
Network Compression and
Architecture Search in Deep

Learning

BAI, Haoli

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
September 2021

Thesis Assessment Committee

Professor CHAN Lai Wan (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor KING Kuo Chin Irwin (Thesis Supervisor)

Professor Andrej BOGDANOV (Committee Member)

Professor LIN Hsuan Tien (External Examiner)

Abstract of thesis entitled:
Network Compression and Architecture Search in Deep Learning

Submitted by BAI, Haoli
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2021

Deep neural networks have achieved remarkable success in various
applications such as computer vision and natural language processing.
However, the growing size and computation of deep neural nets also pose
new challenges for their development on resource-limited edge devices.
In this thesis, we explore network compression and neural architecture
search to design efficient deep learning models. Specifically, we aim
at addressing several common challenges in network compression and
architecture search from the following four parts.

Firstly, we study the problem of few-shot network pruning, a
common and practical scenario in network compression. Most existing
pruning efforts require full access to the training data to fine-tune the
compressed models, however, the access to training data can be restricted
in practice due to security or privacy issues. We thus explore the trade-
off among data security, network efficiency and performance, by pruning
the network with only few-shot training instances (i.e., 5 instances per
class). However, it is found that the few-shot data lead to high estimation
errors for the pruned model, which shall accumulate and propagate layer-
wisely. Towards that end, we propose cross distillation, a new layer-wise
knowledge distillation approach to mitigate error propagation, which
improves the generalization of the pruned model. In the meanwhile, we
also provide theoretical analysis for the proposed approach to guarantee
the effectiveness.

Secondly, we study post-training quantization, another popular
branch in network compression. Aside from the few-shot training data,
post-training quantization further considers the training time and mem-
ory overhead, all of which are important dimensions for the quantization
pipeline. Especially, the recently developed large pre-trained language

i

models in natural language processing has made the conventional
quantization-aware training rather resource-demanding. Post-training
quantization, as the other common approach for quantization training,
is more efficient for large pre-trained language models with regarding
to both the data consumption and computation power. Specifically,
we propose to partition the language model into multiple modules, and
minimize the module-wise reconstruction error incurred by quantization.
The model partition inspires a new model parallel strategy that enables
module-wise local training on separate computing devices. We show that
the such parallel training can achieve the nearly the theoretical speed-up,
which significantly improves the quantization efficiency with reasonable
performance on large pre-trained language models.

In the third part, we continue with quantization on pre-trained
language models by exploring BERT binarization. As the limit of
quantization, binarization brings the most size reduction, but suffers from
large performance degradation even with adequate training resources.
Different from the normal training of the full precision BERT or the
ternary BERT, we find that the optimization of the binary BERT is
troubled by the steep loss landscapes. Motivated by such observations,
we propose ternary weight splitting, which initializes the binary BERT
by equivalently splitting from a trained half-sized ternary BERT. Thus
the binary model inherits the knowledge from the ternary one, and can
be fine-tuned for further improvement. Meanwhile, our ternary weight
splitting can be also conducted adaptively, allowing a variety of sizes for
binary BERT on different edge devices.

Finally, we shift gear to neural architecture search (NAS), an
orthogonal approach to design efficient deep learning models. Instead
of manually designed criteria for model compression above, NAS directly
searches good neural structures from a pre-defined search space. How-
ever, NAS algorithms usually suffer from high computation overhead,
and thus its algorithmic efficiency is of high priority. Towards that
end, we provide a systematic study on parameter sharing, a popular
technique to develop efficient NAS algorithms. We first unify existing
parameter sharing heuristics with a general framework named affine
parameter sharing. We find within the framework that while parameter
sharing benefits the training of multiple network candidates jointly, it
also challenges the discrimination of good network architectures. Given
the observation, a new parameter sharing strategy is proposed to enhance
architecture discrimination without the sacrifice of searching efficiency.

ii

論文題目：深度學習中的神經網路壓縮和架構搜索

作者 ：柏昊立

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

深度神經網絡在計算機視覺和自然語言處理等各種應用中取得了巨大

的成就。然而，隨著不斷增長的模型大小和運算量，深度神經網絡在

資源有限的邊緣設備上的部署也面臨新的挑戰。在本論文中，我們將

從網絡壓縮和神經架構搜索兩個角度來設計高效的深度神經網絡。具

體地，我們將從以下四個部分來解決網絡壓縮和架構搜索中的常見挑

戰。

首先，我們研究絡壓縮中一個常見且實用的場景：小樣本網絡剪枝問

題。大多數現有的剪枝工作都需要完全訪問訓練數據來微調壓縮後的

模型。然而，由於數據安全或隱私問題，在實際情況中可能會限制對

訓練數據的訪問。為了更好的探索數據安全性、網絡效率和性能之間

的權衡，我們通過僅僅使用少量訓練數據（例如每類5 個樣本）來進
行網絡剪枝。我們發現在小樣本數據下，剪枝模型存在較高的誤差，

並且該誤差會沿網絡逐層累積和傳播。為了解決這個問題，我們提出

了交叉蒸餾，一種新的逐層知識蒸餾方法，以緩解誤差傳播，提高剪

枝模型的泛化能力。與此同時，我們還對所提出的方法進行了理論分

析，以保證其有效性。

其次，我們研究網絡壓縮中的另一個流行方法：訓練後量化。除了少

量的訓練數據外，訓練後量化進一步將訓練時間和顯存消耗納入量化

流程的考量指標。特別地，最近自然語言處理中的大型預訓練語言模

型使得傳統的量化感知訓練對資源的需求很大。而訓練後量化作為另

一種常見的量化訓練方法，在這種大型預訓練語言模型上的數據消耗

和計算開銷的效率更高。具體而言，我們提出將語言模型劃分為多個

iii

模塊，並最小化量化引起的重構誤差。此外，我們的劃分方案支持一

種新的模型並行策略，它可以在各自的計算設備上進行模塊化本地訓

練。我們的並行策略可以在實踐中達到接近理論的加速比，從而大大

簡化預訓練語言模型的量化流程。

在第三部分中，我們探索BERT模型的二值化，研究極限量化對於預
訓練語言模型的影響。二值化BERT可以最大化減小模型尺寸，但即
使有足夠的訓練資源，其性能也會大幅下降。我們發現，與全精度

或三值化BERT的訓練不同，二值化BERT的優化受困於陡峭的損失函
數平面。受此啟發，我們提出了三值化權重分裂，即通過從訓練好的

一半寬度的三值化模型等價分裂成全尺寸的二值化BERT。因此二值
化BERT可以繼承之前三值化模型的知識，並且通過微調能夠進一步改
進模型效果。同時，三值化權重分裂也支持自適應拆分，這樣就可以

為不同邊緣設備提供相應尺寸的二值化模型。

最後，我們轉向神經網絡架構搜索（NAS），另一類設計高效深度學
習模型的方法。與之前手動設計的模型壓縮準則不同，架構搜索直接

從預定義的搜索空間中搜索模型結構。然而，NAS通常有著巨大的計
算開銷，因此其算法效率一直是研究者高度關注的重點。為此，我們

對參數共享在高效NAS算法中的作用進行了系統性的研究。我們提出
了仿射參數共享框架，用以統一分析現有參數共享的啟發式策略。根

據提出的框架，我們發現參數共享可以同時促進多個網絡候選結構的

訓練，但是也削弱了辨別良好網絡結構的能力。基於此觀察，我們設

計了一種新的參數共享策略，可以在不影響搜索效率的前提下更好地

辨別網絡架構。

iv

Acknowledgement

First and foremost, I would like to thank my supervisors, Prof. Michael
Rung-Tsong Lyu and Prof Irwin Kuo-Chin King for their kind supervision
throughout my PhD study at CUHK. I am greatly lucky to have their
supervision. They help sharpen my research taste and build my research
expertise, from maturing a research idea to designing implementation
details, and from paper writing to conference presentations.

I would like to extend my gratitude to my thesis assessment
committee members: Prof. Laiwan Chan, and Prof. Andrej Bogdanov,
for their valuable comments and suggestions to this thesis and all my term
presentations. Meanwhile, great thanks to Prof. Hsuan-Tien Lin from
National Taiwan University who kindly served as the external examiner
for this thesis.

I sincerely thank Lu Hou, my mentor during the internship at Huawei
Noah’s Ark Lab. Her kind advice and encouragement have a great impact
on me. It is my honor to have the support from Xin Jiang, Qun Liu,
Lifeng Shang and Wei Zhang in the lab. I also thank my friends there:
Xiaoqi Jiao, Zhiqi Huang, Mingyang Yi, for their discussions and help.

I deeply appreciate the support from Jiaxiang Wu, my mentor during
the internship at Tencent AI Lab. His passion for coding has always
encouraged me to stay focus on my work. I would never forget the
wonderful days with Jiaxing Wang, Kuo Zhong, Guanlin Li, Quanle Guo,
Xupeng Shi, my closest friends there.

I would like to thank Prof. Zenglin Xu, who initially guides me to the
research world. I am also thankful to his lab fellows: Bin Liu, Guangxi
Li, Xianghong Fang, Liangjian Wen, for their generous encouragement.
I am grateful to my old friends Xin Dong, Yuhang Li and Jiajin Li, for
their instructive suggestions on my research.

It is wonderful to spend the 4-year PhD study with my group fellows:

v

Yuxin Su, Shenglin Zhao, Hongyi Zhang, Xixian Chen, Xiaotian Yu,
Jichuan Zeng, Cuiyun Gao, Jiani Zhang, Hou Pong Chan, Jian Li, Wang
Chen, Shilin He, Pengpeng Liu, Yue Wang, Han Shao, Wenxiang Jiao,
Yifan Gao, Jingjing Li, Weibin Wu, Ziqiao Meng, Xinyu Fu, Zhuangbin
Chen, Tianyi Yang, Menglin Yang, Wenxuan Wang, Wenchao Gu, Jen-
tse Huang, Jinyang Liu, Yintong Huo. Many thanks for their help.

Last but most important, I dedicate my greatest gratitude to my
parents and my girlfriend. It is their support that helps me overcome the
challenges throughout my PhD study.

vi

Contents

Abstract i

Acknowledgement v

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Contributions . 6
1.3 Thesis Organization . 8

2 Background 11
2.1 Network Compression . 13

2.1.1 Pruning . 13
2.1.2 Quantization . 16
2.1.3 Knowledge Distillation 21
2.1.4 Matrix/Tensor Decomposition 23

2.2 Neural Architecture Search 26
2.2.1 Search Space . 26
2.2.2 Search Strategy 28
2.2.3 Performance Estimation 31

3 Few-shot Network Pruning via Cross Distillation 34
3.1 Introduction . 34
3.2 Methodology . 36

3.2.1 Cross Distillation: Formulation 37
3.2.2 Theoretical Analysis 38
3.2.3 Soft Cross Distillation 41
3.2.4 Pruning via Proximal Operator 42

3.3 Experiments . 43
3.3.1 Setup . 43
3.3.2 Results . 45
3.3.3 Further Analysis 47

vii

3.4 Conclusion . 50

4 Efficient Post-Training Quantization of Pre-trained Lan-
guage Models 52
4.1 Introduction . 52
4.2 Motivation . 55

4.2.1 Quantization Background 55
4.2.2 Why Post-training Quantization? 56

4.3 Methodology . 58
4.3.1 Module-wise Reconstruction Error Minimization . 58
4.3.2 Accelerated Parallel Training 59

4.4 Experiments . 62
4.4.1 Experimental Setup 62
4.4.2 Main Results . 63
4.4.3 Discussions . 70

4.5 Conclusion . 74

5 BinaryBERT: Pushing the Limit of BERT Quantization 75
5.1 Introduction . 75
5.2 Motivation . 77

5.2.1 Sharp Performance Drop with Weight Binarization 78
5.2.2 Exploring the Quantized Loss Landscape 79

5.3 Proposed Method . 80
5.3.1 Ternary Weight Splitting 80
5.3.2 Adaptive Splitting 84

5.4 Experiments . 85
5.4.1 Experimental Setup 85
5.4.2 Experimental Results 87
5.4.3 Comparison with State-of-the-arts 91
5.4.4 Discussion . 91

5.5 Conclusion . 93

6 Revisiting Parameter Sharing for Neural Architecture
Search 95
6.1 Introduction . 96
6.2 Preliminaries . 97

6.2.1 Problem Setup 97
6.2.2 Parameter Sharing for CNS 98

6.3 Methodology . 99
6.3.1 Affine Parameter Sharing 99

viii

6.3.2 Quantitative Measurement 101
6.3.3 Parameter Sharing and the Searching Dynamics . 103
6.3.4 Transitionary Strategy 105
6.3.5 Overall Workflow 106

6.4 Experiments . 106
6.4.1 Experimental Setup 107
6.4.2 The Effect of Parameter Sharing 108
6.4.3 Comparisons with state-of-the-arts 111

6.5 Conclusion . 114

7 Conclusion and Future Work 115
7.1 Conclusion . 115
7.2 Future Work . 116

8 Publications during Ph.D. Study 120
8.1 Published Conference Papers 120
8.2 Preprints . 121

Bibliography 122

ix

List of Figures

1.1 The overview of efficient deep learning paradigm. For
network compression, users are supposed to provide pre-
trained models and training data. For neural architecture
search, the pre-defined search space is required aside from
the training data. However, the paradigm suffers from
three main challenges as shown in red boxes, which are
the research focus of this thesis. 5

1.2 The thesis organization. 9

2.1 The taxonomy of background review. 12

2.2 Illustrations of (a) unstructured pruning, and three kinds
of structured pruning: (b) stripe pruning, (c) channel
pruning and (d) filter pruning. The light color indicates
the pruned parameters. 14

2.3 The computational graph of a quantized convolutional
neural network. The rectangles and circles denote the
intermediate tensors and operations respectively. The
forward pass first quantizes tensors into the convolutional
operation. In the backward pass, the STE operator copies
the gradient ∇`(ŵ) of quantized ŵ directly to w. 19

2.4 Two types of knowledge distillation (i.e., hidden repre-
sentation distillation and logits distillation) between the
teacher network (green) and student network (orange). . 22

2.5 Two common matrix factorization approaches: (a) Singu-
lar value decomposition, and (b) low-rank decomposition
for matrix parameters. 23

2.6 Two common tensor factorization approaches: (a) Canon-
ical Polyadic (CP) decomposition, and (b) Tucker decom-
position for tensor parameters. 24

x

2.7 An overview of NAS framework from [1]. Given the pre-
defined search space, the search strategy keeps sampling
new architectures from the search space. The sampled
architectures are then evaluated and ranked based on the
performance estimation strategy, which provides feedback
to the search strategy to improve its next iteration. . . . 25

2.8 The illustration of cell-based NAS for convolutional neural
networks from [2]. 26

2.9 The overview of differentiable neural architecture search
(DARTS) from [2]. (a) shows the initialized network
with unknown operations; (b) shows the continuously
relaxed architecture parameters for different connections
among cell nodes; (c) illustrates the searching process with
preferred operations being thicker; In (d) the operations
with the highest probability for each connection are picked
to finalize the architecture. 29

2.10 Recurrent neural network for the RL controller to search
convolutional neural networks [3] 30

2.11 The framework of evolutionary NAS from [4]. 31

2.12 An illustration of parameter sharing from [5]. The four
choices of widths are ordinally overlapped along channel
indices. 32

3.1 The four categories of layerwise distillation. a) is the
traditional pattern; b) guides the teacher to student in
order to compensate estimation errors on the student; c)
guides the student to the teacher to make it aware of the
errors on the student; d) offers a soft connection to balance
b) and c) . 37

3.2 The comparisons among inconsistencies εT , εS as well as
estimation errors Le on the test set of CIFAR-10. The
colors denote what kind of loss and values ofK are adopted
for training. Best viewed in color. 49

3.3 The estimation errors Le of CD and SCD, both of which
are divided by w/o CD. Best viewed in color. 49

3.4 Sensitivity analysis of µ ∈ [0, 1] for CD and (α, β) on [0, 1]2

for SCD. 50

xi

4.1 An illustrative comparison between our parallel post-
training quantization method (MREM) and QAT on four
dimensions. The results are based on a quantized BERT-
large model with 4-bit weights and 8-bit activations over
the MNLI dataset. Best viewed in color. 54

4.2 Comparison between QAT and PTQ over four dimensions.
We use a BERT-large model over MNLI dataset for
illustration. The full-precision (FP) fine-tuning is also
included as a baseline. We follow the procedure in [6] for
QAT, and REM in Equation (2.11) for PTQ. The training
time and memory in (a) and (b) are measured by 4-bit
weights and 8-bit activations (i.e., W4A8) on an NVIDIA
V100. 55

4.3 The overview of the proposed module-wise reconstruction
error minimization (MREM). We partition both the full
precision model and quantized model into multiple mod-
ules on different computing devices. By collecting tensors
from the input queue, MREM can be conducted locally
without waiting for the predecessor. Teacher forcing can
be applied to mitigate the issue of reconstruction error
propagation. 58

4.4 Discussions on the proposed MREM approach. In (a) and
(b), the solid line and shaded area denote the averaged
results and standard deviation of a “W2-E2-A4” quantized
BERT-base model from 10 different seeds. (c) and (d)
visualize the propagation of reconstruction error on both
“W2-E2-A8” and “W2-E2-A4” quantized BERT-base model. 71

4.5 The training loss curves with and without teacher forcing
(TF) in MREM-P. The red area denotes the warm-up
stage in the first 40% training steps. (a), (b), (c) and (d)
in the first row are the four modules (i.e., M1-M4) trained
for 250 steps, and (e), (f), (g) and (h) in the second row
are trained for 2,000 steps. 72

5.1 Performance of quantized BERT with varying weight bit-
widths and 8-bit activation. We report the mean results
with standard deviations from 10 seeds on MRPC, CoLA,
SST-2, and 3 seeds on MNLI-m, respectively. 76

xii

5.2 Loss landscapes visualization of the full-precision, ternary
and binary models on MRPC. For (a), (b) and (c), we
perturb the (latent) full-precision weights of the value layer
in the 1st and 2nd Transformer layers, and compute their
corresponding training loss. (d) shows the gap among the
three surfaces by stacking them together. 78

5.3 The top-1 eigenvalues of parameters at different Trans-
former parts of the full-precision (FP), ternary and binary
BERT. For easy comparison, we report the ratio of
eigenvalue between the ternary/binary models and the
full-precision model. The error bar is estimated of all
Transformer layers over different data mini-batches. . . 78

5.4 The overall workflow of training BinaryBERT. We first
train a half-sized ternary BERT model, and then ap-
ply ternary weight splitting operator (Equations (5.6)
and (5.7)) to obtain the latent full-precision and quantized
weights as the initialization of the full-sized BinaryBERT.
We then fine-tune BinaryBERT for further refinement. . 81

5.5 The performance gain of different Transformer parts and
layers in descending order. All numbers are averaged by
10 random runs with standard deviations reported. . . . 86

5.6 The average performance over six GLUE tasks of adaptive
splitting strategies. 90

5.7 The architecture visualization for adaptive splitting on
MRPC. The y-axis records the number of parameters split
in each layer instead of the storage. 90

5.8 (a) and (b) show the training curves on MRPC under
different activation bits. The red box is enlarged in
the sub-figure. (c) and (d) visualize the fine-tuning
trajectories after splitting, on the 2-D loss contour of
BinaryBERT. 93

6.1 Previous parameter sharing heuristics. The orange and
green rectangles represent two different channel choices. . 97

6.2 The overall framework of the proposed affine parameter
sharing (APS) for CNS. We take the channel number
choices A = {1, 2} for illustration. 99

xiii

6.3 A 2-dimensional illustration of affine parameter sharing
with ordinal selection (up) and independent selection
(down). The candidate kernel is constructed by trans-
forming the meta-weights into proper shapes with two
transformation matrices. 100

6.4 The variation of Φ against the cosine similarity (left)
and the norm of coupled gradients (right). We take the
training of a 20-layer residual network for demonstration. 104

6.5 The left three figures show the Accuracy curvature with
APS-O, APS-I and APS-T. For evaluation, we sample 20
architectures and report average and maximal accuracy.
The rightmost figure shows the averaged alignment of
gradients (cos(g, g̃)) of APS-O, APS-I and APS-T, as
well as the change of the corresponding parameter sharing
level Φ for APS-T along the searching trajectory. 109

6.6 The left three figures show the layer-wise decision prob-
abilities of controller π on ResNet-20 over the last 100
training epochs. The solid line denotes the expected logit
values, and shadowed areas are 95% confidence intervals.
The rightmost figure shows the averaged norm of coupled
gradients of APS-O, APS-I and APS-T respectively, as
well as the change of the corresponding parameter sharing
level Φ for APS-T along the searching trajectory. 109

6.7 Accuracies with different learning rates of P ,Q. 110
6.8 Accuracies of the top-N likely sampled models. 110
6.9 Probabilities of layer-wise channel decisions with different

learning rates of P ,Q. 111
6.10 Comparison under different FLOPs constraint. 112
6.11 Channel configurations of ResNet-18 and MobileNet-v2

under different FLOPs constraint. 114

xiv

List of Tables

3.1 Structured pruning schemes of VGG-16 on CIFAR-10 and
ResNet-34 on ILSVRC-12. 45

3.2 The top-1 testing accuracy (%) of structured pruning with
VGG-16 on CIFAR-10 with different training sizes. We
use VGG-50% as the pruning scheme, and the original
accuracy of the original model is 93.51%. 45

3.3 The top-5 testing accuracy (%) of structured pruning with
ResNet-34 on ILSVRC-12 with different training sizes.
The first three columns use 50, 100 and 500 randomly
sampled training instances, while the last three columns
use K = 1, 2, 3 samples per class. We use Res-50% as the
pruning scheme, and the top-1 and top-5 accuracies of the
original model are 73.32% and 91.40%. 46

3.4 The top-1 testing accuracy (%) of different structured
pruning schemes with VGG-16 on CIFAR-10. 10 samples
per class are used. 47

3.5 The top-5 testing accuracy (%) of different structured
pruning schemes with ResNet-34 on ILSVRC-12. 1 sample
per class is used. 47

3.6 The top-5 testing accuracy (%) of unstructured pruning
with VGG-16 on ILSVRC-12 with different training sizes.
The first three columns use 50, 100 and 500 randomly
sampled training instances, while the last three columns
use K = 1, 2, 3 samples per class. We use Res-90% as the
pruning scheme, and the top-1 and top-5 accuracies of the
original model are 73.72% and 91.51%. 48

3.7 The top-5 testing accuracy (%) of unstructured prun-
ing with VGG-16 on ILSVRC-12 with different pruning
schemes. 1 sample per class is adopted. 48

xv

4.1 The main results of our proposed MREM-S and MREM-
P against QAT on the MNLI dataset. “#Bits (W-E-
A)” represents the bit number for weights of Transformer
layers, word embedding, and activations. Acc-m and Acc-
mm denotes the validation accuracy on the matched and
mismatched sections of MNLI respectively. 65

4.2 The main results of our proposed MREM-S and MREM-
P against QAT on SQuAD v1.1 dataset. “ ” denotes
results with two gradient accumulation steps under the
same batch size due to memory constraint. 66

4.3 The main results of our proposed MREM-S and MREM-
P against QAT on SQuAD v2.0 dataset. “ ” denotes
results with two gradient accumulation steps under the
same batch size due to memory constraint. 67

4.4 Results on the GLUE development set. “PTQ” indicates
whether the approach belongs to post-training quantiza-
tion. “Avg." denotes the average results of all tasks. . . 69

4.5 Ablation studies for teacher forcing on BERT-base and
BERT-large over the MNLI dataset. We report the
matched accuracy with different training steps. 70

4.6 Comparison of REM with our MREM on BERT-base
model over the MNLI dataset. 72

4.7 Comparison of BERT-base results with and without per-
channel quantization (PCQ) on MNLI. 73

5.1 Hyper-parameters for training BinaryBERT on the GLUE
benchmark at different stages. 87

5.2 Results on the GLUE development set. “#Bits (W-E-
A)” represents the bit number for weights of Transformer
layers, word embedding, and activations. “DA” is short
for data augmentation. “Avg." denotes the average results
of all tasks including MNLI-m and MNLI-mm. The higher
results in each block are bolded. 88

5.3 Results on the GLUE test set scored using the GLUE
evaluation server. 88

5.4 Development set results (EM/F1) on SQuAD. 89
5.5 Comparison with other state-of-the-art methods on devel-

opment set of SQuAD v1.1 and MNLI-m. 91

xvi

5.6 The performance gain by fine-tuning the binary model
after splitting. 0.5× and 1.0× denote the half-sized and
full-sized models, respectively. 92

5.7 Comparison with other binarization methods. 92

6.1 Hyper-parameters for different base models on CIFAR-10
and ImageNet. 108

6.2 Comparison of different algorithms for ResNet-20 and
ResNet-56 on CIFAR10. Drops↓ denotes the decrease of
accuracy comparing to base models, and Ratio↓ is the
reduction of FLOPs. - stands for unavailable records.
* denotes the results reported with knowledge distilla-
tion/depth search and † indicates results reported with
pre-trained model, both of which are absent in our model. 112

6.3 Comparison for ResNet-18 and MobileNet-V2 on Ima-
geNet. * denotes original results with knowledge distillation.113

xvii

Chapter 1

Introduction

1.1 Overview

The last decades have witnessed the prosperous development of deep
learning in various applications of artificial intelligence, such as computer
vision [7, 8, 9], natural language processing [10, 11], speech recogni-
tion [12, 13] and recommender systems [14, 15, 16]. The remarkable
success comes with the growing size and computation overhead of deep
neural networks. Recently, the pre-trained language models and their
variants even scale to hundreds of billion parameters [17, 18, 19, 20],
outperforming human beings on a variety of tasks.

In the meanwhile, the superior performance of deep learning has
also ignited the application of AI services on edge devices, such as smart
phones [21], embedded devices [22, 23] and autonomous driving [24].
However, the increasing memory and computation of deep learning
models bring a couple of new challenges to AI services on the edge. First
of all, the cumbersome size makes the model response extremely slow,
which can take up to several minutes for a single user query [17, 20].
Secondly, the huge memory consumption makes the model training and
deployment rather difficult on resource-limited devices. For instance, a
GPT-3 model takes up to thousands of GPUs for distributed training [17],
which is far beyond the limit of edge devices. Thirdly and consequently,
most existing efforts deploy these gigantic models on the cloud, which
may suffer from network latency, privacy, and security issues during the
data transmission.

To mitigate the above challenges, network compression and
neural architecture search are two practical solutions to design

1

2 CHAPTER 1. INTRODUCTION

efficient deep learning models. In this thesis, we shall focus on these
two directions, and provide a set of solutions to explore the trade-off
among speed, memory consumption, and task performance. In the
following, we first give a brief overview of network compression and
neural architecture search and summarize their potential challenges that
motivate our contributions in this thesis.

Network Compression. Starting from an over-parameterized, network
compression applies various slimming techniques to obtain the light-
weight neural networks. Common network compression techniques
include pruning [25, 26, 27], quantizaiton [28, 29, 30, 31, 32], knowledge
distillation [33, 34] and low-rank factorization [35, 36]. These techniques
can also be combined together for higher compression rate [37, 38]. We
shortly introduce each of these techniques in the below.

Network pruning removes parameters or connections in a network
that are believed to be redundant. The redundancy can be measured by
either parameter magnitude [39], norm of gradients [40, 41] or spectrum
of Hessian matrices [42, 43]. Pruning can be generally categorized to
unstructured pruning [37, 39] and structured pruning [25, 27]. For
unstructured pruning, any useless parameters can be removed, which
usually enjoys a higher compression rate but can hardly be accelerated
on most existing hard-wares. Structured pruning, on the other hand, can
only remove a group of parameters (e.g., channels, filters or layers), which
directly leads to a slimmed architecture with faster inference speed.

Quantization, on the other hand, does not require modifying the
network architecture, but simply replaces the original full-precision
parameters and activations into low-bit fixed point representations [29,
30, 31]. The low-bit representation not only reduces the size of the model
but also allows practical speed-up with integer operations on modern
hardwares [44]. As the limit of network quantization, binarization is also
a popular topic in existing literature [28, 45, 46, 47, 48, 49]. By converting
parameters to either ±1, the network can be accelerated up to 58× with
“XNOR” operations [45]. To compensate the performance degradation,
quantization-aware training (QAT) is usually conducted to fine-tune the
network based on the training data. However, for scenarios with limited
training resources, post-training quantization (PTQ) is preferred as it can
better balance the trade-off among model compactness, training resources
and performance.

1.1. OVERVIEW 3

Knowledge distillation [33, 34] motivates from a different perspective
for model compression. Instead of explicitly compressing the network,
knowledge distillation transfers the information from a well-trained
teacher model to a pre-defined compact student model. Specifically, the
knowledge embedded in the teacher network can be distilled by either
the output logits [34] or the hidden representation. The dense vectors of
output logits are believed to contain the class-wise correlation, which is
empirically shown to benefit the training of student models. The hidden
representation, on the other hand, contains task specific knowledge at
different levels (i.e., layers) of a network. Mean squared error is the most
widely used metric to measure the discrepancy of hidden representation
between the teacher and student model [33, 50, 51, 6]. Other common
criteria include normalized distances [52] or activation boundaries [53].

Tensor factorization [35, 54] is another common approach for
network compression. By factorizing the full rank network parameters
into multiple low-rank sub-tensors, the model size can be significantly
reduced. The widely approaches for factorization include Canonical
Polyadic decomposition [55] and Tucker decomposition [36]. There are
also other advanced variants such as tensor-train decomposition [54, 56],
which allows more flexibility for tensor decomposition.

Neural Architecture Search. Different from network compression,
neural architecture search (NAS) directly searches for an efficient network
structure from the pre-defined search space. To evaluate the efficiency
of a network, one can adopt metrics such as parameter size, floating-
point operations per second (FLOPs) [57, 58], or the real-time latency
measured on hard-wares [59, 60]. A NAS algorithm usually consists of
three parts: a search strategy that picks network architecture given the
efficiency constraint; a search space that determines the composition of
neural architecture; and a performance estimation strategy that evaluates
each candidate architecture and provides supervision signals back to
update the search strategy.

The NAS search space include different types of convolution kernels,
connections, activation functions [3, 61, 2], or number of channels [62,
63, 64] and layers in the network [58, 64]. There are also recent efforts
that build the search space with different compression strategies, such
as different layer-wise pruning ratio [65, 66, 67] or quantization bit-
width [66, 68, 69]. The search space design plays an important role in
NAS algorithms, where a well-designed search space can greatly improve

4 CHAPTER 1. INTRODUCTION

the searching outcome [70].

The search strategies of NAS algorithms can be generally divided
into three classes: gradient based search [2, 71, 59], reinforcement learn-
ing (RL) based search [3, 61, 57], and evolutionary search [72, 62, 73]. The
gradient-based search first assigns each candidate choice with a learnable
parameter, which can be updated with end-to-end backpropagation.
After training, one can take the path with the maximum weights as
the final architecture choice. However, such approaches may suffer from
the underestimation of network performance, which may lead to sub-
optimal architectures. The RL-based algorithms, on the other hand,
deploys an extra RL controller for architecture selection. Taking directly
the task accuracy or model size as the reward, one can apply policy
gradient methods [74] for the training of RL controllers [3, 61]. Finally,
evolutionary computing can also be used for NAS problems. Each
architecture can be first represented as an individual in the population.
With proper fitness evaluation, the promising architectures are then
selected to generate new architectures through evolutionary operations,
such as Genetic Algorithms [75], Genetic Programming [76] or Ant
Colony Optimization [77].

As the third component in NAS, performance estimation is another
research focus that is closely related to algorithmic efficiency. NAS
is well-known for its high computational cost. When NAS is initially
proposed [3], each candidate network needs to be trained and evaluated
individually from scratch, which takes up to thousands of GPU days. To
mitigate the issue, parameter sharing is a popular solution. Specifically,
one can first train a supernet to convergence, where each network
candidate can be later sampled and evaluated as a sub-path of the
supernet. The procedure is also known as one-shot NAS [78], which
significantly reduces the time consumption to only a single GPU day [61].

Challenges and Thesis Focus. Despite the great success of network
compression and architecture search in designing efficient deep learning
models, there are still a number of practical issues unsolved, which
are the main focus of this thesis. To better describe the challenges,
we first unify both network compression and neural architecture search
in a single paradigm for designing efficient deep learning models, as
shown in Figure 1.1. The paradigm includes the user side that requires
an efficient deep learning model, as well as the service side that is
able to provide services of network compression or neural architecture

1.1. OVERVIEW 5

User Side Service Side

Pruning

Distillation

Quantization

…

Controller

Supernet

Network Compression

Architecture Search

Pre-trained
Model

Dataset

Search
Space

Parameter
Sharing

3

Extreme
Compression

2

Training
Resources

1 Factorization

Figure 1.1: The overview of efficient deep learning paradigm. For network
compression, users are supposed to provide pre-trained models and training
data. For neural architecture search, the pre-defined search space is required
aside from the training data. However, the paradigm suffers from three main
challenges as shown in red boxes, which are the research focus of this thesis.

search. For network compression services, a pre-trained model should be
prepared in advance from the users, which is then passed to the service
side. Otherwise, for neural architecture search, the search space needs to
be defined based on the desired model types from users. Then various
NAS algorithms can be applied within the search space on the service
side. For both services, the training dataset is always required to either
fine-tune the compressed model or compare the goodness of different
trained network architectures. We introduce three challenges associated
with such an efficient deep learning paradigm below, which motivate our
solutions in the thesis.

• Challenge 1: Lossless Network Compression with Limited
Training Resources.
Network compression is no free lunch but also consumes training re-
sources, such as training data and computation overhead. However,
either training data or the associated computation resources can be
prohibited in practice. First of all, for some domains where data
privacy is of high priority (e.g., medical images), it may be risky
to expose the entire dataset to third-party organizations. However,
the absence of training data may hurt the network performance
significantly. In the second place, there are also scenarios that
a compressed model is required on the fly when it is prohibited

6 CHAPTER 1. INTRODUCTION

to conduct the time-consuming fine-tuning over the full training
set. Consequently, it is necessary to develop data-efficient and
computation-efficient network compression algorithms to meet the
demands of the above scenarios in practice.

• Challenge 2: Extreme Network Compression with Ade-
quate Training Resources.
When adequate training resources are available (i.e., training data
and computational devices), the network can be thoroughly fine-
tuned to recover the degraded performance after model compres-
sion. Nevertheless, this can still be challenging when extreme model
compression is applied. In network quantization, for instance, while
8-bit quantized models do not suffer from apparent performance
drop, binarization (e.g., 1 bit) can significantly hurt the model,
e.g., the top-1 accuracy may decrease by more than 20% on
ImageNet [45, 47]. Consequently, more advanced quantization
algorithms are supposed to be developed to improve the network
under such extreme compression.

• Challenge 3: Efficient Architecture Search with Parameter
Sharing.
The efficiency of NAS algorithms has been a major concern in
the existing literature. As it is computationally intractable to
enumerate each candidate model from the search space [3], a
common solution is to establish a supernet that embeds different
candidate models as its sub-graphs [61, 2, 59, 78] By sharing the
parameters of different candidate models, the supernet training
is empirically believed to help its sub-networks jointly. However,
there are still no rigorous and quantitative studies on the effect of
parameter sharing. For instance, what are the potential drawbacks
of parameter sharing? How can the controller better identify
different network architectures given the shared parameters among
various sub-networks?

1.2 Thesis Contributions

Aiming at addressing the aforementioned challenges in network com-
pression and architecture search, the contributions of this thesis are
summarized in the following:

• Pruning with Limited Training Resources.

1.2. THESIS CONTRIBUTIONS 7

– We study the problem of few-shot network pruning, where
only tens of training instances are available. We find that due
to the lack of training data, the pruned network suffers from
high estimation error that propagates layer-wisely and finally
deteriorates the pruned model.

– We propose cross distillation, a layer-wise knowledge distilla-
tion approach for few-shot network pruning. The proposed
approach interconnects the teacher and student layer in the
forward pass, such that the error propagation can be effectively
mitigated.

– Extensive experiments are conducted on popular network
architectures over image classification benchmarks. The em-
pirical results demonstrate the superiority of cross distillation
against several existing pruning counterparts.

• Quantization with Limited Training Resources.

– We study post-training quantization of BERT, a widely used
pre-trained language model. We seek to improve the quantiza-
tion performance of BERT given only limited training instances
and computational devices.

– We propose module-wise reconstruction error minimization, an
efficient post-training quantization solution that enjoys quick
training with limited data and light memory consumption.
Additionally, a new model parallel strategy is designed based
on the proposed method to further accelerate the training.

– Extensive experiments are conducted on natural language
understanding and reading comprehension tasks. Empirical
results show that the proposed approach can accelerate the
training by more than 140× with only a minor performance
drop.

• Binarization with Adequate Training Resources.

– We study the problem of BERT binarization, which follows
quantization-aware training with adequate training resources
to boost the performance. However, we find it hard to optimize
the binary BERT directly due to its complex loss landscape.

– We propose ternary weight splitting, an equivalent splitting

8 CHAPTER 1. INTRODUCTION

approach that initializes the binary BERT from a trained
ternary BERT. The initialized binary model is then fine-tuned
for further improvement.

– The proposed ternary weight splitting also supports adaptive
splitting, which can flexibly adjust the model size depending
on different hardware constraints.

– We achieve new state-of-the-art BERT quantization results,
with 24x size reduction and negligible performance drop.

• Revisiting Parameter Sharing in Architecture Search.

– We revisit the role of parameter sharing in NAS based on the
channel number search problem, by establishing a versatile
framework that unifies previous hand-crafted parameter shar-
ing heuristics.

– We quantitatively define parameter sharing in the proposed
framework. It is found that parameter sharing indeed promotes
training efficiency, but also results in less discrimination of
good neural architectures, and vice versa.

– We thus introduce transitionary affine parameter sharing, a
new sharing strategy that balances both searching efficiency
and architecture discrimination.

– Experiments on image classification benchmarks show that
transitionary parameter sharing leads to better network ar-
chitectures, which surpasses a number of competitive channel
search counterparts.

1.3 Thesis Organization

An overview of thesis chapters are shown in Figure 1.2. Specifically, the
remainder of this thesis is organized as follows:

• Chapter 2. In this chapter, we give a systematic background
review on network compression and neural architecture search
for efficient deep learning. First we introduce common network
compression approaches such as network pruning, quantization,
knowledge distillation, and matrix/tensor factorization. Then we
summarize neural architecture search from three aspects: search
space, controller, and performance estimation.

1.3. THESIS ORGANIZATION 9

Figure 1.2: The thesis organization.

• Chapter 3. In this chapter, we first introduce the problem setting
of few-shot network pruning, as well as the underlying challenges.
Then we propose cross distillation, which is composed of both
correction and imitation for the layer-wise pruning. After that, we
show our empirical results on image classification benchmarks and
compare them with other few-shot pruning counterparts. Finally,
we conclude this work.

• Chapter 4. In this chapter, we first compare post-training
quantization with quantization-aware training in the context of
limited training resources. Then we propose module-wise recon-
struction error minimization, an efficient post-training quantization
solution for BERT. The approach can be armed with a new model
parallel strategy and teacher forcing to further improve both the
training efficiency and quantized performance. After that, we
provide thorough empirical evaluations with the proposed approach
on various tasks of natural language processing across different
quantization bit-width. Finally, we conclude this work.

• Chapter 5. In this chapter, we first study the challenges of training
a binary BERT. Based on the observations, we then propose ternary
weight splitting, which equivalently splits from a trained ternary
BERT to initialize the binary model. We then show that ternary
weight splitting can be performed adaptively depending on the
quantization sensitivity and hardware constraints, which can be
formulated as a combinatorial optimization problem. In the next,
we evaluate our approach on both natural language understanding
and reading comprehension, followed by the conclusion of this work.

10 CHAPTER 1. INTRODUCTION

• Chapter 6. In this chapter, we shift the gear to analyze parameter
sharing for channel number search problems in neural architecture
search. We first establish affine parameter sharing, a unified
framework to incorporate previous sharing heuristics. Based on
the framework, we then empirically study the advantages and
disadvantages of parameter sharing, after which a new transitionary
parameter sharing is proposed to balance architecture discrimina-
tion and searching efficiency. Finally, we evaluate the proposed
transitionary parameter sharing scheme against a number of state-
of-the-art baselines on image classification benchmarks.

• Chapter 7. The last chapter concludes this thesis and provides
some promising research directions for future exploration.

2 End of chapter.

Chapter 2

Background

In this chapter, we provide the necessary background review for this
thesis. We show that to design efficient deep learning models, there are
amount of approaches and categories for both network compression and
neural architecture search. An overview of the background taxonomy is
presented in Figure 2.1, where red arrows mark the chapter focus in this
thesis.

Notation Setup. We first set up the general notations in the back-
ground and will stick to them in the remaining chapters unless otherwise
specified. We denote a L-layer deep neural network as F = fL ◦fL−1 ◦f1,
where fl denotes the l-th layer of the network 1. Common choices for fl
can be convolutional layer in computer vision, or recurrent cells and
fully connected layer in natural language processing. Especially, for
convolutional layers, the l-th activation hl ∈ Rb×ci×k×k can be obtained
by hl = fl(hl−1) = σ(wl ∗ hl−1), where σ(·) is some activation function
such as ReLU(·), ∗ denotes the convolutional operation, wl ∈ Rco×ci×k×k

is the corresponding 4-D convolutional kernel, and b, ci, co and k are
the batch size, input channels, output channels and the kernel size
respectively. For fully connected layers, one may simply substitute ∗ with
matrix multiplication, and wl ∈ Rco×ci becomes a 2-D matrix. Moreover,
we denote the collection of network parameters as w = {wl}Ll=1.

1While there can be more complex network structures, we take such formulation for ease
of presentation.

11

12 CHAPTER 2. BACKGROUND

Ef
fic

ie
nt

 D
ee

p
Le

ar
ni

ng

Network
Compression

Pruning

Criteria Magnitude, Gradient, Hessian

Types Unstructured, Stripe, Filter, Channel

Data Access
Full Data: CP, ThiNet, DCP, CCP

Few Data: FSKD, CURL

Quantization

Quantization
Training

QAT: DoReFa, PACT, LSQ

PTQ: Bit-split, AdaRound, BRECQ

Bit-width

m-bit: DoReFA, PACT, LSQ

2-bit: TWN, TTQ, LAQ, RTN

1-bit: BWN, BiReal, XNOR, ReActNet

Knowledge
Distillation

Distill Logits KD, DistilBERT

Distill Rep. FitNet, FSP, AT, ABDistill, TranSlider

Matrix/Tensor
Decomposition

Matrix SVD, Low Rank, Dictionary Learning

Tensor CP, Tucker, Block-Term, Tensor-train

Architecture
Search

Search Space

Cell-based NAS, ENAS, DARTS

Width or Depth MetaPrune, TAS, DMCP, AutoSlim

Compression AMC, PocketFlow, HAQ, APQ

Search Strategy

Differentiable DARTS, SNAS, DSNAS, ProxylessNAS

Evolutionary GA, GP, PSO, ACO

Reinforcement
Learning

NAS, ENAS, MnasNet

Performance
Estimation

Curve
Regression

OFA, MCUNet, HAT

Network
Morphisms

Net2Net, AutoGrow, AdaXPERT

Parameter
Sharing

DARTS, ENAS, AutoSlim
CH6

CH5

CH4

CH3

Figure 2.1: The taxonomy of background review.

2.1. NETWORK COMPRESSION 13

2.1 Network Compression

2.1.1 Pruning

Deep neural networks are known to be over-parameterized. Motivated by
optimal brain damage [79] and optimal brain surgeon [80] back to 1990s,
network pruning aims to remove the unimportant connections, filters, or
layers in a neural network. This yields a sparse and compact network
which can significantly reduce the model size.

We illustrate network pruning based on convolutional neural net-
works, while it can be easily extended to other types of networks. Given
a convolutional kernel w ∈ Rco×ci×k×k, network pruning seeks to find a
mask m ∈ {0, 1}co×ci×k×k over the network parameter w̃ = w�m. The
masked elements in w̃ are thus regarded as pruned away. To identify
important parameters in the network, there are several pruning criteria
as introduced below.

Pruning Criteria. The most commonly used pruning criterion is the
parameter magnitude (e.g., `1 and `2 norm) [81, 37, 25, 39, 26, 82], based
on the assumption that large parameters are more important than the
smaller ones. Given the magnitude threshold λ, the mask can be obtained
by m = 1(|w|−λ > 0), where 1(·) is the element-wise indicator function.
Aside from the parameter magnitude, the first order (i.e. gradients g(w))
and second order information (i.e. Hessian matrix H(w)) at w are also
well known pruning criteria [42, 83, 43]. Recall that the Taylor expansion
of the loss function ` at the original parameter w gives

`(w̃) ≈ `(w) + g(w)>(w̃−w) + 1
2(w̃−w)>H(w)(w̃−w). (2.1)

Usually, the first-order term g(w) dominates the change of loss func-
tion [42, 83], as the second-order term is usually negligible. A large loss
change indicates the importance of the pruned parameter and vice versa.
Nonetheless, to prune a well-trained network at some local minimal
with g(w) ≈ 0, the Hessian matrix H(w) plays the role in determining
the pruning mask m based on the loss curvature [43]. There are also
other criteria such as mutual information [84], signal-noise ratio [85] or
posterior estimates [86, 87], though they are less popular in practice.

Types of Pruning. Based on the pattern of sparsity in the mask
m, pruning can be generally categorized to unstructured pruning and

14 CHAPTER 2. BACKGROUND

(a) Unstructured Prun-
ing

(b) Stripe Pruning (c) Channel Pruning (d) Filter Pruning

Figure 2.2: Illustrations of (a) unstructured pruning, and three kinds of
structured pruning: (b) stripe pruning, (c) channel pruning and (d) filter
pruning. The light color indicates the pruned parameters.

structured pruning (i.e., stripe pruning, channel pruning, and filter
pruning), as shown in Figure 2.2. For unstructured pruning, any
unimportant connections of the network parameter can be removed,
which allows high flexibility in pruning. A naive way is to sort the
magnitudes of all parameters in the ascending order and then prune
the top-K elements [39]. However, the irregular pattern of sparsity can
be hardly supported for acceleration on modern architectures of CPU
or GPU. Structured pruning, on the other hand, removes an entire
group of parameters, such as stripe pruning [88] of convolutional kernels
in Figure 2.2(b), channel pruning [25, 27] in Figure 2.2(c) or filter
pruning [81, 26] in Figure 2.2(d). The regular sparsity in structured
pruning can be readily accelerated on general computation hard-wares.

Pruning Pipeline. The most common pipeline for pruning includes
three steps: 1) training from scratch; 2) pruning and 3) re-
training. Specifically, given a network architecture and randomly
initialized parameters, we first train the network to convergence, which
is done before pruning. Then we conduct pruning based on the trained
network parameters according to the above criteria. Finally, we re-
train the pruned network to reboot the performance based on the sparse
network.

A popular way is to merge the second step and third step to-
gether [39, 81], by minimizing the expected task loss (e.g., the cross
entropy loss `ce) over the training set D with some sparse regularizations
as follows:

min
w

E(x,y)∼D
[
`ce(x,y; w) + λ‖w‖p

]
, (2.2)

where ‖ · ‖p is the p-norm tuned by λ. For unstructured pruning, ideally
one should take ‖ · ‖0 (i.e., p = 0). However, in practice ‖ · ‖1 is preferred
as a convex relaxation of the sparse learning problem [27]. For structured

2.1. NETWORK COMPRESSION 15

pruning, one can take ‖w‖2,1 = ∑
i ‖wi‖2, which encourages group

sparsity along filters [81] (wi ∈ Rci×k×k) or channels [25] (wi ∈ Rco×k×k).
Equation (2.2) can be directly optimized, which is usually simple and easy
to use. However, a drawback is that it can be hard to control the sparsity
ratio with the λ. As all network parameters are weighted equally, the
resulting sparse network is less adaptive to different layer-wise pruning
sensitivity. Existing efforts [39, 25] find that λ need to be annealed at
different training epochs, so as to smoothly decrease the network size for
better performance. This can also be tricky in practical implementations.
Moreover, the objective function in Equation (2.2) or re-training is also
time-consuming, i.e., nearly the same amount of time with training from
scratch. Therefore, there are more efforts focusing purely on the second
step such that more knowledge of the pruned model can be preserved to
avoid the intensive re-training.

Towards that end, layer-wise pruning is a common method by
minimizing the output discrepancy layer-by-layer in a greedy manner [35,
25, 26, 50]. Specifically, by taking the output hl+1 of the un-pruned l-th
layer as the regression target y, the pruning of wl can be formulated as
a least square problem with norm constraints:

min
wl
‖y− σ(wl ∗ h̃l−1)‖2

2 s.t. ‖wl‖p ≤ t, (2.3)

where h̃l−1 is the output of the previously pruned (l − 1)-th layer, and
t is some pre-set pruning target for the p-norm. The formulation also
resembles knowledge distillation, as will be introduced in Section 2.1.3.
The original model act as the teacher network to provide layer-wise
supervision with the pruned model (i.e., the student network). Layer-
wise pruning usually outperform Equation (2.2) significantly e.g., on
VGG-16, only 1.3% ↓ in accuracy with 5× speed-up [25]. Even when
armed with fine-tuning, the performance can only be further improved
by 1.0%, as the pruned model already maximally preserve the original
task knowledge.

Data Accessibility. Training data is crucial for the re-training of
pruned networks. However, the data accessibility can be limited in
practice, which challenges most existing pruning approaches. As the
network compression service is usually provided by some third-party
organizations, the customers are required to provide their trained models
together with training data. However, data privacy is of high priority for

16 CHAPTER 2. BACKGROUND

some domains, such as medical images.

Most existing pruning approaches, such as CP [25], ThiNet [26],
DCP [27] and CCP [89] require full training set for sufficient fine-tuning
of the pruned model. However, with limited access to training data, these
solutions always lead to sub-optimal solutions.

To deal with the scenario without training data, one potential
solution is to generate pseudo inputs from random noise. For instance,
by optimizing the random noise to match the intermediate statistics of
a deep neural network, one can obtain helpful input that is far better
than chance [90]. Alternatively, a generative model can be deployed to
generate the pseudo training set [91, 92, 93]. However, the generation of
high resolution and quality input from both random noise or generative
models can be still challenging and expensive, which prohibits their
application on large-scale problems.

Challenge and Our Focus. Recently, a new branch of research is
explored: few-shot network pruning, which explores the trade-off among
network performance, efficiency, and data security. Usually, only a few
labeled data are used for few-shot pruning, such as 5 images per class for
5-shot image classification. While there are some preliminary works such
as FSKD [50] and CURL [94] in this direction, we will show in Chapter 3
that they still suffer from high estimation errors with the few-shot data.
Correspondingly, our solution will be proposed to address the challenge.

2.1.2 Quantization

Network quantization aims to convert the full-precision network param-
eters or activations into low-bit representations. The quantized networks
thus enjoy size reduction and potential inference speed-up with low-bit
operations on modern hard-wares. Quantization can be categorized to
general multi-bit quantization [29, 30, 31], ternarization (2-bit) [95, 96]
and binarization (1 bit) [28, 45, 97, 47]. While the existing quantization
literature is vast, here we name a few quantization methods that are
related to our research.

Multi-bit Quantization. For a full-precision network parameter w, the
general b-bit quantization can be summarized by the function Qb(·) as
follows:

ŵ = Qb(w) = s · ΠΩ(b)(w/s), (2.4)

2.1. NETWORK COMPRESSION 17

where Π(·) is the projection function to the closest integer, s ∈ R+ is the
step size of quantization, and Ω(b) is the set of b-bit quantization points.

The multi-bit quantization points Qb can be distributed either
uniformly or non-uniformly. Uniform quantization is most widely
adopted in the quantization literature, where the quantization points
are evenly spaced, i.e., Ω(b) == {−2b−1, ..., 0, ..., 2b−1 − 1}. The design
of quantization step-size s has been a major research focus in uniform
quantization. A simple way is to set s according to the range of w, i.e.,
s = max(w)−min(w)

2b . Nonetheless, such a method suffers from outliers in
w, especially in convolutional networks when the parameter distribution
is highly skewed [29, 98, 99]. To make the quantization distribution
more compact, DoReFa [29] re-scales the parameter w with the following
function:

ŵ = 2Qb(w̄)− 1, w̄ = tanh w
2 max(| tanh w|) + 1

2 , (2.5)

where w̄ squashes the small values in w and thus leaves the space to
represent larger values.

Recent solutions prefer learning-based approaches to narrow down
the quantization range. In PACT [30], a parameterized range [−α, α]
is set and updated through end-to-end training with the task loss `.
To encourage a compact quantization range, L2 regularization over α
is further induced in PACT. Notably, the clipping boundary can be
equivalently determined based on the step-size and quantization bit,
for instance, α = s × 2b−1 for symmetric quantization. Alternatively,
LSQ [31] and LSQ+[100] propose to optimize the quantization step size
s instead. Additionally, they find that the step-size gradient ∇s` should
be re-scaled for proper convergence of the parameter. These together are
empirically shown to give the state-of-the-art quantization performance
so far.

Non-uniform quantization, on the other hand, allows the quanti-
zation points to be adjusted to maximize the network performance.
Common approaches to design non-uniformly distributed points include
k-means clustering [37, 101], logarithm scaling [102, 103, 104], linear com-
bination of codebooks [105, 32] or purely learning-based approaches [38].
While this brings more flexibility for representation, it can be difficult
to achieve practical speed-up on most existing hard-wares. Therefore,
non-uniform quantization is thus less preferred in practice.

18 CHAPTER 2. BACKGROUND

While we mainly focus on parameter quantization in the above
paragraphs, similar rules can be applied for activation quantization.
However, nonlinear activation functions such as ReLU(·) or GeLU(·)
make the activation elements mostly positive, where asymmetric quanti-
zation is usually preferred [30, 100]. Meanwhile, to prevent outliers in the
activation, a clipping value is also encouraged in the activation function,
such as ReLU6(·) [105] or tanh(·) [29].

Ternarization. As a special case of 2-bit quantization, ternariza-
tion converts the full-precision parameter into three distinct values,
e.g., {±α, 0}, where α is the scaling factor. Ternary Weight Net-
work (TWN) [95] pioneers to ternarize w element-wisely as

ŵti =Q2(wi)=
α · sign(wi) |wi| ≥ ∆

0 |wi| < ∆
, (2.6)

where sign(·) is the sign function, ∆ = 0.7
n
‖w‖1 , and the scaling factor

α= 1
|I|
∑
i∈I |wi| with I = {i | ŵi 6= 0}.

To enhance the representation power of ternarized networks, TTQ [96]
further assigns different learnable scaling factors for both positive and
negative quantized values. While TWN and TTQ determine the scaling
factor heuristically, LAQ [104] further consider the loss increase due to
ternarization into the scaling factors. Recent ternary network solutions
such as RTN [106] follow learning-based approaches to determine the
optimal scaling factor from data.

Binarization. By taking only one bit-width, binarization achieves
the most size reduction and is widely explored in the quantization
literature [28, 45, 97, 47]. As a representative work, Binary-Weight-
Network (BWN) [45] aims to minimize the quantization error of bina-
rization as follows:

min
α,b

‖w− αb‖2, (2.7)

where α > 0 is the scaling factor similar to those in TWN [95], and
b ∈ {±1}n is the binary filter for w ∈ Rn. Equation (2.7) can be solved
alternatively for b and α, with the following closed form solutions:

b = sign(w), α = 1
n
‖w‖1. (2.8)

2.1. NETWORK COMPRESSION 19

Figure 2.3: The computational graph of a quantized convolutional neural
network. The rectangles and circles denote the intermediate tensors and
operations respectively. The forward pass first quantizes tensors into the
convolutional operation. In the backward pass, the STE operator copies the
gradient ∇`(ŵ) of quantized ŵ directly to w.

Consequently, the binarized weights can be element-wisely obtained by

ŵbi = Q1(wi) = α · sign(wi). (2.9)

Aside from closed-form update of scaling factors. recent efforts on
binarized networks prefer learning-based approaches [47, 107, 108], which
infer the optimal value of α from data.

Network binarization often suffers from large performance drop. For
instance, BWN has nearly the 10% accuracy drop for ResNet-18 [109]
on ImageNet dataset. The drop is even more significant with binarized
activations. To improve the performance of binary networks, there
are orthogonal efforts that design quantization-friendly architectures,
such as adding more full-precision short-cut connections [47, 108],
designing binarization-friendly activations [49, 110] or increasing channel
numbers [49]. Moreover, it is also helpful to combine advanced
training techniques such as knowledge distillation [110, 111], sqeeze and
excitation (SE) modules [112, 111], soft-to-hard quantization [113, 107].

Quantization Training. Quantization usually degrades the network
performance, especially with low bit-width. Therefore, it is necessary
for network fine-tuning to recover the performance degradation, similar
to network pruning. Figure 2.3 shows the computational graph of
a quantized network. Specifically, each forward pass first converts
the full-precision weight w (a.k.a latent weights) to ŵ = Qb(w).
Then loss `(ŵ) can be obtained with ŵ. In the backward pass,
we use ∇`(ŵ) to update latent full-precision weights w due to the
non-differentiability of Qb(·), which is known as the straight-through
estimator (STE) [28]. There are generally two kinds of approaches for

20 CHAPTER 2. BACKGROUND

training quantized networks: quantization-aware training (QAT) and
post-training quantization (PTQ), as introduced in the following:

Quantization-aware training (QAT) resembles standard fine-tuning,
but in the context of quantized networks. Given the training set D, QAT
optimizes network latent parameters w and trainable parameters (e.g.,
step-sizes s.) in Equation (2.4) by minimizing the training objective ` as
follows:

min
w,s

Ex∼D [`(x; ŵ, s)], s.t. ŵ = Qb(w). (2.10)

Typical training objective can be either the cross-entropy loss between
the prediction and ground-truth labels for classification tasks [29, 114], or
the distillation objective between the quantized model and a full-precision
teacher model [38, 6]. QAT usually requires multiple iterations over the
full training data D, which can be time-consuming. Furthermore, as
discussed in the challenges of network pruning, it may lead to some data
security and privacy issues to access the entire training data in practice.

Post-training quantization (PTQ), on the contrary, minimizes the
reconstruction error without intensive training over D. One line of
research on PTQ quantizes the network without training but aims at
removing outliers in the full precision parameters. This can be achieved
by splitting an outlier neuron with a large magnitude into two parts [99],
where the magnitude can be halved. Alternatively, one can scale down
outlier magnitude and multiply it back in subsequent layers, a.k.a weight
equalization in [98]. Another solution is to treat the outliers and normal
values in the distribution separately, by keeping two sets of quantization
parameters [115, 116]. PTQ can also be applied with only activation
statistics [98] or pseudo generated data [92, 93].

Another line of PTQ research [117, 118, 119] trains with a very slight
portion (a.k.a calibration set) D̃ ⊆ D from the original training data,
and significantly improves the performance. These approaches target
at reconstruction error minimization (REM) by solving the following
problem:

min
w,s
‖ŵ>â −w>a‖2, s.t. ŵ = Qb(w). (2.11)

The REM is usually conducted in a greedy manner, i.e., proceed to the
matrix multiplication only after the training of previous ones. Meanwhile,
Equation (2.11) can be solved quickly with the calibration set D̃. It is also
theoretically justified to be more sample-efficient given limited training
size [120] when compared with conventional end-to-end training.

2.1. NETWORK COMPRESSION 21

Challenges and Our Focus. We introduce two challenges in network
quantization below, which motivate the research focus in this thesis. The
first challenge of network quantization lies in the trade-off between QAT
and PTQ. While QAT performs generally better, it takes a long period
of training over the full time, thus prolongs the production cycle and
gives rise to privacy concerns. On the other hand, PTQ is fast and light-
weighted to obtain a quantized model in general. However, it usually
suffers from a large performance drop, especially when quantized with
low bit-width. In Chapter 4, we shall provide our solution that can
simultaneously improve the quantized performance without suffering the
issues in QAT.

A second challenge is the pursuit of extremely low-bit quantization,
especially the binarization of neural networks. As shown in [45], a
binary network enjoys more than 50× speed up with “XNOR” operations,
which is even faster than integer operations in multi-bit quantized
networks. Nevertheless, binarization usually leads to a significant drop in
performance. Despite there are a number of approaches [47, 48] proposed
to improve network binarization, it is still unclear in what way it degrades
the neural network. In Chapter 5, we explore the reasons behind the
performance drop and provide our corresponding solution.

Finally, we highlight that the success of quantization depends on
both the task and the corresponding model architecture. While existing
quantization efforts have achieved remarkable success in computer vision,
there is few explorations to other domains such as natural language
processing (NLP). Especially, with the recent growth of pre-trained
language models [121, 11], there is an increasing demand for model
quantization in NLP. Our work in Chapter 4 and Chapter 5 are mostly
grounded on Transformer-based models, which also serve as insightful
explorations of network quantization in natural language understanding.

2.1.3 Knowledge Distillation

As first proposed in [34], knowledge distillation has been prosperously
studied in recent years [33, 52, 122, 53, 50, 123, 124]. Knowledge
distillation aims to transfer the information embedded in a teacher
network to the student network. Depending on the transfer target,
knowledge distillation can be divided into logits-based approaches and
hidden representation based approaches, as shown in Figure 2.4. We
introduce each type of knowledge distillation in the following.

22 CHAPTER 2. BACKGROUND

Figure 2.4: Two types of knowledge distillation (i.e., hidden representation
distillation and logits distillation) between the teacher network (green) and
student network (orange).

Logits Distillation. Usually this can be achieved by minimizing the
soft cross entropy `sce between the teacher logits zT and student logits
zS as follows:

`sce = −
∑
i

softmax(zSi) · log
(
softmax(zTi /τ)

)
, (2.12)

where softmax(·) is the softmax function, and τ is the temperature that
is normally set to 1. A large value of τ encourages smooth labels that
prefer correlations among classes, and vice-versa.

Hidden Representation Distillation. Hidden representation distil-
lation, on the other hand, minimizes the discrepancy between the
intermediate layer of teacher and student networks [33, 52, 51]. For
example, FitNet adopts hints training with layer-wise L2 distances
between the teacher and student network as the objective function, i.e.:

`ht =
L∑
l=1

1
2‖f

T
l (x; wT)− r ◦ fSl (x; wS,wr)‖2, (2.13)

where fTl and fSl denote the l-th layer of the teacher and student network,
and r(·) is some regressor function parameterized by wr on top of the
student layer to match the output dimensions, such as a linear layer.
After minimizing `ht, one can shift back to the logit based knowledge
distillation objective function `sce defined in Equation (2.12).

Apart from FitNet, there are also other attempts with different distil-
lation metrics. For instance, Attention Transfer (AT) [52] regularizes the
task loss with normalized L2 distances over the feature maps. FSP [122]
distills the knowledge from the flow of solution procedure matrices based

2.1. NETWORK COMPRESSION 23

(a) Singular Value Decomposition.

(b) Low-rank Decomposition.

Figure 2.5: Two common matrix factorization approaches: (a) Singular value
decomposition, and (b) low-rank decomposition for matrix parameters.

on the CNN feature maps. ABDistill [53] explores the knowledge inside
the activation boundaries of hidden representations. Translider [125]
further explores the degree of knowledge transfer throughout the training
process.

As previously mentioned, knowledge distillation over hidden rep-
resentations also relates to network pruning, where the original model
acts as the teacher to provide supervision signals to the pruned student
network [25, 50]. Similarly, there are also attempts on combining
knowledge distillation with quantization, where the soft labels from the
full precision teacher model is shown to better benefit the quantized
student model in the quantization-aware training [38, 6].

2.1.4 Matrix/Tensor Decomposition

Neural network parameters often exhibit high dimensionality, yet it
is usually believed to be highly over-parameterized. Matrix/Tensor
decomposition serves as useful tools to reduce the dimensionality of
network parameters [35, 55, 36, 54]. Below we briefly review popular
approaches of matrix and tensor decomposition in network compression.

Matrix Decomposition. The matrix parameter of a network mostly
appears in linear layers. As shown in Figure 2.5(a), singular value de-
composition (SVD) for network parameter w ∈ Rci×co can be conducted
in the following way:

w = uΣv> ≈ ûΣ̂v̂>, (2.14)

24 CHAPTER 2. BACKGROUND

(a) Canonical Polyadic Decomposition.

(b) Tucker Decomposition.

Figure 2.6: Two common tensor factorization approaches: (a) Canonical
Polyadic (CP) decomposition, and (b) Tucker decomposition for tensor
parameters.

where u ∈ Rci×ci and v ∈ Rco×co are unitary matrices, and Σ ∈ Rci×co
+ is

a rectangular diagonal matrix with non-negative elements. To represent
w in a compact way, one can truncate the decomposed matrices into
û ∈ Rci×d, v̂ ∈ Rco×d and Σ̂ ∈ Rd×d

+ respectively. Usually the truncation
hyper-parameter is set manually, where a small d leads to a large error
from the original w, while a large d results in a less compact model.

Aside from SVD, another common approach is low-rank matrix
decomposition, as shown in Figure 2.5(b). By decomposing w into two
smaller matrices u ∈ Rci×d and v ∈ Rco×d, one can solve the following
problem:

min
u,v

‖w− uv>‖2
F . (2.15)

Matrix decomposition can be also applied for convolutional kernels,
where the 4-dimensional tensor w ∈ Rci×co×k×k can be reshaped as
w̄ ∈ Rco×cik2 . In such cases, the convolution operations can be done
through purely matrix multiplications by expanding the feature map
h̄ ∈ Rcik

2,nhw, which is also known as the im2col [126] operation.

Tensor Decomposition. Tensor decomposition provides more flexi-
bility in the way of network compression. Below we illustrate ten-
sor decomposition in three dimensions, and introduce two common
approaches: Canonical Polyadic (CP) decomposition [55] and Tucker

2.1. NETWORK COMPRESSION 25

Figure 2.7: An overview of NAS framework from [1]. Given the predefined
search space, the search strategy keeps sampling new architectures from the
search space. The sampled architectures are then evaluated and ranked based
on the performance estimation strategy, which provides feedback to the search
strategy to improve its next iteration.

decomposition [36]. Specifically, CP factorizes the convolutional kernel
w ∈ Rco×ci×k2 by three sub-matrices as follows:

w ≈
R∑
r=1

u(1)
r ⊗ u(2)

r ⊗ u(3)
r . (2.16)

where u1 ∈ Rco×R,u2 ∈ Rci×R and u3 ∈ Rh×R,u4 ∈ Rw×R are sub-
matrices to recover w, and ⊗ is the out product. In practice there is no
exact solution for three or higher order tensors. The workhorse algorithm
of CP is the alternating least square method, which aims at solving the
following problem:

min
u(1),u(2),u(3)

‖w−
R∑
r=1

u(1)
r ⊗ u(2)

r ⊗ u(3)
r ‖2

F . (2.17)

The above equation can be solved by fixing two variables and solve the
rest one, which can be reduced to the least square problem.

Tucker decomposition [36] is another common approach to factorize
the convolutional kernels. For same convolutional kernel w, Tucker
decomposition yields a core tensor G ∈ Rd1×d2×d3 together with three
factor matrices u(1) ∈ Rci×d1 , u(2) ∈ Rco×d2 and u(3) ∈ Rk2×d3 as follows:

w ≈ G ×1 u(1) ×2 u(2) ×3 u(3), (2.18)

where ×k is the k-mode product, i.e., multiplying a tensor along the k-th
dimension with a matrix or a vector. For a more comprehensive study
on tensor decomposition, we refer readers to [127].

Interestingly, we highlight that the decomposition of network pa-
rameters also exhibits the change of network architectures, where each
sub-matrix acts as a new layer inserted into the network. For instance,
the Tucker decomposition over the output and input channels co and

26 CHAPTER 2. BACKGROUND

(a) Normal Cell.

(b) Reduction Cell.

Figure 2.8: The illustration of cell-based NAS for convolutional neural
networks from [2].

ci leads to the architecture similar to the bottleneck layer in vision
models [128, 129, 130]. Therefore, matrix/tensor decomposition can be
viewed as an alternative to the design of efficient neural architectures.

2.2 Neural Architecture Search

As an orthogonal approach to network compression, neural architecture
search (NAS) aims to automatically search for efficient structures, which
has been extensively studied in recent years [3, 61, 131, 132, 57, 59, 133].
NAS can be generally categorized into three components: search space,
search strategy, and performance estimation. Given the three aspects,
NAS follows the search strategy to automatically explore architectures
within a predefined search space, and find the best architecture based
on the performance estimation method. An overview of NAS is given
in Figure 2.7. Below we introduce each of the three NAS ingredients in
detail.

2.2.1 Search Space

The search space of the NAS algorithm is usually predefined manually
prior to the searching. Usually, there are three kinds of search space in

2.2. NEURAL ARCHITECTURE SEARCH 27

NAS: cell-based search, width and/or depth search, or compression-based
search.

Cell-based Search. Cell-based search space is widely used in NAS
algorithm such as NAS [3], ENAS [61] and DARTS [2]. A cell is
typically composed of several nodes, which is the minimal granularity
in the searching algorithm. The searched network architecture can thus
be obtained by stacking multiple searched cells, which is also known
as micro NAS. As an illustrative example in Figure 2.8, we show the
searched normal cell and reduction cell of the convolutional neural
network from [2]. Figure 2.8 follows the conventional design of cell-based
search space: there are usually 7 nodes in a cell, where the first two
nodes are the output of previous cells, and the last node is the output
of the current cell. For the four nodes in the middle, each shall connect
to the other two sampled nodes. Each connection samples from the
following operations: a. identity, b. zero, c. 3× 3 and d. 5× 5 separable
convolutions, e. 3×3 and f. 5×5 dilated separable convolutions, g. 3×3
max pooling, and h. 3×3 average pooling. By default, all operations are
of stride one so as to keep the spatial resolution of feature maps, except
for the reduction cells located at the 1/3 and 2/3 of the total depth of
the network.

Aside from cell-based micro NAS that repeats the searched cell to
build the network, one can search for different cells individually for the
network, a.k.a macro NAS. While macro NAS enlarges the search space
that allows the network design to be more flexible, it may thus lead to
sub-optimal architecture solutions in practice [70].

Width and Depth Search. The width and depth of a deep neural
network are also crucial for its performance. To learn the width of
neural networks, MetaPrune [62] first trains a meta-network that contains
all width configurations and then uses evolutionary search to find the
best performing off-spring. AutoSlim [63], on the other hand, trains a
slimmable network that is adaptive to different channel numbers, and
then adopts greedy search to sequentially reduce the network width.
Similar slimmable networks are also explored on pre-trained language
models [134, 135, 136, 41]. There are also efforts that jointly consider
the cell-based search space with network width, such as FBNetV2 [64].
Aside from network width, network depth (i.e., number of layers) [58] is
another important dimension to improve. For instance, TAS [58] follows

28 CHAPTER 2. BACKGROUND

DARTS [131] that imposes learnable parameters to configure the depth
and width of the network through end-to-end training.

Compression-based Search. Recent efforts in NAS further considers
the elements in network compression as the search space. These strands
of research aim to automatically discover the best network compression
strategy for the efficient neural architecture model. The search space
can be, for instance, different bit-width for network quantizaiton [66,
68, 67], or different sparsity for network pruning [65, 66]. Based on the
assumption that different layers exhibit various sensitivity to compression
strategies, these efforts are shown to outperform conventional network
compression methods.

2.2.2 Search Strategy

Common NAS search strategies can be categorized into differentiable
methods [2, 59, 71, 137], reinforcement learning [3, 61, 57], and evolu-
tionary algorithms [72, 73, 62, 138].

Differentiable Methods. Differentiable neural architecture search (DARTS)
is originally proposed in [2], and is followed by a number of works such
as ProxylessNAS [59], SNAS [71] and DSNAS [137]. We present the
illustration of DARTS in Figure 2.9.

Specifically, given the network parameters w and the associated
architecture parameters θ, the architecture output ō is represented by
the weighted sum of different operations/branches o as

ōi = exp(θi)∑
j exp(θj)

oi(x), (2.19)

where x is the network input. After the searching, the best architecture i
is selected by the element with largest magnitude, i.e., θ∗i = arg max(θ).
Ideally, the differentiable methods usually can be formulated as the
following bi-level optimization problem [139]:

min
θ
Lval(w∗(θ), θ), (2.20)

s.t. w∗(θ) = arg min
w
Ltrain(w, θ),

where Ltrain and Lval are the loss functions such as the cross-entropy
during training and evaluation. The lower level finds the best network
parameters w∗(θ) corresponding to the associated architecture θ, while

2.2. NEURAL ARCHITECTURE SEARCH 29

Figure 2.9: The overview of differentiable neural architecture search (DARTS)
from [2]. (a) shows the initialized network with unknown operations; (b)
shows the continuously relaxed architecture parameters for different connec-
tions among cell nodes; (c) illustrates the searching process with preferred
operations being thicker; In (d) the operations with the highest probability
for each connection are picked to finalize the architecture.

the upper level seeks to optimize over θ given the optimal parameter w.
In practice, however, it is intractable to solve Equation (2.20) due to the
exhaustive time consumption in the lower level optimization. Instead,
another solution is to optimize w and θ alternatively. Despite it may not
lead to optimal solutions, empirical results show the effectiveness of such
alternative optimization. More details can be found in [2].

Differentiable search-based NAS is usually simple and efficient and
can be readily implemented. However, such approaches also suffer from
local minima that requires early stopping techniques [137]. Meanwhile,
as the architecture parameters α are coupled with network parameters,
it is also not well understood how the scaling issues in the network affect
the choice of operations. Given its advantage and drawbacks above,
differentiable methods are still actively studied in the NAS community.

Reinforcement Learning. RL is initially applied for NAS in [3],
and is further full-filled by plenty of works such as ENAS [61] and
MNASNet [57]. The reinforcement learning acts as an hyper-parameter
controller π(θ) parameterized by θ for architecture selection. The
current network structure thus can be encoded into the states, while
the controller output architectures a ∼ π(θ) as actions. A majority of
RL-based methods such as NAS [3] and ENAS [61] follow the policy
gradient method [74], and a recurrent neural network is used for the
policy network. For instance, as illustrated in Figure 2.10, the recurrent
network sequentially output layer-wise network operations in different

30 CHAPTER 2. BACKGROUND

Figure 2.10: Recurrent neural network for the RL controller to search
convolutional neural networks [3] .

time steps. A key of RL-based algorithms is the design of the reward
function. A simple reward function is the evaluation accuracy on the
validation set [3, 61]. Recent works further incorporate the efficiency
of neural architectures, by introducing penalty on the model size in the
reward function. For instance, the reward in [57] is designed as:

R = Acc(a)× [B(a)
B

]γ, where γ =
 α if B(a) < B

β otherwise
, (2.21)

where B
(
a
)
is the network budget function (e.g. FLOPs) and B is the

budget constraint, and α, β are application-specific constants.

In a similar spirit to the bi-level optimization in Equation (2.20),
the RL-based NAS seeks to maximize the expectation of reward function
R
(
a,w∗(a)

)
based on the associated optimal parameter w∗(a) as follows:

max
θ
J(θ) = Ea∼πθR(a)

(
a,w∗(a)

)
, (2.22)

s.t. w∗(a) = arg min
w(a)
L
(
a,w(a)

)
and B

(
a
)
≤ B,

where the REINFORCE algorithm [140] can be applied to calculate the
gradient.

Evolutionary Methods. Evolutionary search offers population-based
paradigms to solve the challenging optimization in NAS. An overview of
the evolutionary process for NAS is presented in Figure 2.11 Specifically,
each network architecture is encoded into an individual in the population,
which can be represented by binary strings according to pre-set mapping
rules. In the initial space, a set of population is initialized manually
from the architectures in the predefined search space. The population
is then fed to the fitness evaluation module, which uses the evaluation

2.2. NEURAL ARCHITECTURE SEARCH 31

Figure 2.11: The framework of evolutionary NAS from [4].

accuracy or model size to judge the goodness of architectures. In the
search space, the algorithm repeatedly goes through the following steps:
1) select the promising generations; 2) apply evolutionary operations to
population encodings to generate new candidates; 3) evaluate the fitness
of new candidates; 4) pick out the good offspring as the next generation;
5) determine if the stopping criteria is met (i.e., reaching the maximum
iteration). The algorithm will return the final searched architecture given
the stopping signal, otherwise, it goes back to step 1).

Genetic algorithms (GA) [75] is most widely used for evolutionary
NAS on image classification [72, 141, 142, 143, 62] and language model-
ing [144, 138, 73, 145]. Other common strategies for evolutionary NAS
include Genetic Programming (GP) [76], Particle Swarm Optimization
(PSO) [146], and Ant Colony Optimization (ACO) [77]. A complete
survey on evolutionary methods for NAS can be found in [4].

2.2.3 Performance Estimation

Performance estimation is crucial for NAS algorithms for different
searching strategies. However, it is always a trade-off for performance
estimation between efficiency and accuracy. As previously mentioned in
Equation (2.20), it is computationally intractable to train each network
architecture to convergence before evaluating its performance, especially
on large-scale problems such as ImageNet [7]. To mitigate the issue, we
introduce several solutions below and point out the potential challenges
that motivate our research on NAS in the thesis.

Performance Prediction. Instead of evaluating each individual net-
work architecture, one can directly predict the network performance

32 CHAPTER 2. BACKGROUND

Figure 2.12: An illustration of parameter sharing from [5]. The four choices
of widths are ordinally overlapped along channel indices.

given the historical records from other architectures. [147, 148, 149,
150, 59, 60]. Given the observed performance from existing candidates,
one can extrapolate the learning curves [147, 151, 149] of network
architectures. Another way is to train a separate predictor that
takes the architecture encodings as the input and directly outputs the
performance [150, 60]. The training data of the predictor lie in the format
of [architecture, accuracy] pairs, which is scarce in nature. Therefore, the
predictor model is usually designed to be light-weighted so as to be more
sample efficient, such as LSTMs or fully connected MLPs used in [150].

Network Morphisms. Network morphisms aim to inherit the weights
from previously trained network architectures, so as to avoid the time-
consuming re-training of new candidate models [152, 72, 153, 154, 155,
156]. A key point in network morphisms is the equivalent architecture
modification. Given the same input, the network exhibits exactly the
same output before and after modification, such that the knowledge
inside the previous network can be inherited in the new architecture.
Net2Net[152] is one of the early attempts for network morphisms, which
is able to adjust the width or depth of networks with function-preserving
transformations. There are also recent efforts that target at steepest
descent with architecture splitting [157, 158, 159], which are found to
achieve lower minima on the new loss landscape of split architectures.
As the side-effect of network morphisms, the network can only grow
large to satisfy the strict knowledge inheritance from previous models.
Consequently, the NAS algorithm may have less flexibility to look back
and refine smaller network architectures.

Parameter Sharing. Finally, we introduce parameter sharing, the most
popular solution for efficient performance estimation. Parameter sharing
is built for one-shot neural architecture search [78, 132, 160, 63, 64],
which first trains a supernet that include all network candidates as

2.2. NEURAL ARCHITECTURE SEARCH 33

its sub-paths. The sub-network parameters can be shared in the level
of convolutional kernels, channels, or even layers from the supernet.
As an illustrative example, Figure 2.12 shows four different choices of
network widths overlapped ordinally along channel indices. After the
training of supernet, one can directly evaluate different sub-networks
from the supernet, which greatly improves the efficiency of performance
estimation, e.g., only a few GPU days in [2, 71, 59]

Challenge and Our Focus. Despite the improved efficiency of NAS al-
gorithms, one-shot NAS with parameter sharing suffers underestimation
of network performance. Intuitively, as different networks are coupled
inside the supernet, their training can mutually influence each other,
which makes their performance highly correlated. Aside from intuition,
there is little rigorous study so far that analyzes the potential benefits
and drawbacks of parameter sharing. In Chapter 6, we shall investigate
the mechanism behind parameter sharing for a better understanding of
one-shot NAS algorithms.

2 End of chapter.

Chapter 3

Few-shot Network Pruning
via Cross Distillation

In this chapter, we study few-shot network pruning, a new yet practical
setting of compressing deep neural networks. Most existing prevalent
pruning pipeline requires fine-tuning with sufficient training data to
reboot the accuracy of compressed models. However, access to the
training data may bring privacy and security issues. As a compromise
between privacy and performance, we investigate the following problem:
given few samples per class, how can we effectively prune a network
with negligible performance drop? We find the core challenge of few-
shot network pruning lies in high estimation errors from the original
network during inference, since the compressed network can easily over-
fit on the few training instances. The estimation errors could accumulate
and propagate layer-wisely, and finally deteriorate the network output.
To address the problem, we propose cross distillation, a novel layer-wise
knowledge distillation approach. By interweaving hidden layers of the
teacher and student network, layer-wisely accumulated estimation errors
can be effectively reduced. Extensive experiments on benchmark datasets
demonstrate that cross distillation can significantly improve the pruned
network’s accuracy when only a few training instances are available.

3.1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in
a wide range of applications, however, they suffer from substantial
computation and energy costs. In order to obtain light-weighted
DNNs, network pruning techniques have been widely developed in recent

34

3.1. INTRODUCTION 35

years [35, 25, 26, 161, 27].

Despite the success of previous efforts, a majority of them rely on
the whole training data to reboot the compressed models, which could
suffer from security and privacy issues. For instance, to provide a general
service of network pruning, the reliance on the training data may result
in data leakage for customers.

To take care of security issues in network pruning, some recent
works [91, 162, 90] motivate from knowledge distillation [34, 33], and
propose data-free fine-tuning by constructing pseudo inputs from the
pre-trained teacher network. However, these methods highly rely on
the quality of the pseudo inputs and are therefore limited to small-scale
problems.

In order to obtain more scalable pruning algorithms given the
security concern, a compromise between privacy and performance is to
compress the network with few-shot training instances, e.g., 1-shot for
one training instances per class. Prevalent works [50, 163] along this line
extend knowledge distillation by minimizing layer-wise estimation errors
(e.g., Euclidean distances) between the teacher and student network. The
success of these approaches largely comes from the layer-wise supervision
from the teacher network. Nevertheless, a key challenge in few-shot
network pruning is rarely investigated in previous efforts: as there are
few-shot training samples available, the student network tend to over-fit
on the training set and consequently suffer from high estimation errors
from the teacher network during inference. Moreover, the estimation
errors could propagate and accumulate layer-wisely [43] and finally
deteriorate the student network.

To deal with the above challenge, we proceed along with few-
shot network pruning and propose cross distillation, a novel layer-wise
knowledge distillation approach. Cross distillation can effectively reduce
the layer-wisely accumulated errors in the few-shot setting, leading to
a more powerful and generalizable student network. Specifically, to
correct the errors accumulated in previous layers of the student network,
we direct the teacher’s hidden layers to the student network, which
is called correction. Meanwhile, to make the teacher aware of the
errors accumulated on the student network, we reverse the strategy
by directing the student’s hidden layers to the teacher network. With
error-aware supervision from the teacher, the student can better mimic
the teacher’s behavior, which is called imitation. The correction and

36 CHAPTER 3. FEW-SHOT NETWORK PRUNING

imitation compensate each other, and to find a proper trade-off, we
propose to take convex combinations between either loss functions of
the two procedures, or hidden layers of the two networks. To better
understand the proposed method, we also give some theoretical analysis
on how convex combination of the two loss functions manipulates the
layer-wisely propagated errors, and why cross distillation is capable of
improving the student network.

Extensive experiments and ablation studies are conducted on pop-
ular network architectures and benchmark datasets, and the results
demonstrate that our proposed method can effectively reduce the
estimation errors and improve the pruned model in the few-shot setting,
outperforming a number of competitive baselines.

3.2 Methodology

Problem Setup. Given few-shot training instances {xn,yn}Nn=1 with
N samples in total, we aim at pruning a well-trained network with
its performance maximally preserved. Towards that end, common
approaches for few-shot network pruning follow layer-wise knowledge
distillation. Unlike the standard knowledge distillation [34], such an
approach receives layer-wise supervision from the teacher, and is shown to
be more sample-efficient both empirically [25, 26] and theoretically [120].

Specifically, based on the notation in Section 2, we denote the teacher
network (i.e. the original model) as FT and the student network (i.e., the
pruned model) as FS, respectively. The corresponding l-th convolutional
feature map of are denoted as hTl and hSl for the teacher network and
student network respectively. Batch normalization layers are omitted as
they can be readily fused into convolutional. In the following, we drop
the layer index l for clean notation. As is shown in Figure 3.1(a), with
previous layers being fixed, layer-wise distillation aims to find the optimal
wS
∗ that minimizes the Euclidean distance between hT and hS, i.e.,

wS
∗ = arg min

wS

1
N
‖wT ∗ hT −wS ∗ hS‖2

F + λR(wS), (3.1)

where for simplicity we denote Le(wS) = ‖wT ∗ hT − wS ∗ hS‖2
F

as the estimation error, R(wS) is the regularization introduced in
Section 2.1.1, and λ tunes the regularization strength. Despite one
can obtain a compact network with Equation (3.1), it is hardly noticed
that the student network FS tends to suffer from high estimation errors

3.2. METHODOLOGY 37

(a) Layer-wise Distillation. (b) Correction.

(c) Imitation. (d) Soft Cross Distillation.

Figure 3.1: The four categories of layerwise distillation. a) is the traditional
pattern; b) guides the teacher to student in order to compensate estimation
errors on the student; c) guides the student to the teacher to make it aware
of the errors on the student; d) offers a soft connection to balance b) and c) .

during testing, since it can be easily over-fitted to the few-shot training
instances. Moreover, the estimation error shall propagate and enlarge
layer-wisely [43], and finally lead to a large performance drop on FS.

3.2.1 Cross Distillation: Formulation

To address the above issue, we propose cross distillation, a novel
layer-wise distillation method for few-shot network pruning. Since the
estimation errors are accumulated on the student network FS and hT

are taken as the target during layer-wise distillation, we direct hT to FS

in substitution of hS to reduce the historically accumulated errors, as
is shown in Figure 3.1(b). We thus minimize the mean square error of
convolutional outputs, which is defined as correction loss:

Lc(wS) = ‖wT ∗ hT −wS ∗ hT‖2
F . (3.2)

38 CHAPTER 3. FEW-SHOT NETWORK PRUNING

In the forward pass of FS, however, directing hT to FS results in
inconsistency εS = ‖wS ∗ hT − wS ∗ hS‖2

F because FS takes hT

from FT in the training while it is expected to behave along during
inference. Therefore, minimizing the regularized Lc could lead to a
biasedly optimized student net.

In order to maintain the consistency during forward pass for FS

and simultaneously make the teacher aware of the accumulated errors
on the student net, we can inverse the strategy by guiding hS to FT ,
as is shown in Figure 3.1(c). We call this process as imitation, since
the student network tries to mimic the behavior of the teacher network
given its current estimations. Similarly we minimize the mean square
error between the corresponding convolutional outputs, defined as the
imitation loss:

Li(wS) = ‖wT ∗ hS −wS ∗ hS‖2
F . (3.3)

Despite the teacher network now can provide error-aware supervised
signal, such connection brings inconsistency on the teacher network, i.e.,
εT = ‖wT ∗ hS − wT ∗ hT‖2

F . As a result of εT , the errors in hS is
be enlarged by wT during layer-wise propagation, leading to deviated
supervision for FS that deteriorates the distillation.

Consequently, the correction loss Lc and the imitation loss Li

compensate each other. We thus introduce convex combination for the
two terms tuned by µ as follows:

L̃ = µLc + (1− µ)Li, µ ∈ [0, 1]. (3.4)

Substituting Le in Equation (3.1) with L̃ yields the objective function
for cross distillation.

3.2.2 Theoretical Analysis

The inconsistency gaps εT and εS of cross distillation make it still unclear
how the proposed method manipulates the propagation of estimation
errors, and why minimizing the regularized L̃ is in the right direction to
improve the student net FS. To theoretically justify cross distillation,
we follow [164] to substitute Le with L̃, and equivalently reformulate the
unconstrained problem in Equation (3.1) to the constrained optimization
problem as

min
wS∈C

L̃, C = {wS | R(wS) ≤ ε(λ)}, (3.5)

3.2. METHODOLOGY 39

where C is a compact set determined by the regularization R(wS) and
λ. With Equation (3.5), we can now bound the gap of cross entropy
between FT and FS for classification1 with the following theorem.

Theorem 3.2.1. Suppose both FT and FS are L-layer convolutional
neural networks followed by the un-pruned softmax fully-connected layer.
If the activation functions σ(·) are Lipchitz-continuous such as ReLU(),
the gap of softmax cross entropy Lce between the network logits oT =
FT (x) and oS = FS(x) can be bounded by

|Lce(oT ; y)− Lce(oS; y)| ≤ CL̃L +
L−1∑
l=1

L∏
k=l

C
′

k(µ)L̃l, (3.6)

where C and C ′(µ) are constants and C ′(µ) is linear in µ.

Theorem 3.2.1 shows that 1) the gap of cross entropy between the
student network FS and teacher network FT is upper bounded by L̃,
and therefore layer-wise minimization of the constrained optimization
problem in Equation (3.5) could decrease the gap of cross entropy and
finally improve FS. 2) The tightness of the upper bound is controlled
by the trade-off hyper-parameter µ, which is a L-th order polynomial. A
proper choice of µ may lead to a tighter bound that could better decrease
the cross entropy gap.

We provide a proof sketch to Theorem 3.2.1 in two parts. We first
show the Lipchitz continuity for the softmax cross entropy function in
Lemma 1, then we show the layer-wise propagation of estimation errors
in a recursive way in Lemma 2. Theorem 3.2.1 can be easily verified by
combining Lemma 1 and Lemma 2.

Lemma 1. For the network logits o = F(x) ∈ Rd and labels y ∈ Rd, the
softmax cross entropy Lce(o; y) = −∑d

i=1 yi log exp(oi)∑d

j=1 exp(oj)
is C-Lipchitz

continuous for some constant C > 0.

Proof. Note that

Lce(o; y) = −
d∑
i=1

yioi + log
d∑
j=1

exp(oj), (3.7)

where we have used the fact ∑d
i=1 yi = 1 since y is a one-hot vector. The

first term is linear in o and therefore satisfies the Lipchitz continuity.
We now turn to verify the Lipchitz continuity of the function φ(o) =

1For regression problems, a similar theorem can be established as well.

40 CHAPTER 3. FEW-SHOT NETWORK PRUNING

log∑d
i=1 exp(oi). According to the intermediate value theorem, for

∀oS,oT ∈ Rd, ∃t ∈ [0, 1] such that for ō = toT + (1− t)oS, we have

|φ(oT)− φ(oS)| = |∇φ(ō)>(oT − oS)| ≤ ‖∇φ(ō)‖1‖oT − oS‖∞
= ‖oT − oS‖∞ ≤ C0‖oT − oS‖, (3.8)

where the third line comes from the Holder’s inequality, the fourth
line comes from the fact that ∇φ(ō) is a softmax function lying on a
simplex, and the last line is due to the equivalence among norms. With
Equation (3.8), one can easily verify that

|Lce(oT ; y)− Lce(oS; y)| = |
d∑
i=1

yi(oTi − oSi) + φ(oT)− φ(oS)|

≤ ‖y‖‖oT − oS‖+ |φ(oT)− φ(oS)| ≤ (C0 + 1)‖oT − oS‖
= (C0 + 1)‖WhTL −WhSL‖
≤ C‖hTL − hSL‖ (3.9)

where we have used facts that ‖y‖ = 1, oT = WhTL, oS = WhSL with W
as shared parameters of the last layer, and C = (C0 + 1) · ‖W‖.

Lemma 2. Suppose both FT and FS are activated by the Lipchitz-
continuous function σ(·) = ReLU(·), the estimation error LrL at layer
L can be bounded by the layerwise objective function L̃l as follows:

LrL ≤
L−1∑
l=1

L∏
k=l

Ck(µ)L̃l + L̃L, (3.10)

where Ck(µ) is some constant linear in µ in the k-th layer.

Proof. Recall that hTL = σ(WT
L ∗ hTL−1). To facilitate the following

analysis, we apply the im2col operation to equivalently transform the
convolution to matrix multiplication, i.e. h̄TL = σ(W̄T

Lh̄TL−1), where
h̄TL ∈ Rco×(Ncikk) and W̄T

L ∈ Rco×(cikk) are matrices. Then

LrL = ‖hTL − hSL‖ = ‖h̄TL − h̄SL‖
= ‖σ(W̄T

Lh̄TL−1)− σ(W̄S
Lh̄SL−1)‖ ≤ ‖W̄T

Lh̄TL−1 − W̄S
Lh̄SL−1‖

= ‖W̄T
Lh̄TL−1 − W̄Sh̄TL−1 + W̄Sh̄TL−1 − W̄S

Lh̄SL−1‖
≤ LcL−1 + εSL−1 ≤ LcL−1 + ‖W̄S

L‖ · LrL−1, (3.11)

where the first inequality comes from the Lipchitz continuity of the
ReLU(·) function, and the rest can be readily obtained by applying the

3.2. METHODOLOGY 41

triangle inequality. Similarly, we have

LrL ≤ LiL−1 + ‖W̄T
L‖ · LrL−1 (3.12)

By taking the convex combination of Equation (3.11) and Equation (3.12)
for some µ ∈ [0, 1], we have

LrL ≤ µ(LiL−1 + ‖W̄S
L‖ · LrL−1) + (1− µ)(LiL−1 + ‖W̄T

L‖ · LrL−1)

≤ L̃L + CL(µ)LrL−1 ≤ L̃L +
L−1∑
l=1

L∏
k=l

Ck(µ)L̃l, (3.13)

where we define Ck(µ) = µ‖W̄S
k‖ + (1 − µ)‖W̄T

k ‖, and the last line is
obtained recursively with Lr0 = ‖x− x‖ = 0 at the network input of FT

and FS.

Finally, by combining Equation (3.9) with Equation (3.13) together
and define C ′(k) = C · C(k), Equation (3.6) in Theorem 3.2.1 can be
readily verified.

3.2.3 Soft Cross Distillation

Although the minimization of L̃ is theoretically verified, the computation
of L̃ involves two loss terms with four convolutions to compute per batch
of data, which doubles the training time. Here we propose another variant
to balance Lc and Li by empirically soften the hard connection of hS and
hT , as is shown in Figure 3.1(d). We define feature maps ĥT and ĥS after
cross connection as the convex combination of hT and hS, i.e.,ĥT

ĥS

 =
 α 1− α

1− β β

 hT

hS

 , (3.14)

where α, β ∈ [0, 1] are the hyper-parameters that adjust the percentage of
cross connection. When α = 1 and β = 1, this reduces to the estimation
error in Equation (3.1). Similarly, correction and imitation correspond
to (α, β) = (1, 0) and (α, β) = (0, 1) respectively. Meanwhile, α and
β control the magnitude of inconsistencies εT and εS, allowing more
flexibility for the cross connection.

Based on the assumption that ‖hT‖ ≈ ‖hS‖, the convex combination
ensures the norm of input to be nearly identical after cross connection,
and thus prevent magnitude propagation across layers. We define the

42 CHAPTER 3. FEW-SHOT NETWORK PRUNING

loss of soft cross distillation as

L̂(wS) = ‖σ(wT ∗ ĥT)− σ(wS ∗ ĥS)‖2
F , (3.15)

which can substitute the estimation error Le in Equation (3.1) as an
alternative way for cross distillation.

3.2.4 Pruning via Proximal Operator

Given the formulation of cross distillation, we apply the proximal
operator [165] to conduct network pruning. As previously introduced in
Section 2.1.1, we choose R = ‖wS‖1 = ∑

i,j,h,w |W S
ijhw| for unstructured

pruning, and R(wS) = ‖wS‖2,1 = ∑
i ‖wS

i ‖2, where wS
i ∈ Rco×k×k for

structured pruning (channel pruning) in Equation (3.1). Recall that the
proximal gradient descent [165] iteratively update wS by:

wS
t+1 = ProxλR(wS

t − η∇L̃(wS
t)), (3.16)

where ProxλR(u) = arg minx 1
2‖x− u‖

2
F +R(x) is the proximal operator

for R, tuned by λ. When R is chosen as ‖ · ‖1, the proximal operator
can be expressed as the soft-threshold determined by λ, i.e.,

Proxλ‖·‖1(WS
ijhw) =


WS
ijhw − λ WS

ijhw > λ

0 |WS
ijhw| ≤ λ

WS
ijhw + λ WS

ijhw < −λ
. (3.17)

For structured pruning, since R = ‖wS‖2,1 is separable w.r.t. wS
i , the

proximal operator for Proxλ‖·‖2,1(wS
i) can be computed as

Proxλ‖·‖2(wS
i) = max(1− λ

‖wS
i ‖2

, 0) ·wS
i , (3.18)

and the solution to Equation (3.16) can be obtained group-wisely from
Equation (3.18).

As suggested by previous works [39, 25], we linearly increase λ to
smoothly prune the student network, which empirically gives better
results. Given the maximum number of training steps T and the target
sparsity ratio r assigned by users, we update λ by λt = r+ (1− r) ∗ t/T .
An overall workflow of our proposed method is given in Algorithm 1.

3.3. EXPERIMENTS 43

Algorithm 1 Cross distillation for few-shot network pruning
Input:

The pre-trained teacher model FT
Training samples {xn,yn}Nn=1
Target sparsity ratio r

Output:
The compact student model FS

1: for l = 1, ...L do
2: for t = 1, ...T do
3: Forward pass {xn}Nn=1 to obtain hTl−1 and hSl−1
4: Calculate the loss in Equation (3.4) or (3.15)
5: Update wS

t with SGD/Adam optimizer
6: Obtain wS

t+1 with ProxλR in Equation (3.17) or (3.18)
7: Increase the pruning threshold λt linearly
8: end for
9: end for

3.3 Experiments

We conduct a series of experiments to verify the effectiveness of cross
distillation for few-shot network compression. We take both channel
pruning (i.e., structured pruning) and unstructured pruning for demon-
stration, both of which are popular approaches to reduce computational
FLOPs and sizes of neural networks. To better understand the proposed
method, we also provide further analysis on how cross distillation help
reduces the estimation error against varying size of the training set. Our
implementation in PyTorch is available at https://github.com/haolibai/
Cross-Distillation.git.

3.3.1 Setup

Throughout the experiment, we use VGG [9] and ResNet [128] as base
networks, and evaluations are performed on CIFAR-10 and ImageNet
ILSVRC-12. As we consider the setting of few-shot image classification,
we randomly select K-shot instances per class from the training set. All
experiments are averaged over five runs with different random seeds, and
results of means and standard deviations are reported 2.

Baselines and Implementations. For structured pruning, we compare
our proposed methods against: 1) L1-norm pruning [81], a data-free
approach; 2) Back-propagation (BP) based fine-tuning on L1-norm

2Note that for each run, we remove all the randomness such as data augmentation and
data shuffling, and therefore the results are generally reproducible with the random seed
fixed.

https://github.com/haolibai/Cross-Distillation.git
https://github.com/haolibai/Cross-Distillation.git

44 CHAPTER 3. FEW-SHOT NETWORK PRUNING

pruned models; 3) FitNet [33] and 4) FSKD [50], both of which
are knowledge distillation methods; 5) ThiNet [26] and 6) Channel
Pruning (CP) [25], both of which are layer-wise regression based channel
pruning methods. We adopt the implementation3 from [166] for 1)
L1-Norm. Based on the pruned models by 1), we perform fine-tuning
with back-propagation by minimizing the cross entropy or the FitNet
loss, denoted as 2) BP and 3) FitNet respectively. For 4) ThiNet, our
implementation is based on the published code4. For 5) CP, we re-
implement the paper based on its TensorFlow version5 and reproduce
the results in Table 1 of the paper. For both ThiNet and CP, we use
all feature map patches for regression instead of sampling a subset of
them, the latter of which lead to a significant drop of accuracy when
only limited training instances are available. For unstructured pruning,
we modify 1) to element-wise L1-norm based pruning [39]. Besides, 4)
FSKD, 5) ThiNet and 6) CP are removed since they are only applicable
in channel pruning.

For our proposed method, we compare to three variants for ablation
study: pruning without cross distillation by solving Equation 3.1 (abbr.
w/o CD), cross distillation by solving Equation 3.4 (abbr. CD) and soft
cross distillation by solving Equation 3.15 (abbr. SCD). For CD, we
choose µ = 0.6 for VGG networks and µ = 0.9 for ResNets. For SCD,
we set (α, β) = (0.9, 0.3) on VGG networks and (0.9, 0.5) on ResNets.
Sensitivity analysis on these hyper-parameters are presented later.

We follow the standard way [9, 128] in pre-training the model
on CIFAR-10, and adopt the checkpoint from the official release of
torchvision6 for ILSVRC-12. Similar to [50], we do not adopt data
augmentation so as to better simulate the few-shot setting. During the
pruning, we adopt the ADAM optimizer for all these methods, and adjust
the learning rate within [1e-5, 1e-3] to obtain proper performance. Each
layer is optimized for 3,000 iterations, where the sparsity ratio linearly
increases within the first 1,000 iterations. After layer-wise training,
we further fine-tune the network for a few more epochs with back-
propagation.

3https://github.com/Eric-mingjie/rethinking-network-pruning/tree/master/imagenet/l1-
norm-pruning

4https://github.com/Roll920/ThiNet
5https://github.com/Tencent/PocketFlow
6https://pytorch.org/docs/stable/torchvision/models.html

3.3. EXPERIMENTS 45

Table 3.1: Structured pruning schemes of VGG-16 on CIFAR-10 and ResNet-
34 on ILSVRC-12.

VGG-16 ResNet-34

Schemes Params
(M)

P. (%)
↓

FLOPs
(G)

F. (%)
↓ Schemes Params

(M)
P. (%)
↓

FLOPs
(G)

F. (%)
↓

Orig. 14.99 - 0.314 - Orig. 21.80 - 3.68 -
VGG-50% 4.53 69.78 0.082 73.95 Res-30% 19.71 9.59 2.97 19.15
VGG-A 6.11 59.26 0.208 33.76 Res-50% 18.33 15.91 2.51 31.47
VGG-B 4.37 70.83 0.137 56.37 Res-70% 16.92 22.37 2.05 44.26
VGG-C 2.92 80.55 0.061 80.45 Res-70%+ 12.79 41.32 1.85 49.78

Table 3.2: The top-1 testing accuracy (%) of structured pruning with VGG-16
on CIFAR-10 with different training sizes. We use VGG-50% as the pruning
scheme, and the original accuracy of the original model is 93.51%.

Methods 1 2 3 5 10 50

L1-norm 14.36±0.00 14.36±0.00 14.36±0.00 14.36±0.00 14.36±0.00 14.36±0.00
BP 49.24±1.76 49.32±1.88 51.39±1.53 55.73±1.19 57.48±0.91 64.69±0.43

FSKD 47.91±1.82 55.44±1.71 61.76±1.39 65.69±1.08 72.20±0.74 75.46±0.49
FitNet 48.51±2.51 71.51±2.03 76.22±1.95 81.10±1.13 85.40±1.02 88.46±0.76
ThiNet 58.06±1.71 72.07±1.68 75.37±1.59 78.03±1.24 81.15±0.85 86.12±0.45
CP 66.03±1.56 75.23±1.49 77.98±1.47 81.53±1.29 83.59±0.78 87.27±0.27

w/o CD 65.57±1.61 75.44±1.69 78.40±1.53 81.20±1.13 84.07±0.83 87.67±0.29
CD 69.25±1.39 80.65±1.47 82.08±1.41 84.91±0.98 86.61±0.71 87.64±0.24
SCD 68.53±1.59 76.83±1.43 80.16±1.32 84.28±1.19 86.30±0.79 88.65±0.33

Pruning Schemes. The structured pruning schemes are similar to those
used in [81, 50]. For the VGG-16 network, we denote the three pruning
schemes in [50] in the ascending order of sparsity as VGG-A, VGG-B and
VGG-C respectively. We further prune 50% channels layer-wisely and
denote the resulting scheme as VGG-50%. For ResNet-34, we remove
r% channels in the middle layer of the first three residual blocks with
some sensitive layers skipped (e.g., layer 2, 8, 14, 16). The last residual
block is kept untouched. The resulting structured pruning schemes are
denoted as Res-r%. Besides, we further remove 50% channels for the
last block to reduce more FLOPs when r = 70%, denoted as Res-70%+.
The reduction of model sizes and computational FLOPs for structured
pruned models are shown in Table 3.1.

In terms of unstructured pruning, we follow a similar pattern in [39]
by removing r = {50%, 70%, 90%, 95%} parameters for both the VGG
network and ResNet, and each layer is treated equally.

3.3.2 Results

Structured Pruning. We evaluate structured pruning with VGG-16
on CIFAR-10 and ResNet-34 on ILSVRC-12. Table 3.2 and 3.3 shows
the results with different number of training instances when the pruning

46 CHAPTER 3. FEW-SHOT NETWORK PRUNING

Table 3.3: The top-5 testing accuracy (%) of structured pruning with ResNet-
34 on ILSVRC-12 with different training sizes. The first three columns use
50, 100 and 500 randomly sampled training instances, while the last three
columns use K = 1, 2, 3 samples per class. We use Res-50% as the pruning
scheme, and the top-1 and top-5 accuracies of the original model are 73.32%
and 91.40%.

Methods 50 100 500 1 2 3

L1-norm 72.94±0.00 72.94±0.00 72.94±0.00 72.94±0.00 72.94±0.00 72.94±0.00
BP 83.18±1.86 84.32±1.29 85.34±0.89 85.76±0.73 86.05±0.51 86.29±0.56

FSKD 82.53±1.52 84.58±1.13 86.67±0.78 87.08±0.76 87.23±0.52 87.20±0.43
FitNet 86.86±1.81 87.12±1.63 87.73±0.96 87.66±0.84 88.61±0.76 89.32±0.78
ThiNet 85.67±1.57 85.54±1.39 86.97±0.89 87.42±0.76 87.52±0.68 87.53±0.50
CP 86.34±1.24 86.38±1.37 87.41±0.80 88.03±0.66 87.98±0.49 88.21±0.37

w/o CD 86.51±1.71 86.61±1.20 87.92±0.75 87.98±0.60 88.63±0.49 88.82±0.38
CD 86.95±1.59 87.60±1.13 88.34±0.69 88.17±0.73 88.57±0.40 88.59±0.41
SCD 87.42±1.69 87.73±1.17 88.60±0.82 88.40±0.61 88.84±0.48 88.87±0.35

schemes are fixed. It can be observed that both CD and SCD generally
outperform the rest baselines on both networks, whereas CD enjoys
a larger advantage on VGG-16 while SCD is superior on ResNet-34.
Meanwhile, as the training size decreases, cross distillation brings more
advantages comparing to the rest baselines, indicating that the layer-
wise regression can benefit more from cross distillation when the student
network over-fits more seriously on fewer training samples.

Next we fix the training size and change the pruning schemes. We
keep K = 5 on CIFAR-10 and K = 1 on ILSVRC-12, and the results are
listed in Table 3.4 and Table 3.5 respectively. Again on both datasets
our proposed cross distillation performs consistently better compared to
the rest approaches. Besides, the gain from cross distillation becomes
larger as the sparsity of the student network increases (e.g., VGG-C and
ResNet-70%+). We suspect that networks with sparser structures tend
to suffer more from higher estimation errors, which poses more necessity
for cross distillation to reduce the errors.

Unstructured Pruning. For unstructured pruning, here we present
results of the VGG-16 network on ILSVRC-12 dataset. Similar to
structured pruning, we first fix the pruning scheme and vary the training
size, and the results are given in Table 3.6. It can be observed that both
CD and SCD significantly outperform the rest methods. Comparing to
structured pruning, cross distillation brings even more improvement in
unstructured pruning. One reason to explain it could be the irregular
sparsity of network parameters can better compensate the layer-wisely

3.3. EXPERIMENTS 47

Table 3.4: The top-1 testing accuracy (%) of different structured pruning
schemes with VGG-16 on CIFAR-10. 10 samples per class are used.

Methods VGG-50% VGG-A VGG-B VGG-C

L1-norm 14.36±0.00 88.32±0.00 32.87±0.00 10.00±0.00
BP 55.73±1.19 93.10±0.09 87.17±0.49 62.45±1.25
FSKD 65.69±1.08 93.52±0.23 90.69±0.12 81.79±1.01
FitNet 85.40±1.02 93.50±0.06 92.42±0.32 84.65±1.53
ThiNet 81.15±0.85 93.61±0.05 92.20±0.16 79.19±0.91
CP 83.59±0.78 93.70±0.04 92.29±0.15 80.82±0.73

w/o CD 84.07±0.83 93.69±0.07 92.35±0.14 83.90±0.78
CD 86.61±0.71 93.65±0.08 92.60±0.11 85.81±0.80
SCD 86.30±0.79 93.70±0.07 92.68±0.13 85.10±0.75

Table 3.5: The top-5 testing accuracy (%) of different structured pruning
schemes with ResNet-34 on ILSVRC-12. 1 sample per class is used.

Methods Res-30% Res-50% Res-70% Res-70%+

L1-norm 84.54±0.00 72.94±0.00 31.84±0.00 15.30±0.00
BP 88.66±0.59 85.76±0.73 80.04±0.90 63.25±1.05
FSKD 89.56±0.52 87.08±0.76 80.82±0.62 67.04±0.56
FitNet 88.56±0.58 87.66±0.84 82.72±0.88 68.31±0.81
ThiNet 89.74±0.65 87.42±0.76 79.40±0.66 63.65±0.78
CP 89.65±0.78 88.03±0.66 81.13±0.85 68.18±0.79

w/o CD 90.34±0.53 87.98±0.60 82.11±0.71 69.03±0.92
CD 90.08±0.47 88.17±0.65 82.71±0.76 73.53±0.74
SCD 90.32±0.58 88.40±0.61 82.65±0.68 69.47±0.79

accumulated errors on FS.

Similarly, we test our methods with different sparsities and hold
the training size fixed as K = 1, and Table 3.7 shows the results.
As the sparsity r increases, cross distillation brings more improvement,
especially on VGG-95% with a nearly 10% and 14% increase of accuracy
for CD and SCD respectively.

3.3.3 Further Analysis

The Estimation Errors v.s. Inconsistency. Cross distillation brings
the inconsistencies εT , εS that could affect the reduction of estimation
errors Le. To quantitatively investigate the effects, we compare εT , εS as
well as Le at different layers of the VGG-16 network on the test set of
CIFAR-10. We take three student networks trained by the correction loss
Lc, the imitation loss Li as well as soft distillation loss L̂ respectively We
choose unstructured pruning with VGG-90% as the pruning scheme and
vary K between {1, 10}, and the results are shown in 3.2(a), Figure 3.2(b)
and Figure 3.2(c) respectively. Note that we have normalized the loss
values by dividing the nonzero leftmost bar in each sub-figure.

48 CHAPTER 3. FEW-SHOT NETWORK PRUNING

Table 3.6: The top-5 testing accuracy (%) of unstructured pruning with VGG-
16 on ILSVRC-12 with different training sizes. The first three columns use
50, 100 and 500 randomly sampled training instances, while the last three
columns use K = 1, 2, 3 samples per class. We use Res-90% as the pruning
scheme, and the top-1 and top-5 accuracies of the original model are 73.72%
and 91.51%.

Methods 50 100 500 1 2 3

L1-norm 0.53±0.00 0.53±0.00 0.53±0.00 0.53±0.00 0.53±0.00 0.53±0.00
BP 42.87±2.07 48.78±1.43 65.47±1.15 71.25±0.97 74.85±0.71 76.04±0.48

FitNet 52.66±2.93 57.09±2.14 76.59±1.45 80.14±1.23 82.27±0.70 83.14±0.51

w/o CD 78.73±1.78 83.29±1.12 85.04±0.93 85.36±0.61 85.21±0.41 85.49±0.46
CD 83.81±1.49 86.21±1.09 87.19±0.96 87.61±0.82 87.78±0.45 87.86±0.39
SCD 83.67±1.52 86.72±1.23 87.82±1.04 88.14±0.74 88.23±0.61 88.38±0.43

Table 3.7: The top-5 testing accuracy (%) of unstructured pruning with VGG-
16 on ILSVRC-12 with different pruning schemes. 1 sample per class is
adopted.

Methods VGG-50% VGG-70% VGG-90% VGG-95%

L1-norm 89.21±0.00 66.91±0.00 0.56±0.00 0.51±0.00
BP 90.61±0.20 88.08±0.19 71.25±0.97 42.37±1.59

FitNet 88.36±0.46 86.76±0.67 80.14±1.23 59.08±1.78

w/o CD 91.47±0.12 91.16±0.10 85.21±0.41 66.74±1.36
CD 91.58±0.06 91.24±0.14 87.61±0.49 76.65±1.23
SCD 91.68±0.09 91.54±0.11 88.14±0.61 80.64±1.03

It can be observed that the student net trained by Lc has a large εS

with εT = 0, and vice versa for that trained by Li. On the contrary,
the student net trained by L̂ shows both lower εT and εS, and the
estimation error Le is properly reduced as well. The results indicate that
by properly controlling the magnitude of inconsistencies εT and εS with
soft connection, cross distillation can indeed reduce estimation errors Le

and improve the student network.

Generalization Ability. One potential issue that troubles us is the
generalization of cross distillation, since the training of CD and SCD
is somehow biased comparing to w/o CD that directly minimizes the
estimation error Le. Since estimation errors Le among feature maps
and cross entropy Lce of logits directly reflect the closeness between
FT and FS during inference, we compare both results among student
nets obtained by w/o CD, CD and SCD respectively. We again take
unstructured pruning with VGG-90% on the test set of CIFAR-10, and
the rest settings are kept unchanged. For ease of comparison, we similarly
divide values of CD and SCD by those obtained by w/o CD. Ratios

3.3. EXPERIMENTS 49

conv2.2 conv3.3 conv4.3 conv5.310 3

10 2

10 1

100

ra
tio

 o
f

T

c-K1
i-K1

-K1
c-K10

i-K10
-K10

(a) εT .

conv2.2 conv3.3 conv4.3 conv5.310 3

10 2

10 1

100

ra
tio

 o
f

S

c-K1
i-K1

-K1
c-K10

i-K10
-K10

(b) εS .

conv2.2 conv3.3 conv4.3 conv5.310 1

100

ra
tio

 o
f

r

c-K1
i-K1

-K1
c-K10

i-K10
-K10

(c) Le.

Figure 3.2: The comparisons among inconsistencies εT , εS as well as estimation
errors Le on the test set of CIFAR-10. The colors denote what kind of loss
and values of K are adopted for training. Best viewed in color.

conv2.1 conv3.1 conv3.3 conv4.3 logits
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

ra
tio

CD (K1)
CD (K10)

SCD (K1)
SCD (K10)

Figure 3.3: The estimation errors Le of CD and SCD, both of which are divided
by w/o CD. Best viewed in color.

smaller than 1 indicate a more generalizable student net.

From Figure 3.3, we can find that while the ratios in shallower layers
are above 1, they rapidly go down at deeper layers such as conv4.3
as well as the logits, which is consistent with Figure 3.3 that cross
distillation tends to better benefit deeper layers. Moreover, although
increasing K from 1 to 10 gives lower ratios of Le at convolutional
layers, the ratios of Lce increases at the network logits, which lead to less
improvement for classification when more training samples are available.
The phenomenons are consistent with the results in Table 3.2, Table 3.3
and Table 3.6. In summary, cross distillation can indeed generalize well
when FT and FS are properly mixed in the few-shot setting.

Sensitivity Analysis

Finally, we present sensitivity analysis for cross distillation. We perform
grid search by varying µ ∈ [0, 1] for CD and (α, β) ∈ [0, 1]2 for SCD
at an interval of 0.1. We take VGG-16 for structured pruning and
ResNet-56 for unstructured pruning on CIFAR-10 with K = 5, while
ILSVRC-12 experiments adopt the same setting of µ and (α, β) found

50 CHAPTER 3. FEW-SHOT NETWORK PRUNING

0.0 0.5 1.0
80

82

84

86

88

Ac
c

CD w/o CD

(a) CD on VGG-16.

0.0 0.5 1.082

84

86

88

Ac
c

CD w/o CD

(b) CD on ResNet-56.

beta

0.000.200.400.600.801.00 alp
ha

0.00
0.20

0.40
0.60

0.80
1.00
75.00
77.62

80.25

82.88

85.50

75.0
77.1
79.2
81.3
83.4
85.5

(c) SCD on VGG-16.
beta

0.000.200.400.600.801.00 alp
ha

0.00
0.20

0.40
0.60

0.80
1.00
80.00
81.88

83.75

85.62

87.50

80.0
81.5
83.0
84.5
86.0
87.5

(d) SCD on ResNet-56.

Figure 3.4: Sensitivity analysis of µ ∈ [0, 1] for CD and (α, β) on [0, 1]2 for
SCD.

by these experiments. From Figure 3.4(a) and 3.4(b), CD consistently
outperforms w/o CD, where the best configurations appear at around
µ = 0.6 for VGG-16 and µ = 0.9 for ResNet-56. Furthermore, we found
that simply using the correction loss µ = 0.0 or the imitation loss µ = 1.0
also achieves reasonable results7. In terms of SCD in Figure 3.4(c) and
3.4(d) , we find that on left regions {(α, β)|α+β < 1} FT and FS permute
the input too much and thereon lead to significant drops of performance.
For right regions {(α, β)|α + β > 1}, most configurations consistently
outperform w/o CD (1.0, 1.0), and the peaks occur somewhere in the
middle of the regions.

3.4 Conclusion

In this chapter, we present cross distillation, a new layer-wise knowledge
distillation approach for few-shot network pruning. Cross distillation
consists of correction and imitation, where the former seeks to reduce
the error propagation on the student network, while the latter makes

7The accuracies are 83.44% and 83.32% respectively on VGG-16, and 84.93% and 86.63%
respectively on ResNet-56.

3.4. CONCLUSION 51

the student network better learn the behavior of the teacher given
the same noise input. Cross distillation aims at a proper balance
between correction and imitation so as to avoid over-fitting to the few-
shot data, leading to a more generalizable pruned model. Extensive
experiments and analysis demonstrate the superiority of our approach
against various counterparts in few-shot network pruning. We believe
the proposed approach can better benefit model compression challenged
by data privacy and security issues.

2 End of chapter.

Chapter 4

Efficient Post-Training
Quantization of Pre-trained
Language Models

In this chapter, we study the problem of post-training quantization
for pre-trained language models (PLMs). Network quantization has
gained increasing attention with the rapid growth of large pre-trained
language models (PLMs). However, most existing quantization methods
for PLMs follow quantization-aware training (QAT) that requires end-
to-end training with full access to the dataset. Therefore, they suffer
from slow training, data security and huge memory consumption on
large PLMs. We seek to mitigate these issues by post-training quan-
tization (PTQ). Specifically, we propose module-wise quantization error
minimization (MREM), an efficient solution for PTQ. By partitioning
the PLM into multiple modules, we minimize the reconstruction error
of each module separately. Meanwhile, each partitioned module can
be trained locally on separate computing devices, which brings nearly
the theoretical training speed-up. We conduct extensive experiments
on prevalent PLMs over natural language understanding and reading
comprehension tasks, both of which verify the improved efficiency and
performance of our proposed solution.

4.1 Introduction

Large pre-trained language models (PLMs) have achieved remarkable
success in various natural language processing tasks [121, 11, 17, 167, 168,

52

4.1. INTRODUCTION 53

169]. However, the increasing size and computation overhead also make
it prohibitive to deploy these PLMs on resource-constrained devices. To
obtain compact PLMs, various model compression methods have been
proposed, such as pruning [40, 170], knowledge distillation [171, 172, 51],
weight-sharing [173, 174, 175, 176], dynamic computation with adaptive
depth or width [41, 135, 136], and quantization [114, 177].

Among these methods, network quantization enjoys the reduction
of both model size and computation overhead without modifying the
network architecture and is thus extensively studied [114, 177, 6, 178].
However, despite their remarkable performance, these methods mostly
follow quantization-aware training (QAT) and thus suffer from the
following challenges: 1) QAT requires extensive training over the full
dataset, which greatly prolongs the training time; 2) recent QAT
methods [6, 178] further combine knowledge distillation to enhance the
performance, which consumes even more memory with the presence of
the teacher model, and thus makes the training of large PLMs prohibited
on resource-limited devices; 3) QAT requires full access to the training
set, which may give rise to data security issues when exposing them to
third-party organizations for the quantization service.

Given the above challenges, post-training quantization (PTQ) serves
as an appealing alternative. In contrast to QAT, PTQ is efficient in both
training time and memory consumption. Usually, only a small portion of
training data is required to calibrate the batch normalization statistics
after convolutional layers [98] or clipping thresholds in quantization
functions [117], i.e. re-estimating these values with the small amount of
data. Nevertheless, PTQ is still not fully investigated in PLMs. Existing
popular PTQ solutions [117, 119] are mostly developed for convolutional
neural networks, by minimizing the layer-wise reconstruction error of
convolutional layers or linear layers incurred by quantization. In the
context of PLMs, however, as there are multiple linear layers in the multi-
head self-attention and feed-forward network of the transformer model,
sequentially tackling each of them may lead to sub-optimal solutions.

In this chapter, we propose module-wise reconstruction error
minimization (MREM) to improve the performance of post-training
quantization in PLM, while simultaneously maintain its efficiency w.r.t
training time, memory consumption and data usage. Specifically,
we partition the PLM into multiple modules, where each module
consists of multiple Transformer layers. By minimizing the module-

54 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Figure 4.1: An illustrative comparison between our parallel post-training
quantization method (MREM) and QAT on four dimensions. The results
are based on a quantized BERT-large model with 4-bit weights and 8-bit
activations over the MNLI dataset. Best viewed in color.

wise reconstruction error, we can jointly optimize multiple quantized
components in a module. Meanwhile, the module granularity can also
be flexibly adjusted depending on the memory constraints of computing
devices. Similar block-wise objective has been previously considered
in [179]. However, they require the second-order Hessian matrix which
can be computationally prohibitive for large PLMs. Instead, to design
a more efficient quantization pipeline for PLMs, we further propose a
new model-parallel strategy based on model partition. By allocating
each module on an individual computing device, all modules perform
local training in parallel, achieving nearly the theoretical speed-up (e.g.,
4× on 4 GPUs) compared with the sequential training [117, 119, 179].
Furthermore, we find that the naive parallel training suffers from
reconstruction error propagation, since each quantized module passes
this error to its successor before it is converged. Inspired by teacher
forcing [180], we use the full-precision module to serve as a guide
to the next quantized module, which provides clean input to break
the reconstruction error propagation, and improves the quantization
performance.

Empirical results on the GLUE and SQuAD benchmarks show that
our proposed MREM not only significantly improves the performance for
post-training quantization, but also enjoys advantages of fast training,
light memory consumption and improved data security over QAT. For
instance, as is shown in Figure 4.1, the BERT-large model trained by
parallel MREM can achieve 85.5% accuracy based on only 4K training
samples. Moreover, it consumes merely one-third of memory per GPU

4.2. MOTIVATION 55

(a) Training Time. (b) Memory.

(c) Data Accessibility. (d) Weight Quantization.

Figure 4.2: Comparison between QAT and PTQ over four dimensions. We
use a BERT-large model over MNLI dataset for illustration. The full-
precision (FP) fine-tuning is also included as a baseline. We follow the
procedure in [6] for QAT, and REM in Equation (2.11) for PTQ. The training
time and memory in (a) and (b) are measured by 4-bit weights and 8-bit
activations (i.e., W4A8) on an NVIDIA V100.

and is more than 150× faster than previous QAT training.

4.2 Motivation

In this section, we show that it is important yet challenging to do the
post-training quantization of pre-trained language models. Before diving
into details, we first recall the necessary backgrounds as introduced in
Section 2.

4.2.1 Quantization Background

Network quantization replaces the original full-precision weight or ac-
tivations x ∈ Rm×n with its lower-bit counterpart x̂. According to
Equation (2.4), this can be achieved by x̂ = Qb(x) = s · ΠΩ(b)(x/s),
where Ω(b) = {−2b−1, ..., 0, ..., 2b−1 − 1} is the set of b-bit integers, and

56 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Π(·) is the projection function that maps x/s to its closest integer.

In the context of Transformer quantization, we follow the default
setting in previous works [114, 6]: we quantize both the network weights
and activations in each matrix multiplication. We use symmetric uniform
quantization for weights, embeddings, and activations, except activations
after the self attention and GeLU function. For these two activations, we
adopt asymmetric quantization since the elements involved are mostly
positive. We skip the quantization for all layer-normalization layers,
skip connections, biases and the last classification head due to limited
computation overhead or large performance drop. Below we introduce
two common branches in the quantization literature: quantization-aware
training and post-training quantization.

As mentioned in Section 2.1.2, the training of quantized models
can be generally divided into two branches: quantization-aware train-
ing (QAT) and post-training quantization (PTQ). Specifically, QAT
requires the full training set D to conduct end-to-end training by Equa-
tion (2.10), which is usually time-consuming. Moreover, recent state-of-
the-art QAT attempts on PLMs combine knowledge distillation to train
the quantized model [6], which further burden the quantization pipeline.
On the other hand, PTQ requires only a small subset of the training
set D̃ ⊆ D, and can be finished quickly. As mentioned in Section 2.1.2,
reconstruction error minimization (REM) [117, 118, 119, 181] is a popular
PTQ method. Here we repeat its objective function in Equation (2.11),
which minimizes the distance between the multiplication output of the
quantized and the full-precision counterpart as follows:

min
w,s
‖ŵ>â −w>a‖2, s.t. ŵ = Qb(w), (4.1)

where w and a are weights and activations, and ŵ and â are their
quantized representations. Such objective is solved layer by layer
sequentially over the calibration dataset D̃. In this work, we extend
from REM for post-training quantization given its previous success.

4.2.2 Why Post-training Quantization?

In this section, we discuss the difference between PTQ and QAT along
four dimensions of a quantization pipeline: 1) training time; 2) memory
footprint; 3) data accessibility and 4) performance. According to
Figure 4.2, we summarize the findings in the following paragraphs.

4.2. MOTIVATION 57

Training Time. As QAT iterates over the full training set D for
multiple epochs, it is much more time-consuming than PTQ. Note
that recent QAT methods [6, 178] further combine two-stage knowledge
distillation [51], which even prolongs the training compared with the
full-precision (FP) fine-tuning. As shown in Figure 4.2(a), QAT can take
nearly four times longer than FP.

Memory Footprint. The increasing size of recent large PLMs makes
it prohibited to conduct QAT on memory-limited computing resources.
From Figure 4.2(b), QAT [6] even consumes 8.3GB more memory than
FP when combined with knowledge distillation to store the full-precision
teacher model. On the other hand, PTQ only caches intermediate results
during the layer-wise REM in Equation (2.11), which can be fed into a
single GTX 1080 Ti. Therefore, PTQ is also applicable on memory-
limited computing devices.

Data Accessibility. The quantization service can be usually offered by
some third-party organizations, where data security is always of high
priority. As QAT requires access to the entire training set, it inevitably
increases the risk of data exposure. PTQ, on the other hand, needs only a
small amount of calibration data D̃ ⊆ D, and can be easily constructed by
randomly sampling 1K ∼ 4K instances from D, as shown in Figure 4.2(c).
Therefore, most original training instances are kept untouched and data
security can be largely preserved.

Performance. When fine-tuned over the entire training set, QAT
usually maintains better quantized performance than PTQ. From Fig-
ure 4.2(d), the performances of QAT are close to FP results, and
remain steady across different bit-widths, i.e., W4A8, W2A8 and W2A4.
However, the performances of PTQ drop significantly, which has been
the main concern to address.

In summary, PTQ is superior to QAT with regard to training
efficiency, memory consumption, and data accessibility. Nevertheless, it
is still sometimes less preferred than QAT due to its severe performance
drop especially for low quantization bit-width [114, 177, 6]. In this paper,
we aim at improving the performance of post-training quantization for
PLMs, while preserving its merits of fast training, light memory footprint,
and data consumption.

58 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Figure 4.3: The overview of the proposed module-wise reconstruction error
minimization (MREM). We partition both the full precision model and
quantized model into multiple modules on different computing devices. By
collecting tensors from the input queue, MREM can be conducted locally
without waiting for the predecessor. Teacher forcing can be applied to mitigate
the issue of reconstruction error propagation.

4.3 Methodology

In this section, we propose our solution to improve post-training
quantization of large pre-trained language models. The proposed solution
consists of three parts: we first extend the existing reconstruction error
minimization to fit Transformer models in a module-wise granularity.
Then we show that such module-wise minimization can be conducted in
pipeline parallel, which further speeds up PTQ. Finally, we incorporate
teacher enforcing as an additional trick to accelerate the convergence of
parallel training. An overview of our solution can be found in Figure 4.3.

4.3.1 Module-wise Reconstruction Error Minimization

Given the transformer model, we propose module-wise reconstruction er-
ror minimization (MREM) for post-training quantization of pre-trained
language models. As we will see in the following, the granularity of REM
plays an important role in the performance and memory consumption for
PTQ.

Existing REM [119] solves Equation (2.11) for each matrix multi-
plication, which is the minimal granularity in a network. However, a
standard transformer layer consists of a Multi-Head Attention (MHA)
and a Feed-Forward Network (FFN), both of which consist of multiple
matrix multiplications. Greedily tackling each matrix multiplication in
REM thus may lead to sub-optimal quantized solutions. Moreover, the
reconstruction error shall propagate and enlarge along with transformer
layers, and finally deteriorate the output [163].

4.3. METHODOLOGY 59

Towards that end, the proposed module-wise reconstruction error
minimization admits larger granularity by jointly optimizing all the
coupled linear layers inside each module. Specifically, given a transformer
model with L transformer layers, embedding layers and the classification
head, we partition them into N modules, where the n-th module include
[ln, ln+1) transformer layers with ln being the first layer of this module1.
MREM aims at minimizing the joint reconstruction errors between
all quantized FFN output f̂ l in the module from their full-precision
counterpart f l as follows:

min
wn,sn

`(n) =∆
∑

l∈[ln,ln+1)
‖f̂ l − f l‖2, (4.2)

where wn and sn denote all learnable parameters and quantization step
sizes within the n-th module. Similar to REM, MREM can be optimized
sequentially: given the previously trained modules, only parameters and
quantization step sizes in the current module are optimized. Besides
the grouped Transformer layers, we also minimize the MSE loss in the
Transformer embedding and output logits respectively

Note that the number of modules N can be adjusted depending
on the memory constraint of computing resources. When N = 1,
this reduces to intermediate-layer knowledge distillation [51], which can
be memory-demanding when quantizing large PLMs on a single GPU.
Meanwhile, it is also preferred to evenly partition the model so as to
ensure a balanced memory footprint across different modules.

4.3.2 Accelerated Parallel Training

Based on the proposed MREM, we further propose a new model parallel
strategy to further accelerate the training. As shown in Figure 6.2, we
put different modules on individual computing devices. A set of input
queues I = {I1, ...,IN−1} is deployed between each pair of adjacent
modules. For the n-th module, the queue collects its output of the most
recent t0 steps, i.e., I t

n = {f tln ,f
t−1
ln , ...,f t−t0+1

ln
}. Meanwhile, the (n +

1)-th module can always sample with replacement f ln ∼ I t
n from the

queue without waiting for the n-th module. Similar rules hold for the
quantized module and their input queues Î as well. The design of the
input queue resembles stale synchronous parallel [182] which stores the
stale parameters in a local cache so as to reduce the waiting time among

1Note that the embedding layers and the classification head are incorporated in the first
and last module respectively.

60 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

workers, where t0 is the stale threshold.

The training workflow is as follows. Initially, the modules are
computed one after another for the first t0 step to fill in the input
queue, after which parallel training takes place. The module samples
the input from the queue and calculates the loss `(n) correspondingly for
n = 1, ..., N . In the meanwhile, the input queue is also updated with the
rule of first-in-first-out throughout the training. In the backward pass, we
constrain the gradients to propagate locally within each module, without
affecting its predecessors. Such a design can avoid the load imbalance
issue from straggler modules, bringing nearly the theoretical N× speed-
up.

Annealed Teaching Forcing

Since all modules proceed with training simultaneously instead of the
sequential manner, the next module takes the output from the queue
before its predecessor is fully optimized. Therefore, the reconstruction
error from the predecessor is propagated to the following modules before
it is sufficiently minimized.

Inspired by teacher forcing [180] in training recurrent networks, the
output f ln from the n-th full-precision module naturally serves as the
clean input to the (n + 1)-th quantized module to substitute f̂ ln . Thus
f ln stops the propagation of the reconstruction error accumulated on the
quantized module. Nevertheless, such an approach breaks the connection
to previous quantized modules and may suffer from forward inconsistency
between training and inference [183] on the quantized model. To achieve
a proper trade-off, we take the convex combination between the full-
precision f ln and quantized f̂ ln as follows:

f̃ ln = λf ln + (1− λ)f̂ ln , λ ∈ [0, 1], (4.3)

where the hyper-parameter λ controls the strength of teacher forcing.
λ = 1 gives the full correction of reconstruction error but with forward
inconsistency, while λ = 0 reduces to the conventional setting that suffers
from the propagated reconstruction error. We adopt a linear decay
strategy for λ: λt = max(1 − t

T0
, 0), where T0 is the preset maximum

steps of the decay. Intuitively, a large λ is desired at the beginning when
each module is rarely optimized. Later, a small λ is preferred to transit to
normal training such that the forward inconsistency can be bridged. The
remaining T − T0 steps stick to normal training without teacher forcing,

4.3. METHODOLOGY 61

Algorithm 2 Efficient Post-training Quantization.
1: procedure Main :
2: Partition the PLM into N modules
3: Fill in the input queues I, Î
4: for n in 1, ..., N do
5: . run in parallel
6: while t < T do
7: f ln−1 ∼ It

n−1, f̂ ln−1 ∼ Ît
n−1

8: f tln , f̂
t
ln ← MREM (f ln−1 , f̂ ln−1 , t)

9: Update It
n, Ît

n with f tln , f̂
t
ln

10: end while
11: end for
12: return the Quantized PLM

Algorithm 3 Module-wise Reconstruction Error Minimization.

1: procedure MREM (f ln−1 , f̂ ln−1 , t):
2: if t < T0 then
3: λt ← max(1− t

T0
, 0)

4: Compute f̃ ln−1 by Equation (4.3)
5: end if
6: Compute the full-precision module output f tln
7: Compute the quantized module output f̂ tln
8: Compute the loss `(n) by Equation (4.2)
9: wt+1

n ← Update(wt
n,

∂`(n)

∂wt
n
, ηt)

10: st+1
n ← Update(stn, ∂`

(n)

∂stn
, ηt)

11: return f tln , f̂
t
ln

so as to make each quantized module adapt to its own predecessors.

Comparison with Pipeline Parallelism.

Notably, our MREM with stale synchronous parallel is different from
the recent pipeline parallel [184, 185]. Pipeline parallel adopts end-to-
end training with synchronous updates between adjacent modules, which
gives rise to bubble time on computing devices. While GPipe [184]
divides the original data batch into M pipelined micro-batches, it still
has the bubble time of O(N−1

N+M−1) under N partitions. On the one
hand, a larger N or smaller M would increase the bubble time. On
the other hand, a larger M leads to small batches that still cannot
fully exploit the computing power, which again affects the acceleration
rate. Differently, our parallel strategy conducts local training with stale
synchronous updates of the input queue. Hence there is negligible bubble

62 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

time when the straggler is faster than the staleness threshold t0, which
can be easily satisfied with balanced module partitions or larger t0.

Finally, an overview of the proposed parallel module-wise reconstruc-
tion error minimization is shown in Algorithm 2 and Algorithm 3. The
Update(·) in Algorithm 3 can be any gradient update function such as
AdamW [186] with learning rate ηt.

4.4 Experiments

In this section, we empirically verify our proposed module-wise knowledge
distillation for post-training quantization of pre-trained language models.
We first introduce the experimental setup in Section 4.4.1. Then we
present main results in Section 4.4.2, including thorough comparisons
with QAT and REM, as well as other existing quantization solutions.
In Section 4.4.3, we provide more discussions on a variety of factors in
our approach, such as the effect of teacher forcing, the number of model
partitions and calibration data size.

4.4.1 Experimental Setup

Datasets and Metrics. We evaluate post-training quantization w.r.t.
both text classification on the GLUE dataset [187], and reading com-
prehension on SQuAD benchmarks [188]. The size of calibration data is
by default |D̃| = 4, 096, with instances randomly sampled from the full
training set. As RTE and MRPC from GLUE contain less than 4,096
samples, we use the full training set for training. We leave the effect of
data size in Section 4.4.3. For each experiment, we repeat ten times with
different calibration sets. Both the mean and standard deviations are
reported.

We use the same evaluation metrics as [11, 6]. Additionally, we
report the size (MB), the inference FLOPs (G), as well as the training
time. The computation of FLOPs follows [47, 32].

Implementation. We use the standardly fine-tuned BERT-base and
BERT-large models2 on downstream tasks for post-training quantization.
We implement MREM in both the sequential training (abbv. MREM-
S) in Section 4.3.1 and parallel training with teaching forcing (abbv.

2We follow the default fine-tuning hyper-parameter settings in Huggingface: https://
github.com/huggingface/transformers.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

4.4. EXPERIMENTS 63

MREM-P) in Section 4.3.2. For each module, we train for 2, 000 steps
with an initial learning rate of 1e−4 on GLUE tasks, and 4, 000 steps
with an initial learning rate of 5e−5 on SQuAD datasets. The learning
rate follows linear decay as adopted in [11]. By default, we partition the
model into 4 modules on 4 NVIDIA-V100 GPUs. The analysis of the
training steps and the number of model partitions will be provided later.

For baselines, we mainly compare with QAT and REM, where the
former acts as the upper bound of quantization performance, and the
latter studies the granularity effect in PTQ training. We conduct QAT
following the state-of-the-art training pipeline [6], i.e., intermediate-
layer distillation followed by prediction-layer distillation, which takes 6
training epochs in total. Detailed hyper-parameter settings can be found
in [6]. In terms of REM, we follow the practice in [119, 181] to minimize
the reconstruction error after each matrix multiplication, as introduced
in Section 4.2.1. For a fair comparison of each method, we use the same
quantization scheme, i.e., TWN [95] or LAQ [104] for 2-bit and 4-bit
weight quantization, and LSQ [31] for activation quantization. Unlike
QAT that picks the best model based on the development set results,
MREM is only tested once after training, which ensures data security
of the development set. We leave the comparison with more existing
quantization approaches in Section 4.4.2.

4.4.2 Main Results

Comparison with QAT and REM

We first compare MREM-S and MREM-P with QAT and REM on BERT-
base and BERT-large models over MNLI and SQuAD benchmarks. The
results are summarized in Table 4.1, Table 4.2 and Table 4.3 respectively.
Following Section 4.2.2, we again summarize the results from the four
dimensions:

Performance. It can be found that our proposed MREM-S improves
the performance by REM significantly given the same training time, and
is much more close QAT. For instance, according to MNLI results in
Table 4.1, MREM-S with 4-bit weight quantization on BERT-base and
BERT-large achieves the matched accuracy of 83.5%±0.1 and 86.1%±0.1,
which is 10.2% ↑ and 16.1% ↑ better than REM, and only 1.1% ↓ and
0.8% ↓ inferior to QAT respectively. It is also found that BERT-base
even outperforms BERT-large on MNLI. We speculate that the matrix-

64 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

wise granularity in REM may lead to worse solutions with more layers
in the network.

Moreover, when all modules are simultaneously trained, MREM-P
is generally close or only slightly inferior to MREM-S. From SQuAD 1.1
results in Table 4.2, MREM-P can even outperform MREM-S with the
“W2-E2-A4” quantized BERT-large model (i.e., the EM score and F1
score are on average 0.4% ↑ and 0.2% ↑ respectively).

Training Time. Our proposed MREM also enjoys significantly less
training time than QAT. On MNLI, for instance, BERT-base only takes
36 minutes for the 4-bit quantized PTQ training, which is about 36×
faster than QAT and 6× faster than full-precision fine-tuning. Compar-
ing with REM, the training pipeline of MREM is also simpler, since it
does not need to cache the output after every matrix multiplication as
done in REM. We shall further discuss this in Section 4.4.3. Moreover,
when armed with the proposed parallel training, MREM-P is further 4×
faster than MREM-S, which achieves the theoretical speed up with four
computing devices. These together bring a total 144× saving of training
time than QAT on MNLI.

Memory Consumption. While the module-wise training inevitably
consumes more memory than REM, it still takes only around a third
of the memory by QAT, and a half of that by the full-precision fine-
tuning. For instance, while QAT takes 29.8GB memory on BERT-large,
MREM only consumes 10.8GB memory, which can be even fed into a
cheap NVIDIA GTX 1080 Ti. Moreover, for long sequence input (i.e.,
384 tokens on the SQuAD dataset), QAT over BERT-large may suffer
from memory overflow even on an NVIDIA V100 with 32GB memory.
QAT with gradient accumulation inevitably doubles the training time
under the same configuration (i.e., underlined figures (“ ”) in Table 4.2
and Table 4.3). On the other hand, such issues can be easily mitigated
in either REM or our MREM.

4.4. EXPERIMENTS 65

Ta
bl
e
4.
1:

T
he

m
ai
n
re
su
lts

of
ou

r
pr
op

os
ed

M
R
EM

-S
an

d
M
R
EM

-P
ag

ai
ns
t
Q
AT

on
th
e
M
N
LI

da
ta
se
t.

“#
B
its

(W
-E

-A
)”

re
pr
es
en
ts

th
e

bi
t
nu

m
be

r
fo
r
w
ei
gh

ts
of

Tr
an

sf
or
m
er

la
ye
rs
,w

or
d
em

be
dd

in
g,

an
d
ac
tiv

at
io
ns
.
A
cc
-m

an
d
A
cc
-m

m
de

no
te
s
th
e
va
lid

at
io
n
ac
cu

ra
cy

on
th
e

m
at
ch
ed

an
d
m
ism

at
ch
ed

se
ct
io
ns

of
M
N
LI

re
sp
ec
tiv

el
y.

#
B

it
s

(W
-E

-A
)

Q
ua

nt
M

et
ho

d

B
E

R
T

-b
as

e
B

E
R

T
-l

ar
ge

T
im

e
(m

in
)

M
em

(G
B
)

#
D
at
a

(K
)

A
cc

m
(%

)
A
cc

m
m
(%

)
T
im

e
(m

in
)

M
em

(G
B
)

#
D
at
a

(K
)

A
cc

m
(%

)
A
cc

m
m
(%

)

MNLI

fu
ll-

pr
ec

N
/A

22
0

8.
6

39
3

84
.5

84
.9

60
9

21
.5

39
3

86
.7

85
.9

4-
4-
8

Q
AT

1,
32

0
11
.9

39
3

84
.6

84
.9

3,
18

0
29
.8

39
3

86
.9

86
.7

R
E
M

28
2.

5
4

73
.3
±

0.
3

74
.9
±

0.
2

84
5.

5
4

70
.0
±

0.
4

71
.8
±

0.
3

M
R
E
M
-S

36
4.

6
4

83
.5
±

0.
1

83
.9
±

0.
1

84
10
.8

4
86
.1
±

0.
1

85
.9
±

0.
1

M
R
E
M
-P

9
3.

7 ×
4

4
83
.4
±

0.
1

83
.7
±

0.
1

21
8.

6 ×
4

4
85
.5
±

0.
1

85
.4
±

0.
2

2-
2-
8

Q
AT

88
2

11
.9

39
3

84
.4

84
.6

2,
34

0
29
.8

39
3

86
.5

86
.1

R
E
M

24
2.

5
4

71
.6
±

0.
4

73
.4
±

0.
4

64
5.

5
4

66
.9
±

0.
4

68
.6
±

0.
7

M
R
E
M
-S

24
4.

6
4

82
.7
±

0.
2

82
.7
±

0.
2

64
10
.8

4
85
.4
±

0.
2

85
.3
±

0.
2

M
R
E
M
-P

6
3.

7 ×
4

4
82
.3
±

0.
2

82
.6
±

0.
2

16
8.

6 ×
4

4
84
.6
±

0.
2

84
.6
±

0.
1

2-
2-
4

Q
AT

87
5

11
.9

39
3

83
.5

84
.2

2,
28

0
29
.8

39
3

85
.8

85
.9

R
E
M

24
2.

5
4

58
.3
±

0.
5

60
.6
±

0.
6

64
5.

5
4

48
.8
±

0.
6

51
.4
±

0.
8

M
R
E
M
-S

24
4.

6
4

81
.1
±

0.
2

81
.5
±

0.
2

64
10
.8

4
83
.6
±

0.
2

83
.7
±

0.
2

M
R
E
M
-P

6
3.

7 ×
4

4
80
.8
±

0.
2

81
.2
±

0.
2

16
8.

6 ×
4

4
83
.0
±

0.
3

83
.2
±

0.
2

66 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Ta
bl
e
4.
2:

T
he

m
ai
n
re
su
lts

of
ou

r
pr
op

os
ed

M
R
EM

-S
an

d
M
R
EM

-P
ag

ai
ns
t
Q
AT

on
SQ

uA
D

v1
.1

da
ta
se
t.

“
”
de

no
te
s
re
su
lts

w
ith

tw
o

gr
ad

ie
nt

ac
cu

m
ul
at
io
n
st
ep

s
un

de
r
th
e
sa
m
e
ba

tc
h
siz

e
du

e
to

m
em

or
y
co
ns
tr
ai
nt
.

#
B

it
s

(W
-E

-A
)

Q
ua

nt
M

et
ho

d

B
E

R
T

-b
as

e
B

E
R

T
-l

ar
ge

T
im

e
(m

in
)

M
em

(G
B
)

#
D
at
a

(K
)

E
M

(%
)

F1
(%

)
T
im

e
(m

in
)

M
em

(G
B
)

#
D
at
a

(K
)

E
M

(%
)

F1
(%

)

SQuADv1.1

fu
ll-

pr
ec

-
17

7
11
.7

88
81
.5

88
.7

48
8

30
.4

88
86
.9

93
.1

4-
4-
8

Q
AT

42
8

18
.4

88
80
.2

87
.9

1,
92

0
27
.0

88
86
.7

93
.0

R
E
M

65
3.

1
4

46
.1
±

0.
5

60
.0
±

0.
5

17
5

7.
3

4
68
.3
±

0.
1

79
.3
±

0.
1

M
R
E
M
-S

76
6.

4
4

79
.4
±

0.
1

87
.2
±

0.
1

20
0

14
.5

4
86
.2
±

0.
1

92
.5
±

0.
1

M
R
E
M
-P

19
5.

5 ×
4

4
79
.6
±

0.
1

87
.3
±

0.
1

50
12
.3
×

4
4

86
.0
±

0.
1

92
.4
±

0.
1

2-
2-
8

Q
AT

33
5

18
.4

88
79
.3

87
.2

1,
20

0
27
.0

88
86
.1

92
.5

R
E
M

60
3.

1
4

40
.1
±

0.
4

55
.0
±

0.
4

16
0

7.
3

4
66
.4
±

0.
5

77
.7
±

0.
3

M
R
E
M
-S

60
6.

4
4

77
.8
±

0.
2

86
.0
±

0.
1

15
6

14
.5

4
85
.4
±

0.
1

91
.9
±

0.
1

M
R
E
M
-P

15
5.

5 ×
4

4
77
.7
±

0.
2

85
.9
±

0.
2

39
12
.3
×

4
4

85
.3
±

0.
2

91
.8
±

0.
1

2-
2-
4

Q
AT

33
1

18
.4

88
77
.1

85
.9

1,
18

6
27
.0

88
84
.7

93
.1

R
E
M

60
3.

1
4

10
.4
±

0.
2

24
.6
±

0.
2

16
0

7.
3

4
28
.3
±

0.
6

45
.0
±

0.
5

M
R
E
M
-S

60
6.

4
4

72
.7
±

0.
2

82
.5
±

0.
2

15
6

14
.5

4
81
.4
±

0.
3

89
.4
±

0.
2

M
R
E
M
-P

15
5.

5 ×
4

4
73
.0
±

0.
3

82
.7
±

0.
2

39
12
.3
×

4
4

81
.8
±

0.
3

89
.6
±

0.
2

4.4. EXPERIMENTS 67

Ta
bl
e
4.
3:

T
he

m
ai
n
re
su
lts

of
ou

r
pr
op

os
ed

M
R
EM

-S
an

d
M
R
EM

-P
ag

ai
ns
t
Q
AT

on
SQ

uA
D

v2
.0

da
ta
se
t.

“
”
de

no
te
s
re
su
lts

w
ith

tw
o

gr
ad

ie
nt

ac
cu

m
ul
at
io
n
st
ep

s
un

de
r
th
e
sa
m
e
ba

tc
h
siz

e
du

e
to

m
em

or
y
co
ns
tr
ai
nt
.

#
B

it
s

(W
-E

-A
)

Q
ua

nt
M

et
ho

d

B
E

R
T

-b
as

e
B

E
R

T
-l

ar
ge

T
im

e
(m

in
)

M
em

(G
B
)

#
D
at
a

(K
)

E
M

(%
)

F1
(%

)
T
im

e
(m

in
)

M
em

(G
B
)

#
D
at
a

(K
)

E
M

(%
)

F1
(%

)

SQuADv2.0

fu
ll-

pr
ec

-
25

5
11
.7

13
0

74
.5

77
.7

73
0

30
.4

13
0

77
.7

81
.0

4-
4-
8

Q
AT

66
2

18
.4

13
0

74
.4

77
.5

2,
82

0
28
.3

13
0

77
.4

80
.5

R
E
M

60
3.

1
4

53
.1
±

0.
4

53
.6
±

0.
4

17
5

7.
3

4
58
.2
±

0.
2

61
.4
±

0.
3

M
R
E
M
-S

76
6.

4
4

73
.0
±

0.
1

76
.3
±

0.
1

20
0

14
.5

4
76
.4
±

0.
1

79
.7
±

0.
1

M
R
E
M
-P

19
5.

5 ×
4

4
72
.6
±

0.
2

75
.9
±

0.
2

50
12
.3
×

4
4

76
.3
±

0.
1

79
.6
±

0.
1

2-
2-
8

Q
AT

50
8

17
.5

13
0

73
.0

76
.2

1,
68

0
28
.3

13
0

76
.7

80
.0

R
E
M

60
3.

1
4

51
.5
±

0.
2

51
.8
±

0.
2

16
0

7.
3

4
56
.3
±

0.
2

59
.5
±

0.
2

M
R
E
M
-S

60
6.

4
4

71
.4
±

0.
2

74
.8
±

0.
2

15
6

14
.5

4
75
.4
±

0.
2

78
.7
±

0.
1

M
R
E
M
-P

15
5.

5 ×
4

4
70
.8
±

0.
4

74
.3
±

0.
4

39
12
.3
×

4
4

75
.3
±

0.
3

78
.6
±

0.
3

2-
2-
4

Q
AT

50
5

17
.5

13
0

71
.4

74
.6

1,
65

5
28
.3

13
0

75
.4

78
.9

R
E
M

60
3.

1
4

39
.3
±

1.
5

41
.4
±

1.
3

16
0

7.
3

4
42
.9
±

0.
8

44
.2
±

0.
7

M
R
E
M
-S

60
6.

4
4

67
.2
±

0.
3

70
.6
±

0.
2

15
6

14
.5

4
71
.3
±

0.
3

74
.8
±

0.
2

M
R
E
M
-P

15
5.

5 ×
4

4
66
.1
±

0.
5

69
.8
±

0.
5

39
12
.3
×

4
4

71
.5
±

0.
3

75
.0
±

0.
3

68 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Data Size. REM and our proposed MREM follow the common practice
of PTQ, relying on only 4, 096 randomly sampled training instances on
both MNLI and SQuAD, which is a tiny fraction of the original dataset
used in QAT. We shall provide more discussion on the effect of calibration
size in Section 4.4.3.

In summary, our proposed MREM-S improves post-training quan-
tization on PLMs significantly, while still enjoys fast training, light
memory consumption, and data security. Furthermore, with parallel
training, the proposed MREM-P further pushes the advantages of PTQ
without an apparent performance drop.

Comparison with Existing Methods

In the next, we compare our MREM with a number of existing state-
of-the-art BERT quantization methods. They include various QAT ap-
proaches such as Q-BERT [177], Quant-Noise [189] and TernaryBERT [6],
as well as the PTQ baseline GOBO [116]. Their results are taken from
the original papers, respectively.

From Table 4.4, both our proposed MREM-S and MREM-P outper-
form existing PTQ approaches in most cases, and even achieves results
close to QAT approaches. For example, the “W4-E4-A8” quantized
MREM-S and MREM-P have the averaged accuracies of 83.5% and 83.4%
on MNLI respectively, both of which are on par with “W2/4-E8-A8”
quantized Q-BERT. In terms of the “W2-E2-A8” quantized models, our
MREM-S and MREM-P surpass GOBO by 11.7% ↑ and 11.3% ↑ on
MNLI-m respectively.

4.4. EXPERIMENTS 69

Ta
bl
e
4.
4:

R
es
ul
ts

on
th
e
G
LU

E
de

ve
lo
pm

en
t
se
t.

“P
T
Q
”
in
di
ca
te
s
w
he

th
er

th
e
ap

pr
oa

ch
be

lo
ng

s
to

po
st
-t
ra
in
in
g
qu

an
tiz

at
io
n.

“A
vg

."
de

no
te
s
th
e
av
er
ag

e
re
su
lts

of
al
lt
as
ks
.

Q
ua

nt
M

et
ho

d
#

B
it

s
(W

-E
-A

)
Si

ze
(M

B
)

P
T

Q
M

N
L

I-
m

Q
Q

P
Q

N
L

I
SS

T
-2

C
oL

A
ST

S-
B

M
R

P
C

R
T

E
A

vg
.

-
fu

ll-
pr

ec
.

41
8

-
84
.9

91
.4

92
.1

93
.2

59
.7

90
.1

86
.3

72
.2

83
.9

Q
-B

E
RT

2-
8-
8

43
7

76
.6

-
-

84
.6

-
-

-
-

-
Q
-B

E
RT

2/
4-
8-
8

53
7

83
.5

-
-

92
.6

-
-

-
-

-
Q
ua

nt
-N

oi
se

P
Q

38
7

83
.6

-
-

-
-

-
-

-
-

Te
rn
ar
yB

E
RT

2-
2-
8

28
7

83
.3

90
.1

91
.1

92
.8

55
.7

87
.9

87
.5

72
.9

82
.7

G
O
B
O

3-
4-
32

43
3

83
.7

-
-

-
-

88
.3

-
-

-
G
O
B
O

2-
2-
32

28
3

71
.0

-
-

-
-

82
.7

-
-

-
M
R
E
M
-S

4-
4-
8

50
3

83
.5
±

0.
1

90
.2
±

0.
1

91
.2
±

0.
1

91
.4
±

0.
4

55
.1
±

0.
8

89
.1
±

0.
1

84
.8
±

0.
0

71
.8
±

0.
0

82
.4
±

0.
1

2-
2-
8

28
3

82
.7
±

0.
2

89
.6
±

0.
1

90
.3
±

0.
2

91
.2
±

0.
4

52
.3
±

1.
0

88
.7
±

0.
1

86
.0
±

0.
0

71
.1
±

0.
0

81
.5
±

0.
2

M
R
E
M
-P

4-
4-
8

50
3

83
.4
±

0.
1

90
.2
±

0.
1

91
.0
±

0.
2

91
.5
±

0.
4

54
.7
±

0.
9

89
.1
±

0.
1

86
.3
±

0.
0

71
.1
±

0.
0

82
.2
±

0.
1

2-
2-
8

28
3

82
.3
±

0.
2

89
.4
±

0.
1

90
.3
±

0.
2

91
.3
±

0.
4

52
.9
±

1.
2

88
.3
±

0.
2

85
.8
±

0.
0

72
.9
±

0.
0

81
.6
±

0.
2

70 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Table 4.5: Ablation studies for teacher forcing on BERT-base and BERT-
large over the MNLI dataset. We report the matched accuracy with different
training steps.

#Bits
(W-E-A) # Steps BERT-base BERT-large

w/o TF w TF w/o TF w TF

2-2-8

250 79.6±0.3 80.7±0.2 82.1±0.4 83.1±0.2
500 81.0±0.3 81.6±0.2 83.4±0.3 84.1±0.3
2,000 82.2±0.2 82.7±0.2 84.3±0.3 84.6±0.2
4,000 82.3±0.3 82.5±0.2 84.5±0.2 84.7±0.2

2-2-4

250 73.9±0.5 77.3±0.4 76.5±0.9 79.3±0.4
500 77.9±0.2 79.0±0.2 80.0±0.5 81.4±0.2
2,000 80.4±0.2 80.8±0.2 82.5±0.4 83.0±0.3
4,000 80.7±0.2 81.0±0.2 83.1±0.1 83.3±0.3

4.4.3 Discussions

In this section, we provide further discussions to better understand the
proposed approach. By default, all experiments in this section are based
on the BERT-base model over MNLI dataset.

Teacher Forcing

We now study how teacher forcing benefits MREM-P with different
training steps, and results are listed in Table 4.5. It can be found
that teacher forcing can bring consistent improvement for both BERT-
base and BERT-large models. Moreover, the gain of teacher forcing
is more significant with fewer training steps or lower quantization bit-
width, i.e., 3.4% ↑ and 2.8% ↑ on the “W2-E2-A4” quantized BERT-
base and BERT-large respectively. This matches our intuition that fewer
training steps or higher compression ratio give larger reconstruction error,
when the clean input from the full-precision model can benefit more.
As the increase of training steps brings only marginal improvement and
diminishes the effect of teacher forcing, we by default set the training
steps to 2, 000.

Additionally, we also plot training loss curves of the four modules
under 250 and 2,000 training steps in Figure 4.5. We find that: 1) loss
curves with teacher forcing is apparently lower, especially when trained
with fewer steps, which matches the observations in Table 4.5; 2) the
modules close to the end tend to benefit more from teacher forcing, since
the propagated reconstruction error can be better corrected by the clean
input from the full-precision model.

4.4. EXPERIMENTS 71

(a) Module Numbers. (b) Calibration Size.

(c) Rec. Error Propagation (A8). (d) Rec. Error Propagation (A4).

Figure 4.4: Discussions on the proposed MREM approach. In (a) and (b), the
solid line and shaded area denote the averaged results and standard deviation
of a “W2-E2-A4” quantized BERT-base model from 10 different seeds. (c) and
(d) visualize the propagation of reconstruction error on both “W2-E2-A8” and
“W2-E2-A4” quantized BERT-base model.

Further Comparisons with REM

Here we provide further discussions with REM on the training efficiency.
Note that as both REM and MREM-S follow the sequential training
procedure, i.e., the intermediate results after training of the current stage
should be cached and reloaded for the next stage. However, as there are
amounts of matrix multiplications in the transformer, such a procedure
for REM can be time-consuming. While REM and MREM take roughly
the same amount of time according to results in Section 4.4.2, REM is
only iterated for 250 steps on MNLI and 500 on SQuAD, while MREM
takes 2, 000 steps and 4, 000 steps respectively.

We also provide results when REM takes the same amount of training
steps with MREM-S in Table 4.6. It can be found that even with
2, 000 iterations, REM is still inferior to MREM-S across all quantization
bit-widths. Meanwhile, REM nearly takes around 9× more training

72 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

#Bits
(W-E-A)

Quant
(Method) # Steps Time

(min)
Mem
(GB)

Acc
m(%)

Acc
mm(%)

4-4-8
REM 200 36 2.5 73.3±0.3 74.9±0.2
REM 2, 000 319 2.5 81.8±0.2 82.5±0.1
MREM-S 2, 000 36 4.6 83.5±0.1 83.9±0.1

2-2-8
REM 200 24 2.5 71.6±0.4 73.4±0.4
REM 2, 000 213 2.5 78.7±0.2 79.2±0.2
MREM-S 2, 000 24 4.6 82.7±0.2 82.7±0.2

2-2-4
REM 200 24 2.5 58.3±0.5 60.6±0.6
REM 2, 000 213 2.5 73.0±0.3 74.4±0.4
MREM-S 2, 000 24 4.6 81.1±0.2 81.5±0.2

Table 4.6: Comparison of REM with our MREM on BERT-base model over
the MNLI dataset.

(a) 250 Steps, M1. (b) 250 Steps, M2. (c) 250 Steps, M3. (d) 250 Steps, M4.

(e) 2,000 Steps, M1. (f) 2,000 Steps, M2. (g) 2,000 Steps, M3. (h) 2,000 Steps, M4.

Figure 4.5: The training loss curves with and without teacher forcing (TF) in
MREM-P. The red area denotes the warm-up stage in the first 40% training
steps. (a), (b), (c) and (d) in the first row are the four modules (i.e., M1-M4)
trained for 250 steps, and (e), (f), (g) and (h) in the second row are trained
for 2,000 steps.

time than MREM. Therefore, the module-wise granularity in MREM
not only improves the quantization performance with more layer-wise
dependencies considered, but also makes the training pipeline efficient
with fewer stages to cache intermediate results.

Number of Modules.

We verify the effect of model partition on the final quantized performance.
It can be observed from Figure 4.4(a) that by varying the module
number within {1, 2, 3, 4, 6}, fewer model partitions give slightly better
performance, as layer-wise dependencies can be better incorporated for
reconstruction error minimization. However, this comes at the sacrifice
of more memory consumption. Therefore. as a trade-off we partition
the model into 4 modules by default. Finally, MREM-S and MREM-P

4.4. EXPERIMENTS 73

Table 4.7: Comparison of BERT-base results with and without per-channel
quantization (PCQ) on MNLI.

#Bits
(W-E-A) Methods

w/o PCQ w PCQ
Acc

m(%)
Acc

mm(%)
Acc

m(%)
Acc

mm(%)

4-4-8 REM 73.3±0.3 74.9±0.2 75.9±0.3 77.4±0.2
MREM 83.5±0.1 83.9±0.2 83.6±0.1 84.0±0.1

2-2-8 REM 71.6±0.4 73.4±0.4 74.1±0.5 75.6±0.5
MREM 82.7±0.2 82.7±0.2 82.8±0.1 82.9±0.1

2-2-4 REM 58.3±0.5 60.6±0.6 59.3±0.4 62.0±0.4
MREM 81.1±0.2 81.5±0.2 81.1±0.2 81.5±0.3

perform on par generally given different model modules. Thus one can
safely adopt MREM-P even with more model partitions.

Size of Calibration Data.

The size of calibration data directly relates to the security and privacy
issues in post-training quantization. To learn its effects, we vary the
calibration data size |D̃| within {32, 64, 128, 512, 1024, 2048, 4096, 8192},
and list the results of both MREM and REM. From Figure 4.4(b), it can
be found that while REM is ahead of MREM with less than 128 training
samples, it rises slowly and saturates at around 60% afterwards. We
hypothesis that the simple training objective in REM does not require too
many training instances for optimization. MREM-S, on the other hand,
can better exploit the calibration data when more training instances are
available, since the module-wise granularity admits higher flexibility for
the optimization. As we find the diminishing gain to increase the training
size after 4, 096 samples, we by default take 4, 096 samples.

Reconstruction Error Propagation.

Finally, we visualize the propagation of reconstruction error for both
“W2-E2-A8” and “W2-E2-A4” quantized BERT-base models in Fig-
ure 4.4(c) and Figure 4.4(d) respectively. It can be observed that
our MREM achieves both lower values and slower rising rates of the
reconstruction error than REM across all layers, which demonstrates
the advantage of incorporating more layers for reconstruction error
minimization. Interestingly, while the reconstruction error generally gets
enlarged layer-wisely in the first ten layers, it begins to shrink at the last
two layers. We speculate this is due to the effect of classification head
that encourages concentrated hidden representations.

74 CHAPTER 4. EFFICIENT POST-TRAINING QUANTIZATION

Per-channel Quantization

Per-channel Quantization (PCQ) is prevalent in the post-training quan-
tization of convolution neural networks [117, 119, 181]. To learn its
effect in PLMs, we assign different quantization step-sizes at each output
dimension, which is also known as row-wise quantization in [6]. The
PCQ results from REM and MREM are shown in Table 4.7. It can
be found that while PCQ slightly improves REM by 1.0% to 2.5%, the
gain is very incremental on MREM. We hypothesis that more training
steps of MREM can better adjust the quantization distribution for PLMs.
Our results are also similar to the findings in [6], where the row-wise
quantization brings little improvement.

4.5 Conclusion

In this chapter, we study post-training quantization for pre-trained
language models. We show that existing quantization-aware training
solutions suffer from slow training, huge memory consumption, and data
privacy issues when accessing the full training set. To mitigate these
issues, we propose module-wise reconstruction error minimization, an
efficient solution to quantize PLMs. MREM can be conducted either
sequentially or in parallel, where the parallel training can achieve the
speedup close to the theoretical limit without apparent performance
degradation. Experimental results show that the proposed solution
greatly improves the performance. Meanwhile, it significantly reduces
the training time and memory overhead with only thousands of training
instances.

2 End of chapter.

Chapter 5

BinaryBERT: Pushing the
Limit of BERT Quantization

In this chapter, we study the problem of BERT binarization, which is
the limit of BERT quantization. With adequate training resources, we
explore how much can we improve a binarized BERT on natural language
understanding tasks. Specifically, we find that a binary BERT is hard
to be trained directly than a ternary counterpart due to its complex and
irregular loss landscape. Therefore, we propose ternary weight splitting,
which initializes BinaryBERT by equivalently splitting from a half-sized
ternary network. The binary model thus inherits the good performance
of the ternary one, and can be further enhanced by fine-tuning the new
architecture after splitting. In the meanwhile, ternary weight splitting
can also be conducted adaptively, depending on the resource constraints
of various edge devices. Thus it allows to output a series of binary
models with different sizes. Empirical results show that BinaryBERT
has a significant reduction in model size, with only a slight performance
drop compared with the full-precision model. We also achieve state-of-
the-art compression results on the GLUE and SQuAD benchmarks.

5.1 Introduction

Recent pre-trained language models have achieved remarkable perfor-
mance improvement in various natural language tasks [121, 11]. However,
the improvement generally comes at the cost of increasing model size
and computation, which limits the deployment of these huge pre-trained
language models to edge devices. Various methods have been recently
proposed to compress these models, such as knowledge distillation [171,

75

76 CHAPTER 5. BINARYBERT

(a) MRPC. (b) CoLA. (c) SST-2. (d) MNLI-m.

Figure 5.1: Performance of quantized BERT with varying weight bit-widths
and 8-bit activation. We report the mean results with standard deviations
from 10 seeds on MRPC, CoLA, SST-2, and 3 seeds on MNLI-m, respectively.

172, 51], pruning [40, 170], low-rank approximation [190, 174], weight-
sharing [173, 174, 176], dynamic networks with adaptive depth and/or
width [41, 135, 136], and quantization [114, 177, 189, 6].

Among all these model compression approaches, quantization is
a popular solution as it does not require designing a smaller model
architecture. Instead, it compresses the model by replacing each 32-
bit floating-point parameter with a low-bit fixed-point representation.
Existing attempts try to quantize pre-trained models [114, 177, 189] to
even as low as ternary values (2-bit) with minor performance drop [6].
However, none of them achieves the binarization (1-bit). As the limit of
quantization, weight binarization could bring at most 32× reduction in
model size and replace most floating-point multiplications with additions.
Moreover, quantizing activations to 8-bit or 4-bit further replaces the
floating-point addition with int8 and int4 addition, decreasing the energy
burden and the area usage on chips [28].

In this chapter, we explore to binarize BERT parameters with
quantized activations, pushing BERT quantization to the limit. We find
that directly training a binary network is rather challenging. According
to Figure 5.1, there is a sharp performance drop when reducing weight
bit-width from 2-bit to 1-bit, compared to other bit configurations. To
explore the challenges of binarization, we analyze the loss landscapes of
models under different precisions both qualitatively and quantitatively.
It is found that while the full-precision and ternary (2-bit) models enjoy
relatively flat and smooth loss surfaces, the binary model suffers from a
rather steep and complex landscape, which poses great challenges to the
optimization.

Motivated by the above empirical observations, we propose ternary
weight splitting, which takes the ternary model as a proxy to bridge
the gap between the binary and full-precision models. Specifically,

5.2. MOTIVATION 77

ternary weight splitting equivalently converts both the quantized and
latent full-precision weights in a well-trained ternary model to initialize
BinaryBERT. Therefore, BinaryBERT retains the good performance of
the ternary model, and can be further refined on the new architecture.
While neuron splitting is previously studied [152, 157] for a full-precision
network, our ternary weight splitting is much more complex due to the
additional equivalence requirement of quantized weights. Furthermore,
the proposed BinaryBERT also supports adaptive splitting. It can
adaptively perform splitting on the most important ternary modules
while leaving the rest as binary, based on efficiency constraints such
as model size or floating-point operations (FLOPs). Therefore, our
approach allows flexible sizes of binary models for various edge devices’
demands.

Empirical results show that BinaryBERT split from a half-width
ternary network is much better than a directly-trained binary model
with the original width. On the GLUE and SQuAD benchmarks,
our BinaryBERT has only a slight performance drop compared to the
full-precision BERT-base model, while being 24× smaller. Moreover,
BinaryBERT with the proposed importance-based adaptive splitting also
outperforms other splitting criteria across a variety of model sizes.

5.2 Motivation

In this section, we show that it is challenging to train a binary BERT with
conventional binarization approaches directly. Before diving into details,
we first review necessary backgrounds for ternarization and binarization.

As we consider the setting with adequate training resources, we
follow the standard quantization-aware training procedure [29] as in-
troduced in Section 2.1.2. Recent TernaryBERT [6] follows Ternary-
Weight-Network (TWN) [95] to quantize the elements in w to three
values {±α, 0}. To avoid confusion, we use superscript t and b for the
latent full-precision weights and quantized weights in ternary and binary
models, respectively. Recall in Equation (2.6) that TWN ternarizes each
element wti in the ternary weight wt by

ŵti =Q(wti)=
α · sign(wti) |wti| ≥ ∆

0 |wti| < ∆
, (5.1)

where sign(·) is the sign function, ∆ = 0.7
n
‖wt‖1 and α = 1

|I|
∑
i∈I |wti|

78 CHAPTER 5. BINARYBERT

(a) Full-precision
Model.

(b) Ternary Model. (c) Binary Model. (d) All Together.

Figure 5.2: Loss landscapes visualization of the full-precision, ternary and
binary models on MRPC. For (a), (b) and (c), we perturb the (latent) full-
precision weights of the value layer in the 1st and 2nd Transformer layers, and
compute their corresponding training loss. (d) shows the gap among the three
surfaces by stacking them together.

(a) MHA-QK. (b) MHA-V. (c) MHA-O. (d) FFN-Mid. (e) FFN-Out.

Figure 5.3: The top-1 eigenvalues of parameters at different Transformer parts
of the full-precision (FP), ternary and binary BERT. For easy comparison, we
report the ratio of eigenvalue between the ternary/binary models and the full-
precision model. The error bar is estimated of all Transformer layers over
different data mini-batches.

with I = {i | ŵti 6= 0}.

Binarization represent network parameters within only two val-
ues [28, 45, 97, 47]. For instance, Binary-Weight-Network (BWN) [97]
in Equation (2.9) takes the form of

ŵbi = Q(wbi) = α · sign(wbi), α = 1
n
‖wb‖1. (5.2)

Despite the appealing properties of network binarization, we show
that it is non-trivial to obtain a binary BERT with these binarization
approaches.

5.2.1 Sharp Performance Drop with Weight Binarization

To study the performance drop of BERT quantization, we train the
BERT model with full-precision, {8,4,3,2,1}-bit weight quantization
and 8-bit activations on MRPC and MNLI-m from the GLUE bench-

5.2. MOTIVATION 79

mark [187]. We use loss-aware weight quantization (LAQ) [104] for
8/4/3-bit weight quantization, TWN [95] for weight ternarization and
BWN [97] for weight binarization. Meanwhile, we adopt 8-bit uniform
quantization for activations. We follow the default experimental settings
detailed in Section 5.4.1.

From Figure 5.1, the performance drops mildly from 32-bit to as low
as 2-bit, i.e., around 0.6% ↓ on MRPC and 0.2% ↓ on MNLI-m. However,
when reducing the bit-width to one, the performance drops sharply, i.e,
∼ 3.8% ↓ and ∼ 0.9% ↓ on the two tasks, respectively. Therefore, weight
binarization may severely harm the performance, which may explain why
most current approaches stop at 2-bit weight quantization [177, 116, 6].
To further push weight quantization to the limit, a first step is to
study the potential reasons behind the sharp drop from ternarization
to binarization.

5.2.2 Exploring the Quantized Loss Landscape

Visualization. To learn about the challenges behind the binarization,
we first visually compare the loss landscapes of full-precision, ternary,
and binary BERT models. Following [117], we extract parameters wx,wy

from the value layers of multi-head attention in the first two Transformer
layers, and assign the following perturbations on parameters:

w̃x = wx + x · 1x, w̃y = wy + y · 1y, (5.3)

where x ∈ {±0.2w̄x,±0.4w̄x, ...,±1.0w̄x} are perturbation magnitudes
based the absolute mean value w̄x of wx, and similar rules hold for
y. 1x and 1y are vectors with all elements being 1. For each pair of
(x, y), we evaluate the corresponding training loss and plot the surface
in Figure 5.2.

As can be seen, the full-precision model (Figure 5.2(a)) has the
lowest overall training loss, and its loss landscape is flat and robust to
the perturbation. For the ternary model (Figure 5.2(b)), despite the
surface tilts up with larger perturbations, it looks locally convex and
is thus easy to optimize. This may also explain why the BERT model
can be ternarized without severe accuracy drop [6]. However, the loss
landscape of the binary model (Figure 5.2(c)) turns out to be both
higher and more complex. By stacking the three landscapes together
(Figure 5.2(d)), the loss surface of the binary BERT stands on the top
with a clear margin with the other two. The steep curvature of the loss

80 CHAPTER 5. BINARYBERT

surface reflects a higher sensitivity to binarization, which attributes to
the training difficulty.

Steepness Measurement. To quantitatively measure the steepness of
loss landscape, we start from a local minima w and apply the second order
approximation to the curvature. According to the Taylor’s expansion,
the loss increase induced by quantizing w can be approximately upper
bounded by

`(ŵ)− `(w) ≈ ε>Hε ≤ λmax‖ε‖2, (5.4)

where ε = w − ŵ is the quantization noise, and λmax is the largest
eigenvalue of the Hessian H at w. Note that the first-order term is
skipped due to ∇`(w) = 0. Thus we take λmax as a quantitative
measurement for the steepness of the loss surface. Following [177] we
adopt the power method to compute λmax. As it is computationally
expensive to estimate H for all w in the network, we consider them
separately as follows: (1) the query/key layers (MHA-QK), (2) the value
layer (MHA-V), (3) the output projection layer (MHA-O) in the multi-
head attention, (4) the intermediate layer (FFN-Mid), and (5) the output
layer (FFN-Out) in the feed-forward network. Note that we group key
and query layers as they are used together to calculate the attention
scores.

From Figure 5.3, the top-1 eigenvalues of the binary model are
higher both on expectation and standard deviation compared to the
full-precision baseline and the ternary model. For instance, the top-1
eigenvalues of MHA-O in the binary model are ∼ 15× larger than the
full-precision counterpart. Therefore, the quantization loss increases of
the full-precision and ternary model are tighter bounded than the binary
model in Equation (5.4). The highly complex and irregular landscape by
binarization thus poses more challenges to the optimization.

5.3 Proposed Method

5.3.1 Ternary Weight Splitting

Given the challenging loss landscape of binary BERT, we propose ternary
weight splitting (TWS) that exploits the flatness of ternary loss landscape
as the optimization proxy of the binary model. As is shown in Figure 5.4,
we first train the half-sized ternary BERT to convergence, and then
split both the latent full-precision weight wt and quantized ŵt to their

5.3. PROPOSED METHOD 81

Figure 5.4: The overall workflow of training BinaryBERT. We first train
a half-sized ternary BERT model, and then apply ternary weight splitting
operator (Equations (5.6) and (5.7)) to obtain the latent full-precision and
quantized weights as the initialization of the full-sized BinaryBERT. We then
fine-tune BinaryBERT for further refinement.

binary counterparts wb
1,wb

2 and ŵb
1, ŵb

2 via the TWS operator. To inherit
the performance of the ternary model after splitting, the TWS operator
requires the splitting equivalency (i.e., the same output given the same
input):

wt = wb
1 + wb

2, ŵt = ŵb
1 + ŵb

2 . (5.5)

While solution to Equation (5.5) is not unique, we constrain the latent
full-precision weights after splitting wb

1,wb
2 to satisfy wt = wb

1 + wb
2 as

wb1,i =


a · wti if ŵti 6= 0
b+ wti if ŵti = 0, wti> 0
b otherwise

, (5.6)

wb2,i =


(1−a)wti if ŵti 6= 0
−b if ŵti = 0, wti> 0
−b+ wti otherwise

, (5.7)

where a ∈ (0, 1) and b ≥ 0 are the variables to solve. To obtain the
expressions for a and b, we denote I = {i | ŵti 6= 0}, J = {j | ŵtj =
0 and wtj > 0} and K = {k | ŵtk = 0 and wtk < 0}. According to the
BWN quantizer introduced in S†ection 5.2, we have

ŵb1,i = α1sign(wb1,i),

where
α1 = 1

n

[∑
i∈I
|awti|+

∑
i∈J
|wtj + b|+

∑
i∈K
|b|
]
.

82 CHAPTER 5. BINARYBERT

Similarly,
ŵb2,i = α2sign(wb2,i),

where
α2 = 1

n

[∑
i∈I
|(1− a)wti|+

∑
j∈J
| − b|+

∑
k∈K
|wtk − b|

]
.

Since ŵt = ŵb
1 + ŵb

2, for those ŵti = ŵb1,i + ŵb2,i = 0, we have

1
n

[∑
i∈I
|awti|+

∑
j∈J
|wtj + b|+

∑
k∈K
|b|
]

= 1
n

[∑
i∈I
|(1−a)wti|+

∑
j∈J
| − b|+

∑
k∈K
|wtk−b|

]
.

By assuming 0 < a < 1 and b > 0, this can be further simplified to

a
∑
i∈I
|wti|+

∑
j∈J
|wtj| = (1− a)

∑
i∈I
|wti|+

∑
k∈K
|wtk|,

which gives the solution of a as

a =
∑
i∈I |wti|+

∑
j∈J |wtj| −

∑
k∈K |wtk|

2∑i∈I |wti|
. (5.8)

We empirically find the solution satisfies 0 < a < 1. To solve b, we take
| · | as the cardinality of the set. Then for ŵti 6= 0, from ŵti = ŵb1,i + ŵb2,i,
we have

1
|I|

∑
i∈I
|wti| = α1 + α2

= 1
n

[∑
i∈I
|awti|+

∑
j∈J
|wtj + b|+

∑
k∈K
|b|
]

+ 1
n

[∑
i∈I
|(1−a)wti|+

∑
j∈J
| − b|+

∑
k∈K
|wtk−b|

]
= 1
n

[∑
i∈I
|wti|+

∑
j∈J
|wtj|+

∑
k∈K
|wtk|

+ 2
∑
j∈J
|b|+ 2

∑
k∈K
|b|
]

= 1
n

[n∑
i=1
|wti|+ 2(|J |+ |K|) · b

]
.

Thus the solution for b is

b =
n
|I|
∑
i∈I |wti| −

∑n
i=1 |wti|

2(|J |+ |K|) , (5.9)

5.3. PROPOSED METHOD 83

which satisfies b > 0.

With Equation (5.8) and Equation (5.9), the ternary weight splitting
in Equation (5.6) and Equation (5.7) can be performed on the fly
immediately given a half-sized ternary BERT.

Quantization Details. Following [6], for each weight matrix in the
Transformer layers, we use layer-wise ternarization (i.e., one scaling
parameter for all elements in the weight matrix). For word embedding,
we use row-wise ternarization (i.e., one scaling parameter for each row
in the embedding). After splitting, each of the two split matrices has its
own scaling factor.

Aside from weight binarization, we simultaneously quantize activa-
tions before all matrix multiplications, which could accelerate inference
on specialized hardwares [177, 114]. Following [114, 6], we skip the quan-
tization for all layer-normalization (LN) layers, skip connections, and bias
as their calculations are negligible compared to matrix multiplication.
The last classification layer is also not quantized to avoid a large accuracy
drop.

Training with Knowledge Distillation. Knowledge distillation is shown
to benefit BERT quantization [6]. Following [51, 6], we first perform
intermediate-layer distillation from the full-precision teacher network’s
embedding E, layer-wise MHA output Ml and FFN output Fl to the
quantized student counterpart Ê, M̂l, F̂l (l = 1, 2, ...L). We aim to
minimize their mean sqaured errors, i.e., `emb = MSE(Ê,E), `mha =∑
lMSE(M̂l,Ml), and `ffn = ∑

lMSE(F̂l,Fl). Thus the objective
function is

`int = `emb + `mha + `ffn. (5.10)

We then conduct prediction-layer distillation by minimizing the soft
cross-entropy (SCE) between quantized student logits ŷ and teacher
logits y, i.e.,

`pred = SCE(ŷ,y). (5.11)

Further Fine-tuning. After splitting from the half-sized ternary model,
the binary model inherits its performance on a new architecture with full
width. However, the original minimum of the ternary model may not
hold in this new loss landscape after splitting. Thus we further fine-tune
with prediction-layer distillation to look for a better solution. We dub

84 CHAPTER 5. BINARYBERT

the resulting model as BinaryBERT.

5.3.2 Adaptive Splitting

Our proposed approach also supports adaptive splitting that can flexibly
adjust the width of BinaryBERT, based on the parameter sensitivity
to binarization and resource constraints of edge devices. Specifically,
given the resource constraints C of various edge devices (e.g., model
size and computational FLOPs), we first train a mixed-precision model
adaptively (with sensitive parts being ternary and the rest being binary),
and then split ternary weights into binary ones. Therefore, adaptive
splitting finally enjoys consistent arithmetic precision (1-bit) for all
weight matrices, which is usually easier to deploy than the mixed-
precision counterpart.

Sensitivity Measurement. Intuitively, we assign ternary values to
weight matrices that are more sensitive to quantization. The adaptive
splitting requires to first estimate the quantization sensitivity vector
u ∈ RZ

+, where Z is the total number of splittable weight matrices in
all Transformer layers, the word embedding layer and the pooler layer.
We study the sensitivity u in two aspects: the Transformer parts, and
the Transformer layers. For Transformer parts, we follow the weight
categorization in Section 5.2.2: MHA-Q/K, MHA-V, MHA-O, FFN-
Mid and FFN-Out. For each of them, we compare the performance
gap between quantizing and not quantizing that part (e.g., MHA-V),
while leaving the rest parts all quantized (e.g., MHA-Q/K, MHA-O,
FFN-Mid and FFN-Out). Similarly, for each Transformer layer, we
quantize all layers but leave the layer under investigation un-quantized,
and calculate the performance gain compared with the fully quantized
baseline. The performance gain of both Transformer parts and layers is
shown in Figure 5.5. As can be seen, for Transformer parts, the FFN-
Mid and MHA-Q/K rank in the first and second place. In terms of
Transformer layers, shallower layers are more sensitive to quantization
than the deeper ones.

However, the absolute performance gain may not truly reflect the
quantization sensitivity directly, since Transformer parts have different
number of parameters. Therefore, we further divide the performance
gain by the number of parameters in that part or layer, so as to obtain
the parameter-wise performance gain. We are thus able to measure
the quantization sensitivity of the ith Transformer part in the jth

5.4. EXPERIMENTS 85

Transformer layer by summing their parameter-wise performance gain
together. We also apply the same procedure to word embedding and the
pooler layer to obtain their sensitivity scores.

Formulation. Given the sensitivity vector u, adaptive splitting can be
formulated as a combinatorial optimization problem. Specifically, the
splitting assignment can be represented as a binary vector s ∈ {0, 1}Z ,
where sz = 1 means to ternarize the z-th weight matrix, and vice versa.
We also denote c ∈ RZ

+ as the cost vector, which stores the additional
increase of parameter or FLOPs of each ternary weight matrix against a
binary choice. The optimal assignment s∗ can thus be solved from the
following constrained problem:

maxs u>s , (5.12)
s.t. c>s ≤ C − C0, s ∈ {0, 1}Z ,

where C is the pre-specified resource constraint. C0 is the baseline
efficiency of the half-sized binary network, which is of the minimal
resource consumption. Equation (5.12) can be solved by dynamic
programming as a knapsack problem, where the constraint C − C0 is
the volume of the knapsack, and the sensitivity scores u are the item
values.

5.4 Experiments

In this section, we empirically verify our proposed approach on the
GLUE [187] and SQuAD [188, 191] benchmarks. We first introduce
the experimental setup in Section 5.4.1, and then present the main
experimental results on both benchmarks in Section 5.4.2. We compare
with other state-of-the-arts in Section 5.4.3, and finally provide more
discussions on the proposed methods in Section 5.4.4.

5.4.1 Experimental Setup

Dataset and Metrics. The GLUE benchmark contains multiple natural
language understanding tasks. We follow [11] to evaluate the performance
on these tasks: Matthews correlation for CoLA, Spearman correlation
for STS-B and accuracy for the rest tasks: RTE, MRPC, SST-2, QQP,
MNLI-m (matched) and MNLI-mm (mismatched). For machine reading
comprehension on SQuAD, we report the EM (exact match) and F1
score.

86 CHAPTER 5. BINARYBERT

(a) Transformer Parts.

(b) Transformer Layers.

Figure 5.5: The performance gain of different Transformer parts and layers in
descending order. All numbers are averaged by 10 random runs with standard
deviations reported.

Aside from the task performance, we also report the model size (MB)
and computational FLOPs at inference. For quantized operations, we
follow [29, 47, 32] to count the bit-wise operations, i.e., the multiplication
between an m-bit number and an n-bit number approximately takes
mn/64 FLOPs for a CPU with the instruction size of 64 bits.

Implementation. We take DynaBERT [41] sub-networks as backbones
as they offer both half-sized and full-sized models for easy comparison.
We start with a ternary model of width 0.5× by conducting two-stage
knowledge distillation introduced in Section 5.3.1, i.e., intermediate-
layer distillation (Int. Dstil.) and prediction-layer distillation (Pred.
Dstil.). Then we perform ternary weight splitting to obtain a full-sized
binary model, followed by fine-tuning (Split Ft.) with only prediction-
layer distillation. The initial learning rate is set as 5 × 10−5 for the
intermediate-layer distillation, and 2 × 10−5 for the prediction-layer
distillation, both of which linearly decay to 0 at the end of training.
We conduct experiments on GLUE tasks both without and with data
augmentation (DA) except for MNLI and QQP due to their limited
performance gain. The running epochs for MNLI and QQP are set to
3, and 6 for the rest tasks if without DA and 1 otherwise. For the rest

5.4. EXPERIMENTS 87

Table 5.1: Hyper-parameters for training BinaryBERT on the GLUE bench-
mark at different stages.

BinaryBERT
Int. Dstil.
(Ternary)

Pred. Dstil.
(Ternary)

Split Ft.
(Binary)

Batch Size 32 32 32
Sequence Length 128 128 128
Learning rate (LR) 5e-5 2e-5 2e-5
LR Decay Linear Linear Linear
Warmup portion 0.1 0.1 0.1
Weight Decay 1e-2 1e-2 1e-2
Gradient Clipping 1 1 1
Dropout 0.1 0.1 0.1
Epochs w/o DA
-other dataserts 6 6 6

Epochs w DA
-other dataserts 1 1 1

Epochs w/o DA
-MNLI, QQP 3 3 3

hyper-parameters, we follow the default setting in [11]. The detailed
hyper-parameters are summarized in Table 5.1.

We verify our ternary weight splitting (TWS) against vanilla binary
training (BWN), the latter of which doubles training epochs to match
the overall training time in TWS for a fair comparison.

Activation Quantization. While BinaryBERT focuses on weight bina-
rization, we also explore activation quantization in our implementation,
which is beneficial for reducing the computation burden on specialized
hardwares [97, 29, 6]. Aside from 8-bit uniform quantization [6, 177] in
past efforts, we further pioneer to study 4-bit activation quantization.
We find that uniform quantization can hardly deal with outliers in the
activation. Thus we use Learned Step-size Quantization (LSQ) [31] to
directly learn the quantized values, which empirically achieves better
quantization performance.

5.4.2 Experimental Results

88 CHAPTER 5. BINARYBERT

Ta
bl
e
5.
2:

R
es
ul
ts

on
th
e
G
LU

E
de

ve
lo
pm

en
t
se
t.

“#
B
its

(W
-E

-A
)”

re
pr
es
en
ts

th
e
bi
t
nu

m
be

r
fo
r
w
ei
gh

ts
of

Tr
an

sf
or
m
er

la
ye
rs
,
w
or
d

em
be

dd
in
g,

an
d
ac
tiv

at
io
ns
.
“D

A
”
is

sh
or
t
fo
r
da

ta
au

gm
en
ta
tio

n.
“A

vg
."

de
no

te
s
th
e
av
er
ag

e
re
su
lts

of
al
lt

as
ks

in
cl
ud

in
g
M
N
LI
-m

an
d

M
N
LI
-m

m
.
T
he

hi
gh

er
re
su
lts

in
ea
ch

bl
oc
k
ar
e
bo

ld
ed

.

#
Q

ua
nt

#
B

it
s

(W
-E

-A
)

Si
ze

(M
B

)
F

L
O

P
s

(G
)

D
A

M
N

L
I

-m
/m

m
Q

Q
P

Q
N

L
I

SS
T

-2
C

oL
A

ST
S-

B
M

R
P

C
R

T
E

A
vg

.

1
-

fu
ll-

pr
ec

.
41
7.
6

22
.5

-
84
.9
/8
5.
5

91
.4

92
.1

93
.2

59
.7

90
.1

86
.3

72
.2

83
.9

2
B
W

N
1-
1-
8

13
.4

3.
1

7
84
.2
/8
4.
0

91
.1

90
.7

92
.3

46
.7

86
.8

82
.6

68
.6

80
.8

3
T
W

S
1-
1-
8

16
.5

3.
1

7
84

.2
/8

4.
7

91
.2

91
.5

92
.6

53
.4

88
.6

85
.5

72
.2

82
.7

4
B
W

N
1-
1-
4

13
.4

1.
5

7
83
.5
/8
3.
4

90
.9

90
.7

92
.3

34
.8

84
.9

79
.9

65
.3

78
.4

5
T
W

S
1-
1-
4

16
.5

1.
5

7
83

.9
/8

4.
2

91
.2

90
.9

92
.3

44
.4

87
.2

83
.3

65
.3

79
.9

6
B
W

N
1-
1-
8

13
.4

3.
1

3
84
.2
/8
4.
0

91
.1

91
.2

92
.7

54
.2

88
.2

86
.8

70
.0

82
.5

7
T
W

S
1-
1-
8

16
.5

3.
1

3
84

.2
/8

4.
7

91
.2

91
.6

93
.2

55
.5

89
.2

86
.0

74
.0

83
.3

8
B
W

N
1-
1-
4

13
.4

1.
5

3
83
.5
/8
3.
4

90
.9

91
.2

92
.5

51
.9

87
.7

85
.5

70
.4

81
.9

9
T
W

S
1-
1-
4

16
.5

1.
5

3
83

.9
/8

4.
2

91
.2

91
.4

93
.7

53
.3

88
.6

86
.0

71
.5

82
.6

Ta
bl
e
5.
3:

R
es
ul
ts

on
th
e
G
LU

E
te
st

se
t
sc
or
ed

us
in
g
th
e
G
LU

E
ev
al
ua

tio
n
se
rv
er
.

#
Q

ua
nt

#
B

it
s

(W
-E

-A
)

Si
ze

(M
B

)
F

L
O

P
s

(G
)

D
A

M
N

L
I

-m
/m

m
Q

Q
P

Q
N

L
I

SS
T

-2
C

oL
A

ST
S-

B
M

R
P

C
R

T
E

A
vg

.

1
-

fu
ll-

pr
ec

.
41
7.
6

22
.5

-
84
.5
/8
4.
1

89
.5

91
.3

93
.0

54
.9

84
.4

87
.9

69
.9

82
.2

2
B
W

N
1-
1-
8

13
.4

3.
1

7
83
.3
/8
3.
4

88
.9

90
.1

92
.3

38
.1

81
.2

86
.1

63
.1

78
.5

3
T
W

S
1-
1-
8

16
.5

3.
1

7
84

.1
/8

3.
6

89
.0

90
.0

93
.1

50
.5

83
.4

86
.0

65
.8

80
.6

4
B
W

N
1-
1-
4

13
.4

1.
5

7
83
.5
/8
2.
5

89
.0

89
.4

92
.3

26
.7

78
.9

84
.2

59
.9

76
.3

5
T
W

S
1-
1-
4

16
.5

1.
5

7
83

.6
/8

2.
9

89
.0

89
.3

93
.1

37
.4

82
.5

85
.9

62
.7

78
.5

6
B
W

N
1-
1-
8

13
.4

3.
1

3
83
.3
/8
3.
4

88
.9

90
.3

91
.3

48
.4

83
.2

86
.3

66
.1

80
.1

7
T
W

S
1-
1-
8

16
.5

3.
1

3
84

.1
/8

3.
5

89
.0

89
.8

91
.9

51
.6

82
.3

85
.9

67
.3

80
.6

8
B
W

N
1-
1-
4

13
.4

1.
5

3
83
.5
/8
2.
5

89
.0

89
.9

92
.0

45
.0

81
.9

85
.2

64
.1

79
.2

9
T
W

S
1-
1-
4

16
.5

1.
5

3
83

.6
/8

2.
9

89
.0

89
.7

93
.1

47
.9

82
.9

86
.6

65
.8

80
.2

5.4. EXPERIMENTS 89

Table 5.4: Development set results (EM/F1) on SQuAD.

Quant #Bits
(W-E-A)

Size
(MB)

FLOPs
(G)

SQuAD
v1.1

SQuAD
v2.0

- full-prec. 417.6 22.5 82.6/89.7 75.1/77.5
BWN 1-1-8 13.4 3.1 79.2/86.9 73.6/76.6
TWS 1-1-8 16.5 3.1 80.8/88.3 73.6/76.5
BWN 1-1-4 13.4 1.5 77.5/85.8 71.9/75.1
TWS 1-1-4 16.5 1.5 79.3/87.2 72.5/75.4

Results on the GLUE Benchmark

The main results on the development set are shown in Table 5.2. For re-
sults without data augmentation (row #2-5), our ternary weight splitting
method outperforms BWN with a clear margin 1. For instance, on CoLA,
ternary weight splitting achieves 6.7% ↑ and 9.6% ↑ with 8-bit and 4-
bit activation quantization, respectively. While data augmentation (row
6-9) mostly improves each entry, our approach still overtakes BWN
consistently. Furthermore, 4-bit activation quantization empirically
benefits more from ternary weight splitting (row 4-5 and 8-9) compared
with 8-bit activations (row 2-3 and 6-7), demonstrating the potential of
our approach in extremely low bit quantized models.

In Table 5.3, we also provide the results on the test set of GLUE
benchmark. Similar to the observation in Table 5.2, our approach
achieves consistent improvement on both 8-bit and 4-bit activation
quantization compared with BWN.

Results on SQuAD Benchmark

The results on the development set of SQuAD v1.1 and v2.0 are shown
in Table 5.4. Our proposed ternary weight splitting again outperforms
BWN w.r.t both EM and F1 scores on both datasets. Similar to previous
observations, 4-bit activation enjoys a larger gain in performance from
the splitting approach. For instance, our approach improves the EM
score of 4-bit activation by 1.8% and 0.6% on SQuAD v1.1 and v2.0,
respectively, both of which are higher than those of 8-bit activation.

Adaptive Splitting

The adaptive splitting in Section 5.3.2 supports the conversion of mixed
ternary and binary precisions for more-fine-grained configurations. To
verify its advantages, we name our approach as Maximal Gain according

1Note that DynaBERT only squeezes width in the Transformer layers but not the word
embedding layer, thus the split binary model has a slightly larger size than BWN.

90 CHAPTER 5. BINARYBERT

(a) 8-bit Activation. (b) 4-bit Activation.

Figure 5.6: The average performance over six GLUE tasks of adaptive splitting
strategies.

Figure 5.7: The architecture visualization for adaptive splitting on MRPC.
The y-axis records the number of parameters split in each layer instead of the
storage.

to Equation (5.12), and compare it with two baseline strategies i)
Random Gain that randomly selects weight matrices to split; and ii)
Minimal Gain that splits the least important modules according to
sensitivity. We report the average score over six tasks (QNLI, SST-
2, CoLA, STS-B, MRPC and RTE) in Figure 5.6. The end-points
of 9.8MB and 16.5MB are the half-sized and full-sized BinaryBERT,
respectively. As can be seen, adaptive splitting generally outperforms the
other two baselines under varying model sizes, indicating the effectiveness
of maximizing the gain in adaptive splitting.

As an illustration example, we further visualize the architectures
after adaptive splitting on MRPC in Figure 5.7. For clear presentation,
we merge all splittable parameters in each Transformer layer. As the
baseline, 9.8MB refers to no splitting, while 16.5MB refers to splitting
all splittable parameters in the model. According to Figure 5.7, with the
increasing model size, shallower layers are more preferred for splitting
than deeper layers.

5.4. EXPERIMENTS 91

Table 5.5: Comparison with other state-of-the-art methods on development
set of SQuAD v1.1 and MNLI-m.

Method #Bits
(W-E-A)

Size
(MB)

Ratio
(↓)

SQuAD
v1.1

MNLI
-m

BERT-base full-prec. 418 1.0 80.8/88.5 84.6
DistilBERT full-prec. 250 1.7 79.1/86.9 81.6
LayerDrop-6L full-prec. 328 1.3 - 82.9
LayerDrop-3L full-prec. 224 1.9 - 78.6
TinyBERT-6L full-prec. 55 7.6 79.7/87.5 82.8
ALBERT-E128 full-prec. 45 9.3 82.3/89.3 81.6
ALBERT-E768 full-prec. 120 3.5 81.5/88.6 82.0
Quant-Noise PQ 38 11.0 - 83.6
Q-BERT 2/4-8-8 53 7.9 79.9/87.5 83.5
Q-BERT 2/3-8-8 46 9.1 79.3/87.0 81.8
Q-BERT 2-8-8 28 15.0 69.7/79.6 76.6
GOBO 3-4-32 43 9.7 - 83.7
GOBO 2-2-32 28 15.0 - 71.0
TernaryBERT 2-2-8 28 15.0 79.9/87.4 83.5
BinaryBERT 1-1-8 17 24.6 80.8/88.3 84.2
BinaryBERT 1-1-4 17 24.6 79.3/87.2 83.9

5.4.3 Comparison with State-of-the-arts

Now we compare our proposed approach with a variety of state-of-the-art
counterparts, including Q-BERT [177], GOBO [116], Quant-Noise [189]
and TernaryBERT [6]. Aside from quantization, we also compare
with other general compression approaches such as DistillBERT [171],
LayerDrop [170], TinyBERT [51], and ALBERT [174]. The results
are taken from the original papers, respectively. From Table 5.5,
our proposed BinaryBERT has the smallest model size with the best
performance among all quantization approaches. Compared with the
full-precision model, our BinaryBERT retains competitive performance
with a significant reduction of model size and computation. For example,
we achieve more than 24× compression ratio compared with BERT-base,
with only 0.4% ↓ and 0.0%/0.2% ↓ drop on MNLI-m on SQuAD v1.1,
respectively.

5.4.4 Discussion

Further Improvement after Splitting

We now demonstrate the performance gain by refining the binary model
on the new architecture. We evaluate the performance gain after splitting
from a half-width ternary model (TWN0.5×) to the full-sized model
(TWN1.0×) on the development set of SQuAD v1.1, MNLI-m, QNLI and
MRPC. The results are shown in Table 5.6. As can be seen, further fine-
tuning brings consistent improvement on both 8-bit and 4-bit activation.

92 CHAPTER 5. BINARYBERT

Table 5.6: The performance gain by fine-tuning the binary model after split-
ting. 0.5× and 1.0× denote the half-sized and full-sized models, respectively.

Quant #Bits
(W-E-A)

SQuAD
v1.1

MNLI
-m QNLI MRPC

TWN0.5× 2-2-8 80.3/87.9 84.1 91.3 85.7
TWS1.0× 1-1-8 80.8/88.3 84.2 91.6 86.0
TWN0.5× 2-2-4 78.0/86.4 83.7 90.9 85.5
TWS1.0× 1-1-4 79.3/87.2 83.9 91.4 86.0

Table 5.7: Comparison with other binarization methods.

Quant #Bits
(W-E-A)

SQuAD
v1.1

MNLI
-m QNLI SST-2

BWN 1-1-8 79.2/86.9 84.2 91.2 92.7
LAB 1-1-8 79.0/87.0 83.6 91.5 92.8
BiReal 1-1-8 79.4/87.1 83.9 91.4 92.5
BWN† 1-1-8 79.4/87.3 84.2 91.3 92.8
BWN‡ 1-1-8 79.6/87.2 83.5 91.2 92.9
TWS 1-1-8 80.8/88.3 84.2 91.6 93.2
BWN 1-1-4 77.5/85.8 83.5 91.2 92.5
LAB 1-1-4 76.7/85.5 83.3 91.3 92.9
BiReal 1-1-4 76.9/85.4 83.4 91.0 92.8
BWN† 1-1-4 78.2/86.2 83.6 91.3 92.9
BWN‡ 1-1-4 78.3/86.5 83.1 90.9 92.9
TWS 1-1-4 79.3/87.2 83.9 91.4 93.7

Training Curves. Furthermore, we plot the training loss curves of
BWN, TWN and our TWS on MRPC with data augmentation in
Figures 5.8(a) and 5.8(b). Since TWS cannot inherit the previous
optimizer due to the architecture change, we reset the optimizer and
learning rate scheduler of BWN, TWN and TWS for a fair comparison,
despite the slight increase of loss after splitting. We find that our TWS
attains much lower training loss than BWN, and also surpasses TWN,
verifying the advantages of fine-tuning on the wider architecture.

Optimization Trajectory. We also follow [192, 193] to visualize the
optimization trajectory after splitting in Figures 5.8(c) and 5.8(d). We
calculate the first two principal components of parameters in the final
BinaryBERT, which are the basis for the 2-D plane. The loss contour
is thus obtained by evaluating each grid point in the plane. It is found
that the binary models are heading towards the optimal solution for both
8/4-bit activation quantization on the loss contour.

Exploring More Binarization Methods

We now study if there are any improved binarization variants that
can directly bring better performance. Aside from BWN, we compare
with LAB [194] and BiReal [47]. Meanwhile, we compare with gradual

5.5. CONCLUSION 93

(a) 8-bit Activation. (b) 4-bit Activation.

(c) 8-bit Activation. (d) 4-bit Activation.

Figure 5.8: (a) and (b) show the training curves on MRPC under different
activation bits. The red box is enlarged in the sub-figure. (c) and (d)
visualize the fine-tuning trajectories after splitting, on the 2-D loss contour
of BinaryBERT.

quantization, i.e., BWN training based on a ternary model, denoted as
BWN†. Furthermore, we also try the same scaling factor of BWN with
TWN to make the precision change smooth, dubbed as BWN‡. From
Table 5.7, we find that our TWS still outperforms various binarization
approaches in most cases, suggesting the superiority of splitting in finding
better minima than direct binary training.

5.5 Conclusion

In this chapter, we propose BinaryBERT, pushing BERT quantization
to the limit. As a result of the steep and complex loss landscape, we find
directly training a BinaryBERT is hard with a large performance drop.
We thus propose a ternary weight splitting that splits a trained ternary
BERT to initialize BinaryBERT, followed by fine-tuning for further

94 CHAPTER 5. BINARYBERT

refinement. Our approach also supports adaptive splitting that can tailor
the size of BinaryBERT based on the edge device constraints. Empirical
results show that our approach significantly outperforms vanilla binary
training, achieving state-of-the-art performance on BERT compression.
The proposed approach also enjoys the potential to extend to other neural
networks, as splitting ternary parameters to binary branches is agnostic
to the network architecture. We leave this as our future work.

2 End of chapter.

Chapter 6

Revisiting Parameter Sharing
for Neural Architecture
Search

In this chapter, we shift the gear to neural architecture search (NAS), an
orthogonal direction to establish efficient deep learning models. Unlike
network compression and architecture splitting with manual criteria in
previous chapters, NAS constructs network structures automatically from
the pre-defined search space. However, the efficiency of NAS algorithms
has been a major concern. Parameter sharing is widely applied to
improve the NAS efficiency, which reuses parameters among different
network configurations. Nevertheless, it is unclear how parameter sharing
affects the searching process. Towards that end, in this chapter, we
aim at a better understanding and exploitation of parameter sharing.
Our analysis is based on channel number search (CNS), a fundamental
problem in NAS. Specifically, we propose affine parameter sharing (APS)
as a general formulation to unify and quantitatively analyze existing
channel search algorithms. It is found that with parameter sharing,
weight updates of one architecture can simultaneously benefit other
candidates. However, it also results in less confidence in choosing good
architectures. We thus propose a new strategy of parameter sharing
towards a better balance between training efficiency and architecture
discrimination. Extensive analysis and experiments demonstrate the
superiority of the proposed strategy in channel configuration against
many state-of-the-art counterparts on benchmark datasets.

95

96 CHAPTER 6. REVISITING PARAMETER SHARING

6.1 Introduction

Convolutional neural networks (CNNs) have achieved great success
in various areas, but substantial computational overhead limits their
applications on resource-constrained platforms, e.g. mobile devices. To
design light-weighted CNNs, neural architecture search (NAS) has been
broadly adopted for channel number search (CNS) in CNNs [62, 58].
As NAS generally consumes extensive computation resources [3, 65],
parameter sharing [61] is widely applied to improve the searching
efficiency.

In the context of CNS, parameter sharing refers to reusing convolu-
tional kernels of multiple network architectures. While this is intuitively
believed to accelerate network training during searching [63, 58], no
analysis is conducted to study its underlying mechanism. Existing
parameter sharing methods largely rely on hand-crafted heuristics.
For instance, as shown in Figure 6.1, ordinal selection takes channels
ordinally from a shared super kernel to construct different candidates of
that convolutional layer [58, 63, 64, 160, 132, 195]. Independent selection,
as another common practice, instantiates different candidates of a layer
as distinct trainable variables [196, 197, 198]. Though these heuristics
are widely applied, it is still not well understood how parameter sharing
benefits the searching process, and what the potential drawback is.

In this chapter, we formally investigate these questions. We first
establish affine parameter sharing (APS), which unifies previous heuris-
tics as applying different affine transformations on network parameters.
The unified formulation facilitates quantitative analysis of the effect of
parameter sharing. We thus define a metric to measure how much
parameters are shared (a.k.a. sharing level), which is based on the
cross-covariance matrix between different candidate kernels in APS. It
is theoretically found that previous heuristics of ordinal sharing and
independent sharing attain the maximum and minimum of the defined
metric respectively. We show that a higher level of sharing accelerates
the searching process (i.e. faster accuracy rise) by better aligning
the gradients of different candidates. However, this also results in
coupled optimization among different candidates, making architectures
less discriminative. On the contrary, a lower level of sharing can
better distinguish architectures but requires more iterations for searching.
Therefore it remains a trade-off between the searching efficiency and
architecture discrimination. Towards a better balance between the two

6.2. PRELIMINARIES 97

(a) Ordinal Selection. (b) Independent Selection.

Figure 6.1: Previous parameter sharing heuristics. The orange and green
rectangles represent two different channel choices.

aspects, we propose a transitionary strategy for APS. Specifically, the
sharing level is initialized at maximum such that network parameters can
be rapidly optimized in the early stage. Then it is gradually annealed
during the searching process such that good architectures can be better
distinguished.

We conduct extensive experiments to study the effects of parameter
sharing on channel number search. Besides, the transitionary sharing
strategy is shown to achieve a better balance between efficient searching
and architecture discrimination. Experimental results on both CIFAR-10
and ImageNet datasets show that our approach outperforms a number
of competitive counterparts.

6.2 Preliminaries

6.2.1 Problem Setup

Channel number search (CNS) refers to the problem of finding the
optimal channel numbers of convolutional neural networks within the
computational overhead constraint. Prevalent CNS algorithms adopt a
controller π(θ) parameterized by θ for architecture selection, as well as a
super-net containing all possible architectures parameterized by w. For a
L-layer neural network, layerwise channel number decisions are sampled
from π(θ), i.e. a = [a1, ..., aL] ∼ π(θ), where al ∈ A = {1, 2, ..., A}, and
A represents the index set of channel number choices C = {c1, c2, ..., cA}.
Here we formulate CNS based on reinforcement learning (RL) [61, 57] and

98 CHAPTER 6. REVISITING PARAMETER SHARING

take π(θ) as an LSTM controller, while other NAS approaches such as
gradient-based formulation [131, 58] can be similarly established. Given
channel decision a and its associated parameter w(a), the CNS problem
can be formulated as the bi-level optimization problem mentioned in
Section 2.2.2, which aims to maximize the expected reward function
R
(
a,w∗(α)

)
(e.g. the accuracy on the validation set) as follows:

max
θ

Ea∼πθR
(
a,w∗(a)

)
, (6.1)

s.t. w∗(a) = arg min
w(a)
L
(
a,w(a)

)
B
(
w(a)

)
≤ B,

where L
(
a,w(a)

)
is the training objective such as cross-entropy, B

(
w(a)

)
is the network budget function (e.g. FLOPs) and B is the budget
constraint. The controller π(θ) is updated with policy gradient [140].
As searching with explicit constraint is infeasible, one can adopt the
objective developed in [57] and penalize computation-intensive models
softly in the reward function.

6.2.2 Parameter Sharing for CNS

Equation (6.1) forms a typical bi-level optimization problem. To avoid
training the associated parameter w(a) to exact convergence before
evaluating the architecture, parameter sharing [61] is widely applied in
various efficient CNS algorithms. Below we summarize two commonly
used sharing heuristics in CNS, which are outlined in Figure 6.1.

Ordinal Selection. [58, 63, 64, 160, 132] maintains a super kernel
with a sufficiently large width for each layer. For layer l, parameters
of different decisions al are obtained by ordinally selecting the top
cal channels from that kernel. Thus channels with lower indices are
multiplexed across different width decisions.

Independent Selection. [196, 197, 198] instantiates independent
convolutional kernels for each candidate al ∈ A in layer l. It is assumed
that different channel configurations should be treated individually.
Channels of different candidates are non-multiplexed in independent
selection scheme.

6.3. METHODOLOGY 99

Figure 6.2: The overall framework of the proposed affine parameter shar-
ing (APS) for CNS. We take the channel number choices A = {1, 2} for
illustration.

6.3 Methodology

To investigate the role of parameter sharing for CNS, we first establish
affine parameter sharing (APS), a general framework that unifies previous
heuristics. Within APS, we quantitatively evaluate the level of parameter
sharing, and demonstrate how it affects the searching dynamics. Based
on our findings, we propose transitionary APS, a new strategy that
dynamically adjusts the trade-off between efficient training and architec-
ture discrimination. In the following discussion, we follow the standard
notations: For a matrix A ∈ Rm×n, ax ∈ Rm is the x-th column; and
ax,y is the (x, y)-th element of A. ‖ · ‖F refers to the Frobenius norm,
and ‖ · ‖2 is the l2-norm. We denote the range of a matrix A ∈ Rm×n as
R(A) = {Ax | x ∈ Rn}.

6.3.1 Affine Parameter Sharing

To facilitate the analysis of parameter sharing, a first step is to
unify previous parameter sharing heuristics. Towards that end, we
propose affine parameter sharing (APS), a general framework that allows
flexible parameter sharing. Specifically, for each convolutional layer we
maintain a meta-weight W ∈ Rc×c×k×k as the shared parameter pool
for all candidates, where c, k are the number of filters and kernel size
respectively. To transform W to different sizes, we keep two sets of
transformation matrices P =

{
P1, ...,PA

}
and Q =

{
Q1, ...,QA

}
, where

100 CHAPTER 6. REVISITING PARAMETER SHARING

Figure 6.3: A 2-dimensional illustration of affine parameter sharing with
ordinal selection (up) and independent selection (down). The candidate kernel
is constructed by transforming the meta-weights into proper shapes with two
transformation matrices.

Pa,Qa ∈ Rc×ca (c ≥ ca) are designed to be semi-orthogonal 1 such that
the distinctiveness in ca-dimensional space is maximally preserved. Given
decisions on input and output width i, o ∈ A, the candidate parameter
Wi,o ∈ Rci×co×k×k can be obtained by affine transformation as:

Wi,o = (Qi)> ×2 W ×1 Po, (6.2)

where ×d denotes mode d multiplication [127], i.e, the matrix multipli-
cation along the d-th dimension. The scheme of affine parameter sharing
is visualized in Figure 6.2.

Remark. APS can be easily reduced to previous parameter sharing
heuristics with different P and Q. Suppose {ej}cj=1 are standard basis
in Rc. For ∀o, i ∈ A, APS is reduced to ordinal selection [58, 62, 63,
64, 160, 132] by choosing Po = [e1, ..., eco] and Qi = [e1, ..., eci]. On
the other hand, by taking disjoint sets of {ej}cj=1 in Po or Qi, APS is
equivalent to independent selection [196, 197, 198]. A 2-dimensional
illustration is presented in Figure 6.3.

1A ∈ Rm×n is semi-orthogonal if A>A = In for m > n.

6.3. METHODOLOGY 101

6.3.2 Quantitative Measurement

Given the formulation of APS, we are able to quantitatively measure the
level of parameter sharing. For notation simplicity, we treat meta weight
W ∈ RC×C as a 2-D matrix and perform matrix multiplication.

Definition 6.3.1. Assuming each element of meta weight W follows the
standard normal distribution, the level of affine parameter sharing
of two candidate decisions (i, o) and (̃i, õ) is defined as the Frobenius norm
of cross-covariance matrix2 between candidate parameters Wi,o and Wĩ,õ,
i.e. φ(i, o; ĩ, õ) =

∥∥∥ Cov
(
Wi,o,Wĩ,õ

) ∥∥∥2

F
.

In other words, the sharing level can be quantitatively reflected by
the squared sum of pairwise correlations of two candidate parameters.
A large sharing level indicates high coupling between two candidates
and vice versa. Taking the entire search space C into consideration,
we are interested in the overall level of parameter sharing Φ =∑
i≤ĩ
∑
o≤õ φ(i, o; ĩ, õ), as well as its maximal and minimal conditions.

Without loss of generality, assuming ci ≤ cj for i < j, we have the
following theorem:

Theorem 6.3.1. For ∀i ≤ ĩ and ∀o ≤ õ, the overall level Φ of APS is
maximized if R

(
Qi
)
⊆ R

(
Qĩ
)
and R

(
Po
)
⊆ R

(
Põ
)
. Φ is minimized

if R
(
Qi
)
⊆ R⊥

(
Qĩ
)
and R

(
Po
)
⊆ R⊥

(
Põ
)
.

The theorem connects the level of parameter sharing with the range
of transformation matrices P and Q. Notably, previous heuristics of
ordinal selection and independent selection attain maximum and
minimum Φ respectively. With various designs of P and Q, APS allows
more flexible patterns of parameter sharing.

We provide a proof sketch to Thereom 6.3.1 below. We first show
the case of two candidate decision (i, o) and (̃i, õ), after which we can
combine the pairwise optimal conditions together to yield Theorem 6.3.1.
Without loss of generality, suppose cĩ > ci and cõ > co, we have the
following lemma:

Lemma 3. Given candidate decisions (i, o) and (̃i, õ), φ(i, o; ĩ, õ) is
maximized if R(Qi) ⊆ R(Qĩ) and R(Po) ⊆ R(Põ); φ(i, o; ĩ, õ) is

2The cross-covariance matrix between X ∈ Rm×n and Y ∈ Rm̃×ñ is defined as
Cov(X,Y) = E[(X − E(X)) ⊗ (Y − E(Y))>] ∈ Rm×n×m̃×ñ, where ⊗ is the Kronecker
product.

102 CHAPTER 6. REVISITING PARAMETER SHARING

minimized if R(Qi) ⊆ R⊥(Qĩ) or R(Po) ⊆ R⊥(Põ).

Proof. As φ(i, o; ĩ, õ) is defined as the squared sum of pairwise correlation
between Wi,o and Wĩ,õ, we can explicitly write it out as:

φ(i, o; ĩ, õ) =
ci∑
x=1

co∑
y=1

cĩ∑
x̃=1

cõ∑
ỹ=1

[
Covx,y,x̃,ỹ(Wi,o,Wĩ,õ)

]2
(6.3)

=
ci∑
x=1

co∑
y=1

cĩ∑
x̃=1

cõ∑
ỹ=1

[
E
(
W i,o
x,yW

ĩ,õ
x̃,ỹ

)
− E

(
W i,o
x,y

)
E
(
W ĩ,õ
x̃,ỹ

)]2
.

Note that the second term can be removed since E
(
W i,o
x,y

)
= E

(
(qix)>Wpoy

)
=

(qix)>E
(
W)poy = 0 and similarly E

(
W ĩ,õ
x̃,ỹ

)
= 0. Therefore φ(i, o; ĩ, õ) can

be simplified as

φ(i, o; ĩ, õ) =
ci∑
x=1

co∑
y=1

cĩ∑
x̃=1

cõ∑
ỹ=1

E2
[
W i,o
x,y ·W

ĩ,õ
x̃,ỹ

]
(6.4)

=
∑
x,y

∑
x̃,ỹ

E2
[
(qix)>Wpoy · (qĩx̃)>Wpõỹ

]

=
∑
x,y

∑
x̃,ỹ

E2
[
(qix)>Wpoy · (põỹ)>W>qĩx̃

]

=
∑
x,y

∑
x̃,ỹ

(
(qix)>E

[
Wpoy (põỹ)>W>

]
qĩx̃
)2
.

Expanding the expectation E[Wpoy(põỹ)>W>] elementwisely, we have

E


w1poy(põỹ)>w>1 · · · w1poy(põỹ)>w>c

...
. . .

...
wcpoy(põỹ)>w>1 · · · wcpoy(põỹ)>w>c

 =


(poy)>põỹ · · · 0

...
. . .

...
0 · · · (poy)>põỹ

 (6.5)

where we have used the fact that E
[
wmpoy(põỹ)>w>n

]
= (poy)>E

[
w>mwn

]
põỹ =

(poy)>põỹ if m = n, and 0 otherwise. With Equation (6.5), Equation (6.4)
can be simplified to

φ(i, o; ĩ, õ) =
∑
x,x̃

∑
y,ỹ

[
(qix)>qĩx̃ · (poy)>põỹ

]2
(6.6)

=
∑
x,x̃

∑
y,ỹ

[c∑
m=1

qim,xq
ĩ
m,x̃ ·

c∑
n=1

pon,yp
õ
n,ỹ

]2
.

Without loss of generality, we take Qĩ and Põ as standard orthogonal
basis, i.e. qĩx̃,x̃ = 1 and qĩm,x = 0 for m 6= x̃ and x̃ ∈ {1, ..., cĩ}, and

6.3. METHODOLOGY 103

similarly for Põ. Thus Equation (6.6) can be further reduced to

∑
x,x̃

∑
y,ỹ

[
qix̃,x · poỹ,y

]2
=

ci∑
x=1

co∑
y=1

(cĩ∑
x̃=1

(qix̃,x)2
)
·
(cõ∑
ỹ=1

(poỹ,y)2
)

(6.7)

≤
∑
x

∑
y

1 = cico.

The equality holds if qim,x = 0 for m > cĩ and pon,y = 0 for n > cõ.
Therefore the maximum is attained when orthogonal basis of Qi and Po

lie in the span of those in Qĩ and Põ respectively, i.e, R(Qi) ⊆ R(Qĩ)
and R(Po) ⊆ R(Põ).

Conversely, minimum for Equation (6.6) is attained if qim,x = 0 for
m ≤ cĩ or pon,y = 0 for n ≤ cõ, which is equivalent to R(Qi) ⊆ R⊥(Qĩ)
or R(Po) ⊆ R⊥(Põ).

Finally, to prove Theorem 6.3.1, we only need to extend Lemma 3 to
the case of multiple candidate decisions. The maximum and minimum
of Φ = ∑

i,̃i

∑
o,õ φ(i, o; ĩ, õ) can be achieved when each φ(i, o; ĩ, õ)

attains its maximum and minimum respectively. This corresponds to
the intersection of optimal conditions in Lemma 3, which is exactly
Theorem 6.3.1.

6.3.3 Parameter Sharing and the Searching Dynamics

The effects of parameter sharing can be reflected by the impact of
different parameter sharing level Φ in the searching process. Specifically,
we have the following observations:

Parameter Sharing Benefits Efficient Searching. We first investigate
the impact of sharing level Φ on searching efficiency. Given two
candidates (i, o) and (̃i, õ), we check the relationship between Φ and
their gradients alignment on meta-weights W , which is computed by the
cosine similarity:

cos(g, g̃) = g>g̃
‖g‖2 · ‖g̃‖2

, (6.8)

where g = ∇WL
(
Wi,o

)
and g̃ = ∇WL

(
Wĩ,õ

)
. A positive cosine value

indicates that ∇WL
(
Wi,o

)
stands in the same side with ∇WL

(
Wĩ,õ

)
,

thus the gradient update on candidate (i, o) is also a descent direction
for the other configuration (̃i, õ). We plot the sharing level Φ against
the averaged cosine similarity on a 20-layer residual network, shown in
Figure 6.4(a), It can be observed that a larger Φ gives more alignment of

104 CHAPTER 6. REVISITING PARAMETER SHARING

(a) Φ v.s. Gradient Cosines Similarity. (b) Φ v.s. Norm of Coupled Gradients.

Figure 6.4: The variation of Φ against the cosine similarity (left) and the
norm of coupled gradients (right). We take the training of a 20-layer residual
network for demonstration.

gradients. In other words, each gradient update simultaneously benefits
multiple architectures with parameter sharing, and thus accelerates the
searching process in the sense of accuracy raise.

Parameter Sharing Couples Architecture Optimization. As a side
effect of efficient searching, sharing parameters inevitably couples the
update of multiple architectures. We temporarily clean the notation
by abbreviating the forwarding kernel Wt = Wit,ot , transformation
matrices Pt = Pot and Qt = Qit at time step t. Given decisions
(it, ot), the forwarding kernel can be updated as Wt = (Qt)>W t−1Pt −
η(Qt)>Qt−1

(
∇WL(Wt−1)

)
(Pt−1)>Pt. For it = it−1 and ot = ot−1, the

semi-orthogonality constraints on Pt and Qt reduce the update to the
gradient descent on the same architecture. However, when it 6= it−1

or ot 6= ot−1, the update from other candidates interfere the current
candidate. By expanding all historical updates and re-arranging them
properly, we have:

Wt = (Qt)>W0Pt (6.9)
− η

∑
it̃=it
ot̃=ot

(Qt)>Qt̃
(
∇WL(Wt̃)

)
(Pt̃)>Pt

︸ ︷︷ ︸
Normal updates on the current candidate

− η
∑

it̃ 6=it,or
ot̃ 6=ot

(Qt)>Qt̃
(
∇WL(Wt̃)

)
(Pt̃)>Pt

︸ ︷︷ ︸
Coupled updates from other candidates

.

In Figure 6.4(b), we compare the sharing level Φ against the Frobenius
norm of coupled gradient (i.e, the third term) on the same 20-layer
residual network. A larger Φ gives rise to more coupling among candi-

6.3. METHODOLOGY 105

dates, which could make the controller less discriminative to distinguish
different architectures.

6.3.4 Transitionary Strategy

With the above analysis, we see that a higher level of sharing accelerates
the searching process but couples the optimization of different candidates,
making them less discriminative to the controller. It is thus critical to
balance these two aspects. Towards that end, we propose a transitionary
strategy for APS. We initialize P ,Q with ordinal selection, where Φ
attains its maximum and gradually anneal it. A large Φ in the early
stages quickly warms up the network, while the annealed Φ later on
decouples the optimization and thus gives higher confidence to good
architectures. The transition can be realized by minimizing the APS
sharing level Φ with regard to P ,Q as follows:

min
P,Q

Φ =∆
∑
i≤ĩ

∑
o≤õ

∥∥∥∥ Cov
(

Wi,o,Wĩ,õ
) ∥∥∥∥2

F

=
∑
i≤ĩ

∑
o≤õ
‖Qi>Qĩ‖2

F · ‖Po>Põ‖2
F ,

s.t.
∥∥∥pox∥∥∥2

2
= 1,

∥∥∥qiy∥∥∥2

2
= 1,

x ∈ {1, ..., co}, y ∈ {1, ..., ci} and i, o ∈ A,

(6.10)

where the unit length constraints prevent the trivial zero solution. Note
that the original semi-orthogonality constraints on Po,Qi lead to a
Stiefel manifold optimization [199] problem, which is computationally
expensive. Instead, Equation (6.10) provides an feasible reformulation
to the problem. We apply projected gradient descent to update Po and
Qi as:

pox ← ΠU(pox − τ∇poxΦ), qiy ← ΠU(qiy − τ∇qiyΦ), (6.11)

where U = {u ∈ RC | ‖u‖2 = 1}. The learning rate τ controls the
transition rate of Φ. Therefore, P , Q control the transition of parameter
sharing, and W is updated for the task-specific loss, both of which
are optimized in a decoupled way. Note that direct optimization of
the sharing level Φ could be computationally expensive. Instead, we
alternatively update P,Q to minimize Φ with lower frequencies. For
instance, we fix P to optimize Q for ten iterations, where the product
terms of P are computed in advance and can be reused them for multiple
turns. In this way, the computational burden can be effectively reduced.

106 CHAPTER 6. REVISITING PARAMETER SHARING

Algorithm 4 RL-based CNS algorithm with Transitionary APS.
Input:

Training data Dtr, validation data Dval
Base network with meta weights W , transformation matrices P ,Q
RL controller π(θ) and channel search space C

Output:
Optimal channel configurations
. Stage 1: fast optimization of meta-weights W

1: Initialize P ,Q with maximal Φ
2: for t = 1, ..., T1 do
3: Sample the architecture a uniformly from C
4: Update W via gradient descent with a on Dtr
5: end for
. Stage 2: transitionary affine parameter sharing

6: for t = 1, ..., T2 do
7: Sample the architecture from controller a ∼ π(θ)
8: Update W via gradient descent with a on Dtr
9: Update θt+1 = θt + ηEa [∇θ log p(a)R] on Dval

10: Anneal Φ by updating P ,Q in Equation (6.11)
11: end for

6.3.5 Overall Workflow

An overall workflow is shown in Algorithm 4, which consists of two
stages. In the first stage, we fix the controller π(θ) and initialize Φ
of affine parameter sharing with maximal value, so that meta weights
W can be efficiently optimized. During this stage, architectures are
uniformly sampled from the search space C and are thus equally updated.
In the second stage, we gradually anneal Φ via Equation (6.11) so as
to transit the sharing level Φ. We alternatively update meta weights
W and controller parameter θ based on architectures sampled from the
controller.

6.4 Experiments

In this section, we first demonstrate the effect of parameter sharing
and the advantage of the proposed transitionary strategy for CNS
in Section 6.4.2. Then we compare to state-of-the-art algorithms
in Section 6.4.3. Code is available at https://github.com/haolibai/
APS-channel-search.

https://github.com/haolibai/APS-channel-search
https://github.com/haolibai/APS-channel-search

6.4. EXPERIMENTS 107

6.4.1 Experimental Setup

We conduct experiments on CIFAR-10 [200] and ImageNet 2012 [7],
following standard data pre-processing techniques in [109, 130]. A brief
summarization of experimental setup is introduced below.

CIFAR-10 Experiments. For CIFAR-10, we take ResNet [109] as base
models similar to [58, 65]. To be consistent with [58], the total searching
epoch is set to 600, which can be finished within 6.9 hours for ResNet-
20 and 8.6 hours for ResNet-56 on a single NVIDIA Tesla-P40. The
first 200 epochs are used for warm-up training with fixed P ,Q, and
candidate architectures are uniformly sampled from C. The rest 400
epochs are left for the transition and training of the RL controller. We set
C = {16, 32, 64, 96} for the analysis of parameter sharing in Section 6.4.2
and 100% FLOPs search, and C = {4, 8, 16, 32, 64} when searching for
more compact model to compare to other baselines in Section 6.4.3. Note
that in CIFAR-10 experiments all convolutional layers share the same
search space, which is free from domain expertise on the search space
design.

ImageNet Experiments. For ImageNet experiments, we choose ResNet-
18 and MobileNet-v2 as base models. For memory efficiency, we
increase candidate channels after each down-sampling layer according
to default expansion rates of base models. The initial candidates C are
set to {32, 48, 64, 80} for ResNet18 and {8, 12, 16, 20} for MobileNet-v2
respectively. We search for 160 epochs where the first 80 epochs are for
warm-up training. The whole searching process can be finished within
24 hours for ResNet-18 and 48 hours for MobileNet-v2 on four NVIDIA
Tesla-P40s.

Implementation Details. We follow the RL-based NAS algorithm for
channel number search, which is previously introduced in Section 2.2.
We adopt the budget-regularized reward in Equation (2.21), and use
the REINFORCE [180] algorithm to update the RL controller. Fol-
lowing [61], we take a two-layer recurrent neural network for controller
network, where the layer-wise dependencies of channel configurations can
be incorporated into LSTM cells.

The detailed hyper-parameters for the RL-based CNS algorithms on
both CIFAR-10 and ImageNet datasets are shown in Table 6.1. Given the
searched architecture, we follow the default settings of the base models

108 CHAPTER 6. REVISITING PARAMETER SHARING

to train stand-alone models from scratch to obtain the final performance.

Table 6.1: Hyper-parameters for different base models on CIFAR-10 and
ImageNet.

Hyper-parameters CIFAR-10 ImageNet
ResNet-20 ResNet-56 ResNet-18 MobileNet-v2

Channel Number C [4,8,16,32,64] [4,8,16,32,64] [32,48,64,80] [8,12,16,20]
Width Multipliers 1 1 2 default

Max Channel Width c 208 208 128 32
Batch Size Per GPU 256 256 64 64

Init. Learning Rate of W 1e-1 1e-1 1e-1 5e-2
Learning Rate Decay Stepwise Stepwise Cosine Cosine

Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9
Nestrov False False True True

Learning Rate of P ,Q 1e-3 1e-3 1e-3 1e-3
Learning Rate of θ 1.6e-4 1.6e-4 1.6e-4 1.6e-4
FLOPs Penalty α, β 0, -0.1 0, -0.06 0, -0.1 0,-0.1

Entropy Regularization 4e-3 4e-3 5e-1 4e-1
Weight Decay 2e-4 2e-4 1e-4 4e-5

Warmup Epochs 200 200 80 80
Max Epochs 600 600 160 160

6.4.2 The Effect of Parameter Sharing

We use ResNet-20 on CIFAR-10 for illustration. We denote the
transitionary strategy as APS-T, and compare it against APS-O (ordinal
selection) and APS-I (independent selection), which attain maximum
and minimum of Φ respectively. Given no FLOPs constraint, the
oracle architecture is supposed to attain the maximum channel capacity.
Therefore, we perform the search without FLOPs constraint to compare
how close the searched architecture is to this optimal oracle solution.

Network Optimization. To inspect the optimization dynamics, we plot
the accuracy curvature of training, evaluation, the variation of averaged
alignment of gradients (cos(g, g̃)) as well as the parameter sharing level
Φ in Figure 6.5. It can be found that the accuracy of both ASP-
O and ASP-T raises much faster than ASP-I. This indicates that the
maximized parameter sharing can indeed accelerate the optimization
especially during the warm-up period (first 200 epochs). From the
rightmost figure, the alignment of gradients decreases with the annealed
sharing level Φ when APS-T is applied. Nevertheless, it does not affect
the accuracy much in late stages when APS-O, APS-I, and APS-T are
mostly overlapped.

6.4. EXPERIMENTS 109

Fi
gu

re
6.
5:

T
he

le
ft

th
re
e
fig

ur
es

sh
ow

th
e
A
cc
ur
ac
y
cu

rv
at
ur
e
w
ith

A
PS

-O
,A

PS
-I

an
d
A
PS

-T
.F

or
ev
al
ua

tio
n,

w
e
sa
m
pl
e
20

ar
ch
ite

ct
ur
es

an
d
re
po

rt
av
er
ag

e
an

d
m
ax

im
al

ac
cu

ra
cy
.
T
he

rig
ht
m
os
t
fig

ur
e
sh
ow

s
th
e
av
er
ag

ed
al
ig
nm

en
t
of

gr
ad

ie
nt
s

(c
os

(g
,g̃

))
of

A
PS

-O
,A

PS
-I

an
d

A
PS

-T
,a

s
w
el
la

s
th
e
ch
an

ge
of

th
e
co
rr
es
po

nd
in
g
pa

ra
m
et
er

sh
ar
in
g
le
ve
lΦ

fo
r
A
PS

-T
al
on

g
th
e
se
ar
ch
in
g
tr
aj
ec
to
ry
.

Fi
gu

re
6.
6:

T
he

le
ft

th
re
e
fig

ur
es

sh
ow

th
e
la
ye
r-
w
ise

de
ci
sio

n
pr
ob

ab
ili
tie

s
of

co
nt
ro
lle

r
π
on

R
es
N
et
-2
0
ov
er

th
e
la
st

10
0
tr
ai
ni
ng

ep
oc
hs
.

T
he

so
lid

lin
e
de

no
te
s
th
e
ex
pe

ct
ed

lo
gi
t
va
lu
es
,a

nd
sh
ad

ow
ed

ar
ea
s
ar
e

95
%

co
nfi

de
nc

e
in
te
rv
al
s.

T
he

rig
ht
m
os
t
fig

ur
e
sh
ow

s
th
e
av
er
ag

ed
no

rm
of

co
up

le
d
gr
ad

ie
nt
s
of

A
PS

-O
,A

PS
-I

an
d
A
PS

-T
re
sp
ec
tiv

el
y,

as
w
el
la

s
th
e
ch
an

ge
of

th
e
co
rr
es
po

nd
in
g
pa

ra
m
et
er

sh
ar
in
g
le
ve
lΦ

fo
r

A
PS

-T
al
on

g
th
e
se
ar
ch
in
g
tr
aj
ec
to
ry
.

110 CHAPTER 6. REVISITING PARAMETER SHARING

Figure 6.7: Accuracies with dif-
ferent learning rates of P ,Q.

Figure 6.8: Accuracies of the
top-N likely sampled models.

Architecture discrimination. The architecture discrimination can be
reflected by the probabilities of layer-wise channel decisions from the
controller after searching. From Figure 6.6, APS-O cannot effectively
distinguish the best choice (96) and the second best choice (64) through-
out all layers. APS-I separates different candidates by a large margin
especially in deep layers but is sometimes stuck in incorrect local optima.
This is possibly due to the incorrect reward from the insufficiently trained
meta weights to the controller, such that the controller cannot explore
better solution space. Finally, our APS-T confidently separates each
candidate, and the optimal solution of maximum channel capacity can
be stably attained across different runs. We also plot the variation
of the averaged norm of coupled gradients and parameter sharing
level Φ in the rightmost of Figure 6.6. The transitionary strategy
successfully decreases the norm of coupled gradients that facilitates
better architecture discrimination.

Transition Rate. We study the learning rate τ of P ,Q that controls
the speed of the transition. We enumerate over τ ∈ {1e-1, 1e-2, 1e-3, 1e-4},
and the converged values of Φ are: 2.78e4, 2.20e3, 2.70e2, 5.05e4
respectively. We first plot accuracy curvatures in Figure 6.7. It can
be found that a large τ (e.g. 1e-1) makes the transition non-smooth,
which leads to a sudden drop of accuracy. Then we plot the probabilities
of layerwise channel decisions under different learning rates in Figure 6.9.
We see that either large or small τ cannot separate different architectures
with insufficiently optimized Φ, while only a proper learning rate (e.g.

6.4. EXPERIMENTS 111

Figure 6.9: Probabilities of layer-wise channel decisions with different learning
rates of P ,Q.

1e-3) produces more discriminative candidates with lower Φ.

Sampled Architectures. For practical deployment, it is necessary to
check the overall qualities of sampled architectures. We generate top-
N architectures via beam search according to the sequence likelihood
by the controller, and train them from scratch to obtain the final
performance. We conduct both unlimited FLOPs budget search and
2.05e7 FLOPs constraint (∼50% of the original ResNet-20) search, and
plot the accumulated accuracies of top-N likely models in Figure 6.8.
Both mean and standard deviation are reported. It can be found that
given no FLOPs constraint, APS-T clearly outperforms APS-O and
APS-I, as the top-N models of APS-T distribute around the optimal
solution. Under FLOPs constraint, APS-T still outperforms the other
two. The improvement decreases as N increases, indicating that with
APS-T, better architectures can be picked with higher probabilities.

6.4.3 Comparisons with state-of-the-arts

Finally, we compare APS-T against many state-of-the-art methods
ranging from hand-crafted (HC) channel pruning [25, 201, 202], to
automatic (Auto) channel search [58, 62, 63]. We perform the search
under different FLOPs constraints, and then apply beam search to
generate top-N architectures according to the sequence likelihood from

112 CHAPTER 6. REVISITING PARAMETER SHARING

Table 6.2: Comparison of different algorithms for ResNet-20 and ResNet-56 on
CIFAR10. Drops↓ denotes the decrease of accuracy comparing to base models,
and Ratio↓ is the reduction of FLOPs. - stands for unavailable records. *
denotes the results reported with knowledge distillation/depth search and †
indicates results reported with pre-trained model, both of which are absent in
our model.

Methods Types ResNet-20 ResNet-56

Accuracy Drop↓ FLOPs Ratio↓ Accuracy Drop↓ FLOPs Ratio↓

Original - 92.78% - 40.8M 0.0% 94.28% - 126.0M 0.0%
CP [25] HC - - - - 91.80% 1.00% 62.9M 50.0%
LCCL [201] HC 91.68% 1.06% 26.1M 36.0% 92.81% 1.54% 78.1M 37.9%
SFP [202] HC 90.83% 1.37% 24.3M 42.2% 93.35% 0.24% 59.4M 52.6%
FPGM [203] HC 91.09% 1.11% 24.3M 42.2% 92.93% 0.66% 59.4M 52.6%
FPGM† [203] HC - - - - 93.49% 0.10% 59.4M 52.6%
AMC [65] Auto - - - - 91.90% 0.90% 62.9M 50.0%
TAS-W [58] Auto 91.99% 0.89% 19.9M 51.3% 92.87% 1.59% 63.1M 49.9%
TAS-W* [58] Auto 92.31% 0.57% 19.9M 51.3% 93.69% 0.77% 59.5M 52.7%
APS-O Auto 91.61% 1.17% 19.1M 53.4% 92.93% 1.35% 57.7M 53.9%
APS-I Auto 91.24% 1.54% 21.5M 47.5% 92.85% 1.43% 57.8M 53.8%
APS-T Auto 92.02% 0.76% 20.6M 49.6% 93.42% 0.86% 60.3M 51.8%
APS-T Auto 93.14% -0.36% 41.7M -2.3% 94.54% -0.26% 122.5M 2.7%

(a) ResNet-20@CIFAR-10. (b) ResNet-18@ImageNet.

Figure 6.10: Comparison under different FLOPs constraint.

the RL controller. We choose the architecture closest to the target FLOPs
from the top-N candidates, and train it from scratch to obtain the final
performance. The results on CIFAR-10 and ImageNet are shown in
Table 6.2 and Table 6.3 respectively.

From Table 6.2, APS-T discovers architectures with better or com-
parable performance under various FLOPs constraints. Note that this is
achieved with all layers sharing the same set of candidate widths, without
domain expertise on the design of search space. Moreover, searching with
100% FLOPs of ResNet-20 and ResNet-56 increase 0.36% and 0.26%
accuracy respectively comparing to base models. Finally, APS-T also
outperforms APS-I and APS-O by a clear margin, demonstrating the

6.4. EXPERIMENTS 113

Table 6.3: Comparison for ResNet-18 and MobileNet-V2 on ImageNet. *
denotes original results with knowledge distillation.

Methods Types Top-1 Acc Top-5 Acc FLOPs Ratio↓

Resnet-18 [109] - 69.76% 89.08% 1.82G 0.0%
LCCL [201] HC 66.33% 86.94% 1.19G 34.6%
SFP [202] HC 67.10% 87.78% 1.06G 41.8%
FPGM [203] HC 68.41% 88.48% 1.06G 41.8%
TAS [58] Auto 69.15% 89.19% 1.21G 33.3%
APS-O Auto 68.60% 88.44% 1.04G 42.9%
APS-I Auto 68.32% 88.21% 1.05G 41.8%
APS-T Auto 69.34% 88.89% 1.05G 41.8%
APS-T Auto 70.17% 89.59% 1.36G 24.9%
APS-T Auto 71.67% 90.36% 1.83G -0.9%
MobileNet-V2 [130] - 71.80% 91.00% 314M 0.0%
×0.65 scaling HC 67.20% - 140M 55.4%
MetaPrune [62] Auto 68.20% - 140M 53.3%
MetaPrune [62] Auto 72.70% - 300M 4.4%
AutoSlim [63] Auto 72.49% 90.50% 305M 2.9%
AutoSlim* [63] Auto 74.20% - 305M 2.9%
APS-O Auto 72.58% 90.76% 316M -0.6%
APS-I Auto 72.38% 90.54% 311M 1.0%
APS-T Auto 68.96% 88.48% 156M 50.3%
APS-T Auto 72.83% 90.75% 314 M 0.0%

effectiveness of the proposed transitionary method.

For ResNet-18 on ImageNet, APS-T consistently outperforms base-
lines under similar computational FLOPs. For instance, it achieves
69.34% top-1 accuracy given 41.8% reduction of FLOPs, surpassing the
most competitive TAS by 0.19%. For MobileNet-v2, it achieves more
than 0.7% gain of accuracy with only 3% more FLOPs comparing to
MetaPrune, and higher accuracy to MetaPrune and AutoSlim without
knowledge distillation under 314M FLOPs. Meanwhile, APS-T surpasses
APS-I and APS-O under similar FLOPs constraints on both models.

To further demonstrate APS-T, we draw the accuracy curvature
of ResNet-20 and ResNet-18 against different FLOPs constraints in
Figure 6.10. It can be found that our APS-T mostly outperforms TAS
as well as uniform scaling strategy on both base networks.

Visualization of Channel Configurations. Finally, we visualize the
searched channel configurations under different FLOPs constraints of
ResNet-18 and MobileNet-v2 in Figure 6.11. Note that for MobileNet-
v2, we omit the output channels of the depth-wise convolution in each
block since it equals the input channels. It can be observed that for both
ResNet-18 and MobileNet-v2 under various FLOPs constraints, APS-T
tends to find configurations with fewer channels in front layers and more

114 CHAPTER 6. REVISITING PARAMETER SHARING

(a) ResNet-18.

(b) MobileNet-v2.

Figure 6.11: Channel configurations of ResNet-18 and MobileNet-v2 under
different FLOPs constraint.

channels in deep layers.

6.5 Conclusion
In this chapter, we pioneer to provide analysis of the effect of parameter
sharing in automatic channel number search, and conduct preliminary
research on exploiting the strength of parameter sharing and avoiding its
weakness. We first propose a general framework named affine parameter
sharing (APS) to unify previous parameter sharing heuristics. Then we
quantitatively measure APS and demonstrate how it affects the searching
process. Empirical results show that parameter sharing brings efficient
searching of network parameters but also results in less discrimination of
architectures. Thus we are motivated to propose the transitionary APS
strategy, such that a proper balance between searching efficiency and
architecture discrimination can be achieved. Extensive experiments and
analysis are conducted to demonstrate the effectiveness of our strategy.

2 End of chapter.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we explore to develop efficient deep learning models by
network compression and neural architecture search. Specifically, our
works are spanned by the three common challenges in the paradigm
of efficient deep learning, as introduced in Chapter 1. The first two
works study network pruning and quantization given limited training
resources such as data and computation devices. The third work, on the
other hand, explores the limit of quantization under adequate training
resources. In the last work, we shift to neural architecture search,
and analyze the role of parameter sharing in prevalent NAS methods.
Detailed summaries of each chapter are presented in the following:

• In Chapter 3, we present cross distillation for few-shot network
pruning, a novel layer-wise knowledge distillation approach for
pruning when only a limited number of training instances are
available. The proposed method is especially suitable for situations
when data security and privacy are of high priority. By reducing
estimation errors between the student network and teacher network,
cross distillation can bring a more powerful and generalizable
student network. Extensive experiments on benchmark datasets
demonstrate the superiority of our method against various compet-
itive baselines.

• In Chapter 4, we study post-training quantization for pre-trained
language models under limited training resources. We show that
existing quantization-aware training solutions suffer from slow
training, huge memory consumption, and privacy issues of accessing

115

116 CHAPTER 7. CONCLUSION AND FUTURE WORK

the full training set. To mitigate these issues, we propose module-
wise reconstruction error minimization, an efficient solution to
quantize PLMs. MREM can be conducted either sequentially or
in parallel, where the parallel training can achieve speed up close
to the theoretical limit without apparent performance degradation.
Experimental results show that our proposed solution can achieve
comparable results to QAT, but significantly reduces the training
time and memory overhead with only thousands of training in-
stances.

• In Chapter 5, we propose BinaryBERT, pushing BERT quanti-
zation to the limit. As a result of the steep and complex loss
landscape, we find directly training a BinaryBERT is hard with a
large performance drop. We thus propose a ternary weight splitting
that splits a trained ternary BERT to initialize BinaryBERT,
followed by fine-tuning for further refinement. Our approach also
supports adaptive splitting that can tailor the size of BinaryBERT
based on the edge device constraints. Empirical results show
that our approach significantly outperforms vanilla binary training,
achieving state-of-the-art performance on BERT compression.

• In Chapter 6, we study the effect of parameter sharing, which is
an orthogonal direction to develop efficient deep learning models.
Based on channel number search problems, we conduct preliminary
research on the strength and weaknesses of parameter sharing. We
first propose a general framework named affine parameter sharing
(APS) to unify previous parameter sharing heuristics. Then we
quantitatively measure APS and demonstrate how it affects the
searching process. Empirical results show that parameter sharing
brings efficient searching of network parameters but also results
in less discrimination of architectures. Thus we are motivated to
propose the transitionary APS strategy, such that a proper balance
between searching efficiency and architecture discrimination can be
achieved. Extensive experiments and analysis are conducted to
demonstrate the effectiveness of our strategy.

7.2 Future Work

Network compression and neural architecture search are still popular
research directions that are actively studied in recent years. For network
compression, we believe that compressing models with limited training

7.2. FUTURE WORK 117

resources will always be practical and necessary in the industry. At the
same time, with the growing size of deep learning models, it is also urgent
to extend network compression techniques at larger scales. In terms
of neural architecture search, while numerous research works focus on
developing better searching algorithms, there are relatively fewer efforts
paid to the fundamental challenges in performance estimation and design
of search space, both of which also play important roles in NAS systems.
More concretely, we plan to explore the following directions in the near
future:

• Network Compression with Domain Adaptation. An inter-
esting direction would be combine domain adaptation [204, 205, 125,
206] for network compression under limited training resources. In
domain adaptation, a source domain with abundant training data
can provide auxiliary information for the target domain where the
model is trained and compressed. This can be helpful when access
to the target domain is restricted due to security issues. Apart from
that, domain adaptation can also benefit model compression from
the pipeline of pre-training and then fine-tuning, where downstream
tasks generally have fewer training instances, while the pre-training
domain contains oceans of irrelevant training instances and is thus
computationally expensive. This is especially true for recent pre-
trained language models applied for natural language understanding
tasks [11, 207, 208]. Hence it would be promising if a related
domain with abundant training data can be found to assist the
compression. For now, there are few preliminary attempts in this
direction [209, 210], and the problem is far from being solved.
For instance, it still remains space to design better strategies to
fuse knowledge from different domains. Meanwhile, the role of the
uncompressed model is also seldom studied in domain adaptation
based network compression.

• Network Compression for Trillion-scale Models. The fast
development of very recent deep learning models have scaled up to
billion to trillion parameters, such as DeBERTA [208] for natural
language understanding, GPT-3 [18] and PanGu-α [20] for language
generation, as well as cross-modal networks such as CLIP [19]
and DALL·E [18]. Despite the universal power of these gigantic
models, these models suffer greatly from the high response latency
and oceans of computing infrastructure, which is even hard for
training and deployment on the cloud. Consequently, it remains

118 CHAPTER 7. CONCLUSION AND FUTURE WORK

urgent to apply model compression techniques to these trillion-
scale models. However, the trillion-scale models fundamentally
challenge the conventional compression pipeline. For instance, both
the forward and backward pass of trillion scale models rely on
the combination of various parallel strategies [184, 185, 211, 212],
which should be considered in the compression algorithms. In the
meanwhile, the trillion parameters together with the pre-training
corpus make it prohibited to fine-tune the compressed network
again, which should be done in normal-sized models. Network
compression for trillion-scale models is still an open challenge for
the research community for now.

• Architecture Search with Improved Performance Esti-
mation. To design efficient deep learning models with neural
architecture search, it is a fundamental yet under-explored direction
to improve the performance estimation strategy in NAS algorithms.
As analyzed in Chapter 6, existing NAS approaches rely on
parameter sharing to improve the searching efficiency but at the
cost of less architecture discrimination. Inspired by recent progress
in few-shot learning [213, 214], we wonder whether any fast training
for the architecture can make itself better distinguished. For
instance, a model-specific proxy dataset can be constructed at
each searching iteration, which only contains a few labeled training
instances for fast-training of the model. The trained architecture is
then evaluated, providing more informative signals to the controller
optimization. Recently, few-shot NAS is proposed [215] to adopt
multiple supernets to partition the search space, such that the co-
adaption in one-shot NAS can be alleviated. This also opens the
door for more works that explore the balance between accurate
performance estimation and searching efficiency.

• Architecture Search with Refined Search Space. Finally,
we highlight that the design of search space also plays a key role
in NAS algorithms. The widely used search space in prevalent
approaches [61, 2, 59] still contains up to 1.3 × 1011 candidates,
which challenges the training of the controller. On the contrary,
the NAS algorithm can be greatly simplified when armed with a
well-designed search space. For instance, empirical observations
find that a good search space can be constructed based on a linear
function, where any regular network (a.k.a. RegNet) performs
reasonably well [70]. Another potential solution to simplify the

7.2. FUTURE WORK 119

search space is via progressive searching [60, 41]. One may first
search for the types of operations and connections, followed by
the network width, and finally the network depth. The greedy
procedure can better identify the ideal configuration on each
dimension of the network architecture, and their combination thus
may lead to more powerful structures.

• Further Combination of Network Compression and Ar-
chitecture Search. Most existing efforts along this direction
exploit the layer-wise sensitivity to pruning or quantization and
search for the best compression configuration [65, 68, 63, 216].
However, there is still room for further research. First, as network
compression mostly starts from a well-trained model, it remains
explorable to design parameter sharing for efficient searching that
does not break the knowledge within the original model. Second,
as NAS algorithms usually train the architecture from scratch
after searching, it is against the pipeline of “compression and
then fine-tuning” in network compression. Therefore it would be
beneficial to unify both searching and fine-tuning in a single round
when combining NAS with compression. Third, current research
mostly simulates the network redundancy by either computational
FLOPs or the latency on proxy devices [68, 216]. However,
these measurement can be inaccurate when deployed on edge
devices [217]. Hence it would be promising to search for hard-ware
aware neural architectures directly on the edge.

Chapter 8

Publications during Ph.D.
Study

8.1 Published Conference Papers

1. Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin
Jiang, Qun Liu, Michael Lyu, Irwin King. BinaryBERT: Pushing
the Limit of BERT Quantization. In Proceedings of the 59th
Conference of the Association for Computational Linguistics, Long
Paper, 2021.

2. Xianghong Fang*, Haoli Bai*, Jian Li, Zenglin Xu, Michael
Lyu, Irwin King. Discrete Auto-regressive Variational Attention
Models for Text Modeling. In Proceedings of International Joint
Conference on Neural Networks, Long Paper, 2021. * indicates
equal contributions.

3. Jiaxing Wang*, Haoli Bai*, Jiaxiang Wu, Xupeng Shi, Junzhou
Huang, Irwin King, Michael Lyu, Jian Cheng. Revisiting Parameter
Sharing for Automatic Neural Channel Number Search. Advances
in Neural Information Processing Systems, 2020. * indicates equal
contributions.

4. Haoli Bai, Jiaxiang Wu, Irwin King, Michael Lyu. Few Shot
Network Compression via Cross Distillation. In Proceedings of the
34th AAAI Conference on Artificial Intelligence, 2020.

5. Haoli Bai, Zhuangbin Chen, Irwin King, Michael Lyu, Zenglin Xu.
Neural Relational Topic Models for Scientific Article Analysis. In
Proceedings of the 27th International Conference on Information

120

8.2. PREPRINTS 121

and Knowledge Management, Long Paper, 2018.

8.2 Preprints

1. Haoli Bai, Lu Hou, Lifeng Shang, Irwin King, Michael Lyu. To-
wards Efficient Post-training Quantization of Pre-trained Language
Models. In preparation to Transactions of the Association for
Computational Linguistics, 2021.

2. Haoli Bai, Jiaxiang Wu, Mingyang Yi, Irwin King, Michael
Lyu. Cross Distillation: A Unified Approach for Few-shot Network
Compression. In preparation to IEEE Transactions on Neural
Networks and Learning Systems, 2021.

3. Chung Yiu Yau,Haoli Bai, Michael Lyu, Irwin King. DAP-BERT:
Differentiable Architecture Pruning of BERT. Submitted to the 28th
International Conference on Neural Information Processing, 2021.

2 End of chapter.

Bibliography

[1] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, “Neural
architecture search: A survey,” Journal of Machine Learning
Research, pp. 1–21, 2019.

[2] Hanxiao Liu, Karen Simonyan, and Yiming Yang, “Darts: Dif-
ferentiable architecture search,” in International Conference on
Learning Representations, 2019.

[3] Barret Zoph and Quoc V. Le, “Neural architecture search with rein-
forcement learning,” in Proceedings of the International Conference
on Learning Representations, 2017.

[4] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen,
and Kay Chen Tan, “A survey on evolutionary neural architecture
search,” Preprint arXiv:2008.10937, 2020.

[5] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas
Huang, “Slimmable neural networks,” in International Conference
on Representation Learning, 2019.

[6] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin
Jiang, and Qun Liu, “Ternarybert: Distillation-aware ultra-low bit
bert,” in Conference on Empirical Methods in Natural Language
Processing, 2020.

[7] Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Fei-
Fei Li, “Imagenet: A large-scale hierarchical image database,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248—-255.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, 2012, pp.
1097–1105.

[9] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in International Con-
ference on Learning Representations, 2014.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin,

122

BIBLIOGRAPHY 123

“Attention is all you need,” in Advances in Neural Information
Processing Systems, 2017, pp. 5998–6008.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, “Bert: Pre-training of deep bidirectional transformers
for language understanding,” in North American Chapter of the
Association for Computational Linguistics, 2019.

[12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke,
Patrick Nguyen, Tara N Sainath et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four
research groups,” IEEE Signal processing magazine, vol. 29, no. 6,
pp. 82–97, 2012.

[13] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prab-
havalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J
Weiss, Kanishka Rao, Ekaterina Gonina et al., “State-of-the-art
speech recognition with sequence-to-sequence models,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2018, pp. 4774–4778.

[14] Hao Wang, Naiyan Wang, and Dit-Yan Yeung, “Collaborative deep
learning for recommender systems,” in Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data
mining, 2015, pp. 1235–1244.

[15] Hao Wang, Xingjian Shi, and Dit-Yan Yeung, “Relational deep
learning: A deep latent variable model for link prediction,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 1, 2017.

[16] Haoli Bai, Zhuangbin Chen, Michael R Lyu, Irwin King, and
Zenglin Xu, “Neural relational topic models for scientific article
analysis,” in Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, 2018, pp. 27–36.

[17] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell et al., “Language models are
few-shot learners,” in Advances in Neural Information Processing
Systems, 2020.

[18] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea
Voss, Alec Radford, Mark Chen, and Ilya Sutskever, “Zero-shot
text-to-image generation,” Preprint arXiv:2102.12092, 2021.

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark et al., “Learning transferable vi-
sual models from natural language supervision,” arXiv preprint
arXiv:2103.00020, 2021.

124 BIBLIOGRAPHY

[20] Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao, Zhiwei
Wang, Xin Jiang, ZhenZhang Yang, Kaisheng Wang, Xiaoda
Zhang et al., “Pangu-α: Large-scale autoregressive pretrained
chinese language models with auto-parallel computation,” Preprint
arXiv:2104.12369, 2021.

[21] Ji Wang, Bokai Cao, Philip Yu, Lichao Sun, Weidong Bao, and
Xiaomin Zhu, “Deep learning towards mobile applications,” in
International Conference on Distributed Computing Systems, 2018,
pp. 1385–1393.

[22] Nicholas D Lane, Sourav Bhattacharya, Akhil Mathur, Petko
Georgiev, Claudio Forlivesi, and Fahim Kawsar, “Squeezing deep
learning into mobile and embedded devices,” IEEE Pervasive
Computing, vol. 16, no. 3, pp. 82–88, 2017.

[23] Jie Tang, Dawei Sun, Shaoshan Liu, and Jean-Luc Gaudiot,
“Enabling deep learning on iot devices,” Computer, vol. 50, no. 10,
pp. 92–96, 2017.

[24] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao,
“Deepdriving: Learning affordance for direct perception in au-
tonomous driving,” in Proceedings of the IEEE international con-
ference on computer vision, 2015, pp. 2722–2730.

[25] Yihui He, Xiangyu Zhang, and Jian Sun, “Channel pruning for
accelerating very deep neural networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1398–
1406.

[26] Jianhao Luo, Jianxin Wu, and Weiyao Lin, “Thinet: A filter
level pruning method for deep neural network compression,” in
Proceedings of the International Conference on Computer Vision,
2017, pp. 5058–5066.

[27] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu,
“Discrimination-aware channel pruning for deep neural networks,”
in Advances in Neural Information Processing Systems, 2018, pp.
875–886.

[28] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David,
“Binaryconnect: Training deep neural networks with binary
weights during propagations,” in Advances in neural information
processing systems, 2015.

[29] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou, “Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients,” Preprint
arXiv:1606.06160, 2016.

BIBLIOGRAPHY 125

[30] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen
Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan,
“Pact: Parameterized clipping activation for quantized neural
networks,” Tech. Rep. arXiv:1805.06085, 2018.

[31] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinaku-
mar Appuswamy, and Dharmendra S Modha, “Learned step size
quantization,” in International Conference on Learning Represen-
tations, 2019.

[32] Yuhang Li, Xin Dong, and Wei Wang, “Additive powers-of-two
quantization: A non-uniform discretization for neural networks,”
in International Conference on Learning Representations, 2020.

[33] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine
Chassang, Carlo Gatta, and Yoshua Bengio, “Fitnets: Hints
for thin deep nets,” in International Conference on Learning
Representations, 2015.

[34] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the
knowledge in a neural network,” Preprint arXiv:1503.02531, 2015.

[35] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun, “Ac-
celerating very deep convolutional networks for classification and
detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 10, pp. 1943–1955, 2015.

[36] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu
Yang, and Dongjun Shin, “Compression of deep convolutional
neural networks for fast and low power mobile applications,” in
International Conference on Learning Representations, 2016.

[37] Song Han, Huizi Mao, and William J Dally, “Deep compression:
Compressing deep neural networks with pruning, trained quantiza-
tion and huffman coding,” in International Conference on Learning
Representations, 2016.

[38] Antonio Polino, Razvan Pascanu, and Dan Alistarh, “Model
compression via distillation and quantization,” in International
Conference on Learning Representations, 2018.

[39] Michael Zhu and Suyog Gupta, “To prune, or not to prune:
exploring the efficacy of pruning for model compression,” in
International Conference on Learning Representations workshop,
2018.

[40] Paul Michel, Omer Levy, and Graham Neubig, “Are sixteen heads
really better than one?” in Advances in Neural Information
Processing Systems, 2019.

[41] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and
Qun Liu, “Dynabert: Dynamic bert with adaptive width and

126 BIBLIOGRAPHY

depth,” in Advances in Neural Information Processing Systems,
2020.

[42] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and
Jan Kautz, “Pruning convolutional neural networks for resource
efficient inference,” in Proceedings of the International Conference
on Machine Learning, 2017.

[43] Xin Dong, Shangyu Chen, and Sinno Jialin Pan, “Learning to
prune deep neural networks via layer-wise optimal brain surgeon,”
in Advances in Neural Information Processing Systems, 2017, pp.
4857–4867.

[44] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry, “Scal-
able methods for 8-bit training of neural networks,” in Advances in
Neural Information Processing Systems, 2018, pp. 5145–5153.

[45] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi, “Xnor-net: Imagenet classification using binary convolu-
tional neural networks,” in Conference on European Conference on
Computer Vision, 2016.

[46] Xiaofan Lin, Cong Zhao, and Wei Pan, “Towards accurate binary
convolutional neural network,” in Advances in Neural Information
Processing Systems, 2017.

[47] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and
Kwang-Ting Cheng, “Bi-real net: Enhancing the performance of 1-
bit cnns with improved representational capability and advanced
training algorithm,” in Conference on European Conference on
Computer Vision, 2018.

[48] Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim,
“Binaryduo: Reducing gradient mismatch in binary activation net-
work by coupling binary activations,” in International Conference
on Learning Representations, 2019.

[49] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting
Cheng, “Reactnet: Towards precise binary neural network with
generalized activation functions,” in European Conference on Com-
puter Vision, 2020, pp. 143–159.

[50] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui
Zhang, “Knowledge distillation from few samples,” Preprint
arXiv:1812.01839, 2018.

[51] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen,
Linlin Li, Fang Wang, and Qun Liu, “Tinybert: Distilling bert for
natural language understanding,” in Findings of Empirical Methods
in Natural Language Processing, 2020.

BIBLIOGRAPHY 127

[52] Sergey Zagoruyko and Nikos Komodakis, “Paying more attention
to attention: Improving the performance of convolutional neural
networks via attention transfer,” in International Conference on
Representation Learning, 2017.

[53] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi,
“Knowledge transfer via distillation of activation boundaries
formed by hidden neurons,” in Proceedings of the AAAI conference
on Artificial Intelligence, 2019.

[54] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe,
Xinqi Chu, and Zenglin Xu, “Learning compact recurrent neural
networks with block-term tensor decomposition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9378–9387.

[55] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets,
and Victor Lempitsky, “Speeding-up convolutional neural networks
using fine-tuned cp-decomposition,” in International Conference on
Representation Learning, 2015.

[56] Guangxi Li, Jinmian Ye, Haiqin Yang, Di Chen, Shuicheng Yan,
and Zenglin Xu, “Bt-nets: Simplifying deep neural networks via
block term decomposition,” Preprint arXiv:1712.05689, 2017.

[57] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark
Sandler, Andrew Howard, and Quoc V Le, “Mnasnet: Platform-
aware neural architecture search for mobile,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 2820–2828.

[58] Xuanyi Dong and Yi Yang, “Network pruning via transformable
architecture search,” in Advances in Neural Information Processing
Systems, 2019, pp. 760–771.

[59] Han Cai, Ligeng Zhu, and Song Han, “Proxylessnas: Direct neural
architecture search on target task and hardware,” in Proceedings of
the International Conference of Representation Learning, 2019.

[60] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song
Han, “Once-for-all: Train one network and specialize it for effi-
cient deployment,” in International Conference on Representation
Learning, 2020.

[61] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff
Dean, “Efficient neural architecture search via parameter sharing,”
in Proceedings of the Proceedings of the International Conference
on Machine Learning, 2018, pp. 4092–4101.

[62] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang,
Kwang-Ting Cheng, and Jian Sun, “Metapruning: Meta learning
for automatic neural network channel pruning,” in Proceedings of

128 BIBLIOGRAPHY

the IEEE International Conference on Computer Vision, 2019, pp.
3296–3305.

[63] Jiahui Yu and Thomas S. Huang, “Autoslim: Towards one-shot ar-
chitecture search for channel numbers,” Preprint arXiv:1903.11728,
2019.

[64] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong
Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen
et al., “Fbnetv2: Differentiable neural architecture search for spa-
tial and channel dimensions,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 12 962–12 971,
2020.

[65] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song
Han, “Amc: Automl for model compression and acceleration on
mobile devices,” in Proceedings of the European Conference on
Computer Vision, 2018, pp. 815–832.

[66] Jiaxiang Wu, Yao Zhang, Haoli Bai, Huasong Zhong, Jinlong
Hou, Wei Liu, and Junzhou Huang, “Pocketflow: An automated
framework for compressing and accelerating deep neural networks,”
in Advances in Neural Information Processing Systems, Workshop
on Compact Deep Neural Networks with Industrial Applications,
2018.

[67] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui
Wang, Yujun Lin, and Song Han, “Apq: Joint search for network
architecture, pruning and quantization policy,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2020, pp. 2078–2087.

[68] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han, “Haq:
Hardware-aware automated quantization with mixed precision,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8612–8620.

[69] Dms: Differentiable dimension search for binary neural networks,
“Dms: Differentiable dimension search for binary neural networks,”
in International Conference on Learning Representations, 1st
Workshop on Neural Architecture Search, 2020.

[70] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming
He, and Piotr Dollár, “Designing network design spaces,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 428–10 436.

[71] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin, “SNAS:
stochastic neural architecture search,” in Proceedings of the Inter-
national Conference on Learning Representations, 2019.

BIBLIOGRAPHY 129

[72] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin,
“Large-scale evolution of image classifiers,” in Proceedings of the
International Conference on Machine Learning. PMLR, 2017, pp.
2902–2911.

[73] Hanxiao Liu, Andrew Brock, Karen Simonyan, and Quoc V
Le, “Evolving normalization-activation layers,” Preprint
arXiv:2004.02967, 2020.

[74] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan
Wierstra, and Martin Riedmiller, “Deterministic policy gradient
algorithms,” in Proceedings of the International Conference on
Machine Learning. PMLR, 2014, pp. 387–395.

[75] SN Sivanandam and SN Deepa, “Genetic algorithms,” in Introduc-
tion to genetic algorithms. Springer, 2008, pp. 15–37.

[76] William B Langdon and Riccardo Poli, Foundations of genetic
programming. Springer Science & Business Media, 2013.

[77] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni, “Ant
system: optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics), vol. 26, no. 1, pp. 29–41, 1996.

[78] Gabriel Bender, “Understanding and simplifying one-shot architec-
ture search,” in Proceedings of the Proceedings of the International
Conference on Machine Learning, 2019, pp. 549–558.

[79] Yann LeCun, John S Denker, and Sara A Solla, “Optimal brain
damage,” in Advances in neural information processing systems,
1990, pp. 598–605.

[80] Babak Hassibi, David G Stork, and Gregory J Wolff, “Optimal
brain surgeon and general network pruning,” in IEEE international
conference on neural networks, 1993, pp. 293–299.

[81] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf, “Pruning filters for efficient convnets,” in International
Conference on Learning Representations, 2017.

[82] Jonathan Frankle and Michael Carbin, “The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks,” in Proceedings of
the International Conference on Machine Learning, 2018.

[83] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan
Titov, “Analyzing multi-head self-attention: Specialized heads do
the heavy lifting, the rest can be pruned,” in Annual Meeting of
the Association for Computational Linguistics, 2019.

130 BIBLIOGRAPHY

[84] Bin Dai, Chen Zhu, Baining Guo, and David Wipf, “Compressing
neural networks using the variational information bottleneck,” in
Proceedings of the International Conference on Machine Learning.
PMLR, 2018, pp. 1135–1144.

[85] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and
Dmitry Vetrov, “Structured bayesian pruning via log-normal mul-
tiplicative noise,” in Advances in Neural Information Processing
Systems, 2017.

[86] Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez, “Structured
variational learning of bayesian neural networks with horseshoe
priors,” in Proceedings of the International Conference on Machine
Learning, 2018, pp. 1744–1753.

[87] Jiaxing Wang, Haoli Bai, Jiaxiang Wu, and Jian Cheng, “Bayesian
automatic model compression,” IEEE Journal of Selected Topics
in Signal Processing, vol. 14, no. 4, pp. 727–736, 2020.

[88] Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo,
Guangming Lu, and Xing Sun, “Pruning filter in filter,” in
Advances in Neural Information Processing Systems, 2020.

[89] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang,
“Collaborative channel pruning for deep networks,” in Proceedings
of the International Conference on Machine Learning. PMLR,
2019, pp. 5113–5122.

[90] Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner, “Data-
free knowledge distillation for deep neural networks,” Preprint
arXiv:1710.07535, 2017.

[91] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian
Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi Tian, “Dafl:
Data-free learning of student networks,” in Proceedings of the
International Conference on Computer Vision, 2019, pp. 3514–
3522.

[92] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer, “Zeroq: A novel zero shot quan-
tization framework,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020, pp. 13 169–13 178.

[93] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun
Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz, “Dreaming
to distill: Data-free knowledge transfer via deepinversion,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2020, pp. 8715–8724.

[94] Jian-Hao Luo and Jianxin Wu, “Neural network pruning with
residual-connections and limited-data,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020, pp.
1458–1467.

BIBLIOGRAPHY 131

[95] Fengfu Li, Bo Zhang, and Bin Liu, “Ternary weight networks,”
Preprint arXiv:1605.04711, 2016.

[96] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally,
“Trained ternary quantization,” in International Conference on
Learning Representations, 2017, pp. 4299–4307.

[97] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio, “Binarized neural networks,” in Advances in
neural information processing systems, 2016.

[98] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max
Welling, “Data-free quantization through weight equalization and
bias correction,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 1325–1334.

[99] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru
Zhang, “Improving neural network quantization without retraining
using outlier channel splitting,” in Proceedings of the International
Conference on Machine Learning, 2019.

[100] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort,
and Nojun Kwak, “Lsq+: Improving low-bit quantization through
learnable offsets and better initialization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2020, pp. 696–697.

[101] Karen Ullrich, Edward Meeds, and Max Welling, “Soft weight-
sharing for neural network compression.” in International Confer-
ence on Learning Representations, 2017.

[102] Daisuke Miyashita, Edward H Lee, and Boris Murmann, “Con-
volutional neural networks using logarithmic data representation,”
Tech. Rep. arXiv:1603.01025, 2016.

[103] Jingyong Cai, Masashi Takemoto, and Hironori Nakajo, “A deep
look into logarithmic quantization of model parameters in neural
networks,” in Proceedings of the 10th International Conference on
Advances in Information Technology, 2018, pp. 1–8.

[104] Lu Hou and James T Kwok, “Loss-aware weight quantization of
deep networks,” in International Conference on Learning Repre-
sentations, 2018.

[105] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua,
“Lq-nets: Learned quantization for highly accurate and compact
deep neural networks,” in Proceedings of the European Conference
on Computer Vision, 2018, pp. 365–382.

[106] Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng
Chen, and Wei Wang, “Rtn: Reparameterized ternary network,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 4780–4787.

132 BIBLIOGRAPHY

[107] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng
Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan, “Differentiable soft
quantization: Bridging full-precision and low-bit neural networks,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 4852–4861.

[108] Yinghao Xu, Xin Dong, Yudian Li, and Hao Su, “A
main/subsidiary network framework for simplifying binary neural
networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 7154–7162.

[109] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,, 2016,
pp. 770–778.

[110] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos, “Training binary neural networks with real-to-binary
convolutions,” in International Conference on Learning Represen-
tations, 2020.

[111] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos, “High-
capacity expert binary networks,” Preprint arXiv:2010.03558, 2020.

[112] Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7132–7141.

[113] Yu Bai, Yu-Xiang Wang, and Edo Liberty, “Proxquant: Quantized
neural networks via proximal operators,” in International Confer-
ence on Learning Representations, 2019.

[114] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat,
“Q8bert: Quantized 8bit bert,” Preprint arXiv:1910.06188, 2019.

[115] Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley,
Georgios Georgiadis, and Joseph H Hassoun, “Post-training piece-
wise linear quantization for deep neural networks,” in European
Conference on Computer Vision, 2020, pp. 69–86.

[116] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas
Moshovos, “Gobo: Quantizing attention-based nlp models for low
latency and energy efficient inference,” Preprint arXiv:2005.03842,
2020.

[117] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozh-
skii, Ron Banner, Alex M Bronstein, and Avi Mendelson, “Loss
aware post-training quantization,” Preprint arXiv:1911.07190,
2019.

[118] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng, “To-
wards accurate post-training network quantization via bit-split

BIBLIOGRAPHY 133

and stitching,” in Proceedings of the International Conference on
Machine Learning, 2020, pp. 9847–9856.

[119] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos
Louizos, and Tijmen Blankevoort, “Up or down? adaptive rounding
for post-training quantization,” in Proceedings of the International
Conference on Machine Learning, 2020, pp. 7197–7206.

[120] Denny Zhou, Mao Ye, Chen Chen, Tianjian Meng, Mingxing Tan,
Xiaodan Song, Quoc Le, Qiang Liu, and Dale Schuurmans, “Go
wide, then narrow: Efficient training of deep thin networks,” in
Proceedings of the International Conference on Machine Learning,
2020, pp. 11 546–11 555.

[121] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin,
“Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[122] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim, “A gift
from knowledge distillation: Fast optimization, network minimiza-
tion and transfer learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 4133–4141.

[123] Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu, “Selflow:
Self-supervised learning of optical flow,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 4571–4580.

[124] Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu, “Ddflow:
Learning optical flow with unlabeled data distillation,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 8770–8777.

[125] Kuo Zhong, Ying Wei, Chun Yuan, Haoli Bai, and Junzhou Huang,
“Translider: Transfer ensemble learning from exploitation to ex-
ploration,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 368–
378.

[126] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” in Proceedings of the ACM International Conference on
Multimedia, 2014, pp. 675–678.

[127] Tamara G Kolda and Brett W Bader, “Tensor decompositions and
applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[128] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

134 BIBLIOGRAPHY

[129] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam, “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications,” Preprint
arXiv:1704.04861, 2017.

[130] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen, “Inverted residuals and linear
bottlenecks: Mobile networks for classification, detection and
segmentation,” Preprint arXiv:1801.04381, 2018.

[131] Hanxiao Liu, Karen Simonyan, and Yiming Yang, “Darts: Differ-
entiable architecture search,” in Proceedings of the International
Conference of Representation Learning, 2019.

[132] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun
Liu, Yichen Wei, and Jian Sun, “Single path one-shot neural
architecture search with uniform sampling,” in Proceedings of the
European Conference on Computer Vision, 2020, pp. 544–560.

[133] Jiaxing Wang, Jiaxiang Wu, Haoli Bai, and Jian Cheng, “M-
NAS: meta neural architecture search,” in Proceedings of the AAAI
conference on Artificial Intelligence, 2020, pp. 6186–6193.

[134] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng,
and Qi Ju, “Fastbert: a self-distilling bert with adaptive inference
time,” in Annual Meeting of the Association for Computational
Linguistics, 2020.

[135] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin,
“Deebert: Dynamic early exiting for accelerating bert inference,” in
Annual Meeting of the Association for Computational Linguistics,
2020.

[136] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu,
and Furu Wei, “Bert loses patience: Fast and robust inference with
early exit,” in Advances in Neural Information Processing Systems,
2020.

[137] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi,
Xunying Liu, and Dahua Lin, “Dsnas: Direct neural architecture
search without parameter retraining,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020, pp.
12 084–12 092.

[138] David So, Quoc Le, and Chen Liang, “The evolved transformer,” in
Proceedings of the International Conference on Machine Learning.
PMLR, 2019, pp. 5877–5886.

[139] Benoît Colson, Patrice Marcotte, and Gilles Savard, “An overview
of bilevel optimization,” Annals of operations research, vol. 153,
no. 1, pp. 235–256, 2007.

BIBLIOGRAPHY 135

[140] Ronald J Williams, “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning,” Machine learning,
vol. 8, no. 3-4, pp. 229–256, 1992.

[141] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le,
“Regularized evolution for image classifier architecture search,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, 2019, pp. 4780–4789.

[142] Jian Ren, Zhe Li, Jianchao Yang, Ning Xu, Tianbao Yang, and
David J Foran, “Eigen: Ecologically-inspired genetic approach for
neural network structure searching from scratch,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 9059–9068.

[143] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen, “Com-
pletely automated cnn architecture design based on blocks,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 4,
pp. 1242–1254, 2019.

[144] Aditya Rawal and Risto Miikkulainen, “From nodes to networks:
Evolving recurrent neural networks,” Preprint arXiv:1803.04439,
2018.

[145] Xiaoqi Jiao, Huating Chang, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu, “Improving task-
agnostic bert distillation with layer mapping search,” Preprint
arXiv:2012.06153, 2020.

[146] James Kennedy and Russell Eberhart, “Particle swarm opti-
mization,” in Proceedings of ICNN’95-international conference on
neural networks, vol. 4. IEEE, 1995, pp. 1942–1948.

[147] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter,
“Speeding up automatic hyperparameter optimization of deep neu-
ral networks by extrapolation of learning curves,” in International
joint conference on artificial intelligence, 2015.

[148] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank
Hutter, “Learning curve prediction with bayesian neural networks,”
in International Conference on Learning Representations, 2016.

[149] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik,
“Accelerating neural architecture search using performance pre-
diction,” in Advances in Neural Information Processing Systems,
Workshop on Meta-Learning, 2017.

[150] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei
Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin
Murphy, “Progressive neural architecture search,” in Proceedings of
the European conference on computer vision, 2018, pp. 19–34.

136 BIBLIOGRAPHY

[151] Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi, “Learning
architectures for binary networks,” in European Conference on
Computer Vision, 2020, pp. 575–591.

[152] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens, “Net2net:
Accelerating learning via knowledge transfer,” in International
Conference on Learning Representations, 2016.

[153] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter, “Simple
and efficient architecture search for convolutional neural networks,”
in Advances in Neural Information Processing Systems, Workshop
on Meta-Learning, 2017.

[154] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong
Yu, “Path-level network transformation for efficient architecture
search,” in Proceedings of the International Conference on Machine
Learning. PMLR, 2018, pp. 678–687.

[155] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun
Wang, “Efficient architecture search by network transformation,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[156] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, “Efficient
multi-objective neural architecture search via lamarckian evolu-
tion,” in International Conference on Representation Learning,
2019.

[157] Qiang Liu, Lemeng Wu, and Dilin Wang, “Splitting steepest
descent for growing neural architectures,” in Advances in Neural
Information Processing Systems, vol. 32, 2019.

[158] Dilin Wang, Meng Li, Lemeng Wu, Vikas Chandra, and Qiang Liu,
“Energy-aware neural architecture optimization with fast splitting
steepest descent,” Preprint arXiv:1910.03103, 2019.

[159] Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu, “Firefly
neural architecture descent: a general approach for growing neural
networks,” in Advances in Neural Information Processing Systems,
2020.

[160] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lym-
beropoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu,
“Single-path nas: Designing hardware-efficient convnets in less
than 4 hours,” Preprint arXiv:1904.02877, 2019.

[161] Liangjiang Wen, Xuanyang Zhang, Haoli Bai, and Zenglin Xu,
“Structured pruning of recurrent neural networks through neuron
selection,” Neural Networks, pp. 134–141, 2020.

[162] Kartikeya Bhardwaj, Naveen Suda, and Radu Marculescu, “Dream
distillation: A data-independent model compression framework,”
Preprint arXiv:1905.07072, 2019.

BIBLIOGRAPHY 137

[163] Shangyu Chen, Wenya Wang, and Sinno Jialin Pan, “Deep neural
network quantization via layer-wise optimization using limited
training data,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2019, pp. 3329–3336.

[164] Michael P Friedlander and Paul Tseng, “Exact regularization of
convex programs,” SIAM Journal on Optimization, vol. 18, no. 4,
pp. 1326–1350, 2007.

[165] Neal Parikh, Stephen Boyd et al., “Proximal algorithms,” Foun-
dations and Trends® in Optimization, vol. 1, no. 3, pp. 127–239,
2014.

[166] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor
Darrell, “Rethinking the value of network pruning,” in Interna-
tional Conference on Representation Learning, 2019.

[167] Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King, “Neural
keyphrase generation via reinforcement learning with adaptive
rewards,” in Annual Meeting of the Association for Computational
Linguistics, 2019.

[168] Wang Chen, Hou Pong Chan, Piji Li, and Irwin King, “Exclusive
hierarchical decoding for deep keyphrase generation,” in Annual
Meeting of the Association for Computational Linguistics, 2020.

[169] Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Shuming Shi, Michael R
Lyu, and Irwin King, “Self-training sampling with monolingual
data uncertainty for neural machine translation,” in Annual Meet-
ing of the Association for Computational Linguistics, 2021.

[170] Angela Fan, Edouard Grave, and Armand Joulin, “Reducing trans-
former depth on demand with structured dropout,” in International
Conference on Learning Representations, 2019.

[171] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf, “Distilbert, a distilled version of bert: smaller, faster, cheaper
and lighter,” Preprint arXiv:1910.01108, 2019.

[172] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu, “Patient knowl-
edge distillation for bert model compression,” in Conference on
Empirical Methods in Natural Language Processing, 2019.

[173] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkor-
eit, and Łukasz Kaiser, “Universal transformers,” in International
Conference on Learning Representations, 2019.

[174] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut, “Albert: A lite bert for self-
supervised learning of language representations,” in International
Conference on Learning Representations, 2020.

138 BIBLIOGRAPHY

[175] Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou
Huang, Irwin King, Michael Lyu, and Jian Cheng, “Revisiting
parameter sharing for automatic neural channel number search,”
in Advances in Neural Information Processing Systems, vol. 33,
2020.

[176] Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang, Xiao. Chen,
and Qun Liu, “Ghostbert: Generate more features with cheap
operations for bert,” in Annual Meeting of the Association for
Computational Linguistics, 2021.

[177] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao,
Amir Gholami, Michael W Mahoney, and Kurt Keutzer, “Q-
bert: Hessian based ultra low precision quantization of bert,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

[178] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang,
Qun Liu, Michael Lyu, and Irwin King, “Binarybert: Pushing the
limit of bert quantization,” in Annual Meeting of the Association
for Computational Linguistics, 2021.

[179] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu, “Brecq: Pushing
the limit of post-training quantization by block reconstruction,”
in International Conference on Learning Representations, 2021.

[180] Ronald J Williams and David Zipser, “A learning algorithm
for continually running fully recurrent neural networks,” Neural
computation, vol. 1, no. 2, pp. 270–280, 1989.

[181] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel
Soudry, “Improving post training neural quantization: Layer-
wise calibration and integer programming,” in Proceedings of the
International Conference on Machine Learning, 2021.

[182] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak
Lee, Phillip B Gibbons, Garth A Gibson, Gregory R Ganger, and
Eric P Xing, “More effective distributed ml via a stale synchronous
parallel parameter server,” in Advances in Neural Information
Processing Systems, 2013, p. 1223.

[183] Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu, “Few shot
network compression via cross distillation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 3203–3210.

[184] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat,
Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, Yonghui Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” in Advances in neural
information processing systems, 2018.

BIBLIOGRAPHY 139

[185] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek
Seshadri, Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons,
and Matei Zaharia, “Pipedream: generalized pipeline parallelism
for dnn training,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 1–15.

[186] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in International Conference on Learning Representations,
2018.

[187] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman, “Glue: A multi-task benchmark and
analysis platform for natural language understanding,” Preprint
arXiv:1804.07461, 2018.

[188] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy
Liang, “Squad: 100,000+ questions for machine comprehension of
text,” Preprint arXiv:1606.05250, 2016.

[189] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave,
Remi Gribonval, Herve Jegou, and Armand Joulin, “Training with
quantization noise for extreme fixed-point compression,” Preprint
arXiv:2004.07320, 2020.

[190] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian
Hou, Ming Zhou, and Dawei Song, “A tensorized transformer for
language modeling,” in Advances in Neural Information Processing
Systems, 2019.

[191] Pranav Rajpurkar, Robin Jia, and Percy Liang, “Know what
you don’t know: Unanswerable questions for squad,” Preprint
arXiv:1806.03822, 2018.

[192] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein, “Visualizing the loss landscape of neural nets,” in
Advances in Neural Information Processing Systems, 2018.

[193] Yaru Hao, Li Dong, Furu Wei, and Ke Xu, “Visualizing and under-
standing the effectiveness of BERT,” in Conference on Empirical
Methods in Natural Language Processing, 2019.

[194] Lu Hou, Quanming Yao, and James T Kwok, “Loss-aware binariza-
tion of deep networks,” in International Conference on Learning
Representations, 2017.

[195] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lym-
beropoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu,
“Single-path NAS: designing hardware-efficient convnets in less
than 4 hours,” in Machine Learning and Knowledge Discovery in
Databases - European Conference, 2019, pp. 481–497.

140 BIBLIOGRAPHY

[196] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu, and
Xinggang Wang, “Densely connected search space for more flexible
neural architecture search,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2020, pp. 10 625–
10 634.

[197] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiao-
dan Liang, Liang Lin, and Xiaojun Chang, “Blockwisely supervised
neural architecture search with knowledge distillation,” Preprint
arXiv:1911.13053, 2019.

[198] Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, and
Junjie Yan, “Efficient neural architecture transformation search
in channel-level for object detection,” in Advances in Neural
Information Processing Systems, 2019, pp. 14 290–14 299.

[199] Zaiwen Wen and Wotao Yin, “A feasible method for optimization
with orthogonality constraints,” Mathematical Programming, vol.
142, no. 1-2, pp. 397–434, 2013.

[200] Alex Krizhevsky and Geffery Hinton, “Learning multiple layers of
features from tiny images,” in Technical report, 2009.

[201] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan, “More is
less: A more complicated network with less inference complexity,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 5840–5848.

[202] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang, “Soft filter pruning for accelerating deep convolutional neural
networks,” in Proceedings of the International Joint Conference on
Artificial Intelligence, 2018, pp. 2234–2240.

[203] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang,
“Filter pruning via geometric median for deep convolutional neural
networks acceleration,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4340–4349.

[204] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang
Yang, “Domain adaptation via transfer component analysis,” IEEE
transactions on neural networks, vol. 22, no. 2, pp. 199–210, 2010.

[205] Yaroslav Ganin and Victor Lempitsky, “Unsupervised domain
adaptation by backpropagation,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2015, pp. 1180–1189.

[206] Xianghong Fang, Haoli Bai, Ziyi Guo, Bin Shen, Steven Hoi, and
Zenglin Xu, “Dart: domain-adversarial residual-transfer networks
for unsupervised cross-domain image classification,” Neural Net-
works, vol. 127, pp. 182–192, 2020.

BIBLIOGRAPHY 141

[207] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov, “Roberta: A robustly optimized BERT pretrain-
ing approach,” Preprint arXiv:1907.11692, 2019.

[208] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen,
“Deberta: Decoding-enhanced bert with disentangled attention,”
in International Conference on Representation Learning, 2021.

[209] Shangyu Chen, Wenya Wang, and Sinno Jialin Pan, “Cooperative
pruning in cross-domain deep neural network compression,” in
Proceedings of the International Joint Conference on Artificial
Intelligence., 2019, pp. 2102–2108.

[210] Jianfei Yang, Han Zou, Shuxin Cao, Zhenghua Chen, and Lihua
Xie, “Mobileda: Toward edge-domain adaptation,” IEEE Internet
of Things Journal, vol. 7, no. 8, pp. 6909–6918, 2020.

[211] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong
He, “Zero: Memory optimizations toward training trillion param-
eter models,” in SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2020,
pp. 1–16.

[212] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong
He, “Deepspeed: System optimizations enable training deep learn-
ing models with over 100 billion parameters,” in Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 3505–3506.

[213] Chelsea Finn, Pieter Abbeel, and Sergey Levine, “Model-agnostic
meta-learning for fast adaptation of deep networks,” in Proceedings
of the Proceedings of the International Conference on Machine
Learning. PMLR, 2017, pp. 1126–1135.

[214] Jake Snell, Kevin Swersky, and Richard S. Zemel, “Prototypical
networks for few-shot learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 4077–4087.

[215] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and
Tian Guo, “Few-shot neural architecture search,” in Proceedings of
the International Conference on Machine Learning, 2021.

[216] Yuhang Li, Wei Wang, Haoli Bai, Ruihao Gong, Xin Dong, and
Fengwei Yu, “Efficient bitwidth search for practical mixed precision
neural network,” Preprint arXiv:2003.07577, 2020.

[217] Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin Zhao, Qi
Zhang, Ruihao Gong, Fengwei Yu, and Junjie Yan, “Mqbench:
Towards reproducible and deployable model quantization bench-
mark,” in Advances in Neural Information Processing Systems,
Datasets and Benchmarks Track, 2021.

