write combining. Write combining (WC) is a normal tech-
nology in modern processors [53]. When a processor intends to

CHAPTER 4. RANGE INDEX DATA STRUCTURE 103

issue multiple writes to the same memory region in a small time
window, it combines the writes into a single burst write so as
to save the system bus bandwidth. This idea, also known as
write coalescing, is applied to many storage systems [91, 116].
Inspired by this, we find it feasible to conduct a WC on each
CN. When clients intend to make several concurrent key-value
writes to the same memory-side key or address, they can com-
bine the writes into a single consensus write so as to save the
network bandwidth and the limited IOPS of RNICs.

We implement WC on DM as shown in Figure 4.7b. A client
that succeeds in acquiring the corresponding local lock first
records its target key as the unique key and writes its new value
into the write combining buffer (WCB), and then conducts the
remote tree insert or update (1⃝). Differently, the time window
of write combining is the former partial period of tree insert or
update (i.e., cache search, tree traversal, and lock acquirement
on leaf node). After that, the client reads the combined con-
sensus result from WCB and then makes a RDMA_WRITE to write
back the result and release the remote lock. Finally, the client
releases the local lock. During the write-combining time win-
dow, the subsequent clients first perform the same hash-conflict
check. If a hash conflict is found, the client performs a normal
tree insert or update on its own (2⃝). Otherwise, it first writes
its expected value into the WCB (with local lock-based concur-
rency control), making the value visible to the first client. Then
the client pushes itself into a write-waiting queue to wait for the
completion of the remote write (3⃝).

Put together. Naively putting read-delegation and write-
combining together may introduce incorrect read results when a
client reads a key-value object after writing it. Specifically, the
latter read may be delegated by a client whose read happens
before the write operation. In this case, the old value (i.e.,
the value of the item before the client’s write) is returned to

CHAPTER 4. RANGE INDEX DATA STRUCTURE 104

Local ART

Leaf Leaf Leaf

Depth Cached Internal NodeCache Entry:
1B

Node Address
8B

Slot Slot Slot
8B

Figure 4.8: The structure of the ART cache.

the read operation that happens after the write, breaking the
causality of the read and write. We use the same time window
for read-delegation and write-combining to address this issue.
In this way, the write and read operations with causal relations
are included in two non-overlapped time windows, and thus, the
above issue can be avoided. To achieve this, we let readers and
writers operating on the same key fairly acquire the same local
lock, where the winner decides the time window. Each local
lock is associated with two waiting queues, i.e., a read queue
and a write queue, so as to conduct read delegation and write
combining exclusively and concurrently. In our implementation,
4M 32-bit local locks are sufficient on each CN, consuming only
nearly 3% of cache size.2

4.4.3 ART Cache

ART-indexed cache. To reduce remote access during tree
traversal, a memory-efficient ART-indexed cache is designed on
each CN to store partial internal nodes of SMART. To be spe-
cific, utilizing the feature that each radix tree node (excluding

2Note that with N clients in each CN, there are at most N dynamically-allocated WCBs
and unique keys at the same time, whose memory consumption (i.e., size of N key-value
items) is negligible.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 105

header) can be uniquely identified by a key prefix, we adopt a
local ART on each CN to index the cached internal nodes. As
shown in Figure 4.8, each leaf node (i.e., cache entry) of the
local ART contains the snapshot of a traversal context (i.e., the
content of an internal node being read from MNs, the Depth

value, and the address of the node).
There are two situations the cache may be invalidated. First,

a node in the disaggregated memory pool may no longer be the
child of the cached parent node, which happens on leaf split
and header split. We use the reverse pointer in each internal
and leaf node to check if the current node is still the child of
the cached parent node. Second, the node type of each internal
node can change when continuously inserting the node. We also
need to get the correct node type since otherwise we may fail to
find newly inserted objects. We use the Typenode field in each
node to detect node type changes.

4.4.4 Operations

All operations first search in the cache for the deepest slot that
is matched by the prefix of the target key. If none of the cached
slots hits, start the traversal from the tree root slot.

Search. The client first reads the node according to the slot,
after which a reverse check is conducted to check if the cache
entry expires. If yes, invalidate the cache entry and retry this
search. As for a leaf node being read, the target item is found
if its key is the same as the target key. Otherwise, it does not
exist. As for an internal node, if all the in-header partial keys
are matched, and the next target partial key can be found in a
slot, read the next node along the child pointer in the slot and
repeat the process. Otherwise, the target item does not exist.

Insert/Update. The client first reads the node and con-
ducts a reverse check like the search. After that, as for a

CHAPTER 4. RANGE INDEX DATA STRUCTURE 106

ValidReverse Pointer
8B

Lenkey Key Value
1bit variable size

Lenval

7bit

Figure 4.9: The structure of the variable-sized leaf node.

leaf node, if its key is the same as the target key, execute an
in-place leaf update. Otherwise, a leaf split is needed. As
for an internal node, if a mismatching for the in-header par-
tial keys is found, conduct a header split. Otherwise, turn to
search among the slots. If the current target partial key can
be found in a slot, read the next node along the corresponding
child pointer in the slot and start the process again. Otherwise,
conduct a normal insert with the next empty pointer slot. If
no empty slot can be found, a node type switch is needed.

Delete. Delete operations have a similar process as insert
operations. A normal delete clears the slot pointing to the target
leaf node via RDMA_CAS and unsets the V alid bit of the deleted
leaf node. Opposite operations of leaf split and header split
are conducted for path compression.

Scan. At each level of traversal, the client conducts paral-
lel RDMA_READs to fetch all nodes inside the target key range.
For each RDMA_READ, the client processes the node being read in
the same way as the search operation, with an additional com-
parison between partial keys and target key range to exclude
unwanted concurrent search paths. Like many other existing
tree indexes [229, 201] on DM, SMART does not guarantee the
scan is atomic with concurrent insert or update operations.

4.4.5 Discussion

Support for variable-sized keys and values. SMART cur-
rently supports fixed-sized keys and values. For variable-sized
keys and values, the optimizations of update-in-place leaf node
and rear embedded lock in SMART are no longer applicable. In-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 107

stead, SMART can use the RCU scheme to out-of-place update
the leaf node to support variable-sized keys and values. The
search, insert, and delete operations on variable-sized key-value
items are the same as those on fixed-sized ones.

As for the leaf node structure, SMART can follow the design
in RACE [230]. As shown in Figure 4.9, the leaf node includes
a Lenkey field and a Lenval field, which indicate the sizes of
Key and V alue. SMART can use the 7-bit Lenleaf field in the
parent slot and a pre-configured length_unit value to indicate
the length of the leaf node. The maximum length of a leaf
node is 27 · length_unit. When a key-value item exceeds the
maximum length, SMART can store the remaining content in a
second key-value block linked to the leaf node.

Generality of techniques in SMART. Some techniques
in SMART can also be applied to other kinds of indexes. Par-
ticularly: 1) The RDWC technique can benefit any tree indexes
since it is transparent to the lower-level index structures. When
applied to other index structures, it brings about the same per-
formance improvement as applied to ART. 2) The ART cache
can benefit any radix-tree-based indexes. It is designed to re-
duce operation latency and handle the cache validation problems
caused by ART’s features. 3) The rear embedded lock can be
adopted in any lock-based structures on DM to save one RTT.

The first lock-free ART design. A pure lock-free ART
can be formed with the lock-free node design in Figure 4.5a and
a lock-free leaf node design with a traditional RCU scheme. To
the best of our knowledge, this is the first lock-free ART design.
In our implementation, SMART can degenerate into the pure
lock-free ART by disabling the optimizations of update-in-place
leaf node and rear embedded lock.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 108

4.5 Evaluation

4.5.1 Experimental Setup

Testbed. We run all experiments on 16 nodes (16 CNs and
2 MNs)3 on the Clemson cluster of CloudLab [57]. Each node
has two 36-core Intel Xeon CPUs, 256GB of DRAM, and one
100Gbps Mellanox ConnectX-6 RNIC. Each RNIC is connected
to a 100Gbps Ethernet switch. Each MN owns 64GB DRAM
and 1 CPU core for network connection and memory allocation.
Each CN owns 4GB DRAM and 64 CPU cores, where each core
serves as a client. The MNs register memory with huge pages
to reduce page translation cache misses of RNICs [55].

Workloads. Without explicit mention, we use the index
microbench [204] to generate YCSB [50] workloads like previous
work [105, 26, 137]. We evaluate SMART with 6 YCSB core
workloads: A (50% read, 50% update), B (95% read, 5% up-
date), C (100% read), D (latest-read, 95% read, 5% insert), E
(95% scan accessing up to 100 items, 5% insert) and an addi-
tional LOAD (100% insert) workloads, using the default Zipfian
distribution for all workloads except for YCSB LOAD and D.
For most workloads, we test 2 key types, i.e., integer (8-byte)
and string (32-byte). For string workloads, we use 125 million
publicly available email addresses [70] and conduct a common
pre-processing (i.e., swap username and domain fields of email
addresses) like previous work [204, 136, 120]. We use 8-byte val-
ues consistent with prior work [201, 206, 136, 144, 98, 26]. For
each workload, we populate 60 million keys before conducting
60 million operations, except for the LOAD test.

Comparisons. We compare SMART with two state-of-the-
art tree indexes, i.e., Sherman [201] and ART [120]. We use
the default configuration of Sherman (e.g., a span size of 32
for long key) with all optimizations enabled (e.g., on-chip mem-

3Like Sherman [201], we make two nodes act as both CN and MN.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 109

(a) YCSB LOAD (b) YCSB A (c) YCSB B

(d) YCSB C (e) YCSB D

Figure 4.10: The performance comparison of tree indexes on DM under YCSB
workloads of integer keys.

ory). Since ART is not designed for DM, we port it to DM by
re-implementing it from scratch (as mentioned in § 4.3), includ-
ing its synchronization design (i.e., ROWEX [121]). For better
baseline performance, we apply the HOCL of Sherman to ART
and any other baselines of SMART. Coroutines are used in each
client to hide RDMA polling overhead.

4.5.2 Performance Comparison

Figures 4.10 and 4.11 present the throughput-latency curves of
the three indexes with integer and string keys respectively, us-
ing various numbers of clients (16 at least and 896 at most,
evenly distributed across 16 CNs). Without loss of generality,
we discuss the performance of integer keys in the following.

Search-only workload (YCSB C). For the YCSB C work-
load, SMART outperforms Sherman by 2.8× due to no leaf read

CHAPTER 4. RANGE INDEX DATA STRUCTURE 110

(a) YCSB LOAD (b) YCSB A (c) YCSB B

(d) YCSB C (e) YCSB D

Figure 4.11: The performance comparison of tree indexes on DM under YCSB
workloads of string keys.

amplification, as mentioned in § 4.3. Moreover, it outperforms
ART by 1.2× due to the read delegation mechanism for reduc-
ing redundant I/Os. It is worth noting that SMART achieves
up to 96M requests per second, which breaks through the total
IOPS upper bound of memory-side RNICs (about 90 Mops in
total with the two MNs). This is because the read delegation
can perform concurrent duplicated reads with only one dele-
gated read. Besides, the similar P99 latency of SMART and
ART shows that the read delegation causes near-zero overhead.

Insert workload (YCSB LOAD, D). For the YCSB
LOAD workload, SMART outperforms Sherman and ART by
1.6×, 1.5× in throughput and achieves 1.4×, 1.5× lower P99
latency respectively. This can be attributed to the design of
the lock-free internal nodes. Specifically, both Sherman and
ART have low throughput and high latency due to the node-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 111

Figure 4.12: The scalabil-
ity of tree indexes under the
YCSB A workload of integer
keys.

Figure 4.13: The performance of scan
under the YCSB E workload of integer
keys with different value sizes.

grained locks, which introduce additional RTTs with frequent
lock-fail retries, thus wasting the limited IOPS of RNICs in
write-intensive scenarios (i.e., 50% insert). Interestingly, with
string workloads, the latency of ART becomes much worse since
the smaller set of string partial keys (e.g., alphanumeric charac-
ters) aggravates concurrency conflicts.

For the YCSB D workload, SMART achieves 2.4× and 1.4×
higher throughput and 1.1× and 1.8× lower P99 latency, com-
pared with Sherman and ART respectively. With fewer write
conflicts (i.e., only 5% insert), read and write amplifications be-
come the main reason for the poor performance of Sherman.
ART still has a high tail latency since concurrent writes cause
cache misses, leading to remote tree traversals and thus contin-
uous lock operations on the remote tree.

Update workload (YCSB A, B). Compared with Sher-
man and ART, SMART gains 6.1× and 3.4× improvement in
throughput and 1.4× and 1.3× reduction in latency for YCSB
A, and achieves 2.4× and 1.8× higher throughput and 1.1× and
1.7× lower P99 latency for YCSB B, respectively.

Unlike the insert workload, YCSB A and B follow a Zipfian

CHAPTER 4. RANGE INDEX DATA STRUCTURE 112

distribution of skewness 0.99, indicating a high amount of up-
date concurrency conflicts. Consequently, Sherman performs
poorly with YCSB A due to its coarse-grained, lock-based con-
currency control. ART performs better than Sherman since up-
date operations do not modify the partial key fields and thus
do not need to acquire locks. However, the out-of-place up-
date scheme used by ART causes cache thrashing, resulting in
huge cache-miss overhead and thus much higher latency than
SMART. Note that the cache thrashing also impacts search per-
formance, leaving a poor performance of ART on YCSB B (with
only 5% update). As shown in Figure 4.12, ART experiences
performance collapse with increasing clients due to severe cache
thrashing. In contrast, SMART shows excellent scalability due
to the cache-friendly in-place leaf node design and fine-grained
concurrency control.

Scan workload (YCSB E). We evaluate the performance
of scan operations with 128 clients using varying value sizes as
shown in Figure 4.13. For a small value size (e.g., 8 bytes),
SMART shows poorer performance than Sherman since the small-
sized leaf nodes saturate the memory-side IOPS upper bound,
which is an inherent shortcoming of radix trees. However, for a
value size larger than 64 bytes, which is common in real-world
workload [215, 21], the scan performance of Sherman becomes
worse than SMART since the large-sized leaf nodes rapidly sat-
urate the bandwidth bottleneck.

4.5.3 Factor Analysis for SMART Design

Figure 4.14 presents the factor analysis on SMART. We start
with the naive ART and apply each proposed technique one by
one. We use 16 CNs (each launches 24 clients) and integer keys
for experiments in this section.

+ Lock-free internal node. The lock-free internal nodes

CHAPTER 4. RANGE INDEX DATA STRUCTURE 113

mainly contribute to the insert workload. With YCSB LOAD,
it brings 1.5× improvement in throughput and 1.8×/1.4× re-
duction in P50/P99 latency. Unlike ROWEX, lock-free internal
nodes eliminate expensive lock overhead during insertion and
thus improve performance.

+ Update-in-place leaf node. The in-place update scheme
mainly contributes to the update workload. It achieves 1.5× im-
provement in throughput and 1.4×/1.7× reduction in P50/P99
latency with YCSB B. The in-place update scheme alleviates
the cache coherence problem, as the addresses of the cached leaf
nodes never expire until being deleted.

+ Rear embedded lock. The rear embedded locks further
optimize the in-place update scheme. It eliminates the lock-
releasing overhead, saving one RTT during each update. With
YCSB A, it improves throughput by 3.0× and reduces tail la-
tency by 11.3×.

+ Read delegation. The read delegation mechanism con-
tributes to the search workload. It brings 1.1× throughput im-
provement and 1.3× tail latency reduction with YCSB C. It
eliminates superfluous reads and thus saves network I/O con-
sumption, so as to support more client requests.

+ Write combining. The write-combining mechanism con-
tributes to write-intensive workloads. It improves the through-
put by 1.1× and reduces tail latency by 1.3× with YCSB A.

As the RDWC technique can reduce concurrency conflicts
similar to HOCL, we compare their efficiency by applying them
on SMART respectively. As shown in Figure 4.15, when ap-
plying the primitive HOCL design, SMART shows poor perfor-
mance with an average of 0.76 lock-fail retry count, due to the
limited on-chip memory space (128MB per RNIC in our evalu-
ation) with only 2 MNs, which is insufficient for a large number
of fine-grained locks. With E-HOCL (i.e., integrating the rear
embedded lock technique into HOCL), SMART achieves much

CHAPTER 4. RANGE INDEX DATA STRUCTURE 114

Figure 4.14: The factor analysis of overall performance on SMART.

better performance with an average of 0.29 lock-fail retry count.
However, despite the optimization, HOCL still shows lower im-
provement efficiency than RDWC, which can introduce a 26.2%
higher throughput. This is because RDWC saves not only the
lock overhead but also the superfluous bandwidth consumption
of reads and writes.

As the design of RDWC is transparent to the lower-level in-
dex structures, it will lead to the same amount of performance
improvements on Sherman, i.e., 1.3× and 1.1× under write-
intensive and read-only workloads (Figure 4.14). After applying
RDWC to Sherman, SMART can still achieve 4.7× (= 6.1/1.3)
higher throughput under write-intensive workloads and 2.5×
(= 2.8/1.1) higher throughput under read-only workloads.

Cache-related techniques. Some cache-related techniques
contribute to cache efficiency: 1) Homogeneous adaptive
internal node. Due to the homogeneous adaptive internal
node design, more fine-grained and flexible adaptive nodes are
available, saving cache space with smaller sizes of cached nodes.
2) ART-indexed cache. Compared with a traditional hash-
based compute-side cache, the ART cache can efficiently save

CHAPTER 4. RANGE INDEX DATA STRUCTURE 115

Figure 4.15: Comparison of
HOCL, E-HOCL, and RDWC
under the YCSB A workload.

Figure 4.16: Cache efficiency of SMART un-
der the YCSB C workload of string keys
with different cache sizes.

memory since key prefixes are no longer stored repeatedly. As
shown in Figure 4.16, after applying the above two techniques
one by one, SMART achieves an increasing cache hit ratio and
overall throughput under each specific limited cache size.

4.5.4 Sensitivity

Skewness. Figure 4.17a shows the performances of different
tree indexes on a generated Zipfian workload [126] (50% search +
50% update) with various skewness. SMART performs best un-
der both slightly and highly skewed workloads. Sherman shows
a good performance in slightly skewed workloads while having
the poorest performance in highly skewed workloads because of
its coarse-grained lock-based concurrency control design. ART
performs better than Sherman in highly skewed workloads due to
the lock-free RCU scheme but performs worst in slightly skewed
workloads due to cache thrashing. Note that the RDWC in
SMART does not benefit the overall throughput since the net-
work bandwidth is unsaturated. As the Zipfian skewness grows

CHAPTER 4. RANGE INDEX DATA STRUCTURE 116

(a) Skewness. (b) Key size. (c) Value size.

Figure 4.17: The sensitivity analysis.

from 0.5 to 0.99, the performance of ART and SMART decreases
by the same multiple (2.6×), and thus their performance gap is
reduced. The performance of Sherman decreases by 7.4×, indi-
cating the poor efficiency of coarse-grained lock-based design.
Key-value sizes. Figures 4.17b and 4.17c show the impact of
key size and value size on the performances of the three tree
indexes under YCSB C with sufficient caches. As the key size
grows from 8 to 256 bytes, SMART and ART show a slight
performance decline (1.3×), while Sherman experiences a rapid
drop in performance (14×). As the value size grows from 8
to 1024 bytes, the performance declines of SMART, ART, and
Sherman are 3.1×, 3.4×, and 64×, respectively. This is be-
cause, during each search, Sherman needs to fetch the whole
leaf node, whose size grows with key and value size, causing the
rapidly increasing consumption of network bandwidth. On the
contrary, SMART and ART only need to fetch the fine-grained
small-sized leaf node. Thus, they are not bounded by the net-
work bandwidth bottleneck, showing a stable performance with
varying key sizes and value sizes. The performances of ART and
SMART are close since the read delegation in SMART does not
benefit the throughput under the unsaturated network. This is
consistent with the results shown in Figure 4.10d.

CHAPTER 4. RANGE INDEX DATA STRUCTURE 117

4.6 Related Work

Attracted by the high performance of RDMA, there are increas-
ing studies focusing on building RDMA-based tree data struc-
tures [229, 201, 5, 144, 176]. Many of them are built on top
of RDMA-based remote procedure calls (RPCs) [144, 176]. Un-
fortunately, these approaches are infeasible for disaggregated
memory due to the asymmetric compute capabilities on com-
pute and memory nodes. Specifically, the CPUs on the memory
nodes are too weak to execute index traversal and modifications
on the data path.

Two tree data structures built on DM relate most to SMART,
i.e., FG [229] and Sherman [201]. FG, designed as a B-link tree,
is the first index that completely leverages one-side RDMA verbs
for write operations. Sherman is the state-of-the-art B+ tree in-
dex with several RDMA-friendly software techniques. However,
constrained by the structure of the B+ tree, both approaches
suffer from low suboptimal throughput and early latency deteri-
oration due to I/O size amplifications. SMART proposes to use
radix trees as range indexes on DM to address the severe I/O
size amplifications of B+ trees.

Moreover, extending RDMA interfaces is another approach
to designing tree indexes on DM. They offload index write op-
erations into memory-side NICs via SmartNICs or other cus-
tomized hardware [5, 31, 68, 105, 129, 174, 181]. However, they
all rely on dedicated hardware. To the best of our knowledge,
SMART is the first radix tree index on DM that achieves high
performance with commodity RNICs.

4.7 Summary

This chapter presents our design and implementation of a high-
performance range index data structure tailored for DM. We in-

CHAPTER 4. RANGE INDEX DATA STRUCTURE 118

novatively propose to use radix trees as range indexes to reduce
I/O size amplifications. We further address the challenges in
concurrency control and I/O number amplifications with a hy-
brid concurrency control scheme and a read delegation and write
combining scheme. Our evaluation results show that SMART
outperforms the existing approaches by up to 6.1× under write-
intensive workloads and 2.8× under read-only workloads.

2 End of chapter.

Chapter 5

Efficient Fault Tolerance
Algorithms

Outline

Achieving reliability on disaggregated memory (DM)
is challenging since the isolated failures introduce
more complicated failure situations. Existing memory-
disaggregated storage systems maintain critical meta-
data on monolithic servers, simplifying failure handling
by directly adopting existing fault-tolerance algorithms.
However, they suffer from suboptimal cost-efficiency due
to the adoption of monolithic metadata servers. We pro-
pose to bring disaggregation also to metadata manage-
ment and design DM-native fault tolerance algorithms
to achieve both reliability and high performance. Unfor-
tunately, existing fault tolerance algorithms suffer from
suboptimal performance due to their I/O amplifications
and reliance on the weak compute power in the mem-
ory pool. This chapter introduces FUSEE, the first
fully memory-disaggregated storage system with high-
performance replication and logging algorithms to effi-
ciently handle the complex failure situations on DM.

119

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 120

5.1 Introduction

Reliability is a critical aspect for in-memory storage systems [77,
187, 217]. However, the hardware failure isolation provided by
disaggregated memory (DM) becomes a double-edged sword.
On the one hand, DM isolates the failures of CPU and memory
from a single monolithic server, e.g., CPU failures in compute
nodes (CNs) no longer lead to the unavailability of data on mem-
ory nodes (MNs). Reliability can be potentially improved if the
failures can be handled separately. On the other hand, isolated
failures between compute and memory introduce more complex
failure situations, e.g., MN failures cause data loss and affect
the request processing of client applications (clients) on CNs.
Existing fault tolerance algorithms become insufficient to deal
with the decoupled failures and resources, making it challenging
to achieve reliability with high performance.

Existing work [192] adopts a semi-disaggregated design that
stores objects in the memory pool but retains metadata, i.e.,
shared system states that can affect correctness, managed on
monolithic metadata servers. The metadata server is also repli-
cated with state machine replication [154, 7] to ensure high avail-
ability and strong consistency for the critical shared metadata,
i.e., index and memory management data structures. Data, i.e.,
key-value (KV) objects, are also replicated on multiple MNs to
avoid data loss under MN failures. While this design can han-
dle the failures correctly, many additional resources have to be
exclusively assigned to the metadata servers to prevent it from
becoming a performance bottleneck [41, 211, 167], compromising
the resource efficiency of DM.

To achieve better cost-efficiency, it is critical to bring dis-
aggregation to metadata management, i.e., storing metadata in
the memory pool and directly managing them with clients in the
compute pool. However, it is non-trivial to achieve such a fully

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 121

memory-disaggregated design due to the following challenges.
1) Replicating the shared index. Memory-disaggregated stor-

age systems typically adopt hash indexes to organize KV ob-
jects. The hash index data structure is shared by all clients
in the compute pool to execute data access requests. Memory-
disaggregated storage systems have to replicate the index data
structure on multiple MNs to avoid index loss under MN failures.
Existing replication algorithms for shared data, e.g., state ma-
chine replication [154, 147, 101, 194] and shared register proto-
cols [133, 30, 23], assumes that the data are exclusively managed
by the same CPUs that execute data access requests. They heav-
ily rely on the CPUs to resolve conflicts and achieve strong con-
sistency. However, they are infeasible on DM since the shared
index is stored on MNs while requests are executed on CNs.
Meanwhile, simply employing consensus protocols [154, 115, 147]
or remote locks [192] on CNs suffer from poor performance and
scalability due to their severe I/O amplifications and lock con-
tentions [213, 20, 39, 201].

2) Metadata corruption under client failures. For existing
semi-disaggregated storage systems, failures in CNs do not af-
fect metadata because the CPUs of monolithic metadata servers
exclusively modify metadata. However, clients directly access
and modify metadata on memory nodes in the fully memory-
disaggregated setting. As a result, client failures can leave par-
tially modified metadata accessible by others, compromising the
correctness of the entire KV store.

We propose FUSEE, a fully disaggregated storage system to
address the above challenges. First, to replicate the shared in-
dex data structure with high performance and strong consis-
tency, FUSEE proposes the SNAPSHOT replication protocol.
SNAPSHOT reduces the number of sequential I/O operations
with a broadcast-based write protocol and efficiently resolves
concurrency conflicts with simple yet efficient rule-based con-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 122

flict resolution. Besides, to deal with the metadata corruption,
FUSEE adopts an embedded operation log scheme to recover
clients’ partially executed operations. The embedded operation
log reduces the additional I/O on the critical path for log main-
tenance by reusing the memory allocation order and embedding
log entries in KV objects.

We implement FUSEE from scratch and evaluate its perfor-
mance using both micro and YCSB benchmarks [50]. Compared
with Clover and pDPM-Direct [192], two state-of-the-art semi-
disaggregated storage systems, FUSEE achieves up to 4.5 times
higher overall throughput and exhibits lower operation latency
with less resource consumption. The code of FUSEE is available
at https://github.com/dmemsys/FUSEE.

In summary, this chapter makes the following contributions:

• A fully memory-disaggregated storage system that achieves
reliability with high performance.

• A client-centric replication protocol that uses conflict reso-
lution rules to enable clients to collaboratively resolve con-
flicts. The protocol is verified with TLA+ [114] for safety
and the absence of deadlocks under crash-stop failures.

• An embedded operation log scheme to recover the cor-
rupted metadata with low log maintenance overhead.

• The implementation and evaluation of FUSEE to demon-
strate the efficiency and effectiveness of our design.

5.2 Background and Motivation

5.2.1 Semi-Memory-Disaggregated Storage System

Clover [192] is a state-of-the-art storage system built on DM.
It adopts a semi-disaggregated architecture that separates data

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 123

Compute Pool
Clients

Net.

Memory Pool

KV Objects Index

MMI

Metadata Server

(a) Clover

Net.

Compute Pool
Clients

Memory Pool

KV Objects
Index
MMI

(b) FUSEE

Figure 5.1: Two architectures of memory-disaggregated storage systems. (a)
The semi-disaggregated architecture (Clover [192]). (b) The fully disaggre-
gated architecture proposed in this work.

and metadata to lower the ownership cost and prevent the com-
pute power of data nodes from becoming the performance bot-
tleneck. As shown in Figure 5.1a, Clover deploys clients on
CNs and stores KV objects on MNs. It adopts additional mono-
lithic metadata servers to manage the metadata, including mem-
ory management information (MMI) and the hash index. For
SEARCH requests, clients look up the addresses of the KV objects
from metadata servers and then fetch the data on MNs using
RDMA_READ operations. For INSERT and UPDATE requests, clients
allocate memory blocks from metadata servers with RPCs, write
KV objects to MNs with RDMA_WRITE operations, and update the
hash index on the metadata servers through RPCs. To prevent
clients’ frequent memory allocation requests from overwhelming
the metadata servers, clients allocate a batch of memory blocks
one at a time and cache the hash index locally. As a result,
Clover achieves higher throughput under read-intensive work-
loads with less resource consumption.

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 124

However, the semi-disaggregated design cannot fully exploit
the resource efficiency of DM due to its monolithic-server-based
metadata management. On the one hand, monolithic metadata
servers consume additional resources, including CPUs, memory,
and RNICs. On the other hand, many compute and memory re-
sources have to be reserved and assigned to the metadata server
of Clover to achieve good performance due to the CPU-intensive
nature of metadata management [41, 211, 167]. To show the re-
source utilization issue of Clover, we evaluate its throughput
with 2 MNs, 64 clients, and a metadata server with different
numbers of CPU cores. We control the number of CPU cores
by assigning different percentages of CPU time with cgroup [37].
As shown in Figure 5.2, Clover has a low overall throughput with
a small number of CPU cores assigned to its metadata server. At
least six additional cores have to be assigned until the metadata
server is no longer the performance bottleneck.

To attack the problem, FUSEE enables clients to directly
access and modify the hash index and manage memory spaces
on MNs with a fully disaggregated design, as shown in Fig-
ure 5.1b. Compared with Clover, resource efficiency can be im-
proved because client-side metadata management eliminates the
additional metadata servers. The overall throughput can also
be improved because the computation bottleneck of metadata
management no longer exists.

5.3 Challenges

This section elaborates on the challenges of constructing a fully
memory-disaggregated storage system, i.e., index replication and
metadata corruption.

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 125

1 2 3 4 5 6 7 8
Number of Metadata Server CPUs

0.00

0.25

0.50

0.75

1.00
Th

ro
ug

hp
ut

 (M
op

s/
s) 100% update

80% update
50% update

Figure 5.2: The throughput of Clover
with an increasing number of meta-
data server CPUs.

16 32 48 64 80 96 112 128
Number of Clients

0

10

20

30

Th
ro

ug
hp

ut
 (K

op
s/

s) Derecho
Remote Lock

Figure 5.3: The throughput of
Derecho [90] and lock-based ap-
proaches.

5.3.1 Client-Centric Index Replication

The index must be replicated to prevent data loss on MN fail-
ures. Strong consistency, i.e., linearizability [83], is the most
commonly adopted correctness standard for data replication be-
cause it reduces the complexity of implementing upper-level ap-
plications [30, 6, 40]. Linearizability requires that operations on
an object appear to be executed in some total order that respects
the operations’ real-time order [83]. The key challenge of achiev-
ing a linearizable replicated hash index under the fully memory-
disaggregated setting comes from the client-centric computation
nature of DM.

First, existing replication methods are not applicable in the
fully memory-disaggregated setting due to their server-centric
nature. State machine replication (SMR) [154, 147, 101, 194,
190, 135, 152] and shared register protocols [30, 133] are two ma-
jor replication approaches that can achieve strong consistency,
i.e., linearizability [83]. However, both approaches are designed
with the assumption that a data replica is exclusively managed
by the CPUs that execute data access and modification requests.

SMR considers the CPUs and the data replica as a state ma-
chine and achieves strong consistency by forcing the state ma-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 126

chines to execute deterministic KV operations in the same global
order [154, 152]. They require strong server CPUs to reach a
consensus on a global operation order and apply state transition
to replicas. Besides, shared register protocols view the CPU and
the data replica as a shared register with READ and WRITE inter-
faces. Linearizability is achieved with a last-writer-wins conflict
resolution scheme [133] that forces a majority of shared registers
to always hold data with the newest timestamps. This approach
also heavily relies on server-side CPUs to compare timestamps
and apply data updates. The challenge with the server-centric
approaches is that in the fully memory-disaggregated scenario,
there is no such management CPU because all clients directly
access and modify the hash index with one-sided RDMA verbs.

Second, naively adopting consensus protocols or remote locks
among clients results in poor performance due to the amplified
number of I/O operations and high concurrency control over-
head on synchronizing requests. To show the performance issues
of consensus protocols and remote locks, we store and replicate
a shared object on two MNs and vary the number of concur-
rent clients. We use a state-of-the-art consensus protocol Dere-
cho [90] and an RDMA CAS-based spin lock to ensure the strong
consistency of the replicated object. As shown in Figure 5.3,
both Derecho and lock-based approaches exhibit poor overall
throughput and cannot scale with the growing number of con-
current clients.

5.3.2 Metadata Corruption

In fully memory-disaggregated storage systems, crashed CNs
can leave partially modified metadata and data accessible by
other healthy CNs. Since the metadata contains important sys-
tem states, metadata corruption compromises the correctness of
the entire system. Specifically, crashed clients may leave the in-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 127

Compute Pool

CN

App

Client
IPC

MN MN MN

KV Object (R0)

Index (R1)

MMI (R0)

KV Object (R2)

Index (R0)

MMI (R1)

KV Object (R1)

Index (R2)

MMI (R2)

RDMA
Memory Pool

CN

App

Client
IPC

CN

App

Client
IPC

CN

Master

Figure 5.4: The FUSEE overview (MMI, Index, and KV objects have multiple
replicas, i.e., R0, R1, and R2. R0 is the primary replica.).

dex in a partially modified state. Other healthy clients may not
be able to access data or even access wrong data with the cor-
rupted index. Moreover, crashed clients may allocate memory
spaces but not use them, causing severe memory leakage.

This problem is akin to the crash-consistency problem in file
systems [29, 158]. Existing file systems typically use write-ahead
logs to recover the corrupted metadata on recovery [104, 145].
However, existing logging algorithms introduce additional I/O
operations on the critical path of executing operations, resulting
in high operation latency.

5.4 The FUSEE Design

5.4.1 Overview

As shown in Figure 5.4, FUSEE consists of clients, MNs, and a
master. Clients provide SEARCH, INSERT, DELETE, and UPDATE
interfaces for applications to access KV objects. MNs store the

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 128

Slot 0 Slot 1 Slot 2 Slot 3 Slot n

old-KV new-KV

UPDATE
in-MN addr Fp

48bit 8bit
Len
8bit

Figure 5.5: The structure of an index replica.

replicated memory management information (MMI), hash index,
and KV objects. The master is a cluster management process
responsible only for initializing clients and MNs and recovering
data under client and MN failures.

FUSEE replicates both the hash index and KV objects to
tolerate MN failures. We adopt RACE hashing (Section 5.4.2)
as the index data structure and the two-level memory allocation
scheme proposed in the previous chapter to allocate and repli-
cate memory space on multiple MNs (Section 5.4.3). The SNAP-
SHOT replication protocol is proposed to enforce the strong con-
sistency of the replicated hash index (Section 5.4.4). Moreover,
FUSEE uses logs to handle the corrupted metadata under client
failures and adopts an embedded operation log scheme to re-
duce the log maintenance overhead (Section 5.4.5). Other opti-
mizations are introduced in Section 5.4.6 to further improve the
system performance.

5.4.2 RACE Hashing

RACE hashing is a one-sided RDMA-friendly hash index. As
shown in Figure 5.5, it contains multiple 8-byte slots, with each
storing a pointer referring to the address of a KV pair, an 8-bit
fingerprint (Fp), i.e., a part of the key’s hash value, and the
length of the KV object (Len) [230]. For SEARCH requests, a
client reads the slots of the hash index according to the hash
value of the target key and then reads the KV object on MNs
according to the pointer in the slot. For UPDATE, INSERT, and

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 129

DELETE requests, RACE hashing adopts an out-of-place modi-
fication scheme. It first writes the KV object to the memory
pool and then modifies the corresponding slot in the hash index
atomically with an RDMA_CAS. Nevertheless, RACE hashing only
supports a single index replica.

5.4.3 Two-Level Memory Allocation

FUSEE adopts the two-level memory allocator scheme intro-
duced in Section 3.3.2 to allocate and replicate memory blocks
that hold KV objects.

The two-level memory allocation scheme shards the memory
space on MNs into 2 GB memory regions. FUSEE maps each
region to r MNs with consistent hashing, where r is the repli-
cation factor. Specifically, consistent hashing maps a region to
a position in a hash ring. The replicas are then stored at the r

MNs successively following the position and the primary region
is placed on the first of the r MN.

Allocating a memory space for a KV object happens before
writing the KV pair, as introduced in Section 5.4.2. A client
first allocates coarse-grained memory blocks by sending ALLOC
requests to MNs. On receiving an ALLOC request, an MN first al-
locates a memory block from one of its primary memory regions.
As introduced in Section 3.3.2, the two-level memory allocator
maintains a block allocation table for each region to record which
client allocates from the region. The MN then records the client
ID in the block allocation tables of both primary and backup
regions. The coarse-grained memory allocation information is
thus replicated on r MNs and can survive MN failures. Finally,
it replies to the calling client with the address of the replicated
memory blocks. Fine-grained allocation for KV objects is also
conducted with the client-side slab allocators.

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 130

A

B

B

C

Primary slot

Backup slot 1

Backup slot 3

Backup slot 2

CBB

22

11

3 3

A

v_list

A B A C

CBB

Client 1 (Last writer)

Swap-Back:

B

AA C

Expected: A

Swap:

Client 2

Swap:

Swap-Back: BB A

A

C

Expected:

Mem Pool

(vold)

(vnew)

v_list

(vold)

(vnew)

Figure 5.6: The SNAPSHOT replication protocol.

5.4.4 The SNAPSHOT Replication Protocol

In FUSEE, multiple clients concurrently read or write the same
slot in the replicated hash index to execute SEARCH or UPDATE
requests, as shown in Figure 5.6. To efficiently maintain the
strong consistency of slot replicas in the replicated hash index,
FUSEE proposes the SNAPSHOT replication protocol, a client-
centric replication protocol that achieves linearizability without
the expensive request serialization.

There are two main challenges to efficiently achieving lin-
earizability under the fully memory-disaggregated setting. First,
how to protect readers from reading incomplete states during
read-write conflicts. Second, how to efficiently resolve write-
write conflicts without introducing too many I/Os to serialize
all conflicting requests on the critical path.

To address the first challenge, SNAPSHOT splits the repli-
cated hash index into a single primary replica and multiple
backup replicas. Write conflicts are resolved in all backup repli-
cas before revising the primary slot. Hence, incomplete states
during write conflicts only appear on backup replicas and the
primary replica always contains the correct value. Readers can

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 131

simply read the contents in the primary replica without per-
ceiving the incomplete states. To address the second challenge,
SNAPSHOT adopts a last-writer-wins conflict resolution scheme
similar to shared register protocols. SNAPSHOT leverages the
out-of-place modification characteristic of RACE hashing that
conflicting writers always write different values into the same
slot because the values are pointers referring to KV objects at
different locations. Three conflict-resolution rules are thus de-
fined based on the values written by conflicting writers in backup
replicas, which enable clients collaboratively to decide on a sin-
gle last writer under write conflicts.

Algorithm 1 shows the READ and WRITE processes of the SNAP-
SHOT replication protocol. Here we focus on the execution of
SNAPSHOT when no failure occurs and leave the discussion of
failure handling in Section 5.5. We call the slots in the primary
and backup hash indexes primary slots and backup slots.

For READ operations, clients directly read the values in the
primary slots with RDMA_READ. For WRITE operations, SNAP-
SHOT first resolves write conflicts by letting conflicting writers
collaboratively decide on a last writer with three conflict res-
olution rules and then let the decided last writer modify the
primary slot. Figure 5.6 shows the process that two clients si-
multaneously WRITE the same slot. The corresponding codes
and variables are shown in Algorithms 1 and 2.

Clients first read the value in the primary slot as vold (1⃝).
Then each client modifies all backup slots by broadcasting RDMA_CAS
operations to all backup slots (2⃝) with vold as the expected
value and vnew as the swap value. On receiving an RDMA_CAS,
the RNICs on MNs atomically modify the value in the target
slot only if vold matches the current value in the slot. Since all
writers initiate RDMA_CAS operations with the same vold and dif-
ferent vnews and all backup slots initially hold vold, the atomicity
of RDMA_CAS ensures that each backup slot can only be modified

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 132

once by a single writer. As a result, the values in all backup
slots will be fixed after each of them has received one RDMA_CAS
from one writer 1. Meanwhile, since an RDMA_CAS returns the
value in the slot before it is modified, all clients can perceive the
new values in the backup slots (3⃝) through the return values
of the broadcast of RDMA_CAS operations. The return values are
denoted as v_list in Algorithm 1.

Algorithm 1 The SNAPSHOT replication protocol
1: procedure READ(slot)
2: v = RDMA_READ_primary(slot)
3: if v = FAIL then deal with failure
4: return v
5: procedure WRITE(slot, vnew)
6: vold = RDMA_READ_primary(slot)
7: v_list = RDMA_CAS_backups(slot, vold, vnew)
8: // Change all the volds in the v_list to vnews.
9: v_list = change_list_value(v_list, vold, vnew)

10: win = EVALUATE_RULES(v_list) ▷ The last writer returns the
winning rule while other writers return LOSE.

11: if win = Rule_1 then
12: RDMA_CAS_primary(slot, vold, vnew)
13: else if win ∈ {Rule_2, Rule_3} then
14: RDMA_CAS_backups(slot, v_list, vnew)
15: RDMA_CAS_primary(slot, vold, vnew)
16: else if win = LOSE then
17: repeat
18: sleep a little bit
19: vcheck = RDMA_READ_primary(slot)
20: if notified failure then goto Line 24
21: until vcheck ̸= vold
22: if vcheck = FAIL then goto Line 24
23: else if win = FAIL then
24: deal with failure
25: return

With v_list, SNAPSHOT defines the following three rules
1The process that all conflicting clients broadcast RDMA_CASes to modify backup slots

is just like taking a snapshot, which is why the replication protocol is named SNAPSHOT.

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 133

to let conflicting clients collaboratively decide on a last writer:

Rule 1: A client that has successfully modified all the
backup slots is the last writer.

Rule 2: A client that has successfully modified a majority
of backup slots is the last writer.

Rule 3: If no last writer can be decided with the former
two rules, the client that has written the minimal target
value (vnew) is considered as the last writer.

Algorithm 2 The rule evaluation procedure of SNAPSHOT
1: procedure evaluate_rules(v_list, slot, vnew, vold)
2: vmaj = The majority value in v_list
3: cntmaj = The number of vmaj in v_list
4: if FAIL ∈ v_list then
5: return FAIL
6: else if cntmaj = Len(v_list) then
7: return Rule 1 if vmaj = vnew else LOSE
8: else if 2 ∗ cntmaj > Len(v_list) then
9: return Rule 2 if vmaj = vnew else LOSE

10: else if vnew ̸∈ v_list then
11: return LOSE
12: vcheck = RDMA_READ(slot)
13: if vcheck = FAIL then
14: return FAIL
15: else if vcheck ̸= vold then
16: return FINISH
17: else if min(v_list) = vnew then
18: return Rule 3
19: return LOSE

The three rules are evaluated sequentially as shown in Al-
gorithm 2. Rule 1 provides a fast path when there are no
conflicting modifications. Rule 2 preserves the most successful
CAS operations to minimize the overhead of executing atomic
operations on RNICs when conflicts are rare [96]. Finally, Rule

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 134

3 ensures that the protocol can always decide on the last writer.
To ensure the uniqueness of the last write, a client issues an-
other RDMA_READ to check if the primary slot has been modified
(Line 12, Algorithm 2) before evaluating Rule 3. If the pri-
mary slot has not been modified, then the RDMA_CAS_backups
(Line 7, Algorithm 1) of the client must happen before the last
writer modifies the primary slot. Hence, it is safe to evaluate
Rule 3 because the v_list must contain the value of the last
writer if it has already been decided. Otherwise, Rule 3 will
not be evaluated because the modification of the primary slot
means the decision of a last writer.

Relying on the three rules, a unique last writer can be decided
without any further network communications. For example, in
Figure 5.6, Client 1 is the last writer according to Rule 2. Client
1 then modifies the backup slots that do not yet contain its
proposed value using RDMA_CASes and then modifies the primary
slot. Other conflicting clients iteratively READ the value in the
primary slot and return success after finding the change in the
primary slot. The primary slot may remain unmodified only
under the situation when the last writer crashed, which will be
discussed in Section 5.5.

Correctness. The SNAPSHOT replication protocol guar-
antees linearizability of the replicated hash indexes with last-
writer-wins conflict resolution like shared register protocols [30,
133]. We demonstrate the correctness of SNAPSHOT using the
notion of the linearizable point of KV operations. A lineariz-
able point is a point when an operation atomically takes effect
in its invocation and completion [83]. For READ operations, the
linearizable point happens when it gets the value in the primary
slot. For WRITE operations, the linearizable point of the last
writer happens when it modifies the primary slot. Linearizable
points of other conflicting writers appear instantly before the
last writer modifies the primary slot. Conflicts between readers

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 135

List Heads

Fr
ee

 L
is

ts Size Class 0

Size Class n
Predefined allocation order

Client-Side
MN-Side

Pre-positioned
next pointer

Pe
r-s

iz
e-

cl
as

s
Li

nk
ed

 L
is

t

Addresses of free objects

Figure 5.7: The organization of the embedded operation log.

and the last writer are resolved by RNICs because the last writer
atomically modifies the primary slot using RDMA_CAS operations
and readers access the primary slot using RDMA_READ operations.

Performance. SNAPSHOT guarantees a bounded worst-
case latency when clients WRITE the hash index. Under the sit-
uation when Rule 1 is triggered, 3 RTTs are required to finish
a WRITE operation. Under situations when Rule 2 or Rule 3 is
triggered, 4 or 5 RTTs are required, respectively.

5.4.5 Embedded Operation Log

Operation logs are generally adopted to repair the partially mod-
ified hash index incurred by crashed clients. Conventional op-
eration logs need to record a log entry for each KV request
that modifies the hash index. The log entries are written in
an append-only manner so that the order of log entries reflects
the execution order of KV requests. The recovery process can
thus find the crashed request and fix the corrupted metadata by
scanning the ordered log entries.

Constructing operation logs incurs high log maintenance over-
head on DM since writing log entries adds additional I/Os to the

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 136

UsedNext Pointer Op FieldOld Value
1 bit6 Byte 7 bit8 Byte

Log entryKV data

CRC
1 Byte

Object

Prev Pointer
6 Byte

Figure 5.8: The embedded log entry.

critical paths of KV requests. To reduce the log maintenance
overhead, FUSEE adopts an embedded operation log scheme that
embeds log entries into KV objects. The embedded log entry
is written together with its corresponding KV object with one
RDMA_WRITE operation. The additional RTTs required for per-
sisting log entries are thus eliminated.

However, by embedding log entries in KV objects, the execu-
tion order of KV requests cannot be maintained because the log
entries are no longer continuous. To address this problem, the
embedded operation log scheme reuses the memory allocation
order to reconstruct the operation execution order. As shown in
Figure 5.7, the two-level memory allocator maintains a free list
for each size class locally on each client side. FUSEE maintains
per-size-class linked lists in the memory pool to organize the
log entries of a client in the execution order of KV requests. A
per-size-class linked list is a doubly linked list that links all al-
located objects of the size class in the order of their allocations.
The object allocation order can reflect the execution order of
KV requests because all KV requests that modify the hash in-
dex, e.g., INSERT and UPDATE, need to allocate objects for new
KV pairs. For DELETE operations, FUSEE allocates a temporary
object recording the log entry and the target key and reclaims
the object on finishing the DELETE request. FUSEE stores the
list heads on MNs during the initialization of clients, which will
be accessed during the recovery process of clients (Section 5.5).

As shown in Figure 5.8, an embedded log entry is a 22-byte
data structure stored behind each KV object. It contains a 6-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 137

byte next pointer, a 6-byte prev pointer, an 8-byte old value, a
1-byte CRC, a 7-bit opcode, and a used bit. The next pointer
points to the next object of the size class that will be allocated
and the prev pointer points to the object allocated before the
current one. The old value records the old value of the primary
slot for recovery proposes. The CRC is adopted to check the
integrity of the old value under client failures. The operation
field records the operation type, i.e., INSERT, UPDATE, or DELETE,
so that the crashed operation can be properly retried during
recovery. The used bit indicates if an object is in use or free.
Storing the used bit at the end of the entire object can be used
to check the integrity of an entire object. This is because the
order-preserving nature of RDMA_WRITE operations ensures that
the used bit is written only after all other contents in the object
have been successfully written.

FUSEE efficiently organizes per-size-class linked lists by co-
designing the linked list maintenance process with the memory
allocation process. Since an object is always allocated from the
head of a local free list, the allocation order of each size class
is pre-determined. Based on the pre-determined order, for each
allocation, a client pre-positions the next pointer to point to the
free object in the head of the local free list and the prev pointer
to point to the last allocated object of the size class. Both the
next pointer and the prev pointer are thus known before each
allocation and the entire log entry can be written to MNs with
the KV pair in a single RDMA_WRITE.

Combined with the SNAPSHOT replication protocol, the ex-
ecution process is shown as follows. First, for each writer, a log
entry with an empty old value and CRC is written with the KV
object in a single RDMA_WRITE. Then, for the last writer of the
SNAPSHOT replication protocol, the old value is modified to
store the old value of the primary slot before the primary slot
is modified. For other non-last writers, the used bits in their

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 138

corresponding KV log entries are reset to ‘0’ after finding the
modification of the primary slot.

5.4.6 Optimizations

Adaptive index cache. Index caching is widely adopted on
RDMA-based KV stores to reduce the number of I/O operations
spent on remote memory access [209, 207, 206, 192]. For a key,
the index cache caches the remote addresses of the replicated
index slots and the addresses of the KV objects locally. With
the cached addresses, UPDATE, DELETE, and SEARCH requests can
read KV objects in parallel with searching the hash index, re-
ducing an RTT on cache hits. To guarantee cache coherence,
an invalidation bit is stored together with each object, which is
used by clients to check whether the object is valid or invalid.
However, by accessing the index cache, invalid KV objects can
be fetched into clients, causing read amplification.

To attack the read amplification issue, FUSEE adaptively
bypasses the index cache by distinguishing read-intensive and
write-intensive keys. For each cached key, FUSEE maintains
an access counter and an invalid counter which increases by 1
each time the key is accessed or found to be invalid. A client
calculates an invalid ratio I = invalid counter

access counter for each cached key.
The index cache is bypassed when accessing a key with I >
threshold because the key is write-intensive and the cached key
address points to an invalid KV object with high probability.
The invalid ratio can adapt to workload changes, i.e., a write-
intensive key becomes read-intensive, since the access counter of
the key keeps increasing while the invalid counter stops. Besides,
the adaptive scheme does not affect the SEARCH latency for most
cases since only write-intensive keys bypass the cache.
RDMA-related optimizations. KV requests require multiple
remote memory accesses. FUSEE adopts doorbell batching and

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 139

1 2 3 4 1 2 3 4 1 2Client

MN 1

MN 2

MN 3 Insert Update & Delete Search

c1 c2

c0 c0

Log Uncommitted
Redo on crash

Log Uncommitted
Redo on crash

c1 c2

Crash point

Write KV object

Write log commit

Write heartbeat

Read index bucket

Read KV object

CAS index

Figure 5.9: The workflows of different KV requests. INSERT: 1⃝ write the KV
object to all replicas and read the primary index slot. 2⃝ CAS all backup slots. 3⃝
write the old value to the log header. 4⃝ CAS the primary slot. UPDATE & DELETE:
1⃝ write the KV object, read the primary slot, and read the KV object according

to the index cache. 2⃝ CAS backup slots. 3⃝ write the old value to the log header.
4⃝ CAS the primary slot. SEARCH: 1⃝ read the primary slot and the KV object

according to the index cache. 2⃝ read the KV object on cache misses.

selective signaling [96] to reduce RDMA overhead. Figure 5.9
shows the procedures for executing different KV requests. Each
request consists of multiple phases with multiple network oper-
ations. For each phase, FUSEE adopts doorbell batching [96]
to reduce the overhead of transmitting network operations from
user space to RNICs and selective signaling to reduce the over-
head of polling RDMA completion queues. Consequently, each
phase only incurs 1 network RTT. For INSERT, DELETE, and
UPDATE requests, four RTTs are required in general cases. For
SEARCH requests, at most two RTTs are required and only one
RTT is required in the best case due to the index cache.

5.5 Failure Handling

Similar to existing replication protocols [101, 194], FUSEE relies
on a fault-tolerant master with a lease-based membership ser-
vice [78] to handle failures. The master maintains a membership
lease for both clients and MNs so that clients always know alive

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 140

MNs by periodically extending their leases. The failures of both
clients and MNs can be detected by the master when they no
longer extend their leases. Master crashes are handled by repli-
cating the master with state machine replication [78, 190, 194].
We model check FUSEE with TLA+ [114] for safety and absence
of deadlocks under MN failures.

5.5.1 Failure Model

We consider a partially synchronous system where processes,
i.e., clients and MNs, are equipped with loosely synchronized
clocks [58, 78, 101]. FUSEE assumes crash-stop failures, where
processes, i.e., clients and MNs, may fail due to crashing and
their operations are non-Byzantine.

Under this failure model, FUSEE guarantees linearizable op-
erations, i.e., each KV operation is atomically committed in a
time between its invocation and completion [83]. All the objects
of FUSEE are available under an arbitrary number of client
crashes and at most r−1 MN crashes, where r is the replication
factor.

5.5.2 Memory Node Crashes

MN crashes lead to failed accesses to KV objects and hash
slots. The complication comes from the unavailable primary
and backup slots that affect the normal execution of index READ
and WRITE operations. FUSEE relies on the fault-tolerant mas-
ter to execute operations on clients’ behalves under MN failures.
We first introduce how clients READ/WRITE the replicated slots
under MN failures and then introduce the master’s operations.

When executing index WRITE under MN crashes, FUSEE al-
lows the last writer decided by the SNAPSHOT replication pro-
tocol to continue modifying all alive slots to the same value.
Other writers send RPC requests to the master and wait for the

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 141

master to reply with a correct value in the replicated slots. Un-
der situations when no last writer can be decided, the master
decides the last writer and modifies all the index slots on be-
half of clients. For READ operations, executions are not affected
under the following two cases. First, if the primary slot is still
alive, clients can read the primary slot normally. Second, if the
primary slot crashes, clients read all alive backup slots. If all
alive backup slots contain the same value, reading this value
is safe because there are no write conflicts. Otherwise, clients
use RPCs and rely on the master to return a correct value for
the crashed slot. Since READ operations are only affected under
write conflicts, most READ can continue under the read-intensive
workloads that dominate in real-world situations [50, 215].

On detecting MN crashes, the master first blocks clients from
further modifying the crashed slots with the lease expiration.
The master then acts as a representative last writer that modifies
all alive slots to the same value. Specifically, the master selects
a value v in an alive backup slot and modifies all alive slots to v.
Since the SNAPSHOT protocol modifies the backup slots before
the primary slot, the values in the backup slots are always newer
than the primary slot. Hence, the master choosing a value from
a backup slot is correct because it proceeds the conflicting write
operations. In cases where all backup slots crash, the master
selects the value in the primary slot. Clients that receive old
values from the master retry their write operations to guarantee
that their new value is written. The master then writes the old
value in the operation log header to prevent clients from redoing
operations when recovering from crashed clients (Section 5.5.3).
Finally, the master reconfigures new primary and backup slots
and returns the selected value to all clients that wait for a reply.
After the reconfiguration of the primary and backup slots, all
KV requests can be executed normally without involving the
master. During the whole process, only accesses to the crashed

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 142

slots are affected and the blocking time can be short thanks to
the microsecond-scale membership service [78].

5.5.3 Client Crashes

Crashed clients may result in two issues. First, their allocated
memory blocks remain unmanaged, causing memory leakage.
Second, other clients may be unable to modify a replicated index
slot if the crashed client is the last writer. The master uses
embedded operation logs to address these two issues.

The recovery process is executed in the compute pool and
consists of two steps, i.e., memory re-management and index re-
pair. Memory re-management restores the coarse-grained mem-
ory blocks allocated by the client and the fine-grained object
usage information of the client. The recovery process first gets
all memory blocks managed by the crashed client by letting MNs
search for their local block allocation tables. Then the recovery
process traverses the per-size-class linked lists to find all used
objects and log entries. With the used objects and the allocated
memory blocks, the recovery process can easily restore the free
object lists of the crashed client. Hence, all the memory spaces
of the crashed client are re-managed.

The index repair procedure then fixes the partially modified
hash index. FUSEE deems all requests at the end of per-size-
class linked lists as potentially crashed requests. For incomplete
log entries, i.e., the used bit at the end of the log entry is not set,
the client must have crashed during writing the KV object (c0
in Figure 5.9). The object is directly reclaimed without further
operation since the writing of the object has not been completed.
For a log entry with an incomplete old value according to the
CRC field, FUSEE redoes the request according to the operation
field and the KV object. Under this situation, either the request
belongs to the last writer that crashed before committing the

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 143

log (c1 in Figure 5.9), or it belongs to other non-last writers.
In the first case, the values in the backup slots may not be
consistent and the primary slot has not been modified to a new
value. Redoing the request can make the backup and primary
slots consistent. In the second case, since the request of crashed
non-last writers has not been returned to clients, redoing the
request does not violate linearizability. For a request with a
complete old value, the request must belong to a last writer.
However, the request may finish (c3) or crash before the primary
slot is modified (c2). The recovery process checks the value in
the primary slot (vp) and the value in the old value (vold) to
distinguish c2 from c3. If vp = vold, the request crashed before
the primary was modified because vold records the value before
index modification. Since all backup slots are consistent, the
recovery process modifies the primary slot to the new value and
finishes the recovery. Otherwise, the request is finished and no
further operation is required.

5.5.4 Mixed Crashes

In situations where clients and MNs crash together, FUSEE
recovers the failures separately. FUSEE first lets the master
recover all MN crashes and then starts the recovery processes
for failed clients. KV requests can proceed because the master
acts as the last writer for all blocked KV requests. No request
is committed twice because the master commits the operation
logs on clients’ behalves.

5.6 Evaluation

5.6.1 Experiment Setup

Implementation. We implement FUSEE from scratch in C++
with 13k LOC. We implement RACE hashing carefully accord-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 144

ing to the paper due to no available open-source implementa-
tions. Coroutines are employed on clients to hide the RDMA
polling overhead, as suggested in [97, 230]. The design of FUSEE
is agnostic to the lower-level memory media of memory nodes,
i.e., any memory node with either persistent memory (PM) or
DRAM that provides READ, WRITE, and 8-byte CAS interfaces
is compatible. We adopt monolithic servers with RNICs and
DRAM to serve as MNs like Clover [209] since we do not have
access to smartNICs and PM. Specifically, we start an MN pro-
cess on a monolithic server to register RDMA memory regions
and serve memory allocation RPCs with a UDP socket. MN
processes serve memory allocation requests with UDP sockets.
Since the socket receive is a blocking system call, the process will
be in the blocked state with no CPU usage most of the time.
Testbed. We run all experiments on 22 physical machines (5
MNs and 17 CNs) on the APT cluster of CloudLab [57]. Each
machine is equipped with an 8-core Intel Xeon E5-2450 pro-
cessor, 16GB DRAM, and a 56Gbps Mellanox ConnectX-3 IB
RNIC. These machines are interconnected with 56Gbps Mel-
lanox SX6036G switches.
Comparison. We compare FUSEE with two state-of-the-art
KV stores on DM, i.e., pDPM-Direct and Clover [209]. pDPM-
Direct stores and manages the KV index and memory space on
the clients. It uses a distributed consensus protocol to ensure
metadata consistency and locks to resolve data access conflicts.
We extend the open-source version of pDPM-Direct to support
string keys for fair comparison in our evaluation. Clover is
a semi-disaggregated KV store that adopts monolithic servers
to manage memory spaces and a hash index. All UPDATE and
INSERT requests have to go through the metadata server, re-
quiring additional compute power. For both pDPM-Direct and
Clover, client-side caches are enabled following their default set-
tings. To show the effectiveness of SNAPSHOT and the adap-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 145

tive index cache, we implement FUSEE-CR and FUSEE-NC,
two alternative versions of FUSEE. FUSEE-CR replicates index
modifications by sequentially CASing all replicas to enforce se-
quential accesses similar to chain replication [194]. FUSEE-NC
is the version of FUSEE without a client-side cache. For all
these methods, we evaluate their throughput and latency with
both micro and YCSB [50] benchmarks.

Since the open-source version of Clover and pDPM-Direct
only support one index replica, we compare FUSEE with these
two approaches with a single index replica and two data replicas
in the microbenchmark (Section 5.6.2) and YCSB performance
(Section 5.6.3) evaluations. When evaluating FUSEE with a
single index replica, the embedded log is constructed, but the
commit of the log is skipped since committing the log is used
to ensure the consistency of multiple index replicas. The per-
formance of FUSEE with multiple replicas is evaluated in the
fault-tolerance evaluation (Section 5.6.4).

5.6.2 Microbenchmark Performance

We use microbenchmarks to evaluate the operation throughput
and latency of the three approaches. For FUSEE and pDPM-
Direct, we use 16 CNs and 2 MNs. For Clover, we use 17 CNs
and 2 MNs because it needs an additional metadata server, con-
suming 8 more CPU cores and an additional RNIC. We do not
use multiple metadata servers for Clover because the current
open-source implementation of Clover only supports a single
metadata server. We run 128 client processes on the 16 CNs,
where each CN holds 8 clients. The DELETE of Clover is not
tested because Clover does not support it.

Latency. To evaluate the latency of KV requests, we use a
single client to iteratively execute each operation 10, 000 times.
Figure 5.10 shows the cumulative distribution functions (CDFs)

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 146

0 20 40 60 80 100
Latency (us)

0.00

0.25

0.50

0.75

1.00
C

D
F

FUSEE
Clover
pDPM-Direct

(a) INSERT latency CDF.

0 20 40 60 80 100
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
Clover
pDPM-Direct

(b) UPDATE latency CDF.

0 10 20 30 40 50
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F

FUSEE
Clover
pDPM-Direct

(c) SEARCH latency CDF.

10 20 30 40 50
Latency (us)

0.00

0.25

0.50

0.75

1.00

C
D

F
FUSEE
pDPM-Direct

(d) DELETE latency CDF.

Figure 5.10: The CDFs of different KV request latency under the microbench-
mark.

of the request latency. FUSEE performs the best on INSERT and
UPDATE, since the SNAPSHOT replication protocol has bounded
RTTs. FUSEE has a little higher SEARCH latency than Clover
since FUSEE reads the hash index and the KV object in a single
RTT, which is slower than only reading the KV object in Clover.
FUSEE has slightly higher DELETE latency than pDPM-Direct
because FUSEE writes a log entry and reads the hash index in
a single RTT, which is slower than just reading the hash index
in pDPM-Direct.

Throughput. Figure 5.11 shows the throughput of the three
approaches. The throughput of pDPM-Direct is limited by its
remote lock, which causes extensive lock contention as the num-
ber of clients grows. For Clover, even though it consumes more
hardware resources, i.e., 8 additional CPU cores and an RNIC,

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 147

search insert update delete
Operation

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s/

s)
Clover
pDPM-Direct
FUSEE

Figure 5.11: The throughputs of
microbenchmark.

YCSB-A YCSB-C
Workloads

0

5

10

15

Th
ro

ug
hp

ut
 (M

op
s/

s) 1024 KV
512 KV
256 KV

Figure 5.12: The throughput of
FUSEE under different KV sizes.

the scalability is still lower than FUSEE. This is because the
CPU processing power of the metadata server bottlenecks its
throughput. On the contrary, FUSEE improves the overall
throughput by eliminating the computation bottleneck of the
metadata server and efficiently resolving conflicts with the SNAP-
SHOT replication protocol.

5.6.3 YCSB Performance

For YCSB benchmarks [50], we generate 100, 000 keys with the
Zipfian distribution (θ = 0.99). We use 1024-byte KV objects,
which is representative of real-world workloads [50, 36, 54]. The
hardware setup is the same as microbenchmarks.

YCSB Throughput. Figure 5.13 shows the throughput of
three approaches with different numbers of clients. Clover per-
forms the best under a small number of clients since adopting
the metadata server simplifies KV operations. Compared with
Clover, pDPM-Direct and FUSEE require more RDMA oper-
ations to resolve index modification conflicts. As the number
of clients grows, the throughput of Clover and pDPM-Direct
does not increase because the throughput is bottlenecked by the
metadata server and the lock contention, respectively. Com-
pared with Clover, FUSEE scales better with the growing num-
ber of clients while consuming fewer resources. Compared with

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 148

50 100
Number of Clients

0.0

1.0

2.0

3.0

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(a) A (SEARCH:UPDATE = 0.5:0.5).

50 100
Number of Clients

0.0

2.0

4.0

6.0

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(b) B (SEARCH:UPDATE = 0.95:0.05).

50 100
Number of Clients

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(c) C (100% SEARCH).

50 100
Number of Clients

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

(d) D (SEARCH:INSERT = 0.95:0.05).

Figure 5.13: The scalability of FUSEE under different YCSB workloads.

pDPM-Direct, FUSEE improves the throughput by avoiding
lock contention. When the number of clients reaches 128, the
throughput of FUSEE is 4.9× and 117× higher than Clover and
pDPM-Direct, respectively.

Figure 5.14 shows the throughput of the three approaches
with a write-intensive workload (YCSB-A) and a read-intensive
workload (YCSB-C) when varying numbers of MNs from 2 to 5
using 128 clients. The throughput of pDPM-Direct and Clover
does not increase due to being limited by lock contention and
the limited compute power of the metadata server, respectively.
As for FUSEE, the throughput improves as the number of mem-
ory nodes increases from 2 to 3. There is no further through-
put improvement because the total throughput is limited by the
number of compute nodes.

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 149

2 3 4 5
Memory Node Number

0.0

2.5

5.0

7.5

10.0
Th

ro
ug

hp
ut

 (M
op

s/
s)

0.08 0.07 0.08 0.07

Clover
pDPM-Direct
FUSEE

(a) YCSB-A throughput.

2 3 4 5
Memory Node Number

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s/

s)

0.09 0.08 0.08 0.09

(b) YCSB-C throughput.

Figure 5.14: The throughput with different numbers of MNs.

0.00 0.25 0.50 0.75 1.00
Search Ratio

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (M

op
s/

s) FUSEE
Clover
pDPM-Direct

Figure 5.15: Throughput under
different SEARCH-UPDATE ratios.

0.00 0.25 0.50 0.75 1.00
Invalidation Threshold

2.8

3.0

3.2

3.4
Th

ro
ug

hp
ut

 (M
op

s/
s)

Figure 5.16: Throughput under
different adaptive cache thresh-
olds.

Figure 5.12 shows the throughput of FUSEE under smaller
KV sizes. Since the throughput of FUSEE is limited by the
bandwidth of MN-side RNICs, the YCSB-C throughput of FUSEE
increases by 44.1% and 55.9% with 512B and 256B KV objects,
respectively. The performance of FUSEE is not affected by the
dataset size because the performance depends only on the num-
ber of RTTs of KV requests, which is deterministic as presented
in Section 5.4.

Read-write performance. Figure 5.15 shows the through-
put of the three approaches under different SEARCH-UPDATE ra-
tios. As the portion of UPDATE grows, the throughput of all
three methods decreases because UPDATE requests involve more
RTTs. However, FUSEE exhibits the best throughput due to

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 150

1 2 3 4 5
Replication Factor

10

20

M
ed

ia
n

La
te

nc
y

(u
s)

FUSEE
FUSEE-CR
FUSEE-NC

(a) UPDATE median latency.

1 2 3 4 5
Replication Factor

10

15

20

25

M
ed

ia
n

La
te

nc
y

(u
s)

FUSEE
FUSEE-CR
FUSEE-NC

(b) DELETE median latency.

1 2 3 4 5
Replication Factor

10

20

M
ed

ia
n

La
te

nc
y

(u
s)

FUSEE
FUSEE-CR
FUSEE-NC

(c) INSERT median latency.

1 2 3 4 5
Replication Factor

6

8

M
ed

ia
n

La
te

nc
y

(u
s) FUSEE

FUSEE-CR
FUSEE-NC

(d) SEARCH median latency.

Figure 5.17: Median operation latency of FUSEE, FUSEE-NC and FUSEE-
CR under different replication factors.

eliminating the computation bottleneck of metadata servers.
Adaptive index cache performance. Figure 5.16 shows

the YCSB-A throughput of FUSEE with different adaptive in-
dex cache thresholds. The throughput of FUSEE decreases with
the increasing thresholds because more bandwidth is wasted on
fetching invalidated KV objects with a high threshold.

5.6.4 Fault Tolerance & Elasticity

SNAPSHOT Replication Protocol. Figure 5.17 shows the
median latency of FUSEE, FUSEE-NC, and FUSEE-CR with
different replication factors under microbenchmarks. We set
both the numbers of index replicas and data replicas to r where r
is the replication factor. The latency of FUSEE-CR on INSERT,

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 151

1 2 3 4 5
Replication Factor

0

10

20

Th
ro

ug
hp

ut
 (M

op
s/

s) A
B

C
D

Figure 5.18: YCSB throughput under different replication factors.

UPDATE, and DELETE grows linearly as the replication factor be-
cause it modifies index replicas sequentially, and the number
of RTTs equals the replication factor. Differently, the latency
of FUSEE grows slightly with the replication factor because
SNAPSHOT has a bounded number of RTTs. For SEARCH re-
quests, FUSEE and FUSEE-CR have comparable latency since
they execute SEARCH similarly. Compared with FUSEE-NC,
FUSEE has lower latency for UPDATE, DELETE, and SEARCH due
to fewer RTTs. The INSERT latency is slightly higher than that
of FUSEE-NC because FUSEE spends additional time to main-
tain the local cache.

Figure 5.18 shows the throughput of FUSEE under different
replication factors. For YCSB-A and YCSB-B, the throughput
drops as the replication factor grows. The YCSB-D through-
put slightly drops from 8.8 Mops to 8.6 Mops due to the read-
intensive nature of YCSB-D. The YCSB-C throughput remains
the same due to no index modifications.

Search under Crashed MNs. FUSEE allows SEARCH re-
quests to continue when MNs crash under read-intensive work-
loads. Figure 5.19 shows the throughput of 9 seconds of exe-
cution, where memory node 1 crashes at the 5th second. The
overall throughput drops to half of the peak throughput because
all data accesses come to one MN. The throughput is then lim-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 152

0 2 4 6 8
Execution Time (seconds)

0.0

2.5

5.0

7.5

10.0
Th

ro
ug

hp
ut

 (M
op

s/
s)

MN 1 crashes

Figure 5.19: YCSB-C throughput
under a crashed memory node.

0 5 10 15
Execution Time (seconds)

0

2

4

6

8

Th
ro

ug
hp

ut
 (M

op
s/

s)

16 clients added

16 clients
removed

Figure 5.20: The elasticity of
FUSEE.

ited by the network bandwidth of a single RNIC.
Recover from Crashed Clients. To evaluate the efficiency

of a client recovering from failures, we crash and recover a client
after UPDATE 1, 000 times. As shown in Table 5.1, FUSEE takes
177 milliseconds to recover from a client failure. The memory
registration and connection re-establishment account for 92%
of the total recovery time. The log traversal and KV request
recovery only account for 4% of the recovery time, which implies
the affordable overhead of log traversal.

Elasticity. FUSEE supports dynamically adding and shrink-
ing clients. We show the elasticity of FUSEE by dynamically
adding and removing 16 clients when running the YCSB-C work-
load. As shown in Figure 5.20, the throughput increases when
the number of clients increases from 16 to 32 and resumes to the
previous level after removing 16 clients.

5.7 Related Work

Replication protocols are widely discussed in distributed stor-
age systems to achieve high availability and reliability. Both
traditional [194, 190, 7, 115, 133, 12, 143, 74] and RDMA-
based [101, 226, 188] replication protocols are designed to en-
sure data durability. Unfortunately, both approaches are server-

CHAPTER 5. EFFICIENT FAULT TOLERANCE ALGORITHMS 153

Table 5.1: Client recovery time breakdown.

Step Time (ms) Percentage
Recover connection & MR 163.1 92.1%
Get Metadata 0.3 0.2%
Traverse Log 3.5 2.0%
Recover KV Requests 3.5 2.0%
Construct Free List 6.6 3.7%
Total 177.0 100%

centric and heavily rely on the CPUs on the storage servers to
resolve conflicts and achieve strong consistency. In contrast,
SNAPSHOT is a client-centric replication protocol designed for
disaggregated memory and achieves high scalability with collab-
orative conflict resolution.

5.8 Summary

This chapter introduces the design and implementation of fault
tolerance algorithms for memory-disaggregated storage systems.
We propose a client-centric replication protocol to handle mem-
ory node failures and an embedded operation log scheme to
deal with compute node failures. Both algorithms achieve high
performance by optimizing I/O, concurrency, and asymmetric
compute capabilities, the three critical aspects of disaggregated
memory. We integrate the proposed algorithms in FUSEE, the
first fully memory-disaggregated storage system. Experimen-
tal results show that FUSEE outperforms the state-of-the-art
approaches by up to 4.5× with less resource consumption.

2 End of chapter.

Chapter 6

Industrial Practice:
Productionizing a
Memory-Disaggregated
Caching Service

Outline

Distributed caching services (DCSes) are widely adopted
by various cloud applications to achieve high data ac-
cess performance. Unfortunately, existing DCSes suffer
from poor memory efficiency and elasticity due to their
deployment on monolithic servers. This chapter intro-
duces the DMC the industrial practice in Huawei Cloud
that uses disaggregated memory (DM) to improve the
memory efficiency of its DCS. We close the gap between
academia and industry regarding disaggregated memory
research by discussing the requirements, design princi-
ples and choices, and lessons learned in constructing a
production-level memory-disaggregated caching service.

154

CHAPTER 6. INDUSTRIAL PRACTICE 155

6.1 Introduction

Fully-managed distributed caching services (DCSes), e.g., Elas-
tiCache [60], MemoryStore [75], etc., enable applications to store
and access data in the cloud with high throughput and low la-
tency. They automatically manage and scale caching service
instances, shifting the burden of systems management from ap-
plication developers to cloud providers.

By offering DCSes, cloud providers seek to maximize resource
efficiency and scale resources rapidly according to user requests.
However, existing DCSes satisfy neither requirement due to their
deployment on monolithic servers. First, they suffer from low
memory utilization due to the over-provisioned, stranded [123],
and reserved memory. According to our analysis of a large-scale
production cluster of Huawei Cloud DCS, the average memory
utilization of the entire cluster accounts only for 22%, which
significantly increases the cost of the service. Second, scaling
compute and memory resources of existing DCS instances takes
up to minutes due to the time-consuming data migration on the
critical path [109, 63]. Such long resource scaling time cannot
adapt to the bursty workloads of cloud applications [175, 212].

Using disaggregated memory (DM) to improve memory ef-
ficiency and elasticity of storage systems is widely studied in
academia [81, 118, 33, 131, 223, 125]. DM decomposes the CPU
and memory from monolithic servers into independent com-
pute and memory pools and connects the two pools with high-
performance networking, e.g., InfiniBand [86] and CXL [185].
Resource scaling becomes rapid since data in the memory pool
are shared by all CPUs in the compute pool and no longer need
to be migrated on the critical path. Memory efficiency can also
be improved since 1) the decoupled CPU and memory eliminate
the stranded memory, and 2) the fast resource scaling enables
efficient on-demand memory allocation and eliminates the need

CHAPTER 6. INDUSTRIAL PRACTICE 156

for users to over-provision memory.
This chapter introduces DMC, i.e., Disaggregated Memory

Caching, the industrial practice of Huawei Cloud that lever-
ages memory disaggregation to improve the memory efficiency
and elasticity of its DCS. DMC decouples a caching service in-
stance into compute agents in compute pools and data instances
in a transactional memory pool named unified memory object
(UMO). The design of DMC satisfies the following fundamental
requirements.

Compatibility is the primal consideration for DMC. Exist-
ing Huawei Cloud DCS is based on Redis [166], which has a
large number of users and a mature ecosystem. Breaking the
compatibility inevitably results in user and monetary loss.

Reliability is critical to cloud services. However, adopt-
ing memory disaggregation is a double-edged sword. On the
one hand, DM isolates the failures of compute and memory re-
sources, e.g., CPU failures no longer lead to the unavailability
of memory on the same node [199, 230]. Reliability can be im-
proved by handling compute and memory failures separately.
On the other hand, sharing a large memory pool introduces a
huge failure domain, compromising service reliability. Moreover,
DM introduces more complicated failure situations, e.g., com-
pute node failures can corrupt data [180], making it difficult to
design fault-tolerance mechanisms. This calls for a careful sys-
tem design in both cache service instances and the memory pool
to achieve high reliability.

Adaptivity to bursty workloads. Cloud applications are
featured by their varying [169] and bursty [175] workloads. Sat-
isfying these workloads requires 1) the caching service instance
to promptly adjust compute or memory resources and 2) the
transactional memory pool to quickly scale memory nodes and
balance the workload among all memory nodes. However, ex-
isting caching service instances couple the management of data

CHAPTER 6. INDUSTRIAL PRACTICE 157

with the execution of user requests [166, 139, 165], which still
incurs time-consuming data migration on the critical path of
resource scaling when ported to DM. Besides, the performance
of existing transactional memory pools [55, 62, 63] is inevitably
hindered for a long period during load balancing and resource
scaling due to the expensive data migration. Consequently,
DMC has to rearchitect the management of data in existing
caching service instances and design efficient data migration
techniques for the memory pool.

Performance. Porting DCS to DM incurs performance
penalties since the nanosecond-scale local memory accesses are
amplified by an order of magnitude [97, 177, 224]. DMC has to
mitigate the performance degradation on DM to minimize the
negative effects on user applications.

DMC achieves all these requirements. To be compatible
with existing DCSes, we construct DMC by disaggregating a
Redis server. To achieve high reliability, DMC adopts a decou-
pled replication scheme to isolate failures in the software layer
and carefully handle the complex failure situations. Besides, in
the memory pool, we introduce an on-demand connection man-
agement scheme that reduces the failure domain by connecting
a compute agent to a limited number of memory nodes in an on-
demand manner. To adapt to bursty workloads, we adopt a
logical sharding scheme that shards requests to compute agents
but preserves their ability to access all data in the memory pool.
This enables prompt resource scaling since data migration is no
longer on the critical path of resource scaling. In the memory
pool design, we propose a novel copy-free memory region migra-
tion scheme to efficiently balance loads and scale memory nodes.
Finally, to mitigate the performance penalty caused by mem-
ory disaggregation, we design a write-through data cache and
a balanced read scheme in our caching service instance. The
former hides the remote memory access latency and the latter

CHAPTER 6. INDUSTRIAL PRACTICE 158

prevents a single compute agent from becoming the performance
bottleneck.

We deploy the DMC and evaluate it in an experimental clus-
ter. DMC improves memory utilization by up to 2.6×. We also
evaluate the throughput and latency of DMC with YCSB [50]
and Twitter workloads [215]. The performance loss introduced
by DM is less than 10% in normal cases. Moreover, DMC per-
forms better than DCS by up to 9× and 1.25× during resource
scaling and in the cluster mode, respectively.

The contribution of this chapter is summarized as follows:

• We analyze the memory utilization of Huawei Cloud DCS,
identify its memory utilization issues, and discuss the rea-
sons for the low memory utilization.

• We bridge the gap between academia and the industry by
exploring the design choices of memory-disaggregating Re-
dis. We introduce DMC, the disaggregated memory caching
service in Huawei Cloud.

• We deploy DMC and evaluate its performance and memory
utilization, showing the effectiveness of our design.

6.2 Background and Motivation

In this section, we first introduce the resource utilization and
elasticity issues of the monolithic-server-based DCS in Huawei
Cloud. We then show how DM can mitigate these issues.

6.2.1 Huawei Cloud’s DCS

Figure 6.1 shows the monolithic-server-based DCS in Huawei
Cloud. DCS uses Redis [166] to construct a caching service. User
applications are executed in virtual machines (VMs) rented from
the elastic cloud server (ECS) service of Huawei Cloud. User

CHAPTER 6. INDUSTRIAL PRACTICE 159

DCS VMs

Redis Server

Container

Redis Server

Container

DCS Cluster

Tenant VMs

Application

Redis Client
TCP

ECS Cluster

Figure 6.1: The architecture of Huawei Cloud DCS.

0.0 0.2 0.4 0.6
Overall Memory Utilization

0.00

0.25

0.50

0.75

1.00

CD
F

p5
0=

0.
20

p7
5=

0.
28

p9
0=

0.
38

p9
5=

0.
45

p9
9=

0.
57

Figure 6.2: The CDF of the memory
utilization of all nodes in the produc-
tion cluster.

Used
22%

Over-provisioned

40%
Stranded6%

Reserved
20%

Unsold

12%

Figure 6.3: The breakdown of mem-
ory utilization in the production clus-
ter.

VMs and DCS clusters are connected with TCP networking.
Applications use the Redis client library to communicate with
Redis servers in the DCS cluster. The DCS cluster is composed
of VMs allocated from a lower-level computing infrastructure.
Each VM has 64 CPU cores and 256 GB DRAM. DCS deploys
Redis servers in containers to achieve lightweight virtualization
and performance isolation. There are two problems with such a
monolithic-server-based DCS, i.e., low memory utilization and
poor elasticity.

Low Memory Utilization

We collect resource utilization traces from a production DCS
cluster in Huawei Cloud and analyze its memory utilization. Fig-

CHAPTER 6. INDUSTRIAL PRACTICE 160

0.0 0.2 0.4 0.6 0.8
Over-Provisioned Memory

0.00

0.25

0.50

0.75

1.00
CD

F

p5
0=

0.
41

p7
5=

0.
49

p9
0=

0.
57

p9
9=

0.
67

(a) Over-provisioned memory.

0.00 0.25 0.50 0.75 1.00
Provisioned Memory Utilization

0.00

0.25

0.50

0.75

1.00

CD
F

p5
0=

0.
33

p7
5=

0.
43

p9
0=

0.
57

p9
5=

0.
63

p9
9=

0.
79

(b) Utilization of provisioned memory.

Figure 6.4: The CDFs of the over-provisioned memory and the utilization of
the provisioned memory in the production cluster.

ure 6.2 shows the cumulative distribution function (CDF) of the
memory utilization of all nodes in the cluster. 90% of nodes use
less than 38% of memory, and the average memory utilization of
the cluster is 22%. We classify the unused memory into four cat-
egories, i.e., over-provisioned user memory, stranded memory,
reserved memory, and unsold memory, and show the memory
utilization breakdown in Figure 6.3.

1) Over-provisioned user memory is memory provi-
sioned to DCS instances but not filled to store user data, which
accounts for 40% of memory in the cluster. As shown in Fig-
ure 6.4, 50% of nodes contain more than 41% of memory over-
provisioned by users. The medium utilization rate of provisioned
memory is 33% for all users.

We identify two issues of DCS that motivate users to over-
provision memory. First, the minute-scale resource scaling urges
users to reserve the maximum memory required by their appli-
cations so that the number of dynamic resource scaling can be
reduced. As a result, memory is wasted under normal use cases
most of the time. Second, to prevent the burst of user requests
from overwhelming the memory capacities of DCS instances,
cloud providers remind users to expand the memory capacities
of their DCS instances when their memory utilization exceeds

CHAPTER 6. INDUSTRIAL PRACTICE 161

0.0 0.2 0.4 0.6
Stranded Memory

0.75
0.80
0.85
0.90
0.95
1.00

CD
F

p9
0=

0.
29

p9
5=

0.
39

p9
9=

0.
46

(a) Stranded memory.

0.00 0.25 0.50 0.75 1.00
Provisioned CPU

0.00

0.25

0.50

0.75

1.00

CD
F

p25=0.57

p50=0.72

p75=0.94
p90=1.00

(b) Provisioned CPU.

Figure 6.5: The CDFs of the proportion of stranded memory and provisioned
CPU in the production cluster.

80%, which leaves at least 20% of memory in containers unused.
2) Stranded memory refers to the memory in DCS VMs

that cannot be used to construct containers due to the lack
of available CPUs [123], which account for 6% of the mem-
ory in the cluster. As shown in Figure 6.5, 10% of nodes have
more than 29% of memory stranded, while only 50% of nodes
have provisioned CPU cores of less than 72%. The root cause
for the stranded memory is the coupling of CPU and mem-
ory on monolithic servers. Such a problem is unavoidable in
monolithic-server-based DCS clusters since the proportion of
CPU and memory of VMs in the DCS clusters configured by
cloud providers cannot always match user requirements.

3) Reserved memory is the memory reserved in the clus-
ter to handle users’ burst of instance creation requests, e.g., on
Black Fridays [72]. A DCS instance can be created rapidly when
its required resources can be satisfied by the reserved resources
in the cluster. Otherwise, DCS has to first apply for more VMs
from the computing infrastructure to increase the compute and
memory capacity, which usually takes minutes to complete. Ex-
isting DCS uses a fixed threshold to reserve memory, i.e., new
VMs are allocated and added to DCS clusters whenever their

CHAPTER 6. INDUSTRIAL PRACTICE 162

memory utilization exceeds 80%.
4) Unsold memory refers to the remaining unused mem-

ory in the cluster that does not belong to the other three cate-
gories. Memory in this category is left unused due to the diffi-
culty in achieving optimal memory utilization when provisioning
and freeing resources for caching service instances in an online
manner [177]. This category accounts for 12% of unused mem-
ory in the production cluster.

Poor Elasticity

Elasticity refers to the ability of service instances to quickly
and dynamically scale compute and memory resources according
to the demand of upper-level applications [19]. Huawei Cloud
DCS supports both vertical and horizontal scaling. However,
both schemes suffer from slow resource adjustments when users
adjust memory capacities.

Vertical scaling adjusts the resources of existing DCS in-
stances. In the process, DCS first launches a new container
with the required memory size, copies all data from the current
container to the new one, and routes user requests to the new
container by modifying the DNS entry in the DCS cluster. The
performance of the DCS instance will be affected for minutes
due to the time-consuming data migration.

Horizontal scaling scales out resources by adding more Redis
servers to a Redis cluster, which is used in the cluster mode of
DCS instances. A DCS cluster consists of multiple DCS servers.
Objects are sharded to nodes in the cluster according to the hash
values of their keys. To execute horizontal scaling, DCS launches
a new Redis node in a container and adds the node to the cluster.
Then, objects are rebalanced to the newly created node, which
involves a large amount of data migration. Although users can
normally read and write cached data during horizontal scaling,
the performance of the entire cluster will be affected due to the

CHAPTER 6. INDUSTRIAL PRACTICE 163

additional network bandwidth and CPU cycles spent on data
migration [109, 164].

6.2.2 Opportunity: Disaggregated Memory

Using DM can improve the elasticity and memory efficiency of
existing DCSes. First, resources on DM can be scaled rapidly.
For both vertical and horizontal scaling, the key problem that
prohibits instant resource scaling is the expensive data migration
on the critical path. With DM, data migration can be eliminated
from the critical path since data in the memory pool are shared
by all CPUs in the compute pool. Only when the CPU or net-
work bandwidth of an MN becomes a bottleneck does data need
to be migrated to achieve load balance in the memory pool.
Such data migration can be executed asynchronously without
affecting request executions [179].

Moreover, DM can reduce the over-provisioned, stranded,
and unsold memory in existing DCS clusters due to its rapid re-
source adjustment and decoupled resource management. Specif-
ically, for over-provisioned memory, cloud providers no longer
need to allocate all the required memory to users on instance
creation since memory can be allocated promptly and flexibly
in an on-demand manner. Meanwhile, users no longer need to
provision memory for peak usage since resources can now be
scaled rapidly on DM. Besides, DM eliminates stranded mem-
ory since most memory is managed in the memory pool and
can be used by all CPUs in the compute pool. Moreover, ex-
isting disaggregated memory pools manage memory in coarse-
grained fix-sized memory regions. The unsold memory caused
by resource scheduling can also be reduced due to the simplified
memory allocation.

CHAPTER 6. INDUSTRIAL PRACTICE 164

DMC Cluster

TCP

ECS Cluster

C
om

pu
te

 P
oo

l

Cache Engine
DI Client

Compute Agent
Cache Engine

DI Client

Compute Agent

Hash Index
Objects

Data Inst.
Hash Index

Objects

Data Inst.

M
em

or
y

Po
ol

RDMA

Cluster Mgr.

Tenant
VM

Tenant
VM

Server

Server

Server

Figure 6.6: The overview of DMC.

6.3 Overview and Design Principles

This section introduces the overall architecture of DMC and
discuss three design choices, i.e., replication, data sharding, and
caching, in detail.

6.3.1 Overview

Figure 6.6 shows the architecture of DMC. Tenant VMs use
TCP-based Redis client library to communicate with caching
service instances. The DMC cluster consists of a compute pool
and a transactional memory pool, interconnected with RDMA.
CNs in the compute pool have low memory-to-CPU ratios, e.g.,
1:2. MNs in the memory pool have high memory-to-CPU ra-
tios, e.g., 32:1. The memory pool provides fine-grained object
allocation and transactional object read and write interfaces for
the compute pool to manage data. Objects are replicated and
partitioned to different MNs by the cluster manager to ensure
reliability and achieve load balance.

Caching service instances are disaggregated into multiple com-
pute agents and data instances. Compute agents execute user

CHAPTER 6. INDUSTRIAL PRACTICE 165

requests and manage the two-level tiered memory, i.e., local
DRAM in the compute pool and remote memory in the mem-
ory pool. They adopt a cache engine, i.e., a modified version of
the Redis server, to manage local DRAM, and a data instance
(DI) client to access remote memory. Data instances are pas-
sive entities managed by DI clients to store objects and hash
indexes. The cluster manager book-keeps all compute agents
and data instances owned by each instance.

Over this architecture, we carefully make three design deci-
sions when disaggregating the Redis server in terms of replica-
tion, data sharding, and caching. Our design is guided by the
following three design principles:

• Principle 1: Decouple compute and memory failures in
the software layer to fully exploit the DM’s benefit of hard-
ware failure isolation.

• Principle 2: Almost share everything for better elasticity,
resource efficiency, and performance.

• Principle 3: Reduce the number of remote memory ac-
cesses to achieve higher performance.

6.3.2 Design Choice 1: Replication

Replication is widely adopted in DCSes to ensure upper-level
applications do not experience severe performance degradation
on node failures. Huawei Cloud DCS adopts the default asyn-
chronous replication scheme of Redis. In a standalone DCS in-
stance, there is one primary node and multiple backup nodes.
The primary node is responsible for handling both read and
write requests, while backup nodes only serve read requests.
When a write request arrives on the primary node, it modi-
fies its data, appends a command recording this modification
to a command backlog, and replies to the user. Primary nodes

CHAPTER 6. INDUSTRIAL PRACTICE 166

C
om

pu
te

 P
oo

l
M

em
or

y
Po

ol

Write

RDMA

Hash Index
Objects

Primary DI
Hash Index

Objects

Backup DI

Cache Engine
DI Client

Primary Agent
Cache Engine

DI Client

Backup Agent

(a) The coupled replication scheme.

C
om

pu
te

 P
oo

l
M

em
or

y
Po

ol

Write
Cache Engine

DI Client

Primary Agent
Cache Engine

DI Client

Backup Agent

READ/WRITE READ

Hash Index
Objects

Replicated Data Inst.

(b) The decoupled replication scheme.

Figure 6.7: Design choices regarding replication in DMC.

send their command backlogs asynchronously to all their backup
nodes to keep them updated, which prevents user requests from
being blocked by the time-consuming data synchronization. On
receiving commands from the primary node, backup nodes mod-
ify their data and send an acknowledgment back. Acknowledg-
ments are sent in a batched manner to reduce the CPU overhead
of processing acknowledgments on the primary node. When a
primary node crashes, a backup node is promoted to become
the new primary with slightly outdated data. When a backup
node crashes, the cluster manager starts a new backup node and
sends it a snapshot of data on the primary node to make it fully
synchronized.

On DM, a straightforward approach that achieves replica-
tion and minimizes development overhead would be coupled
replication. As shown in Figure 6.7a, the coupled replication
disaggregates primary and backup nodes individually. The repli-
cation and recovery protocols are the same as that of Redis with
two key differences: 1) compute agents execute the replication
protocol, and 2) compute agents need to manage both data in
local DRAM and in the remote memory pool.

Unfortunately, the coupled replication scheme violates Prin-

CHAPTER 6. INDUSTRIAL PRACTICE 167

ciple 1 and suffers from a long failure recovery time. Specifically,
on DM, the failures in compute agents and data instances are
isolated, i.e., the data instance of a crashed compute agent can
still be normally accessed. The coupled replication scheme cou-
ples the failures of compute and data in the software layer since
the granularity of failure handling is a monolithic DCS node.
A data instance shares the fate with its owning compute agent
and is no longer useful when its owning compute agent crashes.
Consequently, the time-consuming full-synchronization process
still needs to be executed when either a compute agent or a data
instance crashes.

We propose a decoupled replication scheme to satisfy Prin-
ciple 1. As shown in Figure 6.7b, compute agents and data in-
stances are replicated separately in the compute and the mem-
ory pool. In the memory pool, each data instance is repli-
cated with RDMA-based optimistic concurrency control and
two-phase commit protocols, which can achieve strong consis-
tency and high availability. All compute agents share the same
replicated data instance. For compute agents, DMC inherits the
asynchronous replication protocol of Redis but only allows the
primary agent to modify the data instance. When executing
write requests, a primary agent updates both its local DRAM
cache and the data instance, and then asynchronously forwards
requests to all backup agents. Backup agents only update their
local caches when they receive a forwarded request. When serv-
ing read requests, both primary and backup agents serve the
requests with their local caches or fetch data from the data in-
stance on cache misses.

The decoupled replication scheme isolates failures on com-
pute agents and data instances and achieves fast failure recovery.
When a compute agent fails, DMC starts a new compute agent
in the compute pool and promotes a backup agent on primary
agent failures. No data needs to be transmitted since the data

CHAPTER 6. INDUSTRIAL PRACTICE 168

C
om

pu
te

 P
oo

l
M

em
or

y
Po

ol

RDMA

Hash Index
Objects

Shard 1 DI
Hash Index

Objects

Shard 2 DI

Cache Engine
DI Client

Shard 1 Agent
Cache Engine

DI Client

Shard 2 Agent

(a) The full data sharding scheme.

C
om

pu
te

 P
oo

l
M

em
or

y
Po

ol

Hash Index
Objects

Data Inst.

Cache Engine
DI Client

Shard 1 Agent
Cache Engine

DI Client

Shard 2 Agent

WRITE READ

(b) The logical data sharding scheme.

Figure 6.8: Design choices regarding data sharding in DMC.

instance is not affected. The recovery completes instantly once
the new compute agent is launched. When a data instance fails,
DMC launches a new data instance and synchronizes it with
other alive data instances asynchronously. User applications
are not affected since compute agents can still serve requests
using alive data instances.

6.3.3 Design Choice 2: Data Sharding

The cluster mode of Redis shards data to multiple nodes to
achieve high throughput. Specifically, a standalone Redis server
uses a hash table with 16,384 slots to index all objects [166]. A
Redis cluster shards data by partitioning hash slots on different
nodes. Each node is only responsible for managing objects in its
assigned slots. On the client side, the Redis client library caches
the mapping of slots to route requests to the correct nodes.

When adding or removing nodes from a Redis cluster, the
cluster manager generates a new mapping of slots and migrates
data according to the mapping. The cluster stays available dur-
ing the process. A user request is only blocked for a short time
when it accesses an object that is hashed to a migrating slot.

CHAPTER 6. INDUSTRIAL PRACTICE 169

The request will be redirected to the new node and keep retry-
ing until the slot completes migration.

On DM, a straightforward approach to be compatible with
Redis clusters is full data sharding. As shown in Figure 6.8a,
each compute agent owns a data instance and manages all ob-
jects of its assigned shard in the data instance. Inside each data
instance, a hash table is adopted to index objects.

However, such an approach fails to satisfy Principle 2, leading
to poor elasticity and limited performance. First, dynamically
scaling compute resources, i.e., compute agents, is still time-
consuming. This is because compute and memory resources are
still coupled in the software layer when we shard data into iso-
lated data instances and bind them to independent compute
agents. Data still needs to be migrated among data instances
when remapping hash slots among compute agents. Second,
fixing a compute agent to a single shard of data cannot fully ex-
ploit the compute resource under skewed workloads. The over-
all throughput will inevitably be bottlenecked by the compute
agents of the hottest shard while other compute agents are not
fully utilized.

We propose a logical data sharding scheme to satisfy Prin-
ciple 2. As shown in Figure 6.8b, DMC only shards the right
to write data to compute agents but preserves their abilities to
read the entire key space. Specifically, all compute agent shares
a common data instance that holds a global hash table and all
cached objects. Objects in the data instance are partitioned to
multiple MNs for load balance. Each compute agent exclusively
owns a segment of the hash table. Write requests are exclusively
executed by compute agents that own the target data. Read re-
quests are routed to the owning compute agent of each shard in
normal cases. When some compute agents become overloaded,
we balance their read requests to all other compute agents to
achieve better load balance.

CHAPTER 6. INDUSTRIAL PRACTICE 170

Table 6.1: The design choices of compute-side cache. Each slot indicates
which option is better. The underlined is chosen by DMC. AC and DC refer
to the address cache and the data cache. WB and WT stand for write-back
and write-through strategy. I and E are the abbreviations for inclusive and
exclusive caches. C and R refer to coherent and relaxed coherence.

Aspects AC VS DC WB VS WT I VS E C VS R
Performance DC WB E R

Failure Isolation Same WT I Same

The logical sharding scheme can achieve better elasticity and
resource efficiency. First, compute resources can be scaled rapidly
due to the shared data instance. When adding or removing
compute agents, we only need to logically reshard the manage-
ment of hash slots and inform compute agents about the new
slot mapping. Second, as the caching workload is read-intensive
on Huawei Cloud, the logical partition scheme can effectively
achieve load balance and better performance with the balanced
read scheme.

6.3.4 Design Choice 3: Compute-Side Cache

Compute-side caches are widely adopted in storage systems on
DM [131, 179, 180, 230] to reduce remote memory access over-
head. The design of the compute-side cache affects two critical
aspects of DMC, i.e., performance and failure isolation. The
performance can be evaluated by the number of remote memory
accesses reduced by the cache. Failure isolation implies whether
the cache introduces additional coupling of failures between data
and compute. According to Principles 1 and 3, our goal is to de-
couple the failures between compute and data while maximizing
the performance gain of the cache.

DMC carefully inspects the following four basic aspects for a
compute-side cache regarding performance and failure isolation,

CHAPTER 6. INDUSTRIAL PRACTICE 171

as shown in Table 6.1:
Address Cache (AC) VS Data Cache (DC). Regard-

ing the content of the cache, there are two design choices. Ad-
dress caches store the addresses of KV items or part of the data
index on CNs [131, 206]. The number of remote memory accesses
can be reduced by shortcutting the process of remote index
searches. Data cache directly stores KV items on CNs [202, 32],
which can reduce more number of remote memory accesses than
address caches since no remote memory accesses are required on
cache hits. In terms of failure isolation, both approaches per-
form similarly since the content in the cache does not lead to
coupled failures. Consequently, according to Principle 3, DMC
caches data instead of addresses.

Write-Back (WB) VS Write-Through (WT). Regard-
ing the write strategy of the cache, there are two alternatives.
The write-back strategy updates data in the cache and only
modifies data in the memory pool during cache evictions. Such
an approach achieves better write performance since all write
requests are executed in local memory. However, it introduces
coupled failure between compute and data since the updated
data could be lost together with the crashed compute agent,
causing data inconsistency. DMC chooses to use the write-
through strategy according to Principle 1 to achieve failure iso-
lation. The write-through strategy updates the memory pool
together with the cache, avoiding data loss on compute agent
failures. However, its performance is lower than the write-back
strategy due to the additional remote memory accesses on the
critical path. We believe this is a price worth paying compared
with designing new protocols to deal with coupled failures. Be-
sides, the performance loss is negligible due to the read-intensive
workload in Huawei Cloud.

Inclusive (I) VS Exclusive (E). Regarding whether the
cached content is in the lower-level storage, i.e., the memory

CHAPTER 6. INDUSTRIAL PRACTICE 172

pool, existing caches can be classified into inclusive and exclu-
sive ones. For exclusive caches, data is either stored in the cache
or in the memory pool. The performance of upper-level appli-
cations could be better with an exclusive compute-side cache
since more data can be held in the entire caching service in-
stance. More data accesses can be served by the faster caching
service instance instead of the slower persistent storage services.
However, such an approach couples the failure between data
and compute since data can be lost on compute agent failures.
According to Principle 1, DMC chooses to employ an inclusive
design to achieve better failure isolation.

Coherent (C) VS Relaxed (R). Finally, regarding the
coherence guarantee of the cache, we can have coherent and re-
laxed caches. Coherent caches guarantee that all data accesses
return the most updated data, while the relaxed ones allow the
returned data to be temporarily outdated. Both approaches
do not affect compute and memory node failures, while relaxed
caches can achieve higher performance due to simpler computa-
tion overhead. The selection of cache coherence depends on the
requirement of upper-level applications. Similar to Redis-based
DCSes, DMC provides a relaxed coherence guarantee between
replicated compute agents.

Putting all these together, the compute-side cache of DMC
is designed to be an inclusive data cache with a write-through
strategy and relaxed coherence guarantees. Such a design sat-
isfies Principles 1 and 3 and balances the failure isolation and
performance of caching service instances.

6.4 Caching Service Instance

Figure 6.9 shows a DMC instance with all the previous design
choices. A DMC instance contains multiple logical shards in
the compute pool and a replicated data instance in the memory

CHAPTER 6. INDUSTRIAL PRACTICE 173

BackupWrite

Backup
Cache Engine

DI Client

Primary Agent
Shard 1

BackupWrite

Backup
Cache Engine

DI Client

Primary Agent
Shard 2

Hash Index
Objects

Primary Data Inst.
Backup DIBackup DI Rep. Rep.

Sharded WRITE & Shared READ

C
om

pu
te

 P
oo

l
M

em
or

y
Po

ol

Figure 6.9: The architecture of a DMC instance.

pool. Each logical shard corresponds to a shard of hash table
in a Redis cluster which has one primary agent and multiple
backup agents. Primary agents serve write requests to their
corresponding logical shard. All compute agents, i.e., primary
and backup agents, can equally serve all read requests to the
entire key space to achieve better load balance and resource
efficiency. Each compute agent contains a cache engine and a
DI client. A cache engine is responsible for maintaining the
coherence and content of the local DRAM cache. A DI client
provides a memory-disaggregated caching library that executes
the caching algorithm configured by users and provides key-value
interfaces, i.e., Set and Get, for the cache engine to manage data
in the memory pool.

6.4.1 Cache Engine

A cache engine manages the DRAM of compute agents as an
inclusive data cache with a write-through strategy and relaxed
coherence guarantees. To reduce the cache synchronization over-
head between compute agents, we restrict the number of com-

CHAPTER 6. INDUSTRIAL PRACTICE 174

pute agents needed to be synchronized by caching data only
in compute agents of their own shards. When serving read
requests, a compute agent first searches objects in their local
caches and relies on DI clients to fetch objects from the mem-
ory pool on local cache misses. When serving write requests,
primary agents update both the data instance and their local
caches if the updated data hits in local caches. Write requests
are then asynchronously forwarded to all backup agents. Cache
engines of backup agents update objects in their local cache and
acknowledge the primary agent in batch when they receive for-
warded write requests. To further reduce the replication over-
head, DMC adopts a replicated cache scheme which forces the
local cache of backup agents to be the same as their primary
agents. The number of forwarded write requests can thus be
reduced since primary agents only need to write requests that
hit their local caches.

The local cache is managed by cache engines with the same
caching algorithm as the DMC instance. Cache engines of pri-
mary agents leverage the hotness information maintained by DI
clients to ensure their local DRAM always holds globally hot
objects. When a cache engine fetches an object due to a lo-
cal cache miss, the DI client returns the object and its hotness.
The cache engine then samples multiple objects in its local cache
and evicts the coldest one if the fetched object is hotter. Evicted
objects are directly dropped due to the write-through strategy.
The eviction and the insertion operations of the local cache are
also forwarded asynchronously to backup agents to keep their
local caches replicated.

6.4.2 Data Instance Client

The DI client provides Set and Get interfaces for cache engines
to manage data in the memory pool. It maintains a global hash

CHAPTER 6. INDUSTRIAL PRACTICE 175

G
lo

ba
l D

ire
ct

or
y Subtable:

fp len
1B 1B 6B

pointer

Slot Slot Slot Slot

metadata
12B

Object freq last_ts TTL
4B 4B 4B

Bucket

Figure 6.10: The memory-disaggregated hash table structure.

table to index cached objects and record object hotness infor-
mation to execute caching algorithms. The key challenges are
coordinating concurrent accesses from multiple compute agents
and efficiently executing caching algorithms. The DI client em-
ploys two key techniques, i.e., a memory-disaggregated hash ta-
ble, and a client-centric caching framework, to address these two
challenges.

Memory-Disaggregated Hash Table

The structure of the memory-disaggregated hash table is similar
to RACE hashing [230]. As shown in Figure 6.10, the hash table
contains a global directory and multiple subtables. The global
directory is an array recording the addresses of subtables and is
used to achieve on-demand extension. Each subtable contains
multiple buckets with each holding multiple slots. Each slot
stores a 1-byte fingerprint (fp) as a part of the hash value to
accelerate Get operations, a 1-byte length (len) to record the size
of the object, a 6-byte pointer (pointer) indicating the address
of the object in the memory pool, and a 12-byte metadata used
for cache eviction.

DI clients leverage the transactional read and write interfaces
provided by the memory pool to execute Get and Set operations.

CHAPTER 6. INDUSTRIAL PRACTICE 176

The process is described as follows:
Get. A DI client first calculates the hash value of the re-

quested key and reads the global directory in the memory pool
to identify the subtable and bucket the object belongs to. It then
reads the entire bucket from the memory pool, matches the fin-
gerprints of slots in the bucket with the hash value, and fetches
the object according to the pointer in the slot that matches the
fingerprint. Three remote memory accesses are required in the
process.

Set. Set operations are executed in an out-of-place manner.
A DI client first allocates a new memory block from the memory
pool or evicts an object if the data instance is full. Then it
writes the object to the allocated memory block and executes a
Get operation to see if the object is stored in the data instance.
If a matching object is found, the DI client atomically modifies
the slot of the object to point to the newly allocated memory
block with a transactional remote memory write. Otherwise, it
finds an empty slot in the bucket and modifies the slot similarly.
During the process, five remote memory accesses are involved.

Since the number of remote memory accesses is critical to the
performance of DMC, DI clients cache the global directory in the
local DRAM of compute agents to avoid reading the global di-
rectory before each data access, similar to RACE hashing [230].
The number of remote memory accesses for Get and Set are thus
reduced to two and four in most cases.

Client-Centric Caching Framework

DI clients adopt a client-centric caching framework similar to
Ditto [179] to efficiently execute various caching algorithms. The
key challenge of executing caching algorithms is that the local
DRAM cache and the CPU-bypass RDMA make it difficult to
monitor object access and maintain object hotness. Specifically,
the local DRAM cache managed by the cache engine hides object

CHAPTER 6. INDUSTRIAL PRACTICE 177

accesses from DI clients on local cache hits. Besides, RDMA by-
passes CPUs on MNs when accessing cached objects, prohibiting
the memory pool from monitoring object accesses. Moreover, DI
clients cannot monitor data accesses individually since they are
only aware of their own data accesses while caching algorithms
need the global access information from all DI clients to execute.

First, to collect the access information hidden from the lo-
cal DRAM cache, cache engines record data accesses on cache
hits and report these accesses to DI clients in batch. Second, to
efficiently monitor object accesses from all DI clients, the client-
centric caching framework adopts a distributed access monitor-
ing scheme. Similar to Redis, we associate each cached object
with a small metadata in the memory pool to record its access
information. The metadata for each object contains an access
timestamp, a frequency counter, and a time to live (TTL) value,
which is sufficient to execute all caching algorithms supported by
Redis, i.e., LRU, LFU, TTL, and Random. Specifically, TTL-
based eviction removes all expired objects according to their
TTLs. The TTL value is written to the metadata in the memory
pool when the object is inserted. LRU and LFU evict objects
according to their access timestamps and frequency counters,
respectively. Access timestamps and frequency counters are up-
dated atomically with a remote memory write after each object
access.

Following the design of Redis, DMC adopts a sample-based
eviction scheme. DI clients sample multiple objects and evict the
coldest one according to the access information in their meta-
data. However, Redis stores metadata together with objects,
which incurs multiple remote memory accesses when sampling
objects in the remote memory pool. Similar to Ditto [179], we
store metadata in the hash table to improve the efficiency of
sampling objects, as shown in Figure 6.10. In this way, sam-
pling can be efficiently achieved by generating a random integer

CHAPTER 6. INDUSTRIAL PRACTICE 178

MN MN MN

Data Instance

Cluster Manager

Replicate Replicate

Primary regions Backup regions

Figure 6.11: The overview of the UMO memory pool.

as a hash value and fetching multiple continuous slots with a
single remote memory read.

The client-centric caching framework also provides an update
and priority interface for developers to integrate various caching
algorithms [179, 27]. The update interface enables developers
to customize the recorded access information and define the up-
date rules for access information. The priority interface allows
developers to define a function to map the recorded metadata to
the hotness of cached objects. Since the key differences between
caching algorithms are the access information they rely on and
the definition of object hotness, various caching algorithms can
be integrated by customizing these two interfaces.

6.5 The UMO Memory Pool

Figure 6.11 shows the overall architecture of UMO, the memory
pool of DMC. UMO shards and replicates data instances onto
multiple MNs and provides interfaces for DI clients to allocate
objects and execute transactions on the replicated objects. Sim-
ilar to existing approaches [223, 56], UMO adopts RDMA-based
optimistic concurrency control (OCC) and two-phase commit
protocols to execute transactions. A DI client that initiates a

CHAPTER 6. INDUSTRIAL PRACTICE 179

transaction serves as a coordinator. Each transaction has an
execution phase and a commit phase. In the execution phase,
a coordinator fetches objects in the read and write sets of the
transaction with RDMA_READs and updates the write set locally.
In the commit phase, the coordinator locks objects in the write
set on both primary and backup MNs with RDMA-based RPCs,
validates the read set by fetching them again and checking their
version numbers, and commits the transaction with RPCs if
there is no conflict. Otherwise, the transaction is aborted and
retried later. To ensure performance isolation among DMC in-
stances, UMO rate limits DI clients with a token-based QoS
mechanism for RDMA [130].

UMO adopts three enabling techniques to satisfy the follow-
ing three critical requirements. First, to improve memory effi-
ciency, we employ an on-demand allocation scheme to reduce the
over-provisioned user memory. Second, to adapt to the bursty
cloud workloads, we propose a copy-free memory region migra-
tion scheme to rapidly achieve load balance and cluster scaling.
Finally, to achieve reliability at scale, we propose an on-demand
connection management scheme to reduce the failure domain
and the huge connection metadata introduced by the enormous
number of connections between compute agents and the MNs.

6.5.1 On-Demand Allocation

UMO adopts a three-level memory management scheme to allo-
cate and free objects. First, at the cluster level, the cluster man-
ager partitions the memory of MNs into 1 GB memory regions.
Memory is allocated to data instances one region at a time. Each
region is replicated as primary and backup regions on multiple
MNs for high availability. Then, at the data instance level, each
region is partitioned into coarse-grained memory segments, e.g.,
16 MB. DI clients in compute agents get memory one segment

CHAPTER 6. INDUSTRIAL PRACTICE 180

Table 6.2: The statistics of instance sizes in the production cluster.

Size (GB) (0, 1) [1, 2) [2, 4) [4, 8) [8, 64]

Percentage 8.5% 28% 19.8% 17.3% 26.4%

at a time. Finally, inside each DI client, memory segments are
further split into memory blocks of 60 size classes [85]. An object
is always allocated from the size class that best fits it.

UMO achieves on-demand memory allocation in the granu-
larity of memory regions. When creating a DMC instance, we
do not assign all the memory it requires at once but let data
instances allocate memory gradually from the memory pool. Al-
though such a scheme leaves unused memory inside 1 GB mem-
ory regions, the over-provisioned memory can still be greatly
reduced. Table 6.2 shows the statistics of instance sizes in the
DCS cluster. Instances with sizes greater than or equal to 2 GB
and 8 GB account for 63.5% and 26.4%, respectively. Given
the fact that the medium utilization rate of allocated memory is
33% in Figure 6.4b, more than 1 GB of memory can be saved for
over 50% of DCS instances. For instances with sizes less than 1
GB, we directly use DRAM in the compute pool to create these
small instances.

6.5.2 Copy-Free Memory Region Migration

Efficiently migrating memory regions among MNs is essential to
achieve load balance and dynamic scaling. The major challenge
is that transactions are inevitably affected during data migra-
tions, i.e., either being blocked or suffering from poor perfor-
mance [62]. Existing approaches in academia focus on enabling
transactions to not be blocked during migrations [109, 62, 63,
99]. However, these approaches are infeasible in production due
to their minute-scale migration duration and up to 50% through-
put drops [109]. The severe performance degradation and the

CHAPTER 6. INDUSTRIAL PRACTICE 181

long service impact duration make it impossible to satisfy the
service level agreement (SLA) in production. To make region
migrations practical, we propose to minimize transaction im-
pact duration instead of allowing transactions to execute with
suboptimal performance.

We propose a copy-free migration protocol with millisecond-
scale region migration time and the same blocking time for write
transactions. Our key idea is to leverage replicated memory re-
gions to migrate workloads instead of physically migrating data.
We only focus on migrating primary regions since backup regions
can be moved asynchronously without affecting transaction ex-
ecutions [56, 208]. Migrating a primary region consists of two
phases, i.e., a preparation phase and an execution phase. The
preparation phase decides the target MN to serve the migrated
workload. When the cluster manager receives a request indi-
cating a primary region needs to be migrated, it first checks
its backup MNs, i.e., MNs that replicate the requested region.
If no replica MN can serve the migrated workload, the clus-
ter manager creates a new backup region on another MN asyn-
chronously. The execution phase begins when the target MN
is ready for migration. The cluster manager blocks the source
MN from serving new write transactions on the primary region
and waits for all existing transactions on the region to finish
on both source and target MNs. Then the cluster manager up-
dates the mapping of primary and backup regions and informs
DI clients about the migration. All transactions can execute
normally after the mapping is updated.

UMO efficiently achieves load balance and dynamic scaling
with the copy-free region migration scheme:

Load balancing. DI clients sample the remote memory
access latency of each region in their transactions and report
the samples to the cluster manager periodically. Load balance is
triggered whenever the cluster manager finds the average access

CHAPTER 6. INDUSTRIAL PRACTICE 182

latency of a region inside an MN exceeds a threshold. Then the
cluster manager iteratively migrates primary regions from the
overloaded MN until it is no longer a bottleneck.

Memory pool scaling. Scaling in and out MNs happens
when the memory utilization of the memory pool is below or
above a threshold. When scaling out MNs, the cluster manager
needs to migrate primary regions to the newly added MNs to
achieve better load balance. Regions are first replicated to the
newly added MNs as backup regions, and then workloads are
transferred by migrating some primary regions to them. When
scaling in MNs, the cluster manager first replicates all the re-
gions in the MNs to be removed to other MNs as backup regions
asynchronously. MNs are then removed after migrating all the
primary regions from it.

6.5.3 On-Demand Connection Management

Managing a production-level memory pool with hundreds of
MNs introduces a large number of connections between com-
pute and memory pools. Existing transactional memory pools
in academia adopt a fully connected architecture, where a single
compute agent needs to connect to all MNs [223, 56].

This leads to two issues under large-scale deployments. First,
the fully connected architecture generates large connection meta-
data on compute agents and MNs. Suppose there are K com-
pute agents and N MNs. Each compute agent has to maintain
N connections to all MNs. Each MN has to maintain K+N−1
connections to all compute agents and other MNs. This requires
more than 4 GB and 80 MB of metadata on each MN and com-
pute agent under a cluster with 10, 000 compute agents and 200
MNs, which is unacceptable considering the 4 GB average in-
stance size. Second, the fully connected architecture creates a
huge failure domain. A single MN failure can affect many ir-

CHAPTER 6. INDUSTRIAL PRACTICE 183

relevant compute agents due to the connection error. Such a
large failure domain makes it difficult to achieve high service
reliability and satisfy SLAs in deployment.

We propose an on-demand connection management scheme
to address these issues. Instead of connecting a compute agent
to all MNs, we initially connect a compute agent to a small
number of MNs. The number of MNs and connections increases
in an on-demand manner when 1) the compute agent allocates
more memory that cannot be satisfied, or 2) a region is migrated
to achieve better load balance. Such an approach effectively re-
duces the size of connection metadata. Specifically, the maxi-
mum memory size of a DMC instance is 64 GB and each MN
contains 256 GB DRAM. Each compute agent connects to at
least 3 MNs if data instances are replicated three times in the
memory pool, and connects to at most 64 × 3 MNs since data
instances are partitioned into 1 GB memory regions scattered in
the memory pool. Meanwhile, each MN only needs to maintain
N + 256 RDMA connections since an MN can only be used by
at most 256 compute agents. Under a cluster with 10, 000 DI
clients and 200 MNs, the partially connected scheme reduces the
memory required for connection metadata to at most 160 MB
and 76 MB on MNs and DI clients. Besides, the failure domain
is also greatly reduced since a single MN failure now only affects
compute agents that store memory regions on it.

6.6 Evaluation

We evaluate DMC in terms of performance, elasticity, fault-
tolerance, and memory efficiency to show its effectiveness.

Experiment setup. We evaluate DMC with both single-
node and cluster instances. The single-node instance is con-
figured with one CPU and 8 GB DRAM. The cluster instance
consists of 4 single-node instances with the same setting. Both

CHAPTER 6. INDUSTRIAL PRACTICE 184

single-node and cluster instances are the most widely adopted
settings in the DCS cluster. The local cache of DMC is con-
figured to be 600 MB according to our performance and cost
analysis. We use an additional user VM with 32 CPU cores and
64 GB DRAM to send requests to caching service instances.
The user VM executes 400 client threads to get the maximum
throughput of both approaches.

Workload. We use both YCSB [50] and Twitter work-
loads[215] to evaluate DMC. For YCSB, we use four core work-
loads, i.e., A (50% GET, 50% UPDATE), B (95% GET, 5%
UPDATE), C (100% GET), and D (95% GET, 5% INSERT),
with 16 million keys with 256-byte key-value size. Requests are
generated with Zipfan distribution with θ = 0.99 following the
default setting. For Twitter, we use the first three read-intensive
workloads from three types of clusters, i.e., compute (Cluster 1),
storage (Cluster 3), and transient (Cluster 16).

6.6.1 Performance

We evaluate the end-to-end performance of DMC compared with
DCS in both single-node and cluster instances. Besides, we eval-
uate how compute-side cache and dynamic memory region mi-
gration affect the performance of DMC.

End-to-end performance. Figure 6.12 shows the end-to-
end performance of DMC and DCS. For single-node instances,
DCS has higher throughput and lower latency since DMC in-
troduces higher remote memory access latency. Under read-
intensive workloads, i.e., YCSB B, C, D, and Twitter, the through-
put loss is within 10% and the increase of latency is less than
0.3 ms, which is acceptable considering the performance and net-
work fluctuations in production. Under YCSB-A write-intensive
workloads, DMC exhibits lower throughput due to the highly
conflict transactions in the memory pool. The throughput loss

CHAPTER 6. INDUSTRIAL PRACTICE 185

YCSB-A YCSB-B YCSB-CYCSB-DT-Comp.T-Trans. T-Stor.
0.0

0.5

1.0
Th

ro
ug

hp
ut

 (M
op

s/
s) DCS DMC DCS Cluster DMC Cluster

0

1

2

3

La
te

nc
y

(m
s)p75 Latency

Figure 6.12: The throughput and 75th percentile latency of DCS and DMC
under YCSB and Twitter workloads.

0 200 400 600 800 1000
Cache Sizes (MB)

0.05

0.10

0.15

0.20

Th
ro

ug
hp

ut
(M

op
s/

s)

YCSB-A
YCSB-B
YCSB-C
YCSB-D

Figure 6.13: Throughput with dif-
ferent compute-side caches.

100 150 200 250 300
Time (Seconds)

0.00
0.05
0.10
0.15
0.20

Th
ro

ug
hp

ut
(M

op
s/

s)
Region migration(5 seconds)

Figure 6.14: Throughput when mi-
grating a memory region.

is still within 15%, which is acceptable in Huawei Cloud since
the current workload is read-intensive.

For cluster instances, DMC achieves lower 75th percentile la-
tency and up to 25% higher throughput. The higher throughput
is attributed to the logical sharding scheme, which can evenly
distribute read requests to all compute agents. In comparison,
the throughput of DCS is bottlenecked by a single Redis server
due to the highly skewed request patterns. Under YCSB-A,
the throughput of DMC is still bounded by the write conflicts,
resulting in a 10% throughput loss.

Compute-side cache. Figure 6.13 shows the throughput
of a DMC single-node instance with different sizes of compute-
side caches. The throughput of DMC increases as the size of the
compute-side cache becomes larger. However, DMC instances

CHAPTER 6. INDUSTRIAL PRACTICE 186

with small caches perform worse than those without cache. This
is because the frequent cache evictions under small caches in-
troduce too much overhead on the CPUs of compute agents,
affecting the request processing speed.

Memory region migration. We sample the throughput
of DMC every 500 ms when migrating a memory region under
YCSB-B. As shown in Figure 6.14, region migration takes 5 sec-
onds, and the write transactions are blocked for only 15 ms. The
throughput of DMC is not affected, indicating the effectiveness
of the copy-free region migration protocol.

6.6.2 Elasticity and Fault-Tolerance

Elasticity. Figures 6.15 and 6.16 show the throughput of DMC
and DCS during resource scaling under YCSB-C with 1 million
keys. We use a smaller dataset due to the poor migration per-
formance of DCS when the dataset is large.

Horizontal scaling. We evaluate horizontal scaling with clus-
ter instances of DCS and DMC. We create a 4-node cluster,
scale out to 8 nodes, and scale in to 4 nodes. DCS takes more
than 8 minutes to scale out and 5 minutes to scale in. The
throughput is up to 9× lower than that of DMC during the pro-
cess. In contrast, DMC scales out and in instantly without any
side effects. The improvement is because DMC only needs to
launch new compute agents and inform the cluster manager to
adjust the memory assigned to the data instance, eliminating
data migration from the critical path.

Vertical scaling. We evaluate the performance of vertical scal-
ing with single-node DMC and DCS instances. We create a
single-node instance with 1 CPU and 4 GB DRAM initially,
scale it up to 8 GB, and then scale it down to 4 GB. DCS takes
more than 15 minutes to scale up or down. This is because DCS
creates a new container and iteratively moves all data to the

CHAPTER 6. INDUSTRIAL PRACTICE 187

0.0
0.5
1.0

Migrate data

4 CPU/16 GB 8 CPU/32 GB 4 CPU/16 GB
DCS

0 500 1000 1500 2000 2500
Time (Seconds)

0.0
0.5
1.0 4 CPU/16 GB 8 CPU/32 GB 4 CPU/16 GB

DMC

Th
ro

ug
hp

ut
 (M

op
s/

s)

Figure 6.15: The throughput of DMC under horizontal scaling.

0.0
0.1
0.2
0.3

Migrate data Migrate data

1 CPU/4 GB 1 CPU/8 GB 1 CPU/4 GB
DCS

0 1000 2000 3000 4000
Time (Seconds)

0.0
0.1
0.2
0.3 1 CPU/4 GB 1 CPU/8 GB 1 CPU/4 GB

DMC

Th
ro

ug
hp

ut
 (M

op
s/

s)

Figure 6.16: The throughput of DMC under vertical scaling.

CHAPTER 6. INDUSTRIAL PRACTICE 188

150 175 200 225 250
Time (Seconds)

0.00
0.10
0.20
0.30
0.40

Th
ro

ug
hp

ut
(M

op
s/

s)

Primary Failed Backup Started
(5 seconds)

(a) CN failure.

150 175 200 225 250
Time (Seconds)

0.00
0.05
0.10
0.15
0.20

Th
ro

ug
hp

ut
(M

op
s/

s)

1 MN Failed Re-replicated
(2.932 seconds)

(b) MN failure.

Figure 6.17: The throughput of DMC under MN and CN failures.
.

newly created instance. The throughput drops by up to 90%
during the process. On the contrary, the throughput of DMC is
not affected since it conducts vertical scaling by asking the clus-
ter manager to allocate and reclaim memory asynchronously.
No operation is involved in the data plan.
Fault-tolerance. We evaluate the performance of DMC on
MN and CN failures under YCSB-C. For MN failures, we start
a single-node DMC instance and manually crash an MN. On
MN failures, the memory pool promotes backup regions to pri-
mary regions and re-replicates these regions asynchronously. As
shown in Figure 6.17b, the performance of DMC is unaffected
during the MN failure due to the efficient region migration and
re-replication. For CN failures, we launch a replicated DMC in-
stance with one primary agent and one backup agent. We man-
ually crash the primary region during execution and show the
throughput of DMC. When dealing with CN failures, the com-
pute pool switches requests to the backup agent and restarts a
new backup agent to maintain the replication factor. As shown
in Figure 6.17a, the performance of DMC drops by half when
the failure happens since both primary and backup agents can
serve read requests before failure. The throughput resumes to
the previous level after a short period since it takes the clus-
ter manager 5 seconds to notice the failure and re-launch a new

CHAPTER 6. INDUSTRIAL PRACTICE 189

1 2 3 4 5 6 7
Time (Days)

0.0
0.2
0.4
0.6
0.8

M
em

or
y

Ut
iliz

at
io

n DCS DMC

(a) The memory utilization of 7 days.

Used
58%

Over-provisioned

22% Reserved
20%

(b) Utilization breakdown.

Figure 6.18: The improvement on memory utilization of DMC.

backup agent.

6.6.3 Memory Efficiency

To show how DMC can improve the overall memory utilization,
we collect real-world instance creation and memory allocation
traces from a DCS production cluster and feed the trace to the
DMC cluster. We sample the memory utilization of all nodes in
the DMC cluster three times a day at 1:00, 9:00, and 17:00 and
compare with the corresponding points in the trace collected
from the DCS cluster.

Figure 6.18a shows the memory utilization of the two clus-
ters in 7 days. DMC reaches up to 58% memory utilization,
which is 2.6 times higher than that of the DCS cluster. Fig-
ure 6.18b shows the memory utilization breakdown. DMC re-
duces the over-provisioned memory from 40% to 22% due to the
on-demand memory allocation. The remaining memory over-
provisioning is caused by the internal fragmentation inside mem-
ory regions. Moreover, DMC unifies memory allocation for caching
service instances with memory regions, which eliminates the
stranded and unsold memory caused by the variable-sized re-
source scheduling in the DCS cluster.

CHAPTER 6. INDUSTRIAL PRACTICE 190

6.7 Lessons Learned and Future Directions

Disaggregating memory is necessary. Memory utilization
can also be improved by achieving on-demand allocation in the
monolithic DCS cluster. However, the feasibility of such a de-
sign relies on the elasticity of caching service instances. Specif-
ically, to achieve high memory utilization, multiple instances
with partially allocated memory have to be compacted on a sin-
gle node. Instances have to be migrated when the memory in
their original node is not sufficient to hold all the instances. Un-
fortunately, monolithic-server-based caching systems cannot be
efficiently migrated since their management of data and execu-
tion of user requests are coupled together at the software layer.
They suffer from minute-scale data movement on the critical
path of instance migrations [109, 99]. Consequently, memory
disaggregation is necessary to achieve both elasticity and re-
source efficiency for DCSes.
The overhead of memory disaggregation is affordable.
The performance loss of using DM is a major concern in both
academia and industry [218, 196, 4]. DMC has a less than 0.3 ms
increase in the request latency and a 10% throughput loss com-
pared with the monolithic DCS. The throughput and latency
are sufficient to achieve our SLAs and the performance loss is
affordable considering the 2.6 times improvement in the overall
memory utilization. Meanwhile, the increase in latency is neg-
ligible considering the multiple hops and network fluctuations
between user VMs and the DMC cluster.
System design is critical to fully exploit DM. DM has
three major benefits thanks to the physically decoupled CPU
and memory, i.e., elasticity, resource utilization, and failure iso-
lation [199]. A good software design is a must to exploit these
hardware benefits [38]. In the initial design of DMC, we tried
multiple combinations of compute-side cache, replication, and

CHAPTER 6. INDUSTRIAL PRACTICE 191

data sharding. DMC with decoupled replication, logical shard-
ing, and data cache outperforms other alternatives in terms of
failure isolation, elasticity, and performance.
Memory reservation is still required. Using DM can reduce
the over-provisioned memory and eliminate stranded memory in
the monolithic DCS cluster. However, memory reservations are
still required due to the deployment model of DMC. Specifically,
the memory pool of DMC is constructed with VMs allocated
from the computing infrastructure of Huawei Cloud. When the
capacity of the memory pool is insufficient to create a DMC
instance, DMC needs to allocate a new VM and add it to the
memory pool. While we have improved the speed of adding
VMs to the memory pool, the speed of memory expansion is
still limited by the time-consuming VM allocation.

To address this issue, DMC expands the capacity of the mem-
ory pool whenever the memory utilization exceeds a fixed thresh-
old. DMC sets heuristic rules to raise the thresholds in advance
of events that may cause many bursty instance creation requests,
e.g., Black Fridays [72]. Two possible future directions can be
investigated to reduce the amount of reserved memory. First, in-
stead of setting a fixed threshold, we can use machine learning to
predict the required memory and set the threshold dynamically.
Besides, the resource expansion mechanism of the memory pool
and even the lower-level infrastructure can also be improved so
that resources can be expanded rapidly to satisfy user requests.
Shared everything is desired. In DMC, we adopt a logi-
cal partition scheme to achieve better load balance with shared
reads. However, there is still room for improvement since write
requests are still partitioned and can suffer from imbalanced
workloads. Ideally, we could achieve the best load balance and
cost efficiency with a shared everything architecture, i.e., com-
pute agents equally serve all requests. However, such an archi-
tecture makes it challenging to manage the local DRAM cache of

CHAPTER 6. INDUSTRIAL PRACTICE 192

compute agents. Expensive cache coherence protocols [32, 202]
need to be adopted since multiple compute agents can simulta-
neously access and modify the same object in their local caches.
How to efficiently manage compute agents’ local DRAM cache
under the shared everything architecture is also an important
future research topic.

6.8 Related Work

In-memory caching systems. Existing works on in-memory
caching systems can be classified into two categories. The first
improves cache hit rates of caching algorithms according to the
characteristics of cloud workloads [216, 169, 195, 64, 25, 27, 2].
Among them, SegCache [216] proposes a TTL-based eviction
algorithm to efficiently evict objects according to TTLs. Hy-
perbolic [27], and LHD [25] propose new metrics to measure
the hotness of cached objects. Cacheus [169] and LeCaR [195]
model cache replacement as a multi-armed-bandit problem and
use reinforcement learning to adapt to the changing cloud work-
loads. DMC is orthogonal to these works since we adopt existing
caching algorithms and focus on system-level improvements.

The second class improves the performance of caching sys-
tems when executing caching algorithms and data access re-
quests. Specifically, MICA [126] employs the request direction
techniques on modern NICs to schedule user requests to specific
CPU cores of the caching server. MemC3 [66] uses concurrent
cuckoo hashing and the CLOCK caching algorithm to improve
the throughput of caching servers. CliqueMap [182] uses one-
sided RDMA operations to reduce the load on server CPUs when
executing read operations and achieve higher overall throughput.
However, all these approaches focus on improving the perfor-
mance of monolithic-server-based caching systems. This work
identifies the problem of low memory utilization of production

CHAPTER 6. INDUSTRIAL PRACTICE 193

caching services and improves the cluster-level memory utiliza-
tion with DMC, a memory-disaggregated caching service.

Memory-disaggregated storage systems. Works that
relate to DMC most are Ditto [179] and Dinomo [119]. The
client-centric caching framework of DMC is similar to that of
Ditto. However, Ditto focuses on executing caching algorithms
efficiently and achieving high cache hit rates with an adaptive
caching scheme. It is insufficient to be deployed in production
since it does not address the challenges of failure handling and
scalability issues of the memory pool. DMC addresses these is-
sues with decoupled replication and on-demand connection man-
agement. Dinomo is a memory-disaggregated caching system
that partitions the management of data to individual CNs to
achieve better scalability. The logical data sharding of DMC re-
sembles this scheme but achieves better load balance by allowing
all compute agents to equally serve read requests.

6.9 Summary

This chapter presents DMC, Huawei Cloud’s industrial prac-
tice of using disaggregated memory to improve the memory ef-
ficiency of its distributed caching service. We present the severe
memory under-utilization issue in Huawei Cloud with real-world
statistics and bridge the gap between academia and industry by
introducing the industrial requirements and discussing detailed
design choices of DMC. Finally, DMC shows 2.6× higher mem-
ory utilization, 9× high throughput during resource scaling, and
1.25× higher throughput for the cluster mode instances. The
performance loss introduced by DM for single-node instances is
less than 10% for most cases.

2 End of chapter.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Resource disaggregation is a promising next-generation data
center architecture. It can achieve near-optimal resource effi-
ciency, hardware elasticity, and scalability. Severe performance
degradation is the key problem that prohibits the wide adoption
of resource disaggregation in real-world data centers.

This thesis identifies that the root cause for the performance
degradation lies in the unsuitable data structures and algorithms
and proposes to attack the performance issue in a bottom-up
manner, i.e., by designing native data structures and algorithms.

First, by analyzing the characteristics of a disaggregated data
center, we summarize three critical aspects to construct high-
performance native data structures and algorithms, i.e., I/O,
concurrency, and asymmetry.

We then focus on disaggregated memory and design data
structures and algorithms for memory-disaggregated storage sys-
tems. Our work designs data structures and algorithms for three
major components of a memory-disaggregated storage system,
i.e., memory management, indexing, and fault tolerance.

To achieve efficient memory management, we propose a two-
level memory allocator and a client-centric caching framework.
Both approaches achieve high performance by reducing the am-

194

CHAPTER 7. CONCLUSION AND FUTURE WORK 195

plified I/O numbers, avoiding and efficiently resolving concur-
rency conflicts, and scheduling computation according to the
compute capabilities of compute and memory pools of DM.
We integrate these two approaches in Ditto, the first memory-
disaggregated caching system, and verified the effectiveness of
our design with thorough experiments.

To index data with high performance, we propose SMART,
a high-performance range index data structure on DM. SMART
innovatively adopts radix trees as range indexes on DM to at-
tack the severe I/O size amplification of traditional B+-tree-
based approaches. We further reduce I/O numbers and improve
concurrency control performance in the data structure design.
Thorough experiments over YCSB workloads show the preva-
lence of SMART compared with state-of-the-art approaches.

To achieve reliability with high performance, we design high-
performance replication and logging algorithms. Both algo-
rithms reduce the amplified number of I/O operations by shot-
cutting data-path operations and achieve high concurrency con-
trol by simplifying conflict resolution. Moreover, both approaches
optimize the asymmetric compute capabilities by relying only on
one-sided RDMA operations. We integrate the replication and
logging algorithms in FUSEE, the first fully memory-disaggregated
storage system, and demonstrate its performance and reliability
with thorough experiments.

Finally, I discuss the industrial practice by introducing the
design of DMC, the memory-disaggregated caching service in
Huawei Cloud. We present the severe memory under-utilization
issue in Huawei Cloud with real-world statistics and bridge the
gap between academia and industry by introducing the indus-
trial requirements and discussing detailed design choices of DMC.
Thorough experiments validate the effectiveness of our designed
data structures and algorithms.

In brief, this thesis contributes to both academia and in-

CHAPTER 7. CONCLUSION AND FUTURE WORK 196

dustry. To academia, we provide guidelines for efficient data
structures and algorithm design over DM. To industry, we show
the huge benefit of memory-disaggregating a monolithic caching
service can have in terms of resource efficiency and elasticity.
To some extent, our work promotes the deployment of memory
disaggregation in modern cloud data centers.

7.2 Future Work

The problem with resource disaggregation is far from being fully
addressed. The goal of resource disaggregation is to allow ar-
bitrary programs to execute seamlessly over the disaggregated
architecture with high performance. In this perspective, it is
critical to achieve the compatibility of existing programs and
simplify the development of future programs. For existing pro-
grams, it is crucial to transparently port them to the disaggre-
gated architecture with high performance. For future programs,
new programming paradigms need to be proposed to allow engi-
neers to develop efficient disaggregation-native software. How-
ever, there is still a huge gap between an arbitrary program and
the disaggregated architecture.

Closing this gap calls for a joint effort from both bottom-up
and top-down system design. First, many disaggregation-native
system components, e.g., data structures, and algorithms, have
to be constructed to achieve high performance. This is what
we have explored in this thesis. Besides, an internal abstraction
layer, e.g., language runtimes and operating systems, has to be
deployed to compose bottom-up system components and provide
a compatible interface.

Looking forward, I would like to explore combining bottom-
up system components with top-down interfaces to achieve bet-
ter disaggregation for both existing and future programs.

CHAPTER 7. CONCLUSION AND FUTURE WORK 197

7.2.1 Disaggregating Existing Programs

In existing cloud data centers, there are two major types of
programs, i.e., traditional CPU-centric programs and emerging
GPU-centric AI applications. The primal challenge of disaggre-
gating these programs in a portable manner is how to mitigate
the severe performance degradation. Addressing this challenge
requires us to understand the character of program execution
and schedule the computation of individual programs to their
most suitable lower-level system components. It is promising to
approach this at the runtime level, where we can expose upper-
level program semantics to the lower-level system components.
Concretely, I will explore designing disaggregated language run-
times for CPU-centric programs and machine learning (ML) run-
times for GPU-centric AI applications.

Fine-Grained Disaggregation for CPU-Centric Applications

The large amount of CPU-centric applications in today’s data
centers makes disaggregating these types of applications a crit-
ical task. For these applications, achieving high performance
over the disaggregated architecture requires us to decompose a
program into fine-grained computation tasks and schedule them
to the most suitable hardware accelerators. This makes under-
standing the semantics of programs critical.

We propose to achieve such fine-grained disaggregation at the
runtime level. The benefit of using language runtimes is that
they are very close to programs since they directly deal with
code. However, it is challenging to correctly divide programs,
understand the characters of divided computation tasks, and
coordinate these tasks over the disaggregated accelerators. In
the future, I will design a disaggregated language runtime that
leverages both dynamic profiling and static analysis to decom-
pose the program and construct lower-level system components

CHAPTER 7. CONCLUSION AND FUTURE WORK 198

to coordinate computation tasks efficiently over the disaggre-
gated architecture.

Disaggregated ML Runtimes for GPU-Centric AI applications

Due to the emergence of large language models (LLM), GPU-
centric generative AI workloads, i.e., LLM training and infer-
encing, are becoming more and more important in modern data
centers. Disaggregating these GPU-centric applications is ur-
gent due to the large-scale deployment and the diverse resource
requirements of training and inferencing tasks. These applica-
tions involve massive parallel floating-point computation and are
already scheduled on the most suitable hardware, i.e., GPUs.
The problem with the existing AI applications is the memory
wall of GPUs, i.e., the compute power of GPUs cannot be fully
utilized since they cannot hold all the data in their memory.
Inspired by the disaggregation of CPU memory on monolithic
servers, I will explore disaggregating GPU memory with high-
speed GPU interconnects at the ML runtime level to break the
GPU memory wall for generative AI applications.

7.2.2 Disaggregating Future Programs

Eliminating the semantic gap between an arbitrary program and
the disaggregated hardware is hard to achieve optimal with the
runtime-level program analyses. For future programs, a better
approach is to expose some critical lower-level hardware and
architectural details to engineers so that they can close the gap
when developing programs. This calls for a new programming
paradigm for disaggregation-native programs.

Disaggregated Serverless Frameworks for Future Programs

Serverless computing is an emerging programming paradigm
that naturally synergizes with the idea of resource disaggrega-

CHAPTER 7. CONCLUSION AND FUTURE WORK 199

tion. It requires developers to manually decompose a monolithic
program into small computation tasks named serverless func-
tions. However, existing serverless frameworks are designed for
CPU-centric programs. There is a huge gap between serverless
functions and the disaggregated hardware, both in the program-
ming interface and in the execution of serverless functions. To
close this gap, in the future, I propose to extend the serverless
computing interface to expose more hardware details and de-
sign bottom-up system components for more efficient execution
of serverless functions.

2 End of chapter.

Chapter 8

List of Publications

1. Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su,
Jiazhen Gu, Hao Feng, Yangfan Zhou, and Michael R. Lyu.
”Ditto: An Elastic and Adaptive Memory-Disaggregated
Caching System.” In Proceedings of the 29th Symposium
on Operating Systems Principles (SOSP 23).

2. Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang,
Yuxin Su, Yangfan Zhou, and Michael R. Lyu. ”FUSEE:
A Fully Memory-Disaggregated Key-Value Store.” In 21st
USENIX Conference on File and Storage Technologies (FAST
23).

3. Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou,
and Michael R. Lyu. ”Defuse: A Dependency-Guided Func-
tion Scheduler to Mitigate Cold Starts on FaaS Platforms.”
In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS 21).

4. Jiacheng Shen, Xu Zhang, Zihao Xiang, Sagiv Goren,
Dongxu Li, Ben Che, Zhangyu Chen, Paul Chen, Yonghui
Miao, Jia Feng, Pengfei Zuo, and Michael R. Lyu. ”Pro-
ductionizing a Memory-Disaggregated Caching System” In
submission. 2024.

5. Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu,

200

CHAPTER 8. LIST OF PUBLICATIONS 201

Xin Wang, Michael R. Lyu, and Yangfan Zhou. ”SMART:
A High-Performance Adaptive Radix Tree for Disaggre-
gated Memory.” In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23).

6. Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu,
Xin Wang, Michael Lyu, and Yangfan Zhou. ”A Memory-
Disaggregated Radix Tree.” ACM Transactions on Storage
(2024).

7. Xuchuan Luo, Jiacheng Shen, Pengfei Zuo, Xin Wang,
Michael R. Lyu, and Yangfan Zhou. ”CHIME: A Cache-
Efficient and High-Performance Hybrid Index on Disaggre-
gated Memory” In submission. 2023.

8. Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiao Ling, Yongqiang
Yang, and Michael R. Lyu. ”AID: efficient prediction of ag-
gregated intensity of dependency in large-scale cloud sys-
tems.” In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE 21).

9. Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiaoxue Ren,
Yongqiang Yang, and Michael R. Lyu. ”Characterizing
and mitigating anti-patterns of alerts in industrial cloud
systems.” In 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
22).

10. Shuyao Jiang, Jiacheng Shen, Shengnan Wu, Yu Cai, Yue
Yu, and Yangfan Zhou. ”Towards Usable Neural Com-
ment Generation via Code-Comment Linkage Interpreta-
tion: Method and Empirical Study.” IEEE Transactions on
Software Engineering 49, no. 4 (2022): 2239-2254.

11. Tianyi Yang, Cheryl Lee, Jiacheng Shen, Yuxin Su, Cong
Feng, Yongqiang Yang, and Michael R. Lyu. ”MicroRes:

CHAPTER 8. LIST OF PUBLICATIONS 202

Versatile Resilience Profiling in Microservices via Degra-
dation Dissemination Indexing.” In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA 24).

2 End of chapter.

Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Con-
trol-Flow Integrity Principles, Implementations, and Ap-
plications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40,
2009.

[2] M. Abdi, A. Mosayyebzadeh, M. H. Hajkazemi, A. Turk,
O. Krieger, and P. Desnoyers. Caching in the Multiverse.
In the 11th USENIX Workshop on Hot Topics in Stor-
age and File Systems, HotStorage 2019, July 8-9, 2019.
USENIX Association, 2019.

[3] S. E. Abdullahi and G. A. Ringwood. Garbage collecting
the internet: A survey of distributed garbage collection.
ACM Comput. Surv., 30(3):330–373, 1998.

[4] M. K. Aguilera, E. Amaro, N. Amit, E. Hunhoff, A. Yelam,
and G. Zellweger. Memory Disaggregation: Why Now and
What are the Challenges. ACM SIGOPS Operating Sys-
tems Review, 57(1):38–46, 2023.

[5] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Sing-
hal. Designing Far Memory Data Structures: Think Out-
side the Box. In Workshop on Hot Topics in Operating
Systems, HotOS 2019, May 13-15, 2019, pages 120–126.
ACM, 2019.

[6] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veer-
araghavan. Challenges to adopting stronger consistency

203

BIBLIOGRAPHY 204

at scale. In 15th Workshop on Hot Topics in Operating
Systems, HotOS XV, Kartause Ittingen, Switzerland, May
18-20, 2015. USENIX Association, 2015.

[7] P. Alsberg and J. D. Day. A principle for resilient shar-
ing of distributed resources. In Proceedings of the 2nd
International Conference on Software Engineering, San
Francisco, California, USA, October 13-15, 1976, pages
562–570. IEEE Computer Society, 1976.

[8] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout,
M. K. Aguilera, A. Panda, S. Ratnasamy, and S. Shenker.
Can Far Memory Improve Job Throughput? In the 15th
EuroSys Conference, EuroSys 2020, April 27-30, 2020,
pages 14:1–14:16. ACM, 2020.

[9] Amazon. Amazon elastic block store. https://aws.am
azon.com/ebs, 2024.

[10] Amazon. Aws nitro system. https://aws.amazon.com
/ec2/nitro, 2024.

[11] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-
ica. Disk-locality in datacenter computing considered ir-
relevant. In 13th Workshop on Hot Topics in Operating
Systems, HotOS XIII, Napa, California, USA, May 9-11,
2011. USENIX Association, 2011.

[12] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: a fast array
of wimpy nodes. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles 2009, SOSP 2009,
Big Sky, Montana, USA, October 11-14, 2009, pages 1–14.
ACM, 2009.

[13] P. Anderson, E. B. Aranas, Y. Assaf, R. Behrendt,
R. Black, M. Caballero, P. Cameron, B. Canakci, T. D.

BIBLIOGRAPHY 205

Carvalho, A. Chatzieleftheriou, R. S. Clarke, J. Clegg,
D. Cletheroe, B. Cooper, T. Deegan, A. Donnelly,
R. Drevinskas, A. L. Gaunt, C. Gkantsidis, A. G. Diaz,
I. Haller, F. Hong, T. Ilieva, S. Joshi, R. Joyce, M. Kunkel,
D. Lara, S. Legtchenko, F. L. Liu, B. Magalhães, A. Mar-
zoev, M. McNett, J. Mohan, M. Myrah, T. Nguyen,
S. Nowozin, A. Ogus, H. Overweg, A. I. T. Rowstron,
M. Sah, M. Sakakura, P. Scholtz, N. Schreiner, O. Sella,
A. Smith, I. A. Stefanovici, D. Sweeney, B. Thomsen,
G. Verkes, P. Wainman, J. Westcott, L. Weston, C. Whit-
taker, P. W. Berenguer, H. Williams, T. Winkler, and
S. Winzeck. Project silica: Towards sustainable cloud
archival storage in glass. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 166–181.
ACM, 2023.

[14] S. Angel, M. Nanavati, and S. Sen. Disaggregation and the
application. In 12th USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud 2020, July 13-14, 2020.
USENIX Association, 2020.

[15] Apache. Apache hadoop. https://hadoop.apache.org,
2024.

[16] Apache. Apache spark: Unified engine for large-scale data
analytics. https://spark.apache.org, 2024.

[17] I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A. Brandt,
and D. D. E. Long. ACME: Adaptive Caching Using Mul-
tiple Experts. In Distributed Data & Structures 4, Records
of the 4th International Meeting, WDAS 2002, March 20-
23, 2002, Proceedings in Informatics. Carleton Scientific,
2002.

BIBLIOGRAPHY 206

[18] M. F. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and
T. Jin. Evaluating Content Management Techniques for
Web Proxy Caches. SIGMETRICS Performance Evalua-
tion Review, 27(4):3–11, 2000.

[19] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, et al. Above the Clouds: A Berkeley View of
Cloud Computing. Technical report, Technical Report
UCB/EECS, 28, EECS Department, University of Cali-
fornia, Berkeley, 2009.

[20] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravin-
dran. Speeding up consensus by chasing fast decisions. In
47th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2017, Denver, CO,
USA, June 26-29, 2017, pages 49–60. IEEE Computer So-
ciety, 2017.

[21] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, London, United
Kingdom, June 11-15, 2012, pages 53–64. ACM, 2012.

[22] N. Atre, J. Sherry, W. Wang, and D. S. Berger. Caching
with delayed hits. In SIGCOMM ’20: Proceedings of the
2020 Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies,
architectures, and protocols for computer communication,
Virtual Event, USA, August 10-14, 2020, pages 495–513.
ACM, 2020.

[23] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. In Proceedings of

BIBLIOGRAPHY 207

the Ninth Annual ACM Symposium on Principles of Dis-
tributed Computing, Quebec City, Quebec, Canada, August
22-24, 1990, pages 363–375. ACM, 1990.

[24] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,
M. Wei, and J. D. Davis. CORFU: A shared log design for
flash clusters. In Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages
1–14. USENIX Association, 2012.

[25] N. Beckmann, H. Chen, and A. Cidon. LHD: Improving
Cache Hit Rate by Maximizing Hit Density. In the 15th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, April 9-11, 2018, pages 389–
403. USENIX Association, 2018.

[26] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis.
HOT: A height optimized trie index for main-memory
database systems. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Confer-
ence 2018, Houston, TX, USA, June 10-15, 2018, pages
521–534. ACM, 2018.

[27] A. Blankstein, S. Sen, and M. J. Freedman. Hyperbolic
Caching: Flexible Caching for Web Applications. In 2017
USENIX Annual Technical Conference, USENIX ATC
2017, July 12-14, 2017, pages 499–511. USENIX Asso-
ciation, 2017.

[28] J. Bonwick. The slab allocator: An object-caching ker-
nel memory allocator. In USENIX Summer 1994 Techni-
cal Conference, Boston, Massachusetts, USA, June 6-10,
1994, Conference Proceeding, pages 87–98. USENIX As-
sociation, 1994.

BIBLIOGRAPHY 208

[29] J. Bornholt, A. Kaufmann, J. Li, A. Krishnamurthy,
E. Torlak, and X. Wang. Specifying and checking file
system crash-consistency models. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016,
pages 83–98. ACM, 2016.

[30] M. Burke, A. Cheng, and W. Lloyd. Gryff: Unifying con-
sensus and shared registers. In 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, pages
591–617. USENIX Association, 2020.

[31] M. Burke, S. Dharanipragada, S. Joyner, A. Szekeres,
J. Nelson, I. Zhang, and D. R. K. Ports. PRISM: Re-
thinking the RDMA interface for distributed systems. In
SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021, pages 228–242. ACM, 2021.

[32] Q. Cai, W. Guo, H. Zhang, D. Agrawal, G. Chen, B. C.
Ooi, K. Tan, Y. M. Teo, and S. Wang. Efficient Distributed
Memory Management with RDMA and Caching. Proceed-
ings of the VLDB Endowment, 11(11):1604–1617, 2018.

[33] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf,
O. Mutlu, and A. Kolli. Rethinking Software Runtimes
for Disaggregated Memory. In the 26th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2021,
April 19-23, 2021, pages 79–92. ACM, 2021.

[34] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching
Algorithms. In the 1st USENIX Symposium on Inter-

BIBLIOGRAPHY 209

net Technologies and Systems, USITS 97, December 8-11,
1997. USENIX, 1997.

[35] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu,
X. Cheng, Z. Chen, Z. Liu, J. Fang, B. Wang, Y. Wang,
H. Sun, Z. Yang, Z. Cheng, S. Chen, J. Wu, W. Hu,
J. Zhao, Y. Gao, S. Cai, Y. Zhang, and J. Tong. Polardb
serverless: A cloud native database for disaggregated data
centers. In SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25,
2021, pages 2477–2489. ACM, 2021.

[36] Z. Cao, S. Dong, S. Vemuri, and D. H. C. Du. Charac-
terizing, modeling, and benchmarking rocksdb key-value
workloads at facebook. In 18th USENIX Conference on
File and Storage Technologies, FAST 2020, Santa Clara,
CA, USA, February 24-27, 2020, pages 209–223. USENIX
Association, 2020.

[37] cgroups. cgroups. https://man7.org/linux/man-pag
es/man7/cgroups.7.html, 2022.

[38] A. Chatzieleftheriou, I. A. Stefanovici, D. Narayanan,
B. Thomsen, and A. I. T. Rowstron. Could Cloud Storage
be Disrupted in the Next Decade? In the 12th USENIX
Workshop on Hot Topics in Storage and File Systems,
HotStorage 2020, July 13-14, 2020. USENIX Association,
2020.

[39] Y. Chen, Y. Lu, and J. Shu. Scalable RDMA RPC on reli-
able connection with efficient resource sharing. In Proceed-
ings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019, pages 19:1–19:14. ACM,
2019.

BIBLIOGRAPHY 210

[40] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and
D. Phillips. Giza: Erasure coding objects across global
data centers. In 2017 USENIX Annual Technical Confer-
ence, USENIX ATC 2017, Santa Clara, CA, USA, July
12-14, 2017, pages 539–551. USENIX Association, 2017.

[41] Z. Chen, Y. Liu, Y. Wang, and Y. Lu. A gpu-accelerated
in-memory metadata management scheme for large-scale
parallel file systems. J. Comput. Sci. Technol., 36(1):44–
55, 2021.

[42] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dy-
nacache: Dynamic Cloud Caching. In the 7th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud
15, July 6-7, 2015. USENIX Association, 2015.

[43] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling Performance Cliffs in Web Memory
Caches. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2016, March 16-
18, 2016, pages 379–392. USENIX Association, 2016.

[44] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.
Memshare: A Dynamic Multi-Tenant Key-value Cache.
In 2017 USENIX Annual Technical Conference, USENIX
ATC 2017, July 12-14, 2017, pages 321–334. USENIX As-
sociation, 2017.

[45] A. Cloud. Alibaba cluster trace. https://github.com
/alibaba/clusterdata, 2018.

[46] A. Cloud. Essds. https://www.alibabacloud.com/hel
p/en/ecs/user-guide/essds, 2024.

[47] G. Cloud. Google cluster trace. https://github.com/g
oogle/cluster-data, 2018.

BIBLIOGRAPHY 211

[48] H. Cloud. Object storage service. https://www.huawei
cloud.com/intl/en-us/product/obs.html, 2024.

[49] Cloud4U. Gpu render fram in the cloud. https://www.
cloud4u.com/cloud-hosting/gpu-render-farm/, 2024.

[50] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems with
YCSB. In the 1st ACM Symposium on Cloud Computing,
SoCC 2010, June 10-11, 2010, pages 143–154. ACM, 2010.

[51] M. Copik, M. Chrapek, L. Schmid, A. Calotoiu, and
T. Hoefler. Software resource disaggregation for HPC with
serverless computing. CoRR, abs/2401.10852, 2024.

[52] I. Corporation. Driving Exascale Computing and HPC
with Intel. https://www.intel.com/content/www/us
/en/high-performance-computing-fabrics/omni-pat
h-driving-exascale-computing.html.

[53] I. Corporation. Write Combining Memory Implementation
Guidelines. https://download.intel.com/design/Pe
ntiumII/applnots/24442201.pdf.

[54] S. Dong, A. Kryczka, Y. Jin, and M. Stumm. Evolu-
tion of development priorities in key-value stores serving
large-scale applications: The rocksdb experience. In 19th
USENIX Conference on File and Storage Technologies,
FAST 2021, February 23-25, 2021, pages 33–49. USENIX
Association, 2021.

[55] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson.
FaRM: Fast Remote Memory. In the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2014, April 2-4, 2014, pages 401–414. USENIX As-
sociation, 2014.

BIBLIOGRAPHY 212

[56] A. Dragojevic, D. Narayanan, E. B. Nightingale, M. Ren-
zelmann, A. Shamis, A. Badam, and M. Castro. No
Compromises: Distributed Transactions with Consistency,
Availability, and Performance. In the 25th Symposium on
Operating Systems Principles, SOSP 2015, October 4-7,
2015, pages 54–70. ACM, 2015.

[57] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb,
A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,
M. Zink, E. Cecchet, S. Kar, and P. Mishra. The Design
and Operation of CloudLab. In 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, July 10-12,
2019, pages 1–14. USENIX Association, 2019.

[58] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus
in the presence of partial synchrony. J. ACM, 35(2):288–
323, 1988.

[59] G. Einziger, R. Friedman, and B. Manes. TinyLFU: A
Highly Efficient Cache Admission Policy. ACM Transac-
tions on Storage, TOS 2017, 13(4):35:1–35:31, 2017.

[60] A. ElastiCache. https://aws.amazon.com/elasticac
he/?nc1=h_ls.

[61] C. S. Ellis. Concurrency in linear hashing. ACM Trans.
Database Syst., 12(2):195–217, 1987.

[62] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and
A. E. Abbadi. Squall: Fine-grained live reconfiguration
for partitioned main memory databases. In Proceedings
of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015, pages 299–313. ACM, 2015.

BIBLIOGRAPHY 213

[63] A. J. Elmore, S. Das, D. Agrawal, and A. E. Abbadi.
Zephyr: Live Migration in Shared Nothing Databases for
Elastic Cloud Platforms. In the 2011 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD
2011, June 12-16, 2011, pages 301–312. ACM, 2011.

[64] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. I. Kat.
It’s Time to Revisit LRU vs. FIFO. In the 12th USENIX
Workshop on Hot Topics in Storage and File Systems,
HotStorage 2020, July 13-14, 2020. USENIX Association,
2020.

[65] Facebook. Wedge 100: More open and versatile then ever.
https://engineering.fb.com/2016/10/18/data-cen
ter-engineering/wedge-100-more-open-and-versati
le-than-ever, 2016.

[66] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and Concurrent MemCache with Dumber Caching
and Smarter Hashing. In the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI
2013, April 2-5, 2013, pages 371–384. USENIX Associa-
tion, 2013.

[67] P. Faraboschi, K. Keeton, T. Marsland, and D. S. Milo-
jicic. Beyond processor-centric operating systems. In
G. Candea, editor, 15th Workshop on Hot Topics in Oper-
ating Systems, HotOS XV, Kartause Ittingen, Switzerland,
May 18-20, 2015. USENIX Association, 2015.

[68] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. M. Caulfield, E. S. Chung, H. K. Chandrappa,
S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam,
F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,

BIBLIOGRAPHY 214

A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A.
Maltz, and A. G. Greenberg. Azure accelerated network-
ing: SmartNICs in the public cloud. In 15th USENIX
Symposium on Networked Systems Design and Implemen-
tation, NSDI 2018, Renton, WA, USA, April 9-11, 2018,
pages 51–66. USENIX Association, 2018.

[69] A. Flaxman, A. T. Kalai, and H. B. McMahan. Online
Convex Optimization in the Bandit Setting: Gradient De-
scent without a Gradient. In the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, January
23-25, 2005, pages 385–394. SIAM, 2005.

[70] Fonxat. 300 million email database. https://archive.
org/details/300MillionEmailDatabase, 2018.

[71] D. J. Foster, A. Rakhlin, and K. Sridharan. Adaptive
Online Learning. CoRR, abs/1508.05170, 2015.

[72] B. Friday. https://www.amazon.com/blackfriday,
2023.

[73] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network re-
quirements for resource disaggregation. In 12th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016, pages 249–264. USENIX Association, 2016.

[74] D. K. Gifford. Weighted voting for replicated data. In Pro-
ceedings of the Seventh Symposium on Operating System
Principles, SOSP 1979, Asilomar Conference Grounds,
Pacific Grove, California, USA, 10-12, December 1979,
pages 150–162. ACM, 1979.

[75] Google. Memorystore. https://cloud.google.com/m
emorystore, 2023.

BIBLIOGRAPHY 215

[76] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G.
Shin. Efficient Memory Disaggregation with Infiniswap.
In the 14th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2017, March 27-29,
2017, pages 649–667. USENIX Association, 2017.

[77] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri,
O. Legunsen, and T. Xu. Acto: Automatic end-to-end test-
ing for operation correctness of cloud system management.
In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP 2023, Koblenz, Germany, October
23-26, 2023, pages 96–112. ACM, 2023.

[78] R. Guerraoui, A. Murat, J. Picorel, A. Xygkis, H. Yan, and
P. Zuo. uKharon: A membership service for microsecond
applications. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), pages 101–120, Carlsbad, CA,
2022. USENIX Association.

[79] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and
M. Lipshteyn. RDMA over commodity ethernet at scale.
In Proceedings of the ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016, pages 202–215.
ACM, 2016.

[80] Z. Guo, Z. He, and Y. Zhang. Mira: A program-behavior-
guided far memory system. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 692–708.
ACM, 2023.

[81] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang. Clio:
A Hardware-Software Co-designed Disaggregated Memory
System. In the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Op-

BIBLIOGRAPHY 216

erating Systems, ASPLOS 2022, Feb. 28 - Mar. 4, 2022,
pages 417–433. ACM, 2022.

[82] M. Herlihy and N. Shavit. The art of multiprocessor pro-
gramming. Morgan Kaufmann, 2008.

[83] M. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, 1990.

[84] M. Hsu and W. Yang. Concurrent operations in extendible
hashing. In W. W. Chu, G. Gardarin, S. Ohsuga, and
Y. Kambayashi, editors, VLDB’86 Twelfth International
Conference on Very Large Data Bases, August 25-28,
1986, Kyoto, Japan, Proceedings, pages 241–247. Morgan
Kaufmann, 1986.

[85] A. H. Hunter, C. Kennelly, P. Turner, D. Gove, T. Moseley,
and P. Ranganathan. Beyond malloc efficiency to fleet
efficiency: A hugepage-aware memory allocator. In 15th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, Virtual, July 14-16, 2021.
USENIX Association, 2021.

[86] InfiniBand. https://www.infinibandta.org/.

[87] Intel. Discover advanced memory with intel optane
pmem. https://www.intel.com/content/www/us/en/
products/details/memory-storage/optane-dc-persi
stent-memory.html, 2024.

[88] Intel. Match every application to its optimal architecture
with xpu. https://www.intel.com/content/www/us/e
n/architecture-and-technology/xpu.html, 2024.

[89] J. Jang, H. Choi, H. Bae, S. Lee, M. Kwon, and M. Jung.
CXL-ANNS: software-hardware collaborative memory dis-

BIBLIOGRAPHY 217

aggregation and computation for billion-scale approximate
nearest neighbor search. In 2023 USENIX Annual Techni-
cal Conference, USENIX ATC 2023, Boston, MA, USA,
July 10-12, 2023, pages 585–600. USENIX Association,
2023.

[90] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song,
E. Tremel, R. van Renesse, S. Zink, and K. P. Birman.
Derecho: Fast state machine replication for cloud services.
ACM Trans. Comput. Syst., 36(2):4:1–4:49, 2019.

[91] M. Ji, A. C. Veitch, and J. Wilkes. Seneca: Remote mir-
roring done write. In Proceedings of the General Track:
2003 USENIX Annual Technical Conference, June 9-14,
2003, San Antonio, Texas, USA, pages 253–268. USENIX,
2003.

[92] S. Jiang and X. Zhang. LIRS: An Efficient Low Inter-
Reference Recency Set Replacement Policy to Improve
Buffer Cache Performance. In the 2002 ACM SIGMET-
RICS International Conference on Measurements and
Modeling of Computer Systems, SIGMETRICS 2002, June
15-19, 2002, pages 31–42. ACM, 2002.

[93] T. Johnson and D. E. Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm.
In the 20th International Conference on Very Large Data
Bases, VLDB 1994, September 12-15, 1994, pages 439–
450. Morgan Kaufmann, 1994.

[94] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho,
T. B. Jablin, G. Kurian, J. Laudon, S. Li, P. C. Ma,
X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou,
and D. A. Patterson. Ten lessons from three genera-
tions shaped google’s tpuv4i : Industrial product. In 48th

BIBLIOGRAPHY 218

ACM/IEEE Annual International Symposium on Com-
puter Architecture, ISCA 2021, Virtual Event / Valencia,
Spain, June 14-18, 2021, pages 1–14. IEEE, 2021.

[95] A. Kalia, M. Kaminsky, and D. G. Andersen. Using
RDMA Efficiently for Key-Value Services. In ACM SIG-
COMM 2014 Conference, SIGCOMM 2014, August 17-22,
2014, pages 295–306. ACM, 2014.

[96] A. Kalia, M. Kaminsky, and D. G. Andersen. Design
Guidelines for High Performance RDMA Systems. In 2016
USENIX Annual Technical Conference, USENIX ATC
2016, June 22-24, 2016, pages 437–450. USENIX Asso-
ciation, 2016.

[97] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-
Sided (RDMA) Datagram RPCs. In the 12th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI 2016, November 2-4, 2016, pages 185–201.
USENIX Association, 2016.

[98] A. Kalia, M. Kaminsky, and D. G. Andersen. Datacenter
RPCs can be general and fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2019, Boston, MA, February 26-28, 2019, pages 1–
16. USENIX Association, 2019.

[99] J. Kang, L. Cai, F. Li, X. Zhou, W. Cao, S. Cai, and
D. Shao. Remus: Efficient live migration for distributed
databases with snapshot isolation. In Proceedings of the
2022 International Conference on Management of Data,
SIGMOD ’22. ACM, 2022.

[100] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy,
M. S. Levine, and D. Lewin. Consistent hashing and ran-

BIBLIOGRAPHY 219

dom trees: Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on the Theory of Comput-
ing, El Paso, Texas, USA, May 4-6, 1997, pages 654–663.
ACM, 1997.

[101] A. Katsarakis, V. Gavrielatos, M. R. S. Katebzadeh,
A. Joshi, A. Dragojevic, B. Grot, and V. Nagarajan. Her-
mes: A fast, fault-tolerant and linearizable replication pro-
tocol. In ASPLOS ’20: Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne,
Switzerland, March 16-20, 2020, pages 201–217. ACM,
2020.

[102] A. Khrabrov, M. Pirvu, V. Sundaresan, and E. de Lara.
Jitserver: Disaggregated caching JIT compiler for the
JVM in the cloud. In 2022 USENIX Annual Technical
Conference, USENIX ATC 2022, Carlsbad, CA, USA, July
11-13, 2022, pages 869–884. USENIX Association, 2022.

[103] J. Kim, W. Choe, and J. Ahn. Exploring the design space
of page management for multi-tiered memory systems.
In 2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021, pages 715–728. USENIX As-
sociation, 2021.

[104] W. Kim, J. Kim, W. Baek, B. Nam, and Y. Won. NVWAL:
exploiting NVRAM in write-ahead logging. In Proceedings
of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6,
2016, pages 385–398. ACM, 2016.

[105] W. Kim, M. K. Ramanathan, X. Fu, S. Kashyap, and
C. Min. PACTree: A high performance persistent range
index using PAC guidelines. In SOSP ’21: ACM SIGOPS

BIBLIOGRAPHY 220

28th Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages
424–439. ACM, 2021.

[106] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and
S. Kumar. Flash storage disaggregation. In Proceedings
of the Eleventh European Conference on Computer Sys-
tems, EuroSys 2016, London, United Kingdom, April 18-
21, 2016, pages 29:1–29:15. ACM, 2016.

[107] D. E. Knuth. The art of computer programming, Volume
I: Fundamental Algorithms, 3rd Edition. Addison-Wesley,
1997.

[108] R. Koller and R. Rangaswami. I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance. In the
8th USENIX Conference on File and Storage Technolo-
gies, FAST 2010, February 23-26, 2010, pages 211–224.
USENIX, 2010.

[109] C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and
R. Stutsman. Rocksteady: Fast Migration for Low-
Latency In-Memory Storage. In the 26th Symposium on
Operating Systems Principles, SOSP 2017, October 28-31,
2017, pages 390–405. ACM, 2017.

[110] V. Kumar. Concurrent operations on extendible hash-
ing and its performance. Commun. ACM, 33(6):681–694,
1990.

[111] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H.
Yu, J. Gonzalez, H. Zhang, and I. Stoica. Efficient mem-
ory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on
Operating Systems Principles, SOSP 2023, Koblenz, Ger-
many, October 23-26, 2023, pages 611–626. ACM, 2023.

BIBLIOGRAPHY 221

[112] M. Labib. Amazon ElastiCache Deep Dive. https://pa
ges.awscloud.com/rs/112-TZM-766/images/Session
\%201\%20-\%20ElastiCache-DeepDive_v2_rev.pdf.

[113] H. Labs. The Machine: A New Kind of Com-
puter. https://www.hpl.hp.com/research/systems-r
esearch/themachine/, 2014.

[114] L. Lamport. The temporal logic of actions. ACM Trans.
Program. Lang. Syst., 16(3):872–923, 1994.

[115] L. Lamport. The part-time parliament. ACM Trans. Com-
put. Syst., 16(2):133–169, 1998.

[116] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable DRAM alternative. In
36th International Symposium on Computer Architecture
(ISCA 2009), June 20-24, 2009, Austin, TX, USA, pages
2–13. ACM, 2009.

[117] E. K. Lee and C. A. Thekkath. Petal: Distributed vir-
tual disks. In ASPLOS-VII Proceedings - Seventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, Cambridge, Mas-
sachusetts, USA, October 1-5, 1996, pages 84–92. ACM
Press, 1996.

[118] S. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and
A. Bhattacharjee. MIND: In-Network Memory Manage-
ment for Disaggregated Data Centers. In the 28th Sympo-
sium on Operating Systems Principles, SOSP 2021, Octo-
ber 26-29, 2021, pages 488–504. ACM, 2021.

[119] S. K. Lee, S. Ponnapalli, S. Singhal, M. K. Aguilera,
K. Keeton, and V. Chidambaram. DINOMO: An Elas-
tic, Scalable, High-Performance Key-Value Store for Dis-

BIBLIOGRAPHY 222

aggregated Persistent Memory. Proceedings of the VLDB
Endowment, 15(13):4023–4037, 2022.

[120] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory databases. In
29th IEEE International Conference on Data Engineering,
ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages
38–49. IEEE Computer Society, 2013.

[121] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The
ART of practical synchronization. In Proceedings of the
12th International Workshop on Data Management on
New Hardware, DaMoN 2016, San Francisco, CA, USA,
June 27, 2016, pages 3:1–3:8. ACM, 2016.

[122] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. Kv-direct: High-performance
in-memory key-value store with programmable NIC. In
Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017, pages
137–152. ACM, 2017.

[123] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. No-
vakovic, M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D.
Hill, M. Fontoura, and R. Bianchini. Pond: CXL-Based
Memory Pooling Systems for Cloud Platforms. In the 28th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, AS-
PLOS 2023, March 25-29, 2023, pages 574–587. ACM,
2023.

[124] H. Li, K. Liu, T. Liang, Z. Li, T. Lu, H. Yuan, Y. Xia,
Y. Bao, M. Chen, and Y. Shan. Hopp: Hardware-
software co-designed page prefetching for disaggregated
memory. In IEEE International Symposium on High-
Performance Computer Architecture, HPCA 2023, Mon-

BIBLIOGRAPHY 223

treal, QC, Canada, February 25 - March 1, 2023, pages
1168–1181. IEEE, 2023.

[125] P. Li, Y. Hua, P. Zuo, Z. Chen, and J. Sheng. ROLEX:
A Scalable RDMA-Oriented Learned Key-Value Store for
Disaggregated Memory Systems. In the 21st USENIX
Conference on File and Storage Technologies, FAST 2023,
February 21-23, 2023, pages 99–114. USENIX Association,
2023.

[126] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-Memory Key-Value
Storage. In the 11th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2014, April
2-4, 2014, pages 429–444. USENIX Association, 2014.

[127] K. T. Lim, J. Chang, T. N. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated Memory
for Expansion and Sharing in Blade Servers. In the 36th
International Symposium on Computer Architecture, ISCA
2009, June 20-24, 2009, pages 267–278. ACM, 2009.

[128] K. T. Lim, Y. Turner, J. R. Santos, A. AuYoung,
J. Chang, P. Ranganathan, and T. F. Wenisch. System-
level implications of disaggregated memory. In 18th IEEE
International Symposium on High Performance Computer
Architecture, HPCA 2012, New Orleans, LA, USA, 25-29
February, 2012, pages 189–200. IEEE Computer Society,
2012.

[129] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter,
and K. Gupta. Offloading distributed applications onto
SmartNICs using iPipe. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM
2019, Beijing, China, August 19-23, 2019, pages 318–333.
ACM, 2019.

BIBLIOGRAPHY 224

[130] Q. Liu and P. J. Varman. Haechi: A token-based qos
mechanism for one-sided i/os in RDMA based storage sys-
tem. In 41st IEEE International Conference on Distributed
Computing Systems, ICDCS 2021, Washington DC, USA,
July 7-10, 2021, pages 171–182. IEEE, 2021.

[131] X. Luo, P. Zuo, J. Shen, J. Gu, X. Wang, M. R. Lyu, and
Y. Zhou. SMART: A High-Performance Adaptive Radix
Tree for Disaggregated Memory. In the 17th USENIX
Symposium on Operating Systems Design and Implemen-
tation, OSDI 2023, July 10-12, 2023, pages 553–571.
USENIX Association, 2023.

[132] W. Lv, Y. Lu, Y. Zhang, P. Duan, and J. Shu. InfiniFS:
An Efficient Metadata Service for Large-Scale Distributed
Filesystems. In the 20th USENIX Conference on File and
Storage Technologies, FAST 2022, February 22-24, 2022,
pages 313–328. USENIX Association, 2022.

[133] N. A. Lynch and A. A. Shvartsman. Robust emulation
of shared memory using dynamic quorum-acknowledged
broadcasts. In Digest of Papers: FTCS-27, The Twenty-
Seventh Annual International Symposium on Fault-
Tolerant Computing, Seattle, Washington, USA, June 24-
27, 1997, pages 272–281. IEEE Computer Society, 1997.

[134] S. Ma, K. Chen, S. Chen, M. Liu, J. Zhu, H. Kang, and
Y. Wu. ROART: Range-query optimized persistent ART.
In 19th USENIX Conference on File and Storage Tech-
nologies, FAST 2021, February 23-25, 2021, pages 1–16.
USENIX Association, 2021.

[135] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machine for wans. In
8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008,

BIBLIOGRAPHY 225

San Diego, California, USA, Proceedings, pages 369–384.
USENIX Association, 2008.

[136] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for
fast multicore key-value storage. In European Conference
on Computer Systems, Proceedings of the Seventh EuroSys
Conference 2012, EuroSys ’12, Bern, Switzerland, April
10-13, 2012, pages 183–196. ACM, 2012.

[137] A. Mathew and C. Min. HydraList: A scalable in-memory
index using asynchronous updates and partial replication.
Proc. VLDB Endow., 13(9):1332–1345, 2020.

[138] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In the 2nd USENIX Con-
ference on File and Storage Technologies, FAST 2003,
March 31 - April 2, 2003. USENIX, 2003.

[139] Memcached. http://memcached.org, 2022.

[140] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, SPAA 2002, Winnipeg, Manitoba, Canada,
August 11-13, 2002, pages 73–82. ACM, 2002.

[141] J. W. Mickens, E. B. Nightingale, J. Elson, D. Gehring,
B. Fan, A. Kadav, V. Chidambaram, O. Khan, and
K. Nareddy. Blizzard: Fast, cloud-scale block storage for
cloud-oblivious applications. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-
4, 2014, pages 257–273. USENIX Association, 2014.

[142] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and
A. Krishnamurthy. Gimbal: enabling multi-tenant storage

BIBLIOGRAPHY 226

disaggregation on smartnic jbofs. In ACM SIGCOMM
2021 Conference, Virtual Event, USA, August 23-27, 2021,
pages 106–122. ACM, 2021.

[143] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store.
In 2013 USENIX Annual Technical Conference, USENIX
ATC 2013, June 26-28, 2013, pages 103–114. USENIX
Association, 2013.

[144] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li.
Balancing CPU and network in the cell distributed B-tree
store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016,
pages 451–464. USENIX Association, 2016.

[145] C. Mohan, D. Haderle, B. G. Lindsay, H. Pirahesh, and
P. M. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[146] Y. Mond and Y. Raz. Concurrency control in b+-trees
databases using preparatory operations. In VLDB’85, Pro-
ceedings of 11th International Conference on Very Large
Data Bases, August 21-23, 1985, Stockholm, Sweden,
pages 331–334. Morgan Kaufmann, 1985.

[147] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In ACM
SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 358–372. ACM, 2013.

[148] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,

BIBLIOGRAPHY 227

D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI
2013, April 2-5, 2013, pages 385–398. USENIX Associa-
tion, 2013.

[149] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont.
Welcome to Zombieland: Practical and Energy-Efficient
Memory Disaggregation in a Datacenter. In the 13th Eu-
roSys Conference, EuroSys 2018, April 23-26, 2018, pages
16:1–16:12. ACM, 2018.

[150] Nvidia. Nvidia bluefield networking platform.
https://www.nvidia.com/en-us/networking/pro
ducts/data-processing-unit/.

[151] Nvidia. Connectx nics. https://www.nvidia.com/en-u
s/networking/ethernet-adapters/, 2024.

[152] B. M. Oki and B. Liskov. Viewstamped replication: A
general primary copy. In Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed Computing,
Toronto, Ontario, Canada, August 15-17, 1988, pages 8–
17. ACM, 1988.

[153] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm for Database Disk Buffering.
In the 1993 ACM SIGMOD International Conference on
Management of Data, SIGMOD 1993, May 26-28, 1993,
pages 297–306. ACM Press, 1993.

[154] D. Ongaro and J. K. Ousterhout. In search of an under-
standable consensus algorithm. In G. Gibson and N. Zel-
dovich, editors, 2014 USENIX Annual Technical Confer-
ence, USENIX ATC ’14, Philadelphia, PA, USA, June
19-20, 2014, pages 305–319. USENIX Association, 2014.

BIBLIOGRAPHY 228

[155] P4. P4. https://opennetworking.org/p4, 2024.

[156] S. Pan, T. Stavrinos, Y. Zhang, A. Sikaria, P. Zakharov,
A. Sharma, S. S. P., M. Shuey, R. Wareing, M. Gan-
gapuram, G. Cao, C. Preseau, P. Singh, K. Patiejunas,
J. R. Tipton, E. Katz-Bassett, and W. Lloyd. Facebook’s
Tectonic Filesystem: Efficiency from Exascale. In the
19th USENIX Conference on File and Storage Technolo-
gies, FAST 2021, February 23-25, 2021, pages 217–231.
USENIX Association, 2021.

[157] N. Pemberton and J. Schleier-Smith. The serverless data
center: Hardware disaggregation meets serverless comput-
ing. In The First Workshop on Resource Disaggregation,
volume 4, 2019.

[158] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Application
crash consistency and performance with CCFS. ACM
Trans. Storage, 13(3):19:1–19:29, 2017.

[159] S. Podlipnig and L. Böszörményi. A Survey of Web
Cache Replacement Strategies. ACM Computing Surveys,
35(4):374–398, 2003.

[160] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica. Fair-
Ride: Near-Optimal, Fair Cache Sharing. In the 13th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2016, March 16-18, 2016, pages
393–406. USENIX Association, 2016.

[161] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-
ers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J. Kim, S. Lanka, J. R. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger. A

BIBLIOGRAPHY 229

reconfigurable fabric for accelerating large-scale datacen-
ter services. In ACM/IEEE 41st International Symposium
on Computer Architecture, ISCA 2014, Minneapolis, MN,
USA, June 14-18, 2014, pages 13–24. IEEE Computer So-
ciety, 2014.

[162] Y. Qiao, Z. Ruan, H. Ma, A. Belay, M. Kim, and H. Xu.
Harvesting idle memory for application-managed soft state
with midas. In 21st USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2024, Santa
Clara, CA, April 15-17, 2024. USENIX Association, 2024.

[163] Y. Qiao, C. Wang, Z. Ruan, A. Belay, Q. Lu, Y. Zhang,
M. Kim, and G. H. Xu. Hermit: Low-latency, high-
throughput, and transparent remote memory via feedback-
directed asynchrony. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2023,
Boston, MA, April 17-19, 2023, pages 181–198. USENIX
Association, 2023.

[164] X. Qin, W. Zhang, W. Wang, J. Wei, X. Zhao, and
T. Huang. Optimizing Data Migration for Cloud-Based
Key-Value Stores. In the 21st ACM International Confer-
ence on Information and Knowledge Management, CIKM
2012, October 29 - November 02, 2012, pages 2204–2208.
ACM, 2012.

[165] M. Rajashekhar and Y. Yue. Twemcache.
https://blog.twitter.com/engineering/en_us/a
/2012/caching-with-twemcache, 2012.

[166] Redis. http://redis.io, 2022.

[167] K. Ren, Q. Zheng, S. Patil, and G. A. Gibson. Indexfs:
Scaling file system metadata performance with stateless
caching and bulk insertion. In International Conference for

BIBLIOGRAPHY 230

High Performance Computing, Networking, Storage and
Analysis, SC 2014, New Orleans, LA, USA, November 16-
21, 2014, pages 237–248. IEEE Computer Society, 2014.

[168] D. Robertson. The history of data centers: An exponen-
tial evolution. https://blog.enconnex.com/data-cen
ter-history-and-evolution, 2024.

[169] L. V. Rodriguez, F. B. Yusuf, S. Lyons, E. Paz, R. Ran-
gaswami, J. Liu, M. Zhao, and G. Narasimhan. Learning
Cache Replacement with CACHEUS. In the 19th USENIX
Conference on File and Storage Technologies, FAST 2021,
February 23-25, 2021, pages 341–354. USENIX Associa-
tion, 2021.

[170] B. M. Rogers, A. Krishna, G. B. Bell, K. V. Vu, X. Jiang,
and Y. Solihin. Scaling the bandwidth wall: challenges in
and avenues for CMP scaling. In 36th International Sym-
posium on Computer Architecture (ISCA 2009), June 20-
24, 2009, Austin, TX, USA, pages 371–382. ACM, 2009.

[171] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-Performance, Application-Integrated Far
Memory. In the 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Novem-
ber 4-6, 2020, pages 315–332. USENIX Association, 2020.

[172] T. Saemundsson, H. Björnsson, G. V. Chockler, and
Y. Vigfusson. Dynamic Performance Profiling of Cloud
Caches. In the 5th ACM Symposium on Cloud Computing,
SoCC 2014, November 3-5, 2014, pages 28:1–28:14. ACM,
2014.

[173] B. Schroeder and G. A. Gibson. Disk failures in the real
world: What does an MTTF of 1, 000, 000 hours mean

BIBLIOGRAPHY 231

to you? In 5th USENIX Conference on File and Stor-
age Technologies, FAST 2007, February 13-16, 2007, San
Jose, CA, USA, pages 1–16. USENIX, 2007.

[174] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Kr-
ishnamurthy. Xenic: SmartNIC-accelerated distributed
transactions. In SOSP ’21: ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021, pages 740–755.
ACM, 2021.

[175] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Ba-
tum, J. Cooke, E. Laureano, C. Tresness, M. Russinovich,
and R. Bianchini. Serverless in the Wild: Characteriz-
ing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, pages 205–
218. USENIX Association, 2020.

[176] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopou-
los, A. Dragojevic, D. Narayanan, and M. Castro. Fast
general distributed transactions with opacity. In Proceed-
ings of the 2019 International Conference on Manage-
ment of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019, pages 433–448.
ACM, 2019.

[177] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A Disseminated, Distributed OS for Hardware Resource
Disaggregation. In the 13th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2018,
October 8-10, 2018, pages 69–87. USENIX Association,
2018.

BIBLIOGRAPHY 232

[178] Y. Shan, W. Lin, R. Kosta, A. Krishnamurthy, and
Y. Zhang. Disaggregating and Consolidating Network
Functionalities with SuperNIC. CoRR, 2021.

[179] J. Shen, P. Zuo, X. Luo, Y. Su, J. Gu, H. Feng, Y. Zhou,
and M. R. Lyu. Ditto: An Elastic and Adaptive Memory-
Disaggregated Caching System, 2023.

[180] J. Shen, P. Zuo, X. Luo, T. Yang, Y. Su, Y. Zhou, and
M. R. Lyu. FUSEE: A Fully Memory-Disaggregated Key-
Value Store. In the 21st USENIX Conference on File and
Storage Technologies, FAST 2023, February 21-23, 2023,
pages 81–98. USENIX Association, 2023.

[181] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. StRoM: Smart remote memory. In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 29:1–29:16. ACM, 2020.

[182] A. Singhvi, A. Akella, M. Anderson, R. Cauble, H. Desh-
mukh, D. Gibson, M. M. K. Martin, A. Strominger, T. F.
Wenisch, and A. Vahdat. CliqueMap: Productionizing an
RMA-Based Distributed Caching System. In ACM SIG-
COMM 2021 Conference, SIGCOMM 2021, August 23-27,
2021, pages 93–105. ACM, 2021.

[183] SNIA. The performance impact of nvme and nvme over
fabrics. https://www.snia.org/sites/default/files
/NVMe_Webcast_Slides_Final.1.pdf.

[184] Z. Song, D. S. Berger, K. Li, and W. Lloyd. Learning Re-
laxed Belady for Content Distribution Network Caching.
In the 17th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2020, February 25-27,
2020, pages 529–544. USENIX Association, 2020.

BIBLIOGRAPHY 233

[185] C. Specification. https://www.computeexpresslink.o
rg/.

[186] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu. RFP:
When RPC is faster than server-bypass with RDMA. In
Proceedings of the Twelfth European Conference on Com-
puter Systems, EuroSys 2017, Belgrade, Serbia, April 23-
26, 2017, pages 1–15. ACM, 2017.

[187] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan,
M. Gasch, L. Suresh, and T. Xu. Automatic reliabil-
ity testing for cluster management controllers. In 16th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2022, Carlsbad, CA, USA, July
11-13, 2022, pages 143–159. USENIX Association, 2022.

[188] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes. Tail-
wind: Fast and atomic rdma-based replication. In 2018
USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018, pages 851–
863. USENIX Association, 2018.

[189] G.-Z. Technology. https://genzconsortium.org/.

[190] J. Terrace and M. J. Freedman. Object storage on CRAQ:
high-throughput chain replication for read-mostly work-
loads. In 2009 USENIX Annual Technical Conference, San
Diego, CA, USA, June 14-19, 2009. USENIX Association,
2009.

[191] S. Thomas, G. M. Voelker, and G. Porter. Cachecloud:
Towards speed-of-light datacenter communication. In 10th
USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud 2018, Boston, MA, USA, July 9, 2018. USENIX
Association, 2018.

BIBLIOGRAPHY 234

[192] S. Tsai, Y. Shan, and Y. Zhang. Disaggregating Persis-
tent Memory and Controlling Them Remotely: An Explo-
ration of Passive Disaggregated Key-Value Stores. In 2020
USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020, pages 33–48. USENIX Associa-
tion, 2020.

[193] A. Vakali. LRU-Based Algorithms for Web Cache Replace-
ment. In the 1st International Conference of Electronic
Commerce and Web Technologies, EC-Web 2000, Septem-
ber 4-6, 2000, volume 1875 of Lecture Notes in Computer
Science, pages 409–418. Springer, 2000.

[194] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In E. A.
Brewer and P. Chen, editors, 6th Symposium on Operat-
ing System Design and Implementation (OSDI 2004), San
Francisco, California, USA, December 6-8, 2004, pages
91–104. USENIX Association, 2004.

[195] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons,
J. Liu, R. Rangaswami, M. Zhao, and G. Narasimhan.
Driving Cache Replacement with ML-Based LeCaR. In
the 10th USENIX Workshop on Hot Topics in Storage and
File Systems, HotStorage 2018, July 9-10, 2018. USENIX
Association, 2018.

[196] L. Vilanova, L. Maudlej, S. Bergman, T. Miemietz,
M. Hille, N. Asmussen, M. Roitzsch, H. Härtig, and M. Sil-
berstein. Slashing the Disaggregation Tax in Heteroge-
neous Data Centers with FractOS. In the 17th European
Conference on Computer Systems, EuroSys 2022, April
5-8, 2022, pages 352–367. ACM, 2022.

[197] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Mo-
tivala, and T. Cruanes. Building an elastic query engine

BIBLIOGRAPHY 235

on disaggregated storage. In 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020, pages
449–462. USENIX Association, 2020.

[198] C. A. Waldspurger, N. Park, A. T. Garthwaite, and I. Ah-
mad. Efficient MRC Construction with SHARDS. In the
13th USENIX Conference on File and Storage Technolo-
gies, FAST 2015, February 16-19, 2015, pages 95–110.
USENIX Association, 2015.

[199] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D.
Bond, R. Netravali, M. Kim, and G. H. Xu. Semeru: A
Memory-Disaggregated Managed Runtime. In the 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, November 4-6, 2020, pages
261–280. USENIX Association, 2020.

[200] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson, C. Navasca,
S. Lu, and G. H. Xu. Memliner: Lining up tracing and
application for a far-memory-friendly runtime. In 16th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2022, Carlsbad, CA, USA, July
11-13, 2022, pages 35–53. USENIX Association, 2022.

[201] Q. Wang, Y. Lu, and J. Shu. Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory. In
the 2022 ACM SIGMOD/PODS International Conference
on Management of Data, SIGMOD 2022, June 12-17,
2022, pages 1033–1048. ACM, 2022.

[202] Q. Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu.
Concordia: Distributed Shared Memory with In-Network
Cache Coherence. In the 19th USENIX Conference on
File and Storage Technologies, FAST 2021, February 23-
25, 2021, pages 277–292. USENIX Association, 2021.

BIBLIOGRAPHY 236

[203] Z. Wang, Z. Jia, S. Zheng, Z. Zhang, X. Fu, T. S. E. Ng,
and Y. Wang. GEMINI: fast failure recovery in distributed
training with in-memory checkpoints. In Proceedings of the
29th Symposium on Operating Systems Principles, SOSP
2023, Koblenz, Germany, October 23-26, 2023, pages 364–
381. ACM, 2023.

[204] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kamin-
sky, and D. G. Andersen. Building a Bw-tree takes more
than just buzz words. In Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018,
pages 473–488. ACM, 2018.

[205] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand.
Parallax: Managing storage for a million machines. In
Proceedings of HotOS’05: 10th Workshop on Hot Topics
in Operating Systems, June 12-15, 2005, Santa Fe, New
Mexico, USA. USENIX Association, 2005.

[206] X. Wei, R. Chen, and H. Chen. Fast RDMA-Based
Ordered Key-Value Store using Remote Learned Cache.
In the 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, November 4-6,
2020, pages 117–135. USENIX Association, 2020.

[207] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstruct-
ing RDMA-Enabled Distributed Transactions: Hybrid is
Better! In the 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, October
8-10, 2018, pages 233–251. USENIX Association, 2018.

[208] X. Wei, S. Shen, R. Chen, and H. Chen. Replication-
driven live reconfiguration for fast distributed transaction
processing. In 2017 USENIX Annual Technical Conference

BIBLIOGRAPHY 237

(USENIX ATC 17), Santa Clara, CA, 2017. USENIX As-
sociation.

[209] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using RDMA and HTM. In
Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 2015, Monterey, CA, USA, October 4-7,
2015, pages 87–104. ACM, 2015.

[210] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A Scalable, High-Performance
Distributed File System. In the 7th Symposium on Op-
erating Systems Design and Implementation, OSDI 2006,
November 6-8, 2006, pages 307–320. USENIX Association,
2006.

[211] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), Novem-
ber 6-8, Seattle, WA, USA, pages 307–320. USENIX As-
sociation, 2006.

[212] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He,
Y. Li, L. Zhang, W. Lin, and Y. Ding. MLaaS in the Wild:
Workload Analysis and Scheduling in Large-Scale Hetero-
geneous GPU Clusters. In the 19th USENIX Symposium
on Networked Systems Design and Implementation, NSDI
2022, April 4-6, 2022, pages 945–960. USENIX Associa-
tion, 2022.

[213] M. Whittaker, A. Ailijiang, A. Charapko, M. Demirbas,
N. Giridharan, J. M. Hellerstein, H. Howard, I. Stoica,
and A. Szekeres. Scaling replicated state machines with
compartmentalization. Proc. VLDB Endow., 14(11):2203–
2215, 2021.

BIBLIOGRAPHY 238

[214] K. Wu, Z. Guo, G. Hu, K. Tu, R. Alagappan, R. Sen,
K. Park, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
The storage hierarchy is not a hierarchy: Optimizing
caching on modern storage devices with orthus. In
19th USENIX Conference on File and Storage Technolo-
gies, FAST 2021, February 23-25, 2021, pages 307–323.
USENIX Association, 2021.

[215] J. Yang, Y. Yue, and K. V. Rashmi. A Large Scale Analy-
sis of Hundreds of In-Memory Cache Clusters at Twitter.
In the 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, November 4-6,
2020, pages 191–208. USENIX Association, 2020.

[216] J. Yang, Y. Yue, and R. Vinayak. Segcache: A Mem-
ory-Efficient and Scalable In-Memory Key-Value Cache for
Small Objects. In the 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021, pages 503–518. USENIX Association,
2021.

[217] T. Yang, C. Lee, J. Shen, Y. Su, Y. Yang, and M. R.
Lyu. Microres: Versatile resilience profiling in microser-
vices via degradation dissemination indexing. In Proceed-
ings of ACM SIGSOFT 33rd International Symposium on
Software Testing and Analysis, 2024.

[218] W. Yoon, J. Ok, J. Oh, S. Moon, and Y. Kwon. DiLOS:
Do Not Trade Compatibility for Performance in Memory
Disaggregation. In the 18th European Conference on Com-
puter Systems, EuroSys 2023, May 8-12, 2023, pages 266–
282. ACM, 2023.

[219] G. Yu, J. S. Jeong, G. Kim, S. Kim, and B. Chun. Orca:
A distributed serving system for transformer-based gener-
ative models. In 16th USENIX Symposium on Operating

BIBLIOGRAPHY 239

Systems Design and Implementation, OSDI 2022, Carls-
bad, CA, USA, July 11-13, 2022, pages 521–538. USENIX
Association, 2022.

[220] F. B. Yusuf, V. Stebliankin, G. Vietri, and G. Narasimhan.
Cache Replacement as a MAB with Delayed Feedback and
Decaying Costs. arXiv preprint, 2020.

[221] H. Zhang and Q. Liang. Red-black tree used for arranging
virtual memory area of linux. In 2010 International Con-
ference on Management and Service Science, pages 1–3.
IEEE, 2010.

[222] J. Zhang, R. Izmailov, D. Reininger, and M. Ott. Web
Caching Framework: Analytical Models and Beyond. In
Proceedings 1999 IEEE Workshop on Internet Applica-
tions, pages 132–141. IEEE, 1999.

[223] M. Zhang, Y. Hua, P. Zuo, and L. Liu. FORD: Fast One-
Sided RDMA-Based Distributed Transactions for Disag-
gregated Persistent Memory. In the 20th USENIX Confer-
ence on File and Storage Technologies, FAST 2022, Febru-
ary 22-24, pages 51–68. USENIX Association, 2022.

[224] Q. Zhang, X. Chen, S. Sankhe, Z. Zheng, K. Zhong,
S. Angel, A. Chen, V. Liu, and B. T. Loo. Optimizing
data-intensive systems in disaggregated data centers with
TELEPORT. In SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June
12-17, 2022, pages 1345–1359. ACM, 2022.

[225] Y. Zhang. Make it real: An end-to-end implementation
of A physically disaggregated data center. ACM SIGOPS
Oper. Syst. Rev., 57(1):1–9, 2023.

[226] Y. Zhang, J. Yang, A. S. Memaripour, and S. Swanson.
Mojim: A reliable and highly-available non-volatile mem-

BIBLIOGRAPHY 240

ory system. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2015,
Istanbul, Turkey, March 14-18, 2015, pages 3–18. ACM,
2015.

[227] Y. Zhou, H. M. G. Wassel, S. Liu, J. Gao, J. Mickens,
M. Yu, C. Kennelly, P. Turner, D. E. Culler, H. M. Levy,
and A. Vahdat. Carbink: Fault-tolerant far memory. In
16th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2022, Carlsbad, CA, USA,
July 11-13, 2022, pages 55–71. USENIX Association, 2022.

[228] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and
T. Kraska. Designing distributed tree-based index struc-
tures for fast rdma-capable networks. In Proceedings of the
2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, pages 741–758. ACM, 2019.

[229] T. Ziegler, S. T. Vani, C. Binnig, R. Fonseca, and
T. Kraska. Designing Distributed Tree-Based Index Struc-
tures for Fast RDMA-Capable Networks. In 2019 ACM
SIGMOD/PODS International Conference on Manage-
ment of Data, SIGMOD 2019, June 30 - July 5, 2019,
pages 741–758. ACM, 2019.

[230] P. Zuo, J. Sun, L. Yang, S. Zhang, and Y. Hua. One-
Sided RDMA-Conscious Extendible Hashing for Disaggre-
gated Memory. In 2021 USENIX Annual Technical Con-
ference, USENIX ATC 2021, July 14-16, 2021, pages 15–
29. USENIX Association, 2021.

