
Machine Learning Models on Random Graphs

Haixuan YANG

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Department of Computer Science & Engineering

Supervised by

Prof. Irwin KING & Prof. Michael R. LYU

c©The Chinese University of Hong Kong

August 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

Machine Learning Models on Random
Graphs

submitted by

Haixuan YANG

for the degree of Doctor of Philosophy

at the Chinese University of Hong Kong

Abstract

Abstract

In this thesis, we establish three machine learning models on random graphs:

Heat Diffusion Models on Random Graphs, Predictive Random Graph Rank-

ing, and Random Graph Dependency. The heat diffusion models on random

graphs lead to Graph-based Heat Diffusion Classifiers (G-HDC) and a novel

ranking algorithm on Web pages called DiffusionRank. For G-HDC, a ran-

dom graph is constructed on data points. The generated random graph can

be considered as the representation of the underlying geometry, and the heat

diffusion model on them can be considered as the approximation to the way

that heat flows on a geometric structure. Experiments show that G-HDC can

achieve better performance in accuracy in some benchmark datasets. For Dif-

fusionRank, theoretically we show that it is a generalization of PageRank when

the heat diffusion coefficient tends to infinity, and empirically we show that it

achieves the ability of anti-manipulation.

Predictive Random Graph Ranking (PRGR) incorporates DiffusionRank.

PRGR aims to solve the problem that the incomplete information about the

Web structure causes inaccurate results of various ranking algorithms. The

Web structure is predicted as a random graph, on which ranking algorithms

ii

are expected to be improved in accuracy. Experimental results show that the

PRGR framework can improve the accuracy of the ranking algorithms such as

PageRank and Common Neighbor.

Three special forms of the novel Random Graph Dependency measure on

two random graphs are investigated. The first special form can improve the

speed of the C4.5 algorithm, and can achieve better results on attribute selec-

tion than γ used in Rough Set Theory. The second special form of the general

random graph dependency measure generalizes the conditional entropy because

it becomes equivalent to the conditional entropy when the random graphs take

their special form–equivalence relations. Experiments demonstrates that the

second form is an informative measure, showing its success in decision trees

on small sample size problems. The third special form can help to search

two parameters in G-HDC faster and more accurate than the cross-validation

method.

In summary, the viewpoint of random graphs indeed provides us an oppor-

tunity of improving some existing machine learning algorithms.

iii

Acknowledgment

There are many persons I would like to thank. First and foremost, I want

to thank my supervisors, Prof. Irwin King and Prof. Michael R. Lyu. I gain

too much from their guidance in both the attitude in doing research and the

detailed technique things during my Ph. D study. I would like to express my

sincere gratitude and appreciation to their supervision, encouragement, and

support at all levels. I will always be grateful for the outstanding research

environment fostered by our department, and also for so related work done by

our clerical staffs.

I would like to thank my colleagues and my friends. I acknowledge the

help provided by Patrick Lau, Zhenjiang Lin and Zenglin Xu in the early work

related to the random graph ranking. I thank Wenye Li and Kun Zhang for

the constructive discussions in conducting the research work in this thesis.

I would like to express my thanks to many anonymous reviewers for valuable

comments.

I also want to thank my office-mates, Steven Chu-Hong Hoi, Jianke Zhu,

Ming Cai, Hon Hei Edward Yau, and Hongbo Deng. Their cooperative spirit

creates a good working and discussion environment in the office.

I extend my gratitude to Kaizhu Huang, Xia Cai, Xinyu Chen, Xiaoqi Li,

Edith Ngai, Pat Chan, Yi Liu, Yangfan Zhou, Shi Lu, Hackker Wong, Chi-

Hang Chan, Hao Ma and Xiang Peng for their help and discussion in many

aspects of my research work.

Finally, I want to thank my family. Without their deep love and constant

support, this thesis could not have been completed.

iv

Contents

Abstract ii

Acknowledgement iv

1 Introduction 1

1.1 Random Graphs . 1

1.1.1 Equivalence Relations 2

1.1.2 Random Graphs Generated by Continuous Attributes . . 3

1.1.3 Web Graphs . 4

1.2 Basics of Machine Learning . 5

1.2.1 Types of Machine Learning 5

1.2.2 Graph-based Methods, Ranking and Decision Trees . . . 7

1.2.3 Information Measures . 9

1.3 Motivations and Contributions 11

1.4 Thesis Organization . 12

2 A Background Review 15

2.1 Graph-based Methods . 15

2.1.1 Manifold Learning . 15

2.1.2 Heat Kernel . 16

2.1.3 Transductive Learning 18

2.2 Ranking . 19

v

2.2.1 Absolute Ranking . 19

2.2.2 Relative Ranking . 21

2.3 Decision Trees . 23

2.4 Information Measures . 25

2.4.1 The Dependency Degree γ(C, D) 25

2.4.2 The Conditional Entropy H(D|C) 25

2.5 A Brief Book Review . 26

3 Heat Diffusion Model on a Random Graph 27

3.1 Motivations . 28

3.2 Heat Diffusion Model on a Random Directed Graph 32

3.3 Candidate Random Graphs for G-HDC 33

3.3.1 KNN Graph . 33

3.3.2 SKNN-Graph . 34

3.4 Volume-based Heat Diffusion Model on a Graph 35

3.4.1 Establishment of VHDM 35

3.4.2 Necessity of Introducing Volumes 37

3.4.3 Calculation of the Intrinsic Dimension ν 39

3.5 Graph-based Heat Diffusion Classifiers (G-HDC) 41

3.6 Correspondences between the Heat Diffusion Model on Graphs

and that on Manifolds . 43

3.7 Roles of the Parameters . 44

3.7.1 Local Heat Diffusion Controlled by β 44

3.7.2 Global Heat Diffusion Controlled by γ 45

3.7.3 Stability of KNN-HDC with Respect to Parameters . . . 46

3.8 Necessity of Introducing the Heat Diffusion Model in Classification 48

3.8.1 KNN-HDC and Parzen Window Approach 50

3.8.2 KNN-HDC and KNN . 51

3.8.3 G-HDC and Some other Popular Algorithms 51

vi

3.9 Comparisons with Related Work 53

3.10 Experiments . 54

3.11 Summary . 58

4 Predictive Random Graph Ranking on the Web 60

4.1 Motivations . 61

4.2 Predictive Strategy . 65

4.2.1 Origin of Predictive Strategy 65

4.2.2 From Static Graphs to Random Graphs 66

4.2.3 From Visited Nodes to Dangling Nodes 68

4.2.4 Random Graph Ranking 77

4.3 DiffusionRank . 82

4.3.1 Algorithm . 83

4.3.2 Advantages . 84

4.3.3 The Physical Meaning of γ 87

4.3.4 The Number of Iterations 89

4.4 Experiments for PRGR framework 90

4.4.1 Data Description . 90

4.4.2 Methodology . 92

4.4.3 Experimental Set-up . 93

4.4.4 Experimental Results . 93

4.4.5 Discussion . 95

4.5 Experiments for DiffusionRank 95

4.5.1 Data Preparation . 95

4.5.2 Methodology . 96

4.5.3 Experimental Set-up . 97

4.5.4 Approximation of PageRank 97

4.5.5 Results of Anti-manipulation 98

4.5.6 Manipulation Detection 99

vii

4.6 Summary . 100

5 Random Graph Dependency 109

5.1 Motivations . 110

5.1.1 Improve the Speed . 110

5.1.2 Improve the Classification Accuracy 111

5.1.3 Help to Search the Free Parameters in Heat Diffusion

Classifiers . 115

5.2 The Generalized Dependency Degree Γ(R1, R2) Between Two

Equivalence Relations . 115

5.2.1 Definition of the Generalized Dependency Degree 116

5.2.2 Properties of the Generalized Dependency Degree 121

5.2.3 Extension of the Generalized Dependency Degree Γ to

Incomplete Information Systems 132

5.2.4 Discussion: Comparison with the Conditional Entropy . 136

5.2.5 Experiments . 138

5.2.6 Summary . 145

5.3 A Novel Random Graph Dependency Measure H(RG2|RG1) . . 146

5.3.1 Random Graph Dependency Measure 146

5.3.2 Discussion on Continuous Attributes 156

5.3.3 Experiments . 164

5.3.4 Summary . 171

5.4 The General Random Graph Dependency Measure Γε
α(RG2|RG1)172

5.4.1 Definitions . 172

5.4.2 Find the Free Parameters in Heat Diffusion Classifiers . . 174

5.4.3 Summary . 178

6 Conclusion and Future Work 180

6.1 Conclusion . 180

6.2 Future Work . 183

viii

List of Tables

1.1 Influenza data (a) . 3

3.1 Datasets description . 55

3.2 Mean accuracy on the 11 datasets achieved by ten runs by di-

viding the data into 10% for training and 90% for testing 56

4.1 Description of the synthetic graph series 91

4.2 Description of real data sets within domain cuhk.edu.hk 91

5.1 Influenza data (b) . 111

5.2 Eight points with three attributes 111

5.3 Influenza data (c) . 124

5.4 Influenza data (d) . 131

5.5 Influenza data (e) . 132

5.6 Influenza data (f) . 133

5.7 Results of all minimal rules . 136

5.8 Description of the datasets . 140

5.9 Mean error rates of the original C4.5 and the new C4.5 141

5.10 Average run time of the original C4.5R8 and the new C4.5 . . . 142

5.11 Average number of leaves of the original C4.5R8 and the new

C4.5 . 143

5.12 Attribute selection by γ and Γ on the dataset ‘zoo’ 145

5.13 Description of the datasets . 166

ix

5.14 Mean error rates (percentage) of the original C4.5R8 using infor-

mation gain (C4.5R8 -g), the modified C4.5 using information

gain (N-g), and C5.0R2. 168

5.15 Average number of nodes of of the original C4.5R8 using infor-

mation gain (C4.5R8 -g), the modified C4.5 using information

gain (N-g), and C5.0R2. 168

5.16 Average frequency of appearance of continuous attributes in the

nodes of the original C4.5R8 using information gain (C4.5R8 -

g), the modified C4.5 using information gain (N-g), and C5.0R2. 168

5.17 Mean time, in milliseconds, for 10,000 test runs of the original

C4.5R8 using information gain (C4.5R8 -g) and the modified

C4.5 using information gain (N-g). 169

5.18 Mean error rates (percentage) of the original C4.5R8 using in-

formation gain ratio (denoted as C4.5R8), the modified C4.5

using information gain ratio (denoted as N), and C5.0R2. 169

5.19 Average number of nodes of the original C4.5R8 using informa-

tion gain ratio (C4.5R8), the modified C4.5 using information

gain ratio (N), and C5.0R2. 170

5.20 Average frequency of appearance of continuous attributes in

the nodes of the original C4.5R8 using information gain ratio

(C4.5R8), the modified C4.5 using information gain ratio (N),

and C5.0R2. 170

5.21 Mean time, in milliseconds, for 10,000 test runs of the original

C4.5R8 using information gain ratio (C4.5R8) and the modified

C4.5 using information gain ratio (N). 171

5.22 Mean time in seconds and accuracy on the 11 datasets achieved

by ten runs by dividing the data into 10% for training and 90%

for testing by the cross-validation and by the random graph

dependency measure . 177

x

List of Figures

1.1 An illustration of an equivalence relation as a random graph, in

which {e1, e2, e3, e7} and {e4, e5, e6} are two equivalence classes. 3

1.2 The random graph generated by attribute c using Eq. (1.1). . . 5

1.3 The Web graph taken from [2]. 6

3.1 The graph-based heat diffusion classification framework. 28

3.2 (a) The grid on the two dimensional space. (b) The eight ir-

regularly positioned points. (c) The small patches around the

irregular points. (d) The square approximations of the small

patches. 30

3.3 (a) The grid on the two-dimensional Euclidean space. (b) The

grid on the curved Euclidean space. 31

3.4 Illustrations on a manifold on which the shorter line is more

accurate. 34

3.5 An illustration of the spiral manifold and its graph approxima-

tion. (a) The 2,000 data points on a spiral manifold. (b) Neigh-

borhood graph of the 1,000 data points on the spiral manifold. . 43

3.6 An illustration showing that the equal setting of initial temper-

atures is not perfect. Only two data points A and B are labeled,

the equal initial temperature setting on these two points will re-

sult in classification errors. The decision boundary will be the

bar while the dashed line should be the ideal decision boundary. 58

xi

4.1 The predictive random graph ranking framework. 63

4.2 A static graph. 66

4.3 Illustration on the random graph 72

4.4 A case in which considering dangling node will have significant

effect on the ranks of non-dangling nodes 76

4.5 Two graphs . 85

4.6 PageRank comparison results 102

4.7 DiffusionRank comparison results 103

4.8 Jaccard’s Coefficient comparison results 104

4.9 CN comparison results . 105

4.10 (a) The toy graph consisting of six nodes, and node 1 is being

manipulated by adding new nodes A,B,C, . . . (b) The approx-

imation tendency to PageRank by DiffusionRank 106

4.11 The rank values of the manipulated nodes on the toy graph . . . 106

4.12 (a) The rank values of the manipulated nodes on the middle-

size graph; (b) The rank values of the manipulated nodes on the

large-size graph . 107

4.13 (a) Pairwise order difference on the middle-size graph, the least

it is, the more stable the algorithm; (b) The tendency of varying γ107

4.14 Precision vs Recall when L = 50: the larger the area below the

curve, the better. 108

5.1 An illustration of eight points on the axis x1, in which the black

points belong to one class A while the white points belong to

another class B. 111

5.2 An illustration of a decision tree generated by conditional en-

tropy, in which v8 in Table 5.2 will be misclassified. 113

5.3 An ideal decision tree, which will be generated by the new mea-

sure, and in which no point is misclassified. 113

xii

5.4 An illustration on how the eight points are treated in C4.5.

Before the middle cut, the eight points are treated equally. After

the middle cut, the four points on the left side of the cut are

treated equally since they satisfy the same decision x1 ≤ 4, so

are the four points on the right side of the cut. 114

5.5 Two equivalence relations generated by x2 and y respectively,

which can be understood as special random graphs. 148

5.6 An illustration on decision trees generated by two measures

when x2 is ignored. 160

5.7 An illustration on the random graphs by setting σ = 0 and

σ = 3 after the middle cut. 164

xiii

Chapter 1

Introduction

The objective of this thesis is to provide a random graph perspective in the

field of machine learning. To address the motivations of this perspective, we

introduce the concepts of random graphs and machine learning, and provide

an intersection between random graphs and machine learning. As a summary,

we present the objectives of this thesis and outline the contributions. Finally,

we provide an overview of the rest of this thesis.

We hope this thesis can provide an exciting direction where graph theory

and machine learning go hand in hand to spawn new research results.

1.1 Random Graphs

The definition of a random graph [15] is given below.

Definition 1 A random graph RG = (U, P = (pij)) is defined as a graph

with a vertex set U in which the edges are chosen independently, and for

1 ≤ i, j ≤ |U | the probability of (vi, vj) being an edge is exactly pij. Unless

stated otherwise, in this thesis we set pii = 1 for 1 ≤ i ≤ |U |, meaning that

the edge (vi, vi) exists with the probability one. We can simply say random

graph RG = P if the vertex set U is clear in its context. Or by setting the

edges explicitly, we can also denote a random graph RG = (U, P = (pij)) as

RG = (U,E, P = (pij)), where E = {(i, j)|pij > 0}.

1

Chapter 1 Introduction 2

In the real world, there are a lot of data that can be represented by random

graphs.

1.1.1 Equivalence Relations

An equivalence relation is a binary relation between two elements of a set.

Definition 2 Let U be a set. Let ρ be a binary relation on U . Let a, b, c be

elements of U . The binary relation ρ on U is called an equivalence relation,

if ρ satisfies the properties of reflexivity, symmetry, and transitivity. In other

words, for all elements a, b, and c of the set U , the following must hold for ρ:

1. Reflexivity: (a, a) ∈ ρ,

2. Symmetry: if (a, b) ∈ ρ, then (b, a) ∈ ρ, and

3. Transitivity: if (a, b) ∈ ρ and (b, c) ∈ ρ, then (a, c) ∈ ρ.

Furthermore, the equivalence class of a is the subset of U that contains all

elements of U that are equivalent to a under ρ. We denote the equivalence class

of a by [a], i.e., [a] = {b : (a, b) ∈ ρ, b ∈ U}. The set of all possible equivalence

classes of U by ρ, denoted by U/ρ = {[a] : a ∈ U}, is the quotient set of U

by ρ. As ρ is a subset of U × U and each element of ρ can be considered as

an edge, (U, ρ) can be considered as a random graph, in which the edge (a, b)

exists with probability one if (a, b) ∈ ρ, and zero otherwise.

An information system is represented by an attribute-value table in which

rows are labeled by objects of the universe and columns by their attributes.

Equivalence relations can be induced by a subset of attributes shown as follows.

Denote the universe of objects by U , the set of attributes or features by A,

and the set of all possible values of attribute a by Va. Let P be a subset of A,

that is, P is a subset of attributes. The P -indiscernibility relation, denoted by

IND(P), defined as

IND(P) = {(x, y) ∈ U × U | (∀a ∈ P) a(x) = a(y)},

Chapter 1 Introduction 3

Figure 1.1: An illustration of an equivalence relation as a random graph, in
which {e1, e2, e3, e7} and {e4, e5, e6} are two equivalence classes.

is an equivalence relation. The set of equivalence classes is denoted by U/IND(P)

or by U/P , and the equivalence class in U/P is called the P -class. For x ∈ X,

let P (x) denote the P -class containing x.

headache (a) pain (b) temperature (c) influenza (d)
e1 Y Y 0 N
e2 Y Y 1 Y
e3 Y Y 2 Y
e4 N Y 0 N
e5 N N 3 N
e6 N Y 2 Y
e7 Y N 4 Y

Table 1.1: Influenza data (a)

Example 3 For example, in Table 1.1, a, b, c, and d represent headache, mus-

cle pain, body temperature and influenza, respectively. Let P = {a}. Then

we have P (e1) = P (e2) = P (e3) = P (e7) = {e1, e2, e3, e7}, P (e4) = P (e5) =

P (e6) = {e4, e5, e6}, and

IND(P) = {e1, e2, e3, e7} × {e1, e2, e3, e7} ∪ {e4, e5, e6} × {e4, e5, e6}.
The corresponding random graph can be seen in Figure 1.1.

1.1.2 Random Graphs Generated by Continuous At-

tributes

As we have seen in the previous section, discrete attributes can generate equiv-

alence relations, which are special random graphs. In a supervised learning

Chapter 1 Introduction 4

setting, the label information can produce an equivalence relation, which is

a random graph. If we want to measure the degree, to which the label in-

formation depends on continuous attributes, the viewpoint of understanding

a continuous attribute as a random graph makes two obviously different at-

tributes become the same level, and so facilitates to measure the dependency

between them. As an example, we show one way to translate a continuous

attribute into a random graph.

Example 4 In Table 1.1, if c is understood as a category attribute, then it

produces an equivalence relation shown in Figure 1.2 (a), which losses the

distance information; if, on the other hand, c is understood as a continuous

attribute, and if a random edge is generated between two objects x and y with

a probability of p(x, y), where

p(x, y) =

e−|c1−c2|, if e−|c1−c2| > 0.2,

0, otherwise,
(1.1)

where c1 = c(x) and c2 = c(y), then the generated random graph is shown

in Figure 1.2 (b). Note that if c is understood as a continuous attribute,

and if a threshold cth (also called cut) is given, then an equivalence relation

{(x, y) ∈ U × U | (x ≤ cth ∧ x ≤ cth)
∨

(x > cth ∧ x > cth)} is generated, and in

this way, we consider that all attributes actually work on equivalence relations

in C4.5 decision tree [82].

1.1.3 Web Graphs

The Web pages on the Internet are related to one another by hyperlink struc-

ture, which form a directed graph. For example, see Figure 1.3. When we

consider the reliability of Web sites, the users’ behaviors to browse Web pages,

and dynamic nature of a Web page, it is better to model the Web graph as a

random graph, i.e., links exist in a random way.

Chapter 1 Introduction 5

(a) (b)

Figure 1.2: The random graph generated by attribute c using Eq. (1.1).

1.2 Basics of Machine Learning

Machine learning is a broad subfield of artificial intelligence. The task of ma-

chine learning is to design algorithms and techniques to help computers “learn”

useful knowledge from data. Its applications include natural language process-

ing, syntactic pattern recognition, speech and handwriting recognition, search

engines, medical diagnosis, finance engineering, bioinformatics, cheminformat-

ics, and so on. For good introductory materials, see [13, 29, 93].

1.2.1 Types of Machine Learning

Different authors use slightly different names for transductive learning and

semi-supervised learning. In the following we follow the convention used in

[112].

At a general level, there are two types of learning: inductive and trans-

ductive. Inductive machine learning methods can extract rules, by which it

can handle the unseen data. Transductive learning will be used to contrast

inductive learning. A learner is transductive if it only works on the labeled and

unlabeled training data, and can label the unlabeled data, but cannot handle

Chapter 1 Introduction 6

Figure 1.3: The Web graph taken from [2].

unseen data.

Classifying the learning methods by the existence of a teacher to super-

vise the learning process, there are three types of learning: supervised, semi-

supervised, and unsupervised. In supervised learning, a teacher provides a cat-

egory label or cost for each pattern in a training set, then a learning method

uses these labeled data to extract rules for future unlabeled data; in semi-

supervised learning, a teacher only labels part of all pattern in the training

set, then a learning method uses both these labeled data and unlabeled data

in the training set to label the unlabeled data (in a transductive setting) or to

extract rules for both unlabeled data and future unlabeled data (in a inductive

setting); in unsupervised learning, all the data are unlabeled, i.e., there is no

teacher to label the data, then a learning method used all these unlabeled data

to learn the intrinsic information hidden in the data.

Chapter 1 Introduction 7

Decision trees [83, 82], Decision Forest [18] and SVM [93] belong to super-

vised learning; Transductive SVMs [24, 48] and the early graph-based methods

[108, 112] belong to semi-supervised learning; and Principal Component Anal-

ysis (PCA) [8], Independent Component Analysis (ICA) [6], clustering [45]

belong to unsupervised learning. Ranking methods [76, 111] also belong to

unsupervised learning because there is no teacher to label the nodes.

In the next section, we will briefly show the topics closely related to ours.

1.2.2 Graph-based Methods, Ranking and Decision Trees

Graph-based Methods

Graph-based semi-supervised methods define a graph where the nodes are

labeled and unlabeled examples in the dataset, and edges (may be weighted)

reflect the similarity of examples. These methods usually assume label smooth-

ness over the graph [112]. Graph-based unsupervised methods generate a graph

representing the relationship between data points, based on which clustering

or dimension reduction can be performed.

Ranking

The importance of a Web page is an inherently subjective matter, which de-

pends on the readers’ interests, knowledge and attitudes [76]. However, the

average importance of all readers can be considered as an objective matter.

PageRank tries to find such average importance based on the Web link struc-

ture, which is considered to contain a large amount of statistical data.

All the mentioned ranking algorithms in this thesis are established on a

graph, and will be established on a random graph. For our convenience, we

first give some notations. We denote a static graph by G = (V,E), where

V = {v1, v2, . . . , vn}, E = {(vi, vj) | there is an edge from vi to vj} is the set

of all edges. Let I(vi) and |I(vi)| denote the nodes that link to node vi and

Chapter 1 Introduction 8

the in-degree of node vi respectively. di denotes the out-degree of node vi,

and also denote the degree of node vi in an undirected graph. A static graph

G = (V, E) is considered as a special random graph RG = (V,E, P), where

Pij = 1 if (i, j) ∈ E, and 0 otherwise.

Decision Trees

Decision trees are popular tools for classification and prediction. The attrac-

tiveness of decision trees is due to the fact that, in contrast to neural networks,

decision trees represent rules, which can be understood by human easily and

can be directly used in a database access language like SQL, so that records

falling into a particular category may be retrieved.

Decision trees employ a tree structure, in which each node is either a leaf

node or a decision node. The leaf node indicates the value of the label, and

the decision node determines which subtree will be followed. A decision tree

can be used to classify an example by starting at the root of the tree and

moving through it until reaching a leaf node, the label of which provides the

classification of the instance.

C4.5 has its origins in Hunt’s Learning Systems by way of ID3 [81, 82].

The latest version of C4.5 with open source codes is C4.5R8 [83]. The C4.5R8

algorithm uses a divide-and-conquer approach to grow decision trees. To make

this thesis self-contained, a brief explanation of the C4.5R8 algorithm is given

here. For further details, see [83, 82]. The basic idea of the C4.5R8 decision

tree algorithm is similar to that of ID3. It divides the whole training set into

smaller subsets until the subsets with all of data corresponding to the same

class are created or the number of elements in the subsets is smaller than a

threshold. It generates a decision tree from the whole training set. The whole

training set corresponds to the root node. Each of the interior nodes including

the root node of the tree is labeled by an attribute, while branches that lead

from the node are labeled by the value of the attribute. The leaves of the tree

Chapter 1 Introduction 9

correspond to the classes.

The tree construction process is guided by choosing the most informative

attribute at each step. In C4.5, some information measures are employed to

select the most informative attribute. In the next section, we will introduce

the information measures.

1.2.3 Information Measures

There are two information measures will be compared in this thesis. One is the

dependency degree γ(C,D) [78], which is interesting in its simple suggestive

form, and from which our work in measuring the dependency of two random

graphs is established. The other is the conditional entropy employed in the

attribute selection procedure in C4.5. Note that these two measures can be

understood to be defined on equivalence relations, which are special cases of

random graphs.

The Dependency Degree γ(C, D)

In Rough Set Theory [77, 78, 79, 80], an information system is formally set

as a four-tuple S = (U,A, V, f), where U represents the universe of objects,

A represents the set of attributes or features, V represents the set of possible

attribute or feature values, Va denotes the set of all possible values of attribute

a, and f is the information function that maps a given object and a given

attribute to a value, i.e.,

f : U × A → V.

By a(x) we denote the value of f(x, a).

For any class X where X ⊆ U , and for any subset of attributes P , the

P -lower approximation of X, denoted by P (X), is defined as

P (X) = ∪{Y ∈ U/IND(P) |Y ⊆ X}.

Chapter 1 Introduction 10

Let C and D be two subsets of A. The dependency degree γ(C,D) is

defined in [78] as

γ(C, D) = 1/|U | ∑

X∈U/D

|C(X)|, (1.2)

where |U | and |C(X)| denote the cardinality of the set U and the cardinality

of the set C(X) respectively. | · | denotes the cardinality of a set without

further notice throughout the thesis. From Eq. (1.2), we can see that γ(C, D)

is actually defined on two equivalence relations IND(C) and IND(D).

The Conditional Entropy

The conditional entropy is well discussed in the literature of Information The-

ory [25, 105], and is used in the C4.5 decision tree algorithm [82]. The formu-

lation for the conditional entropy is as follows:

H(D|C) = −∑
c

∑

d

Pr(c) · Pr(d|c) · log2(Pr(d|c)) (1.3)

= −∑
c

Pr(c) ·∑
d

Pr(d|c) · log2(Pr(d|c)),

where c and d denote the vectors consisting of the values of attributes in C

and in D respectively.

Note that an empirical estimation of the conditional entropy can be under-

stood to be defined on two equivalence relations IND(C) and IND(D). This

is shown below.

D(x) = {y| (∀a ∈ D) a(x) = a(y)},

C(x) = {y| (∀a ∈ C) a(x) = a(y)}.

C∪D is also a subset of A, and the equivalence relation IND(C∪D) partitions

U into a disjoint union of some equivalence classes called (C ∪D)-classes. Let

x ∈ U such that C(x) = c,D(x) = d. Empirically Pr(d|c) is estimated as

|(C∪D)(x)|
|C(x)| , and Pr(c, d) = |(C∪D)(x)|

|U | . Since (C ∪D)(x) = C(x)∩D(x), and C(x)

is an equivalence class in IND(C), we can say, the empirical estimation of

Chapter 1 Introduction 11

the conditional entropy is defined on two equivalence relations IND(C) and

IND(D).

1.3 Motivations and Contributions

A viewpoint of random graphs in the field of machine learning is needed in

order to extend currently existing algorithms to a larger extent, since random

graphs exist in many situations as we showed in Section 1.1. Moreover, if the

data is in essence random, a random graph representation of the underlying

data should be more accurate than others, and so is expected to improve the

accuracy of some existing algorithms.

With the above considerations, in this thesis, we aim to propose three

models in the field of machine learning related to random graphs: Heat Dif-

fusion Models on Random Graphs, Predictive Random Graph Ranking, and

Random Graph Dependency. All of these paradigms adopt the viewpoint of

random graphs. Heat Diffusion Models on Random Graphs lead to a family

of classifiers–Heat Diffusion Classifier on a Graph (G-HDC), and a ranking

algorithm DiffusionRank. Predictive Random Graph Ranking is a framework

that incorporates DiffusionRank. To provide a basic tool to measure the de-

pendency between two random graphs, we also propose the Random Graph

Dependency measure.

The main contributions of this thesis are further described as follows in

detail.

• Proposed the General Heat Diffusion Model on a random graph

¦ Heat Diffusion Classifiers As will be demonstrated, our proposed

heat diffusion model can be applied successfully to a classification

task.

Chapter 1 Introduction 12

¦ DiffusionRank We will prove that it is a generalization of PageRank

when the heat diffusion coefficient tends to infinity, and empirically

we will show that it achieves the ability of anti-manipulation by

setting the heat diffusion coefficient to be finite.

• Developed a general ranking scheme on a random graph that includes

DiffusionRank as a special case

¦ We will extend some current ranking algorithms from a static graph

to a random graph.

¦ We will propose methods to generate a random graph based on the

known information about the Web structure.

• Provide a tool to measure dependency between two random graphs

¦ In the first special case, the proposed measure can speed up C4.5

decision algorithm.

¦ In the second special case, the proposed measure can improve the

classification accuracy.

¦ In the third special case, the proposed measure can help to find two

parameters in the heat diffusion classifiers.

In a summary, the viewpoint of random graphs indeed provides us an op-

portunity of improving some existing classification algorithms and ranking

algorithms.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2

We review different learning paradigms in this chapter. We include

Chapter 1 Introduction 13

graph-based methods, decision trees, and ranking algorithm in this chap-

ter.

• Chapter 3

We propose a framework called Graph-based Heat Diffusion Classifiers

(G-HDC). We will give related background on heat diffusion models, the

theoretical framework of our model, detailed analysis of the formulation,

and three candidate graph construction methods for G-HDC. Note that

the contents in this chapter except the materials related to VHDC in

this chapter are published in [96, 100].

• Chapter 4

In this chapter, we propose a solution to the incomplete information prob-

lem by formulating a new framework called Predictive Random Graph

Ranking (PRGR), in which we generate a random graph based on the

known information about the Web structure. We will extend some cur-

rent ranking algorithms from a static graph to a random graph. Besides,

we will propose a novel ranking algorithm called DiffusionRank, moti-

vated by the way that heat flows, which reflects the complex relationship

between nodes in a graph (or points on a geometry). Moreover, we will

incorporate it in the PRGR framework. Note that the contents in this

chapter are published in [97, 98, 99]

• Chapter 5

We propose a general random graph dependency measure. In its first

special case, we will show that it can improve the training time of the

C4.5R8 decision trees while preserving the classification accuracy of the

original C4.5R8. In its second special case, we will demonstrate its suc-

cess in decision trees on small sample size problems. In its third special

case, we will illustrate that it can help G-HDC to obtain two free pa-

rameters more efficiently. Note that Section 5.2 in this chapter will be

Chapter 1 Introduction 14

published in [101].

• Chapter 6

We then summarize this thesis and conduct discussions on future work.

We try to make each of these chapters self-contained. Therefore, in several

chapters, some critical contents, e.g., model definitions or illustrative figures,

having appeared in previous chapters, may be briefly reiterated.

Chapter 2

A Background Review

2.1 Graph-based Methods

Graph-based methods include graph-based semi-supervised methods and graph-

based unsupervised methods. We will establish the heat diffusion model on

a random graph, based on which we will construct a heat diffusion classifier

G-HDC. As a graph-based method, G-HDC is transductive learning, and is

related to manifold learning and heat kernel. In this section, we show a brief

literature review on these closely related topics.

2.1.1 Manifold Learning

When the data points lie on a low-dimensional nonlinear manifold that is

embedded into a high-dimensional Euclidean space, the straight-line Euclidean

distance may not be accurate because of the nonlinearity of the manifold.

For example, on the surface of a sphere, the distance between two points

is better measured by the geodesic path. Much recent work has captured

the nonlinearity of the curved manifold. One common idea is that the local

information such as local distance used by [92], local linearity used by [85],

local covariance matrix used by [95], and local Laplacian approximation used

by [11, 74] in a nonlinear manifold is relatively accurate, and can be used

to construct the global information. This idea is reasonable because, in a

15

Chapter 2 A Background Review 16

manifold, every small area is equivalent to a Euclidean space, and can be

properly mapped by a smooth transformation. While inheriting this idea in

our model, we also adopt the concept of thinking globally and fitting locally

described by [87]. In practice, we fit the unknown manifold structure locally

by the neighborhood graph, and we also fit the heat diffusion locally. Then in

the final step we think globally by accumulating the local heat flow. In our

model DiffusionRank, heat diffusion models are established on the Web graph,

which is considered to lie on a manifold.

2.1.2 Heat Kernel

Heat kernels are a class of kernels. For materials in learning with kernels, see

[71, 89]. Some successful applications of heat kernels have been reported re-

cently. In [11], a nonlinear dimensionality reduction algorithm was proposed

based on the graph Laplacian whose elements are induced by a local heat ker-

nel approximation. In [51], a discrete diffusion kernel on graphs and other

discrete input space was proposed. When it was applied to a large margin

classifier, good performance for categorical data was demonstrated by employ-

ing the simple diffusion kernel on the hypercube. In [56], a general framework

was proposed. The key idea was to begin with a statistical family that was

natural for the data being analyzed, and to represent data as points on the

statistical manifold associated with the Fisher information metric of this fam-

ily. The investigation of the heat equation with respect to the Riemannian

structure, given by the Fisher metric, led to a family of kernels, which gener-

alized the familiar Gaussian kernel for Euclidean space. When applied to the

text classification, where the natural statistical family was the multinomial,

a closed form approximation to the heat kernel for a multinomial family was

proposed, which yielded significant improvements over the use of Gaussian or

linear kernels. In [90], a kernel was constructed by inserting the discrete heat

Chapter 2 A Background Review 17

kernel into a continuous kernel, and was successfully applied to SVM.

The heat kernel can be explained as a special solution to the heat equation,

which is given a special initial condition called the delta function δ(x−y). More

specifically, δ(x−y) describes a unit heat source at position y with no heat in

other positions, in other words, δ(x−y) = 0 for x 6= y and
∫ +∞
−∞ δ(x−y)dx = 1.

If we let f0(x, 0) = δ(x− y), then the heat kernel Kt(x,y) is a solution to the

following differential equation on a manifold M:

∂f
∂t
− Lf = 0,

f(x, 0) = f0(x),
(2.1)

where f(x, t) is the temperature at location x at time t, beginning with an

initial distribution f0(x) at time zero, and Lf is the Laplace-Beltrami oper-

ator applied to a function f . Eq. (2.1) describes the heat flow throughout a

geometric manifold with initial conditions. In local coordinates, Lf is given

by

Lf =
1√
detg

∑

j

∂

∂xj

(∑

i

gij
√

detg
∂f

∂xi

)

[56]. When the underlying manifold is the familiar m−dimensional Euclidean

Space, Lf is simplified as
∑
i

∂2f
∂x2

i
, and the heat kernel takes the Gaussian RBF

form

Kt(x,y) = (4πt)−
m
2 e−

||x−y||2
4t . (2.2)

It is therefore observed that when the underlying manifold is the Euclidean

space the Gaussian RBF kernel is a special case of the heat kernel. Previous

research work has shown that the heat kernel is a useful tool when a kernel-

based algorithm is employed. However, if the underlying manifold is unknown

or the explicit expression for Eq. (2.1) is unknown, we cannot find the heat

kernel and cannot apply it to a kernel-based algorithm. We consider removing

this limitation by not employing a kernel-based algorithm, instead, we consider

constructing classifier directly by employing the solution to the heat equation

Chapter 2 A Background Review 18

on a graph in a special setting of the initial condition, although this will result

in another limitation–the resulting algorithm is transductive.

2.1.3 Transductive Learning

G-HDC is built on a graph and it is actually a transductive algorithm which

needs access to the unlabeled data. For a systematic investigation on a semi-

supervised learning, refer to [112]. For transductive learning, the kernel matrix

is important. For the kernel matrix learning, refer to [57]. Our method is dif-

ferent from the kernel matrix learning in that we try to construct a kernel from

data points directly. Along the line of transductive learning, our method is

related to [108, 109, 110] . The models in [109, 110] are mainly concerned with

directed graphs such as the Web link, on which the co-citation is meaningful.

This co-citation calculation, however, is not being considered in our model;

hence a comparison with [109, 110] is inappropriate, and is not provided em-

pirically.

Here we give a detailed description about the consistency method proposed

in [108], which is a transductive algorithm in the literature most closely related

to our proposed G-HDC. Let F be a n × c matrix. Define an n × c Y with

Yij = 1 if xi is labeled as j and Yij = 0 otherwise. The consistency method is

described as follows.

1. Form the affinity matrix W defined by Wij = e−||xi−xj ||2/2σ2
if i 6= j and

Wii = 0.

2. Construct the matrix S = D−1/2WD−1/2 in which D is a diagonal matrix

with its (i, i)−element equal to the sum of the i−th row of W .

3. Iterate F (t + 1) = αSF (t) + (1 − α)Y until converge, where α is a

parameter in (0, 1).

Chapter 2 A Background Review 19

4. Let F ∗ denote the limit of the sequence {F (t)}. Label each point xi as

a label yi = arg maxj≤c F ∗
ij.

2.2 Ranking

In this section, we show some existing ranking algorithms, which will be ex-

tended from a static graph to a random graph. To clearly present the ranking

algorithms, we classify ranking techniques into two types: Absolute Ranking

and Relative Ranking. Absolute Ranking assigns a real number to each page,

and thus gives a total order for all pages. PageRank [76] belongs to Absolute

Ranking. Relative Ranking assigns a real number to each pair of pages, and

thus for each one given page, determines a total order relative to the given

page. Common Neighbors [73], Jaccard’s Coefficient [62], and SimRank [47]

belong to Relative Ranking.

2.2.1 Absolute Ranking

PageRank

As a kind of Absolute Ranking, PageRank [76] gives the importance rank of

Web pages based on the link structure of the Web. The intuition behind

PageRank is that it uses information external to the Web pages themselves–

their in-links, and that in-links from “important” pages are more significant

than in-links from average pages. Formally presented in [30], the Web is mod-

eled by a directed graph G = (V, E) in the PageRank algorithms, and the

rank or “importance” xi for page vi ∈ V is defined recursively in terms of

pages which point to it:

xi =
∑

(j,i)∈E

aijxj, (2.3)

where aij is assumed to be 1/dj, dj is the out-degree of page j. Or in matrix

terms, x = Ax. When the concept of “random jump” is introduced, the matrix

Chapter 2 A Background Review 20

form in Eq. (2.3) is changed to

Model 1:

x = [(1− α)geT + αA]x, (2.4)

where the parameter α is the probability of following the actual link from a

page, (1−α) is the probability of taking a “random jump”, and g is a stochastic

vector (i.e. eTg = 1). Typically, α = 0.85 and e is the vector of all ones.

TrustRank

TrustRank [38] is composed of two parts. The first part is the seed selection

algorithm, in which the inverse PageRank was proposed to help an expert of

determining a good node. The second part is to utilize the biased PageRank, in

which the stochastic distribution g is set to be shared by all the trusted pages

found in the first part. Moreover, the initial input of x is also set to be g. The

justification for the inverse PageRank and the solid experiments support its

advantage in combating the Web spam. Although there are many variations

of PageRank, e.g., a family of link-based ranking algorithms in [7], TrustRank

is especially chosen for comparisons for three reasons: (1) it is designed for

combating spamming; (2) its fixed parameters make a comparison easy; and

(3) it has a strong theoretical relations with PageRank and DiffusionRank.

Manifold Ranking

In [111], the idea of ranking on the data manifolds was proposed. The data

points represented as vectors in Euclidean space are considered to be drawn

from a manifold. From the data points on such a manifold, an undirected

weighted graph is created, and the weight matrix is given by the Gaussian

Kernel smoothing. While the manifold ranking algorithm achieves an impres-

sive result on ranking images, the biased vector g and the parameter k in the

Chapter 2 A Background Review 21

general personalized PageRank in [111] are unknown in the Web graph setting;

therefore, we do not include it in the comparisons.

2.2.2 Relative Ranking

In [62], the authors survey an array of methods for Relative Ranking, including

Common Neighbors, Jaccard’s Coefficient, and SimRank. All the methods

assign a connection weigh s(i, j) to pairs of nodes vi and vj, based on the input

graph. The development of similarity search algorithms is motivated by the

“related pages” queries of Web search engines and Web document classification

[33]. Both applications require a similarity measure, which is computed by

either the textual content of pages or the hyperlink structure or both. As in

previous work [33, 44, 47], we focus on similarities solely determined by the

hyperlink structure of the Web graph.

Common Neighbors

Common neighbor model is based on the idea that two pages are more similar

if they have more common neighbors. The common neighbors of vi and vj

can be defined as s(i, j) = |I(vi) ∩ I(vj)|. It means that if more nodes point

to vi and vj at the same time, vi and vj are more similar. In [73], the author

computes the probability of collaboration between scientists in the Los Alamos

as a function of the times of their past collaboration. A pair of scientists

with more previous collaborators is more likely to collaborate than those with

less previous collaborators. In [62], the authors employ common neighbors to

predict if any two authors will coauthor papers in the future.

Jaccard’s Coefficient

Another commonly used similarity metric is the Jaccard coefficient, which is

used to measure the probability that both vi and vj share a feature. In [62],

Chapter 2 A Background Review 22

the authors take features to be neighbors in graph, which corresponds to the

measure s(i, j) = |I(vi) ∩ I(vj)|/|I(vi) ∪ I(vj)|. In this thesis we utilize this

approach as well to measure the similarity between two pages in the Web.

SimRank

SimRank is introduced in [47] to formalize the intuition that “two pages are

similar if they are referenced by similar pages.” Numerically this is specified

by defining the SimRank score s(i, j) of two pages vi and vj as the fixed point

of the following recursive definition,

s(i, j) =

1, i = j,

0, |I(vi)||I(vj)| = 0, i 6= j,

K
∑

u∈I(vi),v∈I(vj)
s(u, v), otherwise,

for some constant decay factor C ∈ (0, 1), where K = C
|I(vi)||I(vj)| . The SimRank

iteration starts with s(i, j) = 1 for i = j and s(i, j) = 0 otherwise.

Heat Diffusion Ranking

Heat diffusion is a physical phenomena. In a medium, heat always flow from

position with a high temperature to position with a low temperature. Heat

kernel is used to describe the amount of heat that one point receives from

another point. Inspired by heat diffusion, we will propose DiffusionRank, which

belongs to both Absolute Ranking and Relative Ranking. When we consider

the temperature distribution to be a ranking result, DiffusionRank belongs

to Absolute Ranking ; when we consider the pair relations by heat kernel, it

belongs to Relative Ranking.

Chapter 2 A Background Review 23

2.3 Decision Trees

C4.5R8 employs a gain criterion and a gain ratio criterion to select the most

informative attribute at each subset of training cases. If the algorithm is run

with the gain criterion, then for every condition attribute a and for the set

D of class attributes, the information gain G(D, {a}) is computed as follows.

G(D, {a}) = H(D)−H(D|{a}) when a is a discrete attribute, and G(D, {a}) =

H(D)−H(D|{a})−log2(N−1)/|U | when a is a continuous attribute, where N

is the number of distinct values of the attribute a, and log2(N − 1)/|U | is used

to reduce the bias towards the continuous attribute. The attribute that has

the maximum gain among all the condition attributes is chosen. If, instead,

the algorithm is run with the gain ratio criterion, then for every condition

attribute a, the information gain ratio is computed by the formula G(D,{a})
H({a}) .

C4.5 is successful in terms of its speed and accuracy [63]. Further exten-

sions of C4.5 are proposed in [106] to address problems of classifying partially

specified instances. A different paradigm for the criterion of building trees is

proposed in [64], in which decision trees are built by minimizing the sum of the

misclassification and test costs. Further run-time improvement is achieved in

[86], and significant improvements in classification accuracy can be achieved

by growing an ensemble of trees and letting them vote for the most popu-

lar class [18]. Bagging [17], boosting [88, 34, 35] and randomization of the

internal decisions [28] are three methods that generate a diverse ensemble of

classifiers by manipulating the training data to the base algorithm, and an

experimental comparison of these three methods can be found in [28]. Further

developments along the line of the ensemble of decision trees can be found in

[18, 5]. In [18], some theoretical properties of random forests are given, and

it is shown that using a random selection of features to split each node yields

error rates that compare favorably to Adaboost [35]. In [5], first order ran-

dom forests with complex aggregates are shown to be an efficient and effective

Chapter 2 A Background Review 24

approach towards learning relational classifiers that involve aggregates over

complex selections.

Although the classification accuracy of decision trees can be improved con-

siderably by forming an appropriate decision forest, the testing time is propor-

tional to the number of trees in the decision forest, and so is greatly increased.

Because of this, it is favorable to improve the classification accuracy of one

single decision tree. On the other hand, the computation time of the feature

selection in an interior node is proportional to that of the conditional entropy,

the number of data and the number of attributes left in the current node. As

a result, if the dataset is large and there are many features, the computation

time of the feature selection will be large. Under such a consideration, an in-

formation measure that can be computed faster is expected in order to reduce

the feature selection time.

A few attempts at improving the use of continuous attributes in C4.5 can

be found in [32, 83]. In [32], the efficiency of selecting a decision threshold

(cut) for continuous-valued attributes is improved, and in [83], a penalty is

applied to tests on continuous attributes. However, few papers consider the

inaccuracies in handling continuous attributes in C4.5. In the following exam-

ple, we will analyze these. Discretization is an alternative method that has

been discussed in the literature for improving the use of continuous attributes.

For a systematic study of discretization methods with the history of their de-

velopment and their effects on classification including C4.5, see [66]. Although

a new discretization method can be obtained by the proposed random graph

dependency and further improvements can be expected, we focus on handling

the continuous attributes by inheriting the idea employed in C4.5, i.e., choos-

ing the cut such that the information gain (or gain ratio) is maximal, in order

to distinguish the single factor (in improving the accuracy of C4.5) of the re-

placement of the conditional entropy by the random graph dependency from

other factors such as the discretization and the boosting. By doing so, we hope

Chapter 2 A Background Review 25

to show that how much improvement can be made through this single factor.

We focus on improving the speed of C4.5 by one form of the proposed

random dependency measure and improving its accuracy by another form of

the novel measure.

2.4 Information Measures

In [102, 103], rules are classified into two types: one-way rule and two-way rule.

The dependency degree γ(C, D) and the conditional entropy are measures for

one-way rule.

2.4.1 The Dependency Degree γ(C, D)

γ(C, D) expresses the percentage of objects that can be correctly classified

into the D-class by employing attribute C. γ becomes a traditional measure

in Rough Set Theory [36].

Varying the measure, a family of γ-like statistics is introduced in [36], the

idea of which is to count the number of errors. The problem of extending γ to

incomplete information systems is considered in the literature. The simplest

method is to remove examples with unknown values. Replacing every missing

value with the set of all possible values is another method [65]. Introducing

the similarity relation and completion of an incomplete information system is

a more accurate way to handle missing values [52, 53, 60].

In a recent approach, γ is employed to generate rules in a case study, and

achieves high accuracy rates and less number of rules [41].

2.4.2 The Conditional Entropy H(D|C)

The Shannon entropy function is applied [59, 68, 72] to measure the “informa-

tion content” of the data in the columns of an attribute set. They extend the

Chapter 2 A Background Review 26

idea to develop a measure that, given a finite table T , quantifies the amount of

information the columns of C contain about D. This measure is the conditional

entropy [37].

The conditional entropy is referred to as an information dependency mea-

sure, denoted by HC→D [27], and a variety of arithmetic inequalities is de-

veloped for this measure. The conditional entropy is well discussed in the

literature of Information Theory [25, 105], and is used in the C4.5 decision

tree algorithm [82], and the latest version C4.5R8 [83].

2.5 A Brief Book Review

In [70], there is a systematic discussion on random graphs for statistical pat-

tern recognition. The topics include various graph construction methods such

as Delaunay Triangulation [58], Alpha Hulls [69], KNN Graphs, Relative-

Neighbor Graphs [46], Gabriel Graphs [16, 107], etc. This book also incor-

porates a lot of graph-based materials such as clustering, image segmentation,

outlier detection, and etc, but it is seldom related to heat diffusion, ranking

and random graph measure, which are our focus in this thesis. Nevertheless, it

is possible to feed the heat diffusion classifiers by the above mentioned graphs.

The readers are recommended to read this book if they hope to extend the

scope of the heat diffusion classifiers.

Chapter 3

Heat Diffusion Model on a

Random Graph

The aim of this chapter is to establish a framework called Graph-based Heat

Diffusion Classification (G-HDC). The framework consists of two stages:

• Random Graph Generation Stage–The first stage engages the data

cloud to construct a random graph representing the data relationship

in a local way. Statistical and geometrical methods can be applied to

generate this random graph. Currently we focus on geometrical methods.

• Heat Diffusion Calculation Stage–The second stage takes the ran-

dom graph output and the label information, and then calculates the

temperatures of unlabeled data after a fixed time period, based on a heat

diffusion model on a random graph. The temperatures are employed to

classify the unlabeled data.

This chapter is organized as follows. In Section 3.1, we show the moti-

vations. In Section 3.2, we construct the heat diffusion model on a random

directed graph, and in Section 3.5, we propose the Graph-based Heat Diffu-

sion Classifiers (G-HDC). To feed G-HDC, we propose three candidate random

graphs in Section 3.3 and Section 3.4. In Section 3.6, Section 3.7, and Sec-

tion 3.8, we provide detailed interpretations of the heat diffusion model. Then

27

Chapter 3 Heat Diffusion Model on a Random Graph 28

Graph-based Heat Diffusion Classification Framework

Random Graph Generation

 - KNN Graph
 - SKNN Graph
 - Volume-based Graph

Heat Diffusion Calculation

 - KNN-HDC
 - SKNN-HDC
 -VHDC

ClassificationData Cloud

Figure 3.1: The graph-based heat diffusion classification framework.

in Section 3.10, we show the experimental results. Section 3.11 provides a

summary.

3.1 Motivations

The successful applications [51, 56, 90] of the heat kernel motivate us to in-

vestigate the heat equation Eq. (2.1) and its solutions. Traditional numerical

methods for solving differential equations are in fact established on a trian-

gulation mesh or on a grid, and they have been classified into three main

approaches: finite element (FE), boundary element (BE), and finite difference

(FD) methods [10]. For the heat diffusion equation, the situation is similar.

The FE method for the heat diffusion equation is used in surface smoothing

(for example, see [23, 91]).

If a simplicial surface S with vertex set V can be constructed from the data

cloud, then by the results in [14], the discrete Laplace-Beltrami operator L of

a simplicial surface S can be established as:

Definition 5 For a function f : V → Rm on the vertices, the value of Lf :

V → Rm ar xi ∈ V is

Lf(xi) =
∑

xj∈V :(xi,xj)∈ED

ρ(xi, xj)(f(xi)− f(xj)), (3.1)

where ED is the edge set of a Delaunay triangulation of S and the weights are

Chapter 3 Heat Diffusion Model on a Random Graph 29

given by

ρ(xi, xj) =

1
2
(cot αij + cot αji) for interior edges

1
2
cot αij for boundary edges

(3.2)

Here αij (and αji for interior edges) are the angles opposite the edge (xi, xj)

in the adjacent triangles of the Delaunay triangulation.

However, there is not a clear picture of constructing the mentioned simplicial

surface S when faced a cloud of data points in an unknown geometry. For the

same reason, we cannot construct the triangle mesh directly in our model. It is

true that meshing algorithms exist and are widely employed in scientific com-

putation, for example, see [9, 26]. They are highly refined for low-dimensional

point clouds and generate meshes for FE and BE. However, in situations where

the data is quite high-dimensional and sparse, we are unaware of any effective

meshing algorithm and therefore we cannot use the FE and BE methods.

In the following, we illustrate the FD method for the heat diffusion equa-

tion by considering the special case when the manifold is a two-dimensional

Euclidean space. In such a case, the heat diffusion equation in Eq. (2.1) be-

comes

∂f
∂t
− ∂2f

∂x2 − ∂2f
∂y2 = 0,

f(x, y, 0) = f0(x, y).
(3.3)

The FD method begins with the discretization of space and time. For simplic-

ity, we assume equal spacing of the points xi in one dimension with intervals

of size ∆x = xi+1 − xi, equal spacing of the points yj in another dimension

with intervals of size ∆y = yj+1 − yj (assume ∆y = ∆x = d for simplicity),

and equal spacing of the time steps tk at intervals of ∆t = tk+1 − tk. f(i, j, k)

is the temperature at position xi, yj at time tk. The grid on the plane is shown

in Fig. 3.2(a). The grid creates a natural graph: the set of nodes is {(i, j)},
and node (i, j) is connected to node (i′, j′) if and only if |i− i′|+ |j − j′| = 1.

Chapter 3 Heat Diffusion Model on a Random Graph 30

(a) (b) (c) (d)

Figure 3.2: (a) The grid on the two dimensional space. (b) The eight irregularly
positioned points. (c) The small patches around the irregular points. (d) The
square approximations of the small patches.

Note that each node (i, j) has four neighbors: (i−1, j), (i+1, j), (i, j−1), and

(i, j + 1).

Based on this discretization and approximation of the function, we then

write the following approximations of its derivatives in space and time:

∂f

∂t

∣∣∣∣∣
(i,j,k)

≈ f(i, j, k + 1)− f(i, j, k)

∆t
,

∂2f

∂x2

∣∣∣∣∣
(i,j,k)

≈ f(i− 1, j, k)− 2f(i, j, k) + f(i + 1, j, k)

(∆x)2
,

∂2f

∂y2

∣∣∣∣∣
(i,j,k)

≈ f(i, j − 1, k)− 2f(i, j, k) + f(i, j + 1, k)

(∆y)2
.

This leads to a difference form of the heat equation as follows:

f(i,j,k+1)−f(i,j,k)
∆t

= f(i−1,j,k)−2f(i,j,k)+f(i+1,j,k)
(∆x)2

+ f(i,j−1,k)−2f(i,j,k)+f(i,j+1,k)
(∆y)2

= [(f(i−1,j,k)−f(i,j,k))+(f(i+1,j,k)−f(i,j,k))
d2 + (f(i,j−1,k)−f(i,j,k))+(f(i,j+1,k)−f(i,j,k))]

d2

(3.4)

The above two discretization methods are successful when the underlying

triangulation mesh or the grid can be constructed successfully, however, in the

real data analysis, the graph constructed from the data points is irregular, i.e.,

it is neither a triangulation mesh or the grid. Even worse, we often face the

following problems where we cannot employ these two discretization methods.

1. The manifold is unknown;

Chapter 3 Heat Diffusion Model on a Random Graph 31

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−4
−2

0
2

4

−4
−2

0
2

4
−5

0

5

10

15

(a) (b)

Figure 3.3: (a) The grid on the two-dimensional Euclidean space. (b) The grid
on the curved Euclidean space.

2. The differential equation expression is unknown even if the manifold is

known.

We aim to solve these problems using a Heat Diffusion Model (HDM)

on a graph by considering the above problems while preserving the common

features in Eq. (3.1) and Eq. (3.4) such that the neighbor xj of xi affects xi

in proportional to the difference f(xj) − f(xi). In fact, we try to establish

the heat diffusion model on a graph by going back the Fourier law, on which

the original differential heat diffusion equation is established. The novel heat

diffusion model on the graph are expected to grasp some nature of the data,

and are expected to lead to a novel classifier called Heat Diffusion Classifier

(HDC) are competitive to some state-of-the-art transductive classifiers.

The intuition behind is that the heat equation on a graph is considered

as an approximation to Eq. (2.1). For example, heat diffusion behaviors in

the grid shown in Fig. 3.3(a) should be the same as those in Fig. 3.3(b) if the

weights between two grid nodes in these two grids are the same. Consequently,

by the bridge of the grid considered as a special graph, the difficulty of solving

the heat diffusion in the curved manifold in Fig. 3.3(b) is reduced. Next we

consider establishing a diffusion model on a random directed graph.

Chapter 3 Heat Diffusion Model on a Random Graph 32

3.2 Heat Diffusion Model on a Random Di-

rected Graph

Consider a directed random graph G = (V, E, P), where V = {v1, v2, . . . , vn},
P = (pij), where pij is the probability that edge (vi, vj) exists, and E =

{(vi, vj) |there is an edge from vi to vj and pij > 0} is the set of all edges.

The value fi(t) describes the temperature at node i at time t, beginning

from an initial distribution of temperature given by fi(0) at time zero. We

establish our model as follows. Suppose, at time t, each node i receives an

amount M(i, j, t, ∆t) of heat from its neighbor j during a period of ∆t. The

heat M(i, j, t, ∆t) should be proportional to the time period ∆t and the tem-

perature difference fj(t)− fi(t).

As a result, the expected heat difference at node i between time t + ∆t

and time t will be equal to the sum of the heat that it receives from all its

neighbors. This is formulated as

fi(t + ∆t)− fi(t)

∆t
= α

∑

(j,i)∈E

pji(fj(t)− fi(t)) (3.5)

To find a closed form solution to Eq. (3.5), we express it as a matrix form:

f(t + ∆t)− f(t)

∆t
= αHf(t), (3.6)

where H = (Hij), and

Hij =

−∑
k:(k,i)∈E pki, if j = i;

pji, if (j, i) ∈ E;

0, otherwise.

(3.7)

In the limit ∆t → 0, Eq. (3.6) becomes

d

dt
f(t) = αHf(t), (3.8)

Solving Eq. (3.8), we get

f(t) = eαtHf(0) = eγHf(0), (3.9)

Chapter 3 Heat Diffusion Model on a Random Graph 33

where γ = αt, and eγH is approximated by

eγH = I + γH +
γ2

2!
H2 +

γ3

3!
H3 + · · · . (3.10)

The matrix eγH is called the diffusion kernel in the sense that the heat diffusion

process continues infinitely many times from the initial heat diffusion.

For the sake of computational considerations, eγHf(0) can be approximated

as (I + γ
p
H)pf(0), where p is a large integer. The latter can be calculated by

iteratively applying the operator (I + γ
p
H) to f(0).

3.3 Candidate Random Graphs for G-HDC

In the case that the underlying geometry is unknown or its heat kernel cannot

be approximated in the same way as used by [56], it is natural to approximate

the unseen manifold by a graph, and to establish a heat diffusion model on

the approximation graph rather than on the underlying geometry. The graph

embodies the discrete structure of the nonlinear manifold. By doing so, we

can imitate the way that heat flows through a nonlinear manifold. Below we

consider three graph approximations.

3.3.1 KNN Graph

The KNN graph construction algorithm is commonly used in the literature

[11, 85, 87, 92]. The traditional KNN graph construction algorithm is slightly

changed as shown below.

Define graph G over all data points by connecting points xj and xi from xj

to xi if xj is one of the K nearest neighbors of xi, measured by the Euclidean

distance. Let d(i, j) be the Euclidean distance between point xi and point

xj. Set edge probability pji equal to e−d2(i,j)/β if xj is one of the K nearest

neighbors of xi.

Chapter 3 Heat Diffusion Model on a Random Graph 34

A

D

C

B

 A

B

C
D

Figure 3.4: Illustrations on a manifold on which the shorter line is more accu-
rate.

Note that there are K ∗ (M + N) directed edges in the resulting graph.

Next we propose two other candidates.

3.3.2 SKNN-Graph

When the data lies on a low-dimensional nonlinear manifold that is embedded

into a high-dimensional Euclidean space, the straight-line Euclidean distance

may be not accurate because of the nonlinearity of the manifold. For example,

on the surface of a sphere, the distance between two points is better measured

by the geodesic path. In intuition, the smaller the strait-line Euclidean dis-

tance in a manifold, the more accurate the distance will be. This is shown in

the Figure 3.4. Since AB is shorter than AC and AD, AB is more accurate

than AC and AD as an approximation to its geodesic path. Based on such

consideration, to make full use of accurate information (shorter edges), we

propose to construct the SKNN graph with the Shortest edges whose number

is the same as the KNN graph: replace the K ∗ (M + N) edges in the KNN

graph with the smallest K ∗ (M + N)/2 undirected edges, which amounts to

K ∗ (M + N) directed edges. Set edge probability pji equal to e−d2(i,j)/β if

d(i, j) is among the smallest K ∗ (M + N)/2 undirected edges.

The third candidate will be shown in next section. It is motivated by more

accurately modeling the heat diffusion equation by a volume representation.

Chapter 3 Heat Diffusion Model on a Random Graph 35

3.4 Volume-based Heat Diffusion Model on a

Graph

We consider the representation ability of each node. In a manifold, there are

infinitely many nodes on the manifold, but only a finite number M + N of

nodes are known and form the graph. We can assume that there is a small

patch P (j) of space containing node j and many nodes around node j; node

j is seen by the observer, but the small patch is unseen to the observer. The

volume of the small patch P (j) is V (j).

3.4.1 Establishment of VHDM

In this section, we try to establish the heat diffusion model by employing

Fourier’s law, which states that the rate of heat flow through a homogenous

solid is directly proportional to the area of the section at right angles to the

direction of heat flow, and to the temperature difference along the path of heat

flow.

Suppose, at time t, each unit volume containing i receives an amount

HM(i, j, t, ∆t) of heat from its neighbor j during a period of ∆t. Then ac-

cording to Fourier’s law, we assume that

1. The heat HM(i, j, t, ∆t) should be proportional to the time period ∆t

and the temperature difference fj(t)− fi(t).

2. The amount of heat that patch P (j) diffuses to the unit volume contain-

ing i is proportional to the surface area S(i) of the unit volume.

Moreover, the heat flows from node j to node i through the pipe that connects

nodes i and j, and therefore the heat diffuses in the pipe in the same way as it

does in the one-dimensional Euclidean space, as described in Eq. (2.2). Con-

sequently we further assume that HM(i, j, t, ∆t) is proportional to e−w2
ij , the

Chapter 3 Heat Diffusion Model on a Random Graph 36

amount of heat that a unit heat source at node j transferred to node i, which

is a fact in one-dimensional Euclidean space. In addition, the temperature in

the small patch P (j) at time t is almost equal to fj(t) because every unseen

node in the small patch is near node j, and so the amount of heat in patch

P (j) is proportional to V (j). As a result,

HM(i, j, t, ∆t) = αS(i)e−w2
ij/β(fj(t)− fi(t))V (j)∆t.

The amount of heat in the unit volume containing i is equal to fi · 1. The

heat difference in this unit volume should be fi(t+∆t)−fi(t), which is caused

by the sum of the heat that it receives from all its neighbors and the small

patches around these neighbors. This is formulated as

fi(t + ∆t)− fi(t) = α
∑

(j,i)∈E

S(i)e−w2
ij/β(fj(t)− fi(t))V (j)∆t (3.11)

The solution to Eq. (3.11) is f(t) = eγHf(0), where H = (Hij), and

Hij =

−∑
k:(k,i)∈E S(i)e−w2

ik/βV (k), j = i,

S(i)e−w2
ij/βV (j), (j, i) ∈ E,

0, otherwise.

(3.12)

In the model, V (i) is used to estimate the volume of the small patch around

node i. Intuitively, if the data density is high around node i, the nodes around

node i will have a high probability of being selected, and thus there are fewer

unseen nodes around node i. Currently we define V (i) to be mean of 1/n

and the normalized volume of the hypercube whose side length is the distance

between node i and its nearest neighbor. Formally,

V (i) = η min
j:(j,i)∈E

wν
ij/2 + 1/2n, (3.13)

where ν is the dimension of the space in which graph G lies, and η is a nor-

malized parameter such that
∑

i∈V V (i) = 1.

In the above discussions, we established VHDM by physical intuitions.

Next we will show a mathematical justification for the introduction of volumes,

and as a by-product, we find a way to calculate the contact area S(i).

Chapter 3 Heat Diffusion Model on a Random Graph 37

3.4.2 Necessity of Introducing Volumes

In this section, we show that it is necessary to introduce the concept of volumes

from three aspects.

Justification by Integral Approximations

In this section, except for volumes, we follow the approximation techniques

employed in [11]. Note that when all the volumes are equal, the last approxi-

mation in Eq. (3.15) becomes the case in [11].

It turns out that in an appropriate coordinate system Kt(x,y) on a mani-

fold is approximately the Gaussian:

Kt(x,y) = (4πt)−
m
2 e−||x−y||

2/4t(φ(x,y) + O(t)), (3.14)

where φ(x,y) is a smooth function with φ(x,x) = 1, and when t is small, O(t)

can be neglected. Therefore when x and y are close and t is small, we have

Kt(x,y) ≈ (4πt)−
m
2 e−||x−y||

2/4t. For more details, see [11, 84].

It is well known that the solution to Eq. (2.1) can be expressed as f(x, t) =
∫
M Kt(x,y)f0(y). From Lf(x, t) = ∂f(x,t)

∂t
, we have

Lf(xi, t) ≈ (−f(xi, t) + f(xi, t + ∆t))/∆t

≈ (−f(xi, t) +
∫
M K∆t(xi,y)f(y, t))/∆t

≈ (−f(xi, t) + (4π∆t)−
m
2

∫
M e−||xi−y||2/4∆tf(y, t))/∆t

≈ (−f(xi, t) + (4π∆t)−
m
2

∑
(j,i)∈E

e−||xi−xj ||2/4∆tf(xj, t)V (j))/∆t,

(3.15)

where volumes are considered the partition of M , and the last approximation

is based on the definition of the integral, which will become an equality if
⋃

{j|(j,i)∈E}
P (j) = M , P (j) ∩ P (k) = ∅, and max V (j) → 0. To satisfy these

three conditions, the volume of a patch should occupy the manifold as much

as possible while each pair of patches are not intersected. When the number

of data is large enough, max V (j) will be small enough. This motivates us to

define the volume in Eq. (3.13).

Chapter 3 Heat Diffusion Model on a Random Graph 38

However, in practice, the above three conditions cannot be satisfied, and so

an error arises in the last approximation. To correct this approximation error,

(4π∆t)−
m
2 is set to be S(i). By the knowledge that a constant temperature

distribution at time t will also result in a constant temperature distribution at

time t + ∆t, we have 1 ≈ S(i)
∑

(j,i)∈E
e−||xi−xj ||2/4∆tV (j), and so

S(i) ≈ 1/(
∑

(j,i)∈E

e−||xi−xj ||2/4∆tV (j)). (3.16)

This is the definition of the surface area of node i. The intuition is that the

larger the volumes of its neighbors the less the surface that is left to i. This

intuition comes from the observation that, in Fig. 3.2(d), the larger volumes

of squares A,B,C,D, and E force the surface of O to be smaller.

Let G be the KNN graph. By this volume-based heat diffusion model, we

can see that the underlying random graph is

P = (pij), pij =

S(i)e−w2
ij/βV (j), if j is one neighbor of i’s;

0, otherwise.
(3.17)

With such a random graph, G-HDC in Section 3.5 becomes the Volume-based

Heat Diffusion Classifier VHDC.

Justification by the Definition of a Manifold

Volumes are theoretically important because heat diffuses throughout the whole

of any given volume in a physical system, and the concept of the volume is

crucial in its ability to represent the whole space, including both known points

and other points between them. Moreover, the idea of volume can be explained

further by the definition of local charts in a differential manifold as shown in

[56].

Definition 6 An m−dimensional differential manifold M is a set of points

that is locally equivalent to the m−dimensional Euclidean spaceRm by smooth

Chapter 3 Heat Diffusion Model on a Random Graph 39

transformations, supporting operations such as differentiation. Formally, a

differentiable manifold is a set M together with a collection of local charts

{(Ui, φi)}, where Ui ⊂ M with ∪iUi = M, and φi : Ui ⊂ M → Rm is a

bijection from Ui to φi(Ui). For each pair of local charts (Ui, φi) and (Uj, φj),

it is required that φj(Ui ∩ Uj) is open and φij = φi ◦ φ−1
j is a diffeomorphism.

The small patch around each point i can be considered as a local charts Ui,

and the volume of i is the volume of Ui. Consequently the whole manifold M
is formed by joining the small patches together.

Justification by Variation of Density

When data points are not drawn uniformly, and we use the volume of the

hypercube around a node to perform the local density estimation around the

node. In Fig. 3.2(c), the whole space is covered by small patches, and in

Fig. 3.2(d) each small patch is approximated by a small square. In this way,

we actually consider the unseen points so that the concept of heat diffusion

on a graph can be treated as an approximation of heat diffusion in a space.

There is no such consideration in the FD method.

3.4.3 Calculation of the Intrinsic Dimension ν

In the definition of volumes, we introduce the parameter ν describing the di-

mension of the space in which graph G lies. From the definition of a differential

manifold, ν corresponds to the unknown dimension m of the local Euclidean

space. In the following, we consider how to determine the value of this param-

eter.

Why PCA is unsuitable

PCA is a traditional method for dimension estimation. In this method, the

intrinsic dimension is determined by the number of eigenvalues greater than

Chapter 3 Heat Diffusion Model on a Random Graph 40

a given threshold. Both global PCA and local PCA have the disadvantage of

introducing another parameter–the threshold. Moreover, global PCA methods

fail on nonlinear manifolds, on which our model is established; local methods

depend heavily on the precise choice of local regions [94].

Thus, instead of PCA, we choose the maximum likelihood estimation method

proposed in [61]. Apart from avoiding the problems with PCA just mentioned,

this method also has the advantage that it fits the proposed heat diffusion

classifier naturally because the graph is constructed by K nearest neighbors

in Eq. (3.17), where the parameter K is the same as the one employed in di-

mension estimation by the maximum likelihood estimation. In addition, this

method helps to reduce the complexity of searching the parameter K in that

we can discard those Ks by which the estimated dimensions are greater than

the number of attributes or are less than one.

Maximum Likelihood Estimation of Intrinsic Dimension

If Tj(x) is the Euclidean distance from a fixed point x to its j-th nearest

neighbor in the sample, then the local dimension m̂K(x) at point x can be

estimated by a maximum likelihood estimation, as described in [61], as follows,

m̂K(x) =

 1

K − 1

K−1∑

j=1

log
TK(x)

Tj(x)

−1

. (3.18)

To avoid overflowing during calculations when Tj(x) is very small, we slightly

change Eq. (3.18) to the following:

m̂K(x) =

 1

K − 1

K−1∑

j=1

log
TK(x) + ε

Tj(x) + ε

−1

. (3.19)

ε is set to be 0.0000001. Then ν = 1
n

n∑
i=1

m̂K(xi). In fact, we observe that an

arbitrary selection of the parameter ε in the interval [0.0000001, 0.001] cannot

produce much difference on the estimation of the dimension, and so we need

not pay much care on the selection of ε.

Chapter 3 Heat Diffusion Model on a Random Graph 41

3.5 Graph-based Heat Diffusion Classifiers (G-

HDC)

Based on the closed form solution in Eq. (3.9), we establish a classifier by

simulating the heat diffusion based on the graph, as described follows.

Assume that there are c classes, namely, C1,C2, . . . , Cc. Let the labeled

data set contain M samples, represented by (xi, ki) (i = 1, 2, . . . , M), which

means that the data point xi belongs to class Cki
. Suppose the labeled data set

contain Mk points in class Ck so that
∑c

k=1 Mk = M . Let an unlabeled data set

contains N unlabeled samples, represented by xi (i = M+1, M+2, . . . , M+N).

For a given graph that can model the data relation, we apply the heat

diffusion model to the graph. For the purpose of classification, for each class

Ck in turn, we set the initial heat at the labeled data in class Ck to be one

and all other data to be zero, then calculate the amount of heat that each

unlabeled data receives from the labeled data in class Ck. Finally, we assign the

unlabeled data to the class from which it receives most heat. More specifically,

we describe the resulting Graph-based Heat Diffusion Classifier as follows.

[Step 1: Construct graph] Define graph G over all data points both in

the training data set and in the unlabeled data set by a graph construction

algorithm.

[Step 2: Compute the Heat Kernel] Using Eq. (3.7) and Eq. (3.10),

find the heat kernel eγH .

[Step 3: Compute the Heat Distribution] Let

fk(0) = (xk
1, x

k
2, . . . , x

k
M , 0, 0, . . . , 0︸ ︷︷ ︸

N

)T ,

k = 1, 2, . . . , c, where xk
i = 1 if Cki

= Ck, and xk
i = 0 otherwise. Then we

obtain c results for f(t), namely, fk(t) = eγHfk(0), k = 1, 2, . . . , c. fk(0) means

that all the data points in class Ck have unit heat at the initial time, while

other data points have no heat, and the corresponding result fk(t) means that

Chapter 3 Heat Diffusion Model on a Random Graph 42

the heat distribution at time t is caused by the initial temperature distribution

fk(0).

[Step 4: Classify the data] For l = 1, 2, . . . , N , compare the p-th

(p = M + l) components of f1(t), f2(t), . . . , fc(t), and choose class Ck such

that fk
p (t) = maxc

q=1 f q
p (t), i.e., choose the class that distributes the most heat

to the unlabeled data xp, then classify the unlabeled data xp to class Ck.

Note that the initial temperature setting is shown in fk(0) in the Step 3,

and that the stop time t is hidden in γ = αt, a super-parameter determined

by cross-validation.

As an example of Step 1, in Fig. 3.5(a), we show 2,000 points on a 2-

dimensional spiral manifold which is embedded into 3-dimensional space. In

Fig. 3.5(b), we show the neighborhood graph approximation of the spiral man-

ifold, which contains 1,000 points drawn from the 2,000 points in Fig. 3.5(a),

and in which each node has 3 neighbors. As shown in Fig. 3.5(b), there are two

classes. In Step 2, the heat diffuses from the labeled data to the unlabeled data

along the graph, and consequently, the heat flows along the spiral manifold.

In Step 3, if the unlabeled data point is closer to one class in the sense that

it receives more heat in total from this class of data, then the unlabeled data

point is classified into this class; otherwise, it is classified into the other class.

In section 3.3, we showed three candidate random graphs: KNN graph,

SKNN graph, and Volume-based graph, which result in corresponding classi-

fiers: KNN-HDC, SKNN-HDC, and VHDC.

Chapter 3 Heat Diffusion Model on a Random Graph 43

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

0
0.5

1

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

0
0.5

1

(a) (b)

Figure 3.5: An illustration of the spiral manifold and its graph approximation.
(a) The 2,000 data points on a spiral manifold. (b) Neighborhood graph of the
1,000 data points on the spiral manifold.

3.6 Correspondences between the Heat Diffu-

sion Model on Graphs and that on Mani-

folds

In Section 3.1, we have shown that the heat diffusion kernel Kt(x,y) is a special

solution to Eq. (2.1) with a special initial condition called the delta function

δ(x−y). From this point of view, the heat kernel Kt(x,y) can be considered as

a generalization of Gaussian density–when the geometric manifold varies, the

corresponding heat kernel varies and can be considered as the generalization of

Gaussian density from a flat Euclidean space to a general manifold. Since we

approximate the unknown manifold by a neighborhood graph, it is interesting

to show the similarity between heat diffusion on a manifold and heat diffusion

on a neighborhood graph.

In the case that the underlying geometry is unknown or its heat kernel can-

not be approximated in the same way as used by [56], it is natural to approxi-

mate the unseen manifold by the graph created by the K nearest neighbors in

our model, and to establish a heat diffusion model on the neighborhood graph

Chapter 3 Heat Diffusion Model on a Random Graph 44

rather than on the underlying geometry. The graph embodies the discrete

structure of the nonlinear manifold. By doing so, we can imitate the way that

heat flows through a nonlinear manifold.

Next, we list some correspondences between the heat diffusion model on

graphs and the heat diffusion model on manifolds:

1. The heat diffusion equation on a graph is d
dt

f(t) = αHf(t); the heat

diffusion equation on a manifold is, from Eq. (2.1),

∂f
∂t

= Lf,

f(x, 0) = f0(x).

2. The solution to the heat diffusion equation on a graph is f(t) =

eαtHf(0) = eγHf(0); the solution to the heat diffusion equation on a mani-

fold is f(x, t) =
∫
M Kt(x,y)f0(y)dy.

3. The delta function δ(x − y) is used to represent a unit heat source at

position y; the vector ej, whose j−th element is one while other elements are

zero, is used to represent a unit heat source at node j.

3.7 Roles of the Parameters

It is easy to find that K is used to control the manifold approximation, and

that ν is used to model the true dimensionality of the manifold that the data

lie in.

3.7.1 Local Heat Diffusion Controlled by β

In Section 3.4.1, we assumed that the heat diffuses in the pipe in the same

way as it does in the one-dimensional Euclidean space. Next we will justify

this assumption. In VHDM in Section 3.4.1, heat flows in a small time period

∆t, and the pipe length between node i and node j is small (recall that we

create an edge from j to i only when j is one of the K nearest neighbors). So

Chapter 3 Heat Diffusion Model on a Random Graph 45

the approximation in Eq. (3.14) can be used in our model, and we rewrite it

as K∆t(i, j) ≈ (4π∆t)−
m
2 e−w2

ij/4∆t. According to the Mean-Value Theorem and

the fact that K0(i, j) = 0, we have

K∆t(i, j) = K∆t(i, j)−K0(i, j) =
dK∆t(i, j)

d∆t

∣∣∣∣∣
∆t=β

∆t ≈ α · e−w2
ij/4β∆t,

where β is a parameter that depends on ∆t, and α = 1
4
w2

ijβ
−2−m/2−1

2
mβ−1−m/2.

To make our model concise, α and β simply serve as free parameters because

the relation between ∆t and β is unknown. This explains the statement that

β controls the local heat diffusion from time t to t + ∆t, and the reason why

we assume that at time t, the amount of heat that node i receives from its

neighbor j is proportional to e−w2
ij/β.

3.7.2 Global Heat Diffusion Controlled by γ

From γ = αt, we can see that γ controls the global heat diffusion from time 0

to t. Another interesting finding is that γ can be explained as a regularization

parameter: when γ = 0, we have eγHf(0) = If(0) = f(0), which results in a

classifier that has zero error on the training set. When γ → +∞, the system

will stop diffusing heat, and the heat at each node are equal. This means the

function on the graph becomes the smoothest in the sense that the variance

between values on neighbors is the smallest. The best γ is a tradeoff of the

training error and the smoothness, and should not be zero or infinity.

Finally, we investigate the singular behavior of G-HDC in the limit γ → 0.

If we simply let γ = 0 in the equation eγHf(0), then we only get a trivial

classifier as shown above. From a different viewpoint, we observe the following

interesting phenomena:

Subtracting I from eγH then dividing by γ changes the values of the testing

data in the same scale, and so does not change the performance of the classifier,

that is, (eγH − I)/γf(0) behaves the same as eγHf(0) as a classifier. Then we

can take the limit over (eγH − I)/γf(0), and we obtain

Chapter 3 Heat Diffusion Model on a Random Graph 46

limγ→0
(eγH−I)

γ
f(0) = limγ→0

I+γH+ γ2

2!
H2+···−I

γ
f(0)

= limγ→0(H + γ
2!
H + · · ·)f(0)

= Hf(0).

We consider Hf(0) as the singular behavior of G-HDC in the limit γ → 0.

3.7.3 Stability of KNN-HDC with Respect to Parame-

ters

It is easier to analyze KNN-HDC than to analyze SKNN-HDC and VHDC,

because the number of nonzero elements in H in SKNN-HDC is not fixed, and

the expressions in H in VHDC is complicated. In this section, we will analyze

the stability of KNN-HDC with respect to parameters.

There are three free parameters in KNN-HDC. If the parameters in a model

are not stable, then a small deviation from the best value of a parameter may

result in a totally different performance. This instability of the parameters is

not desirable. In this section, we try to show that the parameters β and γ are

not sensitive to the classifier KNN-HDC.

Since eγH is continuous on β and γ in the sense that small changes in these

parameters result in a small change in eγH , KNN-HDC is not sensitive to these

two parameters if they are changed slightly.

The existence of the derivatives of eγH with respect to β and γ can be seen

in the following:

deγH

dγ
= eγHH, (3.20)

deγH

dβ
= γeγH dH

dβ
, (3.21)

dH

dβ
= (

dHij

dβ
), (3.22)

Chapter 3 Heat Diffusion Model on a Random Graph 47

dHij

dβ
=

−∑
k:(k,i)∈E e−w2

ik/βw2
ikβ

−2, if j = i;

e−w2
ij/βw2

ijβ
−2, if (j, i) ∈ E;

0, otherwise.

(3.23)

It is well-known that ∆f ≈ df
dt

∆t. Since there exist derivatives of eγH

with respect to β and γ, we can say that eγH is stable with respect to these

parameters, and so is eγHf(0).

If H is symmetric, then we can estimate an upper bound for these deriva-

tives. First of all, we claim that the i−row j−column element in eγH means

the amount of heat that i receives from a unit heat source at j. So physically

we claim that eγH is a non-negative matrix. Next, we show that the sum of

each row in eγH is equal to one. Let 1 and 0 be the vector of all ones and the

vector of all zeros respectively. Then H1 = 0. According to Eq. (3.10), we

have

eγH1 = I1 + γH1 +
γ2

2!
H21 + . . . = 1,

which means that the sum of each row in eγH is equal to one. Consequently we

can assume that each row in eγH is a vector (a1, a2, . . . , an) satisfying ai ≥ 0

and
∑

i ai = 1. Let (b1, b2, . . . , bn)T be a column in H. Then each element

in deγH

dγ
is of the form (a1, a2, . . . , an)(b1, b2, . . . , bn)T by Eq. (3.20). By the

Hölder’s inequality (p = 1, q = ∞), we have

(a1, a2, . . . , an)(b1, b2, . . . , bn)T ≤ (
∑

i

|ai|) max
i
|bi| = max

i
|bi| ≤ K,

which means that each element in deγH

dγ
is not greater than K. Similarly if

γe−w2
ij/βw2

ijβ
−2 ≤ 1 for all i and j, then each element in deγH

dβ
is not greater

than K.

For the parameter K, it has an unstable effect on the classifier KNN-HDC.

Increasing or decreasing K by one will result in a structural change in the

underlying KNN graph; as a result, the values in the matrices H and eγH will

change dramatically. However, this property of instability has no impact on

Chapter 3 Heat Diffusion Model on a Random Graph 48

the performance of KNN-HDC because K is a natural number and all possible

K can be tested by the cross-validation on the training data, so that the best

value can be chosen successfully.

The discrete parameter is quite different from the continuous parameters

γ and β, for which we must choose the appropriate values by testing a subset

of all their possible values. Under such a circumstance, stability is important

for continuous parameters because there may be a small variation between the

best value and the nearest one in the subset, and the property of stability can

guarantee that there is no big difference on the performance between the true

best value and the best-performing value chosen from the subset tested.

3.8 Necessity of Introducing the Heat Diffu-

sion Model in Classification

It is not absolutely necessary to have a physical model behind a learning al-

gorithm. However, the situation is different for the heat diffusion model since

many learning algorithms can be interpreted by the heat diffusion model the-

oretically although not empirically.

Justification by Practice Considerations

In G-HDC, if β → +∞, the graph is of the form as shown in Fig. 3.2(a),

which means each node has four neighbors, and if the volume of each node is

set to be one, then Eq. (3.11) becomes Eq. (3.4). Therefore we can say that

VHDM generalizes the FD method from Euclidean space to unknown space.

The generalization is interesting for its ability to solve the following problems.

1. Irregularity of the graph. By setting β to be finite, we actually soften

the neighborhood relation between the data points, and thus we avoid

the difficulty in handling the irregularity of the graph constructed by

Chapter 3 Heat Diffusion Model on a Random Graph 49

the data points. For example, in Fig. 3.2(b), the central data point has

four neighbors, which are not positioned on nodes in the grid. The FD

method has difficulty in handling such a case. Even worse, in real data

sets, each data point has many neighbors, which are positioned in a space

with an unknown dimension.

2. Variation of density. This is shown in Section 3.4.2.

3. Unknown manifold and unknown differential equation expres-

sion. In most cases, we do not know the true manifold that the data

points lie in, or we cannot find the exact expression for the Laplace-

Beltrami operator ; therefore, we cannot employ the FD method. In

contrast, our model has the advantage of not depending on the manifold

expression and the differential equation expression. Moreover, volumes

serve as patches that are connected together to form the underlying un-

known manifold, while each volume is a local Euclidean space. The idea

of volume fits the definition of local charts in differential manifold.

When both volumes and the contact surfaces are constant, KNN-HDC is

a special case of VHDC. In the next section, we first show that KNN can be

considered as a special case of KNN-HDC (when β → +∞, N = 1, and γ

is small); and when the window function is a multivariate normal kernel, the

Parzen Window Approach [13] can be considered as a special case of KNN-

HDC (when K = n− 1, and γ is small).

When the parameter γ is small, we can approximate eγH in Eq. (3.10) by

its first two items, i.e., eγH ≈ I +γH, then in KNN-VHDC, fk(t) = eγHfk(0) ≈
fk(0) + γHfk(0). As the constant γ and the first item fk(0) have no effect

on the classifier, KNN-HDC possesses a similar classification ability to that

determined by the equation fk(t) = Hfk(0). As a classifier, Hfk(0) will not be

affected by an arbitrary scaling on each row of H, and so the surface factor

can be ignored in Hfk(0). This result will be used in the next two subsections.

Chapter 3 Heat Diffusion Model on a Random Graph 50

3.8.1 KNN-HDC and Parzen Window Approach

First we review the Parzen Windows non-parametric method for density esti-

mation, using Gaussian kernels. When the kernel function H(u) is a multivari-

ate normal kernel, a common choice for the window function, by the estimate

of the class-conditional densities for class Ck and Bayes’s theorem, we have

[13]: the density at the point x is

p̃(x) =
1

M

M∑

i=1

1

(2πh2)d/2
e−

||x−xi||2
2h2 . (3.24)

When applying it for classification, we need to construct the classifier through

the use of Bayes’s theorem. This involves modeling the class-conditional den-

sities for each class separately, and then combining them with priors to give

models for the posterior probabilities which can then be engaged to make clas-

sification decisions [13]. The class-conditional densities for class Ck can be

obtained by extending Eq. (3.24):

p̃(x|Ck) =
1

Mk

∑

i:Cki
=Ck

1

(2πh2)d/2
e−

||x−xi||2
2h2 , (3.25)

where the priors can be estimated by p̃(Ck) = Mk

M
. By Bayes’s theorem, we

get

p̃(Ck|x) =

∑
i:Cki

=Ck
e−||x−xi||2/2h2

Mp(x)(2πh2)d/2 . (3.26)

If we set K = n − 1, and if γ is small, then the graph constructed in Step 1

will be a complete graph, and the matrix H in Eq. (3.12) becomes

Hij =

−∑

k 6=i e
−w2

ik/β, j = i;

e−w2
ij/β, j 6= i.

(3.27)

Then, in KNN-HDC, the heat fk
p (t) that unlabeled data xp receives from the

data points in class Ck will be equal to
∑

i:Cki
=Ck

e−||xp−xi||2/β, which is the

same as Eq. (3.26) if we let γ = 1/Mp(x)(2πh2)d/2, and β = 2h2. This means

that, when the window function is a multivariate normal kernel, the Parzen

Window Approach can be considered as a special case of KNN-HDC (when

K = n− 1, and γ is small in KNN-HDC).

Chapter 3 Heat Diffusion Model on a Random Graph 51

3.8.2 KNN-HDC and KNN

If β tends to infinity, then −w2
ij/β will tend to zero, and the matrix H in

Eq. (3.12) becomes

Hij =

−Oi, j = i;

1, xj is one neighbor of xi;

0, otherwise.

(3.28)

Here Oi is the outdegree of the point xi (note that the indegree of the point

xi is K). Then, in KNN-HDC when γ is small, the heat f q
p (t) that unlabeled

data xp receives from the data points in class Cq will be equal to f q
p (t) =

∑
i:li=Cq

1 = Kq, where Kq is the number of the labeled data points from class

Cq, which are the K nearest neighbors of the unlabeled data point xp. Note

that when N = 1, i.e., when the number of unlabeled data is equal to one,
∑c

q=1 Kq = K. According to Step 4, we will classify the unlabeled data xp to

the class Ck such that fk
p (t) = Kk is the maximal among all f q

p (t) = Kq. This

is exactly what KNN does, and so KNN can be considered as a special case

of KNN-HDC (when β tends to infinity, N = 1 and γ is small in VHDC).

We show one advantage of the generalization of KNN. It is well known that

expected error rate of KNN is between P and 2P when N tends to infinity,

where P is the Bayes error rate. Therefore the upper bound of the expected

error rate of KNN-HDC is less than 2P if β is infinity and volumes are constant.

It should be tighter if appropriate parameters for KNN-HDC are found.

3.8.3 G-HDC and Some other Popular Algorithms

As explained in [12, 31], a number of popular algorithms such as SVM, Ridge

regression, and splines may be broadly interpreted as regularization algorithms

with different empirical cost functions and complexity measures in an appropri-

ately chosen Reproducing Kernel Hilbert Space (RKHS). For a Mercer kernel

K : X×X → R, there is an associated RKHSHK of functions X → R with the

Chapter 3 Heat Diffusion Model on a Random Graph 52

corresponding norm || ||K . Given a set of labeled examples (xi;yi), i = 1, . . . , l

the standard framework estimates an unknown function by minimizing

f ∗ = arg min
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γ||f ||2K ,

where V is some loss function, such as squared loss (yi−f(xi))
2 for RLS or the

hinge loss function max[0, 1 − yif(xi)] for SVM. Penalizing the RKHS norm

imposes smoothness conditions on possible solutions. The classical Representer

Theorem states that the solution to this minimization problem exists in HK

and can be written as

f ∗(x) =
l∑

i=1

αiK(x,xi). (3.29)

If K takes the Gaussian RBF e−
||x−y||2

σ2 , then f ∗(x) in Eq. (3.29) is the solution

of the following heat diffusion equation on a m−dimensional Euclidean space:

∂f
∂t
− Lf = 0,

f(x, 0) = f0(x),
(3.30)

where f0(x) = (4πt)
m
2

l∑
i=1

αiδ(x−xi) and 4t = σ2. This amounts to the solution

in Eq. (3.29) can be obtained by solving a heat diffusion equation with a special

initial temperature setting.

It is interesting to mention that the Representer Theorems for the Laplacian

Regularized Least Squares and the Laplacian SVM (manifold regularization)

are similar:

f ∗(x) =
l+u∑

i=1

αiK(x,xi), (3.31)

where {xj}l+u
j=l+1 denotes the u unlabeled examples. This also means that the

solution for Gaussian RBF kernel can be obtained by solving a heat diffusion

equation with a special initial temperature setting.

Therefore we can say that many learning algorithms can be interpreted by

the heat diffusion model theoretically. This shows the necessity of introducing

the heat diffusion model. However, the problem is where and how we set

Chapter 3 Heat Diffusion Model on a Random Graph 53

the initial conditions in the heat diffusion equation in what kind of space.

This chapter shows what we can achieve by a simple setting of the initial

conditions—set the temperature to be one at the training data points (before

we can find an optimization method to find the best initial setting, we have

to adopt this “simple and stupid” setting). Although such an attempt may

not achieve much accuracy improvement, it inspires a broad research space for

future investigations on the heat diffusion equation since we feel we have still

not fully fulfilled its potential for its applications in classification tasks.

3.9 Comparisons with Related Work

The outside appearance of eγH is the same as that in [51, 90]; however, the

numerical value of eγH in our thesis is quite different from [51, 90] when we con-

sider the Volume-based KNN graph. The heat kernel in [51, 56, 90] is applied

to a large margin classifier; in contrast, our heat kernel is employed directly

to construct a classifier. Although our method is limited to the transductive

learning setting, it is interesting and challenging to apply the proposed eγH to

inductive algorithms such as SVM when it is not symmetric (which is usually

true when the volume is considered). The heat kernel issues deserve further

investigations, but are outside the scope of this thesis, and so the empirical

comparison on heat kernels is not provided.

The success in [56] is achieved because a closed form approximation to the

heat kernel on the multinomial family is found. While this approximation fits

the problem of text classification well, for some other geometries, however,

there is no closed form solution for the heat kernel. Even worse, in most cases,

the underlying geometry structure is unknown. In such cases, it is impossible to

construct the heat kernel for the geometry in a closed form. In contrast, there

is always a closed form solution – a heat kernel for the graph that approximates

the geometry – in our model.

Chapter 3 Heat Diffusion Model on a Random Graph 54

We are interested in comparing the consistency method [108], which is

described in Chapter 3. Although our model adopts a different approach, there

is an overlap between our solution and that in [108]. The overlap happens when

γ is small in our model, while α is small and the normalization is not performed

in [108]. This can be seen from the approximation (I −αS)−1 ≈ I + αS when

α is small. As a result, (I − αS)−1Y has similar performance to SY . It

is easy to see that, when γ is small, eγHY has the similar performance as

HY . Consequently, when the normalization in [108] is not performed, and

when S and H are equal except for the diagonal elements, which have no

effect on the classifiers SY and HY . Another interesting point is that the

classifier (I − αS)−1Y is supported by a regularization framework. It is true

that currently we cannot find a similar regularization approach that can output

the proposed classifier eγHY , but we can interpret it in another way: γ plays

a role like the regularization parameter as shown in Section 3.7.2.

3.10 Experiments

In this section, we make an experimental comparison between our methods

with some closely related methods. The Parzen Window Approach (PWA) and

KNN are special cases of KNN-HDC. Consistency Method (CM) is closely re-

lated with our methods. These related algorithms will be compared with three

heat diffusion classifiers KNN-HDC, SKNN-HDC and VHDC. Along the line

of SVM, transductive SVM algorithms (UniverSVM [24] and SVMLight [48])

are popular. Employed as baselines, the recent one, UniverSVM, will also be

compared to our method.

We test our models against PWA, KNN, USVM, and CM. on one syn-

thetic dataset and ten datasets from the UCI Repository [42]. Since discrete

attributes and the problem of missing values are out of the scope of this chap-

ter, we simply remove all the discrete attributes and remove all the cases

Chapter 3 Heat Diffusion Model on a Random Graph 55

that contain missing values. Table 3.1 describe the resulting datasets we use.

Spiral-1000 is a synthetic dataset, which is illustrated in Fig. 3.5(b). In the

spiral data set, the data points in one class are distributed on a spiral rotated

clockwise while the data points in another class are distributed on a spiral

rotated counter-clockwise.

Table 3.1: Datasets description

Dataset Spiral-1000 Credit-a Iono Iris Diabetes

Cases 1000 666 351 150 768

Classes 2 2 2 3 2

Features 3 6 34 4 8

Dataset Breast-w Waveform Wine Anneal Heart-c Glass

Cases 683 300 178 898 303 214

Classes 2 3 3 5 2 6

Features 9 21 13 6 5 9

We employ the Gaussian RBF kernels for UniverSVM. We obtain the free

parameters in PWA, KNN, UniverSVM CM, KNN-HDC, SKNN-HDC and

VHDC via nine-fold cross-validations on the training dataset including the

testing data without labels.

The values shown in Table 3.2 are the mean accuracy of ten runs by dividing

the data into 10% for training and 90% for testing and their variances. Note

that the results are quite different if we choose the best values in each run

in hindsight, i.e., the testing data with label is given when we choose the

parameters. The better results of VHDC over KNN-HDC and SKNN-HDC

show the necessity of introducing the volume representation of a node in a

graph. From the results, we also observe that both KNN-HDC and VHDC

outperforms PWA and KNN in accuracy, as we expected.

The overall results on the ten benchmark datasets indicate that our ap-

proach VHDC is competitive with the Consistency Method and UniverSVM

Chapter 3 Heat Diffusion Model on a Random Graph 56

Table 3.2: Mean accuracy on the 11 datasets achieved by ten runs by dividing
the data into 10% for training and 90% for testing

Dataset PWA KNN USVM CM KNN-HDC SKNN-HDC VHDC

Spiral-1000 81.2 78.2 66.6 80.5 92.7 85.9 94.1

Variance 0.56 0.92 1.73 0.69 0.61 0.75 0.65

Credit-a 52.3 64.4 54.9 55.1 61.6 54.0 63.8

Variance 0.96 1.00 0.15 0.00 1.53 0.97 0.93

Iono 67.5 79.7 85.6 71.4 80.3 68.1 80.2

Variance 1.73 1.38 1.66 2.02 1.67 0.74 1.19

Iris 94.3 91.1 93.6 93.5 91.7 89.0 92.4

Variance 0.89 2.18 1.09 1.08 2.18 0.75 2.15

Diabetes 65.1 67.8 65.1 65.6 67.1 67.7 67.2

Variance 0.71 0.56 0.09 0.32 0.88 1.23 0.88

Glass 54.3 51.2 49.9 54.7 55.5 47.6 56.4

Variance 1.16 1.12 3.79 1.71 1.36 1.63 1.18

Breast-w 95.3 95.7 65.1 96.3 95.7 94.9 96.0

Variance 0.26 0.12 0.06 0.15 0.21 0.28 0.15

Waveform 74.7 72.0 69.0 76.4 74.4 73.1 73.9

Variance 1.31 1.52 2.21 1.18 1.23 1.14 1.17

Wine 61.6 66.5 36.6 63 63.6 66.8 63.4

Variance 2.76 2.68 0.79 2.70 2.05 1.80 2.40

Anneal 76.2 75.8 45.8 76.2 75.6 72.3 75.3

Variance 0.00 0.54 1.34 0.00 0.50 0.52 0.68

Heart-c 55.0 60.5 54.6 52.1 59.3 57.7 61.5

Variance 0.59 0.52 0.32 0.44 1.32 1.14 1.12

Average 70.68 72.99 62.44 71.35 74.32 70.65 74.93

Chapter 3 Heat Diffusion Model on a Random Graph 57

on problems without any a priori knowledge. The better results on the syn-

thetic dataset show that VHDC fits problems with a manifold structure es-

pecially well. Despite its success, VHDC is still not perfect. Next we discuss

three aspects:

1. Dependency on Distance Measure. The boolean attributes in the

Zoo dataset are considered as continuous attributes. We observe that PWA,

KNN, CM, HDC and VHDC achieve a 40.6% classification rate, and perform

more poorly than UniverSVM (with a 97.2% classification rate) on dataset

Zoo; indeed, the difference is as high as 46.6%. This can be explained by the

fact that all these methods depend heavily on the distance measure, and as a

consequence, if the direct Euclidean distance is not accurate, these methods

will perform poorly. We think that the noises in the Zoo dataset causes inac-

curate distance measurement between data points. To find the performance

of there algorithms on dataset Zoo with less noise, we preprocess it with PCA

such that the dimensionality is reduced from the original 16 to 8. The re-

sults are encouraging: VHDC achieves a 97.1% classification rate, the same

as what UniverSVM achieves. This example shows that VHDC relies heavily

on the local distance, and so a suitable feature extraction method may help

to increase its accuracy. A possible solution is to employ the semi-supervised

metric learning method proposed in [104].

2. Local Minimum. Note that V HDC generalizes both PWA and KNN.

But it is observed that, on dataset Iris, V HDC performs worse than PWA; on

dataset Wine, V HDC performs worse than KNN. We think that there exits

local minimum problems hidden in the cross-validation search for best param-

eters in VHDC. A possible way to this kind of problem is to understand the

initial temperature distribution as a random field, to estimate the covariance

of the random field at time t, and then to minimize an appropriately defined

error measure including both the fitting error and the variance.

Chapter 3 Heat Diffusion Model on a Random Graph 58

−15

−10

−5

0

5

10

15

−15

−10

−5

0

5

10

15

0
0.5

1

AB

Figure 3.6: An illustration showing that the equal setting of initial temper-
atures is not perfect. Only two data points A and B are labeled, the equal
initial temperature setting on these two points will result in classification er-
rors. The decision boundary will be the bar while the dashed line should be
the ideal decision boundary.

3. Initial Temperature Setting. According to the discussions in Sec-

tion 3.8.3, by appropriately setting the initial temperatures, the heat diffusion

model can interpret many learning algorithms. Currently the initial temper-

ature is set to be one, and this simple setting will result in some errors. For

example, in Fig. 3.6, a higher initial temperature in point B than that in A is

expected in order to achieve the best decision boundary, as indicated by the

dashed line. This problem is quite open now.

3.11 Summary

The proposed G-HDM has the following advantages: it avoids the difficulty

of finding the explicit expression for the unknown geometry by approximating

the manifold by a finite neighborhood graph, and it has a closed form solution

that describes the heat diffusion on a manifold. For VHDC, it has an extra

Chapter 3 Heat Diffusion Model on a Random Graph 59

advantage that it can model the effect of unseen points by introducing the

volume of a node. While VHDC is a generalization of KNN-HDC, which

is a generalization of both the Parzen Window Approach (when the window

function is a multivariate normal kernel) and KNN, our experiments have

demonstrated that VHDC gives accurate results in a classification task.

Chapter 4

Predictive Random Graph

Ranking on the Web

The incomplete information about the Web structure causes inaccurate results

of various ranking algorithms. In this chapter, we propose a solution to this

problem by formulating a new framework, called Predictive Random Graph

Ranking (PRGR), in which we generate a random graph based on the known

information about the Web structure. The random graph can be considered

as the predicted Web structure, on which ranking algorithms are expected to

be improved in accuracy. For this purpose, we extend some current ranking

algorithms from a static graph to a random graph. Besides, we propose a novel

ranking algorithm called DiffusionRank, motivated by the way that heat flows,

which reflects the complex relationship between nodes in a graph (or points

on a geometry). Moreover, we incorporate it in the PRGR framework.

The rest materials are organized as follows. In the next section, we pro-

vide our motivations for this work. In Section 4.2, we describe our predictive

strategy. In Section 4.2.4, we propose HDM and incorporate it with the pre-

dictive strategy. In Section 4.3, we propose DiffusionRank. In Section 4.4,

we describe the data sets that we worked on and the experimental results for

the PRGR framework. In Section 4.5, we demonstrate experimental results

for DiffusionRank. In Section 4.6, we provide a summary and present possible

60

Chapter 4 Predictive Random Graph Ranking on the Web 61

future work.

4.1 Motivations

While the PageRank algorithm [76] has proven to be very effective for ranking

Web pages, inaccurate PageRank results are induced because of the incomplete

information about the Web structure and because of Web page manipulations

by people for commercial interests.

The incomplete information problem is caused by the following phenomena:

1. The Web is dynamic (temporal dimension)–The link structure evolves

temporally. Some links are created and modified, while others are de-

stroyed.

2. The observer is partial (spatial dimension)–For different observers (or

crawlers), the Web structure may be different.

3. Links are different (local dimension)–Not all out-links are created equal.

Some out-links are more significant than others. For example, some

people may tend to put the most important link on the top of their

pages.

The manipulation problem is also called the Web spam, which refers to

hyperlinked pages on the World Wide Web, created with the intention of mis-

leading search engines [38]. It is reported that approximately 70% of all pages

in the .biz domain and about 35% of the pages in the .us domain belong to

the spam category [75]. The reason for the increasing amount of Web spam

is explained in [75]: Some Web site operators try to influence the positioning

of their pages within search results because of the large fraction of Web traffic

originating from searches and the high potential monetary value of this traffic.

From the viewpoint of the Web site operators who want to increase the

ranking value of a particular page for search engines, Keyword Stuffing and

Chapter 4 Predictive Random Graph Ranking on the Web 62

Link Stuffing are being used widely [38, 75]. From the viewpoint of the search

engine managers, the Web spam is very harmful to the users’ evaluations and

thus their preference to choosing search engines because people believe that a

good search engine should not return irrelevant or low-quality results. There

are two methods being employed to combat the Web spam problem. Machine

learning methods are employed to handle the keyword stuffing. To success-

fully apply machine learning methods, we need to dig out some useful textual

features for Web pages, to mark part of the Web pages as either spam or non-

spam, then to apply supervised learning techniques in marking other pages.

For example, see [20, 75]. Link analysis methods are also employed to handle

the link stuffing problem. One example is the TrustRank [38], a link-based

method, in which the link structure is utilized so that human labeled trusted

pages can propagate their trust scores through their links. We focus on the

link-based method for combating the Web spam problem in this thesis.

For the problem of the incompleteness and impreciseness of the Web struc-

ture, we have three contributions in this chapter. First, we provide a random

graph perspective for the above phenomena. In temporal dimension, unknown

links are modeled by random links; in spatial dimension, in order to generate

a more accurate structure, different perspectives can be combined by means of

a random graph; and in local dimension, the different orders of links are seen

to have random importance.

Secondly, by the random graph perspective, we establish PRGR framework.

As illustrated in Figure 4.1, the framework consists of two stages:

• Random Graph Generation Stage–The first stage engages the tem-

poral, spatial and local link information to construct a random graph

that can better model the Web. Statistical and other methods can be

applied to generate this random graph that can better approximate the

incomplete Web.

Chapter 4 Predictive Random Graph Ranking on the Web 63

Predictive Random Graph Ranking Framework

Random Graph Generation

 -Temporal Links
 -Spatial Links
 -Weighted Links

Random Graph Ranking

 -PageRank
 -Common Neighbors
 -DiffusionRank

RankingCrawler

Figure 4.1: The predictive random graph ranking framework.

• Random Graph Ranking Stage–The second stage takes the random

graph output and then calculates the ranking result based on a candidate

ranking algorithm, such as, PageRank, Common Neighbors, Jaccard’s

Coefficient, SimRank, etc.

The intuition in the PRGR framework is that: The more accurately we know

the structure of the Web, the more accurately we can infer about the Web.

Thirdly, we propose the novel DiffusionRank as another candidate in the

PRGR framework. DiffusionRank proves to have anti-manipulation effects.

There are two points to explain that PageRank is susceptible to Web spam.

• Over-democratic. There is a belief behind PageRank—all pages are

born equal. This can be seen from the equal voting ability of one page:

The sum of each column is equal to one. This equal voting ability of all

pages gives the chance for a Web site operator to increase a manipulated

page by creating a large number of new pages pointing to this page, since

all the newly created pages can obtain an equal voting right.

• Input-independent. For any given non-zero initial input, the itera-

tion will converge to the same stable distribution corresponding to the

maximum eigenvalue 1 of the transition matrix. This input-independent

property makes it impossible to set a special initial input (larger values

for trusted pages and less or even negative values for spam pages) to

avoid Web spam.

Chapter 4 Predictive Random Graph Ranking on the Web 64

The input-independent feature of PageRank can be further explained as fol-

lows. P = [(1 − α)g1T + αA] is a positive stochastic matrix if g is set to be

a positive stochastic vector (the uniform distribution is one of such settings),

and so the largest eigenvalue is 1 and no other eigenvalue whose absolute value

is equal to 1, which is guaranteed by the Perron Theorem [67]. Let y be the

eigenvector corresponding to 1, then we have Py = y. Let {xk} be the se-

quence generated from the iterations xk+1 = Pxk, and x0 is the initial input.

If {xk} converges to x, then xk+1 = Pxk implies that x must satisfy Px = x.

Since the only maximum eigenvalue is 1, we have x = cy where c is a con-

stant, and if both x and y are normalized by their sums, then c = 1. The

above discussions show that PageRank is independent of the initial input x0.

In our opinion, g and α are objective parameters determined by the users’

behaviors and preferences. A, α and g are the “true” Web structure. While A

is obtained by a crawler and the setting α = 0.85 is accepted by the people, we

think that g should be determined by a user behavior investigation, something

like [3]. Without any prior knowledge, g has to be set as g = 1
n
1.

TrustRank model does not follow the “true” Web structure by setting a

biased g, but the effects of combating spamming are achieved in [38]; PageRank

is on the contrary in some ways. We expect a ranking algorithm that has

an effect of anti-manipulation as TrustRank while respecting the “true” Web

structure as PageRank.

We observe that the heat diffusion model is a natural way to avoid the over-

democratic and input-independent feature of PageRank. Since heat always

flows from a position with higher temperatures to one with lower tempera-

tures, points are not equal as some points are born with high temperatures

while others are born with low temperatures. On the other hand, different

initial temperature distributions will give rise to different temperature distri-

butions after a fixed time period. Based on these considerations, we propose

Chapter 4 Predictive Random Graph Ranking on the Web 65

the novel DiffusionRank. This ranking algorithm is also motivated by the view-

point for the Web structure. We view all the Web pages as points drawn from

a highly complex geometric structure, like a manifold in a high dimensional

space. On the manifold, heat can flow from one point to another through the

underlying geometric structure in a given time period. Different geometric

structures determine different heat diffusion behaviors, and conversely the dif-

fusion behavior can reflect the geometric structure. More specifically, on the

manifold, the heat flows from one point to another point, and in a given time

period, if one point x receives a large amount of heat from another point y, we

can say x and y are well connected, and thus x and y have a high similarity

in the sense of a high mutual connection.

4.2 Predictive Strategy

In this section, we first show the origin of the idea of the predictive strategy,

then we show that the concept of a random graph is necessary, and next we

show how a random graph can be generated in various situations. This forms

the first stage of the framework PRGR, and can be found in Section 4.2.2

and Section 4.2.3. In Section 4.2.4 and Section 4.3, we extend several ranking

models from static graphs to random graphs. These are the second stage of

the PRGR framework.

4.2.1 Origin of Predictive Strategy

In [97], we propose a predictive ranking technique to improve the accuracy

of PageRank through the estimation of the incomplete information caused by

partial crawling on the Web. The more accurate the estimated Web structure

is, the better results the PageRank will achieve. We extend the basic idea

in [97] from PageRank to a collection of ranking algorithms, from temporal

incomplete information to spatial uncertainty and weighted links.

Chapter 4 Predictive Random Graph Ranking on the Web 66

1

2

3

Figure 4.2: A static graph.

4.2.2 From Static Graphs to Random Graphs

The concept of a random graph is necessary for PageRank. For example,

the graph in Figure 4.2 may be encountered by a crawler in the early stage

if all the unvisited nodes are ignored. If we employ Eq. (2.3) and use the

power iterative method to solve the page rank problem, then we will suffer the

problem of divergence unless the entire initial values of xi (i = 1, 2, 3) take

the value of 1/3, which usually cannot be found in practice. However, if we

employ Eq. (2.4), the power iterative method will converge. This is because

the modified matrix in Eq. (2.4) is a positive stochastic matrix, and so 1 is

its largest absolute eigenvalue and no other eigenvalue whose absolute value is

equal to 1, which is guaranteed by the Perron Theorem [67]. Behind Eq. (2.4),

we can see that the Web graph has been modeled as a random graph, in which

the original link exists with a probability of α, and there is a link that connects

each pair of pages with a probability of 1− α.

Furthermore, in the following, we discuss three situations: (1) temporal

links, (2) spatial links and (3) weighted links, in which the concept of a random

graph is also necessary.

Random Graph Generated Temporal Links

If we want to model the estimation about the temporal links, the concept of

a random graph is necessary. In Figure 4.2, when the time continues, the

crawler will visit more nodes, but at the current time, the links (called tem-

poral links) from the currently unvisited node are unknown. In general, it

is difficult to estimate the temporal link structure accurately; however, some

Chapter 4 Predictive Random Graph Ranking on the Web 67

elementary estimation is possible. Currently we only estimate the in-degree of

each node in the set of nodes that have been found, and thus some information

about the link structure can be inferred statistically. For more discussions, see

Section 4.2.3.

Random Graph Generated by Several Graphs

Several crawlers may visit some pages at different times and from different

starting sites, and a link may exist for one crawler, but disappear for another.

This causes the partial observer problem–the Web graph is viewed differently

from different points. Suppose that different Web graphs Gi = (Vi, Ei), (i =

1, 2, . . . , N) are obtained by N different observers (or crawlers). We can com-

bine these different graphs and generate a random graph RG = (V, P), where

V = ∪N
i=1Vi, P = (pij), pij = n(i, j)/N, n(i, j) is the number of the graphs

where the link (i, j) appears. The intuition behind is that the more a link is

reliable, the more times different observers will find it.

Random Graph Generated by Weighted Links

We have observed that some out-links are more significant than others. As

an example, we may model the out-link significance by the exponential decay

rule: e1−k where k is the out-link order number from a particular page. Then

a random graph generated by this rule will be P = (pij) where pij = 0 if there

is no link from i to j, and pij = e1−k(i,j) if j is the k(i, j)-th out-link from i.

By doing so, the significance of different out-links from a particular page is

distinguished. The original static graph is changed to a random graph.

In the next subsection, we emphasis on the problem of dangling nodes,

which is caused by the nature of the dynamic Web. This problem is handled

by predicting the link structure as a random graph. To sum up, it is necessary

to extend the current ranking algorithms from a static graph to a random

graph.

Chapter 4 Predictive Random Graph Ranking on the Web 68

4.2.3 From Visited Nodes to Dangling Nodes

Why We Consider Dangling Nodes

Pages that either have no out-link or have no known out-link are called dangling

nodes [30]. In [76], the authors suggested simply removing the pages without

out-link and the links pointing to them. After doing so, it is suggested that they

can be “added back in” without significantly affecting the results. However the

situation is changed now and the dangling nodes problem has to be handled

more accurately and directly.

On the one hand, we can see that the PageRank algorithm depends on

part of the Web structure, and that the visited fraction of the whole Web

page by a crawler becomes smaller and smaller as the Web continues to grow.

More and more dangling nodes appear because of the difficulty of sampling

the entire Web. In [76], the authors reported that they have 51 million URLs

not yet downloaded when they have 24 million pages downloaded. In [39],

dynamic pages are estimated to be 100 times more than static pages, and in

[30], the authors point out in their experiment that the number of uncrawled

pages still far exceeds the number of crawled pages, and that there are an

essentially infinite number of URLs which is estimated to be at least 642000.

These experimental results and theoretical analyses mean that in reality, the

huge number of unvisited pages tends to exceed the ability of a crawler.

On the other hand, some dangling pages are worthy of ranking because

they contain important information. In such a situation, ranking those pages

that only have been found may enrich the content of a search engine. As an

example, a search engine may return the users the URLs of unvisited pages

with high ranking scores. Moreover, including dangling nodes in the overall

ranking may have significant effect not only on the rank value of non-dangling

pages but also on the rank order. This will be shown in the Experiment section.

Chapter 4 Predictive Random Graph Ranking on the Web 69

How to Classify Dangling Nodes

In the following, we follow the ideas in [30] in analyzing the reasons that cause

the dangling nodes, and we classify dangling nodes into three classes according

to these reasons.

Dangling nodes of class 1 (DNC1) are defined as nodes that have been

found but have not been visited. One reason to produce such kind of dangling

nodes is that the Web is so large that we cannot visit all the pages; another

reason is that new Web pages are always being created.

Dangling nodes of class 2 (DNC2) are defined as nodes that have been

tried but not visited successfully. The reason to produce dangling nodes of

class 2 is that some pages may exist before, but are now damaged or are in

maintenance, or they are protected, or they are wrongly created.

Dangling nodes of class 3 (DNC3) are defined as nodes that have been vis-

ited successfully but from which no out-link is found. Dangling nodes of class

3 exist because there are many files on the Web with no hyperlink structure.

How to Handle Dangling Nodes

We first partition all the nodes V of the graph G (|V | = n) into three subsets:

D0, D1, and D2, where D0 (|D0| = m) denotes the subset of all nodes that

have been crawled successfully and have at least one out-link; D1 (|D1| = m1)

denotes the set of nodes of DNC3; D2 (|D2| = n−m−m1) denotes the set of

nodes of DNC1. Nodes of DNC2 are ignored here. The main idea of handling

dangling nodes is to handle different nodes in different ways. In the following,

we describe our method in detail.

1. We predict the real in-degree d−(vi) by the number of found links fd−(vi)

from visited nodes to node vi. With the breadth-first crawling method, we as-

sume that the real number of links from all nodes in V to node vi is proportional

to the number of found links fd−(vi) from visited nodes to node vi, and further

Chapter 4 Predictive Random Graph Ranking on the Web 70

we assume that

d−(vi) ≈ n

(m + m1)
· fd−(vi)(i = 1, 2, . . . , n).

This assumption is based on the intuition that a crawler’s ability of finding new

links to a given node vi depends on the density of these links. The density of

these links to the node vi is equal to d−(vi)/n. The crawler has found fd−(vi)

such kind of links when it has crawled m nodes, and we consider fd−(vi)
(m+m1)

as an

approximate estimate of the density of these links. Following this, the above

approximate equality holds.

2. With the approximate in-degree d−(vi), we can re-arrange the matrix.

All the found links fd−(vi) are from the nodes in D0, and the remaining

links d−(vi) − fd−(vi) are from the nodes in D2 (it is impossible that some

of these links are from the nodes in D1). Since we infer the number of the

remaining links only out of m + m1 visited nodes and the total number nodes

is n, there is a risk of over-prediction. To prevent the over-prediction, we

adopt a confidence index (or certainty) (m + m1)/n about this estimation,

and so we expect (d−(vi)− fd−(vi))(m+m1)/n remaining links. Without any

prior information about the distribution of these remaining links, we have to

assume that they are distributed uniformly from the nodes in D2 to the node

vi, i.e., these remaining links are shared by all the nodes in D2. So matrix AT

representing the random graph can be divided into six blocks as shown below

AT =

C X M

D Y N

 ,

where (C,D)T is used to model the known link structure from D0 to V . Let

C = (cij), D = (dij), then

cij, di,j =

1, there is a link from j to i,

0, otherwise.

Chapter 4 Predictive Random Graph Ranking on the Web 71

In AT , (X,Y)T will be defined later, (M,N)T is used to model the link struc-

ture from D2 to V , and is defined as follows:

M

N

 =

l1 0 0 0

0 l2 0 0
...

...
. . .

...

0 0 · · · ln

1n×(n−m−m1),

where li = (d−(vi)−fd−(vi))(m+m1)
n(n−m−m1)

, (i = 1, 2, . . . , n), n−m−m1 means that the

expected remaining in-links (d−(vi)−fd−(vi))(m+m1)/n are shared uniformly

by all nodes in D2.

3. When we want to model the users’ teleportation, we assume that the

users will jump to node vi with a probability of gi when they get bored in

following the actual links. So the matrix modeling the teleportation is geT .

We denote here (g1 g2 . . . gn)T by g.

4. When the user encounters a node of DNC3, there is no out-link that the

user can follow. In this case, we assume that the same kind of teleportation

as in step 3 will happen, and so the matrix (X, Y)T in step 2 is used to model

the link structure from D1 to V and it is assumed to be

X

Y

 =

g1 0 0 0

0 g2 0 0
...

...
. . .

...

0 0 · · · gn

1n×m1 .

5. We further assume that α is the probability of following an actual out-

link from a page, 1 − α is the probability of taking a “random jump” rather

than following a link. Then the random matrix P is modeled as

P T = (1− α)geT + αAT . (4.1)

The matrix P corresponds to a random graph, which models the temporal

Web to predict a future Web graph by an early Web graph. This is called

Temporal Web Prediction Model.

Chapter 4 Predictive Random Graph Ranking on the Web 72

2 4

53

1

(a) Original Static Graph

2

4

1

5

1

3

1

1

1

1

1/5

1/5

1/5

2/5

1/5

1/5

1/5

2/5

(b) Random Graph produced

Figure 4.3: Illustration on the random graph

From the static graph in Figure 4.3(a), where node 4 and node 5 are as-

sumed to be nodes of DNC1, a random graph in Figure 4.3(b) is generated

by the above model (α = 1).

Compare with the Previous Work

In [4], an absorbing model was suggested. This model can handle dangling

nodes by modifying the original graph. Specifically speaking, it adds additional

nodes (called clones), adds links from all the original nodes to their clones on

the Web, and adds links from all the clones to themselves. As a result, the

modified graph has no dangling node and so it is robust against dangling nodes.

However, since the structure of the modified graph is different from the original

Web structure, there will be a great difference between the final ranking results

based on the modified graph and the ones based on the original graph.

In [49], pages whose out-degree is zero are handled by adding jump to a

randomly selected page with probability 1 from every dangling node, and then

Chapter 4 Predictive Random Graph Ranking on the Web 73

by adding teleportation. More formally, the model 1 is modified as

Model 2:

x = [(1− α)E + αP ′]x, (4.2)

where E = feT , P ′ = A + fvT , f = e/n, and v denotes the n−dimensional

column vector identifying the dangling nodes:

vi =

1 if i is a dangling node,

0 otherwise.

f is referred as the personalization vector, which models the behavior of users

when they get bored in following the link and decide to jump randomly.

Further, Kamavar et. al. [49] speed up the PageRank algorithm by ex-

ploiting the block structure of the Web.

In [30], dangling pages are handled in a similar way, but achieve more com-

putational efficiency though sacrificing some kind of accuracy. We reinterpret

the model formally as follows.

Model 3:

x

y

 =

αC + (1− α)/m · 1 1/m1

αD 0

x

y

= (αA + (1− α)B)

x

y

(4.3)

where A =

C 1/m1

D 0

 , B =

1/m · 1 1/m1

0 0

, m is the number of

nodes that have been crawled successfully, n is the number of nodes that have

been found by the crawler, C = (cij), D = (dij) and if dj is the out-degree of

node j,

cij =

d−1
j

0

if there is a link node i node j,

otherwise.

Chapter 4 Predictive Random Graph Ranking on the Web 74

dij =

d−1
j

0

if there is a link node i node j,

otherwise.

Respectively by C and D we also denote the set of all nodes that have been

crawled successfully and the set of remaining nodes.

In this model, the matrix A models the users’ behavior in case of following

the actual links and the unknown links from dangling nodes to visited nodes.

The matrix B models the users’ teleportation. Then the linear convex com-

bination of the matrix A and the matrix B models the total behaviors of the

users.

By adding a virtual node n + 1, the Eq. (4.3) is equivalent to the following

x

y

z

=

αC O e/m

αD O 0

(1− α)eT eT 0

x

y

z

(4.4)

which can be found in [30]. Exploiting this structure, the authors developed

the following reduced eigen-system:

x

z

 =

αC e/m

(1− α)eT + αeT D 0

x

z

After solving the reduced eigen-system iteratively, the vector y can be calcu-

lated in one step:

y = αDx.

While this form of linear equation can be calculated efficiently by exploiting

the special structure of the above matrix and the computation complexity is

a very important factor (if not the most important), in the case of extremely

large Web, it is not as accurate as the model 2.

From Eq. (4.3), we can see what the problem is. For our convenience, we

denote the matrix

C 1/m1

D 0

 as

X M

Y N

, the link information about

Chapter 4 Predictive Random Graph Ranking on the Web 75

X and Y is already known because the crawler has visited all the nodes in C

and therefore all the link from the nodes in C to nodes in C and D have been

known by the crawler.

But the information about links from the nodes in D to nodes in C and D

is unknown by the crawler because the nodes in D have not been visited yet or

have not been visited successfully. Hidden in the matrix

C 1/m1

D 0

, there

is an assumption that the users will jump randomly and uniformly from every

node in D only to nodes in C, and therefore M = 1/m1. This assumption can

be improved to be more accurate. In reality, the users may jump from nodes

in D to other nodes in D, and thus the assumption that all the elements in the

bottom-right part of the matrix are zero is problematic, and the assumption

about the top-right part of the matrix needs to be adjusted accordingly. In

our model, we assume that the users will jump randomly but not uniformly

from every node in D to both nodes in C and nodes in D.

Our model is different from the absorbing model in that our model try to

predict the unknown link information and therefore handle the dangling node

robustly and accurately while the absorbing model is new paradigm for rank-

ing. So the ranking values derived from these two models are not comparable.

Our model is different from model 2 in that we get the information about

the unknown part of the matrix by prediction while the model 2 assumes

the uniform distribution on the unknown part of the matrix. The authors

in [49] also suggest re-defining the vector f as a non-uniform distribution;

however, they only consider the vector f as the personalization factor, which is

a subjective factor, and from which the PageRank vector can be biased toward

certain kinds of pages.

Our model is different from model 3 in two folds:

1. The users will not jump uniformly from every node in D to other nodes.

2. The users will jump from every node in D not only to nodes in C but

Chapter 4 Predictive Random Graph Ranking on the Web 76

1

32

Figure 4.4: A case in which considering dangling node will have significant
effect on the ranks of non-dangling nodes

also to nodes in D.

The authors in [30] further discuss the “link rot” problem and suggest

new methods of ranking motivated by the hierarchical structure of the Web.

Although we can combine our model with the technique used in solving the

“link rot” problem, we do not include it herein.

Other related work is the Page Popularity Evolution Model in [21, 22],

in which the popularity of a page evolves with the time; it is also a kind of

prediction which looks outside the Web structure, while our model looks inside

the Web structure at the current time.

A Simple Example

We consider a case in which dangling nodes are so significant that including

them in the overall ranking may not only change the rank value of non-dangling

nodes but also change the order of the non-dangling nodes.

In the example of Figure 4.2.3, there are three pages, with one of them

being a dangling node with a link from page 2. If we compute PageRank by

the model 2, and let α = 0.85, the matrix in the model 2 is

0.05 0.475 1/3

0.9 0.05 1/3

0.05 0.475 1/3

By power iteration, the RageRank scores are (x1, x2, x3) = (0.3032, 0.3936, 0.3032).

So in model 2, rank for node 2 is much higher than that for node 1. If we sim-

ply remove the dangling node 3, then by Eq. (2.3), the PageRank scores for

Chapter 4 Predictive Random Graph Ranking on the Web 77

nodes 1 and 2 are (x1, x2) = (0.5, 0.5), in which the rank for node 1 is same

as that for node 2. From this example, we can see that whether we handle

dangling nodes will not only change the rank value of the non-dangling nodes

but also their order.

4.2.4 Random Graph Ranking

We need to extend the standard ranking technique to random graphs in order

to handle the random graph outputs produced by the predictive strategy in

three situations: (1) temporal links, (2) spatial links and (3) weighted links.

PageRank on a Random Graph

We extend the PageRank from the setting of a static graph to the setting of

a random graph. Similar to PageRank, the page rank vector x on a random

graph can be defined recursively in terms of random graphs:

xi =
∑

j

qijxj,

where qij = pji/
∑

k pjk. Or in matrix form, x = Qx, where Q = (qij). In a

static graph, if there is a link from vj to vi, then the probability of a random

surfer will follow the link is 1/dj, where dj is the out-degree of vj. In a random

graph, since the sum
∑

k pjk is the expected out-degree of vj and the link

from vj to vi exists with a probability of pji, the expected probability of a

random surfer will follow the link (vj, vi) is pji/
∑

k pjk. Consequently, the

above equation is established.

Common Neighbor on a Random Graph

We extend the Common Neighbor approach from the setting of a static graph

to the setting of a random graph.

Chapter 4 Predictive Random Graph Ranking on the Web 78

First, the random neighbor set RI(vi) of vi is defined as

RI(vi) = {(vk, pki)|vk ∈ V },

where pki is the probability of vk as a neighbor of vi. In the setting of a random

graph, each node vk is linked to node vi with a probability pki, so vk is the

neighbor of vi with a probability pki. This extends the definition of the set of

neighbors of node vi in the setting of a static graph.

Second, the set of the common random neighbors of vi and vj is defined as

RI(vi) ∩RI(vi) = {(vk, pkipkj)|vk ∈ V }.

The sets of random neighbors of vi and vj are RI(vi) and RI(vj) respectively.

If vk is the neighbor of vi with a probability pki, and vk is the neighbor of vj

with a probability pkj, then we can say vk is the common neighbor of vi and

vj with a probability pkipkj since the random edges are drawn independently.

This extends the meaning of the common neighbor.

Third, the expected number of nodes in RI(vi) ∩ RI(vi) is considered as

the similarity measure s(i, j), and is defined as

s(i, j) =
∑

k

pkipkj.

This extends the definition of the number of common neighbors of vi and vj

in the setting of a static graph.

Jaccard’s Coefficient on a Random Graph

The Jaccard’s Coefficient in the setting of a random graph is defined as

s(i, j) = |RI(vi) ∩RI(vj)|/|RI(vi) ∪RI(vj)|
=

∑
k pkipkj/

∑
k(pki + pkj − pkipkj),

where RI(vi)∪RI(vj) = {(vk, pki+pkj−pkipkj)|vk ∈ V }. The expected number

elements in RI(vi) ∪RI(vj) is equal to
∑

k(pki + pkj − pkipkj). Since vk is not

Chapter 4 Predictive Random Graph Ranking on the Web 79

the neighbor of vi with a probability 1−pki, and is not the neighbor of vj with

a probability 1− pkj, we assume that vk is not the neighbor of either vi or vj

with a probability (1 − pkj)(1 − pkj), and we have that vk is the neighbor of

either vi or vj with a probability 1 − (1 − pkj)(1 − pkj) = pki + pkj − pkipkj.

Therefore, RI(vi) ∪ RI(vj) = {(vk, pki + pkj − pkipkj)|vk ∈ V }. The expected

number of elements is thus equal to
∑

k(pki + pkj − pkipkj).

SimRank on a Random Graph

In the setting of a random graph, the SimRank score s(i, j) of two pages vi

and vj can be naturally redefined as the fixed point of the following recursive

definition,

s(i, j) =

1, i = j,

C
|RI(vi)||RI(vj)|

∑
u,v puipvjs(u, v), otherwise,

for some constant decay factor C ∈ (0, 1), where |RI(vi)| = ∑
k pki, |RI(vj)| =

∑
k pkj.

Note that one can easily conclude that when the random graph becomes a

static graph, the algorithms described in the above subsections degrade into

the original algorithms. This means ranking algorithms on a random graph

generalize the original ones.

Heat Diffusion Model on a Random Directed Graph

Recall that, in Section 3.2, we have established the heat diffusion model on a

random directed graph (V,E, P) as follows.

f(t) = eαtHf(0) = eγHf(0),

where γ = αt

Hij =

−∑
k:(k,i)∈E pki, j = i,

pji, (j, i) ∈ E,

0, otherwise.

Chapter 4 Predictive Random Graph Ranking on the Web 80

We consider defining f(1) = eγHf(0) as a ranking result, and in such case

γ = α. In order to fit various applications, H needs to be specified according

to the circumstance.

For example, on an undirected graph, if each edge is equally trusted, then

f(1) = eγHf(0), Hij =

−dj, j = i,

1, (vj, vi) ∈ E,

0, otherwise.

(4.5)

But on the Web, the links between Web pages are directed. On one Web

page a, when the pagemaker creates a link (a, b) to another page b, he actually

forces the energy flow, for example, users’ click-through activities, to that page,

and so there is added energy imposed on the link. As a result, heat flows in a

one-way manner, only from a to b, but not from b to a. Moreover, we assume

that a Web surfer will jump to the next page uniformly with a probability 1/dj,

where dj is the out-degree of node j. With extra energy, the diffusion does not

follow the Fourier law, i.e., even the temperatures on the two ends of an edge

are equal, there is still heat flow on that edge. Based on such considerations,

we modify the heat diffusion model on an undirected graph as follows.

Suppose, at time t, each node vi receives RH = RH(i, j, t, ∆t) amount

of heat from vj during a period of ∆t. We have three assumptions: (1) RH

should be proportional to the time period ∆t; (2) RH should be proportional

to the heat at node vj; and (3) RH is zero if there is no link from vj to vi.

As a result, vi will receive
∑

j:(vj ,vi)∈E σjfj(t)∆t amount of heat from all its

neighbors that point to it.

On the other hand, node vi diffuses DH(i, t, ∆t) amount of heat to its

subsequent nodes. We assume that: (1) The heat DH(i, t, ∆t) should be

proportional to the time period ∆t. (2) The heat DH(i, t, ∆t) should be

proportional to the heat at node vi. (3) Each node has the same ability of

diffusing heat. This fits the intuition that a Web surfer has only one choice to

find the next page that he wants to browse. (4) The heat DH(i, t, ∆t) should

Chapter 4 Predictive Random Graph Ranking on the Web 81

be uniformly distributed to its subsequent nodes. The real situation is more

complex than what we assume, but we have to make this simple assumption in

order to make our model concise. As a result, node vi will diffuse γfi(t)∆t/di

amount of heat to any of its subsequent nodes, and each of its subsequent

nodes should receive γfi(t)∆t/di amount of heat. Therefore σj = γ/dj. To

sum up, the heat difference at node vi between time t + ∆t and time t will

be equal to the sum of the heat that it receives, deducted by what it diffuses.

This is formulated as fi(t + ∆t)− fi(t) = −γfi(t)∆t +
∑

j:(vj ,vi)∈E γ/djfj(t)∆t.

Similarly, we obtain

f(1) = eγHf(0), Hij =

−1, j = i,

1/dj, (vj, vi) ∈ E,

0, otherwise.

(4.6)

For real world applications, we have to consider random edges. This can

be seen in two viewpoints. The first one is that in Eq. (2.4), the Web graph

is actually modeled as a random graph, where there is an edge from node vi

to node vj with a probability of (1 − α)gj (see the item (1 − α)g1T), and

that the Web graph is predicted by another random graph [97]. The second

one is that the Web structure is in essence a random graph if we consider the

content similarity between two pages, though this is not done currently. For

these reasons, the model would become more flexible if we extend it to random

graphs.

Since the probability of the link (vj, vi) is pji, the expected out-degree of

node j is RD+(vj) =
∑

k pjk, and a Web surfer will jump to the next page with

a probability pji/RD+(vj). Therefore, we have

f(1) = eγRf(0), Rij =

−1, j = i;

pji/RD+(vj), j 6= i.
(4.7)

When the graph is large, a direct computation of eγR is time-consuming, and

Chapter 4 Predictive Random Graph Ranking on the Web 82

we adopt its discrete approximation:

f(1) = (I +
γ

N
R)N f(0). (4.8)

The matrix (I + γ
N

R)N in Eq. (4.8) and matrix eγR in Eq. (4.7) are called Dis-

crete Diffusion Kernel and Continuous Diffusion Kernel, respectively. Based

on the Heat Diffusion Models and their solutions, DiffusionRank can be estab-

lished on undirected graphs, directed graphs, and random graphs. In the next

section, we mainly focus on DiffusionRank in the random graph setting.

4.3 DiffusionRank

For a random graph, the matrix (I + γ
N

R)N or eγR can measure the similarity

relationship between nodes. Let fi(0)= 1, fj(0) = 0 if j 6= i, then the vector

f(0) represents the unit heat at node vi while all other nodes have zero heat.

For such f(0) in a random graph, we can find the heat distribution at time 1

by using Eq. (4.7) or Eq. (4.8). The heat distribution is exactly the i−th row

of the matrix of (I + γ
N

R)N or eγR. So the i-th row j-th column element hij in

the matrix (I + γ∆tR)N or eγR means the amount of heat that vi can receive

from vj between time 0 and 1. Thus the value hij can be used to measure the

similarity from vj to vi. For a static graph, similarly the matrix (I + γ
N

H)N

or eγH can measure the similarity relationship between nodes.

The intuition behind is that the amount h(i, j) of heat that a page vi

receives from a unit heat in a page vj in a unit time embodies the extent of the

link connections from page vj to page vi. Roughly speaking, when there are

more uncrossed paths from vj to vi, vi will receive more heat from vj; when

the path length from vj to vi is shorter, vi will receive more heat from vj; and

when the pipe connecting vj and vi is wide, the heat will flow quickly. The

final heat that vi receives will depend on various paths from vj to vi, their

length, and the width of the pipes.

Chapter 4 Predictive Random Graph Ranking on the Web 83

Algorithm 1 DiffusionRank Function

Input: The transition matrix A; the inverse transition matrix U ; the decay
factor αI for the inverse PageRank ; the decay factor αB for PageRank ; the
number of iterations MI for the inverse PageRank ; the number of trusted
pages L; the thermal conductivity coefficient γ.
Output: DiffusionRank score vector h.

1: s = 1
2: for i = 1 TO MI do
3: s = αI · U · s + (1− αI) · 1

n
· 1

4: end for
5: Sort s in a decreasing order: π = Rank({1, . . . , n}, s)
6: d = 0, Count = 0, i = 0
7: while Count ≤ L do
8: if π(i) is evaluated as a trusted page then
9: d(π(i)) = 1, Count + +

10: end if
11: i + +
12: end while
13: d = d/|d|
14: h = d
15: Find the iteration number MB according to λ
16: for i = 1 TO MB do
17: h = (1− γ

MB
)h + γ

MB
(αB · A · h + (1− αB) · 1

n
· 1)

18: end for
19: RETURN h

4.3.1 Algorithm

For the ranking task, we adopt the heat kernel on a random graph. Formally

the DiffusionRank is described in Algorithm 1, in which the element Uij in the

inverse transition matrix U is defined to be 1/Ij if there is a link from i to j,

and 0 otherwise. This trusted-page selection procedure by inverse PageRank

is completely borrowed from TrustRank [38] except for a fixed number of the

size of the trusted set. Although the inverse PageRank is not perfect in its

ability of determining the maximum coverage, it is appealing because of its

polynomial execution time and its reasonable intuition—we actually inverse

the original link when we try to build the seed set from those pages that point

to many pages, which in turn point to many other pages and so on. In the

Chapter 4 Predictive Random Graph Ranking on the Web 84

algorithm, the underlying random graph is set as P = αB ·A+(1−αB)· 1
n
·1n×n,

which is induced by the Web graph. As a result, R = −I + P .

In fact, the more general setting for DiffusionRank is P = αB ·A+(1−αB)·
1
n
· g · 1T . By such a setting, DiffusionRank is a generalization of TrustRank

when γ tends to infinity and when g is set in the same way as that in TrustRank.

However, the second part of TrustRank is not adopted by us. In our model,

g should be the true “teleportation” determined by the user’s browse habits,

popularity distribution over all the Web pages, and so on, and P should be

the true model of the random nature of the World Wide Web. Setting g

according to the trusted pages will not be consistent with the basic idea of

Heat Diffusion on a random graph. We simply set g = 1 only because we

cannot find it without any priori knowledge.

Remark. In a social network interpretation, DiffusionRank first recognizes

a group of trusted people, who may not be highly ranked, but who know many

other people. The initially trusted people are endowed with the power to

decide who can be further trusted, but cannot decide the final voting results,

and so they are not dictators.

4.3.2 Advantages

Next we show the four advantages for DiffusionRank.

Two closed forms

First, the solutions to DiffusionRank have two forms, both of which are closed

forms. One takes the discrete form and has the advantage of fast computing,

while the other takes the continuous form and has the advantage of being easily

analyzed in theoretical aspects. The theoretical advantage will be shown in

the proof of theorem in the next section.

Chapter 4 Predictive Random Graph Ranking on the Web 85

(a) Group to Group Relations

(b) An undirected graph

Figure 4.5: Two graphs

Group-group relations

Second, it can be naturally employed to detect the group-group relation. For

example, let G2 and G1 denote two groups, containing pages (j1, j2, . . . , js)

and (i1, i2, . . . , it), respectively. Then
∑

u,v hiu,jv is the total amount of heat

that G1 receives from G2, where hiu,jv is the iu-th row jv-th column element of

the heat kernel. More specifically, we need to first set f(0) for such an appli-

cation as follows. In f(0) = (f1(0), f2(0), . . . , fn(0))T , if i ∈ {j1, j2, . . . , js},
then fi(0) = 1, and 0 otherwise. Next we employ Eq. (4.7) to calculate

Chapter 4 Predictive Random Graph Ranking on the Web 86

f(1) = (f1(1), f2(1), . . . , fn(1))T , and finally we sum those fj(1) where j ∈
{i1, i2, . . . , it}. Fig. 4.5 (a) shows the results generated by the DiffusionRank.

We consider five groups—five departments in our Engineering Faculty: CSE,

MAE, EE, IE, and SE. γ is set to be 1, and the numbers in Fig. 4.5 (a) are the

amount of heat that they diffuse to each other. These results are normalized

by the total number of each group, and the edges are ignored if the values

are less than 0.000001. The group-to-group relations are therefore detected,

for example, we can see that the most strong overall tie is from EE to IE.

While it is a natural application for DiffusionRank because of the easy inter-

pretation by the amount heat from one group to another group, it is difficult

to engage other ranking techniques to such an application because they lack

similar physical meaning.

Graph cut

Third, it can be used to partition the Web graph into several parts. A quick

example is shown below. The graph in Fig. 4.5 (b) is an undirected graph, and

so we employ Eq. (4.5). If we know that node 1 belongs to one community

and that node 12 belongs to another, then we can put one unit positive heat

source on node 1 and one unit negative heat source on node 12. After time

1, if we set γ = 0.5, the heat distribution is [0.25, 0.16, 0.17, 0.16, 0.15, 0.09,

0.01, -0.04, -0.18 -0.21, -0.21, -0.34], and if we set γ = 1, it will be [0.17,

0.16, 0.17, 0.16, 0.16, 0.12, 0.02, -0.07, -0.18, -0.22, -0.24, -0.24]. In both

settings, we can easily divide the graph into two parts: {1, 2, 3, 4, 5, 6, 7} with

positive temperatures and {8, 9, 10, 11, 12} with negative temperatures. For

directed graphs and random graphs, similarly we can cut them by employing

the corresponding heat solution.

Chapter 4 Predictive Random Graph Ranking on the Web 87

Anti-manipulation

Fourth, it can be used to combat manipulation. Let G2 contain trusted Web

pages (j1, j2, . . . , js), then for each page i,
∑

v hi,jv is the heat that page i re-

ceives from G2, and can be computed by the discrete approximation of Eq. (4.6)

in the case of a static graph or Eq. (4.8) in the case of a random graph, in

which f(0) is set to be a special initial heat distribution so that the trusted

Web pages have one unit heat while all the others have zero heat. In doing

so, a manipulated Web page will get a lower rank unless it has strong in-links

from the trusted Web pages directly or indirectly. The situation is quite differ-

ent for PageRank because PageRank is input-independent as we have shown

in Section 4.1. Based on the fact that the connection from a trusted page

to a “bad” page should be weak, i.e., less uncross paths, longer distance and

narrower pipe, etc., we can say DiffusionRank can resist Web spam if we can

select trusted pages. It is fortunate that the trusted pages selection method in

[38], which is the first part of TrustRank, can help us to fulfill this task. For

such an application of DiffusionRank, the computation complexity for Discrete

Diffusion Kernel is the same as that for PageRank in cases of both a static

graph and a random graph. This can be seen in Eq. (4.8), by which we need N

iterations and for each iteration we need a multiplication operation between a

matrix and a vector, while in Eq. (2.4) we also need a multiplication operation

between a matrix and a vector for each iteration.

4.3.3 The Physical Meaning of γ

γ plays an important role in the anti-manipulation effect of DiffusionRank.

γ is the thermal conductivity, i.e., the heat diffusion coefficient. If it has a

high value, heat will diffuse very quickly. Otherwise, heat will diffuse slowly.

In the extreme case, if it is infinitely large, then heat will diffuse from one

node to other nodes immediately, and this is exactly the case corresponding

Chapter 4 Predictive Random Graph Ranking on the Web 88

to PageRank. Next, we will interpret it mathematically.

Theorem 7 When γ tends to infinity and f(0) is not the zero vector, eγRf(0)

is proportional to the stable distribution produced by PageRank.

Let g = 1
n
1. By the Perron Theorem [67], we have shown that 1 is the largest

eigenvalue of P = [(1 − α)g1T + αA], and that there is no other eigenvalue

whose absolute value is equal to 1. Let x be a stable distribution, and so

Px = x. x is the eigenvector corresponding to the eigenvalue 1. Assuming

the other n − 1 eigenvalues of P are |λ2| < 1, . . . , |λn| < 1, we can find an

invertible matrix S = (x S1) such that

S−1PS =

1 ∗ ∗ ∗
0 λ2 ∗ ∗
0 0

. . . ∗
0 0 0 λn

. (4.9)

Since eγR = eγ(−I+P) =

S−1

1 ∗ ∗ ∗
0 eγ(λ2−1) ∗ ∗
0 0

. . . ∗
0 0 0 eγ(λn−1)

S, (4.10)

all eigenvalues of the matrix eγR are 1, eγ(λ2−1), . . . , eγ(λn−1). When γ → ∞,

they become 1, 0, . . . , 0, respectively, which means that 1 is the only nonzero

eigenvalue of eγR when γ →∞. We can see that when γ →∞, eγReγRf(0) =

eγRf(0), and so eγRf(0) is an eigenvector of eγR when γ → ∞. On the other

hand, eγRx = (I+γR+ γ2

2!
R2+ γ3

3!
R3+. . .)x = Ix+γRx+ γ2

2!
R2x+ γ3

3!
R3x+. . . =

x since Rx = (−I + P)x = −x + x = 0, and hence x is the eigenvector of eγR

for any γ. Therefore both x and eγRf(0) are the eigenvectors corresponding to

the unique eigenvalue 1 of eγR when γ →∞, and consequently x = ceγRf(0).

Chapter 4 Predictive Random Graph Ranking on the Web 89

By this theorem, we see that DiffusionRank is a generalization of PageRank.

When γ = 0, the ranking value is the most robust against manipulation since

no heat is diffused and the system is unchangeable, but the Web structure

is completely ignored since eγRf(0) = e0Rf(0) = If(0) = f(0); when γ =

∞, DiffusionRank becomes PageRank, which can be manipulated easily. We

expect an appropriate setting of γ that can reach a balance. There is no

theoretical result in achieving an optimal point, but in practice we find that

γ = 1 works well in Section 4.4. Next we discuss how to determine the number

of iterations if we employ the discrete heat kernel.

4.3.4 The Number of Iterations

While we enjoy the advantage of the concise form of the exponential heat

kernel, it is better for us to calculate DiffusionRank by employing Eq. (4.8)

in an iterative way. Then the problem about determining N , the number of

iterations, arises:

For a given threshold ε, find N such that ||((I + γ
N

R)N − eγR)f(0)|| < ε for

any f(0) whose sum is one.

Since it is difficult to solve this problem, we propose a heuristic motivated

by the following observations. When R = −I + P , by Eq. (4.9), we have

(I + γ
N

R)N = (I + γ
N

(−I + P))N =

S−1

1 ∗ ∗ ∗
0 (1 + γ(λ2−1)

N
)N ∗ ∗

0 0
. . . ∗

0 0 0 (1 + γ(λn−1)
N

)N

S. (4.11)

Comparing Eq. (4.10) and Eq. (4.11), we observe that the eigenvalues of (I +

γ
N

R)N − eγR are (1 + γ(λn−1)
N

)N − eγ(λn−1). We propose a heuristic method to

determine N so that the difference between the eigenvalues are less than a

threshold only for positive λ′s.

Chapter 4 Predictive Random Graph Ranking on the Web 90

We also observe that if γ = 1 and λ < 1, then |(1 + γ(λ−1)
N

)N − eγ(λ−1)| <

0.005 if N ≥ 100, and |(1+ γ(λ−1)
N

)N − eγ(λ−1)| < 0.01 if N ≥ 30. So we can set

N = 30, or N = 100, or others according to different accuracy requirements.

Currently we use the relatively accurate setting N = 100 to make the real

eigenvalues in (I + γ
N

R)N − eγR less than 0.005.

4.4 Experiments for PRGR framework

The temporal dimension of the PRGR framework can actually be designed to

be tested in experiments, although it is difficult to measure whether a link

analysis algorithm is better than another because of the different intuitions

for different ranking algorithms. For this, we design a comparison method

by calculating the ranking difference and order difference between the early

results (less accurate) and the final results (relatively accurate, and considered

as a ground truth). For more details, see Section 4.5.2.

4.4.1 Data Description

Our input data consist of a synthetic data set and a real-world data set. A

detailed description follows.

Synthetic Web Graph

The degree sequences of the World Wide Web are shown to be well approxi-

mated by a power law distribution [50, 54, 55]. That is, the probability that

a Web page has k outgoing or incoming links follows a power law over many

orders of magnitude, that is, Pout(k) ∼ k−γout and Pin(k) ∼ k−γin .

The power law distribution of the degree sequence appears to be a very

robust property of the Web despite its dynamic nature; therefore, we can

generate synthetic Web-like random graphs to test the performance of our

Chapter 4 Predictive Random Graph Ranking on the Web 91

t 1 2 3 4 5 6

V[t] 1000 1100 1200 1300 1400 1500
T[t] 1764 1778 1837 1920 1927 1936
t 7 8 9 10 11

V[t] 1600 1700 1800 1900 2000
T[t] 1952 1954 1964 1994 2000

Table 4.1: Description of the synthetic graph series

t 1 2 3 4 5 6

V[t] 7712 78662 109383 160019 252522 301707
T[t] 18542 120970 157196 234701 355720 404728
t 7 8 9 10 11

V[t] 373579 411724 444974 471684 502610
T[t] 476961 515534 549162 576139 607170

Table 4.2: Description of real data sets within domain cuhk.edu.hk

algorithms.

Several approaches to modeling power law graphs [50, 54] have been pro-

posed. In our numerical experiment, we use the (α, β) model [54] to generate

random graphs. By setting α = 0.52 and β = 0.58, the model generates a

random power law graph with γout = 2.1 and γin = 2.38, both of whose values

match the Web.

By simulating the procedure of crawling, we can obtain a series of growing

incomplete graphs containing pages of DNC1. The number V [t] of pages vis-

ited and the total number T [t] of pages found at time t are shown in Table 4.1.

Real Web Graph

The data of a real Web graph were obtained from the domain cuhk.edu.hk.

The graph series are snapshots during the process of crawling pages restricted

within this domain. The number V [t] of pages visited and the total number

T [t] of pages found at time t are shown in Table 4.2.

Chapter 4 Predictive Random Graph Ranking on the Web 92

4.4.2 Methodology

The algorithms we run include PageRank and DiffusionRank. For each algo-

rithm A, we have two versions, denoted by A and PreA. A is the original

version without using the Temporal Web Prediction Model, and PreA is the

version using the Temporal Web Prediction Model. Both PreA and A are run

on two data series, including the synthetic data series and the real data series.

Each data series contains 11 data sets which are obtained by taking snapshots

during the process of a crawler or a simulated crawler. Finally, for each data

series and for each algorithm A, we obtained 22 ranking results, namely,

A1, A2, . . . , A11,

P reA1, P reA2, . . . , P reA11.

The results on the first 10 data sets are not accurate because these data

are incomplete, and the Web is dynamically changing. The result A11 on the

synthetic data should be the same as PreA11 because Temporal Web Prediction

Model will not have effect on complete information, but the result A11 on the

real data is not the same as PreA11 because of the existence of dangling nodes

of DNC1 in time 11.

If the difference between the results on time t and the results on time 11

is smaller, we think it is more accurate. We calculate the value difference and

order difference described below.

Value Difference. The value difference between At (PreAt) and A11 is

measured as

||At/Maxt−Cut(t, A11)/CutMaxt||2(||PreAt/Maxt−Cut(t, A11)/CutMaxt||2),

where cut(t, A11) is the results cut from A11 such that it has the same dimen-

sion as At, and CutMaxt (Maxt) means the maximal value among results in

cut(t, A11) (At).

Order Difference. The order difference between At (PreAt) and A11 is mea-

sured as the significant order difference between At and Cut(t, A11) (PreAt

Chapter 4 Predictive Random Graph Ranking on the Web 93

and Cut(t, A11)). The significant order difference between two similarity ma-

trices M and N is calculated by the sum of the significant order difference

for each row of M and N . For each row M(i), N(i) of M and N , the pair

(M(i, j),M(i, k)) and (N(i, j), N(i, k)) is considered as a significant order dif-

ference if it satisfies the following criteria:

Both M(i, j) > M(i, k)+0.005MaxM and N(i, k) > N(i, j)+0.005MaxN ,

or both M(i, k) > M(i, j) + 0.005MaxM and N(i, j) > N(i, k) + 0.005MaxN ,

where MaxM (MaxN) is the maximum value of M (N).

4.4.3 Experimental Set-up

We conduct experiments on the workstation whose hardware model is Nix

Dual Intel Xeon 2.2GHz with 1GB RAM and a Linux Kernel 2.4.18-27smp

(RedHat7.3). We set α = 0.85 and set g to be the uniform distribution in both

PageRank and PrePageRank. Note that we use the modified PageRank algo-

rithm [49], in which dangling nodes of DNC1 are considered to have random

links uniformly distributed to each node. For DiffusionRank and PreDiffusion-

Rank, we use the Discrete Diffuse Kernel for computing, and we set σ = 1,

N = 20 and β to be the inverse of the maximal out-degree in both. Note

that DiffusionRank uses the Discrete Diffuse Kernel on a static graph and

PreDiffusionRank uses Discrete Diffuse Kernel on a random graph.

4.4.4 Experimental Results

Figure 4.6 demonstrates the PageRank results on the synthetic data and the

real data. On the synthetic data, in 60% early stages, PreRageRank is closer

to the final result in value difference; while in 100% early stages, PrePageRank

is closer to the final result in significant order difference. Since the graph

in time 11 is complete, there is no difference between the PrePageRank and

PageRank, and the curves meet at time 11. On the real data, since the data set

Chapter 4 Predictive Random Graph Ranking on the Web 94

at time 11 contains unvisited pages, PrePageRank and PageRank are different

on this data set, and the employment of PageRank results on this data set

as a reference will cause a bias against PrePageRank. Even so, in 60% early

stages, PreRageRank is closer to the final PageRank result in value difference;

while in 70% early stages, PrePageRank is closer to the final PageRank result

in significant order difference.

Figure 4.7 demonstrates the DiffusionRank results. On the synthetic data,

in 100% early stages, PreDiffusionRank is closer to the final result in value

difference, and in 100% early stages, PreDiffusionRank is closer to the final

result in significant order difference. On the real data, since the data at time

11 contains unvisited pages, PreDiffusionRank and DiffusionRank are different

on this data set, and the employment of DiffusionRank results on this data

set as a reference will cause a bias against PreDiffusionRank. Even so, in 70%

early stages, PreDiffusionRank is closer to the final PageDiffusionRank result

in value difference; while in 70% early stages, PreDiffusionRank is closer to

the final DiffusionRank result in significant order difference.

Figure 4.8 demonstrates the Jaccard’s Coefficient results. On the synthetic

data, in 100% early stages, PreJaccard’s Coefficient is closer to the final result

both in value difference and in significant order difference. On the real data,

since the data at time 11 contains unvisited pages, PreJaccard’s Coefficient

and Jaccard’s Coefficient are different on this data set, and the employment

of Jaccard’s Coefficient results on this data set as a reference will cause a bias

against PreJaccard’s Coefficient. Even so, in 70% early stages, PreJaccard’s

Coefficient is closer to the final Jaccard’s Coefficient result in value difference;

while in 70% early stages, PreJaccard’s Coefficient is closer to the final accard’s

Coefficient result in significant order difference. For Common Neighbor, similar

results are obtained.

The improvement of prediction on Common Neighbor is relatively small,

and in Figure 4.9 we only show the differences of results of Common Neighbor

Chapter 4 Predictive Random Graph Ranking on the Web 95

and those of PreCommon Neighbor.

4.4.5 Discussion

For SimRank, similar experiments are conducted on small datasets. On Com-

mon Neighbor, slight improvement is achieved, but on SimRank we do not

obtain expected results for the Temporal Web Prediction Model. These ab-

normal results may be caused by the ignorance of the power law distribution.

Before Temporal Web Prediction Model, the data set satisfies the power law

distribution, but after the model, the in-degrees of all nodes are increased

with the same proportions. This in fact breaks the power law distribution,

for example, nodes whose in-degree is 1 do not exist after prediction while

nodes whose in-degree is 1 should have the highest density according to the

power law distribution. SimRank seems to be sensitive to the distribution of

in-degrees and out-degrees. It is interesting and challenging to preserve the

power law distribution in the Temporal Web Prediction Model so that better

accuracy can be achieved on all these algorithms.

4.5 Experiments for DiffusionRank

4.5.1 Data Preparation

Our input data consist of a toy graph, a middle-size real-world graph, and a

large-size real-world graph. The toy graph is shown in Fig. 4.10 (a). The graph

below it shows node 1 is being manipulated by adding new nodes A,B, C, . . .

such that they all point to node 1, and node 1 points to them all. The data

of two real Web graphs were obtained from the domain in our institute in

October, 2004. The total number of pages found is 18,542 in the middle-

size graph, and 607,170 in the large-size graph, respectively. The middle-size

graph is a subgraph of the large-size graph, and they were obtained by the

Chapter 4 Predictive Random Graph Ranking on the Web 96

same crawler: One is recorded by the crawler in its earlier time, and the other

is obtained when the crawler stopped.

4.5.2 Methodology

The algorithms we run include PageRank, TrustRank and DiffusionRank. All

the rank values are multiplied by the number of nodes so that the sum of the

rank values is equal to the number of nodes. By this normalization, we can

compare the results on graphs with different sizes since the average rank value

is one for any graph after such normalization. We will need value difference

and pairwise order difference as comparison measures. Their definitions are

listed as follows.

Value Difference. The value difference between A = {Ai}n
i=1 and B =

{Bi}n
i=1 is measured as

∑n
i=1 |Ai −Bi|.

Pairwise Order Difference. The order difference between A and B is mea-

sured by the number of significant order differences between A and B. The

pair (A[i], A[j]) and (B[i], B[j]) is considered as a significant order difference

if one of the following cases happens: (1) both A[i] > [<]A[j] + 0.1 and

B[i] ≤ [≥]A[j], and (2) both A[i] ≤ [≥]A[j] and B[i] > [<]A[j] + 0.1.

Chapter 4 Predictive Random Graph Ranking on the Web 97

4.5.3 Experimental Set-up

The experiments on the middle-size graph and the large-size graph are con-

ducted on the workstation, whose hardware model is Nix Dual Intel Xeon

2.2GHz with 1GB RAM and a Linux Kernel 2.4.18-27smp (RedHat7.3). In

calculating DiffusionRank, we employ Eq. (4.8) and the discrete approxima-

tion of Eq. (4.6) for such graphs. The related tasks are implemented using C

language. While in the toy graph, we employ the continuous diffusion kernel

in Eq. (4.6) and Eq. (4.7), and implement related tasks using Matlab.

For nodes that have zero out-degree (dangling nodes), we employ the

method in the modified PageRank algorithm [49], in which dangling nodes

of are considered to have random links uniformly distributed to each node.

We set α = αI = αB = 0.85 in all algorithms. We also set g to be the uniform

distribution in both PageRank and DiffusionRank. For DiffusionRank, we set

γ = 1. According to the discussions in Section 4.3.3 and Section 4.3.4, we

set the iteration number to be MB = 100 in DiffusionRank, and for accuracy

consideration, the iteration number in all the algorithms is set to be 100.

4.5.4 Approximation of PageRank

We show that when γ tends to infinity, the value differences between Diffu-

sionRank and PageRank tend to zero. Fig. 4.10 (b) shows the approximation

property of DiffusionRank, as proved in Theorem 7, on the toy graph. The

horizontal axis of Fig. 4.10 (b) marks the γ value, and the vertical axis corre-

sponds to the value difference between DiffusionRank and PageRank. All the

possible trusted sets with L = 1 are considered. For L > 1, the results should

be the linear combination of some of these curves because of the linearity of

the solutions to heat equations. On other graphs, the situations are similar.

Chapter 4 Predictive Random Graph Ranking on the Web 98

4.5.5 Results of Anti-manipulation

In this section, we show how the rank values change as the intensity of manip-

ulation increases. We measure the intensity of manipulation by the number

of newly added nodes that point to the manipulated node. The horizontal

axes of Fig. 4.11 stand for the numbers of newly added nodes, and the verti-

cal axes show the corresponding rank values of the manipulated nodes. To be

clear, we consider all six situations. Every node in Fig. 4.10 (a) is manipulated

respectively, and its corresponding values for PageRank, TrustRank (TR), Dif-

fusionRank (DR) are shown in the one of the six sub-figures in Fig. 4.11. The

vertical axes show which node is being manipulated. In each sub-figure, the

trusted sets are computed below. Since the inverse PageRank yields the results

[1.26, 0.85, 1.31, 1.36, 0.51, 0.71]. Let L = 1. If the manipulated node is not 4,

then the trusted set is {4}, and otherwise {3}. We observe that in all the

cases, rank values of the manipulated nodes for DiffusionRank grow slowest

as the number of the newly added nodes increases. On the middle-size graph

and the large-size graph, this conclusion is also true, as seen in Fig. 4.12. Note

that, in Fig. 4.12 (a), we choose four trusted sets (L = 1), on which we test

DiffusionRank and TrustRank, whose results are denoted by DiffusionRanki

and TrustRanki (i = 0, 1, 2, 3 denotes the four trusted set). In Fig. 4.12 (b), we

choose one trusted set (L = 1). Moreover, in both Fig. 4.12 (a) and Fig. 4.12

(b), we show the results for DiffusionRank when we have no trusted set, and

we trust all the pages before some of them are manipulated.

We also test the order difference between the ranking order A before the

page is manipulated and the ranking order PA after the page is manipulated.

Because after manipulation, the number of pages changes, so we only compare

the common part of A and PA. This experiment is used to test the stability of

all the algorithms. The less the order difference, the more stable the algorithm,

in the sense that only a smaller part of the order relations is affected by the

Chapter 4 Predictive Random Graph Ranking on the Web 99

manipulation. Figure 4.13 (a) shows that the order difference values change

when we add new nodes that point to the manipulated node. We give several

γ settings. We find that when γ = 1, the least order difference is achieved

by DiffusionRank. It is interesting to note that as γ increases, the order dif-

ference will increase first; however after reaching a maximum value, it will

decrease, and finally it tends to the PageRank results. We show this tendency

in Fig. 4.13 (b), in which we choose three different settings, where the number

of manipulated nodes are 2,000, 5,000, and 10,000 respectively. From these fig-

ures, we can see that when γ < 2, the values are less than those for PageRank,

and that when γ > 20, the difference between PageRank and DiffusionRank is

very small. After these investigations, we find that in all the graphs we tested,

DiffusionRank (when γ = 1) is the most robust against manipulation both

in value difference and in order difference. The trust set selection algorithm

proposed in [38] is effective for both TrustRank and DiffusionRank.

4.5.6 Manipulation Detection

The difference between the PageRank value and the DiffusionRank (TrustRank)

value can help us detect pages being manipulated. The larger the difference is,

the more probably the page is manipulated. The next subsection is devoted to

this finding, by which we are encouraged to develop a simple manipulation de-

tection algorithm. For a given threshold τ , if the difference between PageRank

value for a particular page and its DiffusionRank value is greater than τ , then

we consider that the page is probably being manipulated. TrustRank can be

also employed to fulfil such a task in the same way.

To test this idea, we randomly choose 100 pages, and manipulate them all

in different extents. Then we draw the Recall-Precision curves as follows: For

a given recall rate ν, find the threshold τ such that the recall rate is exactly

ν, and then calculate the ratio of the number of nodes being manipulated and

Chapter 4 Predictive Random Graph Ranking on the Web 100

the number of nodes whose difference between PageRank and DiffusionRank

(or between PageRank and TrustRank) is greater than τ . The higher precision

rate under the same recall rate means that the less “good” nodes are mixed

with “bad” nodes. The upper panel in Fig. 4.14 shows the results on the

middle-size graph, and the lower panel shows the results on the large-size

graph. If no technique is employed, one has to guess the manipulated pages in

a random way, by which the precision will be 100/18542 ≈ 0.0054 = 0.54% on

the middle-size graph, and 100/667170 ≈ 0.000165 = 0.0165% on the large-size

graph. We also draw the curve of the random detection rates on both graphs.

We observe that both DiffusionRank and TrustRank work excellently on

the detection precision on the middle-size graph. Compared to the random

detection rate, they also work well on the large-size graph. From the size of

the areas below the curves, we find DiffusionRank performs slightly better

than TrustRank.

4.6 Summary

We have shown that the Temporal Web Prediction Model is effective in PageR-

ank and DiffusionRank. Because our model mines more information about the

Web structure, the results of predictive strategy on these two algorithms are

more accurate than those without it, even our model breaks the power law

distribution. We conclude that the random graph input indeed extends the

scope of some original ranking techniques, and significantly improve some of

them.

DiffusionRank is a generalization of PageRank, which is interesting in that

the heat diffusion coefficient γ can balance the extent that we want to model

the original Web graph and the extent that we want to reduce the effect of link

manipulations. The experimental results show that we can actually achieve

such a balance by empirically setting γ = 1, although the best setting including

Chapter 4 Predictive Random Graph Ranking on the Web 101

varying γi is still under further investigation. This anti-manipulation feature

enables DiffusionRank to be a candidate as a penicillin for Web spamming.

Moreover, DiffusionRank can be employed to find group-group relations and

to partition Web graph into small communities. All these advantages can be

achieved in the same computational complexity as PageRank. For the special

application of anti-manipulation, DiffusionRank performs the best both in

reduction effects and in its stability among all the three algorithms.

Chapter 4 Predictive Random Graph Ranking on the Web 102

1 2 3 4 5 6 7 8 9 10 11
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time

V
al

ue
 D

iff
er

en
ce

PrePageRank
PageRank

1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

14000

16000

Time

O
rd

er
 D

iff
er

en
ce

PrePageRank
PageRank

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

V
al

ue
 D

iff
er

en
ce

PrePageRank
PageRank

1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

2500

3000

3500

4000

Time

O
rd

er
 D

iff
er

en
ce

PrePageRank
PageRank

(c)-VD in real data (b)-OD in real data

Figure 4.6: PageRank comparison results

Chapter 4 Predictive Random Graph Ranking on the Web 103

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

Time

V
al

ue
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Time

O
rd

er
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

V
al

ue
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9
x 10

4

Time

O
rd

er
 D

iff
er

en
ce

PreDiffusionRank
DiffusionRank

(c)-VD in real data (b)-OD in real data

Figure 4.7: DiffusionRank comparison results

Chapter 4 Predictive Random Graph Ranking on the Web 104

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Time

V
al

ue
 D

iff
er

en
ce

PreJACCARD
JACCARD

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
x 10

9

Time

O
rd

er
 D

iff
er

en
ce

PreJACCARD
JACCARD

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

200

Time

V
al

ue
 D

iff
er

en
ce

PreJACCARD
JACCARD

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15
x 10

4

Time

O
rd

er
 D

iff
er

en
ce

PreJACCARD
JACCARD

(c)-VD in real data (d)-OD in real data

Figure 4.8: Jaccard’s Coefficient comparison results

Chapter 4 Predictive Random Graph Ranking on the Web 105

1 2 3 4 5 6 7 8 9 10 11
−1

0

1

2

3

4

5

6

7
x 10

−3

Time

V
al

ue
 D

iff
er

en
ce

CN−PreCN

1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time

O
rd

er
 D

iff
er

en
ce

CN−PreCN

(a)-VD in synthetic data (b)-OD in synthetic data

1 2 3 4 5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

Time

V
al

ue
 D

iff
er

en
ce

CN−PreCN

1 2 3 4 5 6 7 8 9 10 11
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

O
rd

er
 D

iff
er

en
ce

CN−PreCN

(c)-VD in real data (b)-OD in real data

Figure 4.9: CN comparison results

Chapter 4 Predictive Random Graph Ranking on the Web 106

A

1

B

C

...

2

5

6 3

4

1

2 5

6 3 4

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Gamma
V

al
ue

 D
iff

er
en

ce

Trust set={1}
Trust set={2}
Trust set={3}
Trust set={4}
Trust set={5}
Trust set={6}

(a) (b)

Figure 4.10: (a) The toy graph consisting of six nodes, and node 1 is being
manipulated by adding new nodes A,B, C, . . . (b) The approximation tendency
to PageRank by DiffusionRank

0 50 100
0

10

20

30

40

50

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e−
1 DiffusionRank−Trust 4

PageRank
TrustRanl−Trust 4

0 50 100
0

10

20

30

40

50

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e−
2 DiffusionRank−Trust 4

PageRank
TrustRanl−Trust 4

0 50 100
0

10

20

30

40

50

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e−
3 DiffusionRank−Trust 4

PageRank
TrustRanl−Trust 4

0 50 100
0

10

20

30

40

50

Number of New Added Nodes

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e−
4 DiffusionRank−Trust 3

PageRank
TrustRanl−Trust 3

0 50 100
0

10

20

30

40

50

Number of New Added Nodes

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e−
5 DiffusionRank−Trust 4

PageRank
TrustRanl−Trust 4

0 50 100
0

10

20

30

40

50

Number of New Added Nodes

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e−
6 DiffusionRank−Trust 4

PageRank
TrustRanl−Trust 4

Figure 4.11: The rank values of the manipulated nodes on the toy graph

Chapter 4 Predictive Random Graph Ranking on the Web 107

200040006000800010000
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of New Added Points

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e

PageRank
DiffusionRank−uniform
DiffusionRank0
DiffusionRank1
DiffusionRank2
DiffusionRank3
TrustRank0
TrustRank1
TrustRank2
TrustRank3

2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

Number of New Added Points

R
an

k
of

 th
e

M
an

ip
ul

at
d

N
od

e

PageRank
DiffusionRank
TrustRank
DiffusionRank−uniform

(a) (b)

Figure 4.12: (a) The rank values of the manipulated nodes on the middle-size
graph; (b) The rank values of the manipulated nodes on the large-size graph

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of New Added Points

P
a

ir
w

is
e

 O
rd

e
r

D
iff

e
re

n
ce

PageRank
DiffusionRank−Gamma=1
DiffusionRank−Gamma=2
DiffusionRank−Gamma=3
DiffusionRank−Gamma=4
DiffusionRank−Gamma=5
DiffusionRank−Gamma=15
TrustRank

0 5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

5

Gamma

P
ai

rw
is

e
O

rd
er

 D
iff

er
en

ce

DiffusionRank: when added 2000 nodes
DiffusionRank: when added 5000 nodes
DiffusionRank: when added 10000 nodes
PageRank

(a) (b)

Figure 4.13: (a) Pairwise order difference on the middle-size graph, the least
it is, the more stable the algorithm; (b) The tendency of varying γ

Chapter 4 Predictive Random Graph Ranking on the Web 108

50 100
0

10

20

30

40

50
Added 40

Recall

Pr
ec

isi
on

Diffusion
Trust
Random

50 100
0

20

40

60

80

Added 80

Recall
50 100

0

20

40

60

80

100
Added 120

Recall
50 100

0

20

40

60

80

100
Added 160

Recall
50 100

0

20

40

60

80

100
Added 200

Recall

50 100

0

5

10

15
Added 40

Recall

Pr
ec

isi
on

50 100

0

5

10

15
Added 80

Recall
50 100

0

5

10

15
Added 120

Recall
50 100

0

5

10

15
Added 160

Recall
50 100

0

5

10

15
Added 200

Recall

Figure 4.14: Precision vs Recall when L = 50: the larger the area below the
curve, the better.

Chapter 5

Random Graph Dependency

In this chapter, we are interested in an information measure that can calculate

the dependency between two random graphs. The proposed random graph

measure is a general form whose applications are not restricted in the field of

decision trees, however, in order to show strong motivations, the materials in

this chapter are presented in an application-driven way. For the sake of easy

understanding, this chapter progresses from a lower level to a higher level:

we first show its one special case when random graphs degrade to equivalence

relations, then we show its another special case appeared as a generalization

of the conditional entropy, and then we generalize these two special cases to

arrive at a general form. To show its power and to provide a support to

the Graph-based Heat Diffusion Classifiers (G-HDC) in Chapter 3, we show

an application of the random graph dependency measure in finding the free

parameter in G-HDC. Although it is possible to find ways to support the model

Predictive Random Graph Ranking (PRGR) in Chapter 4, e.g., maximizing

the dependency between the Web graph and a unknown total order graph

considered as a ranking, we leave them in the future work.

109

Chapter 5 Random Graph Dependency 110

5.1 Motivations

The C4.5R8 algorithm is the fastest algorithm in terms of training time among

a group of thirty-three tree-based, rule-based and statistics-based classification

algorithms, while the prediction accuracy of the C4.5R8 algorithm is not statis-

tically significantly different from POL, whose prediction accuracy is the best

among these thirty-three classification algorithms [63]. In machine learning,

there are endless interests to improve the accuracy and the speed of a well-

known algorithm. In this chapter, we aim to develop a general information

measure that can improve one single decision tree in speed by one special case

or in accuracy by another special case. These two points are explained further

in the next two sections.

5.1.1 Improve the Speed

We observe that, to compute a measure γ(C, D) in Eq. (1.2) used in Rough Set

Theory, we only need to carry out arithmetic operations, while the computation

of the commonly used conditional entropy needs to compute the logarithm of

the frequency, a time-consuming operation. In order to improve the speed of

C4.5, we want to inherit this merit of γ, and avoid the drawback of γ in the

meantime. The drawback of γ is its inaccuracy in measuring the dependency,

and will be analyzed in the next example.

Example 8 In Table 5.1 where a, b, c, and d represent headache, muscle pain,

body temperature and influenza, respectively, it is easy to calculate that γ(C,D)=

0 when C = {a}, D = {d}. This happens because none of C−classes is com-

pletely contained in a D−class. But we observe that there is some dependency

between {a} and {d}. To measure the dependency more accurately, we propose

the generalized dependency degree Γ(C,D) so that the dependency between

{a} and {d} is not measured as zero.

Chapter 5 Random Graph Dependency 111

headache (a) pain (b) temperature (c) influenza (d)
e1 Y Y 0 N
e2 Y Y 1 Y
e3 Y Y 2 Y
e4 N Y 0 N
e5 N N 1 N
e6 N Y 2 Y
e7 Y N 1 Y

Table 5.1: Influenza data (b)

Figure 5.1: An illustration of eight points on the axis x1, in which the black
points belong to one class A while the white points belong to another class B.

In Section 5.2, we will continue to develop a deeper understanding of the

generalized dependency degree, and to justify it both theoretically and em-

pirically. On the theoretical side, we give its various forms and describe its

properties; on the empirical side, we show its effectiveness in decision trees and

in attribute selection.

5.1.2 Improve the Classification Accuracy

There are two observations that motivate us to generalize the traditional con-

ditional entropy. The first observation is explained in the following example.

v1 v2 v3 v4 v5 v6 v7 v8

x1 1.0 2.0 3.9 4.0 5.0 5.1 7.0 8.0
x2 Y X Y Y X X Y X
y A A B B A A B B

Table 5.2: Eight points with three attributes

Example 9 In Figure 5.1, the eight points {v1, v2, v3, v4, v5, v6, v7, v8} in Ta-

ble 5.2 are shown on the axis x1. The black points belong to one class A

Chapter 5 Random Graph Dependency 112

while the white points belong to another class B. When conditional entropy

is applied to the cut shown by the dashed line, the information gain is 0.31. If

the cut is chosen to be the solid line, then the information gain is 0. Similarly

all the information gains for the seven possible cuts from the left to right are

0.14, 0.31, 0.05, 0.0, 0.05, 0.31, and 0.14. The maximal one is 0.31, and so the

second cut is chosen as the best cut. On the other hand, for the attribute x2,

the information gain is 0.19, which is smaller than the best information gain

0.31 produced by attribute x1. Then x1 is chosen as the attribute for the root

of the decision tree, on which there is a decision x1 ≤ 2. As the tree-building

procedure continues, the whole data set is divided into two parts: {v1, v2}
determined by x1 ≤ 2, and {v3, v4, v5, v6, v7, v8} determined by x1 > 2. For

attribute x1, the information gains for the five possible cuts from left to right

are 0.11, 0.25, 0.00, 0.25, and 0.11. The maximal one is 0.25, and so the second

cut is chosen as the best cut. For attribute x2, the information gain is 0.46,

which is greater than the best information gain of 0.25 produced by attribute

x2. Then x2 is chosen as the attribute for the node following the root. The

data set is further divided into two parts: {v5, v6, v8} determined by x2 = X,

{v3, v4, v7} determined by x2 = Y . By the criteria in C4.5, when the cases in

a node have the same class, or when the number of cases is less than 4, the

building tree procedure stops. Therefore a decision tree is produced as shown

in Figure 5.2, in which an error happens when x1 > 2, x2 = X. If the gain

ratio is applied, the same decision tree is obtained. However, the best decision

tree should be the one shown in Figure 5.3, which has no error, but cannot be

produced by the traditional conditional entropy.

In the above example, the cut shown by the solid line does not produce any

information gain. But it is observed that this middle cut makes the pattern at

least equal to or better than what is produced by the cut marked by the dash

line, in the sense that the number of further cuts needed is reduced in order

Chapter 5 Random Graph Dependency 113

A A B

x_1 <= 2 ?

Y x_2 = ?

N

X Y

Figure 5.2: An illustration of a decision tree generated by conditional entropy,
in which v8 in Table 5.2 will be misclassified.

A B A B

x_1 <= 4 ?

x_1 <=2 ?

Y

x_1 <=5.1 ?

N

Y N Y N

Figure 5.3: An ideal decision tree, which will be generated by the new measure,
and in which no point is misclassified.

to distinguish the black points and the white points on both sides. This is one

observation that motivates us to develop a new measure, by which a nonzero

information gain can match the intuition that the pattern becomes equal or

better after this middle cut, and by which the ideal decision tree shown in

Figure 5.3 can be produced.

Another observation that encourages us to develop a new measure is shown

in Figure 5.4, in which two points are linked by an edge when they are treated

equally. Before the middle cut, the eight points in Figure 5.4 (a) are treated

equally. After the middle cut, the four points on the left side of the cut are

treated equally since they satisfy the same decision x1 ≤ 4, so are the four

points on the right side of the cut. It is reasonable to consider the eight

Chapter 5 Random Graph Dependency 114

(a) (b)
Before the middle cut After the middle cut

Figure 5.4: An illustration on how the eight points are treated in C4.5. Before
the middle cut, the eight points are treated equally. After the middle cut, the
four points on the left side of the cut are treated equally since they satisfy the
same decision x1 ≤ 4, so are the four points on the right side of the cut.

points in the same way because “before the cut” can be understood as “no

attribute information is employed to describe the eight points and so there is

no difference between these eight points”. But after the cut, the continuous

attribute has been employed to describe these eight points, and therefore the

distance information should be considered. But in Figure 5.4 (b), we can see

that the distance between the data points less (or greater) than the threshold

(produced by the cut) is completely ignored. From the viewpoint of random

graphs, we will explain the intuitions in this paragraph further in Section 5.3.2

after we define the new measure.

If the number of samples is enough, the error in Figure 5.2 cannot be

produced, because there will be more cases left following the branch of x1 > 2

and x2 = X. This makes it possible to choose x1 again in such a way that the

error cannot be produced. So the inaccurate information gain becomes serious

in small sample size problems, in which less informative attributes wrongly

chosen by the inaccurate information measure will consume the samples quickly

and thus leave little chance for employing the best attributes. Based on this

consideration and the above two observations, we aim to define a measure in

Section 5.3 that

Chapter 5 Random Graph Dependency 115

• can include more distance information;

• can generalize the traditional entropy measure in the sense that when

distance information is ignored or the attribute is discrete it degrades to

the traditional measure;

• can improve the accuracy of C4.5 significantly on some benchmark datasets

with small sample size.

5.1.3 Help to Search the Free Parameters in Heat Dif-

fusion Classifiers

In Chapter 3, G-HDC achieves promising results in accuracy. However, there

is not a guide to help to select the free parameters in G-HDC. The naive cross-

validation method is time-consuming, as explained next. If the free parameters

in G-HDC are sought by cross-validations, then at each fold of the cross-

validation for each fixed K, each fixed β and each fixed γ, we need to do

multiplications p times between a matrix I+ γ
p
H and a vector f(0), and K∗n∗p

multiplications are needed, where n is the number of data including both

labeled data and unlabeled data. This observe motivates us to find time-saving

methods for searching these free parameters, and the candidate method is

proposed based on the random graph dependency measure so that the number

K ∗ n ∗ p is expected to be reduced to K ∗ n.

5.2 The Generalized Dependency Degree Γ(R1, R2)

Between Two Equivalence Relations

Inspired by the dependency degree γ, a traditional measure in Rough Set The-

ory, we propose a generalized dependency degree, Γ, between two given sets of

attributes. We first give its definition in terms of equivalence relations, then

Chapter 5 Random Graph Dependency 116

interpret it in terms of minimal rules, and further describe the algorithm for

its computation. To understand Γ better, we investigate its various proper-

ties. We further extend Γ to information systems with missing values, called

incomplete information systems. To show its advantage, we make a compar-

ative study with the conditional entropy and γ in a number of experiments.

This section is organized as follows. In Section 5.2.1, we give the first two

forms of the generalized dependency degree. In Section 5.2.2, we discuss the

properties of this measure and give its third form. In Section 5.2.3, we extend

it to incomplete information systems. In Section 5.2.4, we compare it with

conditional entropy. In Section 5.2.5, we conduct experiments to support the

generalized dependency degree concept. In Section 5.2.6, we draw a conclusion

about the generalized dependency degree.

5.2.1 Definition of the Generalized Dependency Degree

In this section, we first cite the formal language in complete information sys-

tems, which is used to describe the decision rules. Then we give the definition

of the generalized dependency degree. Finally we connect the minimal decision

rules and the generalized dependency degree.

A Formal Language to Describe the Decision Rule

The decision language is defined in [79, 80]. Let S = (U,A, V, f) be an infor-

mation system. With every B ⊆ A we associate a formal language, i.e., a set

of formulae For(B). Formulae of For(B) are built up from attribute-value

pairs a = v where a ∈ B and v ∈ Va by means of logical connectives ∧ (and),

∨ (or), ∼(not) in the standard way. For any Φ ∈ For(B), we denote the set

of all objects satisfying Φ by supp(Φ); this is called the support of Φ.

A decision rule in S is an expression Φ → Ψ, where Φ ∈ For(C), Ψ ∈
For(D), C,D are condition and decision attributes respectively, and Φ and Ψ

Chapter 5 Random Graph Dependency 117

are referred to as the condition and decision of the rule respectively. Related

to a decision rule, we will need the following three definitions.

Definition 10 A decision rule Φ → Ψ is called a deterministic rule in S if

supp(Φ) ⊆ supp(Ψ), and an indeterministic rule otherwise.

Definition 11 With every decision rule Φ → Ψ we associate a conditional

probability called the confidence (the certainty factor of the rule Φ → Ψ), and

denote it by Con(Φ → Ψ), which can be written as

Con(Φ → Ψ) =
|supp(Φ ∧Ψ)|
|supp(Φ)| .

Definition 12 We denote the strength of decision rule Φ → Ψ by Str(Φ →
Ψ), which is defined as:

Str(Φ → Ψ) =
|supp(Φ ∧Ψ)|

|U | .

The denominator |supp(Φ)| in Con(Φ → Ψ) only counts the objects that

satisfy the formula Φ while the denominator |U | in Str(Φ → Ψ) counts all the

objects.

We show the definitions of the confidence and strength of a rule by the

following example.

Example 13 In Table 5.1, A = {a, b, c, d}, U = {e1, e2, e3, e4, e5, e6, e7}. Let

C = {a, b}, and D = {d}. We consider the rule a = Y ∧ b = Y → d = Y . The

condition part Φ is equal to a = Y ∧ b = Y while decision part Ψ is equal to

d = Y , so Φ∧Ψ is equal to a = Y ∧b = Y ∧d = Y . Since supp(Φ) = {e1, e2, e3}
and supp(Φ ∧ Ψ) = {e2, e3}, we have |supp(Φ)| = 3 and |supp(Φ ∧ Ψ)| = 2,

and so Con(Φ → Ψ) = 2/3, and Str(Φ → Ψ) = 2/7.

Chapter 5 Random Graph Dependency 118

Generalized Dependency Degree

We give our first form of the generalized dependency degree Γ(C,D) in terms

of equivalence relations as follows.

Definition 14 The generalized dependency degree Γ(C,D) is defined as

Γ(C, D) =
1

|U |
∑

x∈U

|D(x) ∩ C(x)|
|C(x)| , (5.1)

where D(x) and C(x) denote the D-class containing x and C-class containing

x respectively (recall that, in the introduction section, we defined P -class for

any attribute set P).

Note that, the dependency degree γ(C,D) can be rewritten as

γ(C, D) =
1

|U |
∑

x∈U∧C(x)⊆D(x)

|D(x) ∩ C(x)|
|C(x)| . (5.2)

From this form of γ(C, D), one can discern the difference between Γ(C, D) and

γ(C, D) easily. In γ(C, D), if |D(x) ∩ C(x)|/|C(x)| < 1, then x is not counted,

while in Γ(C,D) every object is counted by a fraction |D(x) ∩ C(x)|/|C(x)|
that may not be equal to 1.

We show the definition of Γ(C,D) by the following two examples.

Example 15 In Table 5.1, A = {a, b, c, d}, U = {e1, e2, e3, e4, e5, e6, e7}.
We use Eq. (5.1) to calculate Γ(C,D) when C = {a, b, c}, D = {d}. Since

C(e1) = {e1}, C(e2) ={e2}, C(e3) ={e3}, C(e4) ={e4}, C(e5) ={e5},
C(e6) ={e6}, C(e7) ={e7}, D(e1) =D(e4) = D(e5) ={e1, e4, e5}, D(e2) =

D(e3) = D(e6) = D(e7) = {e2, e3, e6, e7}, we have Γ(C, D) = 1
7
(|D(e1)∩C(e1)|

|C(e1)| +

|D(e2)∩C(e2)|
|C(e2)| + |D(e3)∩C(e3)|

|C(e3)| + |D(e4)∩C(e4)|
|C(e4)| + |D(e5)∩C(e5)|

|C(e5)| + |D(e6)∩C(e6)|
|C(e6)| + |D(e7)∩C(e7)|

|C(e7)|)

= (1 + 1 + 1 + 1 + 1 + 1 + 1)/7 = 1.

Example 16 Also in Table 5.1, we calculate Γ(C,D) and γ(C,D) when C =

{a}, D = {d}. Since C(e1) = C(e2) = C(e3) = C(e7) = {e1, e2, e3, e7}, C(e4) =

Chapter 5 Random Graph Dependency 119

C(e5) = C(e6) = {e4, e5, e6}, D(e1) = D(e4) = D(e5) = {e1, e4, e5},
D(e2) = D(e3) = D(e6) = D(e7) = {e2, e3, e6, e7}, we have Γ(C, D) =

(1/4+3/4+3/4+2/3+2/3+1/3+3/4)/7 = 25/42, while we have γ(C, D) = 0

according to Eq. (5.2).

Next we will interpret Γ(C,D) from another point of view, i.e., we will

change our view from the equivalence classes to minimal decision rules.

Connection between the Generalized Dependency Degree and Min-

imal Rule

We first give the definition of the minimal formula.

Definition 17 (Minimal Formula) A formula Φ ∈ For(B) is called a minimal

formula in For(B) if supp(Φ) 6= ∅, and for any Ψ ∈ For(B), supp(Ψ) ⊂
supp(Φ) implies supp(Ψ) = ∅.

The minimal formula has the meaning that the support of a formula Ψ ∈
For(B) cannot be smaller than the support of the minimal formula unless

Ψ has an empty support. For example, in Table 5.1, let B = {a, b}, then

a = Y ∧ b = Y is a minimal formula in For(B). The support of a = Y ∧ b = Y

is {e1, e2, e3}.
We call a rule a minimal rule if both its condition part and decision part are

minimal formulae, and we define the minimal rule formally in the following.

Definition 18 (Minimal Rule) Let C = {c1, c2, c3, ..., cn}, D = {d1, d2, d3, ..., dm}.
Then we call the rule

c1 = u1 ∧ c2 = u2 ∧ ... ∧ cn = un → d1 = v1 ∧ d2 = v2 ∧ ... ∧ dm = vm

a minimal rule, where u1 ∈ Vc1 , u2 ∈ Vc2 , u3 ∈ Vc3 , · · · , un ∈ Vcn , v1 ∈ Vd1 , v2 ∈
Vd2 , · · · , vm ∈ Vdm .

Chapter 5 Random Graph Dependency 120

If x ∈ U , by C(x) → D(x) we denote the rule c1 = c1(x) ∧ c2 = c2(x) ∧
c3 = c3(x) ∧ ... ∧ cn = cn(x) → d1 = d1(x) ∧ d2 = d2(x) ∧ ... ∧ dm = dm(x),

where C(x) is the C-Class containing x, D(x) is the D-class containing x, ci(x)

is the value of x at the attribute ci, and dj(x) is the value of x at the attribute

dj.

Note that the rule C(x) → D(x) is a minimal rule, and that any minimal

rule, whose confidence and strength are not equal to zero, can be written as

C(x) → D(x).

Let MinR(C, D) be the set of all the minimal rules, r be any rule in

MinR(C, D), Con(r) be the confidence of the rule r, and Str(r) be the strength

of the rule r. Then
∑

r∈MinR(C,D)

Str(r) · Con(r), (5.3)

the weighted average of the confidence Con(r) of minimal rule r weighted by

the strength Str(r), is exactly the generalized dependency degree Γ(C, D).

This is our second form of the generalized dependency degree Γ(C, D), which

is defined in terms of minimal rules. We explain this by the following.

Let X be a (C ∪ D)-class. Then for any y, x ∈ X, y has the same values

as x at the attributes in (C ∪ D), and so y has the same values as x at the

attributes in both C and D, i.e., y and x are both in the same C-class and

in the same D-class, i.e., C(y) = C(x), D(y) = D(x), and therefore for any

x ∈ X we can denote C(x) by C(X), D(x) by D(X), and |D(x) ∩ C(x)|/|C(x)|
by |D(X) ∩ C(X)|/|C(X)|. Since |X| = |D(X) ∩ C(X)|, we have

Γ(C,D) =
1

|U |
∑

x∈U

|D(x) ∩ C(x)|
|C(x)|

=
1

|U |
∑

X∈U/(C∪D)

∑

x∈X

|D(x) ∩ C(x)|
|C(x)|

=
1

|U |
∑

X∈U/(C∪D)

∑

x∈X

|D(X) ∩ C(X)|
|C(X)|

Chapter 5 Random Graph Dependency 121

=
1

|U |
∑

X∈U/(C∪D)

|X| |D(X) ∩ C(X)|
|C(X)|

=
1

|U |
∑

X∈U/(C∪D)

|D(X) ∩ C(X)|2
|C(X)|

=
∑

X∈U/(C∪D)

1

|U |
|D(X) ∩ C(X)|2

|C(X)|

=
∑

X∈U/(C∪D)

|D(X) ∩ C(X)|
|U | · |D(X) ∩ C(X)|

|C(X)|
=

∑

X∈U/(C∪D)

Str(C(X) → D(X)) · Con(C(X) → D(X))

=
∑

r∈MinR(C,D)

Str(r) · Con(r)

The dependency degree γ(C, D) can be rewritten correspondingly as

γ(C,D) =
∑

r∈MinR(C,D)∧Con(r)=1

Str(r) · Con(r),

which means that in γ(C, D), only those minimal rules whose confidences are

equal to 1 are counted while in Γ(C, D), every minimal rule whose confidence

is not equal to zero is counted. In other words, γ(C,D) only counts determin-

istic minimal rules while Γ(C, D) counts both deterministic minimal rules and

indeterministic minimal rules.

In fact, we can include γ(C,D) and Γ(C, D) in a general form γε(C, D),

which is defined as

γε(C, D) =
∑

r∈MinR(C,D)∧Con(r)≥ε

Str(r) · Con(r).

When ε = 0, γε(C,D) becomes Γ(C, D), while when ε = 1, γε(C, D)

becomes γ(C, D). In this section, we only focus on Γ(C,D).

5.2.2 Properties of the Generalized Dependency Degree

Recall that in the introduction section, we define the P -indiscernibility relation

for a subset P of attributes, denoted by IND(P), which is an equivalence

Chapter 5 Random Graph Dependency 122

relation on U , the universe of objects. Γ(C, D) is actually defined on two

equivalence relations induced by subsets C and D of attributes. The definition

of Γ(C, D) can be easily generalized to the definition of Γ(R1, R2) for any two

equivalence relations R1 and R2 on the universe U as follows:

Γ(R1, R2) =
1

|U |
∑

x∈U

|R2(x) ∩R1(x)|
|R1(x)| , (5.4)

Γ(R1, R2) =
∑

r∈MinR(R1,R2)

Str(r) · Con(r). (5.5)

Here the set MinR(R1, R2) is the set of all the minimal rules, r is any rule

in MinR(R1, R2), and by Con(r) and Str(r) we denote the confidence and

strength of the rule r, respectively.

Definition 19 The minimal rule in MinR(R1, R2) is defined as

x ∈ G → x ∈ H, (5.6)

where G and H are any R1−class and R2−class, respectively.

Note that Γ(C,D) = Γ(IND(C), IND(D)). In fact, the rough set model is

extended to any binary relation [65]. Eq. (5.4) is a general form, in which the

equivalence relations can be understood as any binary relations. This explains

why we can say that the first form of the generalized dependency degree is a

flexible form. In this section, we only focus on the case of equivalence relations.

The definition of γ(C,D) can also be generalized to γ(R1, R2) for any equiv-

alence relations R1, R2 on the universe U . We rewrite γ(R1, R2) as follows:

γ(R1, R2) =
1

|U |
∑

x∈U ∧R1(x)⊆R2(x)

|R2(x) ∩R1(x)|
|R1(x)| , (5.7)

γ(R1, R2) =
1

|U |
∑

x∈U ∧R1(x)⊆R2(x)

Str(r) · Con(r). (5.8)

Chapter 5 Random Graph Dependency 123

Throughout the rest of this section, all the relations we use are all on the

finite universe U , and the set of all equivalence relations on U is denoted by

ER(U). By the definition of γ(R1, R2) and Γ(R1, R2) we have the following

theorem:

Theorem 20 For any equivalence relations R1 and R2, the inequality 0 ≤
γ(R1, R2) ≤ Γ(R1, R2) ≤ 1 holds.

This Theorem shows that Γ(R1, R2) can serve as an index because it is less

than or equal to one and larger than or equal to zero. Moreover, it reveals

the relation between Γ(R1, R2) and γ(R1, R2). By the next theorem, we will

show their relation further in the extreme condition that one of them is equal

to one.

Theorem 21 For any equivalence relations R1 and R2,

γ(R1, R2) = 1 ⇔ Γ(R1, R2) = 1 ⇔ γ(R1, R2) = Γ(R1, R2).

Proof: According to Eqs (5.4) and (5.7), the conclusion follows imme-

diately.

By the following theorem, we will reveal how Γ(R1, R2) changes when the

second equivalence relation R2 is changed to be larger.

Theorem 22 (Partial Order Preserving Property) For any equivalence

relations R1, R2 and R. If R2 ⊆ R, then Γ(R1, R2) ≤ Γ(R1, R).

Proof: According to Eq. (5.4), the conclusion follows immediately.

This means that the finer the equivalence relation R2 is, the less the equiv-

alence relation R2 depends on the equivalence relation R1. From the viewpoint

of classification, the more the decision attribute values group together, i.e., the

larger the equivalence class induced by the decision attribute is, the easier we

can classify the objects into the new D-class by employing attribute C.

Chapter 5 Random Graph Dependency 124

Example 23 In Table 5.1, Let C = {a}, D = {d}, Vd = {Y,N}; if we group

Y and N together such that both Y and N become a new value Z, then

D′ = {d}, Vd = {Z}, and Table 5.1 becomes Table 5.3. D induces the equiv-

alence relation IND(D), and the set of the equivalence classes is calculated

as U/D = {{e1, e4, e5}, {e2, e3, e6, e7}}; on the other hand, D′ induces the

equivalence relation IND(D′), and U/D′ = {{e1, e2, e3, e4, e5, e6, e7}}. Let

R1 = IND(C), R2 = IND(D), R = IND(D′) = U × U , then Γ(R1, R2) =

25/42 as shown in Example 16. For each x ∈ U , R(x) = U , so we have R(x)∩
R1(x) = R1(x), and therefore Γ(R1, R) =1/|U |∑x∈U |R(x) ∩R1(x)|/|R1(x)|=
1/|U |∑x∈U |R1(x)|/|R1(x)|= 1. The inequality Γ(R1, R2) ≤ Γ(R1, R) means

that we can classify objects into U/D′ more easily than into U/D.

a b c d
e1 Y Y 0 Z
e2 Y Y 1 Z
e3 Y Y 2 Z
e4 N Y 0 Z
e5 N N 1 Z
e6 N Y 2 Z
e7 Y N 1 Z

Table 5.3: Influenza data (c)

Theorem 22 leads to the following theorem, which shows the properties

of Γ(R1, R2) when R2 becomes the smallest equivalence relation (the identity

relation) or the largest equivalence relation (the universal relation).

Theorem 24 For any given equivalence relation R1.

min
R2∈ER(U)

Γ(R1, R2) = Γ(R1, IU), max
R2∈ER(U)

Γ(R1, R2) = Γ(R1, U × U) = 1,

where IU is the identity relation on U , and U × U is the universal relation on

U .

Proof: Since IU ⊆ R2 ⊆ U × U , the conclusion follows immediately by

Theorem 22.

Chapter 5 Random Graph Dependency 125

In order to obtain more information about properties of the generalized

dependency degree Γ(R1, R2), we need the following lemma.

Lemma 25 The inequality

a2
1

b1

+
a2

2

b2

+ · · ·+ a2
n

bn

≥ (a1 + a2 + · · · an)2

b1 + b2 + · · ·+ bn

(5.9)

holds for any real number ai, and real number bi > 0, i = 1, 2, . . . , n.

Proof: It is well known that for any function f(x) in which f ′′(x) > 0,

the inequality

f(µ1x1 + µ2x2 + · · ·+ µnxn) ≤ µ1f(x1) + µ2f(x2) + · · ·+ µnf(xn)

holds if µ1, µ2, . . . , µn ≥ 0, µ1 + µ2 + · · ·+ µn = 1. In this inequality, let

f(x) = x2, xi = (b1 + b2 + · · ·+ bn)ai/bi, µi = bi/(b1 + b2 + · · ·+ bn),

i = 1, 2, . . . , n. Then the desired inequality follows.

In Theorem 22, we have shown the partial order preserving property of

Γ(R1, R2) on the second item. By the next theorem, we continue to show the

anti-partial order preserving property of Γ(R1, R2) on the first item. We first

show the third form of the generalized dependency degree.

Suppose that there are m R2-classes, denoted by X1, X2, X3, . . . , Xm. Then

we analyze Γ(R1, R2) for any given R1. In order to achieve this goal, we need

to examine the set Xi. We assume there are ki different nonempty subsets of

Xi of the form R1(x)∩Xi, for i = 1, 2, ..., m. Note that for any x, y ∈ U, either

R1(x) = R1(y) or R1(x) ∩ R1(y) = φ, and ∪x∈UR1(x) = U. So we can assume

that these ki different nonempty subsets of Xi take the forms

R1(xi1) ∩ Xi, R1(xi2) ∩ Xi, . . . , R1(xiki
) ∩ Xi,

and they satisfy

(R1(xip) ∩Xi) ∩ (R1(xiq) ∩Xi) = φ,

Chapter 5 Random Graph Dependency 126

for p 6= q, p, q = 1, 2, . . . , ki; and

ki∪
p=1

(R1(xip) ∩Xi) = Xi.

Note that for y ∈ R1(xij) ∩Xi,

R1(y) ∩Xi = R1(xij) ∩Xi.

By Eq. (5.4), we have

Γ(R1, R2) =
1

|U |
m∑

i=1

∑

x∈Xi

|Xi ∩R1(x)|
|R1(x)|

=
1

|U |
m∑

i=1

ki∑

j=1

∑

x∈R1(xij)∩Xi

|Xi ∩R1(xij)|
|R1(xij)|

=
1

|U |
m∑

i=1

ki∑

j=1

|Xi ∩R1(xij)|2
|R1(xij)|

=
1

|U |2
m∑

i=1

ki∑

j=1

|U |
|R1(xij)| |Xi ∩R1(xij)|2. (5.10)

Eq. (5.10) is our third form of the generalized dependency degree.

Among our three different forms of the generalized dependency degree,

the first form of the measure (in terms of equivalence relations) is the most

important. Besides its simplicity, the first form is flexible, and it can therefore

be extended not only to an equivalence relation but also to an arbitrary relation

and a random graph. The first form (in terms of equivalence relations) and

the second form (in terms of minimal rules) share the advantage of being

easily understood, while the third form of the measure (in terms of arithmetic

operations) is computationally efficient. So these three forms of the measure

are suited to different situations. When we want to extend the measure to a

more complicated data structure (such as partial order relation, totally order

relation or random graphs) than an equivalence relation, or when we want to

find some properties of this measure, we can employ the first two forms of

the measure. When we use it in a computing situation, the third form of the

measure may be the best choice. In fact, in this section, we determine its

Chapter 5 Random Graph Dependency 127

properties using the first two forms, and then in the experiments we use the

third form.

In Algorithm 2, we give the complete description of the computation of

Γ(C, D) according to Eq. (5.10).

Algorithm 2 Input: S = (U,A, V, f): an information table; C, D: two at-
tribute sets. Output Γ(C,D) PROCEDURE Γ(C, D)

Find all the D− classes X(1), X(2), . . . , X(m) and all the C− classes
Y (1), Y (2), . . . , Y (n).
Total ← the number of cases
for j = 1 TO n do

b(j) ← the number of cases in Y (j)
end for
Γ ← 0
for i = 1 TO m do

for j = 1 TO n do
a(i, j) ← the number of cases in Y (j) ∩X(i)
Γ ← Γ+a(i, j) ∗ a(i, j)/b(j)

end for
end for
Γ ← Γ/Total
RETURN

By Theorem 22, we show the partial order preserving property of the gener-

alized dependency degree on the second item, in the following, we continue to

show the anti-partial order preserving property of the generalized dependency

degree on the first item.

Theorem 26 (Anti-Partial Order Preserving Property) For any equiv-

alence relations R1, R2, and R. If R1 ⊆ R, then Γ(R1, R2) ≥ Γ(R,R2).

Proof: Since R1 ⊆ R, each R-class is the union of some R1-classes, and

each set R(yj)∩Xi is the union of some sets of the form R(xj)∩Xi. We assume

that, in Xi, there are li different nonempty subsets of the form R(yij) ∩ Xi.

We assume without loss of generality that

Chapter 5 Random Graph Dependency 128

R(yi1) ∩Xi = (R1(xi1) ∩Xi) ∪ (R1(xi2) ∩Xi) ∪ · · · ∪ (R1(xip1) ∩Xi),

R(yi1) ⊇ R1(xi1) ∪R1(xi2) ∪ · · · ∪R1(xip1),

R(yi2) ∩Xi = (R1(xip1+1) ∩Xi) ∪ (R1(xip1+2) ∩Xi) ∪ · · · ∪ (R1(xip2) ∩Xi),

R(yi2) ⊇ R1(xip1+1) ∪R1(xip1+2) ∪ · · · ∪R1(xip2),

...

R(yili) ∩Xi = (R1(xipli−1+1) ∩Xi) ∪ (R1(xipli−1+2) ∩Xi) ∪ · · · ∪ (R1(xipli
) ∩Xi),

R(yili) ⊇ R1(xipli−1+1) ∪R1(xipli−1+2) ∪ · · · ∪R1(xipli
).

Using Eq. (5.10), we have

Γ(R1, R2) =
1

|U |2
m∑

i=1

ki∑

j=1

|U |
|R1(xij)| |Xi ∩R1(xij)|2

=
1

|U |2
m∑

i=1

ki∑

j=1

a2
ij

bij

,

where aij = |Xi ∩R1(xij)|, bij = |R1(xij)|/|U |, i = 1, 2, . . . , m; j = 1, 2, . . . , ki;

Γ(R, R2) =
1

|U |2
m∑

i=1

li∑

j=1

|U |
|R(yij)| |Xi ∩R(yij)|2

=
1

|U |2
m∑

i=1

li∑

j=1

a′ij
2

b′ij
,

where

Chapter 5 Random Graph Dependency 129

a′i1 = |Xi ∩R(yi1)| = ai1 + ai2 + · · ·+ aip1 ,

a′i2 = |Xi ∩R(yi2)| = aip1+1 + aip1+2 + · · ·+ aip2 ,

...

a′ili = |Xi ∩R(yili)| = aipli−1+1 + aipli−1+2 + · · ·+ aipli
,

b′i1 = |R(yi1)|/|U | ≥ bi1 + bi2 + · · ·+ bip1 ,

b′i2 = |R(yi2)|/|U | ≥ bip1+1 + bip1+2 + · · ·+ bip2 ,

...

b′ili = |R(yili)|/|U | ≥ bipli−1+1 + bipli−1+2 + · · ·+ bipli
,

i = 1, 2, . . . , m. By Lemma 25, we have

ki∑

j=1

a2
ij

bij

=
a2

i1

bi1

+
a2

i2

bi2

+ · · ·+ a2
ip1

bip1

+
a2

ip1+1

bip1+1

+
a2

ip1+2

bip1+2

+ · · ·+ a2
ip2

bip2

+ · · ·
+

a2
ipli−1+1

bipli−1+1

+
a2

ipli−1+2

bipli−1+2

+ · · ·+
a2

ipli

bipli

≥
(

p1∑
j=1

aij)
2

p1∑
j=1

bij

+

(
p2∑

j=p1+1
aij)

2

p1∑
j=p1+1

bij

+ · · ·+
(

pli∑
j=pli−1+1

aij)
2

pli∑
j=pli−1+1

bij

≥ a′i1
2

b′i1
+

a′i2
2

b′i2
+ · · ·+ a′ili

2

b′ili
.

Therefore Γ(R1, R2) = 1
|U |2

m∑
i=1

ki∑
j=1

a2
ij

bij
≥ 1

|U |2
m∑

i=1

li∑
j=1

a′ij
2

b′ij
= Γ(R,R2).

Chapter 5 Random Graph Dependency 130

This means that the finer the equivalence relation R1 is, the more R2 de-

pends on R1. From the viewpoint of classification, the more the condition

attribute values group together, i.e., the larger the equivalence class induced

by the decision attribute is, the more difficult it is to classify the objects into

the new D-class by employing attribute C.

Example 27 In Table 5.1, let C = {c}, Vc = {0, 1, 2}, D = {d} if we group 0,

1 and 2 together such that 0, 1, 2 become a new value 3, then C ′ = {c},Vc =

{3}, and Table 5.1 becomes Table 5.4.

In both Table 5.1 and Table 5.4, D induces the equivalence relation IND(D),

and the set of the equivalence classes is U/D={{e1, e4, e5},{e2, e3, e6, e7}}.
In Table 5.1, C induces the equivalence relation IND(C), and the set of the

corresponding equivalence classes is U/C = {{e1, e4}, {e2, e5, e7}, {e3, e6}}.
In Table 5.4, C ′ induces the equivalence relation IND(C ′), and the set of

the corresponding equivalence classes is U/C ′ = {{e1, e2, e3, e4, e5, e5, e6, e7}}.
Let R1 = IND(C), R2 = IND(D), R = IND(C ′) = U × U .

Γ(R1, R2) = 1/|U |∑x∈U |R2(x) ∩R1(x)|/|R1(x)| = 1/7(2/2 + 2/3 + 2/2 +

2/2 + 1/3 + 2/2 + 2/3) = 17/21.

For each x ∈ U , R(x) = U , so we have R(x)∩R2(x) = R2(x), and therefore

Γ(R, R2) = 1/|U |∑x∈U |R2(x) ∩R(x)|/|R(x)| = 1/|U |∑x∈U |R2(x)|/|R(x)| =
1/7(3/7 + 4/7 + 4/7 + 3/7 + 3/7 + 4/7 + 4/7) = 25/49.

The inequality Γ(R1, R2) > Γ(R,R2) means that it is harder for us to

classify objects into D-class by employing the attribute C ′ than employing the

attribute C.

Because IND(C) = ∩c∈C IND({c}), when we drop some attributes from

C such that a new attribute set C ′ is formed, we have IND(C ′) ⊇ IND(C).

So by Theorem 26, Γ(C ′, D) ≤ Γ(C, D). This means that generally, the less

the condition attribute set contains attributes, the harder we can classify the

objects into D-class by employing the condition attribute set.

Chapter 5 Random Graph Dependency 131

a b c d
e1 Y Y 3 N
e2 Y Y 3 Y
e3 Y Y 3 Y
e4 N Y 3 N
e5 N N 3 N
e6 N Y 3 Y
e7 Y N 3 Y

Table 5.4: Influenza data (d)

The next theorem shows the extreme cases when R1 becomes the smallest

equivalence relation (the identity relation) or the largest equivalence relation

(the universal relation).

Theorem 28 For any given equivalence relation R2, we have

max
R1∈ER(U)

Γ(R1, R2) = Γ(IU , R2) = 1, min
R1∈ER(U)

Γ(R1, R2) = Γ(U × U,R2).

Proof: This follows immediately from Theorem 26.

In the following theorem, we show the extreme cases when both R1 and R2

vary.

Theorem 29

min
R1,R2∈ER(U)

Γ(R1, R2) =
1

|U | , max
R1,R2∈ER(U)

Γ(R1, R2) = 1.

Proof: By Theorem 22 and Theorem 26, we only need to verify that

Γ(U × U, IU) = 1/|U |. Let R1 = U × U,R2 = IU . According to Eq. (5.4), we

have

Γ(U × U, IU) =
1

|U |
∑

x∈U

|R2(x) ∩R1(x)|
|R1(x)|

=
1

|U |
∑

x∈U

|{x} ∩ U |
|U |

=
1

|U |
∑

x∈U

1

|U | =
1

|U | .

Then the desired conclusion follows.

Chapter 5 Random Graph Dependency 132

This means that for any two equivalence relations R1 and R2, R2 depends

on R1 to a degree of at least 1/|U |, and that we can infer some information

about R2 even when R1 contains no useful information about R2. This arises

from the fact that R2 contains useful information about itself. However, in the

extreme case when R1 is the universal relation, R2 is the identity relation (the

identity relation contains little information about itself), and the number of

objects tends to infinity, the degree that R2 depends on R1 tends to zero.

5.2.3 Extension of the Generalized Dependency Degree

Γ to Incomplete Information Systems

In this section, we expand the definition of the generalized dependency degree

to incomplete information systems by reinterpreting the meaning of the sup-

port of a formula and the cardinality of the support in incomplete information

systems.

If an information system has some missing values, we call this information

system an incomplete information system. For example, there are three missing

values in Table 5.5, indicated by “*”.

a b c d
e1 Y Y Normal(0) N
e2 Y * High(1) Y
e3 Y Y * Y
e4 N * Normal(0) N
e5 N N High(1) N
e6 N Y Very High(2) Y
e7 Y N High(1) Y

Table 5.5: Influenza data (e)

To extend the definition of generalized dependency degree to the case of

incomplete information systems, we handle missing values by replacing them

with their probabilistic distribution at first, then extending the definition of

confidence and strength of a rule to incomplete information systems.

Chapter 5 Random Graph Dependency 133

How to Handle Missing Values in Incomplete Information Systems

Here we introduce an approximate approach by replacing each missing value

by its possible distributions as shown in Table 5.6:

a b c d
e1 Y Y Normal(0) N
e2 Y {P1/Y, P2/N} High(1) Y
e3 Y Y {S1/0, S2/1, S3/2} Y
e4 N {Q1/Y,Q2/N} Normal(0) N
e5 N N High(1) N
e6 N Y Very High(2) Y
e7 Y N High(1) Y

Table 5.6: Influenza data (f)

In the e2-row, by {P1/Y, P2/N} we mean that e2 takes the value Y with

a probability P1, and N with a probability P2. In the e4-row, the expression

{Q1/Y,Q2/N} has a similar meaning. In e3-row, {S1/0, S2/1, S3/2} means

that e3 takes the value 0, 1, and 2 with probability S1, S2, and S3 respectively.

In order to reduce the complexity of computing, we introduce an ap-

proximate method for determining the values of all the unknown parameters

P1, P2, Q1, Q2, S1, S2, S3. We let P1, P2, Q1, Q2 take the values of the distribu-

tion of Y and N in column b, i.e., P1 = Q1 = 3/5, P2 = Q2 = 2/5; and we

let S1, S2, S3 take the values of the distribution of 0, 1 and 2 in column c, i.e.,

S1 = 2/6, S2 = 3/6, S3 = 1/6.

Definition of Γ in Incomplete Information Systems

Although we can also define some kinds of equivalence relations induced by the

attributes in an incomplete information table, here we introduce a direct way

to calculate the generalized dependency degree Γ in an incomplete information

table. That is, we choose Eq. (5.3) as our definition of the generalized depen-

dency degree Γ in an incomplete information table. To carry out this idea,

we have to define the confidence and the strength of a rule in an incomplete

Chapter 5 Random Graph Dependency 134

information table. We show our definition using the example of the Influenza

Data in Table 5.6.

Before going forward, we need to re-interpret the meaning of supp(Φ) and

the meaning of |supp(Φ)| where the set supp(Φ) may be a “fractional” set in

an incomplete information table. Here, we interpret supp(Φ) as a fuzzy set.

If x ∈ U satisfies Φ with a probability of p, then we consider that the object

x belongs to the set supp(Φ) with a membership of p, and we write the element

x in supp(Φ) as p/x. For example, in Table 5.6, let Φ be the formula b = Y .

e1 satisfies the formula b = Y with a probability of 1, the probability of Y in

e1-row, b-column, while e2 satisfies the formula b = Y with a probability of

P1 = 3/5, the probability of Y in e2-row, b-column. We have

supp(Φ) = {1/e1, 0.6/e2, 1/e3, 0.6/e4, 0/e5, 1/e6, 0/e7}.

We can delete all the elements whose probability are equal to zero, i.e., we

can write supp(Φ) as supp(Φ) = {1/e1, 0.6/e2, 1/e3, 0.6/e4, 1/e6}.
Then we define the fuzzy set supp(Φ) inductively as follows: If x belongs

to supp(Φ) with a membership of µsupp(Φ)(x) = p, and x belongs to supp(Ψ)

with a membership of µsupp(Ψ)(x) = q, then x belongs to supp(Φ ∧ Ψ) with a

membership of µsupp(Φ∧Ψ)(x) = pq, x belongs to supp(∼ Φ) with a membership

of µsupp(∼Φ)(x) = 1 − p, and x belongs to supp(Φ ∨ Ψ) with a membership of

µsupp(Φ∨Φ)(x) = 1− (1− p)(1− q). Formally supp(Φ) is defined inductively in

terms of algebraic operations of a fuzzy set as follows:

F1 : supp(a = v) = {µ(x)/x|x ∈ U, P (a(x) = v) = µ(x)}
for a ∈ B and v ∈ Va

F2 : supp(Φ ∨Ψ) = supp(Φ) + supp(Ψ)

F3 : supp(Φ ∧Ψ) = supp(Φ) · supp(Ψ)

F4 : supp(∼ Φ) =∼ supp(Φ)

Chapter 5 Random Graph Dependency 135

where supp(Φ) + supp(Ψ) is the algebraic sum of the fuzzy sets supp(Φ) and

supp(Ψ), supp(Φ) · supp(Ψ) is the algebraic product of the fuzzy sets supp(Φ),

and supp(Ψ), and ∼ supp(Φ) is the complement of the fuzzy sets supp(Φ)

[113].

The cardinality |supp(Φ)| can be defined in term of the fuzzy set, i.e.,

|supp(Φ)| = ∑

x∈U

µsupp(Φ)(x). (5.11)

Next, as an example, we will calculate the generalized dependency degree

between C = {a, b, c} and D = {d} in Table 5.6 by Eq. (5.3). First we need to

calculate the confidence and strength of each minimal decision rule using the

following definitions:

Con(Φ → Ψ) = |supp(Φ ∧Ψ)|/|supp(Φ)| (5.12)

Str(Φ → Ψ) = |supp(Φ ∧Ψ)|/|U | (5.13)

Example 30 We show in the following calculation process the confidence and

strength of one minimal rule; the results of all the other minimal rules are listed

in Table 5.7. Since supp(a = Y ∧b = Y ∧c = 0∧d = Y) = {S1/e3}, |{S1/e3}| =
S1 = 2/6, supp(a = Y ∧ b = Y ∧ c = 0) = {1/e1, S1/e3}, |{1/e1, S1/e3}| =

1+S1 = 1+2/6 = 4/3, we have the minimal rule a = Y ∧b = Y ∧c = 0 → d = Y

with confidence=1/4, strength=1/21.

So we have Γ(C,D) =
∑

r∈MinR(C,D)
Str(r) ·Con(r) = 1/21 · 1/4+1/7 · 3/4+

11/70 · 1 + 1/42 · 1 + 1/5 · 1 + 3/35 · 1 + 1/7 · 1 + 2/35 · 1 + 1/7 · 1 = 13/14.

By the next theorem, we show one more property of the generalized depen-

dency.

Theorem 31 In an incomplete information system, we have 0 ≤ Γ(C, D) ≤ 1.

Chapter 5 Random Graph Dependency 136

a b c d Con Str a b c d Con Str
Y Y 0 Y 1/4 1/21 N Y 0 Y 0 0
Y Y 0 N 3/4 1/7 N Y 0 N 1 3/35
Y Y 1 Y 1 11/70 N Y 1 Y 0 0
Y Y 1 N 0 0 N Y 1 N 0 0
Y Y 2 Y 1 1/42 N Y 2 Y 1 1/7
Y Y 2 N 0 0 N Y 2 N 0 0
Y N 0 Y 0 0 N N 0 Y 0 0
Y N 0 N 0 0 N N 0 N 1 2/35
Y N 1 Y 1 1/5 N N 1 Y 0 0
Y N 1 N 0 0 N N 1 N 1 1/7
Y N 2 Y 0 0 N N 2 Y 0 0
Y N 2 N 0 0 N N 2 N 0 0

Table 5.7: Results of all minimal rules

Proof: Because every object contributes 1/|U | to
∑

r∈MinR(C,D) Str(r)

and there are |U | objects in total, we have
∑

r∈MinR(C,D) Str(r) = 1. It is

obvious that Con(r) ≤ 1 for any rule r, so we have
∑

r∈MinR(C,D) Str(r) ·
Con(r) ≤ ∑

r∈MinR(C,D) Str(r) = 1

This property means that Γ(C, D) still serves as an index in an incomplete

information system.

Note that our method enables us to handle an information table whose

values are probabilistic distributions. Moreover, an information table without

missing values can be understood as a special case of an incomplete information

table.

5.2.4 Discussion: Comparison with the Conditional En-

tropy

The generalized dependency degree is in fact a measure for one-way rule, which

is different from the eight information measures for one-way rule summarized

in [102]. Among these eight information measures, the conditional entropy is a

well-known measure, and we will make a comparison between the generalized

dependency degree and the conditional entropy in this section.

The generalized dependency degree and the conditional entropy are similar

Chapter 5 Random Graph Dependency 137

in two different aspects:

1. Both the generalized dependency degree and the conditional entropy

measure the degree to which D depends on C.

2. The generalized dependency degree is computed as a type of weighted

average of the confidence of decision rules, and conditional entropy averages

over the logarithm of the confidence of decision rules. The same weights are

employed in both the generalized dependency degree and the conditional en-

tropy.

However, the generalized dependency degree and the conditional entropy

are different in three aspects:

1. The value of the conditional entropy is between zero and infinity while

the value of the generalized dependency degree is between zero and one, and

from this point of view the generalized dependency degree can serve directly

as an index.

2. The first form of the conditional entropy is defined in terms of equiva-

lence relations, and so it can be extended to binary relations.

3. To compute the generalized dependency degree by the third form, we

only need to carry out simple arithmetic operations, while to compute the

conditional entropy, we have to compute the logarithm of the frequency, a

time-consuming operation.

The idea for Γ is based on the idea of rough set, we have compared Γ with

γ in Eq. (5.1), Eq. (5.2), Eq. (5.4), Eq. (5.7), Eq. (5.5)), and Eq. (5.8). In

the next section, on one hand, we will compare Γ with the conditional entropy

on their applications in the decision tree classifier, in which the attribute is

selected one by one according to its conditional entropy or Γ value on the

current node. On the other hand, we will conduct some experiments to make

an empirical comparison between Γ and γ on their applications in attribute

selection, in which attributes are selected as a subset according to its Γ value

or its γ value.

Chapter 5 Random Graph Dependency 138

5.2.5 Experiments

In the previous sections, we have given a detailed explanation of the generalized

dependency degree by presenting its various forms and developing its various

properties. In this section, we will show its significance in decision trees and

attribute selection.

There are several reasons to choose C4.5R8 decision tree classifier for our

comparison. First and the most important, C4.5R8 uses the conditional en-

tropy that we want to compare with Γ while neural networks do not use the

conditional entropy. Second, C4.5R8 can handle continuous attributes and

missing values, which makes it easy to compare Γ with the conditional entropy

in various cases–handling discrete attribute, handling continuous attributes

and handling missing values. Third, compared to other classifiers, a decision

tree can be understood easily. Fourth, it often takes large amounts of time

to train a neural network, while C4.5R8 decision tree classifier is efficient in

training time [63] and thus suitable for large training sets. Lastly, as compa-

rable with neural networks, decision trees already display good classification

accuracy [41].

Comparison with the Conditional Entropy in Decision Trees

We have replaced the conditional entropy used in the C4.5 algorithm with

the generalized dependency degree such that a new C4.5 algorithm is formed.

C4.5R8 employs gain criterion and gain ratio criterion to select the most infor-

mative attribute at each subset of training cases. In the case of missing values,

the information gain for attribute a is computed by the formula G(D, {a}) =

P (a) ∗ (H(D)−H(D|{a})), if a is a discrete attribute,

P (a) ∗ (H(D)−H(D|{a})− log2(N − 1)/|U |), if a is continuous,

where p(a) is the probability that a is known.

Chapter 5 Random Graph Dependency 139

We replace the information gain in the original C4.5R8 algorithm with

G(D, {a}) = Γ({a}, D)− Γ(D)

in our new C4.5 algorithm, where Γ(D) = Γ(U × U, IND(D)). Note that

by Theorem 28, we have G(D, {a}) ≥ 0. Similar to the conditional entropy,

if a is a continuous attribute, Γ({a}, D) is the maximum value of Γ({at}, D)

among all possible tests such as a ≤ t for a potential threshold t, and the new

attribute at is defined as at=true if a ≤ t, and at=false, otherwise. In the case

of missing values, we use our definition of Γ(C, D) in incomplete information

systems introduced in Section 5.2.3.

One further change we make from the original C4.5R8 is that we stop the

procedure of building the tree earlier by applying a new criteria: in the current

node, if for every attribute, the number of the gain cases is less than a given

value 0.75, then the splitting procedure stops. The number of the gain cases

is calculated by multiplying the number of cases in the current node by the

dependency gain.

Both the original C4.5R8 and the new C4.5 are applied to all of the same

twenty datasets 1 from the UCI machine learning repository as Quinlan uses in

[83]. Table 5.8 is a description of the datasets we use. The first column shows

the names of the datasets, the second column gives the numbers of cases in

each dataset, the third column gives the number of classes, the fourth column

gives the number of continuous attributes, the fifth column gives the number

of discrete attributes, and the final column describes whether there are missing

values in each dataset.

The experiments are conducted on a workstation whose hardware model

is Nix Dual Intel Xeon 2.2GHz, with 1GB of RAM, and whose OS is Linux

Kernel 2.4.18-27smp (RedHat7.3).

1Note that the datasets we use may have slight differences from those Quinlan uses
(Quinlan, private correspondence). For example, the glass dataset we use has a different
order of the cases from Quinlan’s.

Chapter 5 Random Graph Dependency 140

Dataset Cases Classes Cont Discr Missing

Anneal 898 6 6 32 Y
Auto 205 6 15 10 Y
Breast-w 699 2 9 0 Y
Colic 368 2 7 15 Y
Credit-a 690 2 6 9 Y
Credit-g 1000 2 7 13 N
Diabetes 768 2 8 0 N
Glass 214 6 9 0 N
Heart-c 303 2 6 7 Y
Heart-h 294 2 8 5 Y
Hepatitis 155 2 6 13 Y
Allhyper 3772 5 7 22 Y
Iris 150 3 4 0 N
Labor 57 2 8 8 Y
Letter 20000 26 16 0 N
Segment 2310 7 19 0 N
Sick 3772 2 7 22 Y
Sonar 208 2 60 0 N
Vehicle 846 4 18 0 N
Wave 300 3 21 0 N

Table 5.8: Description of the datasets

Both algorithms use ten-fold cross-validations with each task. The figures

shown in Table 5.9 are the mean error rate of the ten-fold cross-validations of

both the original C4.5R8 and the new C4.5.

The second and fourth columns in Table 5.9 are the mean error rates (er-

ror rate = 100% - classification rate) before and after pruning respectively

obtained by running with the option that uses the gain criteria (not the gain

ratio) and the grouping method in the original C4.5R8 system. The third and

fifth columns are the results before and after pruning respectively obtained by

running with the same option in the new C4.5 system. This means that when

the new gain criteria based on the generalized dependency degree is used, the

grouping method is also used. In each row of the second and third columns, the

smaller result is shown in bold, and so are the fourth and fifth columns. The

final row shows the sum of results of the experiments on the twenty datasets.

The figures shown in Table 5.10 describe the average run time of the ten-

fold cross-validations. The time unit in Table 5.10 is 0.01 second. The second

Chapter 5 Random Graph Dependency 141

Unpruned Pruned
Dataset O (%) N (%) O (%) N (%)

Anneal 3.9 6.1 4.6 7.9
Auto 20.5 22.0 22.0 22.5
Breast-w 5.7 4.2 4.3 4.5
Colic 19.8 16.3 16.0 15.4
Credit-a 19.7 15.2 17.1 15.6
Credit-g 30.5 27.2 28.0 27.0
Diabetes 24.7 26.0 24.5 25.6
Glass 31.2 31.7 30.3 30.3
Heart-c 22.4 23.4 21.4 23.1
Heart-h 24.2 20.7 22.8 21.1
Hepatitis 20.0 19.3 19.9 19.3
Allhyper 1.4 1.1 1.4 1.2
Iris 6.0 4.0 6.0 4.0
Labor 24.7 15.7 26.3 19.3
Letter 11.9 12.5 11.9 12.4
Segment 3.2 3.5 3.2 3.7
Sick 1.2 1.0 1.1 1.0
Sonar 20.7 27.9 20.7 27.9
Vehicle 27.8 30.1 28.0 30.4
Wave 28.4 26.0 28.4 26.3
Average 17.40 16.70 16.90 16.93

Table 5.9: Mean error rates of the original C4.5 and the new C4.5

column and the fifth column in Table 5.10 show the average run time of the

original procedure C4.5R8 before pruning and after pruning in the ten-fold

cross-validations. The third and the fourth columns show the average run

time of the new C4.5 without the pruning procedure and the reduced time

rate relative to the second column, while the sixth and seventh columns give

the corresponding results of the new C4.5 with the pruning procedure. Note

that the run time does not include the run time for data preparation for the

cross-validation, or the run time for final result reporting, in both C4.5 systems.

The figures shown in Table 5.11 describe the average number of leaves of

the decision trees of the ten-fold cross-validations. The second and the fourth

columns in Table 5.11 show the results of the original procedure C4.5R8 before

pruning and after pruning. The third and the fifth columns show the results

of the new C4.5 before pruning and after pruning. In each row of the second

and third columns, the smaller result is shown in bold, and so do the fourth

and fifth columns. The experiments show that the generalized dependency

Chapter 5 Random Graph Dependency 142

Unpruned Pruned
Dataset O N Reduced O N Reduced

Anneal 6.2 4.6 25.8 6.8 5.1 25.0
Auto 9.6 2.6 72.9 9.7 2.6 73.2
Breast-w 1.5 1.0 33.3 1.6 1.0 37.5
Colic 3.9 1.5 61.5 4.1 1.5 63.4
Credit-a 7 2.4 65.7 8.3 2.5 69.9
Credit-g 9.5 4.7 50.5 11.5 5.2 54.8
Diabetes 4.2 2.4 42.9 4.6 2.6 43.5
Glass 1.4 0.9 35.7 2.3 1.5 34.8
Heart-c 1.7 0.7 58.8 2.0 0.9 55.0
Heart-h 1.6 0.7 56.3 1.9 0.7 63.2
Hepatitis 0.8 0.6 25 0.9 0.7 22.2
Allhyper 40 18.5 53.8 45.0 18.5 58.9
Iris 0.25 0.2 20.0 0.5 0.4 20.0
Labor 0.2 0.1 50.0 0.4 0.4 0.0
Letter 7.4 5.5 25.1 8.15 5.9 27.1
Segment 41.1 24.8 39.7 46.7 25.5 45.4
Sick 35.6 17.1 52 38.1 20.8 45.4
Sonar 11.2 5.0 55.4 12.9 5.1 60.5
Vehicle 8.4 5.8 31 10.8 6.3 41.7
Wave 5.7 2.0 64.9 6.8 2.1 69.1

Average 205.57 190.64 46.02 169.27 170.60 45.53

Table 5.10: Average run time of the original C4.5R8 and the new C4.5

degree Γ(C, D) is a useful measure. We compare three aspects of the new C4.5

algorithm using the generalized dependency degree with the original C4.5R8

algorithm using the conditional entropy:

1. Speed: To compute Γ(C,D), we only need to carry out arithmetic oper-

ations, while the computation of the commonly used conditional entropy needs

to compute the logarithm of the frequency, a time-consuming operation. Fur-

thermore, the building tree procedure in the new C4.5 algorithm stops earlier

in most cases. This explains why the new C4.5 procedure with (or without)

the pruning procedure runs much faster than the original C4.5R8 procedure

with (or without) the pruning procedure. In fact, the new C4.5 procedure runs

in about half of the time required by the original C4.5R8 procedure, and the

new C4.5 procedure without pruning procedure can run a little faster still.

2. Prediction accuracy: Before pruning, the new C4.5 outperforms the

original C4.5R8 in prediction accuracy (the new C4.5 wins 11 cases while

C4.5R8 wins 9 cases). After pruning, the new C4.5 is comparable with the

original C4.5R8 (the new C4.5 wins 10 cases while C4.5R8 wins 9 cases). The

Chapter 5 Random Graph Dependency 143

Unpruned Pruned
Dataset O (%) N (%) O (%) N (%)

Anneal 139.8 144 93.4 83.0
Auto 55.1 58.1 45.6 47.9
Breast-w 41.2 17.4 22.2 15.8
Colic 80.5 30.5 15.8 19.1
Credit-a 137.4 56.2 59.7 51.5
Credit-g 333.6 151.1 190.4 139.4
Diabetes 49.4 90.2 43.4 80.8
Glass 49.0 55.8 46.2 48
Heart-c 69.6 33.0 36.0 26.5
Heart-h 78.2 25.8 15.7 19.0
Hepatitis 29.4 16.8 13.8 15.6
Allhyper 63.7 46.8 34.0 28.2
Iris 8.6 8.8 8.0 8.4
Labor 14.1 7.8 7.8 5.3
Letter 2581.8 2694 2412.4 2458.4
Segment 86.4 97.2 81.8 94.8
Sick 66.1 37.0 48.8 37.0
Sonar 27.2 25.0 27.2 25.0
Vehicle 151.0 171.0 134.8 163.2
Wave 49.2 46.2 48.4 45.0

Average 205.57 190.64 169.27 170.60

Table 5.11: Average number of leaves of the original C4.5R8 and the new C4.5

new C4.5 algorithm seems more successful in the dataset labor, in which the

algorithm achieves a 15.7% prediction error rate, while the original algorithm

has a 24.7% error rate.

The original C4.5R8 algorithm performs best using the pruning procedure,

while the new C4.5 algorithm performs best without using the pruning proce-

dure.

The difference between the average 16.90% of the results of experiments

on 20 datasets in the third column and the average 16.93% in the fourth

column is 0.03%. This means that when we compare their best, the new

C4.5 algorithm is comparable with the original C4.5R8 algorithm in prediction

accuracy. Note that the prediction accuracy of the original C4.5R8 algorithm

is not statistically significantly different from POL, whose prediction accuracy

is the best among a group of thirty-three classification algorithms [63].

3. Size of tree: Before pruning, in 12 datasets, there are less leaves in

trees created by the new C4.5 than those created by the original C4.5R8.

After pruning, in 10 datasets, these are less leaves in trees created by the new

Chapter 5 Random Graph Dependency 144

C4.5 than those created by the original C4.5R8. This means the new C4.5 is

better than the original C4.5R8 in size of tree when we do not use the pruning

procedure, while it is comparable with the original C4.5R8 algorithm in terms

of the tree size when we use the pruning procedure.

Comparison with γ In Attribute Selection

We compare Γ with γ in attribute section on the zoo dataset, which is obtained

from the UCI machine learning repository. The zoo dataset has 101 cases,

16 conditional attributes, and one decision attributes. All the attributes are

discrete.

The comparison strategy is described as follows. Let D be the set of the

decision attribute, for a given number k, we select set C of conditional at-

tributes such Γ(C, D) (γ(C, D)) is maximal among all possible subsets with

k conditional attributes. Then we apply the selected subset by Γ(C, D) and

that by γ(C,D) to the C4.5R8 algorithm. The better the subset of conditional

attributes is selected, the better the accuracy should be.

The results are shown in the Table 5.12. The first column is the number

of selected attributes. The second column and the sixth column are the set of

conditional attribute selected by γ and Γ respectively. The third column and

the seventh column are the γ value and the Γ value respectively corresponding

the selected attributes.

The fourth column and the eighth column are the mean error rates of the

ten-fold cross-validations on the selected attributes by γ and Γ respectively, and

the results are obtained by the C4.5R8 with default option; the fifth column

and the ninth column are obtained by the C4.5R8 with the option that both

the gain criteria and the grouping method are used.

Note that when the number of selected attributes is greater than five, there

will be no difference for attribute selection between Γ and γ, and we omit

the cases when 5 < k < 16. This can be explained by Theorem 21 and

Chapter 5 Random Graph Dependency 145

Theorem 26. By Theorem 26, when C ⊆ C ′, Γ(C, D) ≤ Γ(C ′, D) because

of IND(C) ⊇ IND(C ′), so the maximum Γ(C,D) is equal to one when C

ranges over all the subsets with k (k > 5) conditional attributes since the

maximum Γ(C, D) is equal to one when C ranges over all the subsets with

k = 5 conditional attributes; by Theorem 21, both γ and Γ is equal to one if

one of them is equal to one, therefore, the maximal value of Γ and the maximal

value of γ is equal when k > 5. In the seventh row, T denotes the whole

conditional attributes, i.e., T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.
The experimental results show that both Γ and γ are efficient in attribute

selection on dataset zoo. By Γ and γ, we can find the same best attribute

set {4, 6, 8, 12, 13}, on which the C4.5R8 performs better in accuracy than

employing all the conditional attributes. However, when the number of selected

attributes is less than five, the C4.5R8 performs better in accuracy on the

attributes selected by Γ than on those selected by γ.

k C1 by γ γ(C1, D) O O-g-s C2 by Γ Γ(C2, D) O O-g-s

1 {4} 0.41 39.5 39.5 {13} 0.60 26.4 26.4
2 {1,13} 0.65 15.7 14.7 {4,13} 0.83 12.7 12.7
3 {3,12,13} 0.76 13.7 11.9 {4,6,13} 0.92 12.7 10.8
4 {3,10,13,14} 0.96 17.7 10.9 {4,6,8,13} 0.98 9.8 7.9
5 {4,6,8,12,13} 1.0 5.9 5.9 {4,6,8,12,13} 1.0 5.9 5.9
16 T 1.0 6.6 6.9 T 1.0 6.6 6.9

Table 5.12: Attribute selection by γ and Γ on the dataset ‘zoo’

5.2.6 Summary

We give three different forms of the generalized dependency degree in terms of

equivalence relations, minimal rule, and arithmetic operation, respectively.

The generalized dependency degree Γ has some properties, such as the Par-

tial Order Preserving Property and the Anti-Partial Order Preserving Prop-

erty. Besides, its value is between zero and one. Therefore, it can serve as

Chapter 5 Random Graph Dependency 146

an index to measure how much decision attributes depend on conditional at-

tributes. The experimental study shows that the generalized dependency de-

gree is an informative measure in decision trees and attribute selection.

5.3 A Novel Random Graph Dependency Mea-

sure H(RG2|RG1)

In the C4.5 decision tree algorithm, the conditional entropy is employed to

determine the best attribute according to the information gain criteria or the

gain ratio criteria. From the random graph perspective, the traditional method

actually models the data points as a complete graph with a unit similarity of

all ones; as a result, the distance information among these points is lost. To

model the data points more accurately, we propose a random graph dependency

measure H(RG2|RG1) based on distance information between two random

graphs RG1 and RG2, which degrades to the traditional measure when RG1

and RG2 degrade to equivalence relations.

The rest of this section is organized as follows. In Section 5.3.1, we give the

definition of the random graph dependency measure, and investigate its basic

properties. In Section 5.3.2, we discuss continuous attributes and the random

graph generation method, and provide the algorithm to find the best cut and

the corresponding information gain. In Section 5.3.3, we conduct experiments

to support the random graph dependency measure. In Section 5.3.4, we draw a

conclusion and suggest future work on the random graph dependency measure

and its application.

5.3.1 Random Graph Dependency Measure

The definition of the random graph has been given in Eq. (1). In this section,

we will first show some examples, give some other definitions related to the

Chapter 5 Random Graph Dependency 147

random graph dependency measure, and investigate on its basic properties.

Example 32 In Table 5.2, U = {v1, v2, v3, v4, v5, v6, v7, v8}, and there are four

random graphs on U : one (P 1) is generated before any feature is employed,

two (P 2, P 3) of them are generated by two attributes x1 and x2, and one (P 4)

is generated by the class y feature.

Before any feature is employed, we assume that there is no difference be-

tween any pair of points, and thus the we define p1
ij = 1 for any pair of vi and

vj. The corresponding random graph is

P 1 =

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

,

which is called the universal relation on U , and is denoted by U × U . This

random graph is shown in Figure 5.4 (a).

For x1, we can generate a random graph P 2 shown in Eq. (5.22), which will

be discussed in Section 5.3.2.

For x2, if we define pij = 1 if vi and vj have same values of x1, and pij = 0

Chapter 5 Random Graph Dependency 148

(a) (b)
P 3 by attribute x2 P 4 by class attribute y

Figure 5.5: Two equivalence relations generated by x2 and y respectively, which
can be understood as special random graphs.

otherwise. Then we have P 3. For y, similarly we have P 4.

P 3 =

1 0 1 1 0 0 1 0

0 1 0 0 1 1 0 1

1 0 1 1 0 0 1 0

1 0 1 1 0 0 1 0

0 1 0 0 1 1 0 1

0 1 0 0 1 1 0 1

1 0 1 1 0 0 1 0

0 1 0 0 1 1 0 1

, P 4 =

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

.

Random graphs P 3 and P 4 are shown in Figure 5.5 (a) and (b).

We also need the concept of the random neighbor set RG(vi) of a node vi

and that of the intersection RG1(vi) ∩ RG2(vi) of two random neighbor sets

RG1(vi) and RG2(vi). The random neighbor set RG(vi) of vi is defined as

RG(vi) = {(vk, pik)|vk ∈ U},

where pik is the probability of vk being a neighbor of vi. In the setting of a

random graph, each node vk is linked to node vi with a probability pik, so vk is

the neighbor of vi with a probability pik. If all the edges in the graph exist in a

deterministic way, then the value of pij is equal to zero or one; in such a case,

Chapter 5 Random Graph Dependency 149

RG(vi) is the set of the all neighbors of node vi. We denote the cardinality of

RG(vi) by

|RG(vi)| =
∑

k

pik.

Example 33 For random graphs P 1, P 2, P 3 and P 4, we have

P 1(v1) = {(v1, 1), (v2, 1), (v3, 1), (v4, 1), (v5, 1), (v6, 1), (v7, 1), (v8, 1)},
|P 1(v1)| = 8,

P 2(v1) = {(v1, 1), (v2, 0.65), (v3, 0.29), (v4, 0.28), (v5, 0.18), (v6, 0.17), (v7, 0.08),

(v8, 0.05)},
|P 2(v1)| = 1 + 0.65 + 0.29 + 0.28 + 0.18 + 0.17 + 0.08 + 0.05 = 2.7,

P 3(v1) = {(v1, 1), (v2, 0), (v3, 1), (v4, 1), (v5, 0), (v6, 0), (v7, 1), (v8, 0)},
|P 3(v1)| = 4,

P 4(v1) = {(v1, 1), (v2, 1), (v3, 0), (v4, 0), (v5, 1), (v6, 1), (v7, 0), (v8, 0)},
|P 4(v1)| = 4.

The intersection of two neighbor sets RG1(vi) and RG2(vi) is defined as

RG1(vi) ∩RG2(vi) = {(vk, aikbik)|vk ∈ U},

where RG1(vi) = {(vk, aik)|vk ∈ U} is induced by a random graph RG1 =

(aij), and RG2(vi) = {(vk, bik)|vk ∈ U} is induced by another random graph

RG2 = (bij). As a result, we have

|RG1(vi) ∩RG2(vi)| =
∑

k

aikbik.

Hidden in the definition, there is a local independent assumption: probability

aik is independent to bik. With such a local independent assumption, we deduce

that vk is the common neighbor of vi in both RG1 and RG2 with a probability

aikbik since vk is the neighbor of vi in RG1 with a probability aik, and vk is the

neighbor of vi in RG2 with a probability bik.

Example 34 For random graphs P 2 and P 4, we have P 2(v1) ∩ P 4(v1) =

{(v1, 1),(v2, 0.65), (v3, 0), (v4, 0), (v5, 0.18), (v6, 0.17), (v7, 0), (v8, 0)}, and thus

|P 2(v1) ∩ P 4(v1)| = 1 + 0.65 + 0.18 + 0.17 = 2.

Chapter 5 Random Graph Dependency 150

We are ready to define the random graph dependency measure H(RG2|RG1).

Definition 35 Let U = {v1, v2, . . . , vn}. RG1 = (aij) and RG2 = (bij) are

two random graphs defined on U . The random graph dependency measure

H(RG2|RG1) is defined as

H(RG2|RG1) = 1
|U |

∑
x∈U

log2
|RG2(x)∩RG1(x)|

|RG1(x)| (5.14)

= 1
n

n∑
i=1

log2
|RG2(vi)∩RG1(vi)|

|RG1(vi)|

= 1
n

n∑
i=1

log2

∑
k

aikbik∑
k

aik
,

where RG2(x) and RG1(x) denote the random neighbors of x in RG2 and RG1

respectively.

In Eq. (5.14), |RG2(vi)∩RG1(vi)|
|RG1(vi)| = 1, if and only if RG2(vi) ∩ RG1(vi) =

RG1(vi), if and only if
∑

k aikbik =
∑

k aik, and if and only if bik = 1 if aik 6= 0.

This means that we can predict exactly the neighbor vk of vi in RG2 from the

nonzero neighbors of vi in RG1. On the other hand,
∑

k aikbik = 0 if and only

bik = 0 if aik 6= 0. This means that we cannot predict any thing about the

nonzero neighbors of vi in RG2 from the nonzero neighbors of vi in RG1. In

most cases, 0 < |RG2(vi)∩RG1(vi)|
|RG1(vi)| < 1; this term can be intuitively understood

as the extent to which we can predict the neighbors of vi in RG2 from the

neighbors of vi in RG1. Based on such an intuition, we average |RG2(vi)∩RG1(vi)|
|RG1(vi)|

to obtain the dependency measure.

The traditional method of measuring the “information content” of the data

in the columns of an attribute set is the conditional entropy [37]. The condi-

tional entropy is well discussed in the literature of Information Theory [25, 105],

and is used in the C4.5 decision tree algorithm [82]. Its definition is as follows.

Definition 36 The formulation for the conditional entropy is as follows:

H(D|C) = −∑
c

∑
d

Pr(c) · Pr(d|c) · log2(Pr(d|c))
= −∑

c
Pr(c) ·∑

d
Pr(d|c) · log2(Pr(d|c)), (5.15)

Chapter 5 Random Graph Dependency 151

where C and D are two subsets of A containing only discrete attributes, and

c and d denote the vectors consisting of the values of attributes in C and in D

respectively.

No literature has yet measured the “information content” between two ran-

dom graphs. Since the random graph dependency measure is being proposed

here for the first time, some preliminary investigations of its properties may be

helpful for its being understood, its being further investigated by others, and

its finding further applications in other fields besides the decision trees. For

readers who are interested only in decision trees, please skip the next section.

Properties of the Generalized Dependency Degree

Although we focus on decision tree improvement in this section, the random

graph dependency has potential applications other than decision trees. For

the sake of its future potential usages and for theoretical completeness, we

investigate its preliminary properties in this section. We first show that when

the underlying attribute is discrete, H(RG2|RG1) becomes the conditional

entropy. For this purpose, we consider the equivalence relations induced by

an information system. We also show some other basic properties, which have

counterparts in conditional entropy.

Recall that the condition entropy is defined in Eq. (1.3) as

H(D|C) = −∑
c

∑

d

Pr(c) · Pr(d|c) · log2(Pr(d|c))

= −∑
c

Pr(c) ·∑
d

Pr(d|c) · log2(Pr(d|c)),

where c and d denote the vectors consisting of the values of attributes in C

and in D respectively. The formulation of the entropy is

H(D) = −∑

d

Pr(d) · log2(Pr(d)).

Chapter 5 Random Graph Dependency 152

Recall that, in an information system S = (U,A, V, f). Let P be a subset

of A, the P -indiscernibility relation IND(P) is defined as

IND(P) = {(x, y) ∈ U × U | (∀a ∈ P) a(x) = a(y)}.

The equivalence relation IND(P) partitions the whole dataset into a disjoint

union of some equivalence classes, which can be considered as a special random

graph on U . More specifically, in such a random graph, there is an edge

with a probability of one between each pair of points in the same equivalence

class, and there is no edge (or an edge with a probability of zero) between

any pair of points that belong to two different classes. Based on such an

interpretation, the concepts of random neighbor set and its cardinality can be

applied to equivalence relations, and are rewritten as follows. For simplicity,

denote IND(P)(x) = P (x). According to the definition of IND(P), we have

P (x) = {(y, pyx)|pyx = 1 if (∀a ∈ P) a(x) = a(y) and 0 otherwise}.
(5.16)

Since pyx = 1 or pyx = 0 in an equivalence relation, we can write P (x) without

ambiguity as follows.

P (x) = {y|(∀a ∈ P) a(x) = a(y)}.

In the following, we show an example about IND(P) and P (x) to aid fa-

miliarity with these concepts.

Example 37 Table 5.2 is an information system, U = {v1, v2, v3, v4, v5, v6, v7, v8},

Chapter 5 Random Graph Dependency 153

A = {x1, x2, y}. Let P = {x2}, then

IND(P) = {(v1, v1), (v1, v3), (v1, v4), (v1, v7),

(v3, v1), (v3, v3), (v3, v4), (v3, v7),

(v4, v1), (v4, v3), (v4, v4), (v4, v7),

(v7, v1), (v7, v3), (v7, v4), (v7, v7),

(v2, v2), (v2, v5), (v2, v6), (v2, v8),

(v5, v2), (v5, v5), (v5, v6), (v5, v8),

(v6, v2), (v6, v5), (v6, v6), (v6, v8),

(v8, v2), (v8, v5), (v8, v6), (v8, v8)}.

IND(P)(v1) = P (v1) = {v1, v3, v4, v7}.

Let C and D be two subsets of A. When the two equivalence relations

IND(C) and IND(D) are applied to the random graph dependency measure

H(RG2|RG1), we obtain the following theorem, which shows that H(RG2|RG1)

is a generalization of the conditional entropy.

Theorem 38 (Generalization of the Conditional Entropy) Let C and

D be two subsets of A. Then H(IND(D)|IND(C)) = −H(D|C).

Proof: Note that

D(x) = {y| (∀a ∈ D) a(x) = a(y)},

C(x) = {y| (∀a ∈ C) a(x) = a(y)}.

C∪D is also a subset of A, and the equivalence relation IND(C∪D) partitions

U into a disjoint union of some equivalence classes called (C ∪D)-classes. The

set of all the (C∪D)-classes is denoted by U/(C∪D). Let X be a (C∪D)-class.

Then for any y, x ∈ X, y has the same values as x at the attributes in (C∪D),

and so y has the same values as x at the attributes in both C and D, i.e., y

and x are both in the same C-class and in the same D-class, i.e., C(y) = C(x),

Chapter 5 Random Graph Dependency 154

D(y) = D(x), and therefore for any x ∈ X we can denote C(x) by C(X),

D(x) by D(X), and |D(x) ∩ C(x)|/|C(x)| by |D(X) ∩ C(X)|/|C(X)|. Given

the fact that |X| = |D(X) ∩ C(X)| and the definition of the random graph

dependency, we have

H(IND(D)|IND(C))

= 1
|U |

∑
x∈U log2

|D(x)∩C(x)|
|C(x)|

= 1
|U |

∑
X∈U/(C∪D)

∑
x∈X log2

|D(x)∩C(x)|
|C(x)|

= 1
|U |

∑
X∈U/(C∪D)

∑
x∈X log2

|D(X)∩C(X)|
|C(X)|

= 1
|U |

∑
X∈U/(C∪D) |X| log2

|D(X)∩C(X)|
|C(X)|

=
∑

c,d
|X|
|U | log2

|D(X)∩C(X)|
|C(X)|

=
∑

c

∑
d Pr(c, d) log2(Pr(d|c))

=
∑

c Pr(c)
∑

d Pr(d|c) log2(Pr(d|c))
= −H(D|C).

(5.17)

where c, d denote the vectors consisting of the values of attributes in C and in

D for any element in X respectively, and |X|
|U | is frequency of elements of X in

U , i.e., the frequency of c, d.

Remark. The random graph dependency is also a generalization of the

entropy when RG1 = U ×U and RG2 = IND(D). This is formally written as

H(D) = −H(IND(D)|U × U).

Theorem 39 (Bounds of the Random Graph Dependency Measure)

− log2 |U | ≤ H(RG2|RG1) ≤ 0.

Proof: Since both RG2(x) and RG1(x) contain at least one element x,

and RG1(x) contains at most |U | elements,

|RG2(x) ∩RG1(x)|
|RG1(x)| ≥ 1

|U | ,

and so

Chapter 5 Random Graph Dependency 155

H(RG2|RG1) = 1
|U |

∑
x∈U log2

|RG2(x)∩RG1(x)|
|RG1(x)|

≥ 1
|U |

∑
x∈U log2

1
|U |

= − log2 |U |.
(5.18)

The desired conclusion follows.

Remark. It is possible to design a new building tree stop criterion by

employing this property, for example, H(RG2|RG1) < −c log2 |U |, although

this is not being considered in the empirical part of this section.

In the following theorems, we discuss the relation among these random

graphs RG1 = (aij), RG2 = (bij), and RG3 = (cij). We first reveal how

H(RG2|RG1) changes when RG2 is changed to be a larger RG3, meaning that

the probability of an edge in RG2 is less than or equal to the probability of

the corresponding edge in RG3. Let U = {vi| i = 1, 2, . . . , n}.

Theorem 40 (Partial Order Preserving Property) For any random graphs

RG1, RG2 and RG3 on U , if RG3 is larger than RG2, then

H(RG2|RG1) ≤ H(RG3|RG1).

Proof:

H(RG2|RG1) = 1
n

∑n
i=1 log2

∑
k

bikaik∑
k

aik

≤ 1
n

∑n
i=1 log2

∑
k

cikaik∑
k

aik

= H(RG3|RG1).

(5.19)

The desired conclusion follows.

This means that the weaker relations in RG2 are, the less RG2 depends

on RG1. Thus in Theorem 40, we have shown the partial order preserving

property of H(RG2|RG1) on the item RG2. In the next theorem, we continue

to show the anti-partial order preserving property of H(RG2|RG1) on the item

RG1. Next we discuss the situation when RG1 varies.

Chapter 5 Random Graph Dependency 156

Theorem 41 (Anti-Partial Order Preserving Property) For any ran-

dom graphs RG1, RG2 and RG3 on U , if RG3 is larger than RG2 on the

edge (vi, vj) where bij is minimal in the set {bik| k = 1, 2, 3, . . . , n}, then

H(RG2|RG1) ≥ H(RG2|RG3).

Proof: H(RG2|RG1) = 1
n

∑n
i=1 log2

∑
k

bikaik∑
k

aik
. The partial derivative of

H(RG2|RG1) with respect to aij can be calculated as

∂H(RG2|RG1)
∂aij

= log2 e
n

∑n
i=1(

bij∑
k

bikaik
− 1∑

k
aik

)

= log2 e
n

∑n
i=1(

1∑
k

bikaik/bij
− 1∑

k
aik

),

which is less than or equal to zero if bij is minimal in the set {bik| k =

1, 2, 3, . . . , n}. The desired conclusion follows.

It is easy to get the opposite conclusion if bij is maximal in the set {bik| k =

1, 2, 3, . . . , n}. This property shows that, on a weak edge such as the minimal

bij in RG2, an increasing probability on the corresponding edge in the condi-

tional random graph RG1 will decrease the dependency, while on an edge with

a maximal bij an increase of aij will result in a larger dependency.

5.3.2 Discussion on Continuous Attributes

As we have shown in the previous section, the random graph dependency

measure is the same as the conditional entropy on discrete attributes except

for the sign. In this section, we will focus on the continuous attribute.

We showed in Section 5.1 that before the cut all points are treated equally

and after the cut the points less (greater) than the threshold produced by the

cut are treated equally. From the perspective of random graphs, the calculation

of information gain by the traditional approach undoubtedly ignores some

distance information. To explain this statement, we investigate the measure

when RG2 is an equivalence relation induced by the class attribute D = {y}
and RG1 is a complete graph, in which each pair of nodes has an edge with a

Chapter 5 Random Graph Dependency 157

probability of one. For such a special random graph setting, we have

H(RG2|RG1) = 1
n

∑n
i=1 log2

∑
k

bikaik∑
k

aik

= 1
n

∑n
i=1 log2

∑
k

bik

n

= −H(D).

If a is a continuous attribute, t is a potential threshold, and the new

attribute at is defined as at=true if a ≤ t, and at=false otherwise. Let

LU = {xi|xi < t}, RU = {xi|xi > t} The traditional information gain

H(D)−H(D|{at}) is thus calculated by

H(D)− Pr(true)H(D|true)− Pr(false)H(D|false).

By this analysis, we see that on the left (right) side of the cut, all points

are treated equally as true (false), and thus the distance information between

points in LU (RU) is ignored.

On the other hand, the loss of distance information can be seen by rewriting

this traditional calculation of information gain in terms of random graphs as

|LU |
|U | H(IND(D)|LU × LU) + |RU |

|U | H(IND(D)|RU ×RU)

−H(IND(D)|U × U),
(5.20)

where H(D) = −H(IND(D)|U×U), P r(true) = |LU |
|U | , P r(false) = |RU |

|U | . In the

term H(IND(D)|LU × LU) (H(IND(D)|RU ×RU)), the equivalence relation

IND(D) is induced on LU (RU).

The loss of distance information can be seen in the three universal relations

on LU , RU , and U . U ×U means that all points are considered as the same in

the calculation of H(IND(D)|U × U); this is reasonable because “ before the

cut” means no attribute is selected. LU×LU (RU×RU) means that all points

less (greater) than t are treated as equal in the calculation of H(IND(D)|LU×
LU) (H(IND(D)|RU×RU)). LU×LU (RU×RU) indeed ignores the distance

information, in which the potential information gains from further cuts is not

Chapter 5 Random Graph Dependency 158

considered. This might be the reason that traditional entropy produces a

decision tree with an error in Figure 5.2, and fails to produce the ideal decision

tree in Figure 5.3 in Example 9.

We now consider the inclusion of the distance information by establishing

a random graph RG = (U, P) on U . For a cut t, the random graph RG

will induce two random graphs LRG = (LU,LP) on the set LU and RRG =

(RU,RP) on the set RU . Note that the matrix P = (pij) can be partitioned as

LP ∗
∗ RP

 . Based on such a partition, the information gain Gain(t) from

the random graph dependency measure is calculated as

|LU |
|U | ∗H(IND(D)|LRG) + |RU |

|U | ∗H(IND(D)|RRG)−H(IND(D)|U × U),

(5.21)

where U × U is the universal relation, and is the representation of a complete

graph. Before the cut, there is no attribute information affecting IND(D),

and so we employ U × U in the third term H(IND(D)|U × U); however, after

the cut, the information of the attribute a has an effect on IND(D), and the

random graphs LRG and RRG, containing distance information, are employed

in the first term H(IND(D)|LRG) and the second term H(IND(D)|RRG))

respectively. Note that Eq. (5.21) becomes the traditional information gain

when both the left random graph LRG defined on the LU cut and right random

graph RRG defined on RU are complete graphs.

Random Graph Generation on Data Points

Next, we aim to employ the random graph dependency measure to improve

the C4.5 decision tree. In this section, we only discuss the data points on one

real axis x because only the most informative attribute is chosen in each step

of the tree-building procedure in C4.5.

As in Figure 5.1, we begin with some sorted data points U = {v1, v2, . . . , vn}
whose values on the axis x satisfy a1 ≤ a2 ≤ . . . ≤ an. We hope to define a

Chapter 5 Random Graph Dependency 159

random graph RG = (U, (pij)) on these data points with the following proper-

ties:

1. 0 ≤ pij ≤ 1 (Nonnegativity),

2. If |ai − aj| > |ak − al|, then pij ≤ pkl (Monotony on Distance), and

3. If ai ≤ aj ≤ ak, then pijpjk = pik (Transitivity).

A natural choice is pij = e−σ∗|ai−aj |. In fact, it is our only choice if all these

properties are satisfied on any set of data points. It is interesting to note that

the random graph (pij = e−σ∗|ai−aj |) becomes a compete graph if σ = 0. In

practice, we need to consider the scaling effect and adjust it. For this purpose,

we set pij = e−σ∗|ai−aj |/|an−a1|.

Remark. The above random graph generation method is only one possible

way, although it is the only form that satisfies the three properties: nonneg-

ativity, monotony on distance, and transitivity. Other methods of generating

the random graph may better model the data points, although such a new

method must break one of these properties. This needs further investigation;

however, we prefer this natural choice because of its elegant form.

Before we introduce the algorithm for finding the best cut, we show some

examples to help the reader to come familiar with the basic concepts in this

section.

Examples

In this section, we show how to generate a random graph, how to calculate

the random graph dependency measure according to the definition, how to

calculate the information gains, and how the ideal decision tree in Figure 5.3

is produced by the new measure.

Example 42 In Table 5.2, for attribute x1, a1 = 1.0 ≤ a2 = 2.0 ≤ a3 =

3.9 ≤ a4 = 4.0 ≤ a5 = 5.0 ≤ a6 = 5.1 ≤ a7 = 7.0 ≤ a8 = 8.0. We show

Chapter 5 Random Graph Dependency 160

A B A B

x_1 <= 2 ?

Y

x_1 <=4 ?

N

Y x_1 <=5.1 ?

N

Y N

A B A B

x_1 <= 4 ?

x_1 <=2 ?

Y

x_1 <=5.1 ?

N

Y N Y N

(a) (b)
By the conditional entropy By new measure (σ = 3)

Figure 5.6: An illustration on decision trees generated by two measures when
x2 is ignored.

the random graph P 2 generated by the method shown in last section. Before

any cut, if we employ the random graph generation method (σ = 3), then

p2
12 = e−3∗|a1−a2|/|a8−a1| = e−3∗|1.0−2.0|/|8.0−1.0| = 0.65.

Similarly we obtain all the elements in the random graph P 2 =

1.00 0.65 0.29 0.28 0.18 0.17 0.08 0.05

0.65 1.00 0.44 0.42 0.28 0.26 0.12 0.08

0.29 0.44 1.00 0.96 0.62 0.60 0.26 0.17

0.28 0.42 0.96 1.00 0.65 0.62 0.28 0.18

0.18 0.28 0.62 0.65 1.00 0.96 0.42 0.28

0.17 0.26 0.60 0.62 0.96 1.00 0.44 0.29

0.08 0.12 0.26 0.28 0.42 0.44 1.00 0.65

0.05 0.08 0.17 0.18 0.28 0.29 0.65 1.00

, (5.22)

which is defined on U = {v1, v2, v3, v4, v5, v6, v7, v8}.

Example 43 Let PG1 = P 2 = (aij), RG2 = P 4 = (bij), then H(RG2|RG1) =

1
n

∑n
i=1 log2

∑
k

bikaik∑
k

aik
= −0.68.

Example 44 In this example, we will show the information gain produced

by the cut x1 = 4.5 is 0.52. The details are shown below. Similarly the

Chapter 5 Random Graph Dependency 161

information gain for the seven possible cuts from the left to right are 0.37,

0.49, 0.41, 0.52, 0.41, 0.49, 0.37.

After the cut x1 = 4.5, RG1 = P 2 becomes

1.00 0.65 0.29 0.28 0 0 0 0

0.65 1.00 0.44 0.42 0 0 0 0

0.29 0.44 1.00 0.96 0 0 0 0

0.28 0.42 0.96 1.00 0 0 0 0

0 0 0 0 1.00 0.96 0.42 0.28

0 0 0 0 0.96 1.00 0.44 0.29

0 0 0 0 0.42 0.44 1.00 0.65

0 0 0 0 0.28 0.29 0.65 1.00

.

It induces two random graphs LRG1 and RRG1, which are defined on

LU = {v1, v2, v3, v4} and RU = {v5, v6, v7, v8} respectively.

LRG1 =

1.00 0.65 0.29 0.28

0.65 1.00 0.44 0.42

0.29 0.44 1.00 0.96

0.28 0.42 0.96 1.00

, RRG1 =

1.00 0.96 0.42 0.28

0.96 1.00 0.44 0.29

0.42 0.44 1.00 0.65

0.28 0.29 0.65 1.00

.

RG2 = P 4 is defined on {v1, v2, v3, v4, v5, v6, v7, v8}. RG2|LU is the random

graph induced by RG2 on LU = {v1, v2, v3, v4}, and RG2|RU that induced by

RG2 on RU = {v5, v6, v7, v8}.

RG2|LU =

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

, RG2|RU =

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

.

On LU , let LRG = (aij), RG2|LU = (bij), n = |LU |; we have H(RG2|LRG) =

1
n

∑n
i=1 log2

∑
k

bikaik∑
k

aik
= −0.483. On RU , let RRG = (aij), RG2|RU = (bij), n =

|RU |; we have H(RG2|RRG) = −0.483. On U , let U ×U = (aij), RG2 = (bij),

Chapter 5 Random Graph Dependency 162

n = |U |, we have H(RG2|U × U) = −1. Note that IND(D) = RG2 = P 4 in

this example. By Eq. (5.21), the information gain from the cut x1 = 4.5 is

|LU |
|U | ∗H(IND(D)|LRG) + |RU |

|U | ∗H(IND(D)|RRG)−H(IND(D)|U × U)

= 4
8
∗ (−0.483) + 4

8
∗ (−0.483)− (−1)

= 0.52.

As we have shown in Example 9, the maximal information gain achieved

in the conditional entropy approach is 0.31, which is obtained by the second

cut. If we ignore the attribute x2, then we choose the second cut as the best

cut, which results in a decision tree shown in Figure 5.6 (a). In Example 44,

we observe that when σ = 3, the largest information gain produced by the

random graph dependency measure is achieved by the middle cut. Then we

choose the fourth cut, which results in the decision tree shown in Figure 5.6

(b). This decision tree is more balanced than the previous one. However, in

terms of accuracy, there is no difference between the decision tree produced

by the traditional conditional entropy and the one produced by the random

graph dependency measure, as shown in Figure 5.6 (a) and (b). The situation

is different between the conditional entropy and the random graph dependency

measure if we consider the attribute x2. The details are shown in the coming

example.

Example 45 If we do not ignore the attribute x2, then the information gain

achieved by this attribute x2 is 0.19. If we employ the conditional entropy,

we obtain the decision tree shown in Figure 5.2. If we employ the random

graph generation method (σ = 3), then the maximal information gain (0.52)

from the fourth cut is greater than 0.19, then x1 is chosen as the attribute

for the root of the decision tree, on which there is a decision x1 ≤ 4. As the

tree-building procedure continues, the whole data set is divided into two parts:

LU = {v1, v2, v3, v4} and RU = {v5, v6, v7, v8}. On LU , the information gain

induced by x1 for the three possible cuts from left to right are 0.63, 1.00, and

Chapter 5 Random Graph Dependency 163

0.66, and the information gain induced by x2 is 0.31; On RU , the information

gain induced by x1 for the three possible cuts from left to right are 0.66, 1.00,

and 0.63, and the information gain induced by x2 is 0.31. On both LU and

RU , we will continue to choose x1 as the best attribute, and finally we obtain

the decision tree shown in Figure 5.3.

Interpretations. Comparing the two decision trees in Figure 5.2 and Fig-

ure 5.3, we find that there is a classification error in Figure 5.2, whereas there

is no classification error in Figure 5.3. The reason for this phenomenon is that

the traditional conditional entropy underestimates the information contained

in the continuous attribute x1, and consequently the attribute x2 is chosen,

even though it is actually less informative. The choice of the less informative

attribute will use up the training set quickly and leave no chance that x1 will

be chosen again. This situation is especially serious when the number of cases

is small.

The underestimation of the information contained in the continuous at-

tribute x1 by the conditional entropy can be seen from the viewpoint of ran-

dom graphs. After the middle cut x1 = 4.5, the situations resulting from

setting σ = 0 and σ = 3 are shown in Figure 5.7 (a) and (b). When σ = 0

(the traditional case), all the edges are the same in each of the two subgraphs

LRG = LU × LU and RRG = RU × RU in Figure 5.7 (a), and thus the two

subgraphs lose the distance information; in contrast, when σ = 3, the two

subgraphs LRG and RRG in Figure 5.7 (b) still contain distance information,

which can be seen in the fact that the edges are set nonequal in Figure 5.7(b).

Note that σ = 0 corresponds to the traditional method of computing in-

formation gain because LRG = LU ×LU and RRG = RU ×RU when σ = 0,

and thus the proposed information gain in Eq. (5.21) become the traditional

information gain in Eq. (5.20).

Chapter 5 Random Graph Dependency 164

(a) σ = 0 (b) σ = 3

Figure 5.7: An illustration on the random graphs by setting σ = 0 and σ = 3
after the middle cut.

Next we will apply the random graph dependency measure to determine

the best cut for a continuous attribute.

Algorithm for Best Cut Based on Random Graph Dependency Mea-

sure

According to Eq. (5.21) and Definition 35, for a continuous attribute a, we

develop Algorithm 3 to choose the best cut and to calculate the correspond-

ing information gain. In this algorithm, we omit the calculation of Base =

H(IND(D)|U × U), which is very easy.

5.3.3 Experiments

In the above sections, we have given a detailed explanation of the random

graph dependency by presenting its definition and its various properties. In

this section, we will show its significance in improving the accuracy of decision

trees.

We replace the conditional entropy used in the C4.5R8 algorithm with

the random graph dependency measure and replace the gain ratio with the

corresponding gain ratio produced by the random graph dependency measure,

so that a modified C4.5 algorithm is formed. The only difference between the

Chapter 5 Random Graph Dependency 165

modified C4.5 and the original C4.5R8 is its calculation of information gain

on continuous attributes.

While CART [19] is another successful decision tree algorithm, we will not

compare the modified C4.5 and CART in this section for the following two

reasons:

1. In [63], the comparison between CART and C4.5 has been done.

2. The current definition of random graph dependency is not a generaliza-

tion of the Gini diversity index used in the splitting criteria in CART;

consequently, CART is not the counterpart of the random graph depen-

dency. A direct comparison between the modified C4.5 and CART may

not be helpful in distinguishing how much the random graph dependency

improves on the traditional entropy.

The original C4.5R8 and the modified C4.5 are applied to six datasets from

the UCI machine learning repository. C5.0 is a commercial product developed

from C4.5 [1]. Its technical details and source codes are unknown, and so we

cannot replace the information measure employed in C5.0 with the proposed

random graph dependency. However, a comparison with C5.0 may help to

show the significance of the modified C4.5 created by the proposed measure.

The demonstration version C5.0R2 is a scaled-down versions of C5.0, limited

to small size datasets (up to 400 cases). So we compare C5.0R2 with the

modified C4.5 only on datasets with fewer than 401 cases.

Table 5.13 is a description of the datasets we use. The first column shows

the names of the datasets, the second column gives the numbers of cases in

each dataset, the third column gives the number of classes, the fourth column

gives the number of continuous attributes, the fifth column gives the number

of discrete attributes, and the final column describes whether there are missing

values in each dataset.

Chapter 5 Random Graph Dependency 166

Dataset Cases Classes Cont Discr Missing

Glass 214 6 9 0 N
Labor 57 2 8 8 Y
Sonar 208 2 60 0 N
Lymph 148 4 3 15 N
Iono 351 2 34 0 N
Hepatitis 155 2 6 13 Y

Table 5.13: Description of the datasets

The experiments are conducted on a workstation whose hardware model is

Nix Dual Intel Xeon 2.2GHz, with 1GB of RAM, using Linux Kernel 2.4.18-

27smp (RedHat7.3).

For all the datasets, the strictest cross-validation (leave-one-out) is applied

to evaluate the performance; for example, 57-fold cross-validation is applied to

the dataset Labor. There is no random factor for the choices of training data

and testing data in the leave-one-out cross-validation, and thus the results

produced are repeatable and independent of the order of the cases in the

datasets; this is not the case for the 10-fold cross-validation.

We compare the original C4.5R8 with the modified C4.5 using the informa-

tion gain and information gain ratio respectively. Tables 5.14, 5.15, 5.16, and

5.17 show the results for the option of information gain, and Tables 5.18, 5.19,

5.20, and 5.21 show the results for the option of information gain ratio. The

parameter σ in the modified C4.5 is adjusted by cross-validation on training

data. As a baseline, we show the results after pruning for C5.0R2 using the

default option in both (only the results after pruning are available in C5.0R2).

In Tables 5.14, 5.15, 5.16, 5.18, 5.19, and 5.20, the second and fourth

columns are the results of original C4.5R8 before and after pruning respectively.

The third and sixth columns are the results of the modified C4.5 before and

after pruning respectively, and the fifth column indicates the results of C5.0R2.

In all the tables, the numbers in brackets are the standard deviations for the

sample means (also called standard errors), which are calculated by S/
√

n,

where S2 is the sample variance, an estimator for the population variance, and

n is the size of sample (the number of cross-validations).

Chapter 5 Random Graph Dependency 167

If the difference between the error rate for the modified C4.5 before pruning

and that for the original C4.5R8 before pruning is statistically significant at a

significance level 25%, the best results are shown in bold in Tables 5.14 and

5.18. If the difference between the best and the second best among the error

rates for the modified C4.5 after pruning, that for the original C4.5R8 after

pruning, and that for C5.0R2 is statistically significant at a significance level

25%, the best results are shown in bold in Tables 5.14 and 5.18.

If the difference between the error rate for the modified C4.5 before pruning

(after pruning) and that for the original C4.5R8 before pruning (after pruning)

is statistically significant at a significance level 5%, we put a mark ∗ beside

the results in the third column (the fifth column) in Tables 5.14 and 5.18. If

the difference between the error rate for the modified C4.5 after pruning and

that for C5.0R2 is statistically significant at a significance level 5%, we put a

mark ? beside the results in the fifth column in Tables 5.14 and 5.18.

The values shown in Table 5.14 and Table 5.18 are the mean error rates

(error rate = 100% - classification rate) of the leave-one-out cross-validations

of the original C4.5R8, the modified C4.5 and C5.0R2. The values shown in

Table 5.15 and Table 5.19 describe the average number of nodes of the decision

trees of the leave-one-out cross-validations. Since the continuous attributes are

used in an improved way by the proposed random graph dependency measure,

it would be interesting to know if the continuous attributes are selected more

often in the tree when the random graph dependency measure is employed.

In Table 5.16 and Table 5.20, we show the average frequency of appearance

of continuous attributes in the nodes of the decision trees of the leave-one-out

cross-validations. In Table 5.17 and Table 5.21, we show the time required

for running the test part of the original C4.5R8 and the modified C4.5 10000

times. Because of the short test time, we have to run the testing part 10000

times in order to record the time. For C5.0R2, because we do not have the

source codes and so we cannot insert the time counter in C5.0R2, we cannot

Chapter 5 Random Graph Dependency 168

show the testing time for C5.0R2 in Table 5.17 and Table 5.21.

Unpruned Pruned
Dataset C4.5R8 -g N-g C4.5R8 -g C5.0R2 N-g

Glass 32.7 (3.21) 29.0 (3.10) 35.0 (3.26) 33.6 (3.23) 29.0 (3.10)
Labor 26.3 (5.83) 12.3 (4.35) ∗ 29.8 (6.06) 19.3 (5.23) 15.8 (4.83) ∗
Sonar 27.5 (3.11) 17.8 (2.65) ∗ 27.5 (3.11) 26.9 (3.08) 17.8 (2.65)∗ ?
Lymph 28.4 (3.71) 23.0 (3.46) 25.7 (3.59) 22.3 (3.42) 23.0 (3.46)
Iono 12.3 (1.75) 9.4 (1.56) ∗ 12.0 (1.73) 8.5 (1.49) 9.4 (1.56)∗
Hepatitis 20.6 (3.25) 11.6 (2.57) ∗ 16.8 (3.00) 21.3 (3.29) 13.6 (2.75)?

Table 5.14: Mean error rates (percentage) of the original C4.5R8 using infor-
mation gain (C4.5R8 -g), the modified C4.5 using information gain (N-g), and
C5.0R2.

Unpruned Pruned
Dataset C4.5R8 -g N-g C4.5R8 -g C5.0R2 N-g

Glass 52.8 (0.13) 63.0 (0.28) 52.6 (0.14) 54.0 (0.16) 58.9 (0.28)
Labor 16.4 (0.59) 10.7 (0.48) 8.8 (0.61) 5.4 (0.45) 5.47 (0.36)
Sonar 32.8 (0.11) 34.6 (0.09) 32.8 (0.11) 34.1 (0.22) 34.6 (0.10)
Lymph 57.7 (0.36) 52.3 (0.48) 20.0 (0.12) 26.3 (0.15) 19.4 (0.27)
Iono 36.5 (0.09) 29.1 (0.05) 36.4 (0.10) 30.6 (0.10) 28.4 (0.11)
Hepatitis 36.0 (0.22) 25.6 (0.21) 12.2 (0.26) 19.0 (0.13) 17.8 (0.17)

Table 5.15: Average number of nodes of of the original C4.5R8 using infor-
mation gain (C4.5R8 -g), the modified C4.5 using information gain (N-g), and
C5.0R2.

Unpruned Pruned
Dataset C4.5R8 -g N-g C4.5R8 -g C5.0R2 N-g

Glass 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Labor 0.47 (0.01) 0.54 (0.03) 0.75 (0.03) 0.88 (0.02) 0.94 (0.02)
Sonar 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Lymph 0.008 (0.002) 0.22 (0.01) 0.009 (0.003) 0.21 (0.003) 0.23 (0.01)
Iono 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Hepatitis 0.44 (0.002) 0.56 (0.01) 0.58 (0.006) 0.44 (0.004) 0.69 (0.00)

Table 5.16: Average frequency of appearance of continuous attributes in the
nodes of the original C4.5R8 using information gain (C4.5R8 -g), the modified
C4.5 using information gain (N-g), and C5.0R2.

The experiments show that the random graph dependency measure is a

useful measure. We compare three aspects of the modified C4.5 algorithm using

the random graph dependency measure with the original C4.5R8 algorithm

using the conditional entropy:

Prediction accuracy: We observe that, before pruning, the modified C4.5

outperforms the original C4.5R8 in prediction accuracy on these six datasets

Chapter 5 Random Graph Dependency 169

Dataset C4.5R8-g N-g

Glass 15.607 (0.339) 16.636 (0.323)
Labor 11.228 (1.025) 10.228 (0.611)
Sonar 8.462 (0.277) 9.135 (0.247)
Lymph 9.932 (0.067) 09.865 (0.095)
Iono 8.718 (0.204) 9.459 (0.180)
Hepatitis 10.839 (0.577) 12.258 (0.733)

Table 5.17: Mean time, in milliseconds, for 10,000 test runs of the original
C4.5R8 using information gain (C4.5R8 -g) and the modified C4.5 using infor-
mation gain (N-g).

Unpruned Pruned
Dataset C4.5R8 N C4.5R8 C5.0R2 N

Glass 32.7 (3.21) 27.1 (3.04) 35.1 (3.26) 33.6 (3.23) 26.2 (3.00) ∗?
Labor 21.1 (5.40) 14.0 (4.60) 22.8 (5.56) 19.3 (5.23) 15.8 (4.83)
Sonar 32.2 (3.24) 22.1 (2.88)∗ 32.2 (3.24) 26.9 (3.08) 22.1 (2.88) ∗
Lymph 38.3 (0.14) 21.0 (3.34)∗ 33.5 (0.14) 22.3 (3.42) 22.3 (3.42) ∗
Iono 13.1 (1.80) 11.1 (1.68) 13.1 (1.80) 8.5 (1.49) 11.1 (1.68)
Hepatitis 18.7 (3.13) 18.7 (3.13) 19.4 (3.17) 21.3 (3.29) 19.4 (3.17)

Table 5.18: Mean error rates (percentage) of the original C4.5R8 using infor-
mation gain ratio (denoted as C4.5R8), the modified C4.5 using information
gain ratio (denoted as N), and C5.0R2.

for both the information gain option and the information gain ratio option.

After pruning, the modified C4.5 still outperforms the original C4.5R8. The

modified C4.5 algorithm seems more successful in the dataset Labor, in which

the algorithm before pruning achieves a 12.3% prediction error rate, while the

original algorithm before pruning has a 26.3% error rate; after pruning, the

modified C4.5 outperform both the original C4.5R8 and C5.0R2 greatly on

dataset Labor.

A reasonable explanation is that the better prediction accuracy shown by

the modified C4.5 is achieved by more accurately calculating the information

gain hidden in the continuous attributes, which is partly ignored by the tradi-

tional conditional entropy. The under-estimated information gain is increased

by the new measure, which results in a phenomenon of the continuous at-

tributes being selected more often in the tree, as shown in Table 5.16. But in

Table 5.20, there is no such phenomenon because the information gain ratio

for the random graph dependency includes the consideration of the efficiency

Chapter 5 Random Graph Dependency 170

Unpruned Pruned
Dataset C4.5R8 N C4.5R8 C5.0R2 N

Glass 51.2 (0.15) 52.3 (0.24) 45.4 (0.16) 54.0 (0.16) 45.9 (0.42)
Labor 18.8 (0.47) 12.7 (0.37) 5.6 (0.28) 5.4 (0.45) 8.6 (0.33)
Sonar 34.7 (0.17) 32.9 (0.09) 34.6 (0.17) 34.1 (0.22) 32.9 (0.09)
Lymph 57.7 (0.36) 45.2 (0.33) 20.0 (0.12) 26.3 (0.15) 31.0 (0.23)
Iono 34.0 (0.11) 32.9 (0.07) 33.8 (0.12) 30.6 (0.10) 32.3 (0.12)
Hepatitis 31.1 (0.10) 31.1 (0.10) 22.6 (0.12) 19.0 (0.13) 22.6 (0.12)

Table 5.19: Average number of nodes of the original C4.5R8 using information
gain ratio (C4.5R8), the modified C4.5 using information gain ratio (N), and
C5.0R2.

Unpruned Pruned
Dataset C4.5R8 N C4.5R8 C5.0R2 N

Glass 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Labor 0.42 (0.01) 0.77 (0.03) 0.94 (0.02) 0.88 (0.02) 0.89 (0.02)
Sonar 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Lymph 0.27 (0.00) 0.19 (0.00) 0.23 (0.00) 0.21 (0.003) 0.09 (0.00)
Iono 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Hepatitis 0.44 (0.002) 0.44 (0.002) 0.58 (0.006) 0.44 (0.004) 0.58 (0.006)

Table 5.20: Average frequency of appearance of continuous attributes in the
nodes of the original C4.5R8 using information gain ratio (C4.5R8), the mod-
ified C4.5 using information gain ratio (N), and C5.0R2.

of the partition of the data, which may reduce the frequency of continuous

attributes in decision trees. The mixture of the function of improving contin-

uous attributes and that of efficiently partitioning the data in the gain ratio,

results in the disappearance of the increasing frequency phenomenon.

Size of tree: From Tables 5.15 and 5.19, we can see that the number of

nodes are of the same scale for all the algorithms.

Speed: The calculation of the random graph dependency is more time-

consuming than the conditional entropy. This is one weakness of the new

measure, and deserves further investigation. As a result, the training of the

modified C4.5 is slower than that of the original C4.5R8 and C5.0R2; however,

the test time is in the same scale as C4.5R8, as shown in Tables 5.17 and 5.21,

and which can be roughly explained by trees having similar numbers of nodes

in Tables 5.15 and 5.19. In fact, the time consumption problem is not serious

on small sample size problems; moreover, on large size problems, it can be

reduced by first employing the conditional entropy when the number of cases

Chapter 5 Random Graph Dependency 171

Dataset C4.5R8 N

Glass 18.364 (0.253) 17.664 (0.289)
Labor 8.947 (0.641) 10.000 (0.702)
Sonar 9.808 (0.204) 9.519 (0.261)
Lymph 10.000 (0.000) 9.797 (0.278)
Iono 11.339 (0.190) 9.573 (0.198)
Hepatitis 8.710 (0.617) 8.710 (0.617)

Table 5.21: Mean time, in milliseconds, for 10,000 test runs of the original
C4.5R8 using information gain ratio (C4.5R8) and the modified C4.5 using
information gain ratio (N).

in the current node is greater than a threshold and then employing the random

graph dependency when the number of cases is less than the threshold.

We have also tested six other datasets: Auto, Colic, Iris, Heart-c, Heart-

h and Wine, all having fewer than 401 cases. In the following, we give a

brief description comparing the accuracy between algorithms (before pruning)

comparison for the information gain option. We find that on datasets Colic,

Wine and Auto, the modified C4.5 slightly outperforms the original C4.5R8.

On datasets Iris, Heart-c, and Heart-h, the error rates for the modified C4.5

are exactly the same as those for the original C4.5R8; this happens when σ is

found to be zero by the cross-validation on the training data. On datasets Wine

and Heart-c, the modified C4.5 slightly outperforms C5.0R2 (again, the error

rate decreases by less than 2%); on dataset Iris, there is no difference between

the modified C4.5 and C5.0R2; On dataset Colic, the modified C4.5 is slightly

worse than C5.0R2; On datasets Auto and Heart-h, C5.0R2 outperforms the

modified C4.5 so that the error rate is reduced between 3 and 5 percent, the

same margin by which C5.0R2 outperforms C4.5R8. We believe that C5.0R2

can also be improved in accuracy if the information measure used in C5.0R2

is replaced with the random graph dependency.

5.3.4 Summary

The random graph dependency measure H(RG2|RG1) has some useful proper-

ties, such as the Partial Order Preserving Property and the Anti-Partial Order

Chapter 5 Random Graph Dependency 172

Preserving Property. It generalizes the conditional entropy because it becomes

equivalent to the conditional entropy when the random graphs takes their spe-

cial forms–equivalence relations. Our experimental study demonstrates that

the random graph dependency measure is an informative measure, showing its

success in decision trees on small sample size problems.

5.4 The General Random Graph Dependency

Measure Γε
α(RG2|RG1)

In sections 5.2 and 5.3, we have proposed two dependency measures, one is

restricted to equivalence relations, and is connected to γ used in Rough Set

Theory; the other can be applied to general random graphs and is the general-

ization of the conditional entropy. In this section, we show these two measures

and γ are special cases of a general measure. To explain this point clearly, we

need to borrow the concept of α−mean of positive numbers, for more materials,

see [40, 43].

5.4.1 Definitions

Given two positive numbers a and b, their arithmetic mean is (a + b)/2. How-

ever, there are other types of means: The geometric mean is
√

ab, and the

harmonic mean is 2/(a−1 + b−1). The concept of the mean can be generalized

in the following way [40]. Let f be a differentiable monotone function.

Definition 46 The f−mean of a and b is defined as mf (a, b) = f−1(f(a) +

f(b)). For n numbers a1, a2, . . . , an, the weighted f−mean of a1, a2, . . . , an is

defined as

mf (a1, a2, . . . , an) = f−1(w1f(a1) + w2f(a2) + . . . + wnf(an)) (5.23)

where w1, w2 . . . , wn are the weights, wi > 0, and
∑

i wi = 1.

Chapter 5 Random Graph Dependency 173

The f−mean is called linear scale-free, if, for c > 0, the f−mean of ca and

cb is c times their f−mean, i.e., mf (ca, cb) = cmf (a, b).

Theorem 47 (Hardy, Littlewood and Polya)

The f−mean is linear scale-free if and only if f is the following function

for some α,

fα(u) =

u
1−α

2 , α 6= 1,

log u, α = 1.
(5.24)

Now we are ready to define a general random graph dependency measure.

Definition 48 Γε
α(RG2|RG1) is defined as

Γε
α(RG2|RG1) =

1

|U |
∑

x∈Uε(RG1,RG2)

fα(
|RG2(x) ∩RG1(x)|

|RG1(x)|) (5.25)

where RG2(x) and RG1(x) denote the random neighbors of x in RG2 and RG1

respectively, and

U ε(RG1, RG2) = {x|x ∈ U ∧ |RG2(x) ∩RG1(x)|/|RG1(x)| ≥ ε}.

Remark. Γε
α(RG2|RG1) can also be defined as f−1

α (1
|U |

∑
x∈Uε(RG1,RG2) fα(|RG2(x)∩RG1(x)|

|RG1(x)|))

in terms of f−mean.

It is easy to check that

Theorem 49 (Generality of Γε
α(RG2|RG1))

• When ε = 1, α = −1, and RG2, RG1 are the equivalence relations in-

duced by two attribute sets D and C, Γε
α(RG2|RG1) = γ(C, D).

• When ε = 0, α = −1, and RG2, RG1 are the equivalence relations in-

duced by two attribute sets D and C, Γε
α(RG2|RG1) = Γ(C, D).

• When ε = 0 and α = 1, Γε
α(RG2|RG1) = H(RG2|RG1).

• When ε = 0, α = 1, and RG2, RG1 are the equivalence relations induced

by two attribute sets D and C,Γε
α(RG2|RG1) = H(D|C)

Chapter 5 Random Graph Dependency 174

Besides these four special cases, there are many intermediate cases. We only

apply one of them to find the free parameters in the heat diffusion classifiers,

and leave others in the future work.

5.4.2 Find the Free Parameters in Heat Diffusion Clas-

sifiers

There are three free parameters in G-HDC : K, β, and γ. As an example,

in this chapter, we only investigate KNN-HDC. Usually we employ the cross-

validation to find these parameters. With the tool developed in the previous

section, we can find K and β by searching the corresponding dependency

values. By such a method, we can reduce the time complexity.

In KNN-HDC, at each fold of the cross-validation for each fixed K, each

fixed β and each fixed γ, we need to do multiplications p times between a

matrix I + γ
p

and a vector f(0), and K ∗n∗p multiplications are needed, where

n is the number of data including both labeled data and unlabeled data; By

the random graph dependency, we only need to do K ∗ n multiplications and

n divisions, which save us a lot of time. Although we can also find γ by the

random graph dependency measure, it is time-consuming because we need to

n ∗ n multiplications and n divisions, and so we only search K and β by the

measure, and find γ by cross-validation.

Random Graph Generation

The basic idea is that the data points form a random graph R1(K, β) for a

given K and β, and the labels form another random graph R2 as follows.

R1(K, β)ij =

1, j = i;

e−w2
ij/β, if j is one of the neighbors of i;

0, otherwise.

(5.26)

Chapter 5 Random Graph Dependency 175

R2
ij =

1, j = i;

1, if j and i are labeled same;

0, if j and i are labeled differently;

pl, if one of i and j is labeled as l while the other is not labeled;

r, if both j and i are not labeled.

(5.27)

Where pl is the frequency of the data with label l in the labeled data, r =
∑c

i=1 p2
i , and c is the number of classes.

Interpretation. When one of i and j is labeled as l while the other is not

labeled, the unlabeled data has a probability pl of being labeled as l, and so

the probability that i and j have the same label is pl; when both i and j are

not labeled, the probability that i and j have the same label is
∑c

i=1 p2
i .

Dependency Calculation

We adopt Γε
α(RG2|RG1) to measure the dependency between R1 and R2. In

the same way as Γ(C,D) and H(RG2|RG1), we set ε = 0. And in this section,

we aim to reduce the time complexity, and so we set α = −1, by which the

time-consuming logarithm operation is avoided. More specifically, when ε = 0

and α = −1, Γε
α(RG2|RG1) becomes

Γ0
−1(RG2|RG1) = 1

|U |
∑

x∈U

|RG2(x)∩RG1(x)|
|RG1(x)| (5.28)

= 1
n

n∑
i=1

|RG2(vi)∩RG1(vi)|
|RG1(vi)|

= 1
n

n∑
i=1

∑
k

aikbik∑
k

aik
,

where U = {v1, v2, . . . , vn}, RG1 = (aij) and RG2 = (bij).

Chapter 5 Random Graph Dependency 176

Calibration of Underestimated Random Graph

It is observed that when RG1 = I, Γ0
−1(RG2|RG1) reaches its maximal value.

For the random graph R1(K, β), when β → 0, it becomes I, and Γ0
−1(R

2|R1(K, β))

becomes maximal. But β = 0 may not be the best parameter because the true

random graph representing the data point relationship may not be I. Such a

phenomenon means that we will obtain wrong parameters if we simply employ

the maximum dependency principle to find the parameters.

To calibrate Γ0
−1(RG2|RG1) in the case when RG1 is underestimated, we

multiply a factor Γ0
−1(RG1|U×U) in Γ0

−1(RG2|RG1). According to Eq. (5.28),

Γ0
−1(RG1|U × U) = 1

n

n∑
i=1

∑
k

aik

n
= 1

n2

n∑
i=1

∑
k aik, which means the total weight

of the random graph RG1. When RG1 = I, Γ0
−1(RG1|U × U) = 1

n
is minimal.

This fits the intuition that RG1 = I contains least information. As a result,

Γ0
−1(RG2|RG1)Γ

0
−1(RG1|U × U) can balance the dependency between RG1

and RG2 and the information contained in RG1. we formalize the method of

searching K and β as follows.

max
K,β

Γ0
−1(R

2|R1(K, β))Γ0
−1(R

1(K, β)|U × U)

Experiments

Using the same settings as those in Section 3.10, we record the time used for

finding K and β, and accuracy by using the cross-validation and the random

graph dependency respectively. The results are shown in Table 5.22.

From the results, we observe that the average training time by the ran-

dom graph dependency measure is reduced greatly (81.27%) while the overall

average of accuracy remains the same.

Chapter 5 Random Graph Dependency 177

Table 5.22: Mean time in seconds and accuracy on the 11 datasets achieved
by ten runs by dividing the data into 10% for training and 90% for testing by
the cross-validation and by the random graph dependency measure

Dataset Time by CV Time by Γ0
−1 Accuracy by CV Accuracy by Γ0

−1

Spiral-1000 24.8 1.0 92.7 89.0

Variance 0.007 0.002 0.61 0.58

Credit-a 252.7 35.0 61.6 65.7

Variance 0.098 0.01 1.53 0.72

Iono 39.5 12.5 80.3 72.6

Variance 0.004 0.006 1.67 2.27

Iris 34.5 2.05 91.7 92.5

Variance 13.566 0.002 2.18 1.08

Diabetes 281.0 36.6 67.1 69.3

Variance 0.121 0.016 0.88 0.77

Glass 19.6 7.9 55.5 40.2

Variance 0.004 0.006 1.36 0.83

Breast-w 148.8 37.0 95.7 95.6

Variance 0.033 0.028 0.21 0.11

Waveform 30.2 10.3 74.4 71.9

Variance 0.006 0.005 1.23 1.84

Wine 5.1 0.3 63.6 65.7

Variance 0.003 0.002 2.05 2.10

Anneal 62.9 23.9 75.6 75.4

Variance 0.032 0.032 0.50 0.46

Heart-c 56.4 12.4 59.3 62.1

Variance 0.005 0.006 1.32 0.89

Average 86.86 16.27 74.32 74.32

Chapter 5 Random Graph Dependency 178

5.4.3 Summary

By using Γ0
−1(RG2|RG1), the parameters K and β can be found faster than the

naive cross-validation method, and the produced accuracy is better in most of

these datasets.

Chapter 5 Random Graph Dependency 179

Algorithm 3 Input: sorted data points x1 ≤ x2 ≤ . . . ≤ xn and their class
c1, c2, . . . , cn; σ. Output: Best cut t, and Best information gain G

D ← xn − x1

for j = 1 TO n do
Initialize SumR1[j], SumR2[j], SumL1[j], SumL2[j]
for k=1 TO n do

d ← e−σ∗|xj−xk|/D

SumR1[j] ← SumR1[j]+ d
if cj = ck then

SumR2[j] ← SumR2[j] + d
end if

end for
end for
for i = 1 TO n− 1 do

for j = 1 TO n do
d ← e−σ∗|xj−xi|/D

SumR1[j]-= d, SumL1[j] +=d
if cj = ci then

SumR2[j]-=d, SumL2[j] += d
end if

end for
Initialize SL1, SL2, SR1, SR2
for j = 1 TO n do

if j < i + 1 then
SL1 += log2(SumL1[j])
SL2 += log2(SumL2[j])

else
SR1 += log2(SumR1[j])
SR2 += log2(SumR2[j])

end if
end for
Gain[i] ← ((SL2-SL1 +SR2-SR1) / n - Base)

end for
Choose I such that Gain[I] is maximal
t ← (xI + xI+1)/2, G ← Gain[I]

Chapter 6

Conclusion and Future Work

In this chapter, an overall summary of this thesis is provided. Following that,

we then present future potential extensions of current work both within the

proposed models and beyond the developed approaches.

6.1 Conclusion

In this thesis, we provide a random graph perspective over the field of machine

learning. This perspective benefits us by two frameworks and one general tool.

Heat diffusion models on random graphs leads to a family of classifiers–Heat

Diffusion Classifier on a Graph (G-HDC), and a ranking algorithm Diffusion-

Rank.

G-HDC is one framework, it has the following advantages: it avoids the

difficulty of finding the explicit expression for the unknown geometry by ap-

proximating the manifold by a finite neighborhood graph, and it has a closed

form solution that describes the heat diffusion on a manifold. As a specific

G-HDC, VHDC has an extra advantage that it can model the effect of unseen

points by introducing the volume of a node. While VHDC is a generalization

of KNN-HDC, which is a generalization of both the Parzen Window Approach

(when the window function is a multivariate normal kernel) and KNN, our

180

Chapter 6 Conclusion and Future Work 181

experiments have demonstrated that VHDC gives accurate results in a classi-

fication task, which performs better than some recently proposed transductive

methods.

Predictive Random Graph Ranking is another framework that incorporates

DiffusionRank. We have shown that the Temporal Web Prediction Model is

effective in PageRank and DiffusionRank. Because our model mines more

information about the Web structure, the results of Predictive strategy on

some ranking algorithms are more accurate than those without it. We conclude

that the random graph input indeed extends the scope of some original ranking

techniques, and significantly improve some of them.

Served as a component of the Predictive Random Graph Ranking frame-

work, DiffusionRank is a generalization of PageRank, which is interesting in

that the heat diffusion coefficient γ can balance the extent that we want to

model the original Web graph and the extent that we want to reduce the effect

of link manipulations. The experimental results show that we can actually

achieve such a balance by setting γ = 1, although the best setting including

varying γi is still under further investigation. This anti-manipulation feature

enables DiffusionRank to be a candidate as a penicillin for Web spamming.

Moreover, DiffusionRank can be employed to find group-group relations and

to partition Web graph into small communities. All these advantages can be

achieved in the same computational complexity as PageRank. For the special

application of anti-manipulation, DiffusionRank performs best both in reduc-

tion effects and in its stability among all the three algorithms.

The random graph dependency measure Γε(RG2|RG1)) is general tool to

measure the dependency between two random graphs. In this thesis, we show

its three successful specifications.

In the cases that RG2, RG1 are the equivalence relations induced by two

attribute sets D and C, when ε = 1, α = −1, Γε
α(RG2|RG1) becomes the

measure γ(C,D) used in Rough Set Theory; When ε = 0, α = 1, Γε
α(RG2|RG1)

Chapter 6 Conclusion and Future Work 182

becomes H(D|C), the traditional conditional entropy. γ(C, D) is not accurate

when there are a lot of indeterministic minimal rules, while H(D|C) involve

the time-consuming operations of logarithm of the frequency, empirically the

middle case when ε = 0, α = −1, Γε
α(RG2|RG1) = Γ(C, D) can improve the

training time of the C4.5R8 decision trees while it preserves the classification

accuracy of the original C4.5R8.

Theoretically we give three different forms of Γ(C,D) in terms of equiva-

lence relations, minimal rule, and arithmetic operation, respectively. Among

our three different forms of the generalized dependency degree, the first form of

the measure (in terms of equivalence relations) is the most important. Besides

its simplicity, the first form is flexible, and it can therefore be extended not

only to an equivalence relation but also to an arbitrary relation. The first form

(in terms of equivalence relations) and the second form (in terms of minimal

rules) share the advantage of being easily understood, while the third form of

the measure (in terms of arithmetic operations) is computationally efficient.

So these three forms of the measure are suited to different situations. When

we want to extend the measure to a more complicated data structure (such

as partial order relation, totally order relation or others) than an equivalence

relation, or when we want to find some properties of this measure, we can

employ the first two forms of the measure. When we use it in a computing

situation, the third form of the measure may be the best choice. In fact, in

this thesis, we determine its properties using the first two forms, and then in

the experiments we use the third form. The generalized dependency degree Γ

has some properties, such as the Partial Order Preserving Property and the

Anti-Partial Order Preserving Property. Besides, its value is between zero and

one. Therefore, it can serve as an index to measure how much decision at-

tributes depend on conditional attributes. The experimental study shows that

the generalized dependency degree is an informative measure in decision trees

and attribute selection.

Chapter 6 Conclusion and Future Work 183

In the case when ε = 0 and α = 1, Γε
α(RG2|RG1) = H(RG2|RG1).

H(RG2|RG1) generalizes the conditional entropy because it becomes equiv-

alent to the conditional entropy when the random graphs takes their spe-

cial forms–equivalence relations. Our experimental study demonstrates that

H(RG2|RG1) is an informative measure, showing its success in improving ac-

curacy of decision trees on small sample size problems.

In the case when ε = 0 and α = −1, Γ0
−1(RG2|RG1) can help to search

parameters K and β in KNN-HDC faster and more accurate than the cross-

validation method.

6.2 Future Work

In order to capitalize on the promising achievements of G-HDC, further study is

needed on the following problems: How to apply G-HDC to inductive learning,

how to find a graph that better approximates the manifold in stead of the KNN

graph, how to construct a better volume representation of the unseen points,

how to utilize some feature extraction methods in order to make the local

distance more accurate, how to find the parameters with avoiding the local

minimum problem, and how to design a criteria for better setting the initial

temperatures.

Concerning the random graph ranking, it deserves to put more efforts on

SimRank. In our experiments, we only test the Predictive Random Graph

Ranking in the viewpoint of dynamic Web. It deserves further investigation in

other two viewpoints of partial observers and weighted links. Such future work

involves investigating page-makers’ preference on link orders and substantial

users-based research.

Concerning the random graph dependency, our experiments only show some

possible applications of Γε
α(RG2|RG1) in the field of decision trees, and in the

field of searching free parameters in G-HDC, and there is much future work

Appendix Conclusion and Future Work 184

left. In the future we will investigate the measure in other fields where the

conditional entropy is applicable. For the measure itself, we need to find more

properties to better understand it. The time consumption problem in the cal-

culation of the random graph dependency is one problem that we need to solve

in the future for other applications such as Web page dependency, in which

there are three random graphs—the link graph produced by the hyperlinks,

the similarity graph produced by the contents of the pages, and the class graph

produced by a supervisor.

All the work depends on the generation of the underlying random graph,

and so the more accurate random graph generation methods are expected.

Bibliography

[1] See5: An informal tutorial. Rulequest Research,

http://www.rulequest.com/see5-win.html, 2006.

[2] http://www.oclug.on.ca/keys/report.php, 2007.

[3] Eugene Agichtein, Eric Brill, and Susan T. Dumais. Improving

web search ranking by incorporating user behavior information. In

Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo

Järvelin, editors, Proceedings of the 29th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval

(SIGIR), pages 19–26, 2006.

[4] Gianni Amati, Iadh Ounis, and Vassilis Plachouras. The dynamic ab-

sorbing model for the web. Technical Report TR-2003-137, University

of Glasgow, April 2003.

[5] Anneleen Van Assche, Celine Vens, Hendrik Blockeel, and Sašo Džeroski.

First order random forests: Learning relational classifiers with complex

aggregates. Machine Learning, 64(1):149–182, 2006.

[6] Francis R. Bach and Michael I. Jordan. Kernel independent component

analysis. J. Mach. Learn. Res., 3:1–48, 2003.

[7] Ricardo A. Baeza-Yates, Paolo Boldi, and Carlos Castillo. Generaliz-

ing pagerank: damping functions for link-based ranking algorithms. In

185

Efthimis N. Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo

Järvelin, editors, Proceedings of the 29th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval

(SIGIR), pages 308–315, 2006.

[8] Pierre Baldi and Kurt Hornik. Neural networks and principal compo-

nent analysis: learning from examples without local minima. Neural

Networks, 2(1):53–58, 1989.

[9] Randolph E. Bank and Michael Holst. A new paradigm for parallel

adaptive meshing algorithms. SIAM Review, 45(2):291–323, 2003.

[10] A.A. Becker. An Introductory Guide to Finite Element Analysis. Pro-

fessional Engineering Publishing: London and Bury St Edmunds,UK,

2004.

[11] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensional-

ity reduction and data representation. Neural Computation, 15(6):1373–

1396, Jun 2003.

[12] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regular-

ization: A geometric framework for learning from labeled and unlabeled

examples. Journal of Machine Learning Research, 7:2399–2434, 2006.

[13] Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-

ford University Press, 1995.

[14] Alexander I. Bobenko and Boris A. Springborn. A discrete

laplace-beltrami operator for simplicial surfaces. Preprint

http://www.arxiv.org/math/0503219, 2005.

[15] Béla Bollobás. Random Graphs. Academic Press Inc. (London), 1985.

186

[16] Prosenjit Bose, Luc Devroye, William Evans, and David Kirkpatrick.

On the spanning ratio of gabriel graphs and beta-skeletons. SIAM J.

Discret. Math., 20(2):412–427, 2006.

[17] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,

1996.

[18] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[19] Leo Breiman, Jerome H. Friedman, Richard Olshen, and Charles Stone.

Classification and regression trees. Belmont: Wadsworth International

Group, 1984.

[20] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to rank using gradient descent.

In Proceedings of the 22nd international conference on Machine learning

(ICML), pages 89–96, 2005.

[21] Junghoo Cho and Robert E. Adams. Page quality: In search of an

unbiased web ranking. Technical report, UCLA Computer Science De-

partment, November 2003.

[22] Junghoo Cho and Sourashis Roy. Impact of search engines on page pop-

ularity. In Proceeding of the 13th World Wide Web Conference (WWW),

pages 20–29, 2004.

[23] Moo Chung and Jonathan Taylor. Diffusion smoothing on brain surface

via finite element method. In Proceedings of the 2004 IEEE International

Symposium on Biomedical Imaging: From Nano to Macro, pages 432–

435, 2004.

[24] Ronan Collobert, Fabian H. Sinz, Jason Weston, and Léon Bottou. Large

scale transductive svms. Journal of Machine Learning Research, 7:1687–

1712, 2006.

187

[25] Thomas M. Cover and Joy A. Thomas. Elements of information theory.

Wiley-Interscience, New York, NY, USA, 1991.

[26] Vittorio Cristini, Jerzy Blawzdziewicz, and Michael Loewenberg. An

adaptive mesh algorithm for evolving surfaces: simulation of drop

breakup and coalescence. J. Comput. Phys., 168(2):445–463, 2001.

[27] Mehmet M. Dalkilic and Edward L. Robertson. Information dependen-

cies. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principals of Database Systems, pages 245–253, Dallas, Texas,

2000.

[28] Thomas G. Dietterich. An experimental comparison of three methods

for constructing ensembles of decision trees: Bagging, boosting, and ran-

domization. Machine Learning, 40(2):139–157, 2000.

[29] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-

cation (2nd Edition). Wiley-Interscience, November 2000.

[30] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the

web frontier. In Proceeding of the 13th World Wide Web Conference

(WWW), pages 309–318, 2004.

[31] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regu-

larization networks and support vector machines. Advances in Compu-

tational Mathematics, 13:1–50, 2000.

[32] Usama M. Fayyad and Keki B. Irani. On the handling of continuous-

valued attributes in decision tree generation. Machine Learning, 8:87–

102, 1992.

188

[33] Dániel Fogaras and Balázs Rácz. Scaling link-based similarity search.

In Allan Ellis and Tatsuya Hagino, editors, Proceedings of the 14th in-

ternational conference on World Wide Web (WWW), pages 641–650,

2005.

[34] Yoav Freund. Boosting a weak learning algorithm by majority. Infor-

mation and Computation, 121(2):256–285, 1995.

[35] Yoav Freund and Robert E. Schapire. Experiments with a new boost-

ing algorithm. In Lorenza Saitta, editor, Proceedings of the Thirteenth

International Conference on Machine Learning (ICML), pages 148–156,

1996.

[36] Gunther Gediga and Ivo Duntsch. Rough approximation quality revis-

ited. Artificial Intelligence, 132:219–234, 2001.

[37] Chris Giannella and Edward Robertson. On approximation measures for

functional dependencies. Information Systems, 29(6):483–507, 2004.

[38] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating

web spam with trustrank. In Mario A. Nascimento, M. Tamer Özsu,

Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard

Schiefer, editors, Proceedings of the Thirtieth International Conference

on Very Large Data Bases (VLDB), pages 576–587, 2004.

[39] Siegfried Handschuh, Steffen Staab, and Raphael Volz. On deep annota-

tion. In Proceeding of the 12th World Wide Web Conference (WWW),

pages 431–438, 2003.

[40] G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge

University Press, 1952.

189

[41] Aboul-Ella Hassanien. Rough set approach for attribute reduction and

rule generation: A case of patients with suspected breast cancer. Jour-

nal of the American Society for Information Science and Technology,

55(11):954–962, 2004.

[42] S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learn-

ing databases, 1998.

[43] Shun ichi Amari. Integration of stochastic evidences by minimizing

α−divergence. Submitted, 2006.

[44] Hidehiko Ino, Mineichi Kudo, and Atsuyoshi Nakamura. Partitioning of

web graphs by community topology. In Allan Ellis and Tatsuya Hagino,

editors, Proceedings of the 14th international conference on World Wide

Web (WWW), pages 661–669, 2005.

[45] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[46] Jerzy W. Jaromczyk and Godfried T. Toussaint. Relative neighborhood

graphs and their relatives. Proceedings of the IEEE, 80:1502–1517, 1992.

[47] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context

similarity. In Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining (SIGKDD), pages

538–543, 2002.

[48] Thorsten Joachims. Making large-scale SVM learning practical. In

B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel

Methods - Support Vector Learning, chapter 11, pages 169–184. MIT

Press, Cambridge, MA, 1999.

190

[49] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning,

and Gene H. Golub. Exploiting the block structure of the web for com-

puting pagerank. Technical report, Stanford University, 2003.

[50] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Ra-

jagopalan, and Andrew S. Tomkins. The Web as a graph: Measurements,

models and methods. Lecture Notes in Computer Science, 1627:1–18,

1999.

[51] Risi Imre Kondor and John D. Lafferty. Diffusion kernels on graphs

and other discrete input spaces. In Claude Sammut and Achim G. Hoff-

mann, editors, Proceedings of the Nineteenth International Conference

on Machine Learning (ICML), pages 315–322, 2002.

[52] Marzena Kryszkiewicz. Rough set approach to incomplete information

systems. Information Sciences, 112:39–49, 1998.

[53] Marzena Kryszkiewicz. Rules in incomplete information systems. Infor-

mation Sciences, 113:271–292, 1999.

[54] S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew

Tomkins. Extracting large-scale knowledge bases from the web. In The

VLDB Journal, pages 639–650, 1999.

[55] S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew

Tomkins. Trawling the Web for emerging cyber-communities. Computer

Networks (Amsterdam, Netherlands), 31(11–16):1481–1493, 1999.

[56] John Lafferty and Guy Lebanon. Diffusion kernels on statistical mani-

folds. Journal of Machine Learning Research, 6:129–163, Jan 2005.

[57] Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El

Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semidefi-

nite programming. Journal of Machine Learning Research, 5:27–72, 2004.

191

[58] D. T. Lee and B. J. Schachter. Two algorithms for constructing a de-

launay triangulation. International Journal of Parallel Programming,

9(3):219–242, 1980.

[59] Tony T. Lee. An information-theoretic analysis of relational databases

part i: data dependencies and information metric. IEEE Transactions

on Software Engineering, 13(10):1049–1061, 1987.

[60] Yee Leung and Deyu Li. Maximal consistent block technique for rule

acquisition in incomplete information systems. Information Sciences,

153:85–106, 2003.

[61] Elizaveta Levina and Peter J. Bickel. Maximum likelihood estimation of

intrinsic dimension. In Sebastian Thrun, Lawrence K. Saul, and Bern-

hard Schölkopf, editors, Advances in Neural Information Processing Sys-

tems 16 (NIPS), 2004.

[62] David Liben-Nowell and Jon Kleinberg. The link prediction problem for

social networks. In Twelfth International Conference on Information and

Knowledge Management, pages 556–559, 2003.

[63] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of pre-

diction accuracy, complexity, and training time of thirty-three old and

new classification algorithms. Machine Learning, 40:203–228, 2000.

[64] Charles X. Ling, Qiang Yang, Jianning Wang, and Shichao Zhang. Deci-

sion trees with minimal costs. In Carla E. Brodley, editor, roceedings of

the Twenty-first International Conference on Machine Learning (ICML),

2004.

[65] Pawan Lingras and Yiyu Yao. Data mining using extensions of the rough

set model. Journal of the American Society for Information Science,

49(5):415–422, 1998.

192

[66] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash. Dis-

cretization: An enabling technique. Data Mining and Knowledge Dis-

covery, 6(4):393–423, 2002.

[67] C. R. MacCluer. The many proofs and applications of perron’s theorem.

SIAM Review, 42(3):487–498, 2000.

[68] F. Malvestuto. Statistical treatment of the information content of a

database. Information Systems, 11(3):211–223, 1986.

[69] Deba Prasad Mandal and C. A. Murthy. Selection of alpha for alpha-hull

in r2. Pattern Recognition, 30(10):1759–1767, 1997.

[70] David J. Marchette. Random Graphs for Statistical Pattern Recognition.

Wiley-Interscience, 2004.

[71] Klaus R. Müller, Sebastian Mika, Gunnar Rätsch, Koji Tsuda, and Bern-

hard Schölkopf. An introduction to kernel-based learning algorithms.

IEEE Transactions on Neural Networks, 12(2):181 – 201, March 2001.

[72] K.K. Nambiar. Some analytic tools for the design of relational database

systems. In Proceedings of the Sixth International Conference on Very

Large Databases, pages 417–428, Montreal, Quebec, Canada, 2000.

[73] M. E. J. Newman. Scientific collaboration networks. I. Network con-

struction and fundamental results. Physical Review E, 64(016131):1–8,

2001.

[74] Jens Nilsson, Fei Sha, and Michael I. Jordan. Regression on manifolds us-

ing kernel dimension reduction. In Proceedings of the 24th International

Conference on Machine Learning (ICML), Accepted, 2007.

[75] Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly.

Detecting spam web pages through content analysis. In Proceedings of

193

the 15th international conference on World Wide Web (WWW), pages

83–92, 2006.

[76] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical Report

Paper SIDL-WP-1999-0120 (version of 11/11/1999), Stanford Digital Li-

brary Technologies Project, 1999.

[77] Zdzislaw Pawlak. Rough sets-theoretical aspects of reasoning about data.

Dordrecht: Kluwer Academic, 1991.

[78] Zdzislaw Pawlak. Rough classification. International Journal of Human-

Computer Studies, 51:369–383, 1999.

[79] Zdzislaw Pawlak. Rough sets and intelligent data analysis. Information

Sciences, 147:1–12, 2002.

[80] Zdzislaw Pawlak. Rough sets, decision algorithms and Bayes’ theorem.

European Journal of Operational Research, 136:181–189, 2002.

[81] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–

106, 1986.

[82] J. Ross Quinlan. C4.5: Programs for machine learning. San Mateo:

Morgan Kaufmann, 1993.

[83] J. Ross Quinlan. Improved use of continuous attributes in c4.5. Journal

of Artificial Intelligence Research, 4:77–90, 1996.

[84] Steven Rosenberg. The Laplacian on a Riemmannian Manifold. Cam-

bridge University Press, 1997.

[85] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduc-

tion by locally linear embedding. Science, 290(22):2323–2326, Dec 2000.

194

[86] Salvatore Ruggieri. Efficient c4.5. IEEE Transactions on Knowledge and

Data Engineering, 14(2):438–444, 2002.

[87] Lawrence K. Saul and Sam T. Roweis. Think globally, fit locally: un-

supervised learning of low dimensinal manifolds. Journal of Machine

Learning Research, 4:119–155, Jun 2003.

[88] Robert E. Schapire. The strength of weak learnability. Machine Learning,

5:197–227, 1990.

[89] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels:

Support Vector Machines, Regularization, Optimization, and Beyond.

MIT Press, Cambridge, MA, USA, 2001.

[90] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point

cloud: from transductive to semi-supervised learning. In Luc De Raedt

and Stefan Wrobel, editors, Proceedings of the 22nd international con-

ference on Machine learning (ICML), pages 824–831, 2005.

[91] Bei Tang, Guillermo Sapiro, and Vicent Caselles. Direction diffusion. In

International Conference on Computer Vision (ICCV), pages 1245–1252,

1999.

[92] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global

geometric framework for nonlinear dimensionality reduction. Science,

290(22):2319–2323, Dec 2000.

[93] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-

Verlag New York, Inc., New York, NY, USA, 1995.

[94] Peter J. Verveer and Robert P.W. Duin. An evaluation of intrinsic di-

mensionality estimators. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 17(1):81–86, 1995.

195

[95] Pascal Vincent and Yoshua Bengio. Manifold parzen windows. In

Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Ad-

vances in Neural Information Processing Systems 15 (NIPS), pages 825–

832, 2003.

[96] Haixuan Yang, Irwin King, and Michael R. Lyu. NHDC and PHDC: Non-

propagating and propagating heat diffusion classifiers. In Proceedings

of the 12th International Conference on Neural Information Processing

(ICONIP), pages 394–399, 2005.

[97] Haixuan Yang, Irwin King, and Michael R. Lyu. Predictive ranking: a

novel page ranking approach by estimating the web structure. In Proceed-

ings of the 14th international conference on World Wide Web (WWW)

- Special interest tracks and posters, pages 944–945, 2005.

[98] Haixuan Yang, Irwin King, and Michael R. Lyu. Predictive random

graph ranking on the web. In Proceedings of the IEEE World Congress

on Computational Intelligence (WCCI), pages 3491–3498, 2006.

[99] Haixuan Yang, Irwin King, and Michael R. Lyu. Diffusionrank: A pos-

sible penicillin for web spamming. In Proceedings of the 30th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR), 2007.

[100] Haixuan Yang, Irwin King, and Michael R. Lyu. Heat diffusion classifiers

on graphs. Pattern Analysis and Applications, Accepted, 2006.

[101] Haixuan Yang, Irwin King, and Michael R. Lyu. The generalized depen-

dency degree between attributes. Journal of the American Society for

Information Science and Technology, Accepted, 2007.

196

[102] Yiyu Yao. Entropy Measures, Maximum Entropy and Emerging Appli-

cations, chapter Information-theoretic measures for knowledge discovery

and data mining, pages 115–136. Springer: Berlin, 2003.

[103] Yiyu Yao. Probabilistic approaches to rough sets. Expert Systems,

20(5):287–297, 2003.

[104] Dit-Yan Yeung and Hong Chang. A kernel approach for semisupervised

metric learning. IEEE Transactions on Neural Networks, 18(1):141–149,

2007.

[105] Raymond W. Yeung. A First Course in Information Theory. Kluwer

Academic Publishers, 2002.

[106] Jun Zhang and Vasant Honavar. Learning from attribute value tax-

onomies and partially specified instances. In Tom Fawcett and Nina

Mishra, editors, Proceedings of the Twentieth International Conference

on Machine Learning (ICML), pages 880–887, 2003.

[107] Wan Zhang and Irwin King. Locating support vectors via β-skeleton

technique. In Kunihiko Fukushima Soo-Young Lee Lipo Wang, Jagath

C. Rajapakse and Xi Yao, editors, Proceedings to the International Con-

ference on Neural Information Processing (ICONIP2002), pages 1423–

1427, 2002.

[108] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,

and Bernhard Schölkopf. Learning with local and global consistency. In

Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf, editors,

Advances in Neural Information Processing Systems 16 (NIPS), 2004.

[109] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning from

labeled and unlabeled data on a directed graph. In Luc De Raedt and

197

Stefan Wrobel, editors, Proceedings of the 22nd international conference

on Machine learning (ICML), pages 1036–1043, 2005.

[110] Dengyong Zhou, Bernhard Schölkopf, and Thomas Hofmann. Semi-

supervised learning on directed graphs. In Lawrence K. Saul, Yair Weiss,

and Léon Bottou, editors, Advances in Neural Information Processing

Systems 17 (NIPS), 2004.

[111] Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and

Bernhard Schölkopf. Ranking on data manifolds. In Sebastian Thrun,

Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural

Information Processing Systems 16 (NIPS), 2004.

[112] Xiaojun Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie

Mellon University. CMU-LTI-05-192, 2005.

[113] Hans-Jürgen Zimmermann. Fuzzy Set Theory and its Application.

Kluwer Academic Publishers, 2001.

198

