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Abstract of thesis entitled:
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for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in March 2015

With the rapid development of e-commerce websites, music and
video streaming websites and social sharing websites, users are fac-
ing an explosion of choices nowadays. The presence of unprece-
dentedly large amount of choices leads to the information overload
problem, which refers to the difficulty a user faces in understanding
an issue and making decisions that are caused by the presence of too
much information. Recommender systems learn users’ preferences
based on past behaviors and make suggestions for them. These sys-
tems are the key component to alleviate and solve the information
overload problem. Encouraging progress has been achieved in the
research of recommender systems from neighborhood-based meth-
ods to model-based methods. However, recommender systems em-
ployed today are far from perfect. In this thesis, we propose to im-
prove the recommender systems from four perspectives motivated
by real life problems.

First and foremost, we develop online algorithms for collabora-
tive filtering methods, which are widely applicable to recommender
systems. Traditionally batch-training algorithms are developed for
collaborative filtering methods. They enjoy the advantage of easy to
understand and simple to implement. However, the batch-training
algorithms fail to consider the dynamic scenario where new users
and new items join the system constantly. In order to make rec-
ommendations for these new users and on these new items, batch-
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training algorithms need to re-train the model from scratch. During
the training process of batch-training algorithms, all the data have
to be processed in each iteration. This is prohibitively slow given
the sheer size of users and items faced by a real recommender sys-
tem. Online learning algorithms can solve both of the problems by
updating the model incrementally based on a rating point.

Secondly, we question an assumption made implicitly by most
recommender systems. Most existing recommender systems assume
that the rating distribution of collected ratings and that of the unob-
served ratings are the same. Using data collected from a real life
recommender system, we show that this assumption is unlikely to
be true. By employing the powerful missing data theory, we develop
a model that drops this unrealistic assumption and makes unbiased
predictions.

Thirdly we examine the spam problem confronted by recom-
mender systems. The ratings assigned by spam users contaminate
the data of a recommender system and lead to deteriorated experi-
ence for normal users. We propose to use a reputation estimation
system to keep track of users’ reputations and identify spam users
based on their reputations. We develop a unified framework for
reputation estimation that subsumes a number of existing reputa-
tion estimation methods. Based on the framework, we also develop
a matrix factorization based method that demonstrates outstanding
discrimination ability.

Lastly, we integrate content-based filtering with collaborative fil-
tering to alleviate the cold-start problem. The cold-start problem
refers to the situation where a system has too little information con-
cerning a user or an item to make accurate recommendations. With
the readily available rich information embedded in review comments,
which are generally discarded, we can alleviate the cold-start prob-
lem. Additionally, we can tag the black box collaborative filtering
algorithm with interpretable tags that help a recommender system to
provide reasons on why items are being recommended.

ii



In summary, we solve some of the major problems faced by rec-
ommender systems and improve them from various perspectives in
this thesis. Extensive experiments on real life large-scale datasets
confirm the effectiveness and efficiency of proposed models.
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修讀學位 ：哲學博士 

摘要  ： 

隨着在線電子商務網站，音樂視頻網站和社會性共享推薦網

站的迅速發展，網站用戶面臨爆炸性增長的選擇。前所未見的大

量選擇導致信息過載問題。信息過載問題是指由於存在數量巨大

的信息，用戶不能有效的理解並做出選擇的問題。推薦系統是解

決信息過載問題的一個關鍵組成部分。過去數十年，推薦系統技

術有了長足的進步。研究重點又基於臨近用戶的方法向基於模型

的方法過度。然而，推薦系統仍然不夠成熟完善。在本論文中，

我們基於真實生活中遇到的問題提出改善推薦系統的方法。 

首先，我們提出推薦系統的在線學習算法。傳統推薦系統使

用批量式學習算法進行訓練。這些方法容易理解並且容易實現。

然而批量式學習算法不能有效應對當今推薦系統所面臨的動態情

況。新的用戶和新的物品不斷加入推薦系統。在批量式學習算法

框架下，要將這些新用戶新物品納入系統，需要對所有數據進行

重新學習。另外，在批量式學習算法的每一個步驟中，我們需要

處理所有的數據。在現今推薦系統規模下，這通常是非常耗時的。

在線學習算法可以通過對每一個數據點調整模型而解決上述兩個

問題。 

其次，我們深入調查大量推薦系統所作的一個假設。該假設

默認推薦系統蒐集的打分數據的分佈和未蒐集到的打分數據的分

iv



佈是完全一致的。我們使用在真實推薦系統中蒐集的數據證明這

個假設極不可能爲真。使用丟失數據理論的方法，我們提出一個

不基於改假設的模型。我們的模型放棄了這個假設並且能夠得到

公正的推薦。 

再次，我們詳細調研推薦系統中的垃圾用戶問題。垃圾用戶

的打分會污染正常用戶的數據並導致正常用戶的體驗受到影響。

我們提出使用用戶聲譽系統去記錄用戶的聲譽並利用用戶的聲譽

去區分垃圾用戶和正常用戶。我們提出一個聲譽生成系統的框架。

許多聲譽生成系統是我們聲譽生成系統框架的一個實做。基於該

框架，我們還提出一個基於矩陣分解的用戶聲譽生成系統。該系

統擁有出衆的分辨垃圾用戶的能力。 

最後，我們將基於內容的推薦和協同過濾推薦有機結合以便

減輕乃至解決冷啓動問題。冷啓動問題是指推薦系統中關於某個

用戶或物品的信息是如此之少以至於系統不能對該用戶或改物品

做出有效的推薦。用戶的文字性評價中通常包含大量用戶喜好和

物品屬性信息。但用戶的文字性評價通常都被直接丟棄。我們提

出一個同時使用基於內容的方法去處理用戶文字性評價信息，使

用協同過濾方法處理用戶打分的整合式推薦模型。我們的模型能

有效減輕冷啓動問題的影響並且對黑盒協同過濾算法提供可理解

的詞彙標籤。這些標籤有助於幫助推薦系統提供推薦的原因。 

綜上所述，在本論文中我們解決了推薦系統面臨的實際問題

並從各個方面對傳統推薦系統進行改進。大量真實數據上的實驗

驗證我們提出方法的有效性和高效性。 
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Chapter 1

Introduction

With the rapid development of e-commerce websites, online mu-
sic and video streaming services and online social network, we are
facing an explosion of choices nowadays. We often have trouble
deciding which movie to watch, which book to read, which course
to take and where to go for a travel. We are drowning in the over-
whelming choices, i.e., we are beset with the information overload
problem [83]. The information overload problem refers to the dif-
ficulty a person face in understanding a topic and making decisions
caused by the presence of too much information. Recommender
systems are the key component to alleviate and ultimately solve the
information overload problem [2].

In the past decades, recommender systems have improved no-
ticeably to produce more accurate recommendations, accommodate
more users and items, and help users locate interesting products [80,
114, 115, 121, 116, 56, 58]. However, recommender systems are far
from perfect. They are unable to handle new users and new items
joining the system gracefully without re-training the whole system,
struggle to offer recommendations for cold users and are ignorant
of rich information embedded in the response patterns and review
comments and easily manipulated by spam users. In this thesis, we
present four studies on improving recommender systems from dif-
ferent perspectives.

We provide a brief introduction to recommender system in Sec-
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tion 1.1, motivating the problems that are faced by recommender
systems in Section 1.2. We introduce our contribution in Section 1.3
and present an overview of the thesis in Section 1.4.

1.1 Recommender System

A recommender system is an information filtering system that col-
lects users’ preferences over time and try to make predictions on
which items that a user might like in the future. They are especially
useful for users facing too many choices and help users make better
decisions. Recommender systems can vary considerably according
to the form of data collected, the underlying principals employed
and the potential applications. We are going to discuss each of these
factors and how they impact the recommender systems.

1.1.1 Data Collection

Various forms of data can be collected and used for recommendation
purpose. Often recommender systems are tailored for one specific
type of data.

Click Through Data

The most basic type of data that could be useful for a recommender
system is the click through data. Given many hyperlinks on a web-
page, a user is most likely to click the links according to his/her
preferences. Shown in Figure 1.1 is the resulting page of googling
the word “apple”. There are many hyperlinks in this result page and
whether a user clicks a link or not and the order of the user’s click
matters. This kind of data can be collected to better predict what the
user wants. A user searching for “Apple” might want to buy a new
Apple product such as iPhone or iPad. He could also simply want to
know more about the fruit apple, although this is much less likely.
Such click through data collected can be used to build a user model
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Figure 1.1: Result of Googling “Apple”

to provide suitable advertisement for this user, which in essence is
a kind of recommendation. It can also be used to make the search
result more suitable for the user. For example, if we know that a
user is the owner of a large apple farm, then the result when the user
searches for the word “apple” should be more on the fruit apple. On
the contrary, for an ordinary user, the result should be the result as
shown in Figure 1.1.

The click through data might have other very similar forms that
are essentially the same. For example, for TV programs, a user
watching a program can be seen as having “clicked” the program. In
an online book sharing and recommendation website, a user might
declare that he/she has read a set of books, which can be seen as
having the user “clicked” the books.

Click through data has two distinct features. The first one is that
click through data are binary that a link can either be clicked or not
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clicked, a TV program can either be watched or not watched, a book
can either be read or not read. The binary feature makes the data to
have no indication of the level of fondness. The second feature is
that the links not clicked do not necessarily mean the user does not
like the corresponding item. It is possible that the user might have
overlooked this item.

Rating Data

The second type of data that are suitable for use in recommender
systems is rating data. This type of data is the prevailing form that is
used for today’s recommender system. In online e-commerce web-
sites such as Amazon1, eBay2 or dedicated recommendation web-
sites such as IMDb3 or Douban4, users can assign an integer score
for items listed in the website to indicate their feedback on these
items. The range of integer rating is mostly pre-defined and differ-
ent from site to site. Shown in Figure 1.2 are the users’ ratings on an
earphone in the rating format on Amazon. As we can see, the rating
range in Amazon is 5 and the average rating for this particular ear-
phone is 4.3 out of 5. The rating indicates how much a user likes the
item. Take 5-scale rating for example, a rating of 1 or 2 might mean
that the user is not satisfied with the item and considers it below the
average. A rating of 3 might indicate that the user thinks the item is
mediocre. A rating of 4 could mean that the user is quite satisfied
with the item, though there is room for improvement. A rating of 5
could mean that the user finds the item perfect and is very satisfied
with it.

As we can see, the data collected in rating format, different from
the click through data, are on a predefined ordered range. Rating
data also have two distinct features. The first one is that rating data

1http://www.amazon.com
2http://www.ebay.com
3http://www.imdb.com
4http://www.douban.com
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Figure 1.2: Rating feedback

are ordered. At least for the same user, he/she most likely prefers
the item that was assigned a high rating. However, this rule does not
generalize to multiple users since different users have different in-
terpretations of the ratings. For example, a stern user might be very
conservative that he/she seldom assigns the rating 5 to any item. For
this user, any item has room for improvement. On the contrary, an-
other optimistic user might never use the ratings below 3 and he/she
would assign 4 or 5 for most items. The second feature is that unlike
click through data, in which we do not know the user’s preference
on a not clicked item, we know exactly how a user likes an item once
the item is rated. We are not only getting the preferred items (i.e.,
those items with high ratings) but also the disliked items (i.e., those
items with low ratings).

Due to the innate richer features of rating data, this form of data
is preferred when performing recommendation task. However, there
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are also drawbacks of rating data. The first one is the choice of the
range faced by the developer of the website. If the range is too small,
we may not know the preference of a user to the granularity we
desire. If the range is too large, users may exhibit inconsistent rating
behavior. For example, given a range of 100, it’s very hard for a user
to tell the difference between say, 90 and 91, which might cause the
user to rate inconsistently throughout time and thus violate the first
feature of rating data. The second problem is the difficulty faced
by the end user. To assign a rating in a pre-defined range is harder
than giving a binary response, especially when the range is large. A
user might have trouble maintaining the consistency over time. The
particular rating might be affected by the mood, the weather and the
time of the decision. Due to the above problems, rating range is
generally quite small, usually 3, 5, 6, or 10.

Thumb Up/Down Data

Due to the difficulty of rating data discussed in the previous section,
a new format of data was made popular by the online social net-
work website Facebook5, which is the thumb up/ thumb down data,
or simply the like/dislike data. Shown in Figure 1.3 are the icons
used by Facebook to indicate like and dislike. This form of data
is similar to the click through data except one major difference. In
click through data, we do not know the preference of the not clicked
items while the dislike button is a clear indication of preferences.
The like/dislike data is also binary with no granularity of fondness
available. The like/dislike data is not unique to Facebook. Other
websites have similar mechanism. For example, shown in Figure 1.4
is the Thumb Up/ Thumb Down feedback available in the popular
video streaming website YouTube6.

The thumb up/down data can be seen as either binary or ternary,
depending on whether no response is seen as a response or not. If

5www.facebook.com
6www.youtube.com
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Figure 1.3: Like/Dislike

we are sure that a user has inspected an item yet not responded,
then this behavior can be seen as an indication of neutrality toward
the item. This might be the case of YouTube, where the site knows
whether the streaming of the video has begun or not and how long
the user stayed watching the video. On the other hand, in the case
of Facebook, a no response can be interpreted the same as the click
through data. The user might be neutral toward the item or never
paid attention to it.

However, Facebook tends to hide the thumb down button on their
website recently and this reduces the thumb down data to the click
through data. Although in click through data we might have invalid
clicks and the thumb up is much less likely to be invalid. The de-
cision to hide the thumb down button might be due to the concern
of hurting the feelings of the users who shared the item. Google
provided a similar “plus one” button in Google Plus7, another social
network website.

7http://plus.google.com



CHAPTER 1. INTRODUCTION 8

Figure 1.4: Like/Dislike in YouTube

Description/Review Data

The data format that we discussed so far can be collectively called
“numerical response data”, in which a user indicates the fondness
toward an item directly through action that can be represented as an
integer (be it a 0/1 or on a ordered range). There are other formats
of data that are also suitable for recommendation tasks. These for-
mats of data, unlike the numerical response data, can be classified
as description data. Meta data of a movie such as director, actors,
actresses, genre, text content of a book, raw wave of a song, text of a
news report, etc. are all in broad sense, description of items. In addi-
tion, text reviews that are usually collected alongside the rating data,
also describe the items and users’ interests. Even the video content
of a movie or TV series can also be taken as description data.

One property of such description data is that usually the data is
hard to use directly in a recommender system. There are so many
different kinds of such data. The music information embedded in
a wave file, the video contents of a movie, the text of a book are
all very different data formats and each of them requires carefully
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devised methods to handle. Even if we can parse the content data
of items, how to match it with the taste of a user is another chal-
lenge. As far as we know, there is no single method that can take all
formats of the above-mentioned description data and conduct mean-
ingful recommendation.

Although the information embedded in video or image is hard
to harness, the well-developed natural language processing tech-
niques enable us to utilize the information in text format. The re-
view data is an ideal text format that is suitable for recommender
systems. Like the rating data, the review data contains information
on both the properties of an item as well as the preferences of a user.
These review text are readily available in a lot of recommender sys-
tems. Refer to Figure 1.2, we see that alongside the rating, we are
also equipped with users’ description of their experience on the pur-
chased item. These reviews are usually based on personal feelings
such that it not only depicts the item from the user’s perspective but
also gives us a hint on the preferences of the user who wrote the
review. This could be a powerful source of information for a recom-
mender system. Recently, there have been several works attempting
to combine the collective power of ratings and reviews to improve
the recommender system. In this thesis, we refer to review data as
textual comments or textual-based content of items, that is, we con-
sider only text as review data.

1.1.2 Assumptions

For a recommender system to work, we need to make a few assump-
tions based on which we can predict the preferences of a user. We
avoid using the work “principles” here because these assumptions
are often subjective and not everyone agrees with them. However,
without making assumptions, it is impossible to make any recom-
mendation. We describe two assumptions that are made by most
works in recommender systems and justify them.
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Preference Consistency Through Time

The first assumption we made in recommender systems is that most
users’ preferences are more or less consistent throughout a short pe-
riod of time. In other words, if a user enjoys a certain type of music
today, we assume that she will enjoy the same genre in the near
future. This assumption is needed so that the collected past informa-
tion can be utilized to produce recommendations for the future. If all
users change their preferences, there is no way for a recommender
system to make any meaningful recommendations. Please note that
the assumption is made on the whole user base instead of a particu-
lar user. Another point is that the consistency is assumed for at least
a short period of time. Only for those users who do not change their
preferences dramatically over a period of time can we utilize their
collected preferences in that period to produce recommendations.

In real life scenarios, users do change preferences throughout
time. The change might due to the awareness of new things, change
of attitude etc. In a recommender system, we usually decay the
weight of old data and place more weight on the recent data. In
this way, we can keep the recommender system up to date.

Preference Consistency Across Users

Another assumption made in most recommender systems is that users
who shared preferences in the past tend to share similar preferences
in the future. This assumption may have different expressions. For
example, the following two assumptions are in essence the same.

• Items liked by a user tend to be enjoyed by the users similar to
the user.

• The user-item-rating matrix is not a full rank matrix.

The user-item-rating matrix is a way of organizing the collected rat-
ing data in the form of a sparsely filled matrix. The ith row and jth
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column of the matrix contains the rating assigned by user i to item
j.

This assumption is the key to power many recommender system
methods. Without this assumption, the modeling of a user’s prefer-
ence would be independent of data collected from other users. In
such situation, since every item is independent of one another, we
can only leverage past behavior of the user to predict his/her prefer-
ences, which is hard due to the limited data. With this assumption,
we assume that there is a low-rank structure of the user item rating
matrix and mathematical techniques can be used to fill this matrix
and thus make recommendations.

1.1.3 Applications

Recommender systems have wide applications in many online ser-
vices. Depending on the scenario, a recommender system can be
installed in movie or music streaming or recommendation websites,
E-commerce websites, social sharing websites and content subscrip-
tion services.

Movie and music recommendation are one of the most studied
areas of recommender systems. There are dedicated recommenda-
tion websites such as Internet Movie Database (IMDb) and Movie-
Lens 8, where the main purpose is to share knowledge about watched
movies and discover new interesting movies. Users pay a subscrip-
tion fee or watch ads in video streaming services such as Netflix9

and YouTube10. For these websites, recommender systems, whose
performance has huge impact on the potential income, play a vital
role. Music recommendation is another major testbed for recom-
mender systems. Online music streaming services, such as Spo-

8http://movielens.org
9http://www.netflix.com

10http://www.youtube.com
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tify11, LastFM12, Pandora13 and iTunes, usually provide services
such as instance mix, which select songs that are similar to a given
song and make a playlist and artist recommendations. These web-
sites usually adopt a subscription business model and a good user
experience is key for the business to survive, which can be greatly
affected by the quality of recommendations. Recommender systems
in movie and music recommendation can collect data in the rating,
implicit and sometimes review format. The rating format is usually
a 5-scale star rating provided by user. Implicit feedbacks are more
common in music streaming websites, where a user might listen to
a song, an album or an artist many times without providing any rat-
ing feedback. These feedbacks can be categorized into the click
through data. Review data are more universal in movie recommen-
dation sites, where the user would describe the feeling of watching
a movie and sharing knowledge on the movie.

E-commerce websites are another major user of recommender
systems. E-commerce websites such as Amazon14 and Taobao15

have personalized recommendations based on a user’s past purchase
history, rating data and review data. Shown in Figure 1.5 is a screen
shot of Amazon’s recommendations. Compared with movie and mu-
sic recommendations, recommendations in E-commerce are differ-
ent in the following ways. First, the items in movie and music rec-
ommendations are homogeneous while the items in an E-commerce
website might fit in a complex taxonomy. Secondly, the number of
items in movie and music recommendations is on a different (much
smaller) scale compared with E-commerce websites. Take music
recommendation for example, if we only consider artists, then there
are only about thousands or tens of thousands of artists to consider
while on a typical large online E-commerce website, the number of

11http://spotify.com
12http://lastfm.com
13http://pandora.com
14http://www.amazon.com
15http://www.taobao.com
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Figure 1.5: Recommendations of Amazon

items could be as large as millions. Thirdly, unlike movie and mu-
sic preferences, where a user’s preferences are unlikely to change
dramatically in a short period of time, purchase behaviors on an E-
commerce website are dependent on the nature of the item itself. For
example, some consumer products such as food, drinks and other
consumables might have a repeated purchase pattern while the pur-
chase of other items such as TV, piano, are one-time events.

Social sharing websites are a blend of social network and item
recommendations. Famous social sharing websites include Douban16

and Epinions17. Different from traditional recommender system web-
sites where users are all independent, in social sharing websites,
users can have strong (friend) or weak (follow) relationships and
they share views and feelings on items. In Douban, the items are of-
ten movies, music and books while on Epinions the items are often
consumer products and electronic devices. The social information
presented in such websites may help them to recommend more ac-
curately potentially interesting items to relevant users.

Recently we have seen a rise in online content subscription ser-
vices. Yahoo18 provides personalized news services for registered

16http://www.douban.com
17http://www.epinions.com
18http://www.yahoo.com
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users. Feedly19 is an RSS content subscriber with personalized rec-
ommendations. Toutiao20 is a personalized news website in China.
All these websites provide different content for users based on their
past reading history and habits and are attracting more and more
users compared with traditional non-personalized news websites.
Toutiao claims it has over 50 million active users. The distinct fea-
ture of the recommender systems used in such websites is their abil-
ity to handle cold-start items. Unlike movie recommendation, where
a movie can receive a lot of ratings before it was recommended to a
potential user, in content subscription services, the items to recom-
mend are breaking news that have no or little previous data and thus
the cold-start is a severe problem.

We provided a few examples where recommender systems have
been successfully applied and played a pivot role, but the above list
is by no means a complete list of all applications of recommender
systems.

1.2 Improving Recommender Systems

Although recommender systems have evolved considerably in the
past decades, there are still several problems that are confronted by
today’s recommender systems. These problems affect the perfor-
mance and effectiveness of recommender systems. The problems
we consider in this thesis include the following:

1. Most existing model-based recommender systems are trained
using batch-training algorithms. Batch-training algorithms are
not suitable for the dynamic scenario faced by recommender
systems today. New users and new items join the system con-
stantly. To incorporate these new users and new items, batch-
training algorithms have to re-train the model. Besides, batch-

19http://www.feedly.com
20http://www.toutiao.com
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training algorithms are relatively slow and the training in large
real life systems can be prohibitive.

2. Most model-based recommender systems are trained by feed-
ing the ratings assigned by users. The trained model is then
used to predict the score that users would assign to the un-
inspected items to make recommendations. However, there is
an implicit assumption made by this paradigm of recommen-
dation, which is that the rating distribution of the collected rat-
ings and the unknown ratings are the same. Without this as-
sumption, the predictions produced by a recommender system
would be systematically biased. This assumption may not hold
in real systems because users do filter what items to rate and
what items not to rate. For example, users might rate items
they like or hate with very high probability and only rate items
they find mediocre occasionally. In other words, the fact that
an item is rated by a user alone, irrelevant of the rating assigned
by the user, contains information on how the user prefers this
item. Failing to consider such response patterns can lead to
biased and incorrect prediction and recommendation.

3. As is in any real life system, the spam user problem is faced by
recommender systems. There are evidences showing the exis-
tence of spam users [41]. The ratings assigned by spam users
have malicious purpose and they contaminate the data collected
by the recommender system. The malicious ratings assigned by
spam users affect the normal functioning of recommender sys-
tem and lead to deteriorated experience of normal users. Iden-
tifying spam users and eliminating their impact on the system
is a serious problem faced by most commercial recommender
systems.

4. Cold-start [118] problem refers to the situation where the rec-
ommender system has too little information concerning a user
or an item that it cannot make recommendations accurately.
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This problem can lead to deteriorated experience for new users.
Also it makes the recommendation of new items very hard. In
applications such as news recommendation, where all items are
“cold”, the problem is fatal. Also, recommender systems with
collaborative filtering make recommendation using a black-box
algorithm and the system does not provide reasons as to why
the items are recommended. The reason for recommendation
can help users decide whether to take further actions and im-
prove user experience in using the system.

In this thesis, we present studies that improve recommender sys-
tems by solving the above mentioned problems. To solve the first
problem, we develop online learning algorithms that can accommo-
date new items and new users easily. To solve the second problem,
we employ the powerful missing theory and incorporate it with col-
laborative filtering to make predictions without bias. To solve the
third problem, we propose a unified framework for user reputation
estimation that subsumes many existing reputation estimation meth-
ods, and propose matrix factorization based methods that show out-
standing discrimination ability. To solve the fourth problem, we pro-
pose to combine content-based filtering with collaborative filtering
to exploit the combined power of rating data and review data.

1.3 Thesis Contribution

In this thesis, we make contributions to improve recommender sys-
tems in the following ways:

1. Online collaborative filtering
Collaborative filtering (CF), aiming at predicting users’ un-
known preferences based on observational preferences from
some users, has become one of the most successful methods
for building recommender systems. Various approaches to CF
have been proposed in this area, but seldom do they consider
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the dynamic scenarios: 1) new items arriving in the system,
2) new users joining the system; or 3) new rating updating the
system are all dynamically obtained with respect to time. To
capture these changes, we develop an online learning frame-
work for collaborative filtering. Specifically, we construct this
framework consisting two state-of-the-art matrix factorization
based CF methods: the probabilistic matrix factorization and
the top-one probability based ranking matrix factorization. More-
over, we demonstrate that the proposed online algorithms bring
several attractive advantages: 1) they scale linearly with the
number of observed ratings and the size of latent features; 2)
they obviate the need to load all ratings in memory; 3) they
can adapt to new ratings easily; and 4) they present sparse
solutions by explicitly imposing specific regularizations. Fi-
nally, we conduct a series of detailed experiments on real-world
datasets to demonstrate the merits of the proposed online learn-
ing algorithms under various settings.

Practically, the online learning algorithms attain impressive per-
formance to their batch ones while achieving some properties,
e.g., sparse solutions. In practice, our online algorithms achieve
comparable results as batch-training algorithm very quickly while
attaining some additional features, i.e. a sparse solution.

2. Response aware collaborative filtering
Previous work on recommender systems mainly focus on fitting
the ratings provided by users. However, the response patterns,
i.e., some items are rated while others not, are generally ig-
nored. We argue that failing to observe such response patterns
can lead to biased parameter estimation and sub-optimal model
performance. Although several works have tried to model users’
response patterns, they miss the effectiveness and interpretabil-
ity of the successful matrix factorization collaborative filtering
approaches. To bridge the gap, we unify explicit response mod-
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els and PMF to establish the Response Aware Probabilistic Ma-
trix Factorization (RAPMF) framework. We show that RAPMF
subsumes PMF as a special case. Empirically we demonstrate
the merits of RAPMF from various aspects.

3. User reputation estimation
Online rating systems are now ubiquitous due to the success of
recommender systems. In such systems, users are allowed to
rate the items (movies, songs, commodities) in a predefined
range of values. The ratings collected can be used to infer
users’ preferences as well as items’ intrinsic features, which are
then matched to perform personalized recommendation. Most
previous work focuses on improving the prediction accuracy or
ranking capability. Little attention has been paid to the prob-
lem of spammers or low-reputed users in such systems. Spam-
mers contaminate the rating system by assigning unreasonable
scores to items, which may affect the accuracy of a recom-
mender system. There are evidences supporting the existence
of spammers in online rating systems. Reputation estimation
methods can be employed to keep track of users’ reputation
and detect spammers in such systems. We propose a unified
framework for computing the reputation score of a user, given
only users’ ratings on items. We show that previously proposed
reputation estimation methods can be captured as special cases
of our framework. We propose a new low-rank matrix factor-
ization based reputation estimation method and demonstrate its
superior discrimination ability.

4. Combine ratings with reviews
Most existing recommender systems focus on modeling the rat-
ings while ignoring the abundant information embedded in the
review text. We propose a unified model that combines content-
based filtering with collaborative filtering, harnessing the infor-
mation of both ratings and reviews. We apply topic modeling



CHAPTER 1. INTRODUCTION 19

techniques on the review text and align the topics with rating
dimensions to improve prediction accuracy. With the informa-
tion embedded in the review text, we can alleviate the cold-start
problem. Furthermore, our model is able to learn latent topics
that are interpretable. With these interpretable topics, we can
explore the prior knowledge on items or users and recommend
completely “cold” items. Empirical studies on 27 classes of
real-life datasets show that our proposed model lead to signifi-
cant improvement compared with strong baseline methods, es-
pecially for datasets which are extremely sparse where rating-
only methods cannot make accurate predictions.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2
In this chapter, we review the background knowledge of recom-
mender systems, reputation estimation in online rating systems
and topic modeling. More specifically, we introduce content-
based filtering and collaborative filtering. We focus more on
collaborative filtering, which is the dominating method in rec-
ommender systems nowadays. We briefly survey rating ori-
ented methods and ranking oriented methods, neighborhood-
based methods and model-based methods.

• Chapter 3
In this chapter, we examine the batch-training method for col-
laborative filtering, which requires all the data presented be-
fore the training. Incremental changes to the training data re-
quire re-training from scratch. This batch-training paradigm
does not fit in today’s dynamic scenarios where new users and
new items keep joining the system. To solve the problem, we
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develop online learning methods for Probabilistic Matrix Fac-
torization and Ranking Matrix Factorization, which take a sin-
gle data point at a time and update model parameters according
to that data point. Our online learning methods are much faster
at training and accommodate the dynamic case. We show the
effectiveness of our online learning algorithm on large real life
datasets.

• Chapter 4
In this chapter, we take a close look at an assumption made
by most work in collaborative filtering, which is that the rating
distribution of the observed ratings are the same as the under-
lying rating distribution. Using real data collected from Yahoo
Music, we show that it is highly possible that the assumption
does not hold in real recommender systems and show mathe-
matically that failing to consider such discrepancy between the
two distributions could lead to biased and incorrect predictions
in recommendation. Equipped with missing data theory, we de-
velop a matrix factorization method that drops the incorrect as-
sumption. Empirical studies on the Yahoo Music dataset show
that our method performs much better under a more realistic
setup.

• Chapter 5
Spam users are becoming a more and more serious problem
in online rating systems. Spam users’ motivation includes pro-
moting certain items while suppressing other items, which could
be financially rewarding in markets such as AppStore. A user
reputation estimation system can be employed to track the rep-
utation of users and identify spam users. Excluding the con-
taminated ratings assigned by spam users from the system al-
low recommender systems to make more accurate recommen-
dations. In this chapter, we propose a user reputation estima-
tion framework in online rating systems, where a lot of pre-
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vious methods can be subsumed as instances. Based on the
framework, we also propose a matrix factorization based user
reputation estimation method, which shows improved discrim-
ination power under various spamming strategies.

• Chapter 6
Review comments complement rating data in a lot of online
rating systems, but the review data are generally discarded de-
spite the rich information they contain. In this chapter, we pro-
pose a model that exploits the information in both the rating
data and review data. When the data are extremely sparse, the
review data contains information that can help alleviating the
cold-start problem and allow us to make better recommenda-
tions for new users and new items. In addition, with combined
power of ratings and reviews, we can learn the physical mean-
ing of the latent topics. This allows us to recommend items
with reasons, which helps users understand why these items
are recommended.

• Chapter 7
The last chapter summarizes this thesis and addresses some re-
search directions that can be explored in the future.

To make the chapters self-contained, we briefly reiterate the criti-
cal definitions and models that are related in the following chapters.

2 End of chapter.



Chapter 2

Background Study

In this chapter, we introduce the background knowledge on recom-
mender systems, reputation estimation and topic modeling. We re-
view both content-based filtering, which makes recommendation by
analyzing the content of the item and match it with the interests of
users, and collaborative filtering, in which we analyze the past rat-
ing behavior of users on items to discover users’ interest, items’ fea-
tures and match them to make recommendations. These two topics
together describe the recommender systems. We review traditional
methods of reputation estimation in online rating systems and its
close relationship with recommender systems. We explore more on
reputation estimation in Chapter 5. Topic modeling refers to the
area of study that tries to discover topics or themes from text. Topic
modeling has wide application in automatic text clustering, summa-
rization.We will apply topic modeling techniques to review text in
Chapter 6 and combine it with collaborative filtering to improve rec-
ommender systems.

This chapter is organized as follows. In section 2.1, we briefly
talk about the classification of recommender systems and the basic
working principles of each type. In section 2.2, we briefly introduce
content-based filtering methods and their applications in news and
music recommendation. In section 2.3, we present a detailed survey
on collaborative filtering techniques, covering neighborhood-based
methods as well as model-based methods. In section 2.4, we briefly

22
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talk about existing work on reputation estimation in online rating
systems and Lastly in section 2.5, we review several topic model-
ing methods that have wide applications in text classification and
content-based filtering.

2.1 Recommender systems

Recommender systems are a subclass of information filtering sys-
tem that seek to predict the rating or preference that a user would
assign to an item so that given a user, the system can make recom-
mendations on which items to inspect.

According to the way recommender systems work, they can broadly
be classified into two types: content-based filtering [103] and col-
laborative filtering.

Content-based filtering recommends an item to a user by match-
ing up the features of the item with the preferences of the user, both
of which are learnt by analyzing the contents and profiles. The fea-
tures of the content as well as the preferences of the user have to be
learnt. This is usually very hard because the inherent diversity of
contents of items. Content-based filtering has been successfully ap-
plied in areas such as news recommendation [72, 55, 105] and music
recommendation [20, 123].

Collaborative filtering (CF), on the other hand, approaches the
recommendation problem by analyzing the co-occurrence patterns
of user-item pair, which is often attached with an integer rating.
There are extensive investigations on collaborative filtering, from
neighborhood-based methods [117, 65] to model-based methods [57,
115]. Recently, some methods concentrated on ranking [59, 110] the
items better. Other approaches leveraged social [81, 82] and side in-
formation [136] to improve the performance.
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2.2 Content-based filtering

Content-based filtering techniques approach the recommendation prob-
lem by analyzing the contents of items and match the features of the
item with the preferences of a user. There are three major compo-
nents in a content-based filtering system [78].

• Content Analyzer
This is the module that perform pre-processing step that trans-
forms the raw content of an item (e.g. text, wave, video content)
into structured relevant information, usually in the form of fea-
ture representation. For example, text can be represented as
keyword vectors, topic distributions or TFIDF1.

• Profile Learner
This component collects data concerning the past preference
history of a user and construct a user profile that is suitable
for recommending items of the format produced by the content
analyzer. The user profile could be a prototypical item fea-
ture vector that is most representative of the user’s preferences.
For example, a naive strategy to generate a user profile could
be the average features of the items liked by the user in the
past. In real systems, the items liked and disliked by a user are
considered to produce a prototypical item feature that is most
representative of the user.

• Filtering Component
This component is in charge of producing a relevance score
for items given a user, based on the items’ features and user
profile. The relevance score could be a binary relevance or an
integer indicating the level of match. For naive user profile
approach, the relevance score could be the similarity between
the item feature and the prototypical item feature representing

1Term Frequency-Inverse Document Frequency, which is a numerical static that is intended to
reflect how important a word is to a document in a corpus
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the user. Similarity measure can be cosine similarity, Pearson
Correlation Coefficient or other similarity measures. We defer
the introduction to similarity measure methods to section 2.3,
where we will investigate how to measure the similarity of two
vectors in a general setting.

Compared with collaborative filtering, content-based filtering en-
joys the following advantages.

• User Independence
In content-based filtering methods, the build of a user’s pro-
file does not depend on other users’ behavior. User profile is
build based solely on this user’s past preference histories. This
separation of concern allows parallel construction of user pro-
file in large clusters simultaneously. Whereas in collaborative
filtering, every user’s past preference histories has impact on
the system and parallel learning algorithms is not a trivial task.
Given the large user base in online service providers, ease of
parallel implementation could be a huge plus.

• Explainability
Another advantage enjoyed by content-based filtering is that
usually they can provide explanations on why certain items are
recommended. For example we recommended a news article
on Health Care Act to a user who is an avid reader on public
health policy related article. In traditional collaborative filter-
ing, the recommendations for a user are produced by a black-
box algorithm that has no explanations. Explanation on why a
particular item is recommended can help user decide whether
to take further actions.

• New Items
In Chapter 1, when we introduced the applications of recom-
mender systems, we mentioned that news recommendation has
the distinct feature of extremely large set of items and break-
ing news has no previous ratings. Content-based filtering is
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well suited for this situation. To recommend a news article,
in content-based filtering, we analyze the content of the article
and match it with the preferences of a user, without the need
to collect users’ ratings on this article. Note that collaborative
filtering methods cannot recommend an item who received no
ratings.

Nonetheless, content-based filtering has several downsides.

• Domain Dependent
Content analyzer of a content-based filtering system usually
involves domain dependent experts who select and devise the
features suitable for the description of the items. For example,
the features used for music recommendation are very different
from the features used for news article recommendation. In
addition, the content analyzer usually requires domain knowl-
edge. For example, content-based music recommendation of-
ten extract features related to instrumentation, rhythm and har-
mony from music audio signals, which require an expert in au-
dio wave analysis as well as in music comprehension.

• Over-Specialization
Another drawback of content-based filtering is its inability at
discovering new unexpected items. This drawback is inherent
in the way the content-based filtering operates. The system is
only able to find items that are highly correlated with a user’s
profile. This problem is known as serendipity problem, which
refers to the situation where a recommender system can only
produce recommendations with limited degree of novelty. Take
news article recommendation for example, a content-based fil-
tering system can only recommend politics related article to a
user who has only read politics related articles. The user may
as well be interested in sports but the system is never going to
recommend sports related articles due to the lack of previous
data. In collaborative filtering, this problem is much less sev-
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erer because as long as a similar user has expressed interests in
other fields, items in those fields can be potential recommenda-
tions.

• New Users
Content-based filtering solves half of the cold-start problem be-
cause it can recommend items with no previous ratings. How-
ever, similar to collaborative filtering, content-based filtering is
unable to handle the new users which has no or few preferences
available. With no or few previous preferences, we cannot con-
struct a reliable user profile, a key component in successful rec-
ommendation.

2.2.1 State-of-the-Art Content-based Filtering Systems

Content-based filtering, due to its unique advantages, has seen wide
application in news recommendation [72, 55, 105] and music rec-
ommendation [20, 123].

For personalized news recommendations, content-based filtering
has been adopted in personal news agents [9], news reader for wire-
less devices [23, 50] and web-based news aggregators [8]. These
systems build user profiles based on information collected from past
preference histories or explicit feedback during an interactive ini-
tialization step. In [8], the authors let the users select a set of key-
words describing their interest when they first join the system and
then refined through users click behavior during the use of the rec-
ommender system. In a recent study, the authors of [72] improved
Google News recommendation by analyzing users’ click behavior.
The news articles are classified into categories (using topic modeling
or available meta data) and user profile is built as a Bayesian model
of click probability given the category of the news article. The fil-
tering component is implemented as the probability of the user click
the news article using the learnt news classification and user specific
click probability.
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Music recommendation is another area where content-based fil-
tering has wide adoption. Using collaborative filtering alone in mu-
sic recommendation may lead to a few problems. The similarity
recommendations created using collaborative filtering do not neces-
sarily correspond to actual musical similarity. They are subject to
popularity bias [19]. Domain specific knowledge exists that allow
us to analyze the music audio content of a song to discover mu-
sic features such as instrumentation, rhythm and harmony. These
features are more suitable at finding similar songs from musical per-
spectives. Most studies [6, 39, 18, 19, 20, 123] in content-based
music recommendation focus on content analyzer component of the
content-based filtering.

2.3 Collaborative filtering

Collaborative filtering, unlike content-based filtering which use con-
tent analyzer to construct items features and match them with a
user’s profile to make recommendations, rely solely on the past rat-
ings assigned by users to items. In collaborative filtering, we try to
extract intrinsic insights such as users who buy diaper often buy beer
at the same time, be it explicit such as the ones in neighborhood-
based methods or implicit ones as is in model-based methods. The
working mechanism of collaborative filtering is best explained as is
in user-based methods. In user-based methods, we analyze the sim-
ilarities between users according to the past ratings they assign to
items. If two users tend to assign similar ratings to co-rated items,
then we consider the similarity between them is high. Then in or-
der to make recommendations for one of the users, we take the item
set that the other user assigned a high rating and select those that
the first user has not inspected before. The assumption made by this
simple method is that users who shared similar tastes in the past tend
to have similar preferences in the future.

Historically, collaborative filtering starts with neighborhood-based
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(also known as memory-based) methods, which directly manipulate
the known ratings to predict the unknown ratings. In neighborhood-
based methods, the similarity between users (or items) are calculated
using the raw ratings and then a weighted average of other users’
(items’) ratings are calculated as the predicted rating that a user
(item) would assign (receive). Although simple to interpret and easy
to implement, neighborhood-based methods are often sub-optimal in
prediction accuracy and time consuming to make a prediction. Col-
laborative filtering methods have shifted from neighborhood-based
methods to model-based methods. Successful model-based meth-
ods include Probabilistic Latent Semantic Analysis, Matrix Factor-
ization based methods, etc.

In the following of this section, we first describe the notations
that will be used throughout this thesis and then define the problem
of (rating oriented) collaborative filtering. We then review some of
the most important work in collaborative filtering, including both
neighborhood-based methods and model-based methods.

2.3.1 Notations and Problem definition

The notations used in this thesis are described as follows. Please
note in later chapters, we may define additional notations when needed
in context to better describe the model. Suppose that we are given
a set of N users U = {u1, u2, · · · , uN} and a set of M items I =
{i1, i2, · · · , iM}. Users’ rating on the items are arranged in aN×M
matrix R where entry ru,i denote the rating that user u gives to item
i and ru,i = 0 if u have not rated i. The set of all items that user u
have rated is denoted by Iu and the set of all users who have rated
item i is denoted by Ui. Alternatively, we denote the set of all ob-
served triplet (u, i, r) ∈ Q, where u is the user id, i is the item id
and r is the rating given by u to i. The whole set is denoted by Q.
Other notations used which are model specific will be discussed in
the context.
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Given M,N,R or M,N,Q, which are equivalent, rating oriented
collaborative filtering tries to produce prediction for the rating that
is likely to be assigned to i by u, i.e. ru,i. We denote the prediction
by r̂u,i. Instead of giving prediction of ratings, ranking oriented col-
laborative filtering output a rank π of the items in decreasing order
of preference.

2.3.2 Neighborhood-based methods

Neighborhood-based methods manipulate the ratings assigned by
users directly in making predictions. Currently there are rating-
oriented methods, which try to minimize squared error between pre-
diction and true rating, and ranking-oriented methods, which try to
rank the items in correct order. For rating-oriented approaches, user-
based methods [14, 43] and item-based methods [30, 65, 117] are
mostly studied. They utilize similar users’ and similar items’ rat-
ings to make prediction, respectively. User based methods take the
weighted average of the ratings assigned by a set of neighbor users
who share similar tastes in the past as the predicted rating. The
weight is determined by the similarity between active user and his
neighbor user. More accordant ratings that a neighbor user assigned
with the active user, more weight this user’s rating would carry when
predicting the rating for active user. Item based methods make the
observation that a user tends to assign similar ratings to similar
items. Weighted average of the active user’s past ratings is taken
as the prediction. Popular similarity measure of users and items
include Pearson Correlation Coefficient (PCC) [113], Vector Simi-
larity (VS) [14] and Adjusted Vector Similarity (AVS) [117]. PCC
similarity generally attains better accuracy for user based methods
because it is in essence a normalized correlation measure, which de-
scribes the kind of similarity we seek for. Sarwar et al. reported [117]
that AVS in item based methods can achieve better performance than
user based methods while promoting efficiency since we usually
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have far more users than items. Due to their simplicity, these meth-
ods are very popular and are applied widely in commercial web-
sites [65, 113].

Besides rating-oriented methods, Liu et al. proposed [74] a pair-
wise ranking-oriented method called EigenRank, and reported it at-
tains more credible ranking scores. It computes an active user’s pair-
wise preferences over all items based on the neighbor users’ prefer-
ences in a way that is analogous to user based methods. Similarities
between users are measured using Kendall Rank Correlation Coeffi-
cient (KRCC) [85], which considers only pairwise preference. Then
these pairwise preferences are fused to produce a rank of items in de-
creasing order of preference. Liu et al. reported [74] that EigenRank
attains more credible ranking score than rating-based methods.

Although memory-based methods are easy to implement and un-
derstand, they impose several limitations. First, the accuracy of
memory-based approaches is often sub-optimal [46, 76, 114]. On
top of that, they are susceptible to the data sparsity problem because
in order to measure the similarities, two users need to rate at least
some items in common. Furthermore, as they manipulate the rat-
ings directly, the time complexity and memory consumption can be
potentially very expensive. Finally, they solve the problem heuristi-
cally without clearly maximizing or minimizing an objective [46].

We now take a deeper look at user-based methods and item-based
methods.

User-based methods

In user based methods, the unknown ratings r̂u,i’s is predicted using
a set of other users’ rating for item i. Let su,v denote the similar-
ity measure between u and v. We defer the discussion of various
similarity measures to later part of this section. For now, let us as-
sume that we have similarity measure that would assign larger value
for a pair of users who share more interests in common. Then the
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prediction can be calculated as:

r̂u,i =

∑
v∈Nu∩Ui

su,v · rv,i∑
v∈Nu∩Ui

su,v
. (2.1)

Note, in equation 2.1Nu is the set of all neighbor users of user u and
Ui is all the users who have rated i.

Equation 2.1 gives a simple method to calculate the prediction.
However, there are several issues associated with this method, which
we will now explain.

The first problem is that users may have very different rating be-
haviors. A conservative user might never give more than 3 while an
optimism user would rate the items on the scale from 3 to 5. That is,
the ratings given by a user could be biased. It is easy to see that the
simple user based method could give rating prediction wildly devi-
ate from the true rating. As a simple solution for this is to adjust
a user’s ratings with his mean rating [14, 113]. This would give a
slightly modified prediction:

r̂u,i = r̄u +

∑
v∈Nu∩Ui

su,v · (rv,i − r̄v)∑
v∈Nu∩Ui

su,v
. (2.2)

In equation 2.2, r̄u denotes the mean ratings given by u. Note that
this equation only considers the rating behavior problem in the pre-
diction phase. However, to obtain a good result, the similarity mea-
surement should also take this problem into consideration.

Instead of using the simple approach given in equation 2.2, sev-
eral different approaches have been proposed to alleviate the bias
problem by normalizing the rating prior the similarity calculation.
Jin et al. proposed a technique to normalizing the user ratings based
on the halfway accumulative distribution [74, 53].

Another problem associated with user based approach is that the
user item rating matrix R is usually very sparse. This could lead to
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serious problems. First of all, fewer ratings can lead to poor sim-
ilarity measure. Consider two users who happened to rate an item
with the same score and no other co-rated items. This will lead to a
large similarity measure between these two users in most of the sim-
ilarity measure methods. These two users could have very different
tastes about other items and they just happen to assign this item the
same rating. So in summary, the first problem caused by sparse user
item rating matrix is randomness in similarity measure. The second
problem associated with data sparsity is that we may end up with
no candidate rating in the known dataset to make prediction for cer-
tain entries. Consider the case when Nu ∩ Ui is ∅, obviously we
cannot make prediction for u’s rating for i. Goldberg et al. use di-
mensionality reduction method to alleviate this problem [38]. Other
data smoothing techniques have also been proposed targeting at this
problem [130, 79].

Item-based methods

Another type of approach that utilizes similarity measure is item-
based methods. In item-based approaches, we calculate the similar-
ities between items and make prediction for a user based on his past
rating on similar items. The intuition is that users would assign sim-
ilar scores for similar items. In application scenarios such as movie
or book recommendation, there are generally much less items than
users, item-based methods are less prone to data sparsity problem
than user-based methods. This is because similarities between items
can be calculated more accurately since items are much less likely
to be rated by only a few users. The chance that two items happen
to share only a few similar ratings is small. Predictions are made in
a similar fashion as is in user-based methods:

r̂u,i =

∑
j∈Ni∩Iu

si,j · ru,j∑
j∈Ni∩Iu

si,j
. (2.3)
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In equation 2.3, si,j denotes the similarity between i and j. Ni is all
the neighbor items of i and Iu is all the items that u have rated. Note
that this item based prediction is also more robust against the bias
problem. This is because only u’s past ratings are used to predict
the score that u would assign to i. So the prediction given by equa-
tion 2.3 is well adapted to u’s bias. Sarwar et al. have reported [117]
that item based method could give more accurate prediction. As a
side bonus, item based methods are usually more efficient than user
based methods [117].

EigenRank

Both user-based methods and item-based methods are rating ori-
ented methods and they output a rating for each user item pair. We
now review a ranking oriented method called EigenRank, which out-
puts a ranking π of the items for a given user. EigenRank [74] adopt
a method that is essentially neighborhood-based, i.e. utilizing neigh-
bor users’ rating directly.

The advantages of ranking oriented approach are briefly talked
about in Chapter 1. Liu [77] categorized learning to rank into point-
wise, pair-wise and list-wise approaches. Point-wise approach cor-
responds to calculate a ranking score for each item and then rank the
items using these ranking score. This is in essence rating oriented
methods in collaborative filtering. As is pointed out, evaluation for
traditional rating oriented methods is how well the predicted rat-
ing matches the true rating. Popular evaluation methods that serve
this purpose include MAE and RMSE, which we introduce later.
However, methods targeting at the rating prediction problem alone
could obtain suboptimal ranking even though it might perform well
in rating evaluation metric. That is, the rating metric is hard to inter-
pret directly as the ranking quality. Rating metric and ranking met-
ric are correlated but are not monotonically correlated. Pair-wise
method usually has a preference function defined for each pair of
items. EigenRank is a pair-wise learning to rank method. When
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trying to produce a ranking for a specific user, a pair-wise method
would have to consider all the possible pair-wise preference for the
user. The computation complexity is O(M 2), where M is number
of items in the system. This can be very slow in practice and does
not scale well to large datasets. However, pair-wise methods can
give better ranking result than point-wise methods and thus is worth
studying. List-wise approaches usually involve a ranking model that
assigns a score to a ranking of items (permutation) according to a
predefined mathematical form. We consider one such model-based
list-wise approach in later part of this section.

Preference function To model user’s preference over different items,
we define a preference function Ψ : I × I → R. Ψ(i, j) > 0
means that user prefer i to j and the magnitude |Ψ(i, j)| denotes the
strength of this preference. Ψ(i, j) = 0 then indicates that there is
no preference between i and j. We dictate that Ψ have the follow-
ing additional properties for easier mathematical manipulation: Ψ
should be anti-symmetric, i.e. Ψ(i, j) = −Ψ(j, i). Ψ(i, i) = 0 for
all i ∈ I . However, Ψ does not have to be transitive, i.e. Ψ(i, j) > 0
and Ψ(j, k) > 0 does not imply Ψ(i, k) > 0. Note that the last
properties follow the work [34].

Having stated the desired properties of a preference function, we
can now relate this definition to the collaborative filtering problem.
For each user u, we have a list of rated items Iu and their corre-
sponding ratingsRu. That a higher rating for i than j, i.e. ru,i > ru,j,
should serve as an evidence that user u prefer i to j. Since we do not
have all the rating information for all items, we leverage the ratings
assigned to the item pairs by neighboring users. The fundamental
idea here is the same as is in user-based methods. We use u’s neigh-
boring users’ ratings on i and j as an estimation of the preferences
of u on i and j. This observation leads to the following definition of
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Ψ in collaborative filtering:

Ψ(i, j) =

∑
v∈N i,j

u

su,v · (rv,i − rv,j)∑
v∈N i,j

u

su,v
(2.4)

The N i,j
u denotes u’s neighbors who have rated both i and j. So in

effect, we are taking the weighted average of neighbors’ preference
as u’s preference.

Objective function Equipped with the definition of the preference
function Ψ, we now define the objective function O for a rank ρ.
Intuitively we want to choose a ranking ρ so that it agrees with the
preference function Ψ as much as possible. Let ρ(i) be the position
of item i in the rank ρ. So that ρ(i) < ρ(j) means i is ranked higher
than j. Then the objective function O, which measure how well the
ranking ρ agrees with Ψ can be defined as:

OΨ(ρ) =
∑

i,j:ρ(i)<ρ(j)

Ψ(i, j). (2.5)

Following this definition, we want to find ρ∗ that maximize O, that
is:

ρ∗ = argmaxρOΨ(ρ). (2.6)

Solving this problem in equation 2.6 exactly has been proved to be
NP-complete problem[26] based on reduction from Cyclic-Ordering
problem[36]. We now show two methods proposed in [74] to solve
this problem heuristically.

Greedy algorithm The greedy algorithm for solving 2.6 appeared
first in [26]. Its complexity is linear with the number of items M .
But the preference for each possible item pair still needs to be calcu-
lated. So the overall time complexity is still O(M 2). The algorithm
is given in Algorithm 1. This greedy algorithm assigns a utility value
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Algorithm 1 Greedy Order
for all each i ∈ I do
π(i) =

∑
j∈I Ψ(i, j)−

∑
j∈I Ψ(j, i)

end for
while I is not empty do
t = argmaxi∈Iπ(i)
ρ̂(t) = |I|
I = I − t
for all each i ∈ I do
π(i) = π(i) + Ψ(t, i)−Ψ(i, t)

end for
end while

π for each i ∈ I . This could be interpreted as the overall preference
of i compared to all other items. So a higher π(i) would imply that
user prefers i to other items. The algorithm works by selecting the
item t with the largest π(t) value and then eliminates the effect of t
from all the following πs. As this is done for all items, we would ob-
tain a ranking of items i ∈ I . Cohen et al. analyzed the performance
of this algorithm and proved that a ranking ρ̂ produced by this algo-
rithm is within a factor of 2 of the optimal, i.e. OΨ(ρ̂) ≥ 1

2O
Ψ(ρ∗)

in [26].

Random walk algorithm In this section, we introduce another method
to solve the optimization problem in Eq. 2.6 that is proposed by Liu
et al. in [74]. Different from the greedy ordering approach that tries
to define a utility value for each item and then rank the items ac-
cordingly, random walk algorithm tackles this problem from another
perspective. Inspired by PageRank[15], the random walk algorithm
takes the ranking problem as a Markov Chain where the states cor-
respond to the items and the transition probability depends on user’s
preference function Ψ.

Markov chain model is a tool that is used a lot in machine learn-
ing and it is very effective at aggregating partial ordering informa-
tion to produce an overall rank. If we define the states of the Markov
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chain to be the items to be ranked, we could model the preference
of the items by the stationary distribution overall the items. That is,
the more probable the stationary state is at i, the more likely that
user would prefer i. The transition from i to j, p(j|i) is governed
by user’s preference on j over i. In other words, the more that a
user prefers j, the more likely it is for the state to transit from i to j
so that the stationary distribution probability for j would be higher.
Then the ranking procedure could be seen as a random walk on this
Markov chain and the stationary distribution explains user’s pref-
erence over the items. This is intuitively appealing in the sense that
the most preferred an item is, the more frequent that user would visit
that state.

We want to define transition probability depending on the pref-
erence function Ψ. Since Ψ could give negative values, we should
filter this preference value through a function that always gives pos-
itive values. It turns out that exponential function is a good choice.
We define the transition probability from i to j to be

p(j|i) =
eΨ(j,i)∑

j′∈I
eΨ(j′,i)

. (2.7)

Let P be the transition probabilities denoted in matrix form, where
each entry Pi,j is the transition probability p(j|i). Define πt =
[pt(1), pt(2), · · · , pt(m)] to be the distribution at step t, where pt(i)
denote the probability of being at item i at step t. Then πt’s can be
calculated iteratively using the following update formula

πt+1 = πtP. (2.8)

The stationary distribution π∗ can be computed as π∗ = limt→∞ πt.
Note that π is guaranteed to converge to a unique stationary distri-
bution given that P is an irreducible and aperiodical. However, the
mixing time, i.e. the steps needed until converge, is unknown be-
forehand. Alternatively we can calculate the eigenvalues and eigen-
vectors associated with P and the principle eigenvector would be
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the stationary distribution π∗. However, eigenvector calculation for
a large matrix is a computation demanding operation. So in prac-
tice, we would simply compute π using the equation 2.8 and watch
for convergence.

To avoid the reducibility of P and improve numerical stability,
the author of EigenRank adopted a trick used in PageRank, which in-
terpolates a “teleport” probability matrix E with the transition prob-
ability P . E = evT/n where e is the vector with all components
equal to 1 and v is a personalization vector. The new transition prob-
ability is defined as:

P̄ = ε · E + (1− ε) · P (2.9)

where ε is a scalar parameter controlling the mixing proportion. The
intuition of adding E is that users do not have to jump to a state
i from current state j following the probability p(j|i). He could
also change state to j by “teleporting” to i, following the probability
defined in v. The personalization vector v = [pu(1), · · · , pu(m)] for
each u is defined based on his known ratings on the items

pu(i) =


eru,i−r̄u

1+
∑
i∈Iu e

ru,i−r̄u if i ∈ Iu
1

n−|Iu| ·
1

1+
∑
i∈Iu e

ru,i−r̄u otherwise.
(2.10)

Following the definition 2.10, the higher the rating ru,i that u assign
to i, the more probable that user would teleport to i, thus increasing
the stationary distribution at i. For the unknown ratings, the teleport
probability is evenly distributed.

Similarity measure

One of the most important factors that affect the result of memory
based methods for collaborative filtering is how the similarity be-
tween users or items is measured. In this part, we review several
useful similarity measures and discuss their merits and drawbacks.
Note that the similarity measure is between two vectors.
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Ideally, for similarity between two users, two vectors both of
length M are used as input. However, in collaborative filtering, it is
often the case that not all of the entries for both vectors are known.
In fact, it may even be the case where only a few entries of these
two vectors are known. Note that we now face the choice of two
possible input vectors. One is to fill all the unknown entries with
0 and then measure the similarity between these two length M vec-
tors. Another choice is to select the entries that both users have rated
and use these two shortened vectors as the input vectors.

In collaborative filtering, we generally use the second approach.
The first approach would overestimate the similarity between two
vectors because of the filled entries are all 0 and this is generally
not desirable. The problem associated with the second approach is,
however, the impact of sparsity problem is more severe. Take the
user similarity for example, only the items that are rated by both
users can be used as input. Given that there might be thousands of
items to rate while users generally rate only a few items, the number
of items that two users rate in common could be very small. This
is essentially data sparsity problem. One extreme case would be
two users only rate one item in common. If these two users hap-
pen to give the same ratings for this item, their similarity would be
1. It could be the case that these two users are indeed share com-
mon interests. However, there is also a possibility that they are have
quite different tastes and in this case, the similarity is overestimated
and could lead to inaccurate predictions. We defer the discussion of
possible methods to alleviate this problem to later parts. We now in-
troduce various similarity measures. We assume that we are talking
about user similarity unless otherwise specified.

Pearson Correlation Coefficient Pearson correlation coefficient (PCC)
is a similarity measure between two vectors. In essence, it measures
the correlation between two vectors with respect to the product of
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Figure 2.1: Pearson correlation coefficient

their standard deviation. In our setting, it is defined as following:

su,v =

∑
i∈Iu∩Iv

(ru,i − r̄u)(rv,i − r̄v)[ ∑
i∈Iu∩Iv

(ru,i − r̄u)2
∑

i∈Iu∩Iv
(rv,i − r̄v)2

]1/2
. (2.11)

From the definition in equation 2.11, we see that PCC measure the
adjusted correlation between two vectors. If two vectors were not
correlated, their PCC would be 0. However, refer to Figure 2.12,
we see that the reverse is not always true. Note that on the third
row of figure 2.1, there is correlation between the datasets but the
correlation would still be 0. PCC is a widely used measurement for
calculating user similarities in neighborhood-based methods. PCC
alleviates the bias problem by adjusting ratings with their mean.

Vector similarity Vector similarity is also known as cosine similarity.
It measures the cosine value of the angle between two vectors in high

2This figure is adopted from Wikipedia, http://en.wikipedia.org/wiki/Pearson product-
moment correlation coefficient



CHAPTER 2. BACKGROUND STUDY 42

dimensional space. Its definition is given in equation 2.12

su,v =

∑
i∈Iu∩Iv

ru,i · rv,i[ ∑
i∈Iu∩Iv

r2
u,i

∑
i∈Iu∩Iv

r2
v,i

]1/2
. (2.12)

This is essentially the dot product divided by the product of the
lengths vectors.

Adjusted vector similarity Adjusted vector similarity is the cosine
similarity adjusted with the mean. It has been shown that adjusted
vector similarity is the most effective measure in item based meth-
ods [117]. It is computed as:

su,v =

∑
i∈Iu∩Iv

(ru,i − r̄i) · (rv,i − r̄i)[ ∑
i∈Iu∩Iv

(ru,i − r̄i)2
∑

i∈Iu∩Iv
(rv,i − r̄i)2

]1/2
. (2.13)

Similar to PCC, adjusted vector similarity alleviate bias problem by
adjusting ratings with their mean.

Kendall Rank Correlation Coefficient Similarity measurements discussed
so far, including PCC, cosine and adjusted cosine similarity, are all
rating based measure. Liu et al. proposed to use a ranking oriented
similarity measure in Eigenrank. The motivation to use a ranking
oriented measure in ranking oriented methods is to produce more
accurate similarity measure and is more robust against bias problem.

Consider the ratings that two users u and v assigned to a set of
items. Suppose u assigned {3, 5, 4} and v assigned {1, 4, 2}. The
ratings assigned are different for the same item by u and v. How-
ever, in terms of preference, we see that both users prefer item 2 to
3 to 1. If we could model the similarity between u and v using rank-
ing, we would be able to retain the information that they have very
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similar preference even though their rating behavior is quite differ-
ent. Kendall rank correlation coefficient (KRCC) [85] is a ranking
similarity measure that could serve our purpose:

su,v = 1−
4×

∑
i,j∈Iu∩Iv

I−((ru,i − ru,j)(rv,i − rv,j))

|Iu ∩ Iv| · (|Iu ∩ Iv| − 1)
. (2.14)

I− here is an indicator function defined as:

I− =

{
1 if x < 0

0 otherwise.
(2.15)

KRCC can be intuitively interpreted as a value that discounts a spe-
cific value for each pair of items on which u and v do not agree.
As long as the preference is the same, KRCC will not discount the
value.

2.3.3 Model-based methods

Model-based approaches provide a systematic way to train a prede-
fined compact model in the training phase that explains observed rat-
ings, which is then used to make predictions. Usually, model-based
collaborative filtering methods can achieve better performance [114].
There are both rating-oriented methods [46, 80, 104, 114, 115, 121]
and ranking-oriented methods [76, 121]

Methods falling into this category include Aspect Model [46],
Bayesian Networks [104], and Matrix Factorization (MF) based ap-
proaches [80, 114, 115, 121]. The state-of-the-art model-based meth-
ods include restricted Boltzmann machines [116], SVD++ [56, 58],
Probabilistic Matrix Factorization (PMF) [114], and multi-domain
collaborative filtering [137], graphical models [52], pair-wise tensor
factorization [111], and matrix factorization with social regulariza-
tion [82], etc. Aspect model, also known as Probabilistic Latent Se-
mantics Analysis (PLSA) is a community-based model. It models
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an active user’s behavior as a mixture of latent communities’ behav-
iors to which the user belongs, according to the mixing proportions.
The mixing proportions that a user belongs to each latent commu-
nity as well as communities’ rating behaviors are inferred during
training phase. Unknown rating can then be predicted efficiently af-
terwards. Matrix factorization based methods use low-rank matrix
to approximate user item rating matrix. The underlining assumption
is that user’s behavior is determined by only a few factors that affect
his/her preferences. Correspondingly, item have features indicating
to what extent these factors affect this item. Matrix factorization
based methods are less prone to sparseness problem and scale bet-
ter to large datasets. They approach the problem by learning two
low-rank matrices, one captures users’ latent features and the other
capture items’ latent features. A linear model of these two matri-
ces is fitted to the observed ratings. Prediction is then made using
the recovered matrix obtained from the product of the two learned
matrices. Due to their success in prediction, variants of MF-based
collaborative filtering methods have been developed [112]. Most of
previously proposed model-based methods are rating-oriented. They
try to fit the observed ratings directly as close as possible so as to
make good prediction for the unseen ratings. However, an essential
objective of recommender systems is to rank the items according to
users’ preferences and then to present the top-N list to users. They
do not directly solve the ranking problem. To remedy this shortcom-
ing, several ranking-oriented methods are proposed. To address the
ranking problem directly, several ranking-oriented models have been
proposed. Probabilistic Latent Preference Analysis (PLPA) [76] is
a pairwise model-based method extended from Aspect Model. It
also assumes that user’s behavior is determined by the mixture of
latent communities that user belongs to. For each community, pair-
wise preferences over all items are modeled using Bradley-Terry
model [49, 85]. For an active user, a ranking is produced as a fusion
of the pairwise preferences. List-wise MF-based method using top-
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one probability [22] has been proposed recently [121]. It employs
cross entropy as the loss function to measure divergence between
ranking distributions defined on observed ratings and on predictive
ratings.

Model-based methods hold several appealing properties. First,
they often have a clear interpretation. Secondly, once trained, they
can produce predictions much more efficiently compared with memory-
based methods, which is very importance to commercial applica-
tions such as online E-commerce websites. Finally, we are able to
gain specific insights concerning the community structure in several
latent feature-based methods. Model based methods utilize statis-
tical techniques to build a compact model. In neighborhood-based
model, when predicting a rating, we might need all known ratings
in order to calculate similarity and make prediction. That is, all the
known ratings have to be remembered to make a prediction. On the
contrary, in model based methods, the can roughly divide the whole
procedure into two phases. In the first phase, we utilize known rat-
ings to train a compact model that explains the observation. In the
second phase, we use the trained model to produce predictions. In
previous section, we see that neighborhood-based methods are not
very efficient when making prediction because of the similarity com-
putation requires O(N 2) for user based methods and O(M 2) for
item based methods. For EigenRank, it is even worse because we
have to calculate pairwise preference for every user, which requires
O(NM 2) time complexity. This could be prohibitive for large on-
line recommender system like Amazon or IMDB, which have tens of
millions of users and tens of thousands of items. On the other hand,
model-based methods are usually very efficient at making predic-
tions once the model has been built. Most computation sink is on
the training phase.

In the following, we will discuss two rating oriented model and
two ranking oriented model.
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Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) [114] is one of the state-of-
the-art methods in rating oriented collaborative filtering. It is named
so because it decompose the user item rating matrix R into the prod-
uct of two latent feature matrices U and V . Let R be N ×M matrix,
whereN is the number of users andM is the number of items. Then
U is a K ×N matrix and V is a K ×M matrix. PMF tries to find U
and V so that UTV recovers R the best. Latent user feature matrix
U models users’ latent preferences. A column Uu is the latent fea-
ture for user u. Similarly V models items’ latent features. Column
vector Vi is the latent item feature for item i.

Model assumption In PMF, we adopt a probabilistic model that ex-
plains the observation ratings. We assume that the observed rating
ru,i is drawn from a Gaussian distribution with mean UT

u Vi and vari-
ance σ2. Thus the conditional probability of observing R given U
and V would be:

p(R|U, V, σ2) =
N∏
i=1

M∏
j=1

[
N (Ri,j|UT

i Vj, σ
2)
]Ii,j

, (2.16)

whereN (x|µ, σ2) is Gaussian distribution with mean µ and variance
σ2. Its definition for scalar valued variable is given as

N (x|µ, σ2) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
. (2.17)

Ii,j in Eq. 2.16 is an indicator function which gives 1 if i have rated
j and 0 otherwise. We also place 0 mean spherical Gaussian priors
[114, 32, 124] on U and V :

p(U |σ2
U) =

N∏
i=1

N (Ui|0, σ2
U) (2.18)
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p(V |σ2
V ) =

N∏
j=1

N (Vj|0, σ2
V ) (2.19)

Model posterior Given the definition of p(R|U, V, σ2), p(U |σ2
U) and

p(V |σ2
V ), we can write the posterior probability of the parameter

U and V as proportional to the product of conditional probability
p(R|U, V, σ2) and the prior probability p(U |σ2

U), p(V |σ2
V ):

p(U, V |R, σ2, σ2
U , σ

2
V ) ∝ p(R|U, V, σ2)p(U |σ2

U)p(V |σ2
V ). (2.20)

Following Eq. 2.20, the log likelihood of the posterior can be written
as:

ln p(U, V |R, σ2, σ2
U , σ

2
V )

=− 1

2σ2

N∑
i=1

M∑
j=1

Ii,j(Ri,j − UT
i Vj)

2 − 1

2σ2
U

N∑
i=1

UT
i Ui −

1

2σ2
V

M∑
j=1

V T
j Vj

(2.21)

− 1

2

( N∑
i=1

M∑
j=1

Ii,jln σ2 +KN ln σ2
U +KM ln σ2

V

)
+ C,

where C is a constant that do not depend on input parameters. Max-
imizing the loglikelihood defined in Eq. 2.21 is equivalent to mini-
mizing the following loss:

L =
1

2

N∑
i=1

M∑
j=1

Ii,j(Ri,j − UT
i Vj)

2 +
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F . (2.22)

The first term of Eq. 2.22 is the Root Mean Squared Error (RMSE)
for all the observed ratings unnormalized. In Eq. 2.22, λU = σ2/σ2

U

and λV = σ2/σ2
V and ‖ · ‖F denote the Frobenius norm. This loss

function is unnormalized RMSE (first term) plus regularization term
(second and third term) to avoid over-fitting.
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Model inference The objective function in training phase is to mini-
mize the loss defined in Eq. 2.22. The dot product UT

i Vj breaks the
convex property ofL and global minima is not achievable in general.
However, by employing optimization methods such as gradient de-
scend we can approach a local minimum. First compute the partial
derivative of L with respect to U and V

∂L
∂Ui

=
M∑
j=1

Ii,j(U
T
i Vj −Ri,j)Vj + λUUi, (2.23)

∂L
∂Vj

=
N∑
i=1

Ii,j(U
T
i Vj −Ri,j)Ui + λV Vj. (2.24)

Fix a learning rate η, we can use the following update formula to
iteratively refine U and V :

U t+1
i = U t

i − η
∂L
∂U t

i

, (2.25)

V t+1
j = V t

j − η
∂L
∂V t

j

. (2.26)

Time complexity is linear with the number of observed ratings for
one iteration in update. In practice, it takes dozens of iterations to
converge to a local minimum. Compared with neighborhood-based
methods, the training of PMF is very efficient.

Rating prediction Once the model is trained, predictions are calcu-
lated as dot production of two vectors:

r̂u,i = UT
u Vi. (2.27)

Note that r̂u,i is the expected value of ru,i, i.e. r̂u,i = E[ru,i], under
PMF’s model assumption.
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Extensions In practice, instead of fitting U and V to the user item
rating matrixR, we can filter the dot productUT

u Vj through a logistic
function. Useful function would be logistic sigmoid function g =
1/(1 + exp(−x)). Filter through this function would always give
output in (0, 1). In order for PMF to be able to fit the observations,
we should map the observed ratings in R from [1, D] to the interval
[0, 1] and t = (x− 1)/(D − 1) does the trick.

Since PMF give very accurate rating prediction, there have been
several follow up works that try to extend PMF to more general as-
sumptions or incorporating more information.

Bayesian Probabilistic Matrix Factorization (BPMF) [115] is a
Bayesian treatment of PMF. In PMF, the prior of U and V is spher-
ical Gaussian. That is, the covariance is of the form σ2I where I
is the identity matrix. Here the assumption is that the correlation
is 0, which is not always true. BPMF generalize PMF by placing a
Gaussian-Wishart prior on the user and movie hyperparameters and
thus obtain a Bayesian model. However, this generalization makes
the model significantly more complex and becomes intractable to
solve. So the Salakhutdinov et al. proposed to use Markov Chain
Monte Carlo to do the inference.

Other extensions to PMF include incorporating side information,
for example social network information. Here we can do so because
we have latent user feature matrix U . So we can utilize U to explain
users’ relationship on social network. If two users share similar in-
terests, they are more likely to be friends. There are methods that
leveraged social [81, 82] and side information [136] to improve the
performance. The basic idea is to decompose user item rating matrix
R and trust social matrix using the same latent user features U .

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (pLSA) [45] is a popular
model that has seen wide adoption in topic modeling field. Hofmann
adopted it to the collaborative filtering problem[46]. To explain the
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observed ratings, a latent class variable z is introduced and the prob-
ability of observing a rating ru,i is decomposed into:

p(ru,i) =
K∑
z=1

p(ru,i|i, z)p(z|u). (2.28)

This model makes the assumption that each user u is distributed on
K latent class (community) according to his interests. And the rating
that u would assign to i is the weighted average of class behavior.
The latent variable z can be interpreted as community in user movie
scenario. For example, some users may be fond of Sci-Fi movies
and in general assign high ratings to such movies. These users are
mainly recognized as belonging to Sci-Fi community. This could be
well modeled in pLSA by assigning a large probability p(z|u) to z,
which corresponds to Sci-Fi community. And p(r|z, i) are modeled
in such a way that it assigns high ratings to Sci-Fi movies.

Model assumption In pLSA, we assume that the probability that la-
tent class z assign item i rating r following a Gaussian Distribution
N (r|µzi, σ2

zi). µzi ∈ R and σ2
zi ∈ R+ are Gaussian mean and vari-

ance. User mixing probability p(z|u) follows categorical distribu-
tion:

K∑
z=1

p(z|u) = 1. (2.29)

Based on these assumptions, the log likelihood of all the observed
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ratings is:

L =
∑

(u,i)∈R

log (p(ru,i|u, i)) (2.30)

=
∑

(u,i)∈R

log
( K∑
z=1

p(ru,i|z, i)p(z|u)
)

=
∑

(u,i)∈R

log
( K∑
z=1

N (ru,i|µzi, σzi)p(z|u)
)
.

Model inference Given the definition of the log likelihood, for pLSA
to best explain all the rating observed so far, we want to maximize
L as is defined in Eq. 2.30. Note that maximizing L directly is in-
tractable due to the sum inside the log, which cannot be reduced al-
thoughN belongs to exponential family. Standard approach to solve
such optimization problem is Expectation Maximization (EM) [10]
algorithm, which alternates between an expectation step and a max-
imization step. The observation is that if we have complete data
which includes the latent class information, i.e. u, i, r, z, we can
write the log likelihood in a form that can be solved analytically.
Since we do not have complete data, we approximate this complete
data by the posterior probability of latent class variable z. So, in
expectation step, we compute the posterior probability of z:

p(z|u, i) =
p(z|u)p(ru,i|z, i)

K∑
z′=1

p(z′|u)p(ru,i|z′, i)
. (2.31)

Then in maximization step, we approximate the complete log likeli-
hood using the expectation over the posterior:

E[Lc] =
∑

(u,i)∈R

K∑
z=1

p(z|u, i)log
{
p(ru,i|z, i)p(z|u)

}
(2.32)
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Notice that there is no sum inside the log, it turns out we can solve
the optimization problem in closed form. Introducing a Lagrange
multiplier to enforce the p(z|u) follows categorical distribution, i.e.∑

z p(z|u) = 1, solving the constraint optimization problem gives
us the following closed form solutions:

p(z|u) =

∑
(u′,i)∈R:u′=u

p(z|u, i)

K∑
z′=1

∑
(u′,i)∈R:u′=u

p(z′|u, i)
(2.33)

µzi =

∑
(u,i′)∈R:i′=i

ruip(z|u, i)∑
(u,i′)∈R:i′=i

p(z|u, i)
(2.34)

σ2
zi =

∑
(u,i′)∈R:i′=i

(rui − µzi)2p(z|u, i)∑
(u,i′)∈R:i′=i

p(z|u, i)
(2.35)

We train the model in an iterative manner. In each iteration, ex-
pectation step is executed first and p(z|u, i)s are calculated. Then
in maximization step, p(z|u), µzi, σ

2
zis are calculated using Eq. 2.33,

Eq. 2.34 and Eq. 2.35. EM algorithm is guaranteed to converge. And
in experiments it takes less than a hundred iterations to converge.

Rating Prediction Once all the parameters are learnt in the training
phase, we can make prediction on unknown rating using the ex-
pected value:

r̂u,i =

∫
rp(r|u, i) =

K∑
z=1

p(z|u)

∫
rp(r|u, i) =

k∑
z=1

p(z|u)µzi.

(2.36)
Once all the parameter is learnt, we can output the prediction in
O(K) time.
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Probabilistic Latent Preference Analysis

Probabilistic Latent Preference Analysis (pLPA) [76] following the
idea of pLSA. Unlike pLSA, which is a rating oriented model, pLPA
tries to model the preferences of users directly and thus fall into the
category of ranking oriented model. pLPA is a pair-wise ranking
model. Statistical tool Bradley-Terry model is used as the “core”
of pLPA. So before discuss pLPA in detail, we will first review
Bradley-Terry model.

Bradley-Terry model Bradley-Terry model defines a distribution over
the rank of a set of M items using a vector parameter γ ∈ R+

M . Let
us focus on a simpler problem, where there are only two items i
and j. Following [76], we use δij = 1 to denote that i is preferred
to j and δij = 0 otherwise. Then Bradley-Terry model models the
probability of δij to be:

p(δij = 1|γ) =
γi

γi + γj
(2.37)

The parameter used in Bradley-Terry model could be interpreted as
the utility associated with the item. So a higher γi would imply that
it is more probable that i would be preferred over other items.

The Bradley-Terry model defined for a pair of items can be ex-
tended to model the probability of ranking π over M items[49, 85].
Let PM denote the set of all possible permutations over integers
from 1 to M . Let πi = 1 indicates that item i is ranked first in rank-
ing π. Similarly, δπij = 1 denote the fact that i is ranked higher than j
in ranking π, i.e. πi < πj. The probability over all possible ranking
PM is

p(π|γ) =
1

C(γ)

M−1∏
i=1

M∏
j=i+1

p(δπij|γ), (2.38)

in which C(γ) is the normalization term to ensure that Eq. 2.38 is a



CHAPTER 2. BACKGROUND STUDY 54

probability measure:

C(γ) =
∑
π∈PM

M−1∏
i=1

M∏
j=i+1

p(δπij|γ). (2.39)

Substitute Eq. 2.37 into Eq. 2.38 and we obtain:

p(π|γ) =
1

C∗(γ)

M∏
i=1

γM−πii , (2.40)

where C∗(γ) is normalization term defined as:

C∗(γ) = C(γ)
M−1∏
i=1

M∏
j=i+1

(γi + γj). (2.41)

From this definition, we see that C∗(γ) is a constant term. So, from
Eq. 2.40, we see that there is a single most probably ranking π∗ =
argmaxπp(π|γ). It can be obtained by sorting the value of γis in
decreasing order and output the corresponding is as the rank.

Model assumption The Bradley-Terry model forms the core of pLPA.
In pLSA, the observation is the triplet (u, i, r) and we use this ob-
servation to fit the model. Analogously we model the preferences
observed. Let us define that the preference of triplet (u, i, j) is ob-
served if ru,i and ru,j is both observed and ru,i 6= ru,j. Again, we let
δuij = 1 if ru,i > ru,j as the observed preference. Let Q be the set of
the triplet (u, i, j) for which the preferences we observed.

Similar to pLSA, each observed preference is modeled as a mix-
ing distribution:

p(δuij|u, i, j) =
K∑
z=1

p(δuij|z, i, j)p(z|u), (2.42)

in which p(δuij|z, i, j) is a Bradley-Terry model parameterized by γz:

p(δuij|z, i, j) = p(δij|γz) =
γzi

γzi + γzj
. (2.43)
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The log likelihood of the model can be computed as:

L =
∑

(u,i,j)∈Q

log
K∑
z=1

p(δuij|z, i, j)p(z|u). (2.44)

Model inference Notice that L defined in Eq. 2.44 shares the same
form as that in Eq. 2.30. Again we can use EM algorithm to solve
this optimization problem. In expectation step, the posterior proba-
bility of latent class variable for each observed pairwise preference
is computed:

p(z|u, i, j) =
p(z|u)p(δuij|γz)

K∑
z′=1

p(z′|u)p(δuij|γ′z)
. (2.45)

In the maximization step, the expected complete log likelihoodE[Lc]
is calculated as:

E[Lc] =
∑

(u,i,j)∈Q

K∑
z=1

p(z|u, i, j)[log p(δuij|γz) + log p(z|u)]. (2.46)

OptimizeE[Lc] with respect to p(z|u) with the constraint
∑K

z=1 p(z|u) =
1 gives the following update formula:

p(z|u) =

∑
(u′,i,j)∈Q:u′=u

p(z|u, i, j)

K∑
z′=1

∑
(u′,i,j)∈Q:u′=u

p(z|u, i, j)
. (2.47)

However, there is no closed form solution for γz as is in pLSA.
Hunter proposed an iterative algorithm for obtaining maximum like-
lihood estimates for parameters in Bradley-Terry model [49]. We
won’t dig into the details of this algorithm. The update formula for
γz is given below:

γ
(t+1)
zi = W z

i

[∑
j 6=i

N z
ij

γtzi + γtzj

]
, (2.48)
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where in the equation, W z
i =

∑M
j=1 ω

z
ij, N

z
ij = ωzij + ωzji and

ωzij =
∑

(u,i,j)∈Q

p(z|u, i, j) (2.49)

is the expected number of times that i is preferred to j in latent class
z.

So in each maximization step, we would use Eq. 2.48 iteratively
to calculate γ until converge.

Ranking prediction Once learnt all the model parameters, we can
now turn to the problem of ranking prediction. Given a user u, we
can compute the probability of u giving a ranking π ∈ PM :

p(π|u) =
1

C(u)

M−1∏
i=1

M∏
j=i+1

p(δπij|u) (2.50)

=
1

C(u)

M−1∏
i=1

M∏
j=i+1

K∑
z=1

p(δπij|γz)p(z|u).

We want to find

π∗ = argmax π∈PMp(π|u). (2.51)

This turns out to be a NP-complete problem by reduction from cyclic-
ordering problem [26].

Thus we have to resort to approximate methods to solve Eq. 2.51.
Since the model parameter γzi could be interpreted as the utility that
latent class z assign to i, we could approximate the utility that user
u would assign i to be:

θui =
K∑
z=1

p(z|u)γzi. (2.52)

Once we have obtained θ, we can sort θ in decreasing order and
output the corresponding rank as the prediction. This matches our
intuition well in the sense that the item with the largest expected
utility is ranked highest in the prediction.
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List-wise ranking using top one probability

All the model talked so far, including memory based and model
based, are either point-wise or pair-wise methods. Objective in point-
wise models, i.e. rating oriented models, is to minimize predicted
rating error. This could give suboptimal ranking output as demoed.
The problems associated with pair-wise ranking models, including
EigenRank and pLPA, are that the time complexity is prohibitive
for it to be applied in large dataset. A good compromise would be
to model ranking problem using list-wise model. In this section,
we review a list-wise ranking oriented collaborative filtering model
proposed by Shi et al. [121].

To model the problem on a list-wise basis, we need to define a
probability over ranking on a list-wise manner. Note that Bradley-
Terry model mentioned in previous model is essentially a pair-wise
model. Thus, we resort to a newly proposed probability over ranking
that is list-wise in nature.

Top one probability Top one probability models the probability that
an item is ranked on the first place in the ranking. It has a gener-
alized version, top k probability, which consider the top ranking k
items instead. The top one probability associated with an item i in a
ranking π for user u is defined using the ratings that u assign to i:

pR(πi = 1|u, i) =
ϕ(ru,i)

M∑
i′=1

ϕ(ru,i′)

, (2.53)

where ϕ is a monotonically increasing and positive valued function.
We use exponential function exp in this thesis consistently.

Since in the problem setting, not all ratings are observed, we in-
stead model the top one probability over the observed items Iu for
user u:

pR(πi = 1|u, i) =
ϕ(ru,i)∑

i′∈Iu
ϕ(ru,i′)

. (2.54)
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The subscript R in pR means that this top one probability is defined
using rating R.

Model assumption Like in PMF, we introduce latent user K × N
matrix U and latent item K × M matrix V . The rating ru,i given
by u to i, is related to the dot product UT

i Vj. This model is different
from PMF because it uses a different optimization function. In PMF,
we try to match UT

i Vj to ru,i as accurate as possible. However, in
list-wise top one model, we define the loss function to be the cross
entropy of the top one distribution using true ratings and the top one
distribution using the dot product of the latent feature vectors. Cross
entropy of two distribution p and q is defined as:

H(p, q) = Ep[−log q]. (2.55)

This quantity could be interpreted as distance measure between two
distributions and is minimized when p = q. The loss function of top
one ranking model is defined as:

L(U, V )

=
N∑
i=1

{
−

M∑
j=1

pR(ri,j)log {pU,V (g(Ui, Vj))}
}

+
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F

=
N∑
i=1

{
−

M∑
j=1

Ii,j
exp(ri,j)

M∑
k=1

Iik exp(ri,k)

log

{
exp(g(UT

i Vj))
M∑
k=1

Iik exp(g(UT
i Vk))

}}

(2.56)

+
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F .

Contrast Eq. 2.56 with PMF’s loss in Eq. 2.22, we see that in Eq. 2.22,
the core part is the squared loss while in Eq. 2.56, the core part is the
cross entropy H[pR, pUV ]. Both loss functions have regularization
terms to avoid over-fitting. In Eq. 2.56, Iij is an indicator function
that is 1 if i have rated j and 0 otherwise. g is the logistic sigmoid
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function 1/(1 + exp(−x)) and used here to add ”non-linearity” to
the model. We have to map ri,j to scale [0, 1].

Model inference As is in PMF, the loss defined in Eq. 2.56 is again
non-convex and in general we cannot achieve a global optimal. How-
ever, by alternatively fixing one component, i.e. V , and update the
other, i.e. U , loss would converge to a local minima. Partial deriva-
tive of L with respect to U and V is given:

∂L
∂Ui

=
M∑
j=1

Iij

{
exp(g(UT

i Vj))
M∑
k=1

Iik exp(g(UT
i Vk))

− exp(ri,j)
M∑
k=1

Iik exp(ri,k)

}
g′(UT

i Vj)Vj+λUUi,

(2.57)
∂L
∂Ui

=
N∑
i=1

Iij

{
exp(g(UT

i Vj))
M∑
k=1

Iik exp(g(UT
i Vk))

− exp(ri,j)
M∑
k=1

Iik exp(ri,k)

}
g′(UT

i Vj)Ui+λV Vj.

(2.58)
Then define a learning rate η, we can reuse the update formula
Eq. 2.25 and Eq. 2.26 to calculate U and V until converge.

Ranking prediction Once the model is learnt, we can output the rank-
ing that would maximize top one probability pU,V . It is easy to see
that this is equivalent to sort the items using UT

i Vj and output the
corresponding rank.

2.4 Reputation Estimation

Reputation estimation refers to the study of systematically assign
reputation scores for users (domains, email senders, etc.) to facil-
itate the detection of spam users and mitigate the effect of spam
users. Reputation estimation systems have been successfully applied
to spam email detection [37, 25, 62, 16], social network zombie user
detection [126] and voice (VoIP) spam filtering [33, 27].



CHAPTER 2. BACKGROUND STUDY 60

There are two different scenarios where reputation estimation
methods come into play. In one line of research, the trustiness of
a user and the propagation of the trust are studied [40, 100]. The
reputation of a user is calculated based on the trustiness of the user.
Such reputation estimation methods are suitable for a graph based
system like social networks. Another line of study that operates on
rating systems is more relevant to recommender systems. Users’
reputations are estimated in an online rating environment such as the
rating collection module of a recommender system. Usually an item
is assumed to have an intrinsic quality that is common to all users
and users’ reputations are calculated based on the deviation between
their ratings and the true qualities of the rated items [94, 60]. The
intrinsic quality of an item is often calculated using a weighted av-
erage of ratings assigned by all users, where the weight of a user’s
rating depends on the user’s reputation. These methods are itera-
tive in nature and some works [94, 60] fall into this paradigm. One
immediate concern of such algorithms is whether these reputation
scores converge to a fixed solution or oscillate. Recently, there are
investigations that guarantee the theoretical convergence of the rep-
utations [29, 63]. These algorithms are not applicable to every rating
system since the intrinsic quality assumption might not be true in all
cases. For example, these methods may not perform well on music
and movie recommendation. In such scenarios, users’ tastes play a
big role in deciding what score to assign to the item and users have
different tastes. The intrinsic quality view does not apply in this per-
sonalized environment. Principle Component Analysis (PCA) and
PLSA based methods are proposed in [90, 92], which exploit sta-
tistical properties to identify spam users in a rating system. PCA
learns the low rank structure of the data. However, since it sticks
to the principle components, the flexibility of the model is question-
able. A reputation weighted strategy is adopted in [91] to improve
the robustness of prediction accuracy.

The details of reputation estimation methods in online rating sys-
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tems are deferred to Chapter 5, in which we developed a framework
where a lot of the methods mentioned can be subsumed.

2.5 Topic Modeling

Topic modeling is the study of modeling text corpora and other col-
lections of discrete data. The target of topic modeling is to find a
short description of all the members in the collection to facilitate
further process such as classification while preserving the essential
statistical relationship [11]. In this thesis, we refer to topic model-
ing as the study of modeling text corpora or more specifically review
comments collected in online rating systems. However, in this sec-
tion, we assume that we are presented a corpus of documents, each
of which is comprised of words. We now define the terms that are
used when referring to topic modeling in this thesis:

• word
A word is the basic unit of the discrete data. In this thesis, a
word refers to a word in a natural language such as English or
German. All words in a language form a vocabulary and words
are indexed by {1, · · · , V }.

• document
A document is a sequence ofN words denoted by w = (w1, w2, · · · , wN),
where wn is the nth word in the sequence.

• corpus
A corpus is a collection of M documents denoted by D =
{w1,w2, · · · ,wM}.

We now review several models for topic modeling, starting from
the simplest one unigram model. Then we introduce mixture of un-
igram model [98], probabilistic latent semantic indexing [45] and
lastly Latent Dirichlet Allocation [11].
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Unigram Model

The unigram model assumes that every word of every document is
drawn independently from a single multinomial distribution:

p(w) =
N∏
n=1

p(wn). (2.59)

It is easy to see that the above model does not have application in
real life since it assumes all the documents in the corpus all have
the same distribution on words. If this is indeed the case, then all the
documents are generated from the same source and have very similar
statistics. They belong to the same class and no further classification
is required.

Mixture of Unigram Model

The Mixture of Unigram Model [98] is a slightly more complex
model than unigram model. Where as in unigram model, we assume
that a single multinomial distribution governs all the documents, in
mixture of unigram model, we assume there are several such multi-
nomial distributions and there is a latent variable indicating which
distribution to use for each of the document. Each document still
has only one multinomial distribution governs its word distribution.
The probability of a document is

p(w) =
∑
z

p(z)
N∏
n=1

p(wn|z). (2.60)

Mixture of unigram model can be used for document classification.
We learn the multinomial distributions that best explain the docu-
ments and each document has a most probable latent variable z,
which can be used to perform classification. However, there are seri-
ous restrictions on the model since each document can have only one
multinomial distribution. In real life documents tend to be a mixture
of several themes, each of which has a distribution on words.
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Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (pLSI) [45] is a widely used
topic model. Compared with mixture of unigram model, pLSI add
another layer of mixture by allowing each document has its own
mixing proportion on the latent multinomial distributions on words
which we now refer to as topics. This modeling technique greatly
expands the potential applicable scenario of pLSI. In mixture of un-
igram model, we make the restriction that each document can have
only one topic (distribution on words). In pLSI, this restriction is
removed and it allows each document to have its own mixing pro-
portions of the topics. This is much more realistic and resembles the
real documents better. The probability of observing a document d
has word wn in it in a corpus under the assumption of pLSI is

p(d, wn) = p(d)
∑
z

p(wn|z)p(z|d). (2.61)

pLSI posits that a document label d and a word wn are conditionally
independent given the unobserved latent topic z.

The major drawbacks of pLSI are that there is no assumption on
the prior distribution on p(z|d) and p(wn|z). There are a lot of pa-
rameters in pLSI and overfitting is a serious problem in practice [11].

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [11] is a more sophisticated topic
model that is built on pLSI. LDA choose a full Bayesian treatment
of the problem and place Dirichlet distribution on both the word
distribution for each topic p(wn|z) as well as the mixing proportion
of each document p(z|d). The basic idea of LDA is that documents
are represented as random mixtures over latent topics, where each
topic is a distribution over the words in vocabulary. In LDA, each
document is generated according to the following procedure:

1. Choose document length N ∼ Poisson(ξ).
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2. Choose document topic mixing proportion distribution θ ∼
Dir(α).

3. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ).

(b) Choose a word wn according to p(wn|zn, β), which is a
multinomial probability conditioned on the topic zn.

Given the above generative process for a document, we can obtain
the probability of observing a corpus:

P (D|α, β) =
M∏
d=1

∫
p(θd|α)(

Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β))dθd.

(2.62)
The learning of the model can be performed suing Variational

Inference method [11] or Collapsed Gibbs Sampler [106].

2 End of chapter.



Chapter 3

Online Collaborative Filtering

3.1 Problem and Motivation

With the emergence of large-scale online user-contributed websites
and online shopping websites, e.g., Amazon, IMDB, etc., users are
presented with unprecedentedly large amount of items. On one hand,
users can easily get stuck in the information-overloading problem,
and how to select favorite items from millions of options becomes
a major bottleneck. On the other hand, it is important for ven-
dors to find out users’ preferences so as to boost sales. Recom-
mender systems, aiming at selecting attractive items for users, be-
come one promising technology to resolve the aforementioned prob-
lems. They can filter out less interesting items and recommend ap-
pealing ones to the corresponding users. Collaborative filtering is
one of the major methods to perform recommendation tasks. Tradi-
tional collaborative filtering methods adopt batch-trained algorithms.
These methods suffer from two major drawbacks. First, they scale
poorly. Before training, they require that all data are available. Dur-
ing training, at each iteration, all ratings must be loaded into the
memory to perform the algorithms. This is very expensive since
real-world datasets like Yahoo!Music which contains more than 250
million ratings, cannot be loaded into the memory easily. The sec-
ond drawback of batch-trained algorithms is that they are unsuitable
for dynamic ratings. A recommender system may change in one of

65
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the following ways: 1) a new user may join the system and rate ex-
isting items; 2) a new item may appear in the system and existing
users may purchase and rate it; and 3) existing users may purchase
and rate existing items; in other words, ratings are collected over
time. In these cases, to capture the change, the batch-trained CF
methods have to rebuild the model from scratch. As recommender
systems usually contain a huge amount of training data, rebuilding a
model is very expensive.

Online learning algorithms emerge as a natural solution to at-
tack the incremental rating problem. In the literature, although there
are several tasks [1, 21, 28, 75, 84] investigating online learning for
collaborative filtering, they did not explore the complete properties
of online algorithms. In addition, none of previous work consid-
ers ranking-oriented collaborative filtering. Hence, in this chapter,
we study online algorithms from various aspects to solve the issues
facing batch-trained CF algorithms and previously proposed online
learning algorithms. Our contributions include:

• We apply the proposed online learning framework to both rating-
oriented matrix factorization (MF) based methods (PMF) and
ranking-oriented MF-based methods (RMF). Our proposed on-
line learning algorithms can handle new rating incrementally
without retraining the models. To our best knowledge, this
is the first attempt to develop online algorithms for ranking-
oriented CF methods.

• We develop the online learning algorithms employing two ap-
proaches, stochastic gradient descent and the dual-average method.
We provide succinct and efficient solutions to both of them.
All the online algorithms scale linearly with the number of ob-
served ratings and memory consumption is linear in the number
of users and the number of items.

• We further impose different regularizations to explore the prop-
erties of the proposed models. For example, we introduce the
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L1-regularization to yield sparse solutions while maintaining
comparable performance. The parsimony model can therefore
reduce the memory cost in storing the model and time cost in
predicting the results.

• Finally, we conduct a series of detailed experiments on real-
world datasets to demonstrate the merits and properties of the
proposed online learning algorithms.

In the literature, online learning algorithms have been extensively
studied in content-based filtering [12, 132]. They can be classified
into three categories: online learning for maximum margin mod-
els [31], algorithms implemented by stochastic gradient method [12],
and online learning for sparse models [128, 132]. However, in col-
laborative filtering, there are only limited investigations. In [75], an
online algorithm is developed for memory-based collaborative filter-
ing. In [21], an online algorithm for Non-negative Matrix Factoriza-
tion (NMF) is considered. In [28], an online algorithm is conducted
on a mixture of memory-based and model-based algorithms, where
the data are dynamically clustered. The involved model, however,
is different from what we consider as the matrix factorization mod-
els. Another work is [84], which only applies online algorithms
on sparse models in computer vision area. In [1], a gradient descent
method on matrix factorization with (or without) features by directly
minimizing the square loss is proposed to convert a batch-trained al-
gorithm into an online version. It ignores regularization effects and
may be suboptimal under certain conditions.

Although adapting the model-based collaborative filtering meth-
ods by online algorithms, e.g., stochastic gradient descent method [57,
61], can involve substantial implementation efforts, the real prop-
erties of the algorithms are still not well-investigated. This unex-
plored territory motivates us to study the online learning algorithms
for PMF and RMF thoroughly. To be more specific, we investi-
gate both stochastic gradient descent and dual averaging methods
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on both rating-oriented and ranking-oriented MF methods. The re-
mainder of this chapter is organized as follows. Section 3.2 dis-
cusses in more detail regarding two models for which we develop
online algorithms, namely probabilistic matrix factorization and top-
one probability based ranking matrix factorization. We present our
online algorithms in Section 3.3. Experimental results and analysis
are shown in Section 3.4 and summarize this chapter in Section 3.5.

3.2 Model-based Matrix Factorization

In this section, we present a probabilistic matrix factorization model,
a top-one probability based ranking matrix factorization model, and
their batch-trained algorithms. Before delving into these two mod-
els, we first describe the notations used in this chapter. Suppose
that we are given a set of N users U = {u1, u2, · · · , uN} and a
set of M items I = {i1, i2, · · · , iM}. Users’ rating on the items
forms an N ×M matrix R, where the element rui denotes user u’s
rating on item i. Alternatively, we denote all observed ratings in
a set of triplets as (u, i, r) ∈ Q, where u is the user id, i is the
item id, and r is the rating given by u to i. Usually, the rating r

is a value in the range [Rmin, Rmax]. Often, we map it to [0, 1] by
(r−Rmin)/(Rmax −Rmin). To avoid clutter notations, we use gij to
denote g(UT

i Vj) and g′ij to denote the derivative of the logistic func-
tion g′(UT

i Vj), where g(x) is the logistic function to be defined in
Eq. (3.2).

The problem of matrix factorization collaborative filtering is to
learn two low-rank feature matrices, U and V , to approximate R
based on the given M,N,R or M,N,Q. The user feature matrix U
is a K × N matrix where each column Uu is the length K feature
vector summarizing u’s rating behavior. V is aK×M matrix where
each column Vi denotes the length K feature vector inherent in the
ith item. Generally latent feature sizeK is much smaller thanN and
M .
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For rating-oriented methods, the objective is to find U and V to
best fit R so as to correctly predict r̂ui, the rating user u would as-
sign to item i. Whereas in ranking-oriented methods, the target is
to correctly output a ranking π of the items in decreasing order of
preference for an active user.

3.2.1 Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) adopts a probabilistic lin-
ear model with Gaussian observation noise [114]. Maximizing the
posterior probability of p(U, V |R, σ2, σ2

U , σ
2
V ) is equivalent to mini-

mizing a squared loss with regularization defined as:

L =
1

2

N∑
i=1

M∑
j=1

Iij(rij − gij)2 +
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F , (3.1)

where g is the logistic function used to map the value into the range
of [0, 1] as is in [114]:

g(x) =
1

1 + exp(−x)
. (3.2)

λU and λV are L2-regularization strength parameter to avoid over-
fitting and Iij is an indicator function which equals 1 if user i have
rated item j and 0 otherwise. Note that Eq. (3.1) implicitly indicates
ratings have been mapped to the range of [0, 1].

Gradient descent algorithm can be adopted to reach a local mini-
mum of the objective given in Eq. (3.1). The partial derivative of L
with respect to U and V can be computed as:

∂L
∂Ui

=
M∑
j=1

Iij(gij − rij)g′ijVj + λUUi, (3.3)

∂L
∂Vj

=
N∑
i=1

Iij(gij − rij)g′ijUi + λV Vj. (3.4)
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Thus, the feature matrices on users and items can be updated it-
eratively by

Ui ← Ui − η
∂L
∂Ui

, Vj ← Vj − η
∂L
∂Vj

, (3.5)

where η is the learning rate. In practice, it takes dozens of iterations
for PMF to converge. Once trained, the predicted rating that user u
would assign to item i can be computed as the expected value of the
Gaussian distribution:

r̂ui = gui. (3.6)

Note that this value may need to be converted back to the original
rating range.

3.2.2 Ranking Matrix Factorization

Top-one probability based ranking matrix factorization (RMF) [121]
also factorizes the user-item matrix R into two low-rank user and
item feature matrices, U and V . Different from PMF, it minimizes
the cross entropy of two top-one probability distributions defined on
actual rating rij and predicted rating gij.

Top-one probability models the probability of an item being ranked
in the top position of an active user’s ranking list. It can be defined
using either actual rating or predicted rating. Using actual ratingsR,
the top-one probability associated with an item i in a ranking π for
user u is defined as:

pR(rui) =
exp(rui)∑M

k=1 Iuk exp(ruk)
. (3.7)

Using predicted rating, the top-one probability of the learned model
is defined as:

pUV (gui) =
exp(gui)∑M

k=1 Iuk exp(guk)
. (3.8)
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RMF minimizes the cross entropy between pR and pUV [121].
Cross entropy of two distributions p and q is defined as:

H(p, q) = Ep[−log q] = −
∑
x

p(x) log q(x). (3.9)

This quantity measures the divergence between two distributions
and is minimized when p = q. Hence, to find the optimal U and
V , RMF is to minimize the following objective function:

L =
N∑
i=1

{
−

M∑
j=1

Iij
exp(rij)

M∑
k=1

Iik exp(rik)

log

{
exp(gij)

M∑
k=1

Iik exp(gik)

}}

+
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F . (3.10)

Similarly, RMF is not a convex optimization problem and the
local minima can be sought using the gradient descent method. The
gradients of L with respect to U and V can be calculated by:

∂L
∂Ui

=
M∑
j=1

Iij

{
exp(gij)

M∑
k=1

Iik exp(gik)

− exp(rij)
M∑
k=1

Iik exp(rik)

}
g′ijVj

+ λUUi, (3.11)

∂L
∂Vj

=
N∑
i=1

Iij

{
exp(gij)

M∑
k=1

Iik exp(gik)

− exp(rij)
M∑
k=1

Iik exp(rik)

}
g′ijUi

+ λV Vj. (3.12)

Hence, by defining a suitable learning rate η, we can adopt Eq. (3.5)
to update U and V until they converge. Once trained, the model rec-
ommends the items in decreasing order of their top-one probability
to an active user.
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3.3 Online Matrix Factorization

It is noted that the gradient descent algorithm can be used to train
both PMF and RMF. The batch-training algorithm assumes all the
ratings are available before the training. This makes it unsuitable
for many practical application scenarios. When the system receives
a new rating, the model has to be retrained using all available data.
To adapt PMF or RMF to such scenarios, it is better to train the
model in an online manner. Using an online algorithm the model can
be easily adapted to fit the new data. In the following, we present
our online algorithms for both PMF and RMF to demonstrate such
merits [68, 131].

3.3.1 Online PMF

We present two algorithms of online PMF, the stochastic gradient
descent PMF (SGD-PMF) and dual averaging PMF (DA-PMF).

Stochastic Gradient Descent for PMF

By examining the update rules defined in Eq. (3.5), we observe that
at each iteration, the low-rank matrices move toward the average
gradient descent, ∂L/∂Uu and ∂L/∂Vi, by a small step that is con-
trolled by η. When there is only one rating presented, we would ad-
just the model solely according to this rating. If the collected ratings
are coming sequentially, we could adjust the model stochastically by
taking into account that rating only. This corresponds to the scheme
of stochastic gradient descent.

Suppose the new coming rating is (u, i, r) ∈ Q, in (3.1), the
terms related to this perticular rating are:

L(u,i,r) = (rui − gui)2 +
λU
2
‖Uu‖2

2 +
λV
2
‖Vi‖2

2. (3.13)

The first term in Eq. (3.13) is the squared error between the obser-
vation and predicted value, and the following two terms are the cor-
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responding regularizations. Notice that here the trade-off constants,
λU and λV , are on different scale from those in Eq. (3.1).

Similarly, by adopting the gradient descent method, we obtain
the following update equations:

Uu ← Uu − η((gui − r)g′uiVi + λUUu), (3.14)
Vi ← Vi − η((gui − r)g′uiUu + λV Vi), (3.15)

where η is the step size controlling how much change to make at
each step. This naturally gives an online algorithm, where at each
iteration, we make a small change for user u’s feature vector Uu
and item i’s feature vector Vi when a rating (u, i, r) is revealed. We
call this method stochastic gradient descent PMF (SGD-PMF) and
summarize it in Algorithm 2.

Algorithm 2 Stochastic Gradient Descent for PMF
Parameter: N , M , K, η, λU , λV
Input: Observation triplet (u, i, r) ∈ Q
Initialize U ∈ RK×N and V ∈ RK×M randomly
for all (u, i, r) ∈ Q do
Uu ← Uu − η((gui − r)g′uiVi + λUUu)
Vi ← Vi − η((gui − r)g′uiUu + λV Vi)

end for

Algorithm 2 is stochastic in the sense that every time we adjust
the parameter, we accommodate it to that particular rating seen at
that instance. However, the rating could have some inherent noise
that is not easy to eliminate. So every time we modify the param-
eter, we could have taken a direction that deviates a little from the
average gradient as we do in the batch mode algorithm. We expect
that taking several stochastic steps approximately have similar net
effect as taking average steps. We do not provide the convergence of
stochastic gradient descent for PMF here, as its detailed proof can
be referred to [119].
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Dual-Averaging Method for PMF

Recently, dual-averaging method [97] ignites the development of
online learning algorithms. By imposing different regularizations,
variants of online learning algorithms have been developed and they
achieve good result in the corresponding applications [128, 132].
Due to the success and efficiency of dual-averaging method, we de-
cide to adopt it to solve the online PMF problem.

Dual-average method for PMF absorbs previous rating informa-
tion in an approximate average gradient of the loss. Then it up-
dates the parameters by solving an analytically tractable optimiza-
tion problem. More importantly, by imposing different regulariza-
tions as [128] on each iteration, we can attain different model prop-
erties. For example, by applying L1-regularization, we can adjust
the regularization strength and yield solutions exhibit various level
of sparseness.

Hence, in DA-PMF, we keep track of the average gradient, Y , of
the square loss with respect to U and V . Given a newly observed
triplet (u, i, r), we can update the average gradient with respect to
Uu by the following rule:

YUu ←
tu − 1

tu
YUu +

1

tu
(gui − r)g′uiVi, (3.16)

where tu denotes the number of items u has rated. Note that YUu in
Eq. (3.16) is an approximation of {

∑
i∈Iu(gui − r)g

′
uiVi}/tu which

is the average gradient of the squared loss with respect to Uu. Iu
denotes all the items that u has rated. Similarly, we can obtain YVi,
the average gradient of L with respect to Vi, as follows:

YVi ←
tv − 1

tv
YVi +

1

tv
(gui − r)g′uiUu, (3.17)

where tv denotes the number of users who have rated item v.
Once we get the average gradient, we updateUu and Vi by solving
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the following minimization problems:

Uu = arg minw{Y T
Uu
w + λU‖w‖2

2}, (3.18)

Vi = arg minw{Y T
Vi
w + λV ‖w‖2

2}. (3.19)

To get an intuition of why choosing such optimization objectives de-
fined in Eq. (3.18) and Eq. (3.19), we should note that Y T

Uu
w, the dot

product of YUu and w, is minimized when w is on the opposite direc-
tion as YUu. We have shown that YUu is the average gradient, whose
direction will lead to a larger L. By taking an opposite direction of
YUu, we expect L to be decreased. However, the minimum value of
Y T
Uu
w is unbounded if we allow an arbitrary w. Adding a regulariza-

tion term λV ‖w‖2
2 can effectively limit the value that w can assume.

Thus using such an optimization objective, we can get Uu and Vi that
lead to a decreased L. Convergence of such formulation is referred
to [128]. The solution to Eq. (3.18) and Eq. (3.19) can be found
analytically by taking the derivative to 0, which is summarized in
Algorithm 3.

DA-RMF commands an explicit regularization effect. Other than
the L2-regularization used in Eq. (3.18) and (3.19), we can incor-
porate other types of regularizations to achieve solutions with dif-
ferent properties. For example, we can adopt an L1-regularization,
ρ‖w‖1, and add it to the objective function defined in Eq. (3.18)
and (3.19). This can yield sparse solutions for PMF while maintain-
ing a comparable performance. Hence, the corresponding update
rules in Eq. (3.20) can be changed to:

Uu(k)←

{
0 if |YUu(k)| ≤ ρ

1
2λU

(ρ sign(YUu(k))− YUu(k)) otherwise
,

(3.21)

Vk(k)←

{
0 if |YVk(k)| ≤ ρ

1
2λV

(ρ sign(YVi(k))− YVi(k)) otherwise
,

(3.22)
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Algorithm 3 Dual-Averaging Method for PMF (DA-PMF)
Parameters: N,M,K, λU , λV
Input: Observation triplet (u, i, r) ∈ Q
Initialize U ∈ RK×N and V ∈ RK×M randomly
Initialize average gradient matrix to 0

YU ∈ RK×N ← 0; YV ∈ RK×M ← 0

Initialize index vector TU ∈ ZN ← 0 and TV ∈ ZM ← 0
for all (u, i, r) ∈ Q do

Increase index TUu ← TUu + 1 and TVi ← TVi + 1
tu ← TUu , tv ← TVi
Update average gradient YU and YV

YUu ←
tu − 1

tu
YUu +

1

tu
(gui − r)g′uiVi

YVi ←
tv − 1

tv
YVi +

1

tv
(gui − r)g′uiUu

Update latent user and item feature Uu and Vi

Uu ← −
1

2λU
YUu , Vi ← −

1

2λU
YVi (3.20)

end for
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where Uu(k) refers to the k-th element of vector Uu. Detailed deriva-
tion of the above equation is referred to [128]. Note that by increas-
ing the parameter ρ, we can increase the sparseness of the solutions.

Time Complexity and Memory Cost

Both SGD-PMF and DA-PMF are efficient in terms of time com-
plexity and memory cost. For SGD-PMF, only user feature matrix
and item feature matrix have to be stored in memory, so the mem-
ory cost is O((N + M)K). K is generally on the scale of tens
even for a very big dataset. For each observation (u, i, r) ∈ Q,
only O(K) steps are needed to update the model. Since K is quite
small, it can be taken as constant time. So SGD-PMF scales linearly
with the number of observed ratings. For DA-PMF, beside user fea-
ture matrix and item feature matrix, average gradient matrix YU , YV
and index vector TU , TV are also stored. Total memory cost is still
O((N +M)K). Similar to SGD-PMF, DA-PMF needs O(K) steps
for each observation and thus it scales linearly with the number of
observed ratings. So both SGD-PMF and DA-PMF can be effective
to large-scale datasets.

3.3.2 Online RMF

In this section, we present online algorithms for RMF. Similarly, we
consider both the stochastic gradient descent method (SGD-RMF)
and the dual-averaging method (DA-RMF) for RMF.

Stochastic Gradient Descent for RMF

The loss L of RMF is defined in Eq. (3.10). LetH = L− λU
2 ‖U‖

2
F +

λV
2 ‖V ‖

2
F be the loss without the regularization, i.e., it only captures

the cross entropy between pR and pU,V .
Unlike the squared loss used in PMF, which can be easily dis-

sected when a new rating is observed, cross entropy is adopted as the
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loss in RMF. It measures the divergence between the top-one proba-
bility distribution defined using actual rating and that defined using
predicted rating. The top-one probability indicates the probability of
an item being ranked in the top position. It is essentially a categori-
cal distribution and normalization is engaged to ensure it is a proper
probability measure. When a newly observed rating (u, i, r) is re-
vealed, this probability mass function will include one more term
indicating the probability of the new item being ranked in the top
position. Due to normalization, the top-one probability corresponds
to other items are further decayed. H, the cross entropy of these two
distributions, also changes accordingly. Note that these changes are
coupled together and are thus very difficult to dissect.

We resort to algorithms that approximate the gradient descent of
H with respect to Uu and Vi given in Eq. (3.23) and Eq. (3.24):

∂H
∂Ui

=
M∑
j=1

Iij

{
exp(gij)

M∑
k=1

Iik exp(gik)

− exp(rij)
M∑
k=1

Iik exp(rik)

}
g′ijVj, (3.23)

∂H
∂Vj

=
N∑
i=1

Iij

{
exp(gij)

M∑
k=1

Iik exp(gik)

− exp(rij)
M∑
k=1

Iik exp(rik)

}
g′ijUi. (3.24)

Now, we consider the update of the gradients as the observed
rating appears one by one. Denote Y tu

Uu
as the gradient of H with

respect to Uu when the tu-th rating is assigned by user u to item
i. Denote Y tv

Vi
as the gradient of H with respect to Vi when item i

receives its tv-th rating. To simplify the expression, we let Ituu denote
the set of items rated by user uwhen the tu-th rating is observed, i.e.,
|Ituu | = tu. We update the corresponding gradients by the following
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rules:

Y tu+1
Uu

←
∑

k∈Ituu exp(ruk)∑
k∈Itu+1

u
exp(ruk)

Y tu
Uu

+{
exp(gui)∑

k∈Itu+1
u

exp(guk)
− exp(rui)∑

k∈Itu+1
u

exp(ruk)

}
g′uiVi, (3.25)

Y tv+1
Vi
← (1− αc×tv)Y tv

Vi
+{

exp(gui)∑
k∈Itu+1

u

exp(guk)
− exp(rui)∑

k∈Itu+1
u

exp(ruk)

}
g′uiUu. (3.26)

It should be noted that we initialize Y 0
U = 0, Y 0

V = 0 for all users
and items. Index vector TU , whose u-th entry is tu, and TV , whose
i-th entry is tv, are on a per-user and per-item basis respectively.

Here, we argue that Eq. (3.25) and Eq. (3.26) approximate the
ideal gradients in Eq. (3.23) and Eq. (3.24), respectively. It is ob-
vious that Eq. (3.25) recovers Eq. (3.23) provided that gui approxi-
mates rui well at each iteration. To see that Eq. (3.26) indeed approx-
imates Eq. (3.24), consider what might happen between two ratings
item i receives. Note that the summation in Eq. (3.24) is over all the
users who have rated item i. Since top-one probability is on a per-
user basis, we cannot find a single value that properly describes the
decay of previously rated item as is the case in Eq. (3.25). Consider
the event that might happen between the observations of (u1, i, r1)
and (u2, i, r2). Let the set of users who have rated i be Ui. The
change of the top-one probability happens when a u ∈ Ui rate an-
other movie i′ and thus causing the top-one probability with respect
to i to decay due to the normalization. However, as more and more
ratings are revealed, the change will be smaller and smaller. So we
need to decay previous gradient to reflex this change. Therefore,
α ∈ (0, 1) in Eq. (3.26) controls the initial decay rate and c controls
how this rate drops.
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Algorithm 4 Stochastic Gradient Descent for RMF
Parameter: N , M , K, η, λU , λV , α, c
Input: Observation triplet (u, i, r) ∈ Q
Initialize U ∈ RK×N and V ∈ RK×M randomly
Initialize average gradient matrix to 0

YU ∈ RK×N ← 0; YV ∈ RK×M ← 0

Initialize index vector TV ∈ ZM ← 0
Initialize sum vector SR ∈ RN ← 0 and SUV ∈ RN ← 0
for all (u, i, r) ∈ Q do
tv ← TV (v)
sr ← SR(u)
suv ← SUV (u)
s′r ← sr + exp(r)
s′uv ← suv + exp(gui)

YUu ← sr
s′r
YUu + { exp(gui)

s′uv
− exp(r)

s′r
}g′uiVi

YVi ← (1− αctv)YVi + { exp(gui)
s′uv

− exp(r)
s′r
}g′uiUu

Uu ← Uu − η(YUu + λUUu)
Vi ← Vi − η(YVi + λV Vi)
SR(u)← s′r
SUV (u)← s′uv
TV (v)← tv + 1

end for
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Once how to calculate the gradient in an online manner is figured
out, adjusting the parameters along the inverse direction of the gra-
dient in every step leads to an algorithm similar to SGD-PMF. We
present the complete gradient descent online RMF in Algorithm 4.

Dual-Averaging Method for RMF

The gradient we calculated as in Eq. (3.25) and Eq. (3.26) is aver-
age gradient. By solving the same optimization objective as defined
in Eq. (3.18) and Eq. (3.19) at each iteration, we obtain the Dual-
Averaging RMF (DA-RMF) algorithm. This algorithm is summa-
rized in Algorithm 5.

Algorithm 5 Dual-Averaging method for RMF (DA-RMF)
Parameter: N , M , K, λU , λV , α, c
Input: Observation triplet (u, i, r) ∈ Q
Initialize U ∈ RK×N and V ∈ RK×M randomly
Initialize average gradient matrix to 0

YU ∈ RK×N ← 0; YV ∈ RK×M ← 0

Initialize index vector TV ∈ ZM ← 0
Initialize sum vector SR ∈ RN ← 0 and SUV ∈ RN ← 0
for all (u, i, r) ∈ Q do
tv ← TV (v)
sr ← SR(u)
suv ← SUV (u)
s′r ← sr + exp(r)
s′uv ← suv + exp(gui)

YUu ← sr
s′r
YUu + { exp(gui)

s′uv
− exp(r)

s′r
}g′uiVi

YVi ← (1− αctv)YVi + { exp(gui)
s′uv

− exp(r)
s′r
}g′uiUu

Uu ← − 1
2λU

YUu

Vi ← − 1
2λV

YVi
SR(u)← s′r
SUV (u)← s′uv
TV (v)← tv + 1

end for
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Time Complexity and Memory Cost

The memory cost for both SGD-RMF and DA-RMF includes the
user and item feature matrix U, V , approximate average gradient
YU , YV , index vector TV , and sum vector SR, SUV . The total memory
cost is still O((N + M)K), which is independent of the number of
observed ratings. In terms of time complexity, the steps needed for
each observed triplet (u, i, r) is stillO(K). Namely, both SGD-RMF
and DA-RMF scale linearly with the number of observed ratings.

3.4 Experiments

In this section, we conduct experiments to compare the performance
of our online algorithms with batch-trained algorithms. The ques-
tions we want to address include:

1. How is the stochastic gradient descend and dual-averaging al-
gorithms compared with the batch mode algorithms?

2. How do the online algorithms perform under different settings?

3. How well do stochastic gradient descend and dual-averaging
methods scale to large datasets?

4. In which way do model parameters, i.e., λ, η, affect the algo-
rithms’ performance?

5. For dual-averaging methods, we can attain sparse solution by
incorporating L1-regularization. How well does the sparse so-
lution perform?

3.4.1 Data Sets

We choose MovieLens1, Yahoo!Music2 and Jester [38] to study em-
pirical performance of our algorithms. Table 3.1 shows the basic

1http://www.cs.umn.edu/Research/GroupLens
2http://kddcup.yahoo.com
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Table 3.1: Statistics of datasets
MovieLens Yahoo!Music Jester

No. ratings 1,000,209 252,800,275 1,810,455
No. users 6,040 1,000,990 24,938
No. items 3,952 624,961 100
Rating range [1, 5] [0, 100] [−10, 10]
Rating type Integer Integer Floating

statistics of each dataset.
Experiments studying the effect of parameters are performed on

MovieLens. Comparisons of online algorithms versus their batch-
trained algorithms are also conducted on MovieLens. We select
Yahoo!Music to evaluate how the online algorithms scale to large
datasets. Yahoo!Music is a very large dataset containing more than
250 million ratings. Yet this data set is extremely sparse, where only
0.4% entries are known. However, RMF experiments do not utilize
Yahoo!Music. This is because even though the ratings are on a range
from 0 to 100, we found most users apply only a few values to indi-
cate their fondness. The problem with many items sharing the same
rating value is that the user’s actual preferences over these items are
implicit and thus rendering the NDCG metric insensitive to different
ranking. Besides MovieLens, we select Jester to evaluate RMF al-
gorithms. Jester consists of floating point ratings up to two decimal
places, where users are unlikely to give the same rating for items and
the preferences are explicit.

3.4.2 Evaluation Metrics

We adopt Root Mean Square Error(RMSE)3 to evaluate rating-oriented
algorithms, i.e. PMF, SGD-PMF and DA-PMF. RMSE evaluates the
root of average square error between true rating and predicted rating.

3The lower the RMSE, the better the performance.
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Denote the test set by T , the definition of RMSE is given below:

RMSE =

√√√√ ∑
(u,i,r)∈T

(r̂u,i − r)2

|T |
. (3.27)

To evaluate the ranking accuracy, we adopt Normalized Discounted
Cumulative Gain (NDCG)4 [51] as the metric. Let π(i) be the item
ranked on the ith position in ranking π and the actual rating assigned
to i is rπ(i). Then NDCG at n is defined as:

NDCG@n =
n∑
i=1

2rπ̂(i) − 1

log(1 + i)

/ n∑
i=1

2rπ∗(i) − 1

log(1 + i)
, (3.28)

where π∗ is the optimal ranking.
Here in NDCG, the score that an item gets is 2r divided by log(1+

i), where i is the position in ranking. That is, rating of a higher rank-
ing item will impact NDCG more than that of a lower ranking item.
The second sum in Eq. (3.28) is a normalization constant so that the
best ranking would have an NDCG value of 1. The range of NDCG
is (0, 1] and a higher value means a better ranking. An appealing
property of NDCG is that it gives more weight on the items ranked
higher than the item ranked lower. This is consistent with our expe-
rience that user seldom looks past the first few recommended items.

3.4.3 Evaluation Protocol

To better understand the behavior of our online algorithms under
different settings, we conduct experiments with the following three
settings:

1. T1: Randomly choose 10% of all (u, i, r) triplets for training,
and use remaining 90% for evaluation.

2. T5: Randomly choose 50% of all (u, i, r) triplets for training,
and use remaining 50% for evaluation.

4The higher the NDCG, the better the performance.
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3. T9: Randomly choose 90% of all (u, i, r) triplets for training,
and use remaining 10% for evaluation.

3.4.4 Comparisons

In this section, we compare our online algorithms with full-fledged
batch-trained PMF and RMF and investigate how they scale to large
datasets. The tuning of the parameters for both the batch-trained
algorithms and the online algorithms are performed using a subset
of the training set. We reserved 10% of the training set for parameter
tuning and grid search for the best performing parameters. Then
using these parameters and all the training set as training and obtain
the algorithms’ performance on the test set. The performances of the
batch-trained algorithms are consistent with the results in [1, 121].
The impact of parameters on the performance in online algorithms
is referred to Sec. 3.4.5.

Online versus Batch

Figure 3.1 shows that DA-PMF and SGD-PMF perform comparable
as batch-trained PMF in MovieLens. Under T1, online algorithms
even outperform batched-trained algorithms a little bit. This may be
due to the fact that under the scenario of few training samples, online
learning algorithms are less likely to be trapped in a local optimum.
Under T9, DA-PMF’s performance is sub-optimal compared with
PMF and SGD-PMF. Overall, our online PMF algorithms perform
as well as batch-trained algorithm.

Figure 3.2 shows the comparison of various RMF algorithms un-
der different settings. Compared to batch-trained RMF, our online
algorithms’ performance is off by about 1% in all settings evaluated
by NDCG@5. The performance gap is probably due to the approxi-
mation when computing the gradient with respect to V .

The ordering of data points that are fed to our online algorithms
are chosen randomly. We have repeated the experiments several
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Figure 3.1: Comparison of PMF algorithms in MovieLens

times and the ordering does not impact the overall performance. It
is possible that in extreme cases, for example, all the ratings for user
u are revealed in the beginning of the training process, the predic-
tion accuracy might be impacted. However, we argue that in real
recommender systems, random ordering provides a good approxi-
mation of the true incoming sequence and thus the problem of order
is negligible.

Scaling to Large Dataset

Figure 3.3 shows the comparison of online and batch PMF in Ya-
hoo!Music. Note that we evaluate the performance on the evalu-
ation set, which contains 4 million ratings. Due to the huge size
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Figure 3.2: Comparison of RMF algorithms in MovieLens

of Yahoo!Music dataset, we were unable to perform batch-trained
PMF using T9 setting. Under T5, batch-trained PMF takes more
than 8 hours to finish 120 iterations (to converge) using a C++ im-
plementation in a Linux workstation with Xeon Dual Core 2.4GHz
processor and 32GB memories. The online algorithms take only
about 10 minutes to finish processing all 180 million ratings to reach
a similar performance. The time saving is phenomenal. The mem-
ory saving is even more dramatic. By loading the data on-demand,
our online algorithm takes only several hundred MB memories. The
batch-trained PMF can take up a dozen GB memories under T5. As
shown, the performance of our online algorithms remains compara-
ble to batch-trained PMF.
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Yahoo!Music dataset gives us a peek at the size of the real com-
mercial recommender system in use today. The efficiency of batch-
trained algorithms may not be an issue for relatively small size dataset.
But for real commercial recommender systems like Yahoo!Music,
the efficiency in terms of both time and memory cost become a chal-
lenging issue. As being demonstrated, our online algorithms, which
scale linearly with the number of ratings, converge much faster and
consume much less memory than their batch-trained alternatives, yet
maintain a comparable performance.

0 1 2 3 4

x 10
7

25

30

35

40

45

50

Number of ratings revealed

R
M

S
E

 

 

Batch PMF

SGD−PMF

DA−PMF

(a) PMF under T1

2 4 6 8 10 12 14 16 18

x 10
7

20

25

30

35

40

45

50

55

Number of ratings revealed

R
M

S
E

 

 

Batch PMF

SGD−PMF

DA−PMF

(b) PMF under T5
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Figure 3.4: Comparison of RMF in Jester

We choose Jester to verify the online RMF algorithms because
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the preferences of users are explicit in this dataset. Figure 3.4 shows
the comparison between online RMF and batch-trained RMF in Jester.
We observe that both DA-RMF and SGD-RMF deliver comparable
performance as batch-trained RMF. The NDCG value obtained in
Jester is smaller than that in MovieLens because its ratings are on a
wider range.

The dataset is extremely asymmetric in the sense that there are far
more users than items in this dataset. We have to scale two separate
learning rate ηU and ηV properly in batch-trained RMF for it to con-
verge. In batch-trained algorithm, using the same learning rate for
Uu and Vi would result in too big a step for Vi and too small a step
for Uu in batch-trained RMF. So we use η/tu and η/tv as the true
learning rate when update the parameter for Uu and Vi respectively,
where tu is the number of items rated by u and tv is the number
of ratings received by Vi. Without scaling the learning rate prop-
erly, batch-trained RMF would not even converge. For SGD-RMF
and DA-RMF, no modification is needed because online algorithms
update parameters on a per rating basis. The result shows that our
online algorithm accommodates to asymmetric dataset easily.

This asymmetric dataset exposes another issue associated with
batch-trained algorithms. Using the same learning rate would not be
suitable for extremely unbalanced dataset and using separate learn-
ing rate for U and V would require one more parameter to be tuned.
Online algorithms solve this issue naturally. In real commercial rec-
ommender system, we suspect that it is often the case that we have
far more users than items in the system. In Fig. 3.4(a), we reveal
50, 000 ratings to online algorithms every 3 iterations and we reveal
50, 000 ratings every 2 iterations in Fig. 3.4(b).

Please note that, in the experiment, we have cycled through the
ratings and fed them randomly into the algorithms. The results are
reported in Table 3.2 and 3.3.
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Table 3.2: Online and batch PMF results(RMSE)

MovieLens Yahoo!Music
T1 T5 T9 T1 T5

PMF 1.005 0.910 0.873 29.16 24.00
DA-PMF 0.996 0.909 0.900 28.59 23.92
SGD-PMF 0.991 0.904 0.874 29.38 24.02

Table 3.3: Online and batch RMF results(NDCG@5)

MovieLens Jester
T1 T5 T9 T5 T9

RMF 0.667 0.748 0.840 0.367 0.687
DA-RMF 0.659 0.740 0.827 0.369 0.685
SGD-RMF 0.655 0.727 0.824 0.366 0.685

3.4.5 Impact of Parameters

We analyze the impact of parameters in this section. We employ
latent feature dimension K = 10 consistently for all algorithms,
which is a suitable value according to our empirical results. Since
all algorithms we consider are matrix factorization based, employ-
ing the same latent feature size is fair for comparison. The results
reported are obtained on MovieLens.

Impact of λ

The parameter λ controls the trade-off between the regularization
and the model loss. We set λU = λV = λ for simplicity [114, 121].
Figure 3.5 shows the impact of λ in four online algorithms under dif-
ferent settings. The range of λ is selected by trail-and-error as shown
in Figure 3.5, where the range of λ gives reasonable performance.
As we can see, there is a clear trend that the more data we have, the
smaller λ we need. Since the model complexity is fixed (i.e., we
choose dimension = 10 for all experiments), we need a larger λ to
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Figure 3.5: Effect of λ in various online algorithm

avoid over-fitting when there is only limited data. In [1], the author
reported that stochastic gradient descent without regularization per-
forms quite well compared to batch-trained algorithm. This is true
only when we have access to abundant data. A proper regularization
is vital for a model with limited data.

Figure 3.5(c) and Figure 3.5(d) show that both ranking-oriented
online algorithms are quite stale in the setting T1. This is due to
the insufficiency of training data in T1. Only 10% of training data
to train the model would not make it well-fitted. This causes the
insensitivity of the effect of λ.
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Figure 3.6: Effect of η in various online algorithm

Impact of η

The parameter η denotes the learning rate, which is only applied
in SGD-PMF and SGD-RMF. It will impact the convergence rate
and the performance of the algorithms. Figure 3.6 shows the per-
formance of SGD-PMF and SGD-RMF under T1, T5 and T9 with
respect to various η values. When performing the experiments, we
employ the best λwe learnt in previous sections. We see that η = 1.0
is optimal for SGD-PMF and η = 8.0 is optimal for SGD-RMF.

There is a subtle difference between online algorithms and batch-
trained algorithms. The optimal learning rate η depends on the size
of the training set in batch-trained algorithms. On the contrary, it
is independent for online algorithms. The reason is that we update
U and V with respect to only one rating in online algorithms each
time.

Impact of other parameters

In the two online RMF algorithms, there are two extra parameters
α and c that control the decay and drop-rate of decay respectively.
In practice, they do not affect the model performance as significant
as λ. Hence, we do not present their sensitivity analysis here. In
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Figure 3.7: Effect of ρ on sparseness and accuracy

the experiment, we set α = 0.8, c = 0.2 since they deliver good
performance empirically.

3.4.6 Sparse Solution

In Dual-Averaging algorithms, adding an L1-regularization to the
optimization objective can lead to a sparse solution. We demon-
strate this in DA-PMF with Eq. (3.21) and Eq. (3.22). Figure 3.7
demonstrates the effect of ρ, the parameter controlling the trade-off
between L1-regularization and model loss, on accuracy (RMSE) and
percentage of zeros in solution under T1 using MovieLens dataset.
As ρ increases, percentage of zeros in solution increases and the ac-
curacy of the model decreases marginally. Using ρ = 0.003, we
can obtain a solution that achieves 70.4% of zero entry while still
maintaining an RMSE of 1.01.

It is important to emphasize again that a sparse solution can main-
tain the model performance with less information. It can reduce the
memory cost in storing the model and the time cost in producing the
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results. Sparse solution is also a good approach to control the over-
all complexity of the model and reduce over-fitting. In a real world
recommender system, we could increase the dimensionality of the
low-rank matrix to account for the large amount of users and items.
Sparse solution is especially useful in such situations to avoid over-
fitting and control the model complexity. The constraint that most
of the entries in the user and item feature matrices should be zero
effectively limits the model complexity while allow different groups
of users and items to have distinct features. Such effects are very
hard to achieve in a non-sparse solution.

3.5 Summary

In this chapter, we have thoroughly investigated the online learning
algorithms for rating-oriented CF model, PMF, and ranking-oriented
CF model, RMF. More specifically, we developed Stochastic Gra-
dient Descent and Dual-Averaging methods for both models. Our
proposed algorithms scale linearly with the number of observed rat-
ings. Furthermore, they obviate the need to hold all data in memory
and thus can be applied to large-scale applications. Using Dual-
Averaging method with L1-regularization, we can achieve sparse
solution while maintaining comparable performance. Experimental
results show that our online algorithms achieve comparable perfor-
mance as their batch-trained algorithms while dramatically boosting
efficiency.

2 End of chapter.



Chapter 4

Response Aware Collaborative
Filtering

4.1 Problem and Motivation

In real-world online rating systems, users’ ratings carry twofold in-
formation. Firstly the rating value indicates a user’s preference on a
particular item as well as an item’s inherent features. The scores that
a user assigns to different items convey information on what the user
likes and what the user dislikes. The rating values that an item re-
ceived from different users also carry information on intrinsic prop-
erties of the item. Second, the ratings also reveal users’ response pat-
terns, i.e., some items are rated while others not. This information
can be utilized to improve the model performance. However, previ-
ously proposed methods usually assume that all the users would rate
all the inspected items, or more generally, randomly select inspected
items to rate. These methods fit the users’ ratings directly and ignore
the key factor, users’ response patterns. The ignorance will degrade
the model performance. In this chapter, we explore previously ig-
nored response information to further boost recommender system’s
quality.

Practically, the assumption of all inspection or randomly rate is
not true in real-world rating systems. Users are unlikely to rate all
the inspected items or randomly select the inspected items to rate.

95
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Figure 4.1: Distribution of ratings in a music website [87].

Shown in Figure 4.1(a) is the rating value distribution of the items
that users choose to rate, while Figure 4.1(b) shows the distribution
of ratings for randomly selected songs from the same group of users.
Clearly these two distributions are very different. In the user selected
ratings, there are far more items with high ratings than those in the
randomly selected songs. This is compelling evidence showing that
the assumption that all the users would rate all the inspected items or
select random items to rate is unlikely to be true. The investigation
of the Yahoo!LaunchCast data indicates that users are more likely to
rate items they do love and hate, but not neutral [87, 122].

To further demonstrate the risk of incorrect parameter estima-
tion and biased rating prediction when ignoring the response in-

Table 4.1: Skewed ratings on 5 items from 5 users

item1 item2 item3 item4 item5
user1 5 4
user2 5 4
user3 4 4
user4 5 5
user5 4 5
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formation, we show an intuitive example of five users’ rating on
five items in Table 4.1, where the ratings are skewed to either 4
or 5. Clearly, user-based approaches [14, 43] and item-based ap-
proaches [30, 65, 117] are more likely to predict rating values in the
range of 4 to 5. Similarly, ignoring response information will cause
the one-class issue for model-based approaches [64, 101, 102]. In a
real-world recommender system, the case may not be as extreme as
is in Table 4.1. Nevertheless, the effect is similar. By ignoring the
response information, we will learn a model that has bias.

Currently, there are two main streams of work trying to solve
the above response ignorance problem. One line of work tries to
model the above phenomena as a one-class collaborative filtering
task [64, 101, 102]. A heuristic weight in the range of 0 to 1 is
introduced to calibrate the loss on those unseen ratings, where the
rating scores are set to zeros [101, 102]. Embedding user informa-
tion is also adopted to optimize the weight on the unseen ratings
via users’ similarity [64]. However, these methods do not model
the users’ missing response information together with the ratings.
The other line of work model the response ignorance through miss-
ing data theory [70]. The multinomial mixture model is adopted to
model the non-random response [87]. The work is also extended for
collaborative ranking [86]. These methods model users’ response
patterns and ratings via multinomial mixture model, but they dis-
card the effectiveness and interpretability of the matrix factorization
approaches [56, 114].

To bridge this gap, we are the first to integrate the users’ response
patterns into PMF to establish a unified framework, which we refer
to as Response Aware PMF (RAPMF) [69]. The response models
we propose include the rating dominating response model, and a
generalized one, the context-aware response model. We demonstrate
the advantages of our proposed RAPMF through detailed and fair
experimental comparison.

The rest of this chapter is organized as follows. In Section 4.2,
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we motivate the explicit modeling of user responses from a proba-
bilistic point of view. In Section 4.3, we present how to incorpo-
rate response models into PMF and elaborate the proposed RAPMF
model. Empirical study and comparison with previous work is con-
ducted in Section 4.4. We summarize this chapter in Section 4.5.

4.2 Response and Missing Theory

Modeling response patterns have a strong incentive from statisti-
cal missing data theory [70]. The response patterns can be hid-
den [24, 48] or explicit. In recommender system case, it is explicit.
In the following, we show that without modeling the response pat-
terns properly, we may learn a bias model.

4.2.1 Setup and Notation

Assume that we are given a partially observed N × M matrix X ,
where N is the number of users and M is the number of items, the
(i, j) element of X denotes the rating assigned by user i to item j in
the scale of 1 to D. Collaborative filtering approaches try to recover
the original full matrix Xfull to predict users’ preferences.

In the matrixX , 0 denotes an unobserved entry. Alternatively, we
denote all the observations as a set of triplets (i, j, x) ∈ Q. More-
over, we define a companion response indicator matrix R to denote
whether the corresponding rating is observed in X . If Xij 6= 0, i.e.,
we have observed user i’s rating on item j, then Rij = 1. Otherwise
Rij = 0. Note thatX is partially observed whileR is fully observed.

4.2.2 Missing Data Theory

Following missing data theory in [70], we model the collaborative
filtering data as a two-step procedure. First, a data model P (X|θ)
generates the full data matrixXfull. Then, a response model P (R|X,µ)
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determines which elements in Xfull are observed. Hence, we can
take a parametric joint distribution on the observed data matrix X
and the response matrix R, conditioned on the model parameters, θ
and µ.

P (R,X|µ, θ) = P (R|X,µ, θ)P (X|µ, θ) (4.1)
= P (R|X,µ)P (X|θ), (4.2)

where P (R|X,µ) is also referred to as the missing data model. In
the following, we use response model and missing data model inter-
changeably.

According to the missing data theory [70], there are three kinds of
missing data assumptions: 1) Missing Completely At Random (MCAR);
2) Missing At Random (MAR), and 3) Not Missing At Random (NMAR).
MCAR has the strongest independence assumption. Under the MCAR
assumption, the missing mechanism cannot depend on the data in
any way. Whether we will observe a response is fully determined by
the parameter µ and is irrelevant to the users’ rating, i.e.,

P (R|X,µ) = P (R|µ) (4.3)

One typical example where MCAR holds is that given an inspected
item, whether it will be observed is a Bernoulli trail with probability
µ.

The MAR assumption is slightly different from the MCAR as-
sumption. Let Xfull = (Xobs, Xmis), i.e., the full data matrix Xfull

is separated into observed data matrix Xobs and missing data ma-
trix Xmis. Under the MAR assumption, the response probability
depends on the observed data and µ, i.e.,

P (R|X,µ) = P (R|Xobs, µ). (4.4)

Marlin and Zemel [86] refer to this as the probability of observing
a particular response only depending on the observed elements of
the data vector. The assumption made by MAR may seem bizarre.
However, it comes up naturally if we want to ignore response model
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and still learn unbiased data model parameters. We demonstrate this
in the following.

Let L(µ, θ|Xobs, R) be the likelihood of µ and θ given the obser-
vation Xobs and R. Under the MAR assumption, we have

L(µ, θ|Xobs, R) = P (R,Xobs|µ, θ)

=

∫
Xmis

P (R,X|µ, θ)dXmis

=

∫
Xmis

P (R|X,µ)P (X|θ)dXmis

=

∫
Xmis

P (R|Xobs, µ)P (X|θ)dXmis (4.5)

= P (R|Xobs, µ)

∫
Xmis

P (X|θ)dXmis

= P (R|Xobs, µ)P (Xobs|θ)
∝ P (Xobs|θ).

The key to marginalize the missing data is that the missing data
model depends only on the observed data, i.e., MAR assumption in
Eq. (4.4). Under the MCAR assumption, we can simplify Eq. (4.5)
similarly, which only depends on µ. Note that the assumption made
by MAR appears naturally in the derivation. This is the indepen-
dence assumption we cannot release anymore without losing the
ability to marginalize the complete data model independently of
missing data model.

If both MCAR and MAR fail to hold, then NMAR assumption
is made. Unlike MCAR and MAR, NMAR requires an explicit re-
sponse model in order to learn unbiased model parameters. Oth-
erwise, maximizing P (Xobs|θ) directly can yield a biased θ. With
only a few exceptions [86, 87], nearly all the previous work on rec-
ommender systems try to maximize the data model directly [46, 82,
104, 114, 115]. In a typical recommender system, the data collected
can easily violate the MAR assumption. The distinct distribution
of rating values on user selected items and randomly selected items
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hints that the response pattern depends on not only the observed
data. Also, a survey on the Yahoo! LanuchCast provides evidence
that the response probability might depend on the fondness of par-
ticular items [87, 122].

4.3 Models and Analysis

In the following, we first review the Probabilistic Matrix Factor-
ization (PMF). After that, we present the response aware PMF and
show how it can incorporate PMF with the response models. More
specifically, we introduce two response models, the rating dominant
response model and the context-aware response model. The updat-
ing rules and complexity analysis are provided correspondingly.

4.3.1 Probabilistic Matrix Factorization

PMF [114] is one of the most famous matrix factorization mod-
els in collaborative filtering, which decomposes the partially ob-
served data matrix X into the product of two low-rank latent fea-
ture matrices, U and V , where U ∈ RK×N , V ∈ RK×M , and
K � min(N,M).

By assuming Gaussian distribution on the residual noise of ob-
served data and placing Gaussian priors on the latent feature matri-
ces, PMF tries to maximize the log-likelihood of the posterior dis-
tribution on the user and item features as follows:

LPMF = −
∑

(i,j,x)∈Q

(x− UT
i Vj)

2

2σ2
− ‖U‖

2
F

2σ2
U

− ‖V ‖
2
F

2σ2
V

. (4.6)

This is equivalent to minimizing a squared loss with regulariza-
tion defined as follows:

E =
1

2

∑
(i,j,x)∈Q

(x− UT
i Vj)

2 +
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F , (4.7)
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where λU = σ2/σ2
U and λV = σ2/σ2

V are positive constants to con-
trol the trade-off between the loss and the regularization terms. ‖·‖2

F

denotes the Frobenious norm.
After training the PMF model via gradient descent or stochastic

gradient algorithms [114], the predicted rating that user i would as-
sign to item j can be computed as the expected mean of the Gaussian
distribution x̂ij = UT

i Vj.

4.3.2 Response Aware PMF

In Sec. 4.2, we have demonstrated that by neglecting response pat-
terns, not only do we lose the potential information that might boost
the model performance, but also can it lead to incorrect or biased
parameters estimation. Due to the effectiveness and interpretability
of PMF, we will unify it with explicit response models, which we
refer to as Response Aware PMF (RAPMF).

Replacing θ in Eq. (4.2) by the low-rank latent feature matrices
in PMF, we have

P (R,X|U, V, µ, σ2) = P (R|X,U, V, µ, σ2)P (X|U, V, σ2). (4.8)

The probability of full model, P (R,X|U, V, µ, σ2), is decomposed
into data model P (X|U, V, σ2) and the missing data model P (R|X,U, V, µ, σ2).

4.3.3 Response Model

Modeling the missing data successfully requires a correct and tractable
distribution on the response patterns. Bernoulli distribution is an
intuitive distribution to explain data missing phenomena [87]. De-
pending on whether users’ and items’ features are incorporated, we
propose two response models, rating dominant response model and
context-aware response model.
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4.3.4 Rating Dominant Response Model

For the sake of simplification, we assume the probability that a user
chooses to rate an item follows a Bernoulli distribution given the
rating assigned is k. Hence, for a scale of 1 toD, the rating dominant
response model has D parameters µ1, µ2, · · · , µD.

If X is fully observed, then the response mechanism can be mod-
eled as [87]:

P (R|X,U, V, µ, σ2) = P (R|X,µ)

=
N∏
i=1

M∏
j=1

D∏
k=1

(µ
[rij=1]
k (1− µk)[rij=0])[xij=k], (4.9)

where [r = 0] is an indicator variable that outputs 1 if the expression
is valid and 0 otherwise. It is noted that Eq. (4.9) adopts the “winner-
take-all” scheme, i.e., a hard assignment scheme, to model users’
response on a particular rating.

However, in real-world recommender system, the data is not fully
observed. The “winner-take-all” scheme brings the risk of deterio-
rating assignment probability when the data is recovered based on
the learned model. Hence, we adopt a soft assignment using proba-
bility of the possible rating values in the response model as follows:

P (R|X,U, V, µ, σ2) = P (R|U, V, µ, σ2)

=
N∏
i=1

M∏
j=1

D∑
k=1

(µ
[rij=1]
k (1− µk)[rij=0])P (xij = k|U, V, σ2), (4.10)

where P (X|U, V, σ2), the probability of X being assigned to k, can
be set to N (k|UTV, σ2) as is in [114].

To relieve the inaccuracy issue when recovering the original model,
we further introduce a discount parameter β on the assignment prob-
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ability

P (R|X,U, V, µ, σ2) = P (R|U, V, µ, σ2) (4.11)

∝
N∏
i=1

M∏
j=1

(
D∑
k=1

(µ
[rij=1]
k (1− µk)[rij=0])N (k|UTV, σ2))β, (4.12)

where the parameter β, in the range of 0 to 1, can be interpreted as
the faith we have on the response model relative to the data model.
As β decreases, the effect of the response model decreases corre-
spondingly. When β = 0, the RAPMF collapses to PMF.

More importantly, the expectations of Bernoulli distributions, µk’s
should be in the range of 0 to 1. With the performance considera-
tion, the logistic function is usually adopted to constrain the range
of µk’s [86],

g(µk) =
1

1 + exp(−µk)
, k = 1, . . . , D. (4.13)

Similarly, we place a zero mean Gaussian prior on µk to regularize
it.

Note that in Eq. (4.10), we use only one parameter for each possi-
ble rating value, so all the users and items share the same probability
as long as the rating values are the same. This is a simple approach
to capture the intuition that the rating assigned to an item may in-
fluence the chance that it got rated. This motivates us to name this
model as rating dominant response model. We refer to PMF with
rating dominate response model as RAPMF-r.

By incorporating the response model in Eq. (4.12) and the PFM
model in Eq. (4.6) into RAPMF in Eq. (4.8), we obtain the log-
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likelihood of the RAPMF-r as follows:

L(U, V, σ2, µ)

= β
N∑
i=1

M∑
j=1

log(
D∑
k=1

αkijN (k|UTV, σ2))− 1

2σ2
µ

‖µ‖2−

∑
(i,j,x)∈Q

(xij − UT
i Vj)

2

2σ2
− 1

2σ2
U

‖U‖2
F −

1

2σ2
V

‖V ‖2
F + C, (4.14)

where C denotes the constant terms and αkij is defined as

αkij = (g(µk)
[rij=1](1− g(µk))

[rij=0]). (4.15)

The gradient of L with respect to Ui is:

∂L
∂Ui

=− β
M∑
j=1

∑D
k=1 αkijN (k|UTV, σ2)(UT

i Vj − k)Vj∑D
k=1 αkijN (k|UTV, σ2)

−
M∑
j=1

(UT
i Vj − xij)[rij = 1]Vj − λUUi. (4.16)

Similarly, the gradient of L with respect to Vj is:

∂L
∂Vj

=− β
N∑
i=1

∑D
k=1 αkijN (k|UTV, σ2)(UT

i Vj − k)Ui∑D
k=1 αkijN (k|UTV, σ2)

−
M∑
j=1

(UT
i Vj − xij)[rij = 1]Ui − λV Vj. (4.17)

Both Eq. (4.16) and Eq. (4.17) consist of three terms. The first term
corresponds to the change due to the response model, the second
term is the change due to the data model and third is a regularization
to avoid overfitting. Note that by adjusting β, we effectively alter
the weight of the response model when updating parameters.

Finally, the gradient of L with respect to µl is

∂L
∂µl

=
N∑
i=1

M∑
j=1

N (l|UTV, σ2)g′(µl)(−1)[rij=0]∑D
k=1 αkijN (k|UTV, σ2)

− λµµl, (4.18)
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where g′(x) is the derivative of the sigmoid function g(x). In Eq. (4.16),
(4.17), (4.18), λU = σ2/σ2

U , λV = σ2/σ2
V and λµ = σ2/σ2

µ and a
multiplicative constant 1/σ2 is dropped in all three equations.

To learn model parameters, we alternatively update U, V and µ
using the gradient algorithm with a learning rate η by maximizing
the log-likelihood. First we update U, V by

Ui ← Ui + η
∂L
∂Ui

, Vj ← Vj + η
∂L
∂Vj

. (4.19)

Then using the updated U, V , we update µl by

µl ← µl + η
∂L
∂µl

. (4.20)

Similar to PMF [114], we linearly map the rating values in [1, D]
to [0, 1] and pass UT

i Vj through the sigmoid function as defined in
Eq. (4.13). To avoid cluttered notations, we drop all the logistic
function in our derivation process. After obtained the trained model,
we convert the expected value, g(UT

i Vj), back to the scale of 1 to
D and set it as the predicted score of user i’s rating on item j. We
provide an algorithm for learning model parameters in Algorithm 6.

4.3.5 Context aware response model

In real-world recommender systems, the probability of an item be-
ing rated may not only depend on users’ rating score. Many factors
affect the response probabilities. For example, in a movie rating sys-
tem, some popular movies such as Titanic, Avatar, may have much
higher probability of being rated than a mediocre movie. Moreover,
the features of users and items may contain group structure [134].
One may argue this might be caused by the higher inspection rate,
i.e., it is likely that a reputable movie is being watched more than
an obscure one. Nevertheless, it still makes sense that some items
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Algorithm 6 Response Aware PMF(RAPMF)
Parameters: N,M,D,K, λU , λV , λµ, β
Input: Rating and Response Matrix (X,R)
Initialize U ∈ RK×N and V ∈ RK×M randomly
Initialize average gradient matrix to 0

YU ∈ RK×N ← 0; YV ∈ RK×M ← 0

while Stop criteria not met do
X̂ ← UTV
Increase index TUu ← TUu + 1 and TVi ← TVi + 1
tu ← TUu , tv ← TVi
Update average gradient YU and YV

YUu ←
tu − 1

tu
YUu +

1

tu
(gui − r)g′uiVi

YVi ←
tv − 1

tv
YVi +

1

tv
(gui − r)g′uiUu

Update latent user and item feature Uu and Vi

Uu ← −
1

2λU
YUu , Vi ← −

1

2λU
YVi

end while
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may have higher chance of receiving a rating due to the high qual-
ity that a user will not hesitate to rate it. In addition, different user
may have distinct rating habits. Some users might be more willing
to provide ratings in order to get high quality recommendation. This
is supported by the fact that the number of ratings received from dif-
ferent users can differ wildly in real-world deployed recommender
systems.

To capture such factors, we generalize the rating dominant re-
sponse model by including both item features and user features. To
keep the model tractable and efficient, we introduce a linear com-
bination of the item features, user features and a constant related to
the rating scores and pass it through the logistic function to model
the response probability,

µijk =
1

1 + exp(−(δk + UT
i θU + V T

j θV ))
. (4.21)

We refer to Eq. (4.21) as context-aware response model, in which
the response probability is on a per-user-item-rating basis. More
sophisticated relationship definition can be referred to [129, 133,
135]. The PMF integrated with the context-aware response model is
named RAPMF-c. Note that by setting θU and θV to zero, we can
recover the rating dominant response model in Eq. (4.13).

The log-likelihood of RAPMF-c is in the same structure as RAPMF-
r. We only need to substitute µk in Eq. (4.15) by µijk defined in
Eq. (4.21). Similarly, the gradients of L with respect to Ui and Vj
are

∂L
∂Ui

=β
M∑
j=1

∑D
k=1 tUkijN (k|UTV, σ2)∑D
k=1 αkijN (k|UTV, σ2)

−
M∑
j=1

(UT
i Vj − xij)[rij = 1]Vj − λUUi, (4.22)
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∂L
∂Vj

=− β
N∑
i=1

∑D
k=1 tV kijN (k|UTV, σ2)∑D
k=1 αkijN (k|UTV, σ2)

−
M∑
j=1

(UT
i Vj − xij)[rij = 1]Ui − λV Vj, (4.23)

where the tUkij and tV kij is defined as following

tUkij = g′(µkij)(−1)[rij=0]θU − αkij(UT
i Vj − k)Vj, (4.24)

tV kij = g′(µkij)(−1)[rij=0]θV − αkij(UT
i Vj − k)Ui. (4.25)

Correspondingly, the gradients of L with respect to δl, θU and θV
are

∂L
∂δl

=
N∑
i=1

M∑
j=1

N (l|UTV, σ2)g′(µkij)(−1)[rij=0]∑D
k=1 αkijN (k|UTV, σ2)

−λµδl, (4.26)

∂L
∂θU

=
N∑
i=1

M∑
j=1

D∑
k=1

N (k|UTV, σ2)g′(µkij)(−1)[rij=0]Ui∑D
k=1 αkijN (k|UTV, σ2)

−λµθU , (4.27)

∂L
∂θV

=
N∑
i=1

M∑
j=1

D∑
k=1

N (k|UTV, σ2)g′(µkij)(−1)[rij=0]Vj∑D
k=1 αkijN (k|UTV, σ2)

−λµθV . (4.28)

To learn RAPMF-c, we adopt the alternatively updating scheme
to maximize the log-likelihood, where the updating rules of U and
V are the same as those in Eq. (4.19). After updating U and V , we
update δl, θU and θV by

ϑ ← ϑ+ η
∂L
∂ϑ

,

where ϑ is replaced by δl, θU and θV , respectively.
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4.3.6 Complexity and Parallelization

The training complexity of RAPMF,O(MN), can be quite time con-
suming compared with the PMF, which is linear in number of obser-
vations, O(|Q|). However, we argue that the time spent on training
is worthy since it can boost the model performance. More impor-
tantly, the prediction complexity of RAPMF is the same as PMF,
O(K), which can be taken as a constant time given a moderate sized
K. Since the training procedure can be performed offline, RAPMF
can accommodate the hard response time constraint in real-world
deployed recommender systems due to the succinct prediction cost.

In addition, RAPMF can be speedup by parallelization. The in-
tensive computation cost, calculating the gradients, can be decou-
pled and distributed to a cluster of computers. It is also possible to
use online learning to speed up the training process [68].

4.4 Experiments and Results

We conduct empirical evaluation to compare the performance of
PMF [114], CPT-v [87], Logit-vd [86], and our RAPMF. We try
to answer the following questions:

1. How to collect data with benchmark response patterns to eval-
uate the models fairly?

2. How to design experiment protocols to evaluate the perfor-
mance the models with and without response models fairly?

3. How the compared models perform on the collected data?
4. How the parameters, β and λ, affect the performance of RAPMF?

Sections 4.4.1-4.4.4 answer the above questions, respectively.
Before discussing the protocol we use in this chapter, we will

describe traditional experiment protocol used in evaluating recom-
mender system and its limitations.

Traditionally, experiments for recommender system are usually
done using existing publicly available dataset like MovieLens [113]
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or Netflix [5]. These datasets contain a list of user item rating triplets
and optionally some additional information on users and items. Rat-
ings in these datasets are often collected from real life system that
allow user to rate items. The protocol used to evaluate a recom-
mender system’s performance is to divide the dataset into two dis-
joint datasets, one for model training and the other for model testing.
To evaluate a newly proposed recommender system model, usually
we feed the training set into the model for parameter learning. When
the training is complete, we use the learned model to make predic-
tions for the user item pairs that appear in the hold-out testing set
and compare them to the real ratings.

We argue that use traditional protocol to test the performance of a
model is problematic. The items in a recommender system can have
one of three different statuses: un-inspected, inspected and not rated,
inspected and rated. Note that the status of an item is on a per-user
basis. What we have in the publicly available datasets, are those of
the third status, i.e., inspected and rated. That is, all we have in these
datasets are user selected ratings. What we want to recommend is,
however, those of the first status, i.e., un-inspected. As has already
been demonstrated, the distribution of user selected ratings is quite
different from the distribution of randomly selected ratings. We have
shown that ignoring the response patterns can result a model that
have bias. This chapter is about how to learn a model that take into
account the response information. Similarly, using the user selected
items to evaluate the performance of a model also has bias effect.

In fact, the traditional experiment protocol used for evaluating
recommender system may hide the significance of the problem of
ignoring the response model. Since the training set and the testing
set are all user selected, by ignoring the response model, data model
alone can handle the dataset without bias.

Ideally, we would like to evaluate a recommender system’s per-
formance by making recommendation to users and then collect users’
feedback on those recommended items. A working recommender
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system is required to conduct such kind of experiments. And to
have statistical sound performance measure, we will need a large
user base. Since we do not have access to such large scale real life
recommender system, we choose to evaluate our model using syn-
thetic dataset.

4.4.1 Datasets

We conduct our empirical analysis on two datasets: a synthetic dataset
and a real-world dataset, the Yahoo! Music ratings for User Selected
and Randomly Selected songs, version 1.0 (Yahoo dataset)1.

In this dataset, since we have the full data matrix, we take the
opportunity to investigate the relative performance of different mod-
els under different settings. In the synthetic dataset, since we have
the full data matrix, we can conduct the experiments using all the
three protocols designed before and better reveal the properties of
the proposed models.

Synthetic dataset. The data generation process consists of two
steps: generating full rating matrix and generating response matrix.
Generating the full rating matrix models the how users rate items.
Generating the response matrix models the process that how users
choose whether to respond or not. One may argue that these two
processes are different from real situation, in which the first step is
to have some items inspected by each user, and then among the in-
spected items, some of them are being rated. The difference in our
settings and the inspect-rate situation is how a user inspects items.
In our setting, we implicitly assume that the inspection is performed
randomly for each user. Although this assumption might not be
100 percent true in real situation, it provides a good approximation
which allows us to focus on the response models. The inspection
model could be an interesting future work.

To generate the full rating matrix, we first generate the latent user
1http://webscope.sandbox.yahoo.com
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Table 4.2: Parameters for generating the synthetic dataset.

N M D K Pinspect
1000 1000 5 5 0.2
P1 P2 P3 P4 P5

0.073 0.068 0.163 0.308 0.931

features and item features from zero-mean spherical Gaussian as fol-
lows:

Ui ∼ N (0K , σ
2
UIK), Vj ∼ N (0K , σ

2
V IK),

where i = 1, . . . , N , j = 1, . . . ,M , 0K is a K-dimensional vector
with each element being 0 and IK is the K×K identity matrix. The
full rating matrix X is then obtained by re-scale the sigmoid value
of UTV to 1 to D by Xij = dg(UT

i Vj)×De.
To generate the response matrix R, we first set the inspection

probability of a user inspecting an item, Pinspect. Then, the parti-
tioning of inspected ratings and un-inspected ratings are done by
the Bernoulli trails with success probability Pinspect. For all the in-
spected ratings, we model their response probability by a Bernoulli
distribution with the success probability Pk, where k ∈ {1, 2, . . . , D}.
Table 4.2 summarizes the parameters used for generating the syn-
thetic dataset. The parameters are selected so that they can faithfully
simulate real users’ ratings and response behaviors. The rating prob-
abilities Pk are chosen according to Fig. 4.1. To minimize the effect
of randomness, we generate the dataset independently 10 times and
report the average result in the following. On average, we provide
about 3.3% of the full matrix as training set, around 3.4% as testing
set for traditional protocol, around 17.3% as testing set for adver-
sarial protocol and all the remaining 80% as testing set for realistic
protocol.

Yahoo dataset. It provides a unique opportunity to investigate
the response ignorance problem. The dataset contains 311,704 train-
ing ratings collected from 15,400 users on 1,000 songs during the
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normal interaction between the users and the Yahoo! Music system,
with at least 10 ratings for each user. During a survey conducted by
Yahoo! Research, exactly 10 songs randomly selected from these
1,000 songs are presented to the user to listen and rate. In total there
are 5,400 users participated this survey and these 54,000 ratings are
the testing ratings.

For the Yahoo dataset, we have no information on the inspected-
and-not-rated items. We cannot perform experiments under the ad-
versarial protocol due to this reason. We conduct experiments using
traditional and realistic protocol only.

4.4.2 Setup and Evaluation Metrics

In a real-world deployed recommender system, the status of an item
given a user follows exactly one of the three types: un-inspected,
inspected-unrated, and inspected-rated. Traditional collaborative
filtering approaches separate the inspected-rated data into training
set and test set and evaluates the model on the test set. Since both
the training set and the test set belongs to the inspected-rated type,
their rating distributions are the same. Thus, the traditional eval-
uation scheme may hide the significance of the ignoring response
model. In the experiment, we first investigate two existing experi-
mental protocols:

• Traditional protocol: Both the training set and the test set
are randomly selected from inspected-rated items together with
their rating users and assigned scores. This is exactly the tradi-
tional experiment protocol [114].

• Realistic protocol: The training set is randomly selected from
inspected-rated items, but the test set is randomly selected from
un-inspected items. This is an experimental protocol adopted
in [86, 87]. This protocol captures the ultimate goal of a rec-
ommender system, i.e., recommending un-inspected items to
potential users who are interested.
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Moreover, we will investigate a new experimental protocol:

• Adversarial protocol: The training set is randomly selected
from inspected-rated items, but the test set is randomly selected
from inspected-unrated items. This setting tests the model’s
performance when the distribution of the training set and test
are very divergent. It can reveal the property of the model
in some real-world cases where most of inspected-rated items
receive very high scores, while those inspected-unrated items
have low scores. This setting also demonstrates the model per-
formance when we have an adversary that manipulates the re-
sponses.

For the synthetic dataset, we use the same training set for all three
protocols. For various protocols, different test set can reveal differ-
ent properties of the PMF with and without the response models. We
report the average performance on the 10 independently generated
datasets.

For Yahoo dataset, we use only traditional and realistic protocol
and do not evaluate the adversarial protocol due to the missing of
necessary inspection information. For the traditional protocol, we
perform 10 fold cross validation on the training ratings. For the re-
alistic protocol, we train the model using training ratings and test on
the testing ratings. We perform the experiment 10 times and report
the average results.

In the experiment, we use Root Mean Square Error (RMSE) to
evaluate the performance of various approaches [87, 114, 127], i.e.,
RMSE =

√
1/|T |

∑
(i,j,x)∈T (x̂ij − x)2, where T is the set of (i, j, x)

triplets reserved for testing and x̂ij is model prediction for user i’s
rating on item j.

4.4.3 Model Comparison

For both the synthetic dataset and Yahoo dataset, we randomly select
10% of the testing ratings from realistic protocol as validation set
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to tune the parameters (more advanced techniques can be referred
to [109]):

• λU and λV : They are tuned by the grid search scheme, i.e., first
selecting from {10−3, 10−2, 10−1, 100, 10, 102}, respectively. We
then fine-tune the range to achieve the best performance of
PMF; see an example in Fig. 4.4.

• β: We first fix the optimal λU and λV obtained from PMF, we
then tune it in {0.0, 10−3, 10−2, 10−1, 1.0} and fine-tune it fur-
ther for RAPMF-r; see an example in Fig. 4.3.

• λµ: As shown later in Fig. 4.5, this parameter is insensitive on
a large range.

These parameters are then used across different protocols. The hyper-
parameters used for CPT-v and Logit-vd follow the settings used
in [86]. We chooseK = 5 as the latent dimension size for all the ex-
periments. All the models are trained using 500 iterations. Accord-
ing to our experience, the change in performance after 200 iterations
is negligible.

Figure 4.2 shows the results of various models’ performance un-
der different protocols on both the synthetic and Yahoo datasets.
Figure 4.2(a) shows the results on the synthetic datasets. We see
that PMF performs best under traditional protocol. This is expected
because under the traditional setting, the testing set and the train-
ing set have exactly the same distribution. The response model does
not help. However, under realistic and adversarial protocol, the pro-
posed RAPMF-r outperforms PMF by 5.5% and 9.2%, with 95%
confidence level on the paired t-test, respectively. The RAPMF-c
performs slightly worse than RAPMF-r. This is probably due to the
reason that we does not take the user and item features into account
when generating the dataset.

More importantly, the learned rating probability for a typical run
of RAPMF-r is [0.0125, 0.0124, 0.0155, 0.0267, 0.105]. Comparing
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Figure 4.2: Relative performance of various models. Smaller value indicates a
better model performance.

this with the parameter used in Table 4.2 when generating the data,
we see that although RAPMF cannot recover the rating probabilities
exactly, the overall trend is captured quite precisely. This explains
the significant performance boost in realistic and adversarial proto-
col.

Figure 4.2(b) shows the results on the Yahoo dataset. Again, PMF
attains the best performance under traditional protocol. Under real-
istic protocol, the RAPMF-r and RAPMF-c outperforms PMF by
4.1% and 4.9%, with 95% confidence level on the paired t-test, re-
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spectively. The performance gain is slightly less than that in the
synthetic dataset, probably due to the reason that the rating proba-
bility in real-world dataset is not as dynamic as the value we choose
in Table 4.2. The performance boost gained from context-awareness
is not as significant as we have expected. This result hints that the
rating value might impact a user’s decision on whether to rate the
item more than the user and item features.

4.4.4 Sensitivity Analysis

In the following, we investigate how the model parameters affect the
performance of RAPMF. All the sensitivity analysis is done under
the realistic setting in one-trial of the generated synthetic dataset.

Impact of β

The faith parameter β is arguably the most important parameter in
our RAPMF model. As has been discussed in Section 4.3, we adopt
a soft-margin approximation of the ideal hard-margin response model.
When making this approximation, we unavoidably introduce some
bias in the response model because we cannot fully recover the true
U and V . Hence, we introduce β to control the weight of the re-
sponse model. Especially when the training process is just started,
the probability can diverge wildly from the truth. Instead of trust the
response model blindly, we use β to control the weight we place on
the response model.

Figure 4.3 plots the performance of RAPMF versus β on the log-
arithmic scale. When β = 0, RAPMF fall back to PMF, whose per-
formance is 1.015, corresponding to the most left point in Fig. 4.3.
Clearly, by incorporating an explicit response model, RAPMF is
able to beat PMF by a large margin (nearly 5%) by using a proper β
value. However, if we use too large a β, we quickly lose the boost
provided by the response model. An observation of the experiment
is that when β is too large, the model does not converge. This is be-
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Figure 4.3: Sensitivity analysis of β on RAPMF on one-trial test.

cause the model training starts from randomly initialized U and V ,
a large weight on the response model will pull the model away from
the true model and cause divergence. If we place too much weigh
on the response model, the model is unlikely to converge.

We did not include the result when β is bigger than 0.1. In fact,
when β is too large, the model won’t even converge. This is expected
because we initialize U and V randomly. The probability measure
would diverge wildly from the truth. If we place too much weigh on
the response model, the model is unlikely to converge.

Impact of λ′s

The regularization parameters λ are placed on U , V and µ. Since in
the dataset, users and items are symmetric, we use the same regular-
ization parameter λUV for U and V and use another parameter λµ to
control µ.

Figure 4.4 shows the impact of λUV on the performance of RAPMF.
When λUV is very small, although the RAPMF is able to fit the train-
ing data very well, it does not generalize well to the test set. This
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Figure 4.4: Sensitivity analysis of λUV on RAPMF on one-trial test.

is a sign of over-fitting. As λUV becomes larger, which limits the
norms of U and V , the training RMSE increases but the test RMSE
decreases gradually. However, after a turning point, both the training
RMSE and test RMSE start to increase. This is when the regulariza-
tion is too stringent that it hinders the proper fitting of the model.
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Figure 4.5: Sensitivity analysis of λµ on RAPMF on one-trial test.
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Figure 4.5 shows the impact of λµ on the model performance.
Since the number of parameters to learn in U and V are more than
the number of parameters in µ, to effectively regularize µ, we need a
much larger λµ than λUV . This evidence is observed in Fig. 4.5. As
we can see, it is basically a straight line in a large range from 10−3

to 104, while the RMSE is changed only from 0.9714 to 0.9734, a
very small scale. The effect of λµ is inappreciable. This is probably
due to the fact that µ is a parameter in D-dimension (D=5) and no
significant over-fitting can occur.

Impact of η

Figure 4.6: Impact of η in RAPMF
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The parameter η is the learning rate, deciding how large a step
to take when updating the parameters. When updating U , the actual
learning rate we use is η/|V | and likewise η/|U | for updating V .
When updating µ, the true learning rate is η/|V |/|U |. This scaling
is done to ensure that the actual steps taken are on the same scale
when updating different parameters. Figure 4.6 plots the impact of
η on the model performance. It is shown that η = 800 is an ideal
choice.
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4.5 Summary

In this chapter, we propose two response models, rating dominant
and context-aware response models, to capture users’ response pat-
terns. Further, we unify the response models with one of famous col-
laborative filtering model-based methods, the Probabilistic Matrix
Factorization, to establish the Response Aware Probabilistic Matrix
Factorization framework (RAPMF). The RAPMF also generalizes
PMF as its special case. Empirically, we verify the performance of
RAPMF under carefully designed experimental protocols and show
that RAPMF performs best when it tries to fulfill the ultimate goal of
real-world recommender systems, i.e., recommending items to those
who may be interested in. The empirical evaluation demonstrates the
potential of our RAPMF model in real-world recommender system
deployment.

2 End of chapter.



Chapter 5

User Reputation Estimation

5.1 Problem and Motivation

Recommender systems become more and more important for on-
line service providers. Large real-life recommender systems nowa-
days usually adopt collaborative filtering techniques [5, 7]. These
techniques are essentially social systems that predict a user’s prefer-
ence on an item by leveraging the judgment of other people. They
are vulnerable to spammers and manipulations of ratings. There are
evidences showing the existence of spammers in online rating sys-
tems. The ratings assigned by spammers can contaminate the system
and affect recommendation accuracy. Detecting these spammers and
eliminating their ratings from the system is thus crucial to online rat-
ing systems.

Malicious users have been found in rating systems in the liter-
ature [41]. As early as 2005, there is news reporting on a group
of people managing to trick Amazon’s recommender system1. Re-
cently, there is an incident that a user created non-existing item re-
ceiving hundreds of reviews in a major social rating website. Though
the item is deleted quickly, this incident still caused a splash in the
users. The users’ behavior on the fantasy item hinted that their rat-
ings for other items could also be imaginary and malicious. From a

1http://news.cnet.com/2100-1023-976435.html
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recommender system’s point of view, such ratings do not have pos-
itive impact on the system, because users’ irresponsible ratings may
contaminate the features of the items that they have rated.

A user reputation system can be employed to detect and mitigate
the effect of spammers in such rating systems. A reputation system
can estimate the credibility of a user by analyzing the rating behavior
of the user. In previous studies of user reputation estimation, an item
is usually assumed to have an intrinsic utility that is common to all
users [63, 29]. Then a user’s rating is compared with this utility
and the deviation between the rating and the utility determines the
reputation score of the user. This quality view of item might be true
for some rating systems, for example, an online commodity shop
where the ratings are assigned based on the utility of the commodity.
However, it may not be true in other types of rating systems. For
example in a movie recommendation system, Star Trek might be the
favorite movie for a Sci-Fi fan while it is tiring to a documentary
lover. The utility score of an item can be quite different for different
users in this scenario. Lower the documentary lover’s reputation
score because she assigned a very low score to Star Trek might be
inappropriate. As long as the scores assigned to items are consistent,
one’s reputation score should not be penalized.

Reputation score should measure users’ consistency and predictabil-
ity in assigning the ratings to items. Given a reasonable model that
captures the known ratings, the consistency and predictability can be
measured with respect to the model prediction. If a user always as-
signs ratings to items in a way that is surprising and unpredictable,
it is likely that he is a spammer. For example, if a user assigns a
very high score to the movie Batman Dark Knight and a very low
score to The Dark Knight Rises, it is inconsistent and unpredictable
since these two movies are produced by the same director and have
very similar characteristics. From the model’s point of view, the two
ratings are contradictory and cannot be trusted completely. We in-
corporate this idea into our framework and introduce a new method
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based on the framework.
We need to point out that we cannot guarantee an error-free spam

detection using the ratings alone. There could simply be a sub-
population of users who hold a view difference from other users.
On the other hand, a spammer could also pretend to be a normal
user by following the majority’s opinions on most items except for
the few items the ratings of which he/she wants to manipulate. An-
other potential problem with spam detection in online rating systems
is spammers becoming the majority. Using the ratings alone, if the
spam users become the majority under a coordinated control, then
the detection methods could lead to false conclusions. In small on-
line rating systems with few users, this situation impose a serious
potential issue. However, in a large system with large user base,
this is unlikely to happen. Other type of information, social net-
work connections between users for example, can greatly increase
our confidence in identifying the spam users. However, we defer the
impact of other types of information in identifying the spammers to
a future work. In this chapter, we deal with the case where we need
to identify spammers using ratings alone.

Our contributions are three-fold. First, we propose a unified
framework for reputation estimation in which the fruitful models in
collaborative filtering (CF) can be readily plugged-in. We estimate
the reputation of a user based on the deviation of her ratings ver-
sus the model output and penalize the deviation through a penalty
function. Then this penalization quantity is transformed to the rep-
utation through a link function. We show that previously proposed
reputation estimation methods can be instantiated as special cases
of our framework by choosing suitable CF models, penalize func-
tions and link functions. Secondly, we introduce a low-rank ma-
trix factorization based reputation estimation method by leveraging
our framework. Thirdly, we conduct empirical study of various al-
gorithms under several spamming strategies, i.e., Random attacks,
Bandwagon attacks [17], nuke and push [99].



CHAPTER 5. USER REPUTATION ESTIMATION 126

The rest of this chapter is organized as follows. In Section 5.2,
we propose the framework and show how previous work can be in-
corporated into this framework. Section 5.3 introduces a low-rank
matrix factorization based reputation estimation method. We per-
form empirical study in Section 5.4 and summarize this chapter in
Section 5.5.

5.2 Reputation Estimation Framework

In this section, we introduce the reputation estimation framework
and demonstrate its adaptability [66].

5.2.1 Problem formulation

Given a set of N users U = {u1, u2, · · · , uN} and a set of M items
I = {i1, i2, · · · , iM}, users’ ratings on items form an N×M matrix
R, where the entry on the ith row jth column rij denotes ui’s rating
on ij. Alternatively, we denote users’ ratings on items by a set of
triples Q = {(i, j, r)}, where rij ∈ R. Let the set of items that are
rated by ui be Ii and the set of users who have rated ij be Uj. We
assume that the ratings are integers from 1 toD (real ratings can also
be accommodated without a problem). Then a reputation estimation
model tries to estimate the reputation ci for each of the users ui. It is
convenient to require that 0 ≤ ci ≤ 1, with a larger value indicating
the reputation of ui is higher.

5.2.2 The Framework

Our framework is composed of three ingredients as an integrated
paradigm, namely the prediction model, the penalty function and
the link function.
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Prediction Model

Given a collaborative filtering modelHwhich can predict the entries
of R, we assume that the ith row, jth column of R, rij, is a Gaussian
random variable centered at model prediction H(i, j) with variance
σ2,

rij ∼ N (H(i, j), σ2).

Then the log-likelihood of observing rij givenH(i, j) is

Lij = log(P (rij|H(i, j)))

= log(N (rij|H(i, j), σ2))

= C − 1

2σ2
(rij −H(i, j))2,

where C is a constant. The quantity

sij = (rij −H(i, j))2

can be interpreted as the unexpectedness, which is inversely related
to the predictability of the rating.

If we take the probability mass function N (x|µ, σ2) of a Gaus-
sian random variable as the approximation of the probability that an
event E happens within a small ε-neighborhood of x, then Lij has a
natural explanation, i.e., it is the self-information of the outcome E,
which is a measure of information associated with the outcome of a
random variable. The larger the sij is, the more surprising it is for
the rating rij is not expected byH. A well behaved user should have
small sij for the ratings. The underlying reasoning is the same as
the assumption made by a collaborative filtering methods, i.e., there
should be a few factors that can explain the behavior of a normal
user. A well-trained model H should be able to learn the underpin-
ning factors and make reasonable predictions. On the contrary, if
the unexpectedness sij is large for the ratings given by ui, it is a sign
that the ratings are not accordant with other ratings in the system
and the user is not behaving predictably as the modelH assumes.
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If we take a different perspective, we see that sij is the distance
between the model H’s prediction and the observation, which is the
L2 measure of training error. In other words, sij indicates how well
the ratings rij can be trained using current model H. This method
of detecting unexpectedness coincides with the Type 1 approach of
outlier detection [44].

Since the model H can predict every entry of R, we can read-
ily compute the unexpectedness of all the known ratings sij, for all
(i, j, r) ∈ Q. For user ui, the set {sij|j ∈ Iui} measures the unex-
pectedness of seeing each of the ratings assigned by the user.

Penalty Function

The purpose of the penalty function is summarizing the set of un-
expectedness {sij} into one quantity si or sj, where the former rep-
resents the overall unexpectedness of ui and the later represents the
overall unexpectedness of ij. Then si or sj is used by the link func-
tion to get the reputation score for user ui. As an example, the
penalty function that computes si can be a simple arithmetic mean,

si =
1

‖Ii‖
∑
j∈Ii

sij. (5.1)

Link Function

After getting a summarizing unexpectedness si for ui or sj for ij, we
can compute the reputation score for ui. This task is performed by
a link function. The link function should relate the reputation of a
user inversely to the unexpectedness si. It is convenient and natural
to require that the reputation of a user ci to lie in between [0, 1], a
simple link function that fulfills this requirement is

ci = 1− si
smax

,

where smax is the maximum possible value of si.
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5.2.3 Adaptability of the framework

We show the adaptability of the proposed framework by showing
how previously proposed reputation estimation methods can be cap-
tured using suitableH’s, penalty functions and link functions.

Mizzaro’s algorithm [94] is one of the earliest work on reputa-
tion estimation. It assumes that each item has an intrinsic quality
qj and measures the steadiness of object quality, which is then used
to determine the reputation of the user. It can be captured by our
framework by choosing

H(i, j) =
∑
i∈Uj

cirij/
∑
i∈Uj

ci, (5.2)

sj =
∑
i∈Uj

ci,

and

ci =

∑
j∈Ii sj(1−

√√
sij/smax)∑

j∈Ij sj
.

Note that this algorithm is iterative in nature. The employed model
predicts ui’s rating on ij as a weighted average of all the ratings as-
signed to item ij, where the weight carried by rij is the reputation
score ci of a user. The algorithm begins by assigning equal repu-
tation score to all users. Then it iteratively updates ci and H(i, j)
using current parameter set, until a predefined convergence condi-
tion is met.

The algorithm proposed by Laureti et al. [60] can also be seen
as an instantiation of the framework by choosing the model H as in
Eq. (5.2), the penalty function as

si =
1

‖Ii‖
∑
j∈Ii

sij, (5.3)

and the link function as

ci = (si + ε)−β, (5.4)
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Table 5.1: Choice ofH, penalty function and link function in Li’s algorithms
H Penalty Function Link Function

L1-AVG Eq. (5.6) 1
‖Ii‖

∑
j∈Ii
√
sij 1− λsi

L2-AVG Eq. (5.6) 1
‖Ii‖

∑
j∈Ii sij 1− λ

2
si

L1-MAX Eq. (5.6) maxj∈Ii
√
sij 1− λsi

L2-MAX Eq. (5.6) maxj∈Ii sij 1− λ
2
si

L1-MIN Eq. (5.6) minj∈Ii
√
sij 1− λsi

L2-MIN Eq. (5.6) minj∈Ii sij 1− λ
2
si

where ε is a small constant to prevent diverging and β is the strength
of the penalty applied to user. Note that one property of this algo-
rithm is that ci does not necessarily lie in the range [0, 1]. However,
since the original purpose of their algorithm is to estimate the intrin-
sic quality of an item, it does not pose a problem.

De Kerchove et al. [29] proposed an algorithm that is similar to
Laureti’s algorithm. It is an instance of the proposed framework
by choosing the model as in Eq. (5.2), the penalty function as in
Eq. (5.3) and the link function

ci = 1− k × si, (5.5)

where k is chosen such that ci ≥ 0.
Motivated by the lack of a theoretical convergence guarantee, Li

et al. [63] proposed a class of six algorithms for computing the rep-
utation of users in a rating system. They proved their algorithms
converge to a unique solution theoretically, which is a desired prop-
erty of reputation estimation algorithms. However, in practice, the
convergence is not a problem for all the mentioned algorithms [89].
Table 5.1 summarizes the choices ofH, the penalty function and the
link function to recover the six algorithms.

H(i, j) =
1

‖Uj‖
∑
i∈Uj

rijci. (5.6)



CHAPTER 5. USER REPUTATION ESTIMATION 131

Note that in Eq. (5.6), the prediction model is slightly different
from that in Eq. (5.2). The denominator in Eq. (5.6) is chose so as
to guarantee the convergence of the algorithms. Also note that the
algorithms assume that all the ratings have been transformed into the
range [0, 1], which could easily be achieved by mapping r′ij = (rij−
1)/(D − 1). Through this mapping, the link function is guaranteed
to output the reputation ci in the range of [0, 1]. Similarly, these six
algorithms are iterative methods with initial ci set to 1.

The spammer detection algorithm proposed in [90, 92] can also
be captured by choosingH to be PCA and PLSA, respectively.

5.3 Reputation Estimation using Low-Rank Matrix
Factorization

In Section 5.2.3 we have shown how previous methods can be taken
as instances of our framework. It is interesting to note that they
share the same prediction model H (a slightly different weighting
scheme is used in Li’s algorithm). The prediction model is an item
centric model, i.e., it outputs the same prediction score for all users’
ratings on the same item. This prediction score is interpreted as the
intrinsic item quality, which measures the utility of the item. In the
aforementioned methods, the reputation of a user is measured based
on how her ratings deviate from the qualities of the items. Such a
scheme naturally assumes that there is indeed an intrinsic quality for
an item.

However, as we argued in Section 5.1, the utility of an item could
vary depending on the taste of the user. In fact, both the taste view
and the intrinsic quality view have their area of application. Dif-
ferent prediction models suit different scenarios. In an e-commerce
website, the items are mainly the products that are on sale in the
website. In this case, the rating that a user gives to an item should
depend more on the quality and functionality of the item. There-
fore, the assumption that an item has an intrinsic quality is suitable.
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On the other hand, in an online stream service website, where mu-
sic and movies can be purchased and rated, the utility of an item (a
song or a movie) could be different depending on the user’s taste and
preference.

We propose a reputation estimation system that utilizes a person-
alized prediction model to better capture the case where the taste
view is more suitable. The prediction model we use is a low-rank
matrix factorization method, which is shown to be a flexible model
with good prediction accuracy [114].

5.3.1 Low-Rank Matrix Factorization

In a low-rank matrix factorization (MF) method, the rating matrix
R ∈ RN×M is assumed to have a low-rank structure, i.e., it has a rank
of K � min{M,N}. Then R can be decomposed into two rank-K
matrix U ∈ RK×N and V ∈ RK×M as R = UTV . The column
vectors of U and V have a natural interpretation. The ith column
vector Ui of U is the latent factor that determines the behavior of ui
and the jth column vector Vj of V is the latent factor that determines
the features of ij. The dot product UT

i Vj is the model predicted score
of ui’s rating on ij.

The Probabilistic Matrix Factorization (PMF) adopts a proba-
bilistic linear model with Gaussian observation noise [114]. Maxi-
mizing the posterior probability is equivalent to minimizing the fol-
lowing objective function

L =
1

2

∑
(i,j,r)∈Q

(r − UT
i Vj)

2 +
λU
2
‖U‖2

F +
λV
2
‖V ‖2

F ,

where the first term is the squared loss and the last two terms are
regularization imposed to avoid over-fitting problem. To minimize
the objective function, first compute the gradients of the objective
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function with respect to Ui and Vj as

∂L
∂Ui

=
∑
j∈Ii

(UT
i Vj − rij)Vj + λUUi,

∂L
∂Vj

=
∑
i∈Uj

(UT
i Vj − rij)Ui + λV Vj.

Then alternative update on Ui and Vj can be done through

Ui ← Ui − η
∂L
∂Ui

Vj ← Vj − η
∂L
∂Vj

.

After training, the prediction of user i’s rating on item j as predicted
by the model is the dot product UT

i Vj. In practice, rij is usually
mapped into the range [0, 1] and the sigmoid function is used to filter
UT
i Vj before it is matched to rij. Apart from the batch-trained algo-

rithm, online algorithms for learning PMF are also proposed [68], in
which new users and new items can be accommodated more easily.

5.3.2 Penalty Function and Link Function

The penalty function we choose is the arithmetic mean in Eq. (5.1)
and the link function we employ is

ci = 1− si.

We assume that the collected ratings have been mapped to the range
[0, 1] so that si and ci are all in the range [0, 1].

5.4 Experiments

In this section, we conduct empirical studies on the reputation esti-
mation algorithms. We compare the algorithms’ discrimination ca-
pabilities on identifying spammers in a rating system.
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5.4.1 Datasets

Labeling spam users in a rating system is a tedious and time consum-
ing job. Even for human annotators, usually additional information
like text comments is needed to identify a spam user. To the best
of our knowledge, there is no publicly available benchmark rating
dataset that has ground truth spam user labels. However, there are
several rating datasets that are well studied in the collaborative filter-
ing community. These datasets contain ratings collected from real
recommender systems. Usually the data in such datasets have gone
through a filtering process, i.e., filtering out users who assign too few
ratings and items that receive too few ratings. These datasets provide
us a chance to evaluate the reputation estimation algorithms. We use
MovieLens2 dataset as the base dataset to evaluate the algorithms.

Basic statistics of MovieLens is shown in Table 5.2. By today’s
standard, a million-sized dataset is at most a median-sized dataset.
We choose to use this dataset because the data are collected from
a non-commercial recommender system. It is more likely that the
users in this dataset are non-spam users. We take the users already
in the dataset as normal users. We add spam users by mimic their
rating behavior through the following strategies.

• Random spamming: Spam users rate the items in a random
way. The rating that a spam user assigns to an item is chosen
uniformly at random from 1 to 5. This strategy resembles the
random attacks seen in spammer attacks [17].

• Semi-random spamming: Spam users rate half of their rat-
ings randomly as is in the random rating scheme, and the other
half rating is copied randomly from normal users’ rating on the
same item. This is similar to the average attacks.

• Optimistic spamming: Spam users assign half of their ratings
using the highest possible score (5 in our case) and copy ran-

2http://www.cs.umn.edu/Research/GroupLens
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Table 5.2: Statistics of MovieLens Dataset
# of ratings # of users # of items rating range
1,000,209 6040 3706 1 to 5

domly from normal users on the other half items. This strategy
resembles the Bandwagon attacks.

• Pessimistic spamming: Spam users assign half of their ratings
using the lowest possible score (1 in our case) and copy ran-
domly from normal users on the other half items. This is the
nuke strategy used by spammers [99].

The number of spam users to add may also impact different algo-
rithms’ discrimination abilities. We choose to add 4 different levels
of spam users to the dataset, 10%, 20%, 30% and 40% (percentage
of spammers to normal users), to investigate the effect of the spam-
mer rate. Each spam user randomly selects the average number of
ratings received from normal users to rate.

In all four of our spamming strategies, we assume that the spam-
mer would behave normally half of the time. In the real world situa-
tion, a spammer may vary this percentage to achieve his/her purpose
and better hide himself/herself. Given the working mechanism of
a rating based reputation estimation method, it becomes harder to
identify a spammer as he increase the percentage of normal behav-
ior. To effectively identify a spammer when the spammer behave
normally most of the time, we need to alleviate other types of infor-
mation to rectify the problem.

5.4.2 Evaluation Methods

To evaluate the performance of various methods, we employ the
Area under the ROC Curve (AUC) [13] to measure their discrim-
ination abilities. A sample distribution of reputation is shown in
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Figure 5.1: Reputation distribution and ROC curve
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Figure 5.2(a). As a vertical separation line swipes through the x-
axis, the true positive rate (TPR) and false positive rate (FPR) would
vary depending on the position. The trade-off of TPR and FPR is
shown in the ROC curve in Figure 5.2(b). AUC is the area under the
ROC curve, which is a good single number summarization of the
discrimination ability using only the reputation scores produced by
each algorithm. Note the higher the AUC is, the better.

5.4.3 Implementation Details

For Laureti’s algorithm, the β in Eq. (5.4) is set to −1, which yields
superior performance over other choices [89]. Parameter k in Eq. (5.5)
of De Kerchove’s algorithm is set to be k = [ε+ maxi∈U si]

−1 to al-
low maximum separation. For Li’s algorithm, λ is set to 1, which
yields the best performance. All algorithms are iterated until the
change in reputation is less than 10−6 for all users.

For our proposed method, we use K = 10 latent factors in the
comparison. In our experience, the MF model converges very fast
and we train the model using 50 iterations.
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5.4.4 Results

Shown in Table 5.3 and Table 5.4 are the Area Under the ROC Curve
for different methods under various scenarios. It is evident that our
MF-based method outperforms all the compared algorithms under
all settings. Especially in the Optimistic case, our method outper-
forms the runner-up method by about 6% under the 40% spam users
case. In real systems, spam users try to blend into the normal user.
They might achieve this by mimic other users’ rating on the irrel-
evant items. And for the items they want to promote, high rating
scores should be assigned. Optimistic strategy is a good mechanism
for generating such spam ratings. This improvement on AUC means
more spam users can be identified without deteriorating the false
positive rate. For Li’s algorithm, we only show the result of L1-AVG
and L2-AVG. Other algorithms including L1-MAX L2-MAX L1-
MIN L2-MIN are significantly worse than using the average based
penalty function under our experiment setting and we omit the re-
sults to save space.

Table 5.3: AUC comparison under Random and Semi-random Protocol
Type Random Semi-random
Percentage 10 20 30 40 10 20 30 40
Laureti’s .9806 .9803 .9797 .9790 .9241 .9240 .9248 .9248
Kerchove’s .9793 .9791 .9785 .9777 .9227 .9231 .9239 .9239
L1-AVG .9791 .9789 .9780 .9769 .9098 .9111 .9118 .9115
L2-AVG .9790 .9788 .9782 .9773 .9224 .9228 .9237 .9237
MF-based .9893 .9896 .9896 .9892 .9685 .9676 .9673 .9668

With the increase of spam users percentage, the discrimination
ability (measured by AUC) generally decreases, especially under
Optimistic and Pessimistic strategies. It is interesting to point out
that our method has the least decrease in AUC compared with other
baseline methods. This is probably due to the fact that our method
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Table 5.4: AUC comparison under Optimistic and Pessimistic Protocol
Type Optimistic Pessimistic
Percentage 10 20 30 40 10 20 30 40
Laureti’s .9464 .9298 .9166 .9047 .9926 .9914 .9902 .9887
Kerchove’s .9428 .9234 .9090 .8960 .9910 .9885 .9858 .9829
L1-AVG .9578 .9465 .9376 .9295 .9900 .9875 .9847 .9817
L2-AVG .9425 .9231 .9088 .8959 .9902 .9873 .9841 .9807
MF-based .9884 .9858 .9814 .9774 .9939 .9938 .9937 .9936

utilizes a personalized prediction model while all other methods em-
ploy the weighted average. With more spam users, the prediction
ability of the weighted average model deteriorates while MF can
preserve the meaningful information provided by normal users.

5.4.5 Sensitivity of Parameters

We study the effect of regularization parameter λ and latent factor
number K.

Regularization

The regularization parameters λU and λV affect the performance of
our algorithm. We use a single parameter λ for both the parame-
ters. We found the impact of λ is different under different spamming
strategies. In Random and Semi-random strategies, the optimal λ is
smaller than that in the Optimistic and Pessimistic strategies. As
an example, we show the impact of λ under Optimistic and Semi-
Random strategies in Figure 5.2. The reason for this phenomenon
might be that in the Random and Semi-random strategies, a small λ
is needed to allow the prediction model to fit the normal users’ rat-
ing better. While in the Optimistic or Pessimistic strategies, a coarse
fitting is needed so that the spam users’ ratings will not be fitted. We
use λ = 10.0 in Optimistic and Pessimistic scenarios and λ = 1.0 in
Random and Semi-random cases. Our suggestion for choosing λ in
real-life scenario is that it should be set to a relatively large value.



CHAPTER 5. USER REPUTATION ESTIMATION 139

0.1 1 2 5 10 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

A
U

C

 

 

Optimistic 20%

Semi−Random 20%

Figure 5.2: Impact of λ

Latent Factor Number

The impact of the latent factor number K is shown in Figure 5.3. As
we can see, the effect of K is negligible and we choose K = 10 in
all experiments.

5.5 Summary

Spammers are a serious problem in today’s online rating systems. To
identify these spam users, a unified framework for reputation esti-
mation is proposed. Many existing prediction models can be readily
plugged-in and employed to estimate reputations. We have shown
how previously proposed methods can be captured as special cases
of our framework. A MF-based reputation estimation method is de-
veloped based on the framework. It relaxes the assumption made
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by previous methods, which might not be suitable for all online rat-
ing systems. To study the properties of our methods, we conduct a
series of carefully designed experiments. Empirically we show the
advantageous performance of our method.

2 End of chapter.



Chapter 6

Combine Ratings with Reviews

6.1 Problem and Motivation

Although recommender systems employed in industry seem to per-
form well in practice, there are some deficiencies with existing ap-
proaches. The first problem confronted with most recommender sys-
tem is their inability to deal with so called cold-start problem [118].
When a new user joins a recommender system, there is little data
available for the system to learn the preferences of the user accu-
rately. Without an accurate representation of the user, the system
cannot make recommendations confidently. Similarly, the systems
defer the recommendations for newly included items as well. The
cold-start problem leads to poor experience for new users and also
when recommending new items. In real-life recommender systems,
the cold-start problem is a severe problem. Shown in Figure 6.1 are
the statistics of 5 categories in Amazon datasets [88]. Across the
5 listed datasets, over 80% of items have few ratings (less than 10).
While at the same time, over 70% of items have review text at length
(over 30 words). The ratings alone are inadequate to learn the pref-
erences accurately. Review comments complement the ratings by
providing rich knowledge of the items and preferences of the users.
Harnessing the information embedded in the review text is the key
to successful recommendation in such scenarios.

Another drawback of existing recommender systems is their poor

141
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Figure 6.1: Percentage of items having less than 10 ratings and more than 30
words in various Amazon datasets

interpretability, making further understanding of users’ preference
as well as items’ properties impossible. For example in matrix-
factorization [114] based methods, we learn two latent feature ma-
trices corresponding to users’ latent features and items’ latent fea-
tures. The dot product between a user’s and an item’s feature vector
is used to predict the rating that the user would assign to the item. It
is challenging to associate these real valued features with conceiv-
able physical meanings. We know that a user might like an item due
to a particular latent feature since they both have a large positive (or
negative) value on that feature. But we have no clue of the feature’s
physical meaning. Does it mean that the user is fond of Sci-Fi and
the movie belongs to Sci-Fi genre? Or is it that the user loves the
leading actor of the movie? We do not know. In fact, it is possible
that each feature corresponds to a combination of the human inter-
pretable features, rendering the feature interpretation problem more
difficult.

Both of the above problems can be solved or at least alleviated
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by combining content-based filtering and collaborative filtering. In
collaborative filtering, we make predictions on a user’s preferences
over items based on all users’ past ratings. Collaborative filtering
rooted in the keen observation that users who shared similar prefer-
ences in the past tend to rate similarly in the future. A collaborative
filtering model uses only the past rating information and does not
take the contents of the items into consideration. On the other hand,
content-based filtering approaches the recommendation problem by
analyzing the content of the items and matches it with the preference
of a user.

In a recommender system, apart from an integer score, users are
often allowed to write text reviews about the item to complement the
rating. The review text contains a source of rich information explain-
ing the reason why the user assigns such a rating to the item. These
reviews provide text contents of the items, which can be leveraged
to alleviate cold-start problem when the ratings are sparse. This is
because the information embedded in the text review is much richer
that an integer rating. When we have few ratings, it is nearly impos-
sible to learn an accurate feature of the concerned user/item. How-
ever, the text review might allow us to better estimate the features.
To solve the interpretation problem, we align latent topic spaces with
the rating spaces. Each latent dimension is tagged with a word cloud,
explaining the physical meaning of the dimension. For example,
when we see that a user and a movie have large positive value on
the third feature, which has text label “thriller, sci-fi, nolan”, we
know that this user likes the science fiction thriller movie directed
by Christopher Nolan.

Interpretability and the cold-start problem are not two isolated
problems. Learning an interpretable model could help alleviate the
cold-start problem [3, 73]. We can leverage prior knowledge of
items and suggest completely “cold” items with confidence. For
example, if we know that a user assigns high scores for the topic
tagged with “fantasy, adventure, peter, jackson”, a recommender
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system can confidently recommend “The Hobbit: There and Back
Again” (a fantasy adventure movie directed by Peter Jackson) to the
user even if this movie is not being shown yet.

Due to the advantage of taking the review text into considera-
tion, there are a few efforts [4, 35, 88, 93] explored the combination
of content-based filtering and collaborative filtering. In the early
work [93], the authors cast the content-based filtering as a classifi-
cation problem, using which they filled out some of the unobserved
user item rating matrix and apply collaborative filtering methods on
this denser matrix. The authors of [4] cast the recommendation prob-
lem as an ordinal regression problem and applied a combination of
kernels to handle the side information. In [35], the authors found
that there were a few aspects that affect how users rate items. They
harnessed the information embedded in the review text to learn how
a user weights these aspects and how an item distributes on these
aspects. However, their method required human annotators with ex-
pert domain knowledge to pre-define these aspects rather than learn-
ing them automatically from the reviews.

In the recent work [88], the authors proposed the Hidden Factors
and Hidden Topics (HFT) model, which learnt a Latent Dirichlet
Allocation (LDA) [11] model for items using the review text and a
matrix factorization model to fit the ratings. To bridge the gap be-
tween the stochastic vector obtained from LDA and the real-valued
vector in MF model, the authors proposed a transformation to link
the two. Their method demonstrated significant improvement over
baseline methods that use ratings or reviews alone. However, the
transformation function they employ, the exponential function, fixed
the relationship between latent vector in MF and the topic distribu-
tion. Although a parameter is employed to maintain a more flexible
relationship, it is still difficult to ensure that this transformation is
correctly scaled.

In [54, 120, 125], the authors also considered the interpretable
aspects to make better predictions. However, their approaches dif-
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fer from ours in that either they had explicit ratings per aspect (i.e.,
multiple ratings on prescribed aspects per user item pair), or these
aspects were inferred from other context than review text. In an-
other line of research called sentiment analysis [47, 71], a positive
or negative label rather than an integer score is learnt for a short
text. Our work also differs from [95], which recommends person-
alized reviews. In [127], the authors proposed Collaborative Topic
Regression (CTR) to suggest scientific articles to potential readers.
Later work [107] extended it to take the social network among users
into consideration. As pointed out in [88], the latent dimensions they
discovered were not necessarily correlated with ratings.

In this chapter, we develop an approach that exploits the com-
bined power of both ratings and reviews and solve the above prob-
lems. Our contributions are three-fold. First, we propose a novel
method to combine content-based filtering seamlessly with collab-
orative filtering, modeling the reviews and ratings simultaneously.
Secondly, we derive an efficient collapsed Gibbs sampling method
to learn the model. Thirdly, we demonstrate our model’s advantage
in prediction accuracy compared with previous work, especially un-
der the cold-start setting, on large real-life datasets with millions of
users and items. We also show the interpretability of the model using
a few examples.

6.2 Ratings Meet Reviews

Our model, titled “Ratings Meet Reviews” (RMR) [67], is a prob-
abilistic generative model that combines a topic model seamlessly
with a rating model. We describe it as follows.

6.2.1 Model and Notations

Suppose there are N users U = {u1, u2, · · · , uN}, M items V =
{v1, v2, · · · , vM}, a set of observed indicesQ = {i, j}, where {ui, vj} ∈
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U ×V defines the observed ratings X = {xi,j}, each of which is op-
tionally associated with a review ri,j = {w|w ⊂ V } of length Li,j,
where V is the set of vocabulary used in the review text. Alterna-
tively, let Uj denote the indices of users who have rated item vj. Let
K denote the number of topics.

RMR operates on items1, which has an intrinsic distribution θ
on topics. This distribution describes the proportion that the item
belongs to each topic.

We present the generative process below:

1. For each user u ∈ U :

(a) For each latent topic dimension k ∈ [1, K]:

i. Draw µu,k ∼ Gaussian(µ0, σ
2
0)

2. For each latent topic dimension k ∈ [1, K]:

(a) Draw ψk ∼ Dirichlet(β)

3. For each item v ∈ V:

(a) Draw topic mixture proportion θv ∼ Dirichlet(α)

(b) For each description word wv,n:

i. Draw topic assignment zv,n ∼ Multinomial(θv)
ii. Draw word wv,n ∼ Multinomial(ψzv,n)

(c) For each observed rating assigned by u to v:

i. Draw topic assignment fv,u ∼ Multinomial(θv)
ii. Draw the rating xv,u ∼ Gaussian(µu,fv,u, σ

2).

From the generative process, we can identify that the text reviews
are generated similarly as the LDA model. We use a mixture of
Gaussian rather than matrix factorization based methods [88, 127]

1RMR is symmetrical in that the topic distribution θ can also be user specific. We found,
however, that item specific θ performs better in practice.
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to model the ratings. These user-topic specific Gaussian distribu-
tions have clear interpretations. They describe how a user values
the aspects denoted by each latent topic. The item is modeled as
a distribution of topics, which together with the user-topic specific
Gaussian distributions determine how a user would rate the item.
The ratings and review text are connected by the same item topic
distribution θ. The more a user talks about certain aspects concern-
ing an item, the higher the distribution will be on these topics, which
in turn affects the rating that the user would assign to the item.

We choose to model ratings using mixture of Gaussians for two
reasons. First, we can avoid the difficult choice of the transformation
function employed in [88]. As discussed above, the transformation
function is restrictive and the scaling parameter is non-trivial to se-
lect. Secondly, we can retain the interpretability of the topics with
no compromise. The interpretability of the latent dimensions is an
important factor to solve the cold start problem. Take book recom-
mendation for example, when a user showed strong interest in di-
mension with high probability on words “da vinci code dan brown”.
We can confidently recommend Dan Brown’s new book “Inferno”.
We are able to associate the latent dimensions with the prior knowl-
edge (for example, Meta data) that is available without ratings or
reviews.

In our model, we collect all the text reviews submitted for an item
into one document and take this document as the text review for the
item. Note that in the original data, there is a correspondence be-
tween the rating value and the text review. We lose such information
in RMR. By dropping this correspondence information, we can de-
velop the more compact model RMR. The previous methods HFT
and CTR also choose to model in such a way to reduce the model
complexity.

Given the generative process, the probability of observing the re-
view text and the ratings given the model parameters Θ = {θ, ψ, µ}
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is

P (w,x|Θ;α, β, µ0, σ
2
0, σ

2) =
M∏
j=1

P (θj|α)
∏
i∈Uj K∑

f=1

P (f |θj)P (xi,j|µi,f , σ2)

Li,j∏
l=1

K∑
z=1

P (z|θj)P (wl|ψz)


(

N∏
i=1

K∏
k=1

P (µi,k|µ0, σ
2
0)

)(
K∏
k=1

P (ψk|β)

)
. (6.1)

If we take the log of Eq. (6.1), we get the log-likelihood of model pa-
rameters. However, because of the summation inside the log, direct
optimization is not feasible. We subsequently develop an efficient
collapsed Gibbs sampling method to learn the model parameters in
Section 6.2.3. We now take a deeper look at RMR and compare it
with HFT and CTR.

6.2.2 Comparison with HFT and CTR

Shown in Figure 6.2 and Figure 6.3 are the graphical models of
RMR and several related work. As is clear from the figure, the left
parts of CTR, HFT and RMR resemble LDA, which was originally
proposed by David Blei et al. to learn the latent topics in a corpus of
documents (items in our setting) in an unsupervised manner. The
LDA algorithm assumes there are K latent topics in the corpus,
which are K multinomial distributions over the vocabulary. Each
document in the corpus is a mixture of these topics. A document
specific topic distribution over the K latent topics, θj with Dirichlet
prior α, governs how much weight each topic takes in document j.
This θj is a length-K stochastic vector with non-negative entries that
sums up to 1.

Both HFT and CTR adopt the matrix factorization method to
model the ratings. Arrange users’ ratings on items in a partially ob-
served matrix X ∈ RN×M . The matrix factorization model assumes
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Figure 6.2: Graphical Models of LDA and CTR

that X has a low rank structure and thus can be decomposed in to
the product of two matrices UTV , where both U and V are of rank
K � min(M,N). The columns of U and V can be interpreted as
the latent features of users and items respectively. The dot product
between a user’s feature vector and an item’s feature vector approx-
imates the rating that the user would assign to the item. To regu-
larize the value that the latent features can assume, often zero-mean
isotropic Gaussian priors are placed on both the user and item latent
features. The objective function of a matrix factorization model can
be formulated as follows,

L =
∑
i,j∈Q

(UT
i Vj −Xi,j)

2 + λU‖U‖F + λV ‖V ‖F , (6.2)

in which the first term is the difference between observed and pre-
diction and the rest are regularization terms.
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Figure 6.3: Graphical Models of HFT and RMR

Clearly, there is a discrepancy between the item topic distribution
θj in LDA and the item feature vector Vj in MF model. The former
is a distribution, which is all positive and sums up to 1, while the
later can assume any real value. Both HFT and CTR try to align
the item features with the item topic distribution and hence the rich
text review can be exploited to better model the item features. The
main difference between HFT and CTR model lies in the way they
align the topic distribution θj and the item feature Vj. In CTR, the
item feature Vj is assumed to be a Gaussian random variable with
mean θj and precision c. In other words, the θj is taken as the de-
fault value of Vj, but the later can adapt to match the ratings. If
an item receives a lot of ratings, it is possible that Vj differs from
θj significantly. The interpretation of the latent topics in such case
might be distorted. CTR model was proposed to recommend scien-
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tific articles to potential readers, which is a one-class collaborative
filtering task [48, 102]. It adopt the strategy to set different c for
observed ratings (Xi,j = 1) and unobserved ratings (Xi,j = 0). In
our setting, we try to match only the observed ratings with the given
rating scales (for example, 1 to 5). On the other hand, HFT adopts a
fixed transformation function to map one-to-one between θj and Vj.
In Figure 6.3(a), we use a dashed line to represent this relationship.
The HFT model is effectively a matrix factorization model with the
item feature regularization replaced by the corpus likelihood. This
fixed transformation function is difficult to select and restrictive in
modeling capability.

RMR adopt a mixture of Gaussian to model the ratings. The mix-
ture proportion is assumed to have the same distribution as the topic
distribution. Thus when there are few ratings for an item, the text
review can still allow us to learn the topic distribution θ accurately.
We avoid the difficult choice of the transformation function in HFT
and retain the interpretability of the latent topics.

6.2.3 Collapsed Gibbs Sampler

To develop a Gibbs sampler for RMR, we need to specify the con-
ditional probability of the hidden variables z and f , which are the
hidden topics associated with the observed words w and observed
ratings x, P (z, f |w,x). This conditional probability does not have a
closed form and is difficult to sample directly. The collapsed Gibbs
sampler runs a Markov chain that uses the full conditional in order
to simulate it. In our case, we need to specify the following two
conditional probabilities

P (zi = j|z¬i,w, f ,x), (6.3)

P (fi = j|z,w, f¬i,x). (6.4)

We will briefly derive the expression for the probability in Eq. (6.4).
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Using Bayes’ theorem and the conditional independence, we obtain

P (fi = j|z,w, f¬i,x)

∝ P (xi|fi = j, f¬i,x¬i)P (fi = j|f¬i, z) (6.5)

Now we will derive the expression for the two terms in Eq. (6.5).
Let the index i denote the rating assigned by user u to item v.

P (xi|fi = j, f¬i,x¬i)

=

∫
µu,j

P (xi, |µu,j, fi = j)P (µu,j|f¬i,x¬i)dµu,j (6.6)

The second term in Eq. (6.6) is a Gaussian distribution, because

P (µu,j|f¬i,x¬i) ∝ P (x¬i|µu,j, f¬i)P (µu,j). (6.7)

Since P (µu,j) is GaussianN (µ0, σ
2
0) and conjugate to P (x¬i|µu,j, f¬i),

the posterior distribution P (µu,j|f¬i,x¬i) will be GaussianN (µi, σ
2
i ),

where

σ2
i =

1

σ2
0

+
|xju,(·)|
σ2

, (6.8)

µi = (σ2
i )
−1(

µ0

σ2
0

+

∑
m x

j
u,m

σ2
). (6.9)

The predictive posterior in Eq. (6.6) is GaussianN (µi, σ
2
i +σ2

0) [96].
Similarly, the expression for the second term in Eq. (6.5) is

P (fi = j|f¬i, z) ∝
∫
θv

P (fi = j|θv)P (θv|f¬i, z)dθv, (6.10)

of which the second term is

P (θv|f¬i, z) ∝ P (f¬i|θv)P (z|θv)P (θv). (6.11)

Again, since P (θv) is Dirichlet(α) and conjugate to P (f¬i|θv) and
P (z|θv), the posterior is also a Dirichlet distribution and the poste-
rior predictive of Eq. (6.10) is

P (fi = j|z, f¬i) =
nvf,¬i,j + nvz,j + α

nvf,¬i,(·) + nvz,(·) +Kα
. (6.12)
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Symbol Description
|xju,(·)| # of ratings assigned by u with topic j
xju,m value of rating assigned by u to m with topic j
nvz,j # of z of item v assigned to topic j
nvz,(·) total # of review words v received
nvf,j # of f of item v assigned to topic j
nvf,(·) total # of ratings item v received
nwi
j # of word wi assigned to topic j
n
(·)
j total # of words assigned to topic j

Table 6.1: Notations

Combine the result in Eq. (6.6) and Eq. (6.10), we get the expression
for the full conditional for the first probability in Eq. (6.4)

P (fi = j|z,w, f¬i,x)

∝ N (xi|µi, σ2
i + σ2

0)
nvf,¬i,j + nvz,j + α

nvf,¬i,(·) + nvz,(·) +Kα
, (6.13)

and by employing a similar procedure, we get the expression for the
first probability in Eq. (6.4)

P (zi = j|z¬i,w, f ,x)

∝
nwi¬i,j + β

n
(·)
¬i,j + |V |β

nvz,¬i,j + nvf,j + α

nvz,¬i,(·) + nvf,(·) +Kα
. (6.14)

We summarize the notations used in the derivation process in Ta-
ble 6.1. Note that we omit the ¬i subscription in some of the nota-
tions to save space. With this notation, it means that when counting
the respective values, we exclude current word wi or current rating
xi.
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Readout Parameters

Once the sampling process is finished, we can readily readout the
model parameters

θv,j =
nvz,j + nvf,j + α

nvz,(·) + nvz,(·) +Kα
, ψj,wi =

nwij + β

n
(·)
j + |V |β

, (6.15)

and

µu,j =

(
1

σ2
0

+
|xju,(·)|
σ2

)−1(
µ0

σ2
0

+

∑
m x

j
u,m

σ2

)
. (6.16)

The notations denote the same meaning as is in Table 6.1, except
that the counters now count all effective samples.

Time and Space Complexity of the Sampler

Our collapsed Gibbs sampler mainly use the following counters to
keep track of current states: counter nvz,j of size M × K, counter
nvf,j of size M ×K, counter nw¬i,j of size V ×K, counter

∑
m x

j
n,m

of size N × K and counter |xjn,(·)| of size N × K. Other than the
above listed counters, there are summation counters that are one or-
der smaller than the above counters and thus negligible. The total
space complexity is O((M +N + V )×K).

To sample z or f conditioned on everything else, we only need
to calculate the conditional probabilities in Eq. (6.4). This opera-
tion requires O(K) operations. Given a fixed K, our sampler scales
linearly with the length of the observed review text and the number
received ratings. Usually the number of latent topics K is small,
making our sampler scales up well. Note that training a RMR model
is faster than training a HFT model [88]. This is because the later
one requires an additional step to learn the feature vectors for all the
users.
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6.2.4 Prediction

In order to make a prediction that user u assigns to item v, we com-
pute the expected value

xu,v =
∑
k

θv,kµv,k. (6.17)

In practice, we compute the empirical global mean g, user bias bu
and item bias bv for all users and all items from the training set. We
feed the x′u,v = xu,v − g − bu − bv to the sampler and when making
predictions, add g, bu, and bv back.

6.3 Experiments

We conduct an empirical study of RMR and various baseline models
to show the following facts:

1. Our model leads to significant improvement on prediction ac-
curacy across various categories of items over several strong
baseline models.

2. Our model learns latent topic dimensions that are clearly inter-
pretable.

3. Our model performs better in datasets that are extremely sparse,
which resembles the cold-start settings.

6.3.1 Dataset

We use the Amazon Review dataset collected by [88]. This dataset
is a collection of 27 datasets corresponding to various types of items
that are available on Amazon2. This is the largest rating dataset with
text reviews publicly available, to the best of our knowledge. We

2The statistics of category Baby we calculated differs from the description provided on the
webpage and we exclude it from consideration.
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show the statistics of the datasets in Table 6.2. Refer to Table 6.2;
there are two facts that are evident immediately. First, the datasets
are extremely sparse. The sparseness would clearly deteriorate the
performance of most existing recommender systems that only model
the ratings. Secondly, a review contains 116.87 words on average
across all categories. As will be apparent in the results shown later,
these review texts are key to model the ratings accurately.

6.3.2 Baseline Methods

We compare our model with four baseline models MF, LDAMF,
CTR and HFT.

• MF This is the standard matrix factorization model as is de-
scribed in [114]. We ignore the review texts completely and
model the ratings only. This is typically a very strong baseline
model in collaborative filtering [59, 108].

• LDAMF This baseline model is proposed in [88]. This base-
line model tries to harness the information in the review text
by fitting an LDA model on the review text and then treat the
learnt topic distribution on items (or users) as the latent factors
in matrix factorization models. By holding the latent factors
for items (or users) fixed, the latent factors for users (or items)
are learnt by gradient descent methods.

• CTR This is the state-of-the-art method that recommends sci-
entific articles to potential interested readers [127]. The CTR
model solves the one-class collaborative filtering problem by
using different precision parameter c. In our setting, we use it
to match the observed integer ratings using the same precision
c. We employ LDA-C [11] to pre-train the model. Note that
CTR utilizes both ratings and reviews information.

• HFT This is the state-of-the-art method that combines reviews
with ratings [88]. HFT models the ratings using a matrix fac-
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torization model with an exponential transformation function
to link the stochastic topic distribution in modeling the review
text and the latent vector in modeling the ratings. The topic
distribution can be modeled on either users or items. On most
datasets, the item specific topic distribution produces more ac-
curate predictions. We report the results whichever are more
accurate.

6.3.3 Evaluation

We use Mean Squared Error (MSE) to evaluate various models. For
each of the dataset, we randomly select 80% as training set up to
2 million reviews. The remaining reviews are split evenly into val-
idation set and testing set. The initial latent variables z and f are
uniformly randomly assigned. We run 2500 iterations with a thin-
ning of 50 iterations to get samples and MSE readout. We report
the MSE of the testing set that has the lowest MSE on the validation
set. The training of the baseline methods MF, LDAMF, CTR and
HFT follow the same routine described in [88]. We use K = 5 for
all models. We set hyperparameters3 α = 0.1, β = 0.02, µ0 = 0,
σ2

0 = 1 and we use the empirical variance of x as σ2. In practice, the
time required to train the RMR model is about half of the time that
is spent on training the HFT model on the same machine.

6.3.4 Rating Prediction

Shown in Table 6.3 are the MSE results. The best MSE of each
dataset is in bold. We listed the performance of various models on
the datasets and the average improvement. The standard deviations
of MSE results are shown in parenthesis. Out of the 27 datasets,
RMR performs the best on 19 datasets among all considered meth-
ods.

3We searched through the parameters linearly and reported hyperparameters which performed
the best.
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Compared with matrix factorization (MF column in Table 6.3),
RMR performs better on 26 out of the 27 datasets with an average
improvement on MSE of nearly 8%. Matrix factorization method
usually performs well in practice [59, 108] and is a strong base-
line method. However, as shown in our case, in datasets that are
extremely sparse, MF is unable to learn an accurate representation
of users/items and thus under-performs other methods which take
the review text into consideration. However, in the datasets such as
Music, Movies and TV and Books, which are relatively denser com-
pared with other datasets; the MF method still performs very well.

The baseline method LDAMF, which was proposed as a baseline
method in [88], is probably the simplest model that combines review
text and ratings. This baseline method takes the item topic distribu-
tion produced by LDA as the feature vectors for the items and then
learns the user feature vectors by fitting the observed ratings with
item features fixed. The feature vectors of items are learnt using
only the reviews, which might be sub-optimal to fit the rating data.
The expressiveness is thus restricted and we think this restriction
caused the nearly 8% improvement produced by RMR.

Compared with CTR, which take the full advantage of the com-
bined information of both the reviews and ratings, our proposed
model still leads to an average improvement of 3.28% and performs
better on 25 out of the 27 datasets. Similar to LDAMF, CTR takes
the item topic distribution produced by LDA as the initial item fea-
tures. However unlike LDAMF, during the training period, CTR
alters both the user features and item features to fit the ratings. The
regularization parameter λV controls how much the item features
can deviate from the item topic distribution vectors. It performs bet-
ter due to the more flexible modeling capability. However, the CTR
does not perform as well as RMR in the extremely sparse datasets
such as Arts and Jewelry. We observe that during the experiment,
CTR can learn a model that fits the data with a small training error.
But the generalization of the learnt model to the unobserved rating
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is not as good. Note that we report the performance of CTR on the
test set by setting λV and λU to the value that gives best performance
on validation set. So the issue of under-regularization is minimized.
The performance of CTR on the relatively dense datasets is very
competitive.

Compared with HFT, another recommendation method that takes
review text into consideration, RMR is still able to improve the per-
formance by 1.22% on average and performs better or equally well
in 21 out of 27 datasets. As discussed in previous sections, we think
the fixed one-to-one mapping between the item topic distribution
and item feature vector impose restrictions of the expressiveness of
HFT and allow RMR to out-perform it. Due to large size of the
datasets, the improvements reported are significant at 1% level.

We consider the improvements of RMR over CTR (3.28%) and
HFT (1.22%) significant because both of these two baselines are
full-fledged models that take both the ratings and reviews into con-
sideration. Also, these improvements are verified on 27 real-life
datasets. In a real system where recommendation plays a central
role, e.g. Amazon, Netflix, these improvements could lead to better
revenue and profit.

6.3.5 Cold-start Setting

An interesting phenomenon we found in the results is that the im-
provement of RMR over the traditional collaborative filtering meth-
ods (matrix factorization) is more significant for datasets that are
sparse. For classes such as Arts, Industrial Scientific, RMR show
substantial improvement. In such cases, the number of ratings is
too scarce to model the items and users adequately. The text in the
review associated with the ratings comes as rescue, which allows
our model to learn a more accurate topic distribution. Whereas for
classes such as Music, Movies and Books, which are the largest 3
datasets with larger reviews per user and reviews per item, the tra-
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Figure 6.4: Gain in MSE for user with limited training data

ditional methods tend to produce accurate predictions. We further
verify this finding by comparing the performance of RMR with MF
on users with limited training data. Shown in Figure 6.4 is the gain
of RMR compared with MF for users with limited training items.
We show the result on two datasets due to space limit and the phe-
nomenon repeats across all the datasets. As we can see, our model
gains the most when the user has few training items. The perfor-
mance gain starts to decrease with the number of training items
available for each user. This further demonstrates that RMR is valu-
able for the cold-start settings.

6.3.6 Interpretability of Topics

Apart from being more accurate at prediction, another advantage of
RMR is that it learns interpretable latent topics. We show two ex-
amples of the top words in each topic learnt in RMR in Table 6.4
and Table 6.5. Table 6.4 shows the top words for topics learnt with
software dataset. Note that Roxio is software for burning DVDs and
Quicken is personal financial software. Leopard and Tiger are the
code name of Mac OS X and Parallels is a popular virtual machine
on OS X. The fourth topic is about the company Microsoft and its
products and the last topic is related to Linux. Table 6.5 shows the
top words for topics learnt with Movie and TV dataset. The first
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roxio quicken leopard office suse
contacted son os excel accounts

perfect pick parallels 2007 2004
burning given apple student nav

dvds spanish turbo activation federal
care starting tiger microsoft symantec

Table 6.4: Top words for topics in Software

workout season batman disney godzilla
yoga match effects christmas hitchcock

workouts episodes alien animation kidman
videos seasons harry kids murder

exercises vs matrix shrek densel
cardio episode edition animated nicole

Table 6.5: Top words for topics in Movie and TV

topic is dedicated to workout related videos. The second topic con-
tains commonly used words to describe TV series. Batman, Matrix
trilogy, Alien and Harry Potter are either science fiction, adventure
or fantasy movies. Godzilla is a disaster thriller and Hitchcock is
a famous director of psychological thrillers. Nicole Kidman is the
leading actress of the classic thriller “Eyes Wide Shut”.

Clearly these interpretable topics would help us understand items
and users better. For items, the top topic words can be employed as
extended tags attached to the item and may improve the prediction
accuracy in a tag-aware recommender system [42]. We may also
gain better understanding of items by analyzing the topic distribu-
tion similarities. For users, once obtaining the topic preferences, we
can recommend “cold” items, which have few or no ratings, to the
users with confidence. For example, if we know that a user tends
to rate high for topic three and five in Table 6.5, we can confidently
recommend the movie “Interstellar” (a Sci-Fi Thriller movie) even
if this movie is not being shown yet. Our prior knowledge of items
therefore can help alleviate the cold-start problem.
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6.4 Summary

In this chapter, we propose a model that combines content-based
filtering with collaborative filtering seamlessly. By exploiting the
information in both ratings and reviews, we are able to improve the
prediction accuracy significantly across various classes of datasets
over existing strong baseline methods, especially under the cold-
start settings where the data are extremely sparse. We develop an
efficient collapsed Gibbs sampler for learning the model parameters.
Our model also learns topics that are interpretable, enabling us to
exploit prior knowledge to alleviate the cold start problem.

2 End of chapter.



Chapter 7

Conclusion

In this chapter, we summarize the main contributions made in this
thesis and discuss several interesting future directions.

7.1 Summary

Recommender systems have become an indispensable tool for both
the online service providers such as e-commerce website, music
and video streaming providers and users of such services. On one
hand, online service providers rely on recommender systems to at-
tract users to stick with the service and enlarge the user base and
expand business. On the other hand, users also benefit from rec-
ommender systems. However, there are problems confronted with
recommender systems that deteriorate the user experiences. This
thesis established models that improve the recommender systems
from four perspectives.

In particular, in Chapter 3, we point out the problems with batch
training algorithm for collaborative filtering. Batch training algo-
rithms require the presents of all data before training and all data
are needed during each training iteration. The sheer data size man-
aged by a real life recommender system renders batch training al-
gorithms impractical. Also, in practice, new users and new items
join the system constantly and to include these new users and items,

165
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batch training algorithms have to re-train the system. To solve this
problem, we propose online learning algorithms that make update
incrementally based on each rating point. The training speed is sig-
nificantly faster and recommendation accuracy is not compromised.
In addition, online learning algorithms can handle the new users and
new items effortlessly.

In Chapter 4, we examine the implicit assumption made by most
existing recommender systems, that the rating distribution of col-
lected data and the unobserved data are the same. Using data evi-
dence collected from Yahoo!Music, we show the assumption is un-
likely to be true in real systems. Equipped with missing data theory,
we prove that most existing recommender systems produce biased
recommendations without the assumption. We take response pattern
into consideration and develop Response Aware PMF. By incorpo-
rating a missing data model, Response Aware drops the incorrect
assumption and makes unbiased recommendations.

In Chapter 5, we inspect the spam user problem in online rating
systems. Spam users rate items with malicious purpose and exert
negative effect on a recommender system by contaminating the rat-
ing data. We purpose to use reputation estimation system to keep
track of users’ reputations and identify spam users. We develop a
unified framework in the setup of online rating systems that sub-
sumes many previous methods as special cases. Leveraging the pow-
erful matrix factorization based method, we instantiate the frame-
work and present a matrix factorization based reputation estimation
method. We demonstrate the outstanding discrimination ability of
our method under various spamming strategies.

In Chapter 6, we combine content-based filtering and collabo-
rative filtering and present the Ratings Meet Reviews model. Re-
view comments are mostly discarded in an online rating system due
to the difficulty in incorporating them into a collaborative filtering
model. However, reviews contain rich information on how a user
likes an item and provide reasons judging the ratings assigned by
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the user. This information are especially valuable in the cold-start
settings since reviews in general contain much richer information
than an integer rating. Also, using techniques from topic modeling,
we can tag the black-box collaborative filtering algorithms with in-
terpretable words. This helps the recommender system providing
reasons on why items are being recommended and helps users de-
ciding whether to take further actions.

In summary, we solved four important problems that are faced
with recommender systems and improved the recommender systems
in various ways.

7.2 Future Work

Although a substantial number of promising achievements on im-
proving recommender systems have been made in this thesis, there
are still numerous interesting open issues that worth study in the
future.

First, we focus on the empirical study of the online learning algo-
rithms DA-PMF, SGD-PMF, DA-RMF and SGD-RMF. Explore the
convergence rate from a theoretical perspective for these algorithms
are an interesting direction. A theoretical convergence rate allows us
to apply online learning algorithms more confidently. Secondly, the
impact of user response patterns in systems other than music stream-
ing services might be different. Study how users decide whether to
rate an item or not in online rating system involving the recommen-
dation of movies, books could be a different avenue. There could
different response patterns for different applications. Thirdly, the
reputation estimation framework we develop is ignorant of the re-
lationship between users. In online social rating systems such as
Douban and Epinions, users have strong or weak connections with
other users. Are normal users friend with spam users? How the
reputation of a user affects his/her friends’ reputation? Study user
reputation under such networked setting is a promising research di-
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rection. Fourthly, we study the performance of RMR using review
text and rating data. In fact, RMR can take any form of text descrip-
tive data as input and combine them with ratings. In e-commerce
websites, we may have detailed description data for items and users
might also provide descriptive profile data. Study how such data
affects the performance can be an interesting avenue.

There are other directions that can potentially improve recom-
mender systems. How to develop distributed learning algorithms
for recommender system is a practical problem that is faced by large
recommender systems. Although online learning algorithm can help
alleviate the scale problem, distributed learning algorithms could be
a more direct solution. Active learning for recommender system is
the study of identifying items for users to rate so that the system
can learn the most. Active learning can help guide the build of user
problem and alleviate the cold-start problem.

2 End of chapter.
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