
Delay-Oriented Reliable
Communication and Coordination

in Wireless Sensor-Actuator
Networks

NGAI Cheuk Han

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

Supervised by

Prof. LYU Rung-Tsong Michael

c©The Chinese University of Hong Kong
May 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any per-
son(s) intending to use a part or whole of the materials in the thesis in a proposed
publication must seek copyright release from the Dean of the Graduate School.

Abstract of thesis entitled:
Delay-Oriented Reliable Communication and Coordination in Wire-

less Sensor-Actuator Networks
Submitted by NGAI Cheuk Han
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in May 2007

Wireless sensor-actuator networks, or WSANs, greatly enhance the
existing wireless sensor network architecture by introducing pow-
erful and mobile actuators. These actuators are expected to work
with the sensor nodes and perform much richer application-specific
actions. For the applications which request for fast and accurate
report of the environmental events, an efficient and reliable com-
munication/coordination scheme is urged. Unfortunately, multi-hop
communication in a WSAN is inherently unreliable due to frequent
sensor failures and network partitions. Excessive delays, introduced
by congestion or in-network data aggregation, further aggravate the
problem.

In this thesis, we propose a general reliability-centric framework
for event reporting in WSANs. We point out that the reliability
in such a real-time system depends not only on the accuracy, but
also the importance and freshness of the reported data. Our pro-
posed design thus integrates three key modules, 1) an efficient and
fault-tolerant event data aggregation algorithm, 2) a delay-aware
data transmission protocol, and 3) an adaptive actuator allocation
algorithm for unevenly distributed events. We further propose a
latency-oriented fault tolerant data transport protocol (LOFT) and a
power-controlled real-time data transport protocol (POWER-SPEED)

i

for WSANs. LOFT balances the workload of sensors by checking
their queue utilization and handles node/link failures by an adap-
tive replication algorithm. POWER-SPEED transmits packets in
an energy-efficient manner while maintaining soft real-time packet
transport. We evaluate our framework and the two proposed proto-
cols through extensive simulations, and the results demonstrate that
they achieve the desirable reliability for WSANs.

To minimize the data collection time, we propose a new routing
design. We present the mathematical formulation of the route de-
sign problem, and show that it is computationally intractable. We
then propose two practical algorithms to reduce the delay of the
sensors. Our algorithms adaptively adjust the actuator visiting fre-
quencies to the sensors according to their relative weights and data
generation patterns. We further propose a probabilistic route design
(PROUD) algorithm which adapts to network dynamics. We present
the distributed implementation for PROUD and an extension which
accommodates actuators with variable speeds. We also propose al-
gorithms for load balancing among the actuators. Simulation results
show that our algorithms can effectively reduce the overall data col-
lection time. They adapt to the network dynamics and balances the
energy consumption of the actuators.

Finally, we present a novel algorithm for intruder detection in
a sinkhole attack of wireless sensor network. The algorithm can
identify the intruder and deal with multiple malicious nodes effec-
tively. We have evaluated the performance of the proposed algorithm
through both numerical analysis and simulations, which confirmed
the effectiveness and accuracy of our algorithm.

ii

摘要摘要摘要摘要
 無線傳感執行器網絡(WSANs)藉著加入功能強大和可移動的執行器，大大提高了現有的無線傳感器網絡結構。結合執行器與傳感器的功能可應用在更多特殊用途上。在環境應用方面，一個高效率和可靠的通訊或協調系統能迅速和準確地報告環境事件。可是，無線隨意多跳躍的通訊在WSAN上並不可靠，例如頻繁傳感器失靈和網絡分割。由網絡擠塞或數據聚合而導致的過度延誤，亦會進一步加重問題。

 在此論文中，我們提議一個在WSANs上的可靠事件報告框架。我們指出在這樣一個即時系統裏，可靠性不僅取決於準確性，亦取決於數據的重要性和即時性。依循這個論據，我們的設計結合了三個重要模塊，第一個是高效率和容錯事件數據聚合算法，第二個是即時的數據通訊協定，第三個是有效的執行器分派算法。另外，我們提出兩個WSANs的通訊協定，分別是針對傳輸時間的容錯數據
(LOFT)通訊協定和節省能源的即時數據(POWER-SPEED)通訊協定。LOFT透過檢查傳感器的隊列運用來平衡傳感器工作量，並且用一種能適應環境的複製算法來處理傳感器或通訊錯誤。POWER-SPEED 以節省能源的方式傳送小包，並維護小包的即時運輸。我們利用大量的模擬實驗來評估上述的事件報告框架和通訊協定，結果顯示它們在WSANs上的可靠性令人滿意。

 為把數據收集時間縮到最短，我們提議一個新的路線設計。我們以數學公式提出路線設計問題，並且指出這問題在一般計算上是很難處理的。接著，我們提出兩種實際高效率的算法以縮短傳感器的等候時間。我們的算法能根據傳感器的相對重要性和數據樣式來調整執行器收集傳感器數據的頻率。此外，我們提出一個能適應網絡環境變化的機率路線(PROUD)算法。我們同時提出 PROUD的分散式方案和增設使 PROUD可適應執行器易變速度的方案。我們也提出一些算法以平衡執行器的工作量。模擬結果顯示出我們的算法不但能有效地縮減整體數據收集的時間，而且能適應網絡環境變化和平衡執行器的能源消耗。

 最後，我們提出一個為偵查在無線傳感器網絡進行排水口攻擊(Sinkhole Attack)的入侵者的新穎算法。這算法能有效地識別入侵者及對付多個惡意結盟的傳感器。我們以數據分析和模擬實驗來評估這算法的表現，結果它的效率和準確性都被肯定了。

iii

Acknowledgement

First and foremost, I would like to express my sincere gratitude to
my supervisor Professor Michael R. Lyu for his generous guidance
and patience given to me in the past six years. It took enormous time
and effort to nurture a student from doing a final year project to com-
pleting a Ph.D. today. His consistent support and encouragement, as
well as his inspiring advice are extremely essential and valuable in
my research work. I have learned a lot from his breadth of knowl-
edge, his enthusiasm on teaching and research, and his patience and
consideration to the students.

I am also greatly indebted to Professor Jiangchuan Liu, for nour-
ishing me to be a better researcher, and always be there for help.
His insightful comments have improved my papers and this thesis
tremendously, and his advice has always helped me to make the right
decision. I am also very grateful for his hospitality in Simon Fraser
University (SFU) for two summers, which has greatly broadened my
experiences and horizon. I am so grateful to Prof. Man-Hon Wong
and Prof. Moon-Chuen Lee for their precious time to serve as my
thesis examiners.

I would like to thank my nice collaborator, Yangfan Zhou, for
discussing research problems, working closely with me, and teach-
ing me how to use the network simulator. I also appreciate other
members in our research group, including Xia Cai, Pat Chan, Xinyu
Chen, Hongbo Deng, Steven Hoi, Kaizhu Huang, Xiaoqi Li, Zhen-
jiang Lin, Hao Ma, Wyman Wong, Zenglin Xu, Haixuan Yang for
their help and discussion in many aspects of my research work. I

iv

also express my appreciation to the faculty and staff in the Depart-
ment of Computer Science and Engineering. Time spent at CUHK
would not be so interesting and enjoyable without the friendship
from my officemates and friends. This list is not complete: Alan
Chu, Albert Lam, Chi-Kong Chan, Carmen Lam, Gordon Lam, KK
Lo, Dong Ni, Jixiang Quo, Brian Tsue, Raymond Wong, and Eric
Yu.

In SFU, I enjoyed two wonderful summers conducting research
in the Network Modelling Laboratory, where I made a lot of friends.
I would like to thank Dan Wang for his comments on my work and
his help on my understanding of algorithms. I also want to thank
Ming Zhang, Bin Zhou, Ming Hua, Mag Lau, Xinghuo Zeng, Roy
Hu, Yong Wang, Peter Chen, Michael Letourneau, Zhengbing Bian,
Yan Long, Feng Wang, Samantha Chow, and Vivian Chu for their
discussions on research, their help and valuable friendship.

During my studies, I also had the good fortune to visit the Ts-
inghua National Laboratory for Information Science and Technol-
ogy. I would like to offer my most sincere thanks to Professor Ke
Xu and Professor Yong Cui for their hospitality. They introduce
me to fascinating research areas and share their insights and exper-
tise on Next Generation Internet, which have greatly broadened my
knowledge and horizon.

Finally, this work is dedicated to my family. My parents teach
me the value of knowledge, the joy of love, and the importance of
family. My sister is my forever friend who accompanies me and
brings me great happiness. I want to thank them for their love and
lifelong support.

v

This work is dedicated to my parents and my sister for their
unconditional love and support over the years.

vi

Contents

Abstract i

Acknowledgement iv

1 Introduction 1
1.1 Wireless Sensor Networks 1

1.1.1 Characteristics 2
1.1.2 Applications 3
1.1.3 Research Challenges 4

1.2 Wireless Sensor-Actuator Networks 5
1.3 Delay-Oriented Reliable Communication 7

1.3.1 Delay-Aware Reliable Event Reporting . . . 7
1.3.2 Latency-Oriented Fault Tolerant Transport

Protocol . 8
1.3.3 Power-Controlled Real-Time Data Transport

Protocol . 9
1.4 Delay-Oriented Reliable Coordination 11

1.4.1 The Route Design Problem 11
1.4.2 Adaptive Delay-Minimized Route Design . . 12

1.5 Intruder Detection in Sinkhole Attack 13
1.6 Contribution of This Thesis 14
1.7 Organization of this Thesis 18

2 Background and Literature Review 20
2.1 Wireless Sensor-Actuator Networks 20

vii

2.1.1 Characteristics 21
2.1.2 Applications 21
2.1.3 Research Challenges 22

2.2 Communication and Coordination Framework in WSAN 23
2.3 Delay-Aware Reliable Event Reporting in WSAN . . 25
2.4 Delay-Minimized Route Design in WSAN 27
2.5 Intruder Detection in Sinkhole Attack 30

3 A Real-Time Communication Framework for WSAN 32
3.1 Overview . 32
3.2 Real-Time Communication Framework 33
3.3 Event Detection and Report 36

3.3.1 Formation of Maps 36
3.3.2 Data Aggregation 38
3.3.3 Layered Data Transmission 40

3.4 Actuator Coordination and Reaction 42
3.4.1 Combination of Maps 42
3.4.2 Location Update 44

3.5 Summary . 46

4 Delay-Aware Reliable Event Reporting 48
4.1 Overview . 48
4.2 Network Model and Objective 49

4.2.1 Network Model 49
4.2.2 Design Objective 50

4.3 The Reliable Event Reporting Framework 52
4.3.1 Grid-Based Data Aggregation 52
4.3.2 Priority-Based Event Reporting 54
4.3.3 Actuator Allocation 58

4.4 Performance Evaluation 60
4.4.1 Reliability of Event Reporting 60
4.4.2 Actuator Allocation 62

4.5 Summary . 65

viii

5 Latency-Oriented Fault Tolerant Transport Protocol 69
5.1 Overview . 69
5.2 Network Model and Objective 70

5.2.1 Network Model 70
5.3 Design Objective 71
5.4 Latency-Oriented Fault Tolerant Data Transport Pro-

tocol . 73
5.4.1 Estimating the Load of Neighbors 73
5.4.2 Coping with Transmission Failures 76

5.5 Evaluation . 80
5.5.1 Protocol Performance with Varying Link Fail-

ure Probability 81
5.5.2 Protocol Performance with Varying Data Rate 81
5.5.3 Links with Different Failure Probability . . . 83
5.5.4 Protocol Overhead 84

5.6 Summary . 86

6 Power-Controlled Real-Time Data Transport Protocol 92
6.1 Overview . 92
6.2 Energy-Efficient Real-Time Data Reporting of Delay-

Sensitive Events . 93
6.2.1 Location-Aware Networks 93
6.2.2 Stateless Data Transport via Dynamic Paths . 94
6.2.3 Delay-Sensitive Data Transport 94
6.2.4 Power-Controlled Packet Transmission . . . 95

6.3 Designing the POWER-SPEED Protocol 96
6.3.1 Estimating the Hop-by-Hop Delays 96
6.3.2 Calculating Packet Transport Speed and Packet

Forwarding Candidates 98
6.3.3 Selecting Next-Hop Neighbor 99

6.4 Simulation Results 100
6.5 Summary . 103

ix

7 The Route Design Problem 106
7.1 Overview . 106
7.2 Problem Formulation 107
7.3 Route Design Algorithms for Multiple Actuators . . 112

7.3.1 Route Design Algorithm by Varying Num-
ber of Visits (RDNV) 112

7.3.2 Route Design Algorithm by Varying Path Length
(RDPL) . 116

7.4 Distributed Implementation 121
7.5 Performance Evaluation 126

7.5.1 Average Actuator Inter-Arrival Time 126
7.5.2 Standard Deviation of Actuator Inter-Arrival

Time . 131
7.5.3 Message Overhead and Convergence Time

in D-RDPL 134
7.6 Summary . 135

8 Adaptive Delay-Minimized Route Design 137
8.1 Overview . 137
8.2 Overview of The Route Design Problem 138

8.2.1 Network Model 138
8.2.2 The Route Design Problem 138

8.3 The Probabilistic Route Design (PROUD) Algorithm 140
8.3.1 Small-Scale Network 140
8.3.2 Large-Scale Network with Partitions 143

8.4 Distributed Implementation 146
8.5 Enhancements to PROUD 147

8.5.1 Actuators with Variable Speeds 148
8.5.2 Load Balancing in Route Design 149

8.6 Performance Evaluation 151
8.6.1 Average Actuator Inter-Arrival Time 151
8.6.2 Minimum Speed of Actuators 156
8.6.3 Multi-Route Improvement 158

x

8.6.4 Task Exchange Among Actuators 159
8.7 Summary . 160

9 Intruder Detection for Sinkhole Attack 162
9.1 Overview . 162
9.2 Network Model and Problem Statement 163
9.3 Intruder Detection for Sinkhole Attack 164

9.3.1 Estimating the Attacked Area 165
9.3.2 Identifying the Intruder 166

9.4 Enhancements Against Multiple Malicious Nodes . . 168
9.4.1 Dealing with Dropped Flow Information . . 168
9.4.2 Dealing with Tampered or False Flow Infor-

mation . 171
9.4.3 Proof of Correctness 175

9.5 Performance Evaluation 176
9.5.1 Accuracy of Intruder Identification 176
9.5.2 Communication Cost 179
9.5.3 Energy Consumption 181

9.6 Summary . 183

10 Conclusion 187

Bibliography 207

xi

List of Figures

3.1 Workflow of the framework. 35
3.2 Pieces of maps formed in an event. 38
3.3 Tree representation of nodes on the map Sr. 39
3.4 Base layer and refinement layer. 42
3.5 Combination of maps. 43
3.6 Leave of actuator a1. 45

4.1 An illustration of the WSAN model and event re-
porting from sensors to actuators. 51

4.2 Workflow of the framework. 53
4.3 Grid-based data aggregation. 54
4.4 Actuator allocation with 6 actuators. 60
4.5 Actuator allocation with 10 actuators. 61
4.6 On-time reachability. 63
4.7 Average delay. 64
4.8 Overall reliability. 65
4.9 On-time reachability with actuator allocation. 66
4.10 Average delay with actuator allocation. 67
4.11 On-time reachability vs. no. of actuators. 67
4.12 Average delay vs. no. of actuators. 68

5.1 An illustration of the WSAN model and data trans-
port from sensors to actuators. 71

5.2 Maximum affordable arrival rate from i to j. 75
5.3 Forwarding packets with replication factor rf=2. . . 78
5.4 Event reliability with data rate 15pkt/s. 82

xii

5.5 Average delay with data rate 15pkt/s. 83
5.6 Overall reliability with data rate 15pkt/s. 84
5.7 Event reliability with link failure probability 0.05. . . 85
5.8 Average delay with link failure probability 0.05. . . . 86
5.9 Overall reliability with link failure probability 0.05. . 87
5.10 Event reliability with link failure probability 0.3. . . 88
5.11 Average delay with link failure probability 0.3. . . . 88
5.12 Overall reliability with link failure probability 0.3 . . 89
5.13 Reliability with random link failure probability be-

tween 0 and 0.3. 89
5.14 Average delay with random link failure probability

between 0 and 0.3. 90
5.15 Overall reliability with random link failure probabil-

ity between 0 and 0.3. 91
5.16 Replication factor with (a) data rate 15 pkt/s (b) link

failure probability 0.05. 91

6.1 Part of a POWER-SPEED packet 96
6.2 Total energy consumptions of different source re-

porting rates . 102
6.3 Total energy consumptions of different node number 103
6.4 Comparison of in-time packet arrival-rates 104
6.5 Comparison of total energy consumptions 105

7.1 Step 1: Sensors with Ni = 3 are involved in all trees;
Step 2: Sensors with Ni = 2 are involved in any two
of the trees in RDNV. 114

7.2 Final routes formed in RDNV. 114
7.3 Final routes formed for four actuators in RDPL. . . . 120
7.4 Average inter-arrival distance under uniform random

sensor distribution with N=100 (a) M=5 (b) M=8. . 128
7.5 Average inter-arrival distance under cluster-based uni-

form sensor distribution with N=100 (a) M=5 (b)
M=8. 129

xiii

7.6 Average inter-arrival distance under cluster-based non-
uniform sensor distribution with N=100 (a) M=5
(b) M=8. 130

7.7 S.D. of inter-arrival distance with N=100 and M=5
under uniform random distribution. 131

7.8 S.D. of inter-arrival distance with N=100 and M=5
under cluster-based uniform distribution. 132

7.9 S.D. of inter-arrival distance with N=100 and M=5
under cluster-based non-uniform distribution. 133

7.10 (a) Message overhead (b) Convergence time of D-
RDPL with N=100 and M=5. 134

8.1 Two examples of route design. 139
8.2 Visiting nodes probabilistically according to their

weights. 141
8.3 Two actuators walking on (a) the same route (b) dis-

tinct routes. 145
8.4 Routes involve (a) different amount of sensors (b)

sensors with different weights. 150
8.5 Actuator inter-arrival time under uniform random

sensor distribution. 152
8.6 Actuator inter-arrival time under cluster-based uni-

form sensor distribution. 153
8.7 Actuator inter-arrival time under cluster-based non-

uniform sensor distribution. 154
8.8 Actuator inter-arrival time under Eye Topology. . . . 155
8.9 Minimum speed of actuators under under uniform

random sensor distribution. 157
8.10 Minimum speed of actuators under cluster-based uni-

form sensor distribution. 158
8.11 Minimum speed of actuators under cluster-based non-

uniform sensor distribution. 159
8.12 Speed of actuators with multi-route improvement. . . 160

xiv

8.13 Energy consumption of actuators with task exchange. 161

9.1 Two examples of sinkhole attack in wireless sensor
networks. (a) Using an artificial high quality route;
(b) Using a wormhole. 164

9.2 Estimate the attacked area. 167
9.3 Network flow in the attacked area. 168
9.4 Attacked area with colluding nodes. (a) Dropping

responses; (b) Providing false responses. 170
9.5 Attacked area with colluding nodes. (a) Dropping

responses; (b) Providing false responses. 172
9.6 Example of intruder identification with multiple ma-

licious nodes. 175
9.7 Success rate in intruder identification (m=20%). . . . 178
9.8 False-positive rate in intruder identification (m=20%).179
9.9 False-negative rate in intruder identification (m=20%).180
9.10 Success rate in intruder identification (m=50%). . . . 181
9.11 False-positive rate in intruder identification (m=50%).182
9.12 False-negative rate in intruder identification (m=50%).183
9.13 Success rate in intruder identification (m=80%). . . . 184
9.14 False-positive rate in intruder identification (m=80%).185
9.15 False-negative rate in intruder identification (m=80%).185
9.16 Communication cost for intrusion detection. 186
9.17 Energy consumption for intrusion identification. . . . 186

xv

List of Tables

3.1 List of Notation . 36

4.1 Simulation Parameters 62

5.1 System Parameters 72
5.2 Simulation Parameters 80

6.1 Simulation Parameters 101

7.1 System Parameters 107
7.2 Simulation Parameters 126

8.1 Simulation Parameters 151

9.1 List of Notation . 165
9.2 Simulation Parameters 177
9.3 Parameters of Energy Consumption 181

xvi

Chapter 1

Introduction

The advancement of hardware and engineering technology has turned
distributed embedded systems such as sensors, actuators, and vari-
ous mobile devices [96] into reality. Wireless sensor networks (WSNs),
which are formed by a group of sensors, has become extremely pop-
ular in recent years with their capability of monitoring the environ-
ments [6].

1.1 Wireless Sensor Networks

A wireless Sensor Network (WSN) is a group of sensor nodes with
a wireless communications infrastructure intended to monitor and
record conditions at diverse locations. It is commonly used for mon-
itoring the environment, like temperature, humidity, pressure, wind
direction and speed, illumination intensity, vibration intensity, sound
intensity, power-line voltage, chemical concentrations, pollutant lev-
els and vital body functions [66]. WSN was originally developed for
military applications such as battlefield surveillance. However, it is
now used in many civilian application areas, including environment
and habitat monitoring, healthcare applications, home automation,
and traffic control [105, 133].

1

CHAPTER 1. INTRODUCTION 2

A sensor node is small, lightweight and portable device that equipped
with a transducer, microcomputer, transceiver and power source. It
generates electrical signals based on sensed physical effects and phe-
nomena. The microcomputer processes and stores the sensor out-
put. The radio transceiver or other wireless communications device
receives data and transmits data to the sensor nodes or computers.
The power for each sensor node is derived from the electric utility or
from a battery [133]. The cost of sensor nodes ranges from hundreds
of dollars to a few cents, depending on the size of the sensor net-
work and the complexity required of individual sensor nodes. Size
and cost constraints on sensor nodes result in corresponding con-
straints on resources such as energy, memory, computational speed
and bandwidth [105].

1.1.1 Characteristics

1. Self-organizing capabilities: A wireless sensor network (WSN)
consists of a large number of sensor nodes. They are deployed
over an area and form a wireless network. The position of sen-
sor nodes need not be engineered or pre-determined. This al-
lows random deployment in inaccessible terrains or disaster re-
lief operations. On the other hand, this also means that sensor
network protocols and algorithms must possess self-organizing
capabilities.

2. Cooperative effort of sensor nodes: A unique feature of sen-
sor networks is the cooperative effort of sensor nodes. Sensor
nodes are fitted with an on-board processor. Instead of send-
ing the raw data to the nodes responsible for the fusion, sensor
nodes use their processing abilities to locally carry out simple
computations and transmit only the required and partially pro-
cessed data.

3. Short-range communication and multihop routing: Since large

CHAPTER 1. INTRODUCTION 3

number of sensor nodes are densely deployed and they are hav-
ing short communication range. Hence, multihop communi-
cation in sensor networks is expected to consume less power
than the traditional single hop communication. Furthermore,
the transmission power levels can be kept low, which is highly
desired in covert operations. Multihop communication can also
effectively overcome some of the signal propagation effects ex-
perienced in long-distance wireless communication [3].

4. Limitations on energy and computation power: The sensor nodes
are autonomous devices with limited battery, computational
power, and memory.

5. Dynamic topology: Dynamic environmental conditions require
the system to adapt over time to changing connectivity and sys-
tem stimuli.

6. Operation: The complexity of wireless sensor networks gen-
erally consist of a data acquisition network and a data distri-
bution network, monitored and controlled by a management
center. The plethora of available technologies makes even the
selection of components difficult, let alone the design of a con-
sistent, reliable, robust overall system [35].

1.1.2 Applications

WSNs provide a wide variety of commercial and industrial applica-
tions to monitor data that would be difficult or expensive to monitor
using wired sensors. They could be deployed in wilderness areas,
where they would remain there for monitoring some environmen-
tal variables without the need to recharge or replace their power
supplies. Typical applications of WSNs include monitoring, track-
ing, and controlling. Some of the specific applications are habitat
monitoring, object tracking, nuclear reactor controlling, fire detec-
tion, traffic monitoring, etc. In general, a WSN is scattered in a

CHAPTER 1. INTRODUCTION 4

region where it is meant to collect data through its sensor nodes.
They can be applied in environmental monitoring, habitat monitor-
ing, acoustic detection, seismic detection, military surveillance, in-
ventory tracking, medical monitoring, smart spaces process moni-
toring, structural health monitoring, etc [4, 85, 68, 104, 134].

1.1.3 Research Challenges

It is important for sensor networks to reliably aggregate and dis-
seminate information within a time frame that allows the controllers
to take necessary actions, even in case of poor spatial distribution
of sensor devices, wireless interference, and malicious destruction.
Since out-of-date information is of no use, a key technical challenge
in cooperative engagement is how to effectively coordinate and con-
trol sensors in real-time over an unreliable wireless network. These
key challenges are described as below [116].

1. Data-centric: Sensor networks are intrinsically data-centric in
which data from multiple sources related to a same physical
phenomenon need to be aggregated and sent to a base station
[75].

2. Location-based: Data in sensor networks usually correspond
to physical locations rather than logical IDs. New data cen-
tric and location-based protocols [64, 83, 72]were developed
to improve scalability and efficiency.

3. Topology: Sensors are placed in open fields for environmental
applications with non-uniform node distribution and in large
scale. Also, the data generation rates and traffic patterns are
changing quickly and unpredictable.

4. High fault rates: Sensor networks are subject to high fault rates
due to environmental noises, obstacles, power depletion, mali-
cious destruction, node and link failures.

CHAPTER 1. INTRODUCTION 5

5. Limited resources: Sensor networks run on small devices with
limited with limited battery, communication range, computa-
tion power and memory.

1.2 Wireless Sensor-Actuator Networks

Although sensors can collect data from the surroundings effectively,
they are passive devices and are not interactive to the environments.
Wireless sensor-actuator networks (WSANs), which include both
actuators and sensors, become an extension to WSNs. Actuators
are mobile devices that can make decisions and perform appropriate
actions in response to the sensor measurements. They are resource-
rich devices equipped with more energy, stronger computation power,
longer transmission range, and are usually mobile. One example of
actuators is robots, which can communicate and perform different
actions. On the other hand, sensors are small and low-cost devices
with limited energy, sensing, computation, and transmission capa-
bility.

Sensors and actuators collaborate together to monitor and react
to the surrounding world. Sensors perform sensing and report the
sensed data to actuators, while the actuators then carry out appro-
priate actions in response. WSANs can be applied in a variety of
commercial, industrial, scientific, and military applications like en-
vironmental monitoring, sensing and maintenance in large indus-
trial plants, military surveillance, medical sensing, attack detection,
and target tracking. Apart from the above, the technologies devel-
oped can be applied to aerospace industries as well. For example,
a number of sensors and actuators can be deployed on a planet for
exploration. The sensors can collect data on the planet and report
interesting events to the actuators. Then, actuators can go to par-
ticular locations for more detailed observations. For example, they
may collect some stone samples for bringing back to the space ship,

CHAPTER 1. INTRODUCTION 6

capture high-resolution pictures, or record videos for deeper inves-
tigations.

A number of applications in WSANs require a quick response
from the actuators to react to the environments. For example, ac-
tuators with water sprinkler are expected to arrive at the scene of
fire immediately to stop the spread of fire. Similarly, actuators are
expected to react as soon as possible in applications like intruder de-
tection or object tracking. They have to make sure the person or the
object is still in the reported area when they arrive [5].

In this thesis, we propose a delay-aware reliable communication
framework, which provides timely reactions to the environments
upon detection of an event. We focus on event-driven applications
in a self-organized network. This network has no centralized control
to the sensors and actuators. Moreover, the sensors report to the ac-
tuators only when their sensed data fall in the range of interest. For
example, a group of sensors will report an event when the detected
temperature is over a certain degree. An event can be any incident
happening in the environments being monitored, such as a fire, a
leakage of gas, or an attack.

In comparing with WSNs, senor-to-actuator and actuator-to-actuator
communications become a special feature in WSANs. Moreover,
sensors in WSANs may have multiple potential destinations for event
reporting, which is different from a single and static sink for data
collection in WSNs. WSANs usually contain multiple actuators
available for reaction, so a good actuator-to-actuator coordination
is necessary for providing a fast and effective response. Our solu-
tion explores the different capabilities and functionalities of sensors
and actuators and offers efficient communication and coordination
among them. It consists of two steps: First, a delay-aware and dis-
tributed event-reporting algorithm for sensors to send the application
data to the actuators; and second, an efficient coordination algorithm
for designing the routes of actuators to collect data from sensors ef-
ficiently. The event-reporting algorithm allows the sensors to trans-

CHAPTER 1. INTRODUCTION 7

mit data to actuators via the paths with minimum delay. Also, the
data with more importance will be transmitted with higher priority.
The actuator coordination algorithm allows the actuators to patrol
on routes that minimize their average inter-arrival time to the static
sensors. Since security is integral to a reliable system, we study the
sinkhole attack problem in wireless sensor networks and present a
novel algorithm for detecting the intruder in such an attack. Our al-
gorithm can effectively identify the intruder through analyzing the
network flow information. It is also robust in dealing with multiple
malicious nodes that cooperatively hide the real intruder.

1.3 Delay-Oriented Reliable Communication

1.3.1 Delay-Aware Reliable Event Reporting

Modern hardware and software technologies for embedded systems
allow real applications of micro sensors with radio transceivers [4,
38, 103, 97]. WSNs constructed by a group of sensors, have been
suggested for numerous novel applications, such as monitoring for
harsh environments and protecting national borders. Recently, actu-
ator nodes, which have much stronger computation and communi-
cation power than uni-purpose micro-sensors, have also been intro-
duced [5]. An actuator can perform diverse tasks, such as processing
the data reported from the sensors and accordingly interacting with
the environment; a mobile actuator (e.g., a robot) could even change
its location periodically to serve the application better.

The sensors and actuators can form a powerful and yet cost-
effective hybrid network, that is, a WSAN. While the functionalities
of the actuators are application-specific, a well-designed communi-
cation model between the two types of nodes is crucial to a WSAN.
In particular, given that the actuators need accurate event data from
the sensors to perform corresponding actions, reliability is an impor-

CHAPTER 1. INTRODUCTION 8

tant concern in the sensor-actuator communication.
In this thesis, we design a generic framework for reliable event

reporting in WSANs. We argue that the reliability in this context is
closely related to the delay, or the freshness of the events, and they
should be jointly optimized. We also suggest that the non-uniform
importance of the events can be explored in the optimization. We
therefore present a delay- and importance-aware reliability index for
the WSANs. Our framework seamlessly integrates three key mod-
ules to maximize the reliability index: 1) A multi-level data aggre-
gation scheme, which is fault-tolerant to error-prone sensors; 2) A
priority-based transmission protocol, which accounts for both the
importance and the delay requirements of the events; and 3) an actu-
ator allocation algorithm, which smartly distributes the actuators to
match the demands from the sensors.

Our framework is fully distributed, and is generally applicable
for diverse WSANs. Within this generic framework, we present an
optimized design for each of the modules, and also discuss their in-
teractions. The performance of our framework is evaluated through
extensive simulations. The results demonstrate that our framework
can significantly enhance the reliability of event reporting; it also
makes more effective use of the expensive actuators.

1.3.2 Latency-Oriented Fault Tolerant Transport Protocol

Actuators, which have much stronger computation and communi-
cation power, can process the data reported from the sensors and
interact with the environment accordingly [47]. A well-designed
communication module between the two types of nodes is crucial to
WSANs [4]. In particular, given that the actuators need timely event
data from the sensors to perform corresponding actions, reliability is
an important concern in the sensor-actuator communication. Unfor-
tunately, the low-power multi-hop communications in WSANs are
inherently unreliable. The frequent sensor failures and the excessive

CHAPTER 1. INTRODUCTION 9

delays due to node and link failures or congestions further worsen
the problem.

To provide reliable communication, we focus on the design of
a latency-oriented fault tolerant data transport protocol in WSANs.
We contend that the reliability in this context requires successful ar-
rivals of packets within a latency bound, and a cross-layer design is
thus necessary. Specifically, the transmission delay can be jointly
optimized with the path success rate of transmission to handle node
and link failures. We also suggest that the non-uniform importance
of the events of interest can be explored in the optimization. Our pro-
tocol consists of two steps: First, it estimates the load of the neigh-
bors and decides the next hops which can provide on-time delivery
of event data to the actuator; and second, it copes with the transmis-
sion failures by providing redundant packets adaptively. Simulation
results show that it remarkably improves the reliability for data re-
porting from sensors to actuators with reasonable overheads.

1.3.3 Power-Controlled Real-Time Data Transport Protocol

There have been many novel potential applications of WSNs as well
as WSANs , such as environmental monitoring and national-borders
protection [5, 85, 124]. In WSANs, data collection on the physical
phenomena of interest is still a major and critical work as in WSNs.
Usually, it is required that the actuators can react with the sensing
events quickly and perform interactions with the environment ac-
cordingly. For example, if the sensors in a WSAN that monitors a
forest-beat report abnormal temperature in some area, the actuators
should move to that area to check whether there is a fire in a timely
manner. QoS guarantee in the domain of timeliness is highly desired
in the sensor-to-actuator data transport protocol for delay-sensitive
event-reporting of WSANs.

Unfortunately, like in WSNs, sensors in WSANs are still inher-
ently subject to limited energy resource as recharging the batteries of

CHAPTER 1. INTRODUCTION 10

sensors is impractical due to the unattended operational features of
the network [5]. Therefore, the main challenge of designing a real-
time data transport protocol for delay-sensitive event-reporting of
WSANs is to achieve energy-efficiency. The protocol should guar-
antee that the actuators can receive packets on delay-sensitive events
in given latency bounds and the transport scheme should cost as low
energy as possible.

There are many existing real-time data transport protocols in the
literature for WSNs. Lu et al [83] described a packet scheduling pol-
icy called Velocity Monotonic Scheduling. It accounts for both time
and distance constraints. SPEED [52] by He et al combines feed-
back control and non-deterministic QoS-aware geographic forward-
ing. Felemban et al [41] proposed a Multi-path and Multi-Speed
Routing Protocol (MMSPEED) for probabilistic QoS guarantee in
WSNs. Multiple QoS levels are provided in the timeliness domain
by using different delivery speeds, while various requirements are
supported by probabilistic multipath forwarding in the reliability do-
main.

However, the network and traffic features of WSANs are different
from those of WSNs. In WSANs, actuators are mobile sinks of the
data traffic. The mobility of data sinks poses that the traffic routes
must be reestablished frequently. The transport protocol for WSANs
should be stateless. Also, actuators can directly communicate with
each other as they can be equipped with powerful antennae. There-
fore, sensor reporting packets can be delivered in an anycast man-
ner. The transport protocol for WSANs can convey packets to any of
the actuators. Based on this feature, we specifically tailor the solu-
tion of the real-time data transport problem for WSANs. We address
this challenging problem by proposing POWER-SPEED, a real-time
data transport protocol for WSANs to achieve energy-efficient data
transport for delay-sensitive event reporting. With POWER-SPEED,
a sensor node can estimate the downstream QoS condition to actua-
tors based on the spatio-temporal historic data of the upstream paths.

CHAPTER 1. INTRODUCTION 11

Without requiring any control packets, sensor nodes can select the
next-hop neighbor to actuators according to the estimation. Each
node then efficiently adjust the power level of its wireless transmit-
ter to a minimum value under the constraint that the packet sent by
this node could just reach its intended neighboring node. In this way,
POWER-SPEED reduces the energy consumption of data transport
while maintaining QoS requirement in the timeliness domain.

1.4 Delay-Oriented Reliable Coordination

1.4.1 The Route Design Problem

WSNs have been applied in environment monitoring, battlefield surveil-
lance, chemical attack detection, and target tracking [4, 38]. The
asymmetric communication patterns from sensors to the sink, how-
ever, often overload the sensors close to the sinks and reduce the
network lifetime. Moreover, network partitions may occur in sensor
networks, which make multihop communications impossible. To al-
leviate these problems, mobile elements, such as mobile sinks [119]
or mobile relays [84], have been suggested for collecting data in
WSNs. In WSAN, an actuator (e.g., a robot) can move around to
cover the sensing field and interact with static sensors. Each static
sensor has a limited buffer, which stores locally sensed data until
some actuator approaches. It can then upload the data to the actua-
tor with short-range communications and free its buffer.

Note that the amount and frequency of data generation in the sen-
sors are non-uniform [114]. For example, the sensors which collect
more urgent or sensitive data are of higher importance or weights,
and thus they expect shorter actuator inter-arrival time to report data
more frequently. Similarly, locations with significant data variations
are also expected more frequent visits.

More formally, there is a Route Design Problem (RDP) for the

CHAPTER 1. INTRODUCTION 12

actuators to minimize their average inter-arrival time to the static
sensors. In this thesis, we present the first formal study on the RDP
problem. We demonstrate that the general problem is NP-hard. We
then develop two effective algorithms for route calculation. Our al-
gorithm is based on the observation that a sensor can have shorter
waiting time for data uploading if it is included in more routes and/or
shorter routes. To this end, our proposed Route Design Algorithm
by Varying Number of Visits (RDNV) constructs routes with similar
lengths, while the sensors are visited by different number of routes.
On the other hand, the Route Design Algorithm by Varying Path
Length (RDPL) algorithm constructs routes with different lengths
and visits the sensors by distinct routes according to their weights.
Apart from the centralized approaches, we also present a distributed
implementation of the route design algorithms for large-scale sensor
networks. Our simulation results show that the proposed algorithms
can effectively reduce the overall data collection time.

1.4.2 Adaptive Delay-Minimized Route Design

As mentioned above, the amount and frequency of data generation
in the sensors are often non-uniform [114]. For example, the sensors
with higher data generation rate or the locations with higher event
occurring probability expect more frequent visits. In tackling RDP
problems, while deterministic algorithms may work for static route
calculations, in reality, the weight of sensors and event frequency
are time varying, which call for an adaptive algorithm. A distributed
and load-balanced implementation is also necessary for a large-scale
sensor network with multiple actuators.

In this thesis, we propose an effective and adaptive algorithm,
called Probabilistic Route Design (PROUD) for route calculation.
Our algorithm is based on a probabilistic model, which allows sen-
sors to have shorter expected waiting times for data uploading if they
are assigned with higher weights. Specifically, PROUD constructs

CHAPTER 1. INTRODUCTION 13

a priori route that consists of all the sensor locations, while the ac-
tuators visit them probabilistically and cyclically according to their
weights. It can adapt to network dynamics by updating the visiting
probability easily without any re-calculation on the priori route. We
show that this approach works for both small-scale and large-scale
sensor-actuator networks, and present a distributed implementation.
We further introduce enhancements to accommodate actuators with
variable speeds, which works for applications that demand bounded
inter-arrival times. Finally, we devise a Multi-Route Improvement
and a Task Exchange algorithm that enable load balancing. Our sim-
ulation results show that the proposed algorithm can effectively re-
duce the overall data collection time and evenly distribute the energy
consumption among the actuators.

1.5 Intruder Detection in Sinkhole Attack

WSNs and WSANs consist of a set of geographically distributed
sensor nodes, which continuously monitor their surroundings and
forward the sensing data to a base station (referred to as a sink)
through multi-hop routing. Given the importance of the sensed data,
various attacks have targeted sensor networks [71, 122]. While some
of the attacks are common in different types of networks, the many-
to-one communication pattern between the sensors and the sink poses
unique challenges [70, 100, 112]. A typical example is the sinkhole
attack, where an intruder attracts surrounding nodes with unfaith-
ful routing information, and then alters the data passing through it
or performs selective forwarding [71, 23, 25]. The sinkhole attack
prevents the base station from obtaining complete and correct sens-
ing data, and thus leads to a serious threat. It is particularly se-
vere for wireless sensor networks given that the wireless links are
vulnerable and the sensors are often deployed in open areas with
weak computation and battery power. The existing routing protocols

CHAPTER 1. INTRODUCTION 14

in sensor networks are generally susceptible to the sinkhole attack
[71, 64, 127, 13]. Although some secure mechanisms are proposed
and make use of cryptographic techniques to protect network traf-
fic [61, 101, 24, 26], they are often localized, or suffer from high
computation overheads and require time synchronization among the
nodes.

To ensure the reliability and security of the network, we propose
a novel lightweight algorithm for detecting the sinkhole attack and
identifying the intruder involved. We deviate from the traditional
strategy of defending against an attack using cryptography; instead,
we first detect the attack by observing the network flow information,
and then identify the intruder and malicious nodes, which can later
be isolated to protect the network.

We focus on a general many-to-one communication model, where
the routes are established based on the reception of route adver-
tisements. Our solution explores the asymmetricity between the
sensor nodes and the base station, and makes effective use of the
relatively-high computation and communication power of the base
station [71, 111, 100]. It consists of two major parts: (1) a secure
and low-overhead algorithm for the base station to collect the net-
work flow information from the attacked area; and (2) an efficient
identification algorithm that analyzes the routing pattern and locates
the intruder. We also consider the complex scenario with colluding
nodes that cooperatively cheat the base station about the intruder
location. Specifically, we examine multiple suspicious nodes and
identify the intruder with a voting method. We show that the solu-
tion is correct as long as the normal nodes are dominant.

1.6 Contribution of This Thesis

In this thesis, we propose a unified solution for providing delay-
oriented reliable communication and coordination in wireless sensor-

CHAPTER 1. INTRODUCTION 15

actuator networks. To achieve this, we present a real-time com-
munication framework for delay-minimized data transmission from
sensors to actuators and effective coordination for fast reactions by
actuators in response to the sensed events. In particular, we focus
on the delay-aware event reporting and the route design problem in
WSANs. Delay-aware event reporting is a general reliability-centric
framework that provides a multi-level data aggregation, priority-
based data transmission, and actuator allocation. Apart from the
communication, we present the route design problem and propose
several solutions, which aim at designing effective routes to min-
imize the actuators inter-arrival time to sensors in data collection.
Finally, we study the security issues in wireless sensor networks.
Particularly, we propose an effective intruder detection algorithm
for sinkhole attacks in WSNs. The main contributions of this thesis
can be further described as follows:

1. Real-Time Communication Framework
As actuators perform actions in response to the sensed events
in WSANs, real-time communications and quick reaction are
necessary. Two major problems are discussed: How to mini-
mize the transmission delay from sensors to actuators, and how
to improve the coordination among the actuators for fast re-
action. To tackle these problems, a real-time communication
framework is presented to support event detection, reporting,
and actuator coordination. It explores the timely communica-
tion and coordination problems among the sensors and actua-
tors. We propose two self-organized and distributed algorithms
for event reporting and actuator coordination.

2. Delay-Aware Reliable Event Reporting
A general reliability-centric framework for event reporting is
proposed. We argue that the reliability in such a real-time
system depends not only on the accuracy, but also the impor-
tance and freshness of the reported data. Our design follows

CHAPTER 1. INTRODUCTION 16

this argument and seamlessly integrates three key modules that
process the event data, namely, an efficient and fault-tolerant
event data aggregation algorithm, a delay-aware data transmis-
sion protocol, and an adaptive actuator allocation algorithm for
unevenly distributed events. Our transmission protocol adopts
smart priority scheduling that differentiates event data of non-
uniform importance. It is followed by an actuator allocation
algorithm, which smartly distributes the actuators to match the
demands from the sensors.

3. Latency-Oriented Fault Tolerant Transport Protocol
A latency-oriented fault tolerant data transport protocol is pro-
posed for WSANs. We argue that reliable data transport in
such a real-time system should resist to the transmission fail-
ures, and should also consider the importance and freshness
of the reported data. We articulate this argument and provide
a cross-layer two-step data transport protocol for on-time and
fault tolerant data delivery from sensors to actuators. Our pro-
tocol adopts smart priority scheduling that differentiates the
event data of non-uniform importance. It balances the work-
load of sensors by checking their queue utilization and copes
with node and link failures by an adaptive replication algo-
rithm.

4. Power-Controlled Real-Time Data Transport Protocol
A real-time data transport protocol (POWER-SPEED) is pro-
posed for WSANs to achieve energy-efficient data transport
in delay-sensitive event reporting. In POWER-SPEED, sensor
nodes select their next-hop neighbors to actuators according to
the spatio-temporal historic data of the upstream QoS condi-
tion, which completely avoids control packets. With an adap-
tive transmitter power control scheme, POWER-SPEED con-
veys packets in an energy-efficient manner while maintaining
soft real-time packet transport. It reduces the energy consump-

CHAPTER 1. INTRODUCTION 17

tion of data transport while ensuring the QoS requirement in
the timeliness domain.

5. The Route Design Problem
Multiple actuators can patrol along different routes and com-
municate with the static sensors. To minimize the data collec-
tion time, an effective route design is crucial for the actuators
to travel in the sensed field. We present a mathematical formu-
lation of the route design problem, and show that the general
problem is computationally intractable. We then propose two
practically efficient algorithms to reduce the waiting time for
the sensors. Our algorithms adaptively differentiate the actua-
tor visiting frequencies to the sensors according to their relative
weights and data generation patterns.

6. Adaptive Delay-Minimized Route Design
We propose PROUD, a probabilistic route design algorithm for
wireless sensor-actuator networks in a stochastic and dynami-
cally changing sensing environment. This is a departure from
the previous static and deterministic mobile element schedul-
ing problems. PROUD offers delay-minimized routes for ac-
tuators and adapts well to network dynamics and sensors with
non-uniform weights. This is achieved through a probabilistic
visiting scheme along pre-calculated routes. We present a dis-
tributed implementation for route calculation in PROUD and
extend it to accommodate actuators with variable speeds. We
also propose the Multi-Route Improvement and the Task Ex-
change algorithms for load balancing among actuators.

7. Intruder Detection for Sinkhole Attack
A sinkhole attack forms a serious threat to sensor networks,
particularly considering that the sensor nodes are often deployed
in open areas and of weak computation and battery power. A
novel algorithm is presented for detecting the intruder in a sink-
hole attack. The algorithm first finds a list of suspected nodes

CHAPTER 1. INTRODUCTION 18

through checking data consistency, and then effectively identi-
fies the intruder in the list through analyzing the network flow
information. The algorithm is also robust to dealing with mul-
tiple malicious nodes that cooperatively hide the real intruder.
It is efficient as its communication and computation overheads
are reasonably low for wireless sensor networks.

1.7 Organization of this Thesis

The rest of this thesis is organized as follows: In the next chapter, we
present the background on Wireless Sensor Networks (WSNs) and
Wireless Sensor-Actuator Networks (WSANs), followed by the re-
lated work on delay-oriented reliable communication and coordina-
tion in WSANs and intrusion detection in WSNs. Chapter 3 presents
a real-time communication framework to support event detection,
reporting, and actuator coordination in WSANs. Chapter 4 proposes
a delay-aware reliable event reporting scheme, which includes an ef-
ficient and fault-tolerant event data aggregation algorithm, a delay-
aware data transmission protocol, and an adaptive actuator alloca-
tion algorithm. Chapter 5 focuses on a latency-oriented fault toler-
ant data transport protocol (LOFT), which can handle node and link
failures. Chapter 6 further describes an energy-efficient data trans-
port protocol (POWER-SPEED) for delay-sensitive event reporting.
Chapter 7 formally presents the route design problem in WSANs
and proposes two practically efficient algorithms to reduce the wait-
ing time for the sensors. Chapter 8 proposes a probabilistic route
design (PROUD) algorithm for wireless sensor-actuator networks in
a stochastic and dynamically changing sensing environment. Chap-
ter 9 presents an efficient algorithm for detecting the intruder in a
sinkhole attack in a sensor network. Finally, Chapter 10 summa-
rizes the thesis and discusses future directions.

CHAPTER 1. INTRODUCTION 19

2 End of chapter.

Chapter 2

Background and Literature Review

2.1 Wireless Sensor-Actuator Networks

Wireless Sensor-Actuator network (WSAN) is an extension of tra-
ditional static wireless sensor networks. It is referred to a group of
sensors and actuators linked by wireless medium to perform sensing
and acting tasks. WSAN is capable of observing the physical world,
processing the data, making decisions based on the observations and
performing appropriate actions [5]. For example, sensors are de-
ployed in a forest for detecting a fire, while actuators are equipped
with water sprinkle, such that they can easily be extinguished before
being spread uncontrollably.

In WSANs, sensors are actuators work closely with each others.
Sensors perform sensing from the environment and actuators react
on the environment in response to the sensor readings. Since actors
are resource-rich nodes equipped with better processing capabilities,
higher transmission powers and longer battery life, they can perform
more complicated and energy consuming activity than sensing task.
They can respond rapidly to sensor input, so real-time communica-
tion is very important in WSANs since actions are performed on the
environment after the sensing occurs [2].

20

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

2.1.1 Characteristics

As mentioned above, the sensing and acting are performed by sen-
sors and actuators, respectively. WSANs have the following charac-
teristics [5].

1. Heterogeneous property: Sensors are low-cost, low power de-
vices with limited sensing, computation, and wireless commu-
nication capabilities, while actuators are resource rich devices
equipped with better processing capability, higher transmission
powers and longer battery life. They cooperate together to
form a heterogeneous network that is different from traditional
WSNs.

2. Real-time requirement: Many applications in WSANs require
the actuators to respond quickly to the sensing data, so real-
time event reporting and reaction is very important. For exam-
ple, the intruder may already went away if the data is reported
to the actuators too late or the actuators react too slowly.

3. Coordination: Different from WSNs, there is no centralized
server (or sink) for data collection and coordination. On the
contrary, sensor-actuator and actuator-actuator coordination pro-
vide transmission of event from sensor to actuators and make
decisions on the most appropriate action among actuators.

2.1.2 Applications

WSANs can be an integral part of systems such as battlefield surveil-
lance, nuclear, biological or chemical attack detection, home au-
tomation and environmental monitoring [5]. More specially, it can
be applied in habitat monitoring, forest fire detection, smart environ-
ments, flood detection, damage assessment, nuclear, biological and
chemical contamination detection, monitoring critical resources, ve-
hicle tracking, car thefts detection, traffic control, etc. For example,

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

in fire detection applications, sensors can relay the exact origin and
intensity of the fire to water sprinkler actors so that the fire can easily
be extinguished before it spreads. Similarly, motion and light sen-
sors in a building can detect the presence of intruders, and command
cameras or other instrumentations to track them. Furthermore, sen-
sors for structural health monitoring in airplanes or spaceships can
drive instruments to timely take countermeasures against critical me-
chanical stress or structural faults. As a last example, in earthquake
scenarios sensors can help locate survivors and guide robots per-
forming rescue operations [89].

2.1.3 Research Challenges

From the above characteristics, we have the following research chal-
lenges in WSANs [29].

1. Sensor-Actuator Coordination: Single or multiple actuators can
receive the information from sensors about the sensed phe-
nomenon. Single-Actuator (SA) or Multiple-Actuator (MA)
should be investigated to ensure synchronization in the report-
ing time of the sensed data and the communication pattern is
appropriate for given applications.

2. Coordination among Actuators: A communication model should
be provide among the actuators for efficient data transmission.
Also, algorithms are needed to coordinate and assign task to
the actuators.

3. Transport Layer: The transport protocol should support both
the reliability and real-time requirements.

4. Routing Layer: Cluster-based architecture with an actuator as
clusterhead may be considered. The routing of data should be
adaptive to the mobility of actuators. Also, it should also sup-
port the real-time and reliability requirements.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 23

5. Medium Access Control: Effective MAC protocol is required
to transmit the event information from large number of sensors
to actuators and among the actuators. They should satisfy the
real-time constraint on computation and communication.

6. Cross-Layering: Cross-laying can be considered to integrate
the current layered protocol designs. The new approach is ex-
pected to enhance the performance and flexibility for WSANs
due to constraints of low energy consumption and low latency.

2.2 Communication and Coordination Framework

in WSAN

Although a number of protocols are proposed for WSN, they may
not work well when applying directly to WSAN. There are addi-
tional considerations on the heterogeneous characteristics, network
structure, and different operations among the sensors and actuators.
Particularly, the sensor-to-actuator communications and actuator-to-
actuator communications are the unique features of WSAN in com-
parison with WSN. Several investigations have been done on explor-
ing the heterogeneous sensor networks [90, 126], but they do not
cope with the special features and ways of operations in WSAN. For
WSAN, Hu et al [58] propose an anycast communication paradigm.
It constructs an anycast tree rooted at each event source and up-
dates the tree dynamically according to the join and leave of the
sinks. Their approach discovers the routes by flooding of the inter-
est from the sinks. Also, E. Cayirci et al [16] propose a power-aware
many-to-many routing protocol. Actuators register the types of the
data that they are interested by broadcasting a task registration mes-
sage. Then, the sensors build their routing tables accordingly. In
this scheme, the sensed data generated by any sensor node are for-
warded to every actuator that is interested in that type of data, which

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

may produce a lot of network traffic. Moreover, both approaches
overlook the coordination among the sensors and actuators, which
can be improved to increase the efficiency of event reporting and
reaction. Furthermore, Melodia et al. [89] propose a distributed co-
ordination framework for wireless and actuator networks based on
an event-driven clustering paradigm. All sensors in the event area
forward their readings to the appropriate actors by the data aggrega-
tion trees. Their work assumes immobile actuators that can act on
a limited area defined by their action range, and provides actuator-
actuator coordination to split the event area among different actua-
tors. Our work shares the similar event-driven hypothesis, but we
propose an event-reporting algorithm which divides the event area
into pieces of maps and transmits the sensed data with special order-
ing to reduce the response time. Moreover, our actuator coordination
algorithm can support mobile actuators under sparse deployment.
Apart from the above, various papers discuss the research challenges
and work on diverse topics in WSAN. Dinh et al. [29] review the re-
cent research achievements and open research issues, and evaluate
the performance of three popular ad-hoc network routing protocols
in handling actuator-to-actuator communications. Durresi et al. [34]
present a geometric broadcast protocol for WSAN (GBSA). It is a
distributed algorithm where nodes make a local decision on whether
to transmit based on a geometric approach. M. Coates [21] addresses
the evaluation of causal relationships in WSAN, so that the expected
marginal response of a system can be estimated. Hu and Cao [56]
propose a two-level re-keying/re-routing scheme and a multiple-key
management scheme to provide security for WSAN. Ganeriwal et
al. [44] consider a network where nodes have traction ability. They
present methods for the network to be aware of its own integrity and
use actuators to repair the coverage loss in the area being monitored.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

2.3 Delay-Aware Reliable Event Reporting in WSAN

Wireless sensor networks (WSNs) have been extensively studied re-
cently; see surveys in [4, 38, 103]. Efficient and reliable event re-
porting is also an important issue in WSANs. Some related proto-
cols are proposed for wireless ad hoc networks [19, 113, 18, 62], but
they are impractical for large scale dynamic sensor networks. For
WSNs, He et al. [52] proposed a real-time communication proto-
col SPEED, which combines feedback control and non-deterministic
quality of service (QoS) aware geographic forwarding. Lu et al.
[83] described a packet scheduling policy, called Velocity Mono-
tonic Scheduling, which inherently accounts for both time and dis-
tance constraints. Felemban et al. [40] proposed Multi-path and
Multi-Speed Routing Protocol (MMSPEED) for probabilistic QoS
guarantee in WSNs. Multiple QoS levels are provided in the time-
liness domain by using different delivery speeds, while various re-
quirements are supported by probabilistic multipath forwarding in
the reliability domain. Huang et al. [15] proposed a spatiotemporal
multicast protocol, called “mobicast”, which provides reliable and
just-in-time message delivery to mobile delivery zones. Ergen et al.
[37] presented a routing algorithm that maximizes the sensor net-
work lifetime, and further incorporates delay guarantees into energy
efficient routing by limiting the length of paths from each sensor to
the collection node.

For reliable data transport with transmission failures, Aidemark
et al. [1] presented a framework for achieving node-level fault tol-
erance (NLFT) using time-redundant task scheduling in the nodes.
Ganesan et al. [45] described the use of multipath routing for energy-
efficient recovery from node failures in wireless sensor networks,
proposing and evaluating the classical node-disjoint multipath and
the braided multipath designs. Djukic et al. [30] used path diversi-
fication to provide QoS, which bounds on the end-to-end delay and
probability of packet loss (PPL) by transmitting packets with era-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

sure codes and multiple paths. S. Jain et al. [65] considered the
problem of routing in a delay tolerant network in the presence of
path failures. Jain proposed an approach that improves the proba-
bility of successful message delivery by applying a combination of
erasure coding and data replication. Wang et al. [118] studied direct
transmission and flooding on delay and fault tolerant mobile sensor
network (DFT-MSN) and introduced an optimized flooding scheme
that minimizes the transmission overhead of flooding. There are also
related works in the general embedded or delay-tolerant network set-
tings. For example, Khanna et al. [73] suggested that the failure of
any node in a path can be detected and circumvented using backup
routes. Assayad et al. [8] proposed a bi-criteria scheduling heuristic
in data-flow graphs to maximize the system’s reliability and mini-
mize the system’s run-time. Dubois-Ferriere et al. [32] introduced a
scheme for error-correction that exploits temporal and spatial diver-
sity through packet combining.

Our work is motivated by the above studies. The key difference
is that we focus on the interactions between sensors and actuators,
not uniform network nodes. In this context, additional considera-
tions are needed to address the heterogeneous characteristics and
the unique interactions within the network.

There have been studies exploring heterogenous sensor networks,
e.g., [108, 90, 126], but they do not cope with the special features of
actuators. For WSAN, Hu et al. [58] proposed an anycast communi-
cation paradigm. This constructs an anycast tree rooted at each event
source and updates the tree dynamically according as the sinks join
and leave the network. E. Cayirci et al. [16] offered a power-aware
many-to-many routing protocol. Actuators register the data types of
interest by broadcasting a task registration message; the sensors then
build their routing tables accordingly. Melodia et al. [89] further
presented a distributed coordination framework for WSANs based
on an event-driven clustering paradigm. All sensors in the event
area forward their readings to the appropriate actors by the data ag-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 27

gregation trees. While these works have explored the potentials of
WSANs, reliability issues, and in particular, the reliability of event
reporting from sensors to actuators, have yet to be addressed.

Transmission failures frequently occur in wireless communica-
tions [135, 120]. Dubois-Ferriere et al. [32] introduced a scheme for
error-correction that exploits temporal and spatial diversity through
packet combining. Ganesan et al. [45] described the use of mul-
tipath routing for energy-efficient recovery from node failures in
wireless sensor networks, which presents and evaluates the classi-
cal node-disjoint multipath and the braided multipath designs. S.
Jain et al. [65] considered the problem of routing in a delay tolerant
network in the presence of path failures. It improves the probabil-
ity of successful packet delivery by applying a combination of era-
sure coding and data replication. Wang et al. [118] investigated di-
rect transmission and flooding on the delay and fault tolerant mobile
sensor network (DFT-MSN), and introduced an optimized flooding
scheme that minimizes the transmission overhead of flooding.

Our work is motivated by the above studies. The key difference is
that we provide an effective protocol for latency-oriented fault toler-
ant data reporting, and focus on the timely and reliable interactions
between sensors and actuators. Although there have been studies ex-
ploring the heterogenous sensor networks, e.g.,[90, 126], as well as
wireless sensor-actuator networks [89], the reliability issues, in par-
ticular those for data transport from sensors to actuators, have yet to
be addressed.

2.4 Delay-Minimized Route Design in WSAN

Mobile elements have been proposed to carry data in wireless net-
works. Shah et al. [110] presented an architecture using moving
entities (data mules) to collect sensor data. There have also been
studies on mobile sinks with predictable and controllable movement

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 28

patterns [17, 69], and the optimal time schedule for locating sojourn
points [119]. Apart from the above, Zhao et al. [137] proposed a
message ferrying (MF) approach to address the network partition
problem in sparse ad hoc networks. Luo et al. [84] investigated a
joint mobility and routing algorithm with mobile relays to prolong
the lifetime of wireless sensor networks. Gu et al. [49] proposed
a partitioning-based algorithm to schedule the movement of mobile
element (ME) to avoid buffer overflow in sensors and reduce the
minimum required ME speed. Their solution was customized for an
“eyes” topology, where the events are concentrated at certain loca-
tions. Solutions for sensor networks with general uniform distribu-
tion were left to be explored. Bisnik et al. [12] studied the problem
of providing quality coverage using mobile sensors and analyzed the
effect of controlled mobility on the fraction of events captured. Their
focus is not on the route design problem. Recently, a route design
algorithm for multiple ferries is proposed by Zhang et al. [132].
It considers a delay tolerant network scenario with point-to-point
data transfer between sensors of uniform weights. Zhao et al. [136]
considered the Message Ferrying (MF) scheme which exploits con-
trolled mobility to transport data in delay-tolerant networks, where
end-to-end paths may not exist between nodes. Wu et al. [123] pro-
posed a logarithmic store-carry-forward routing (SCFR) protocol in
MANETs, which exploits node mobility to assist message delivery
especially in unconnected networks. Han et al. [50] addressed the
problem of deploying a minimum number of relay nodes to achieve
diverse levels of fault-tolerance in the context of heterogenous wire-
less sensor networks, where target nodes have different transmis-
sion radii. Zhang et al. [130] studied four fault-tolerant relay node
placement problems, discussed their computational complexity and
presented a polynomial time approximation algorithm with a small
approximation ratio.

Our work is motivated by the above investigations. The key dif-
ference is that we focus on adaptive and distributed route design

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 29

for multiple mobile components in WSANs, specifically, actuators
moving along independent routes. Our objective is to minimize the
average actuator inter-arrival time in dynamically changing environ-
ment. We also address issues regarding the non-unform weights of
the static sensors. This is different from the previous mobile element
scheduling problems where one seeks to minimize the waiting time
in a static and deterministic environment.

A closely related problem to RDP is the vehicle routing prob-
lem (VRP), which considers scheduling vehicles stationed at a cen-
tral facility to support customers with known demands, targeting at
minimizing the total distance travelled [20]. There are a number of
variations to VRP, including the Capacitated VRP (CPRV)[106] and
VRP with time windows (VRPTW)[79]. While these investigations
have studied the routes of mobile components, the unique features
of the actuators and the heterogeneous sensor networks have yet to
be explored.

Capacitated VRP (CPRV) fixes all vehicles to have uniform ca-
pacity, and aims at serving known customer demands for a single
commodity from a common depot at minimum transit cost [106].
The VRP with time windows (VRPTW) is the same problem that
VRP with the additional restriction that a time window is associated
with each customer, defining an interval wherein the customer has
to be supplied [77, 79]. While these works have studied the routes
of mobile components, the special features of actuators and the het-
erogeneous sensor networks have yet to be explored.

Different from the above, our problem do not fix the visiting time
to the sensors. Moreover, we target at differentiating the visiting
frequency among the sensors with different weights.

Our work is also motivated by the studies on robotics. Koenig
et al. [74] suggested a generic framework for auction-based multi-
robot routing and analyzes a variety of bidding rules for different
team objectives.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 30

2.5 Intruder Detection in Sinkhole Attack

Intrusion detection has long been an active research topic in the
Internet evolution [27]. Recently, many detection algorithms have
been proposed for wireless ad hoc networks as well. Most of them
assume uniform nodes and symmetric data communication patterns
between the nodes [25, 131, 60]. The one-to-many communication
pattern in wireless sensor networks however poses different chal-
lenges, in particular, the sinkhole attack. The weaker computation
and battery power of the sensor nodes further aggravates the prob-
lem. Pirzada et al. [102] applied a trust scheme to the routing pro-
tocol to detect sinkhole and wormhole attacks in a sensor network,
but it requires the nodes to operate in a promiscuous mode. Hu et al.
[59] introduced packet leash, which confides the maximum trans-
mission time and distance of each packet. It assumes that a node can
obtain a key for any other node and authentication is applied to each
data packet. On the contrary, our work does not require the nodes
to support promiscuous mode nor authenticate every data packet.
Our work is also motivated by the existing studies on filtering false
reports or avoiding jammed failed nodes in sensor networks. Specif-
ically, Doumit and Agrawal [31] showed a self-organized criticality
(SOC) and Hidden Markov models based algorithm, which can ef-
fectively detect data inconsistencies in sensor networks. Wood et
al. [121] proposed a mechanism for detecting and mapping jammed
regions. They described a protocol for identifying the surrounding
nodes of a jammer, thus avoiding the broken links and congested
nodes in the region. Staddon et al. [115] demonstrated that the topol-
ogy of the network could be efficiently conveyed to the base station,
allowing for quick tracing of failed nodes with moderate commu-
nication overhead. Ding et al. [28] further proposed a localized
algorithm for identifying faulty sensors. Ye et al. [128] presented
a Statistical En-route Filtering (SEF) mechanism for detecting and
dropping false reports. It integrates multiple authentication codes,

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 31

probabilistic verification, and data filtering to determine the truth-
fulness of each report. Our work differs from them in that we focus
on sinkhole attacks, where the intruder and multiple malicious nodes
actively disturb the one-to-many data communications or even inter-
fere the identification algorithm itself.

2 End of chapter.

Chapter 3

A Real-Time Communication

Framework for WSAN

3.1 Overview

Wireless sensor-actuator network (WSAN) comprises of a group of
distributed sensors and actuators that communicate through wireless
links. Sensors are small and static devices with limited power, com-
putation, and communication capabilities responsible for observing
the physical world. On the other hand, actuators are equipped with
richer resources, able to move and perform appropriate actions. Sen-
sors and actuators cooperate with each other: While sensors perform
sensing, actuators make decisions and react to the environment with
the right actions. WSAN can be applied in a wide range of applica-
tions, like environmental monitoring, battlefield surveillance, chem-
ical attack detection, intrusion detection, space missions, etc. Since
actuators perform actions in response to the sensed events, real-time
communications and quick reaction are necessary. To provide ef-
fective applications by WSAN, two major problems remain: How
to minimize the transmission delay from sensors to actuators, and
how to improve the coordination among the actuators for fast reac-

32

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN33

tion. To tackle these problems, we designed a real-time communi-
cation framework to support event detection, reporting, and actuator
coordination. This thesis explores the timely communication and
coordination problems among the sensors and actuators. Moreover,
we proposed two self-organized and distributed algorithms for event
reporting and actuator coordination. Some preliminary results are
presented to demonstrate the advantages of our approach.

3.2 Real-Time Communication Framework

As mentioned earlier, we consider a network which consists of a
large number of sensors and multiple actuators. Sensors are static
and resource-limited devices for monitoring the environments and
reporting events to the actuators. Actuators are mobile devices with
richer resources and longer-range transmission that enable them to
communicate with each other directly. We assume an event-driven
model in the framework, in which sensors only send application data
to the actuators when they discover an event. Upon receiving the
events, actuators process the data and decide upon which to perform
actions.

Many applications in WSAN require real-time response to the
physical world. A real-time communication framework, which pro-
vides efficient communication and coordination among sensors and
actuators, is essential to achieve a timely reaction. Such a frame-
work relies on a low latency communication in the event reporting
process from sensors to actuators, and a well-organized coordina-
tion algorithm that ensures a quick move to the event area by the
actuators.

Indeed, our real-time communication framework focuses on pro-
viding a low latency event-reporting algorithm for sensor-to-actuator
communication and an effective coordination algorithm among the
actuators. Figure 9.1 shows the workflow of our real-time commu-

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN34

nication framework. Firstly, a group of sensors detect an event in
the area where they are located. The sensors, which sensed the event
earlier, start clustering and aggregating the data from their surround-
ing nodes. The event area is divided into pieces of maps accord-
ing to the clusters formed. The maps and the corresponding data
are reported to their closest actuators separately. Also, the data are
transmitted in a special order, such that the most important data are
sent first, with the following details later. This ensures the actuators
can obtain a rough image on the event within a short time. Without
waiting for the arrival of a complete report, the actuators can already
start their coordination. They combine the maps they received and
determine how many and which actuators should perform the ac-
tions. The size of the event area, together with the distance between
the event area and the actuators, are significant factors in making a
decision. Intuitively, a larger event area requires more number of
actuators to perform the actions. Also, actuators located closer to
the event are normally a better choice for reaction as they can arrive
at the scene of event faster. Finally, the assigned actuators move to
the event area and perform appropriate actions with proper location
update mechanism. In this thesis, we mainly focus on the event-
reporting algorithm and the actuator coordination algorithm, but we
also provide a comprehensive view from event detection and report
regarding actuator coordination and reaction.

We assume that every sensor and actuator in the network knows
its location. This is quite natural as nodes should be able to recog-
nize the locations of the events in order to monitor, report, and react.
Their locations can be obtained by equipping with a GPS receiver
[87] or the position can be determined by some localization tech-
niques [57, 109, 51]. Our framework also adopt the geographical-
based protocols for routing as they scale up well and can adapt to
the location changes of the actuators easily. In geographical-based
routing, locations of nodes are exploited to route data in the network
[80, 125]. A routing protocol can control certain system parame-

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN35

Detection of an event

(sensors)

Report of the event

(sensor-to-sensor, then

 sensor-to-actuator)

Actuator coordination

(actuator-to-actuator)

Reaction to the event

(actuators)

Figure 3.1: Workflow of the framework.

ters in order to adapt to the current network conditions as well as
the available energy levels. For example, the transmission delay can
be considered when a node is selecting a neighbor that the message
will be forwarded to [52]. Finally, we impose a virtual grid struc-
ture on the network, so a simplified coordinate representation can
be applied to ease the formation and combination of the pieces of
maps during event reporting and actuator coordination. Although
the network area can be represented by grids of equal size, the ini-
tial (x,y) coordinate system is still employed as the basic scheme in
our framework.

For the ease of exposition, in Table 9.1, we list the major nota-
tions used throughout this thesis.

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN36

Table 3.1: List of Notation

v Sensor node
r Sensor that builds and reports a piece of

map in event area
ai Actuator
e Event ID
h Hops to the r in its cluster (depth)
vh Sensor node with depth h from r
nv Neighbors of node v
(xv, yv) Coordinates of node v
datav Data collected by node v
Sr Nodes on the map being reported by r
Br Boundary nodes on the map being re-

ported by r
meanvh

Mean from vh and its descendants with
depth h + 1

MEANSr Overall mean among Sr

C Center of the map Sr

lv Location of node v
dv Distance from node v to r
R(ai) Voronoi cell associated with ai

3.3 Event Detection and Report

3.3.1 Formation of Maps

Sensor actuator networks can be applied in event-oriented applica-
tions such as fire detection, gas leakage detection, intruder detection,
etc. In these systems, the sensors collect data from the environment
and report special events to the actuators. As we know, sensor net-
works contain a lot of redundant information. To reduce the network
traffic, the sensor will aggregate event reports from the neighboring
nodes. The sensors r, which detected an event the earliest, start the
formation of maps as shown in algorithm 14:

For building a map, node v floods the event detection messages

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN37

Algorithm 1 Formation of Map
for nodes r detected an event do

if data aggregation not yet started then
Broadcast DetectEvt(r, 0, e) msg. to nr;

end if
end for
for nodes v receive DetectEvt(r, 0, e) msg. from v′ do

if (h < maxhop) and (v.event and !v.reported) then
forward DetectEvt(v, h + 1, e) msg. to nv;

else
reply ReplyEvt(meets boundary) msg. to v′;

end if
end for
for nodes v receive ReplyEvtmsg. do

if msg.==meets boundary then
reply ReplyEvt(xv, yv, datav, e) msg. to parent;

else
concat own data and reply ReplyEvt msg. to parent;

end if
end for

to nodes less than maxhop from r. Only those nodes which have
detected an event and not yet reported forward the message to the
next hop. We represent the nodes belonging to the cluster formed
by node r as Sr. Multiple r can exist for the same event. They
are usually the nodes that detected the event earlier than the others,
which start constructing their own clusters. These clusters divide the
event area into pieces of maps, as shown in Figure 9.2. Each map
will be reported by one sensor r to one actuator. Br is the boundary
nodes on the map of Sr, where Br ⊆ Sr. Nodes in Br are either
maxhop hops from node r, or located on the boundary between two
maps. Nodes in Br stop forwarding the DetectEvt message and
reply to the previous node with their coordinates, data value, and the
event ID. The event ID may include the type of the event and the
event discovery time, which is determined by r.

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN38

Br

Sr

r

Event

Source

Figure 3.2: Pieces of maps formed in an event.

3.3.2 Data Aggregation

Each piece of map can be represented by a tree structure with the
sensor r as the root (Figure 9.3). When a node receives the replies
from its descendent nodes, it concatenates its own reply and for-
wards them to the previous hop. Nodes with even number of depth
h concatenate the reply with its own coordinates and sensed data,
while nodes with odd number of depth h aggregate the data from
their immediate descendants before forwarding them. Nodes with
odd number of depth calculate the mean from the data values sensed
by themselves and their descendants with the depth h+1 (Algorithm
15). The following equation shows how meanvh

can be calculated
by node vh.

Let h be no. of hops from sensor r,
vh be the node in depth h,
datavh

be the data collected by node vh,
datavhj

be the data collected by the jth descendent of vh.

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN39

…

…

…

…

…

…

r

h=1

h=2

h=3

h=4

h=5

…...…

Figure 3.3: Tree representation of nodes on the map Sr.

meanvh
= (

cvh∑
j=1

datavhj
+ datavh

)/(cvh
+ 1), (3.1)

where cvh
is the no. of immediate descendants of vh.

Finally, the root sensor r collects all the coordinates and sensed
data from the nodes in Sr. It is responsible for reporting this event
to its closest actuator. The actuator, which receives this event re-
port, is not necessary the one to perform the actions. At the same
time, other actuators may receive information for the same event
from other pieces of maps as well. All the informed actuators then
coordinate and decide the reaction together. To speed up the coor-
dination, sensor r divides the data on its map into different layers
according to its importance. For example, the event type, location,
and time are the basic information for starting actuator coordination,
so they should be transmitted first.

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN40

Algorithm 2 Data Aggregation
for nodes vh ∈ Sr receive ReplyEvt msg. do

if h == odd then
gather all data from its descendants vhj in h + 1;
meanvh

= (
∑cvh

j=1 datavhj
+ datavh

)/(cvh
+ 1);

remove datavhj
from ReplyEvt msg.;

concat meanvh
, xvh

, yvh
, e to ReplyEvt msg.;

forward ReplyEvt msg. to parent in depth h− 1 ;
else

concat xvh
, yvh

, datavh
, e to ReplyEvt msg.;

forward ReplyEvt msg. to parent in depth h− 1;
end if

end for

3.3.3 Layered Data Transmission

In our work, the data are divided into the base layer and the refine-
ment layer. The base layer contains the type of event, the time when
the event is first detected, the location of the map, and the mean
value of the collected data. The mean gives the actuator a general
idea on the condition of the map. It can be calculated by r with the
following equation.

MEANSr
= (

Nh=odd∑

i=1

meani ∗ (ci + 1))/

Nh=odd∑

i=1

(ci + 1), (3.2)

where i refer to all nodes with odd no. of depth in the Sr.
As mentioned before, virtual grids are imposed on the network

area, so the location of map can be simplified as follows:
Let a × b be the size of the virtual grid, locations (xi, yi) of

each node i in Br can be represented by (x′i, y
′
i) in a grid coordi-

nate, where (x′i, y
′
i) = (xi/a, yi/b). After collecting all (x′, y′) of Br

and removing the redundant coordinates, a set of grid coordinates
representing the location of the map Sr is obtained.

The refinement layer contains all the means calculated by nodes

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN41

with odd number of depth and their corresponding locations. These
values are transmitted in a special order based on its distance from
the centre C on the map Sr. < meandi

, xdi
, ydi

> represents the
mean and coordinates of a node i with distance di from C, where
‖li − lC‖ = di.

The sensor r first forwards the data in the base layer, and then
the refinement layer, as shown in Figure 4. It sends refinement
layer with the following sequence, given dmax = Max‖lj − lC‖
for ∀j ∈ Sr:

< mean0, x0, x0 >: data from the node located at C

< meandmax
, xdmax

, ydmax
>: data from the node with distance

dmax at C

< meandmax/2
, xdmax/2

, ydmax/2
>: data from the node with dis-

tance dmax/2 at C

< meandmax/4
, xdmax/4

, ydmax/4
>: ...

< meandmax∗3/4
, xdmax∗3/4

, ydmax∗3/4
>: ...

......

By the above sequence, the actuators achieve the event reporting
gradually with more important information first. This allows them to
start the actuator coordination much faster. They can then determine
how many and which actuator(s) should perform the action as soon
as possible, while finer information arriving later can help the plan-
ning of detailed action strategy. We adopt a location-based routing
protocol with the consideration of transmission delay [4] for event
reporting. More research work can be done in the future for finding

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN42

Figure 3.4: Base layer and refinement layer.

the optimal actuator and path with minimum delay.

3.4 Actuator Coordination and Reaction

We present the algorithms for the combination of maps on the event
area, actuator coordination, and location update for the actuators in
this Section.

3.4.1 Combination of Maps

After an actuator receives the data in the base layer from the sen-
sor r, it gets one piece of map in the event area. It then combines
multiple maps if it receives more than one report on same type of
event happening in the same area within time period te. Moreover, it
will start communicating with other actuators located closely to the
event area as well. They exchange information for combining their
maps and approximating the size of the event as shown in Figure 5
and Algorithm 3. The coordination among the actuators starts before
the arrival of the data in the refinement layer; therefore, it brings a
quicker response from actuators.

The actuators get a general idea on the event location by find-
ing the xmax, xmin, ymax, and ymin of the maps. They can also re-

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN43

a1

a2

A grid with

size axb
a

b

Figure 3.5: Combination of maps.

organize the event area by dividing the combined map into different
rectangles. They can represent the event area by < xl, yl, xr, yr >,
where xl, yl, xr, yr represent the x− and y− coordinates of the grids
in lower-left and upper-right corners of a piece of rectangular map.

Next, the actuators involved can determine how many and which
of them will perform the appropriate actions. For example, actua-
tors located closer to the event should have higher priority to react.
We assume the actuators possess the same speed for moving and re-
acting to the same event for simple analysis. Since a larger event
should be assigned with more actuators to response, we estimate the
number of actuators N as A/s, where s is the approximate area size
to be handled by one actuator. Let Area be the size of the event
area, mi be the time actuator i takes to arrive at the attack area, and
w be the rate of performing appropriate actions by actuators, then
the total time T required for accomplishing the appropriate actions

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN44

Algorithm 3 Data Aggregation
for each actuator a on event e do

if received multiple Sr then
Gather the Br in grid coordinates from all Sr;
Remove the redundant Br;
Remove the connected Br;
Store the remaining Br in Ba;

end if
Exchange the Ba with other actuators;
Remove the redundant Ba;
Remove the connected Ba;
Estimate the Ba by finding lower-left and upper-right grids < xmin, ymin > and
< xmax, ymax >;

end for

is calculated by:

w ∗
N∑

i=1

(T −ma) = Area, (3.3)

where N = Area/s.
During the coordination, the actuators can obtain more details

of the event when the data in the refinement layer arrives. The re-
finement layer contains additional information for analysis, such as
where the event source locates and the seriousness of the event. This
may help the actuator plan an appropriate action sequence or the
proper strategy in responding to the event.

3.4.2 Location Update

Since the actuators will move when they carry out appropriate ac-
tions, their locations should be updated for the sensors in the cor-
responding areas. An actuator will broadcast messages about its
departure and arrival to the surrounding sensors. The sensors will
then determine their potential actuator again. The process is shown
in Figure 9.7.

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN45

Figure 3.6: Leave of actuator a1.

We assume that the sensors always report the event to their closest
actuators. Let A = {a1, a2, . . . , an} be the set of actuators in the
network with their various location vectors, i.e. li 6= lj,∀i 6= j . The
region R(ai) is called the Voronoi cell associated with ai, where

R(ai) = {l|(‖l − li‖ ≤ ‖l − lj‖),∀i 6= j} (3.4)

Nodes in R(a1) should be informed for the departure of a1, so
they will look for another actuator. Transmission range Rt is re-
quired for broadcasting the departure message to all nodes being
affected.

Let Na1 be set of neighboring actuators of a1,

Rt = max{(lai
− la+1)/2},∀ai ∈ Na1. (3.5)

Nodes which are located in R(a1) and received a1’s departure

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN46

message will look for another actuator nearby. They will broadcast
messages to neighbors for requesting the locations of the nearby ac-
tuators. Nodes located on the boundary of R(a1) will reply with the
locations of their closest actuators. This information will be prop-
agated hop-by-hop to the nodes in R(a1). Each of them can then
choose the closest actuator as its new actuator for event reporting.
Similarly, the actuator will broadcast its arrival and its new loca-
tion to the surrounding sensors when it arrives at another place after
event reaction. The affected sensors will then update their records
of actuators.

3.5 Summary

In this thesis, we present a real-time communication framework for
wireless sensor-actuator networks. It provides an efficient event-
reporting algorithm, which reduces the network traffic and mini-
mizes the transmission delay by dividing the event area into smaller
pieces of maps. The data are aggregated and further divided into
different layers according to their importance. It is then transmitted
to the closest actuator in the order of significance. This approach
enables the actuators to start coordination without waiting for the
arrival of the complete event information. Multiple actuators can
combine their pieces of maps and decide on the appropriate actu-
ator(s) to perform the actions as soon as possible. The assigned
actuators will broadcast their move to the surrounding nodes, so the
affected sensors can update the actuator information dynamically for
future reporting. We also consider the heterogeneous characteristics
and functionalities of sensors and actuators, and offer a distributed,
self-organized, and comprehensive solution for real-time communi-
cations in WSAN. Our future work will focus on formalizing the
current approach, providing performance analysis, and evaluating
the solution by experiments. Moreover, we are interested in enhanc-

CHAPTER 3. A REAL-TIME COMMUNICATION FRAMEWORK FOR WSAN47

ing the efficiency and reliability of the current approach.

2 End of chapter.

Chapter 4

Delay-Aware Reliable Event

Reporting

4.1 Overview

WSANs greatly enhance the existing wireless sensor network archi-
tecture by introducing powerful and possibly even mobile actuators.
The actuators work with the sensor nodes, but can perform much
richer application-specific actions. To act responsively and accu-
rately, an efficient and reliable reporting scheme is crucial for the
sensors to inform the actuators about the environmental events.

In this chapter, we consider the transmission delay from the sen-
sors to the actuators. We propose a general reliability-centric frame-
work for event reporting in WSANs. We point out that the reliabil-
ity in such a real-time system depends not only on the accuracy, but
also the importance and freshness of the reported data. Our design
follows this argument and seamlessly integrates three key modules
that process the event data, namely, an efficient and fault-tolerant
event data aggregation algorithm, a delay-aware data transmission
protocol, and an adaptive actuator allocation algorithm for unevenly
distributed events. Our transmission protocol adopts smart prior-

48

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 49

ity scheduling that differentiates event data of non-uniform impor-
tance. We evaluate our framework through extensive simulations;
the results demonstrate that it achieves desirable reliability with min-
imized delay.

4.2 Network Model and Objective

In this section, we present a WSAN model and list our design ob-
jectives of the reliable event reporting framework.

4.2.1 Network Model

We consider a wireless sensor-actuator network (WSAN) that con-
sists of a collection of sensor nodes s and actuator nodes a. The
field covered by this network is divided into virtual blocks for event
monitoring, as illustrated in Figure 9.1. We assume that the sensors
and actuators are aware of their locations, and hence, the associated
grids. The location information can be obtained either through GPS
[87] or various localization techniques [57, 109, 51, 48].

Each sensor is responsible for collecting event data in its asso-
ciated block. Since malfunctioned sensors may give inconsistent
readings, the data in the same block will be aggregated to form a
consistent mean value before reporting. A subset of the sensors in
the field, referred to as reporting nodes, v, are responsible for for-
warding the aggregated event data to the actuators for further ac-
tions. As we will show later, the aggregation occurs in a distributed
manner, along with the data flow toward the reporting node v. Also
note that the communications from the sensors to the actuators fol-
low an anycast paradigm, that is, event reporting is successful if any
of the actuators receives the report.

We focus on the reliable event data transmission from the sensors
to the actuators. The corresponding actions that the actuators should

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 50

perform are out of the scope of this chapter, and are really appli-
cation specific. It is however worth noting that, for most of such
applications, strict reliability as in TCP is often not necessary and
even impossible given the errors/distortions arising in aggregation
and transmission; on the other hand, timely delivery is much more
important, as it not only enables shorter response times for the ac-
tuators, but also implies more accurate decisions since the data are
fresher.

We thus propose a reliability index, which measures the prob-
ability that the event data are aggregated and received accurately
within pre-defined latency bounds. Since the events may have dif-
ferent importance, depending on their types, urgency, and serious-
ness, our index and reporting framework also accommodates such
differences. To realize this, each sensor in our framework maintains
a priority queue, and, during transmission, important event data are
scheduled with higher priorities. Beyond this differentiation in in-
dividual nodes, the queue utilization also serves as a criterion for
next-hop selection in routing toward actuators.

4.2.2 Design Objective

We now give a formal description of the system parameters, and our
objective is to maximize the overall reliability index, R, across all
the events, as follows:

System Parameters
e : Event
qe : Data report of event e

Qe : Set of data reports of event e that satisfy the end-to-end la-
tency constraint

Imp(e): Importance of event e

Be: Latency bound for sensor-actuator reporting of event e

Dqe
: End-to-end delay of data report qe

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 51

Figure 4.1: An illustration of the WSAN model and event reporting from sensors
to actuators.

Ne: Number of data reports for event e
f : Probability of failures in data aggregation

Objective
Maximize

R =
∑

∀e
(

Imp(e)∑
∀e Imp(e)

∗ re), (4.1)

where re = |Qe|(1−f)
Ne

.

Subject to
Dqe

≤ Be (4.2)

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 52

Clearly, the overall reliability of the system, R, depends on the
importance of the events and their respective reliability, re. The lat-
ter further depends on the reports reaching an actuator within the
delay bound and without failure in aggregation. Aggregation failure
happens only if malfunctioned sensors dominate a block.

4.3 The Reliable Event Reporting Framework

Our framework addresses the whole process for event reporting, and
integrates three generic modules to achieve the above reliability ob-
jective. Specifically, when an event (e.g., a fire) occurs, the sensors
located close to the event will detect it. After aggregation, which
removes redundancy and inconsistent readings, the reporting nodes
will forward the reports to the actuators. Such forwarding is delay-
and importance-aware, implemented through prioritized scheduling
and routing in each sensor. It is further enhanced to cope with trans-
mission failures by an adaptive replication algorithm. We also pro-
vide an actuator allocation module that determines the locations of
the actuators. It ensures a balanced and delay-minimized allocation
of actuators to process the unevenly distributed events in the net-
work.

Figure 9.2 illustrates the workflow of our framework. We now
offer detailed descriptions of the three modules.

4.3.1 Grid-Based Data Aggregation

In a densely deployed sensor network, multiple sensors may sense
the same event with similar readings. Hence, it is preferable to ag-
gregate the data before reporting to the actuators. Our grid-based
aggregation algorithm works as follows (see Figure 9.3):

For each block, there is an aggregating node that first collects
the event data, <x1, x2, ..., xn>, and finds their median med. It will

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 53

Figure 4.2: Workflow of the framework.

compare each data xi with med and filter out those with a signifi-
cant deviation (e.g., greater than a predefined threshold ∆d). These
data could be from malfunctioned sensors, which will then be black-
listed. Then, the aggregating node will calculate the mean value xg

from the remaining data in block g (Algorithm 1). We consider the
aggregated data to be reliable if more than half of the sensors in the
block are normal. The reliability for the aggregated data from block
g thus can be evaluated as

1− fg = 1−
Nx∑

i=dNx/2e

(
Nx

i

)
(fs)

i(1− fs)
Nx−i,

where fg is the failure probability of block g on data aggregation, Nx

is the number of nodes in block g, and fs is the fraction of sensors
that are malfunctioned.

The aggregating node may serve as the reporting node to for-
ward the aggregated data to actuators. The aggregation, however,
can be easily extended to multiple levels, where a reporting node

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 54

Figure 4.3: Grid-based data aggregation.

is responsible for further collecting and aggregating the data from
the aggregating nodes in surrounding blocks, as shown in v (Fig-
ure 9.3). For the 2-level case, each sensor independently decides
whether it will serve as a reporting node according to probability
pv. Here, pv = 1

Ng∗Nx
, where Ng is the number of data reports to

be transmitted by a reporting node. Notice that each block has only
one summarized mean data value, so Ng is also equal to the number
of blocks to be reported by one reporting node. Other bidding al-
gorithms for reporting nodes selection could be used as well in our
framework, e.g., those in [76].

4.3.2 Priority-Based Event Reporting

The routing and transmission protocol for event reporting from the
reporting nodes to the actuators is the core module in our framework.

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 55

Algorithm 4 Data Aggregation
Define: xg as aggregated data mean of block g;
for each sensor s receive data xi do

if multiple xi ∈ g and s is the aggregating node then
find the median med among data <x1, x2, ..., xn>;
for each data xi ∈ g do

if xi - med > ∆d then
blacklist node i;

end if
end for
xg = mean of the un-blacklisted data xi ∈ g;

end if
end for

The key design objective here is to maximize the number of reports
reaching the destination within their latency bound, and, for different
event types, to give preference to important events. To this end, we
adopt a priority queue in each sensor, which plays two important
roles: 1) prioritized scheduling to speed up important event data
transmission; and 2) queue utilization as an index for route selection
to meet the latency bounds.

In our preemptive priority queue, the packets for the event data
are placed according to their data importance, and each priority is
served in a first-in-first-out (FIFO) discipline. Since a light-weighted
sensor network with few event occurrences seldom suffers from ex-
cessive transmission delays, we focus on a network with frequent
event occurrences. In such a network, the queuing delay can be the
dominating factor over the processing and propagation delays.

The queueing delay of the highest priority queue is dq1
= R +

SNq1
, where R = 1

2

∑K
k=1 λkS2 is the mean residual service time in

the node, Nq1
is the mean number of packets in the first queue, K

is the number of priority queues, λk is the arrival rate of the packets
in priority queue k, and S and S2 are the expectation and second
moment of the service time of the sensor. We assume the packet
arrival is Poisson. S can be obtained in each individual sensor by
observing the time it takes to serve a packet.

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 56

By Little’s theorem, Nq1
= λ1dq1

, and the load of priority k is
ρk = λkS, hence the waiting time of a packet in the first priority
queue is:

dq1
=

R

1− ρ1
.

Similarly, the waiting time of a packet in the second priority
queue is:

dq2
= R + SNq1

+ SNq2
+ Sλ1dq2

=
R + ρ1dq1

1− ρ1 − ρ2
.

The mean waiting time dqk
of a packet in the kth priority queue

is:

dqk
=

R

(1− ρ1 − ...− ρk−1)(1− ρ1 − ...− ρk)
.

Sensors periodically exchange control information with neigh-
boring nodes through beacon messages or piggyback messages. A
control message contains such information as waiting time and rate
to the actuators. When routing the event data packets, a sensor
should not select a next hop that is busy in forwarding important
data. On the contrary, it selects a next hop that has a smaller queue-
ing time for the corresponding priority, or it may select a next hop
that it can preempt the data packets with lower importance.

More formally, consider node i that receives a new event data
datae. Given the control message it has received from neighbor j,
node i can obtain <a, S, λhigh, λlow>, where a is the target actuator,
S is the expected service time of node j, λhigh =

∑
∀k,imp(datak)≥imp(datae) λk

is the sum of all λk of the data that are equal or more important than
datae, and λlow =

∑
∀k,imp(datak)<imp(datae) λk is the sum of all λk of

the data that are less important than datae.
Node i needs to ensure that the end-to-end latency for datae is

no more than the latency bound Be. To this end, it first estimates

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 57

the advancement hi,j towards the actuator a from i to j, and then the
maximum hop-to-hop delay from i to j, delayi,j:

hi,j =
‖ a, i ‖ − ‖ a, j ‖

‖ a, i ‖ .

So,
delayi,j ≤ Be ∗ hi,j.

Since delayi,j = dq+dtran+dprop+dproc, the maximum queueing
delay dqmax

is:

dqmax
= Be ∗ hi,j − (dtran + dprop + dproc).

Only neighbors with dqmax
> 0 will be considered as the next hop;

otherwise the latency bound cannot be met. Among these candi-
dates, node i starts inspecting the neighbors with both λlow = 0 and
λhigh = 0, followed by the remaining neighbors. Here, λlow = 0 im-
plies that it is not forwarding any event data with importance lower
than that considering by node i; if node i forwards the data to this
node, it will not affect the transmission time for the existing packets
in that node; Similarly, λhigh = 0 means that it is not transmitting
any data with higher importance, so the data from node i, if for-
warded, can be served with the highest priority. For each of the
candidates mentioned above, node i calculates the maximum data
rate λi that it can forward while satisfying the latency bound:

dqmax
>

R

(1− λhighS)(1− λhighS − ρi)
,

and

ρi,j < 1− λhighS − R

(1− λhighS)dqmax

,

where ρi,j = λi,jS is the maximum affordable load of j for handling

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 58

data from i on event e.
Then the event data packets are forwarded to the neighbor with

the highest hi,j and satisfactory λi,j, which is the closest to the desti-
nation with enough capacity for transmission. The affordable packet
arrival rate λi,j is satisfactory when it is greater than the data rate re-
ceived by i. Each intermediate node updates the latency bound Be

before forwarding the packet to the next hop, according to this equa-
tion:

Be = Be − (tdepart − tarrive)− dtran − dprop,

where (tdepart − tarrive) is the elapse time of the packet in a node,
dtran can be computed using the transmission rate and the length of
the frame containing the packets, and dprop is the propagation time,
which is in the order of several microseconds in wireless transmis-
sion.

After the transmission starts, the sensor will update its S and
the routes regularly to make sure the transmission can be completed
within the latency bound. If the latency bound is not met, the sensor
has to forward the packets to another route. In the worst case, if no
alternative can be found, the sensor may inform the previous node
to select another route in the future.

4.3.3 Actuator Allocation

Once an actuator receives the event report, it will perform application-
specific actions. Meanwhile, it will inform other actuators to sup-
press their potential actions in case some of them receive the same
report later. Such coordination can be achieved through direct one-
hop communications using another wireless channel, given that the
actuators are much more powerful than the regular nodes.

In this anycast paradigm, reducing the distances from the sensors
to their closest actuators clearly decreases the reporting delay. Since
the reports are triggered by events, we suggest that an actuator al-

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 59

location be performed according to the event occurrence frequency.
Intuitively, the locations with more events should be allocated more
actuators, so as to reduce the reporting distances. Such an alloca-
tion can be performed in the initial stage based on pre-estimated
frequencies, or, with mobile actuators, performed periodically to ac-
commodate event dynamics.

Algorithm 5 gives an allocation that balances the load of the actu-
ators as well as minimizing the anycast distances. In this algorithm,
first, the event frequency freqg of every block g will be summed.
Then, the field A will be equally divided into two, denoted by A1
and A2, according to the frequency distribution. That is, A1 and
A2 have the same event occurrence frequency and each is allocated
half of the actuators. The process repeats recursively for A1 and A2,
until each subfield contains only one actuator.

Figures 4.4 and 4.5 demonstrate our actuator allocation results
with 6 and 10 actuators, respectively. In practice, the algorithm can
be executed by one designated actuator after collecting the event
frequency information. It then informs the allocation result to other
actuators, which may then move to the corresponding locations.

Algorithm 5 Actuator Allocation
ActuatorAllocation(Field A, int ActuatorNum)
TotalFreq ← ∑

∀gi∈A freqgi ;
TmpFreq ← 0;
i ← 0;
while TmpFreq < TotalFreq/2 do

TmpFreq ← TmpFreq + freqgi ;
i + +;

end while
A1 ← ⋃i

k=0 gi;
A2 ← A−A1;
ActuatorAllocation(A1, ActuatorNum/2);
ActuatorAllocation(A2, ActuatorNum−ActuatorNum/2);
end ActuatorAllocation

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 60

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

Network Area

Event
Frequency

(Events/Day)

Actuator Locations

Figure 4.4: Actuator allocation with 6 actuators.

4.4 Performance Evaluation

We have conducted NS-2 [39] simulations for our proposed reli-
able event reporting framework. The simulation settings are mainly
drawn from [52], which are summarized in Table 8.1.

4.4.1 Reliability of Event Reporting

In the first set of experiments, we evaluate the reliability of our event
reporting algorithm. To this end, we generate 4 events randomly in
the network and vary their data rate from 10pkt/sec to 80pkt/sec.
Two of the four events are high priority events with importance 1.0
(events 2 and 4), while the two are low priority events with impor-
tance 0.3 (events 1 and 3). Each packet should be reported to the
actuator within the latency bound of 2 sec.

We first assume that all the reports are routed to the same actuator.
We fix the locations of the events and change the seed to generate

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 61

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Network Area

Event
Frequency

(Events/Day)

Actuator Locations

Figure 4.5: Actuator allocation with 10 actuators.

different sensor locations. Figure 4.6 shows the on-time reachabil-
ity of the four events with our priority-based event reporting with
event importance (PREI). For comparison, we also show the result
with the geographic routing protocol (GRP) [72, 42], where greedy
forwarding is employed and there is no differentiation regarding the
event types. We can see that our PREI achieves much higher on-time
reachability for the important events (event 2 and 4). The reach-
ability for the low important events however is lower than that in
GRP. This follows our design objective that important events will be
served with higher priority and better quality routes.

Note that, even if two different events are of the same importance,
their reachabilities could be different, depending on their locations.
This also happens when we compare the average delay. However,
our PREI generally performs better for the same event.

Figure 4.7 further shows the average delays in the PREI and GRP.
It is clear that the delay in PREI is generally lower than that in GRP.
This is because the PREI considers the workload of the neighbors

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 62

Table 4.1: Simulation Parameters

Network size 200m x 200m
No. of sensors 100
Node placement Uniform
Radio range 40m
MAC layer IEEE 802.11
Bandwidth 2Mbps
Packet size 32 bytes
No. of actuators 1-6
No. of concurrent events 3-10
Be 2sec

when selecting the route. An interesting observation is that, in PREI,
the average delays of the more important events are not necessarily
lower than the less important events; e.g., the delay for Event 1 is
lower than all others, even though its importance is not high. The
reason is that this event is closer to the actuator than the others. We
find the average per-hop delays are generally lower for important
events. Also note that the actuator allocation algorithm can mitigate
this delay, as will be examined later.

Finally, Figure 4.8 shows the overall reliability index, R, of the
two protocols. Again, it demonstrates that PREI outperforms GRP,
and the gap increases when the data rate becomes higher.

4.4.2 Actuator Allocation

In this experiment, we show the effectiveness of our actuator allo-
cation algorithm. To emulate the nonuniform event occurrences, we
divide the whole field into three, with the event occurrence proba-
bility 0.6, 0.333, and 0.067, respectively.

Our simulator generates events according to the above probability
with data rate 60pkt/s, and it allows different number of concurrent
events in the network as represented in the x-axis of Figures 4.9 and

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 63

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

O
n
-T
im

e
 R
e
a
c
h
a
b
ili
ty

Data Rate (pkt/s)

Event 1 Imp=0.3 (GRP)

Event 1 Imp=0.3 (PREI)

Event 2 Imp=1.0 (GRP)

Event 2 Imp=1.0 (PREI)

Event 3 Imp=0.3 (GRP)

Event 3 Imp=0.3 (PREI)

Event 4 Imp=1.0 (GRP)

Event 4 Imp=1.0 (PREI)

Figure 4.6: On-time reachability.

4.10.
Figure 4.9 gives the on-time reachability with different number

of concurrent events. We first focus on 2 and 3 actuators only, and
investigate the impact of using more actuators later. We can see
from Figure 4.9 that the reliability with actuator allocation outper-
forms that without allocation (i.e., random distribution). While the
more actuators there are, the better performance we can expect, we
notice that the effect of allocation is remarkable. In fact, the per-
formance of a 2-actuator system with allocation is very close to that
of 3-actuator without allocation, and even outperforms it when there
are few concurrent events.

Figure 4.10 shows the corresponding average delay. Not surpris-
ingly, 3-actuator with allocation achieves the lowest delay. Similar
to the on-time reachability, the delay for the 2-actuator with alloca-
tion is close to the case of 3-actuator without allocation. The results

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 64

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

A
v
e
ra
g
e
 D
e
la
y
 (
s
)

Data Rate (pkt/s)

Event 1 Imp=0.3 (GRP)

Event 1 Imp=0.3 (PREI)

Event 2 Imp=1.0 (GRP)

Event 2 Imp=1.0 (PREI)

Event 3 Imp=0.3 (GRP)

Event 3 Imp=0.3 (PREI)

Event 4 Imp=1.0 (GRP)

Event 4 Imp=1.0 (PREI)

Figure 4.7: Average delay.

suggest that actuator allocation is an effective tool for improving the
efficiency of event reporting.

To further investigate the impact of the number of actuators, we
fix the number of concurrent events at 10 and vary the number of ac-
tuators from 1 to 6. Figure 4.11 shows the on-time-reachability as a
function of the number of actuators with and without actuator alloca-
tion. Again, event reporting with actuator allocation achieves higher
on-time reachability than that without actuator allocation with the
same number of actuators. Intuitively, given more actuators, we can
generally expect better performance, even if they are randomly de-
ployed. This can be verified from the figure. We can see that the
on-time reachability monotonically increases with more actuators,
while the difference between the two schemes (with/without alloca-
tion) becomes smaller. Similar trends can also be found in Figure
4.12, which shows the average delay of event reporting as a function

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 65

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

O
v
e
ra
ll
R
e
lia
b
ili
ty

Data Rate (pkt/s)

GRP

PREI

Figure 4.8: Overall reliability.

of the number of actuators.

4.5 Summary

In this chapter, we focused on reliable event reporting from sensors
to actuators in a wireless sensor-actuator network (WSAN). We ar-
gued that the reliability in this context is closely related to the delay,
or the freshness of the events, and they should be jointly optimized.
We also suggested that the issue of non-uniform importance of the
events can be explored in the optimization. Following this argument,
we proposed a general delay- and importance-aware event reporting
framework. Our framework seamlessly integrates three key mod-
ules to maximize the reliability index: 1) A multi-level data aggre-
gation scheme, which is fault-tolerant with error-prone sensors; 2)

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 66

0

0.2

0.4

0.6

0.8

1

3 5 7 9

O
n
-T
im
e
 R
e
a
c
h
a
b
ili
ty

No. of Concurrent Events

2 Actuators with Actuator Allocation

2 Actuators without Actuator Allocation

3 Actuators with Actuator Allocation

3 Actuators without Actuator Allocation

Figure 4.9: On-time reachability with actuator allocation.

A priority-based transmission protocol (PREI), which accounts for
both the importance and delay requirements of the events; and 3) an
actuator allocation algorithm, which smartly distributes the actua-
tors to match the demands from the sensors.

Within this generic framework, we presented an optimized design
for each of the modules, and also discussed their interactions. We
also evaluated the performance of our framework through simula-
tions. The results demonstrated that our framework makes effective
use of the actuators, and can significantly enhance the reliability of
event reporting.

2 End of chapter.

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 67

0

0.05

0.1

0.15

0.2

3 5 7 9

A
v

e
ra

g
e

 D
e

la
y

 (
s

)

No. of Concurrent Events

2 Actuators with Actuator Allocation

2 Actuators without Actuator Allocation

3 Actuators with Actuator Allocation

3 Actuators without Actuator Allocation

Figure 4.10: Average delay with actuator allocation.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

O
n
-T
im

e
 R
e
a
c
h
a
b
ili
ty

No. of Actuators

With Actuator Allocation

Without Actuator Allocation

Figure 4.11: On-time reachability vs. no. of actuators.

CHAPTER 4. DELAY-AWARE RELIABLE EVENT REPORTING 68

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

A
v
e
ra
g
e
 D
e
la
y
 (
s
)

No. of Actuators

With Actuator Allocation

Without Actuator Allocation

Figure 4.12: Average delay vs. no. of actuators.

Chapter 5

Latency-Oriented Fault Tolerant

Transport Protocol

5.1 Overview

We considered the transmission delay on event reporting from sen-
sors to actuators in the previous chapter. We suggest that the unre-
liable multi-hop communications and congestion may cause exces-
sive delays. Then, we propose a delay-aware event reporting frame-
work to address the problem. Apart from the transmission delay, the
frequent sensor and link failures may lead to packets loss and un-
reliable data transmission. Thus, it is important to provide a fault
tolerant protocol to ensure efficient and reliable data transmission
from sensors to actuators.

In this chapter, we propose a latency-oriented fault tolerant data
transport protocol in WSANs. We argue that reliable data transport
in such a real-time system should resist to the transmission failures,
and should also consider the importance and freshness of the re-
ported data. We articulate this argument and provide a cross-layer
two-step data transport protocol for on-time and fault tolerant data
delivery from sensors to actuators. Our protocol adopts smart pri-

69

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL70

ority scheduling that differentiates the event data of non-uniform
importance. It balances the workload of sensors by checking their
queue utilization and copes with node and link failures by an adap-
tive replication algorithm. We evaluate our protocol through exten-
sive simulations, and the results demonstrate that it achieves the de-
sirable reliability for WSANs.

5.2 Network Model and Objective

In this section, we present a WSAN model and list our design ob-
jectives of the reliable data transport protocol.

5.2.1 Network Model

We consider a wireless sensor-actuator network that consists of a
collection of sensor nodes s and actuator nodes a, as illustrated in
Figure 9.1. We assume that the sensors and actuators are aware of
their locations. This information can be obtained either through GPS
[87] or various localization techniques [57, 109, 51].

All sensors are responsible for collecting event data. A subset
of the sensors in the field, referred to as reporting nodes, v, are re-
sponsible for forwarding the aggregated event data to the actuators
for further actions. The communications from the sensors to the
actuators follow an anycast paradigm; that is, an data transport is
successful if any of the actuators receives the report.

We focus on the reliable event data transmission from the sensors
to the actuators. The corresponding actions that the actuators should
perform are beyond the scope of this chapter, and is really appli-
cation specific. It is worth noting that, node and link failures may
cause errors or distortions in transmission and degrade the reliabil-
ity. Also, timely event data delivery not only enables short response
time for the actuators, but also implies more accurate decisions given

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL71

Actuator

Event

Reporting

node

Sensor

Data

aggregation

Event

reporting

Sensors that can

detect the event

Figure 5.1: An illustration of the WSAN model and data transport from sensors
to actuators.

the fresh data.

5.3 Design Objective

We consider a sensor-actuator network in which the sensors are re-
sponsible for collecting event data and a subset of them are responsi-
ble for forwarding the aggregated event data to the actuators for fur-
ther actions. The communications from the sensors to the actuators
follow an anycast paradigm; that is, a data transport is successful if
any of the actuators receives the report. Similar to other geographic
routing algorithms, the sensors and actuators are able to determine
their coordinates by means of a location system like GPS or rela-
tive positioning based on signal strength estimation [54]. Sensors

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL72

also exchange location information with neighbors by periodic bea-
coning [52, 41, 42]. In addition, they make use of the beacons for
estimating the workload of the neighbors in our protocol.

We propose a reliability index, which measures the probability
that the event data are transmitted to the actuator successfully within
a pre-defined latency bound. Each event also has an application-
specific importance level in between 0 and 1. An event with higher
importance is expected to achieve higher reliability. To realize this,
each sensor maintains a priority queue, and, during transmission,
important event data are scheduled with higher priorities. Moreover,
replication is applied adaptively depending on the event importance
and the link reliability to cope with transmission failures.

We give a formal description of the system parameters as shown
in Table 7.1. Our objective is to maximize the overall reliability in-
dex, R, across all the events, as follows:

Table 5.1: System Parameters

Event e
Data report of event e qe

Set of data reports of event e that reach the ac-
tuator within the latency constraint

Qe

Importance of event Imp(e)
Latency bound for sensor-actuator reporting of
event e

Be

End-to-end delay of data report qe Dqe

Number of data reports for event e Ne

Maximize

R =
∑

∀e
(
Imp(e)

σ
∗ re), (5.1)

where re = |Qe|
Ne

and σ =
∑

∀e Imp(e).

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL73

Subject to
Dqe

≤ Be. (5.2)

Clearly, the overall reliability of the system, R, depends on the
importance of the events and their respective reliability, re. The lat-
ter further depends on the reports reaching an actuator successfully
within the latency bound.

5.4 Latency-Oriented Fault Tolerant Data Transport

Protocol

Our latency-oriented fault tolerant (LOFT) protocol addresses the
problem of data transport from the event source to the actuator. It
seamlessly integrates modules across different layers in achieving
the above reliability objective. In this section, we first discuss the
latency-oriented and importance-aware transmission through prior-
itized scheduling and routing for each sensor. Then, we provide a
feedback algorithm to estimate the link qualities and determine the
replication factor adaptively in the presence of node and link fail-
ures. It ensures a balanced, latency-oriented, and fault tolerant data
transport process across different events in the network.

5.4.1 Estimating the Load of Neighbors

The key design objective here is to maximize the number of reports
reaching the destination within their latency bounds, and, for differ-
ent event types, to give preference to important events. Estimating
the load of the neighbors allows a packet to be forwarded to a next
hop with less queueing and transmission time. To this end, we adopt
a priority queue in each sensor, which plays two important roles:

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL74

1) prioritized scheduling to speed up important event data transmis-
sion; and 2) queue utilization as an index for route selection to meet
the latency bounds.

In our preemptive priority queue, packets for the event data are
placed according to their data importance, and each priority queue is
served in a first-in-first-out (FIFO) discipline. Our protocol is able
to handle a network with heavy traffic, in which queueing delay can
be a dominating factor over the processing and propagation delays.

Figure 9.2 shows how node i forwards packets to its neighbors j1,
j2, and j3. The geographical distances from j1, j2, and j3 to actuator
a are represented by ||j1, a||, ||j2, a||, and ||j3, a||, respectively. Only
the neighbors, which provide satisfactory advancement from i to a,
will be considered as the next hop. Furthermore, the queue utiliza-
tion of the neighbors is considered in route selection. For example,
the data e1 flowing into i has the highest priority, so it will be served
by the highest priority queue q1. Among all the neighbors of i, j3 is
selected as it provides e1 with the best service by an empty highest
priority queue q1.

The queueing delay of the highest priority queue is dq1
= R +

SNq1
, where R = 1

2

∑K
k=1 λkS2 is the mean residual service time

in the node, Nq1
is the mean number of packets in first queue, K is

the number of priority queues, λk is the arrival rate of the packets
in priority queue k, and S and S2 are respectively the expectation
and second moment of the service time of the sensor. We assume
the packet arrival is a Poisson process. S can be obtained in each
individual sensor by observing the time it takes to serve a packet.

More formally, consider node i that receives a new event data
datae. It obtains control packets from its neighbors j, 〈a, S, λhigh, λlow〉j,
where a is the target actuator, S is the expected service time of node
j, λhigh =

∑
∀k,Imp(datak)≥Imp(datae) λk is the sum of all arrival rates

λk of the data that are equal to or more important than datae, and
λlow =

∑
∀k,Imp(datak)<Imp(datae) λk is the sum of all λk of the data

that are less important than datae.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL75

2

1

3

q1

q2

q3

q1

q2

q3

q1

q2

q3

1

1,i jλ
2
,i jλ

3,i jλ

1
||
,
||

j
a

2
||
,
||

j
a

3

||
,
||

j
a

Maximum affordable

data arrival rate

Distance to a

,i jλ

|| , ||j a

Priority queue

1 Event data

Figure 5.2: Maximum affordable arrival rate from i to j.

Node i needs to ensure that the end-to-end latency for datae is
no more than the latency bound Be. To this end, it first estimates
the advancement hi,j towards the actuator a from i to j, and then the
maximum hop-to-hop delay from i to j, delayi,j. Note

hi,j =
‖ a, i ‖ − ‖ a, j ‖

‖ a, i ‖ .

So,
delayi,j ≤ Be ∗ hi,j.

Since delayi,j = dq+dtran+dprop+dproc, the maximum queueing
delay dqmax

is:

dqmax
= Be ∗ hi,j − (dtran + dprop + dproc).

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL76

Only neighbors with dqmax
> 0 will be considered as the next

hop; otherwise, the latency bound cannot be met. Among these can-
didates, node i starts inspecting the neighbors with both λlow = 0
and λhigh = 0, followed by the remaining neighbors. For each can-
didate above, node i calculates the maximum data rate λi that it can
forward while satisfying the latency bound:

dqmax
>

R

(1− λhighS)(1− λhighS − ρi,j)
,

and

ρi,j < 1− λhighS − R

(1− λhighS)dqmax

,

where ρi,j = λi,jS is the maximum affordable load of j for handling
data from i on event e.

Then the event data packets are forwarded to the neighbor with
the highest hi,j and satisfactory λi,j, which is the closest to the des-
tination with enough capacity for transmission. Each intermediate
node updates the latency bound Be before forwarding the packet to
the next hop.

5.4.2 Coping with Transmission Failures

As mentioned before, packets will be dropped if they expire before
reaching the actuators. Apart from that, data may be lost due to link
failures, such as link transmission errors, buffer overflow, or node
failures along the path. However, there exist multiple destinations
(actuators) and multiple paths for anycast data transport in WSANs.
Different levels of reliability can therefore be obtained based on the
requirements of various event data. We adopt adaptive packet repli-
cations to handle link failures and provide reliability in terms of the
success arrival of packets. In this section, we extend the above rout-

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL77

ing algorithm to cope with transmission failures in data transport.
For simplicity, we consider that the event reliability requirement

Rreq is proportional to its event importance. For example, an event
with important level of 0.8 will have the reliability requirement of
0.8. We define link loss rate Li,j as the packet loss rate from node
i to its next hop j, and path success rate Pj as the probability that a
packet from node j reaches the actuator (destination) successfully.
Instead of forwarding a packet to one next hop with the highest hi,j

and satisfactory λi,j, node i forwards the packet to multiple next
hops and decides the replication factor rf of packets adaptively.

Again, consider node i and its potential next hops j1, j2, and j3

in Figure 9.3. The observed link loss rate from i to j1, j2, and j3

are Li,j1, Li,j2, and Li,j3. Based on these link loss rates, the corre-
sponding path success rates Pj1, Pj2, and Pj3 from j1, j2, and j3 to
a are estimated. The allocation of packets from i to its neighbors
is proportional to their maximum affordable arrival rates λi,j1, λi,j2,
and λi,j3 to balance the load. After that, node i may check if the es-
timated path success rate can meet the event reliability requirement
Rreq. If not, it decides the replication factor rf to meet the require-
ment and forwards the replicated packets to the next hops.

We now discuss the above process in detail. First, node i selects
the top k neighbors with the highest hi,j and satisfactory λi,j, and
estimates their link loss rates Li,j. Each neighbor j periodically re-
ports the number of packets it received from node i, so that i can
calculate the loss rate Li,j with the number of packets it sent to j in
a particular time interval. Then, it can obtain the link loss rate by an
EWMA (Exponentially Weighted Moving Average) [82] approach
with its previous and current estimations of the link loss rate. Then,
i estimates the path success rate Pj from i to a via j as follow:

Pj = (1− Li,j)
1/hi,j .

Sensor i will allocate the packets to its neighbors according to

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL78

2

1

3

q1

q2

q3

q1

q2

q3

q1

q2

q3

1

1,i jλ

2,i jλ

3,i jλ

1jP

i,j1

i,j2

i,j3

2jP

3jP

f

i,j

j

Link loss rate

from i to j

Success rate

from j to a

Packet

Figure 5.3: Forwarding packets with replication factor rf=2.

their λi,j. The neighbors with higher λi,j will be allocated with more
code blocks. The proportion propj of packets to neighbor j is:

propj =
λi,j∑k

n=1 λi,n

.

The probability that the packet can be delivered successfully from
i to a by these k neighbors, Pi, can then be estimated as:

Pi =
k∑

j=1

(
λi,j∑k

n=1 λi,n

∗ Pj).

Then, node i determines the replication factor rf with the follow-
ing equation:

rf = ceil(Rreq/Pi).

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL79

The replication factor rf must be greater than Rreq/Pi, where
Rreq is initialized as the required event reliability, or the event im-
portance in our work, by the event source. Each of the neighbors
above will be allocated with proportion propj of packets from i.
The corresponding path success rate Pj will become the required
reliability Rreq of that particular path from j to the actuator.

Each node j, which received the packets, selects the next hop
m′ with the highest hj,m and satisfactory λj,m. Similarly, the path
success rate obtained must be greater than Rreq:

(1− Lj,m′)1/hj,m′ ≥ Rreq.

If the link loss rate from j to m′ satisfies the above equation,
packet will be forwarded to m′. Since the reliability of a path is
composed by a series of links on it:

(1− L1)(1− L2)(1− L3)...(1− Ln) > Rreq,

and

(1− L2)(1− L3)...(1− Ln) > Rreq/(1− L1),

where the L1, L2, ..., Ln are the packet loss rates of the links on the
path.

Node j updates the reliability Rreq and forwards it with the pack-
ets to the selected neighbor m′:

R′
req = Rreq/(1− Lj,m′).

In case that Lj,m′ does not satisfy the required reliability, node j

will look for the neighbor with the next highest hj,m and satisfactory
λj,m. The process is repeated until it goes through all the potential
neighbors with high hj,m and λj,m. If no single neighbor can provide
low enough link failure rate, j forwards packets to multiple neigh-
bors and decides the replication factor, as shown in node i.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL80

5.5 Evaluation

We have conducted simulations for our proposed reliable data trans-
port protocol in NS-2 network simulator [39]. The simulation set-
tings are mainly drawn from [52], which are summarized in Table
8.1. We consider a loss model in which packet loss occurs because
of poor channel quality [65]. Every link is characterized by a failure
probability, which is the probability that a packet is dropped during
the transmission to the next hop.

Table 5.2: Simulation Parameters

Network size 200m x 200m
No. of sensors 100
Node placement Uniform
Radio range 40m
MAC layer IEEE 802.11
Bandwidth 2 Mbps
Packet size 32 bytes
Control packet rate 1 pkt/s
Be 2 sec

We evaluate the event reliability, average delay of individual events,
and overall reliability obtained in our latency-oriented fault toler-
ant (LOFT) data transport protocol. Two events are generated ran-
domly in the network with the event importance 1.0 and 0.4, respec-
tively. Each packet should be reported to the actuator within the
latency bound of 2 sec. For comparison, we also show the results of
the priority-based event reporting with event importance approach
(PREI) [98], where priority-based forwarding is employed, but the
link failures are not considered. We repeat the experiments for 10
times by changing the random seed and show the average results.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL81

5.5.1 Protocol Performance with Varying Link Failure Proba-

bility

In this experiment, we fix the data rate at 15 pkt/s and vary the link
failure probability f . It means that there is a probability f for each
link to encounter transmission failure when forwarding a packet to
the next hop. Figure 5.4 shows that LOFT protocol achieves much
higher event reliability than PREI approach for both types of events.
The reliability of the more important event (event 1) is higher than
that of the less important event (event 2) in LOFT. This follows our
design objective that important events should be guaranteed with
higher reliability. On the contrary, the reliability of the two events
are similar in the PREI, though priority-based routing is applied. It
is because PREI has no mechanism to handle link failures, and hence
cannot provide any differentiation on the reliability among different
events.

Figure 5.5 further shows the average delay in LOFT and PREI.
PREI performs a bit better than LOFT when the link failure prob-
ability is low. This is because it always selects the next hop with
the lightest workload, while LOFT also estimates and considers the
link packet loss rates when selecting the route. However, it is clear
that the delay in LOFT is lower than that in PREI when the link fail-
ure probability increases. The reason is that replication is applied in
LOFT, so packets are routed through multiple paths. Intuitively, it
achieves a lower data delivery delay.

The overall reliability index, R, of the two protocols is shown in
Figure 5.6. It demonstrates that LOFT outperforms PREI, and the
gap increases when the link failure probability becomes higher.

5.5.2 Protocol Performance with Varying Data Rate

We further study the effect of data rates to the performance of our
protocol. We fix the link failure probability as 0.05 and vary the data

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL82

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

R
e
lia
b
ili
ty

Link Failure Probability

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.4: Event reliability with data rate 15pkt/s.

rates. Figure 5.7 shows that our LOFT protocol can achieve nearly
perfect reliability, while PREI can only achieve reliability close to
0.8. It also indicates that the reliability achieved is independent of
the data rates. Similarly, Figure 5.8 shows that LOFT achieves small
and comparable average delay with PREI. Note that, the average de-
lay of the less important event (event 2) in LOFT increases with the
data rates. It is because the traffic load of the network increases with
replication under a high data rate. The queuing and transmission
times may then become non-negligible for the low-priority packets.
Figure 5.9 again shows that the overall reliability of LOFT is higher
than that of PREI.

We now increase the link failure probability to 0.3 and repeat
the experiment. Figure 5.10 shows that our LOFT can still achieve
satisfactory reliability even when the link failure probability is high.
It is clear that the reliability in LOFT is much higher than that in
PREI.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL83

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra
g
e
 D
e
la
y
 (
s
)

Link Failure Probability

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.5: Average delay with data rate 15pkt/s.

Likewise, Figure 5.11 shows that LOFT achieves small and com-
parable average delay with PREI. Note that, the average delay with
low data rate is surprisingly higher than that with high data rate. We
believe that it is due to the inaccurate estimation on the workload and
packet loss rate of the neighbor when there is only a small number
of packets.

Again, the LOFT provides much higher overall reliability than
PREI, as shown in Figure 5.12. In comparison with Figure 5.9,
the reliability difference between the two protocols becomes larger
when the link failure probability increases.

5.5.3 Links with Different Failure Probability

In real networks, links usually have different failure rates. We gener-
ate different failure probability to the links in this experiment. Each
link in the network is assigned with a failure probability between 0

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL84

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

O
v
e
ra
ll
R
e
lia
b
ili
ty

Link Failure Probability

LOFT

PREI

Figure 5.6: Overall reliability with data rate 15pkt/s.

and 0.3 randomly. Figure 5.13 and Figure 5.14 demonstrate similar
results on the event reliability and average delay, with equal fail-
ure probability among the links. Finally, Figure 5.15 shows LOFT
achieves much higher overall reliability than PREI, which agrees
with the result in Figure 5.12.

5.5.4 Protocol Overhead

We discuss the overhead of the PREI and LOFT protocol here. There
are basically three types of overhead, including 1) location update
packets, 2) control packets for estimating the loads and link loss
rates of neighbors, and 3) replicated data packets for handling link
failures. Since the location update packets are inherited from tra-
ditional geographic routing protocols [52, 41, 42], we focus on the
remaining two types of overhead.

The control packets for estimating the load of neighbors are re-

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL85

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

R
e
lia
b
ili
ty

Data Rate (pkt/s)

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.7: Event reliability with link failure probability 0.05.

quired for both PREI and LOFT. LOFT further utilizes these control
packets for estimating the link loss rate of neighbors, so no extra
packets are required. In our experiment, the control packet rate is 1
pkt/s, which is relatively low in comparison with the data rate. Re-
garding the replicated data packets, we evaluate the data replication
factor in LOFT. Figure 5.16(a) shows that the replication factor is
around 2 when the link failure probability is between 0 and 0.3 with
data rate 15 pkt/s. The replication factor increases with the link fail-
ure probability to cope with the packet loss due to transmission fail-
ures. Similarly, Figure 5.16(b) also shows that the replication factor
is independent of the data rates. The above results indicate that our
protocol overhead is affordable in meeting the reliability objective
for latency-oriented and fault tolerant data transmission.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL86

0

0.0002

0.0004

0.0006

0.0008

0.001

5 10 15 20 25 30

A
v
e
ra
g
e
 D
e
la
y
 (
s
)

Data Rate (pkt/s)

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.8: Average delay with link failure probability 0.05.

5.6 Summary

In this chapter, we proposed a reliable data transport protocol in
WSANs. We considered that the system reliability in this context
is closely related to the delay and the resistance to link failures,
which should be jointly optimized. We also suggested that the non-
uniform importance of the event data can be explored in the opti-
mization procedure. Following these arguments, we proposed a gen-
eral latency-oriented fault tolerant data transport protocol. It adopts
smart priority scheduling and applies replication of packets adap-
tively in handling link failures. The protocol consists of two steps.
It first locates a list of neighbors that provide satisfactory advance-
ment to the actuator by checking their locations, and then estimates
their maximum affordable incoming data rates through analyzing
their priority queue utilization. To cope with transmission failures,
packet loss rates of the links are updated regularly. Packets are al-

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL87

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

O
v
e
ra
ll
R
e
lia
b
ili
ty

Data Rate (pkt/s)

LOFT

PREI

Figure 5.9: Overall reliability with link failure probability 0.05.

located to the next hops in proportion to their maximum affordable
data rates. Replication of packets is applied adaptively based on
the required data reliability and the estimated path success rates for
delivery. The performance of the proposed protocol has been exam-
ined through extensive simulations. The results demonstrated that
our protocol can significantly enhance the reliability for data trans-
port, while the average delay for high priority packets is minimized.

2 End of chapter.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL88

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

R
e
lia
b
ili
ty

Data Rate (pkt/s)

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.10: Event reliability with link failure probability 0.3.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

5 10 15 20 25 30

A
v
e
ra
g
e
 D
e
la
y
 (
s
)

Data Rate (pkt/s)

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.11: Average delay with link failure probability 0.3.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL89

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

O
v
e
ra
ll
R
e
lia
b
ili
ty

Data Rate (pkt/s)

LOFT

PREI

Figure 5.12: Overall reliability with link failure probability 0.3

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

R
e
lia
b
ili
ty

Data Rate (pkt/s)

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.13: Reliability with random link failure probability between 0 and 0.3.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL90

0

0.0002

0.0004

0.0006

0.0008

0.001

5 10 15 20 25 30

A
v
e
ra
g
e
 D
e
la
y
 (
s
)

Data Rate (pkt/s)

Event 1 Imp=1.0 (LOFT)

Event 2 Imp=0.4 (LOFT)

Event 1 Imp=1.0 (PREI)

Event 2 Imp=0.4 (PREI)

Figure 5.14: Average delay with random link failure probability between 0 and
0.3.

CHAPTER 5. LATENCY-ORIENTED FAULT TOLERANT TRANSPORT PROTOCOL91

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

O
v
e
ra
ll
R
e
lia
b
ili
ty

Data Rate (pkt/s)

LOFT

PREI

Figure 5.15: Overall reliability with random link failure probability between 0
and 0.3.

1

2

3

4

0.1 0.3 0.5 0.7 0.9

R
e
p
lic
a
ti
o
n
 F
a
c
to
r

Link Failure Probability

LOFT

0

0.5

1

1.5

2

5 10 15 20 25 30

R
e
p
lic
a
ti
o
n
 F
a
c
to
r

Data Rate (pkt/s)

LOFT

(a) (b)

Figure 5.16: Replication factor with (a) data rate 15 pkt/s (b) link failure proba-
bility 0.05.

Chapter 6

Power-Controlled Real-Time Data

Transport Protocol

6.1 Overview

In the previous chapters, we discussed delay-aware and reliable event
reporting from sensors to actuators. In this chapter, we consider also
the energy efficiency in data transmission. We specifically tailor the
data transport protocol design problem according to the features of
WSANs and propose POWER-SPEED, a real-time data transport
protocol for WSANs to achieve energy-efficient data transport for
delay-sensitive event reporting. In POWER-SPEED, sensor nodes
select the next-hop neighbor to actuators according to the spatio-
temporal historic data of the upstream QoS condition, which com-
pletely avoids control packets. With an adaptive transmitter power
control scheme, POWER-SPEED conveys packets in an energy-efficient
manner while maintaining soft real-time packet transport. It thus re-
duces the energy consumption of data transport while ensuring the
QoS requirement in timeliness domain. We demonstrate the effec-
tiveness of POWER-SPEED through simulations with NS-2.

92

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL93

6.2 Energy-Efficient Real-Time Data Reporting of

Delay-Sensitive Events

We consider a WSAN that consists of a collection of sensor nodes
S and actuator nodes A. Each sensor node is denoted by si (si ∈
S, i = 1, 2, ..., |S|). Sensor nodes are stationary. Their locations do
not change after they are deployed. Each actuator node is denoted
by aj (aj ∈ A, j = 1, 2, ..., |A|). Actuator nodes are mobile.

For an event that takes place in the network area, a subset R

of S can sense the event and report event data to the actuators.
We call these nodes reporting nodes, each of which is denoted by
rk (rk ∈ R, k = 1, 2, ..., |R|). Because the actuators can directly
communicate with each other as they can be equipped with powerful
antennae, we consider that the destination of the reporting packets
can be any of the actuators, i.e., reporting traffic can be routed in an
anycast manner to the actuators.

For each in-network node u, N(u) denotes the set of nodes which
node u can communicate directly without relaying of other nodes.
We call nodes in N(u) the neighbors of node u. Each node is aware
of the existence of each of its neighbors.

6.2.1 Location-Aware Networks

WSANs are employed to sense and handle environmental data. It is
usually required that each in-network node is aware of its geographic
location as the location information is necessary to identify and lo-
cate physical phenomena. In such WSANs, each sensor or actuator
node should know its approximate geographic location. Location
information is achievable if each node carries a GPS receiver or if
some localization algorithms (e.g., that in [14]) are employed.

Such location information can greatly facilitate the design of a
data transport protocol, which will be explored in our following dis-

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL94

cussion. The location of a node is denoted by X(u). We define
Dis(u, v) as the physical (Euclidian) distance between node u and
node v,

Dis(u, v) = ‖X(v)−X(u)‖, (6.1)

where u and v can be si or ai.

6.2.2 Stateless Data Transport via Dynamic Paths

In WSANs, the actuators, i.e., the sinks of sensor-reporting traffic
are mobile. As a result, the network topology changes frequently.
Global shortest-path routing from reporting nodes to the actuators
is not feasible because frequent reestablishment of shortest paths
inevitably causes high overhead in terms of energy required for ex-
changing control packets. Therefore, to be energy-efficient, the sen-
sor reporting packets have to be forwarded in a stateless manner. An
in-network node does not maintain a routing table to the actuators.
It should find out where to forward the sensor reporting packets by
exchanging as few control packets as possible with its neighbors.
The data transport protocol must convey sensor reporting packets to
the actuators via dynamic paths in order to adapt to the mobility of
the actuators.

6.2.3 Delay-Sensitive Data Transport

In most application cases of WSANs, reporting data are delay-sensitive.
For example, in a WSAN that performs real-time environmental
monitoring, it is required that environmental data are obtained by
the in-network actuators within a predefined latency bound. Dif-
ferent events may have different latency-bound requirements. L(e)
denotes the latency bound of event e. We consider a packet on a
particular event from a reporting node is successfully delivered if

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL95

the packet can reach an actuator with latency less than the latency
bound. A protocol for delay-sensitive data transport should success-
fully deliver as many packets as possible. It should also adapt to the
different latency-bound requirements of different events.

6.2.4 Power-Controlled Packet Transmission

Since WSANs are usually location-aware networks, we notice that
such location information can be utilized to conduct power control
of a node’s wireless transmitter. A transmitter power control scheme
enables each node to set its power level to a minimum value under
the constraint that the packet sent by this node could just reach its
intended neighbor. The energy consumption of data transport can
thus be reduced. Power-controlled packet transmission is an impor-
tant technique to save the energy consumptions of sensor nodes and
prolong the lifetime of a network.

The prerequisite of a transmitter power setting scheme is that
each sensor node can set its own wireless transmitter power level.
This is true in typical sensor node implementations. For example,
the Berkeley Mica Mote [55] provides such program interfaces.

According to the wireless signal fading model [107], packets
transmitted from node u can reach its intended neighbor v if the
transmitter power setting of node u satisfies:

Pr(u) ≥ c · (Dis(u, v))n (6.2)

Here c is a constant related to the wireless system parameters. n is
the signal fading factor whose value is typically in the interval [2, 5].
The optimal transmitter power setting for node u to send a packet to
node v is therefore computed by:

Pr(u) = c · (Dis(u, v))n = c · ‖X(v)−X(u)‖n (6.3)

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL96

6.3 Designing the POWER-SPEED Protocol

6.3.1 Estimating the Hop-by-Hop Delays

As a protocol designed to transport real-time packets on delay-sensitive
events, POWER-SPEED requires to know how long a packet has
been experienced in the network. As each data packet has a deadline
(i.e., the maximum time the packet can experience before it reaches
an actuator), the remaining time before the packet expires is a cru-
cial parameter for POWER-SPEED to select where to forward the
packet and thus guarantee that the packet can reach an actuator be-
fore expiration. Before discussing the details on this next-hop selec-
tion scheme in Section 6.3.3, we elaborate the mechanism we adopt
to calculate the delay a packet has experienced and how to estimate
traffic condition of the downstream path (i.e., hop-by-hop delay a
packet will experience in the future).

To facilitate the following discussion, we demonstrate part of a
POWER-SPEED data packet in Figure 6.1.

Figure 6.1: Part of a POWER-SPEED packet

The interval between the time when node u receives a packet
and the time the packet is sent and received by node u’s intended
neighbor v, denoted by Delay(u) is:

Delay(u) = tprop + tproc + tq + ttran (6.4)

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL97

where tprop is the propagation delay from u to its intended neighbor,
tproc is the processing delay at node u, tq is the queuing delay at
node u during which the packet is waiting to be sent out, and ttran

is the transmission delay which is related to the channel bandwidth
and packet size. We call Delay(u) the hop-by-hop delay between
node u and its neighbor.

In POWER-SPEED protocol, node u timestamps the Trcv field
of a packet when the packet is received. When it sends the packet,
it can encapsulate the time experienced by the packet inside node
u into the Dhop field of the packet. This time value is tproc + tq in
Equation (6.4). tprop is the light-speed propagation delay which can
be ignored. ttran can be calculated by its intended node (i.e., node v)
by bandwidth value and packet size. With ttran and the encapsulated
value of Dhop, node v can thus approximately calculate Delay(u).
Node v can calculate the cumulative delay (denoted by Dcd) that the
packet has experienced in the network when it receives the packet
and update the Dcd field of the packet (which initially is zero when
the packet is generated) by adding Delay(u).

The current Delay(u) is also averaged by node v with an expo-
nentially weighted moving average (EWMA) approach [63] to get
the estimation of hop-by-hop delay from node u to node v. D̃(u)
denotes this estimation. Specifically, D̃(u) is updated with current
Delay(u) according to:

D̃(u) = αD̃(u) + (1− α)Delay(u) (6.5)

where α is a constant.
To describe how an intermediate relaying node sn estimate the fu-

ture hop-by-hop delay a packet will experience, denote {r1, s1, s2, ..., sn}
as the traffic path from a source node r1 to sn. In POWER-SPEED,
node sn estimates the future hop-by-hop delay a packet will experi-
ence based on only the hop-by-hop delay estimation of the upstream
hops the packet has traveled, i.e., the estimation of the hop-by-hop

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL98

delay between each pair of adjacent nodes in {r1, s1, s2, ..., sn}. This
means that POWER-SPEED does not require feedbacks from down-
stream nodes to estimate the future hop-by-hop delay a packet will
experience. It thus completely avoids control packets, which featur-
ing one of the merits of POWER-SPEED. Details are as follows.

Node s1 can know D̃(r1) as discussed above. It then fills the
Davg hop field of the data packets with D̃(r1). For node si (1 < i 6
n), it updates the Davg hop field according to:

Davg hop = βDavg hop + (1− β)D̃(si−1) (6.6)

where β is a constant. Because D̃(si−1) is calculated at node si and
previous Davg hop is obtainable from packets, no control packet is
required to obtain Davg hop according to Equation 6.6.

In POWER-SPEED, node sn deems that the Davg hop calculated
in Equation 6.6 as the estimation of the future hop-by-hop delay
the packet will experience in its future journey. Such an estima-
tion approach is very reasonable because it employs a 2-dimensional
(spatio-temporal) EWMA estimation (i.e., Equations (6.5) and (6.6))
that considers the impact of both time and space historical data.

6.3.2 Calculating Packet Transport Speed and Packet Forward-

ing Candidates

In POWER-SPEED, packet transport speed is defined as the average
hops a packet can go through in one second. With the notations used
in Section 6.3.1, node sn calculates the packet speed by:

speed =
1

Davg hop
(6.7)

where Davg hop is obtained with Equation (6.6). Note that speed is a
positive real number.

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL99

Node sn can calculate the maximum number of hops the packet
can go through before its expiration with:

max hops = speed · (deadline−Dcd) (6.8)

For each actuator aj, sn calculates whether each node w in N(sn)
is nearer than sn to aj

1. If this is true, sn estimate the number of
hops a packet has to travel from sn via w to aj by Equation (6.9).
If hops < max hops, node w is considered as one of the packet
forwarding candidates. It means that the packet can go to actuator
aj via node w and it is expected to arrive at actuator aj before it
expires.

hops =
Dis(sn, aj)

Dis(sn, aj)−Dis(w, aj)
(6.9)

6.3.3 Selecting Next-Hop Neighbor

To be energy-efficient, a node (also denoted by sn) should send pack-
ets to one of its packet forwarding candidates so that the total energy
consumption required to deliver the packet from the node to an ac-
tuator is considered minimized. That is to say, node sn should lo-
cally minimizes the total energy consumption required for a packet
to reach an actuator.

Because the energy consumption for receiving a packet and pro-
cessing a packet is constant, we consider the energy required for
sending a packet to each packet forward candidate w for node sn ,
denoted by E(sn, w). With transmitter power control, it is as fol-
lows.

E(sn, w) = γPr(sn) = γc · (Dis(sn, w))n (6.10)
1This is feasible as a sensor node can easily know the locations of its neighbors. Actuators,

although mobile, can broadcast their current locations to sensor nodes as they are equipped with
powerful antennae

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL100

where γ is a constant related to the packet size.
Node sn estimates the total energy consumption for the packet to

reach actuator aj via node w as follows.

total e(sn, w) = hops · E(sn, w) (6.11)

where hops is calculated with Equation (6.9).
Among all packet forwarding candidates, node sn selects the node

that achieves the minimum value of total energy consumption calcu-
lated with Equation (6.11). It then sets its transmitter power level
according to Equation (6.3) and forwards the packet to this candi-
date. In such a next-hop selection scheme, a packet that will expire
in a longer period of time will adaptively be sent with lower trans-
mitter power level to save energy. On the contrary, a packet that will
expire sooner will be sent adaptively with higher transmitter power
level, which results in fewer hop numbers between the sender to a
destination actuator, and thus guarantees that the packet can reach
its destination in a shorter period of time.

Note that this next-hop selection scheme in POWER-SPEED re-
quires no control packets. And it is a fully distributed and localized
algorithm which well suits WSANs.

6.4 Simulation Results

We program POWER-SPEED with the NS-2 [39] simulator and study
the performance of POWER-SPEED with simulations. We investi-
gate the performance of POWER-SPEED in terms of the total en-
ergy consumption to report data on delay-sensitive events and the
proportion of the packets that can be delivered to actuators in time.
For comparison, we also do simulations with the geographic routing
protocol (GRP) [72], where greedy forwarding is employed and no

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL101

control packet is required like POWER-SPEED. Detailed settings of
the simulation network are summarized in Table 8.1.

Table 6.1: Simulation Parameters

Network size 200m x 200m
No. of sensors (N) 100
Bandwidth 2 Mbps
Radio range 40m
MAC layer IEEE 802.11 without

RTS/CTS and ACK
Wireless Communication Model Two-Ray Ground
Packet Size 36 bytes

In order to have a direct observation on the energy-saving effect
of POWER-SPEED, we first study the protocol performance in case
that there is only one concurrent event in the network. We randomly
deploy i sensor nodes in a uniform manner. Let the event takes place
at location (50m, 50m). The reporting of the event by source nodes
lasts for 1000 seconds. We change i from 100 to 250, and we change
the reporting rate of source node from 5 to 30 packets/second. For
each setting, we select different random seeds and run simulations
for 5 times. Results are averaged.

Figure 6.2 shows the total energy consumption of the whole net-
work in case that i = 100 when different report rates of source node
are set. The curves are in linear manner as energy consumption is
linearly related to number of packets transmitted. It can be seen that
POWER-SPEED effectively reduces the total energy consumption
for conducting an event-reporting task. It saves about 40% energy
comparing to the GRP protocol. This is not surprising due to the
energy-saving technique adopted in POWER-SPEED.

Figure 6.3 further shows the impact on in-network node number
on the total energy consumption in case that the reporting rate of
source node is 20 packets/s. We can see that when the node density
increases, the enhancement of POWER-SPEED is better than that

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL102

Figure 6.2: Total energy consumptions of different source reporting rates

of GRP. This is natural. GRP adopts a best-effort packet-forwarding
mechanism with fix transmission range, the hop numbers between
sources and actuators are nearly the same although node density in-
creases. POWER-SPEED, on the other hand, adapts to node density
and selects more energy-efficient paths as node density increases.

To study how well POWER-SPEED adapts to different latency
requirements, we conduct simulations in which two concurrent delay-
sensitive events with different latency requirements coexist. We ran-
domly deploy 100 sensor nodes in a uniform manner. We let the
event e1 and e2 takes place at locations (50m, 50m) and (80m, 80m).
The reporting of the event by source nodes lasts for 1000 seconds.
The maximum tolerable delays of packets on e1 and e2 are 0.025s
and 1s in order to investigate how POWER-SPEED performs in re-
porting a more critical (in term of latency bound requirement) but
farther event e1. We set the reporting rate of source node in the
range (10, 30). For each setting, we also set different random seeds
to run simulations, the results of which are averaged.

Figure 6.4 demonstrates the in-time packet arrival-rate of packets

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL103

Figure 6.3: Total energy consumptions of different node number

on e1 and Figure 6.5 demonstrates the total energy consumption.
POWER-SPEED is comparable to GRP in terms of in-time packet
arrival-rate of a critical event (i.e., e1). But it saves more than 50%
of energy comparing to GRP. This is because POWER-SPEED can
adapt well to events with different latency requirements. Packets
on a less critical event (i.e., e2) can be sent with lower transmitter
power level to save energy, while packets on a more critical event
(i.e., e1) can be sent with higher transmitter power level to guarantee
the arrival-rate.

6.5 Summary

This chapter studies the problem of real-time data transport for re-
porting delay-sensitive events in WSANs. We carefully tailor our
protocol design by examining the features of WSANs, and propose
POWER-SPEED, a power-controlled real-time data transport proto-
col for WSANs. POWER-SPEED avoids the overhead of control

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL104

Figure 6.4: Comparison of in-time packet arrival-rates

packets by estimating the downstream path quality (in terms of de-
lay) with only spatio-temporal historic data of the upstream path
quality, which is obtainable without exchanging additional packets.
POWER-SPEED selects the next-hop neighbor based on the down-
stream path quality and the latency-bound requirement of packets.
Adaptively, it sends a packet that will expire in a longer period of
time with lower transmitter power level to save energy. And it sends
a packet that will expire sooner with higher transmitter power level,
which results in fewer hop numbers between senders to destination
actuators, and thus guarantees that the packet can reach its desti-
nation in a shorter period of time. In this way, POWER-SPEED
achieves energy efficiency while maintaining the QoS requirement
in timeliness domain. We perform extensive simulations with the
popular network simulation tool NS-2 and the results demonstrate
the effectiveness of our protocol.

2 End of chapter.

CHAPTER 6. POWER-CONTROLLED REAL-TIME DATA TRANSPORT PROTOCOL105

Figure 6.5: Comparison of total energy consumptions

Chapter 7

The Route Design Problem

7.1 Overview

After studying delay-oriented reliable communication in WSANs,
we move on to discuss the coordination problem among the actua-
tors. We consider the mobility of the actuators and work on the route
design problem for efficient and cooperative data collection.

In WSANs, multiple actuators can patrol along different routes
and communicate with the static sensors. To minimize the data col-
lection time, an effective route design is crucial for the actuators to
travel in the sensing field. In this chapter, we present a mathematical
formulation of the route design problem, and show that the general
problem is computationally intractable. We then propose two practi-
cally efficient algorithms to reduce the waiting time for the sensors.
Our algorithms adaptively differentiate the actuator visiting frequen-
cies to the sensors according to their relative weights and data gen-
eration patterns. The first algorithm builds routes by constructing
minimum spanning trees with equal size, where sensors with higher
weights will be included by more routes. Conversely, the second
algorithm builds routes with different lengths, so the sensors with
higher weights can join shorter routes. We then discuss a distributed

106

CHAPTER 7. THE ROUTE DESIGN PROBLEM 107

implementation for route design with a simplified actuator alloca-
tion algorithm. Simulation results demonstrate that our algorithms
can effectively reduce the overall data collection time in wireless
sensor-actuator networks.

7.2 Problem Formulation

We consider a Wireless Sensor-Actuator Network consisting of mul-
tiple mobile actuators and a set of static sensors. The actuators move
in the sensing field along independent routes. Each static sensor has
a limited buffer to accommodate locally sensed data. When an actu-
ator approaches, the sensor can upload the data to the actuator and
free its buffer.

The parameters of this system are summarized in Table 7.1. Our
objective is to minimize the overall length of routes, while guar-
anteeing locations with higher weights can achieve lower actuator
inter-arrival time.

Table 7.1: System Parameters

s Sensor node
R Communication range of sensor
cij Cost from sensor location i to j
xijk Boolean indicating whether link (i, j) is on route k
Wj Weight of sensor j (a value between 0.0 and 1.0)
Nj Number of sensors with weight Wj

Aj Average actuator inter-arrival time for sensor j
Tk Period of route k
N Number of sensors
M Number of actuators

CHAPTER 7. THE ROUTE DESIGN PROBLEM 108

Route Design Problem (RDP):

Minimize
∑

∀j
Aj ∗Wj ∗Nj , (7.1)

where Tk =
∑N

i=1

∑N
j=1 xijk ∗ cij , Aj = F(T1, T2, ..., TM ′) is the function of all Tk that

pass through the sensor j.

Subject to:
M∑

k=1

N∑

i=1

xijk ≥ 1, ∀j = 1, ..., N (7.2)

||s, k|| ≤ Rs,∀s,∃k (7.3)

N∑

i=1

xipk −
N∑

j=1

xpjk = 0, ∀k = 1, ...,M, p = 1, ..., N (7.4)

yj − yi + N
M∑

k=1

xijk ≤ N − 1, i 6= j = 1, ..., N (7.5)

xijk ∈ {1, 0},∀i, j, k; yi arbitrary, (7.6)

where our objective (Eq. 1) is to minimize weighted average actua-
tor inter-arrival time among all sensors. F(T1, T2, ..., TM ′) is a func-
tion for calculating the Aj of a sensor that is passed by the routes
with period T1, T2, ..., TM ′. Constraint (2) suggests that each sensor
should be on at least one route. Constraint (3) ensures every sensor s

can communicate with the actuators, provided that at least one point
on some routes k is within the communication range R of the sensor.
Constraint (4) states that if an actuator visits a sensor, it must also
depart from it. Constraint (5) is the subtour-elimination condition
derived for the travelling salesman problem [91]. The route design
problem differs from the traditional vehicle routing problem in the
following aspects:

1) The sensors are of different weights, according to their data

CHAPTER 7. THE ROUTE DESIGN PROBLEM 109

generation rates and importance. Sensors with higher weights expect
lower average actuator inter-arrival times.

2) Sensors upload data to actuators through wireless communica-
tions. Data transmission is possible only when the distance between
the sensor and actuator is within a communication range R.

3) It is not necessary for each route to pass through the depot (or
the base station), as the actuators generally can communicate with
the base station directly with their stronger power.

We now offer some observations on the general route design prob-
lem.

Definition 1. A route is a tour walked through repeatly by an actua-

tor.

Property 1. Route with a Hamiltonian cycle achieves shorter maxi-

mum inter-arrival time Amax than that without.

Proof. Let p1, p2, .., pn be the sensors on a route, and c12, c23, ..., cn1

be the cost for an actuator to move between consecutive sensors. We

have T =
∑

∀c c/v is the period of the route, where v is the moving

speed of the actuators. If the route is a Hamiltonian cycle, Amax of

any sensor p is always equal to T . On the contrary, considering a

route that is not a Hamiltonian cycle, an actuator will need to walk

from one end to another end, then back to the beginning sensor to

complete a cycle. The Amax of the sensors at two ends will then be

2T , which is much longer than T .

CHAPTER 7. THE ROUTE DESIGN PROBLEM 110

Property 2. The average actuator inter-arrival time Aj of a sen-

sor j on multiple routes can be calculated as F(T1, T2, ..., TM ′) =
∏M ′

k=1 Tk∑M ′
k=1(

∏M ′
i=1,i6=k Ti)

.

Proof. Find a common multiple Q among the period T1, T2, ..., TM ′

of all routes that pass through sensor location j. One of the sim-

plest common multiple is Q = T1 ∗ T2 ∗ ... ∗ TM ′. If Q is a time

interval, the number of times that the actuator on route k passes

through sensor j is
∏M ′

i=1,i 6=k Ti. The total number of times that the

actuators visit j is the summation of the number of visits by each

actuator,
∑M ′

k=1(
∏M ′

i=1,i 6=k Ti). The average inter-arrival time Aj is

then equal to the total time over the total number of visits, that is,

Aj =
∏M ′

k=1 Tk∑M ′
k=1(

∏M ′
i=1,i6=k Ti)

.

Theorem 1. The route design problem (RDP) is NP-hard.

Proof. To prove the route design problem (RDP) is NP-hard, we

show that HAM-CYCLE ≤p RDP. Let G = (V, E) be an instance

of HAM-CYCLE. We construct an instance of RDP as follows. We

form a complete graph Gk = (Vk, Ek) for each actuator k, where

Ek = (i, j) : i, j ∈ Vk, i 6= j, G′ = (V,E ′) =
⋃
∀k Gk, V =

⋃
∀k Vk, E

′ =

CHAPTER 7. THE ROUTE DESIGN PROBLEM 111

⋃
∀k Ek, for k = 1, ..., M , and we define the cost function c by

ci,j =

0 if (i, j) ∈ E,

1 if (i, j) 6 ∈E.

Considering Wj = constant for all j ∈ V , all sensors j will be

visited once by any of the actuators, such that the instances of RDP

is (G′, c, C[1, ...k, ...M] = 1), where C[k] is the sum of ci,j for all

(i, j) ∈ Ek.

We now show that the graph G has a Hamiltonian cycle if and

only if G′ has M tours, where the cost C[k] at each cycle k is at

most 1. Suppose that graph G has a Hamiltonian cycle h. Each

edge in h belongs to E and thus has cost 0 in G′. Select M edge

in h, (i1, j1), (i2, j2), ...(iM , jM) and remove them. Then, reconnect

these sensors in sequence (j1, i2), (j2, i3), ...(jM , i1). Since the edges

(j1, i2), (j2, i3), ...(jM , i1) do not belong to E, each of them has cost

1. As a result, h is broken into M cycles, where the cost C[k] of

each cycle k is at most 1.

Conversely, suppose that G′ has M cycles h1, ...hk, ...hM of cost

at most 1. We can easily merge these M cycles into one Hamiltonian

cycle. Since the cost of each edge in Ek are 0 and 1, at most one

edge of each cycle is 1, and all other edges are 0. Remove the edge

CHAPTER 7. THE ROUTE DESIGN PROBLEM 112

in each cycle that is 1, (i1, j1), (i2, j2), ...(iM , jM). Then, reconnect

the sensors involved in a new order, (j1, i2), (j2, i3), ...(jM , i1), such

that a single hamiltonian cycle can be formed.

7.3 Route Design Algorithms for Multiple Actuators

We now propose two route design algorithms, RDNV and RDPL,
for multiple actuators under a centralized scenario. It is practical for
one of the actuators or the base station to execute the algorithm in a
small-scale network. We will then discuss a distributed implemen-
tation of the route design algorithm for large sensor networks in the
next section.

Our route design algorithms calculate independent route for each
individual actuator. We will first present the RDNV algorithm, which
suggests the actuators to have independent routes with similar lengths
and guarantees highly weighted sensors to be visited by more ac-
tuators. Then, we will present the RDPL algorithm, which forms
independent routes with different lengths and ensures the highly
weighted sensors to be visited by actuator in shorter route.

7.3.1 Route Design Algorithm by Varying Number of Visits

(RDNV)

The RDNV algorithm utilizes multiple minimum spanning trees (MSTs)
for designing the routes of multiple actuators. Intuitively, we want
to construct M routes with equal period T , in which sensors with
higher weights Wi will be visited more frequently. Notice that each
actuator is in charge of one route. A sensor with weight Wi will be
passed by Wi ∗ M actuators. In other words, it will be found on
Wi ∗M routes. For example, a sensor with Wi = 0.75 in a network

CHAPTER 7. THE ROUTE DESIGN PROBLEM 113

with 4 actuators will be visited by 3 different actuators. If all actua-
tors have the same period T , from Property (2), its average actuator
inter-arrival time Aavg will be T/3.

RDNV allows sensors to join different number of routes accord-
ing to their weights. Each time, a sensor selects the route with the
shortest length, such that its waiting time can be minimized. This
strategy will also equalize the lengths of various routes. The algo-
rithm provides great flexibility for a sensor to join any routes. It
works well especially for networks with uniform random sensor dis-
tribution, where the sensors spread evenly and utilize this flexibility
beneficially.

In the following, we describe the details of the MST-based route
design algorithm.

Clustering with Spanning Trees

Sensors are assigned with a specific number of routes Ni according
to their weights Wi, where Ni = dWi ∗Me. The locations with the
same Ni belong to the set Si. Our algorithm builds M spanning trees
Tk, which include the sensors on the M routes respectively, where
k = 1, ..., M . Firstly, the sensors with the highest Ni, say Ni =
M , will be assigned to all trees. Then, the locations with the next
highest Ni will be assigned to Ni trees with the lowest costs (Figure
9.1). The process is repeated until there is no remaining locations, as
shown in Algorithm 6. Figure 9.2 shows the final routes formed by
three trees, which have similar lengths. It demonstrates that sensors
with higher weights will be visited by more actuators. Since the
routes have similar lengths, they also achieve lower actuator inter-
arrival time Aavg.

Forming the TSP Solution

The M trees above result in M groups of sensors that should be
walked through by actuators on distinct routes. The route design

CHAPTER 7. THE ROUTE DESIGN PROBLEM 114

Figure 7.1: Step 1: Sensors with Ni = 3 are involved in all trees; Step 2: Sensors
with Ni = 2 are involved in any two of the trees in RDNV.

Figure 7.2: Final routes formed in RDNV.

problem can then be reduced to the Travelling Salesman Problem
(TSP) for each group of sensors. In the literature, several algorithms
to calculate the TSP paths are proposed, such as the nearest neigh-
bor, LKH [11], and some polynomial-time approximation schemes
[7]. Among different approximation algorithms, the Approx-TSP-
Tour algorithm [22] uses the minimum spanning tree to create a tour
whose weight is a lower bound on the length of an optimal traveling-
salesman tour. Its cost is no more than twice of the minimum span-
ning tree’s weight. After computing the MST, then it performs a
preorder traversal on the tree to obtain a Hamiltonian cycle [49]. In
our solution, the MST is created using Prim’s algorithm [22], which
is in polynomial-time.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 115

Algorithm 6 Spanning tree construction in RDNV
for k = 1 to M do

Tk = φ;
end for
for i = M down to 1 do

for each node p ∈ Si do
for each spanning tree Tk do

T ′k = Tk
⋃

p;
Calculate the new cost of the tree T ′k, C(T ′k)

end for
sort the list of C(T ′k)
for the top i trees with the lowest new cost C(T ′k) do

Tk = T ′k;
C(Tk) = C(T ′k);

end for
end for

end for

Determining the Locations of Actuators

It is more efficient for a sensor to have short waiting time to the
actuators, so the maximum inter-arrival time Amax may also be an
important consideration other than Aavg. We focus on the sensors
with the highest Wi and provide a simple method for deciding the
starting point of the actuator on its route. A location with the highest
Wi can be selected as a reference point pr. Then, each actuator k will
be assigned to the point after travelling for time T ∗k/M from pr on
its own route. This is to encourage more even inter-arrival time of
the actuators. More advanced methods can be studied as the future
work.

Time Complexity Analysis:
Assume that N and M denote the number of sensors and the number
of actuators, respectively. Then, the complexity for each step of the
RDNV algorithm is as follow:

• Step 1: The spanning tree construction in algorithm 7 is dom-
inated by the sorting with respect to the size of the trees when

CHAPTER 7. THE ROUTE DESIGN PROBLEM 116

the sensors are joining the trees. Since the number of trees is
equal to M , the sorting results in O(NMlogM) complexity.
Also, the sensors in Si join Ni trees according to their weights,
which result in O(NM) complexity, given that Ni ≤ M .

• Step 2: The running time of the Appro-TSP-Tour algorithm is
O(E) = O(N 2), since the input is a complete graph.

• Step 3: Time complexity of step 3 is O(M).

In summary, the RDNV algorithm has an overall time complexity
of O(NMlogM + N 2).

7.3.2 Route Design Algorithm by Varying Path Length (RDPL)

We focus on the sensor network with non-uniform distribution in
this algorithm. In some networks, the sensors may be concentrated
in different clusters and network partitions are possible. Unlike uni-
form random distribution, sensors in the same cluster may have sim-
ilar capability and weights as well. In RDPL, sensors with similar
weights will be assigned to the same route with a particular length.
Sensors with higher Wi will be put on shorter routes, and vice versa.
The following are the steps of this algorithm.

Constructing the MSTs with Different Wi

We divide the weight Wi ∈ [0, 1] into w ranges. Sensors are grouped
into the appropriate sets of sensors, S1, S2, ..., Sw, according to their
weight ranges. A minimum spanning tree Tk is then constructed for
each set of sensors and its corresponding cost C(Tk) is calculated.
The cost C(Tk) is a good approximation to the length of route k.

Estimating the Number of Actuators for each Tk

Each of the tree will be assigned with an appropriate number of ac-
tuators nk serving it. Since higher weighted sensors should achieve

CHAPTER 7. THE ROUTE DESIGN PROBLEM 117

shorter actuator inter-arrival time, the ideal inter-arrival time for sen-
sors S1, S2, ..., Sw could be w ∗ T, (w − 1) ∗ T, ..., 2 ∗ T, T , respec-
tively, where T is the inter-arrival time for the sensors in the highest
weight range. The cost C(Tk) represents the length of the route,
and C(Tk)/ak should then be proportional to the inter-arrival time
(w + 1− k) ∗ T , such that

C(T1)/a1 = w ∗ T ∗ v

C(T2)/a2 = (w − 1) ∗ T ∗ v

...

C(Tw)/aw = T ∗ v, (7.7)

where a1, a2, ..., aw are the number of actuators that should be as-
signed to the corresponding set of sensors, and v is the speed of
actuator. The sum of the assigned number of actuators in all routes
should be equal to the total number of actuators M in the network,
such that

a1 + a2 + ... + aw = M. (7.8)

From the above equations, we achieve

C(T1)

w ∗ T ∗ v
+

C(T2)

(w − 1) ∗ T ∗ v
+ ... +

C(Tw)

T ∗ v
= M, (7.9)

hence,

T ∗ v = {
w∑

k=1

C(Tk)/(w + 1− k)}/M (7.10)

and

ak = C(Tk)/(T ∗ v ∗ (w + 1− k))

=
C(Tk) ∗M

(w + 1− k){∑w
k=1 C(Tk)/(w + 1− k)} (7.11)

CHAPTER 7. THE ROUTE DESIGN PROBLEM 118

Allocating the Actuators

The ak achieved above is an ideal value, which may not be an in-
teger, so we need to determine the practical number of actuators nk

to be assigned to a route. If ak is smaller than 1, the sensors in Sk

will be accumulated in accumS with other sensors in the following
weight ranges, until the accumulated number of actuator accuma

is greater than 1. Then, a new route Rq can be formed with nq =
round(accuma), including all the sensors in accumS. The details of
route formation and actuator allocation are shown in Algorithm 7.

Note that a route may have nq greater than accuma, which means
the assigned actuators are more than the required actuators. In this
case, more sensors can be added to the route, without degrading
the expected actuator inter-arrival time. The route may prolong its
length Cost(Rq) by adding higher weighted sensors that are located
closely until Cost(Rq) is no longer smaller than Costexp(Rq), where
Costexp(Rq) is the expected length of Rq. The length difference
Costexp(Rq)−Cost(Rq) can be calculated by (nq−accuma)∗ (w+
1−wmax)∗T , where wmax is the maximum weight among the sensors
in accumS.

Forming the TSP Solution

Up to now, a number of routes Rq are designed with the correspond-
ing set of sensors Sq and actuators. Similar to RDNV, the route de-
sign problem can then be reduced to the Travelling Salesman Prob-
lem (TSP) for each route. Some Rq may be assigned with more than
one actuator, say nq. These actuators can divide the tree Tq into nq

sub-trees with similar cost before computing the TSP solution.

Time Complexity Analysis:
In addition to N and M , w denotes the number of weight ranges in
RDPL, where w ≤ M . Then, the complexity for each step of the
RDPL algorithm is as follow:

CHAPTER 7. THE ROUTE DESIGN PROBLEM 119

Algorithm 7 Route construction and actuator allocation in RDPL
q = 1; remaina = M ; accuma = 0; accumS = Ø;
for k = w down to 1 do

if k > 1 then
if ak ≥ 1 then

nq = floor(ak + accuma);
Sq = Sk

⋃
accumS ;

remaina− = nq;
q + +;
accumS = Ø;
accuma = 0;

else
accuma+ = ak;
accumS ;

⋃
= Sk;

if accuma ≥ 1 then
nq = round(accuma);
Sq = accumS ;
remaina− = nq;
while Cost(Rq) < Costexp(Rq) do

Route prolongation to Rq;
end while
q + +;
accumS = Ø;
accuma = 0;

end if
end if

else
nq = remaina;
Sq = accumS

⋃
Sk;

while Cost(Rq) < Costexp(Rq) do
Route prolongation to Rq;

end while
end if

end for

CHAPTER 7. THE ROUTE DESIGN PROBLEM 120

Figure 7.3: Final routes formed for four actuators in RDPL.

• Step 1: Forming MSTs for nodes in different weight ranges
results in O(N 2) complexity.

• Step 2: The complexity of calculating the ak for all the weight
ranges is O(w2).

• Step 3: The route construction and actuator allocation in Algo-
rithm 7 is dominated by the union of disjoint set operations.
It happens when the nodes in different Sk are accumulated
in accumS. We assume the disjoint-set-forest implementation
with the union-by-rank and path-compression heuristics, since
it is asymptotically the fastest implementation known [22]. There
are O(w) operations on the disjoint-set forest, which in total
takes O(wα(E, V)) time, where α is the functional inverse
of Ackermann’s function. Since α(E, V) = O(logE) and
E = N 2 in a complete graph, the total running time of this
step is O(wlogN).

• Step 4: Similar to RDNV, the running time of the Appro-TSP-
Tour algorithm is O(E) = O(N 2).

CHAPTER 7. THE ROUTE DESIGN PROBLEM 121

As a result, the RDPL algorithm has an overall time complexity
of O(N 2) + O(w2) + O(wlogN) + O(N 2) ≈ O(N 2), given that
w ≤ M < N .

7.4 Distributed Implementation

In practice, in a large sensor network, it could be difficult for a base
station or an actuator to know exactly the locations of all the sensors
and accordingly make decisions on route design. Hence, we develop
a distributed implementation, D-RDPL, which is based on the RDPL
algorithm. Although RDNV can also be extended in a distributed
manner, it requires more messages for the actuators to broadcast the
sizes of their trees when the sensors are joining different routes.

In D-RDPL, the sensors and actuators identify the locations of
other sensors together in a fully distributed manner. Then, the actu-
ators can perform route design cooperatively without any centralized
server. We now present the details of D-RDPL. Note that some new
concepts are introduced in D-RDPL beyond the original RDPL to
accommodate the distributed and lightweight design requirements.

Forming the R-clusters

Sensors construct MSTs with the same weight by local communica-
tions with their neighbors. If the communication range of sensors
is R, the weight of each edge e in an MST must be smaller than
or equal to R, that is w(e) ≤ R. We define such an MST as an
R-Cluster, Fi(V

′, E ′), which includes all the sensors that are in the
same weight range wi and within R to some sensors in Fi(V

′, E ′).
We can apply various distributed MST construction algorithms [43,
9, 36] to form the R-clusters.

From Property 3, an R-cluster Fi(V
′, E ′) of weight range wi is

part of the MST Ti, which includes all the sensors with weight range
wi in the network.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 122

Definition 2. R-Cluster is an MST, F (V ′, E ′), formed by a group of
sensors by wireless communications in the network G(V, E). The
weight of edge w(e′) ≤ R for all e′ ∈ E ′. The distance between two
sensors u and v, ‖u, v‖ > R, for all u ∈ V ′, v ∈ V − V ′, where R
is the communication range of sensor, V ′ ⊆ V .

Property 3. If Fi(V
′, E ′) is an R-cluster for some sensors in weight

range wi, it is a sub-tree of Ti(V,E), Fi ⊆ Ti, where Ti is the MST
that contains all the sensors with weight range wi in the network.

Proof. Ti is an MST containing all the sensors V with weight range
wi, where V ′ ⊆ V . At least one edge (u, v) in E, but not in E ′,
connects some sensors u ∈ V ′ to some sensors v ∈ V − V ′, such
that Ti is an MST including all V .
We now prove the property by contradiction. Suppose, to the con-
trary, there is an edge e′ in E ′, but not in Ti. Removing e′ breaks
Fi into two components X and Y . We assume X is the component
that contains u. There must be another edge x′ in E connecting the
component Y to any sensors in V − Y , such that w(x′) ≤ w(e′).
Since Fi is an MST, w(e′) is already the shortest edge connecting X
and Y . Edge x′ must be connecting component Y to some sensors
other than V ′, that is V −V ′. Hence, the weight of edge x′ is equal to
the distance between two sensors u′ and v′, w(x′) = ‖u′, v′‖, where
u′ ∈ Y , v′ ∈ V − V ′. Since w(x′) ≤ w(e′) and w(e′) ≤ R, thus,
‖u′, v′‖ ≤ R, yielding a contradiction.

Connecting the R-clusters

An R-cluster forest with the same weight can be connected together
to form a bigger MST, Ti, which contains all the sensors of the same
weight in the network. From Property 4, the edge with minimum
weight that connects an R-cluster to another R-cluster in the forest
can construct Ti.

Actuators will be assigned to different areas in the network, so
they can explore the R-clusters and construct the MST cooperately
to increase network efficiency. Each actuator looks for the R-clusters
in its area, connects them according to their weight ranges, and
stores the costs of trees. The cost of the MST portion in wi man-
aged by actuator Aj is represented by Cj

i , where wi = 1, 2, ..., w.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 123

Note that some R-clusters or some edges connecting them may be
crossing two areas, so communications are required among the ac-
tuators in the neighboring areas. If an edge is crossing two areas,
its cost will be counted by the actuator with a lower ID. At the end,
sensors in various weight ranges form independent MSTs. The total
number of MSTs is equal to w.

Property 4. Let A be a subset of E that is included in some MST for
G = (V, E), and let F = (V ′, E ′) be an R-cluster in the forest Ga =
(V, A). If (u, v) is an edge with the minimum weight connecting F to
another R-cluster in Ga, then A

⋃{(u, v)} is also a subset of some
MST.

Proof. Let T be the MST that includes A, and assume that T does
not contain the edge (u, v). We shall construct another tree T ′ that
includes A

⋃{(u, v)} and show that T ′ is an MST.
Since T is an MST, there must be an edge that connects F and V −F
in T . Let (x, y) be any such edge and (x, y) does not belong to A.
The edge (u, v) also connects the sensors u and v which are on the
opposite sides of the cut (F, V − F), so (u, v) forms a cycle with
the path p that contains (x, y). Removing (x, y) breaks T into two
components. Adding (u, v) reconnects them to form a new spanning
tree T ′ = T − {(x, y)}⋃{(u, v)}. Since (u, v) is an edge with the
minimum weight crossing (F, V − F) and (x, y) also crosses this
cut, w(u, v) ≤ w(x, y). Therefore, w(T ′) = w(T) − w(x, y) +
w(u, v) ≤ w(T). Based on T is an MST and w(T ′) ≤ w(T), thus,
T ′ must be an MST also. We have A ⊆ T ′, since A ⊆ T and
(x, y) /∈ A; thus, A

⋃{(u, v)} ⊆ T ′. Consequently, since T ′ is an
MST, A

⋃{(u, v)} ⊆ T ′ is also a subset of some MST.

Allocating the Actuators to the Routes

The cost of each MST is calculated by summing up the cost of its
sub-trees, Ci =

∑M
j=1 Cj

i . It also represents the length of the route
Ri for sensors in a particular weight range wi. As shown in Equa-
tion (7), the number of actuators for sensors in weight range wi is
proportional to Ci/(w + 1− i). From Equation (10), the number of
actuators ai for sensors in different weight ranges is obtained. Since

CHAPTER 7. THE ROUTE DESIGN PROBLEM 124

the computation of this equation is pretty lightweight, it is possible
for each actuator to make its own calculation. Alternately, one actu-
ator can perform the calculation and broadcast to all other actuators,
but it may consume more energy and time for messaging.

Then, the actuators can form routes and decide ni with a simpli-
fied approach, as shown in Algorithm 8. Routes with ai > 0 are
assigned with at least one actuator. The remaining actuators are al-
located to the route with the maximum ai repeatly, until all actuators
are assigned. As a result, the number of actuators to the sensors with
different weights is determined.

Next, the actuators can select the route that they would walk
through, starting from the actuator with the lowest ID. An actua-
tor Aj usually selects the route Ri, which has the highest Cj

i and is
not selected by other actuators.

Algorithm 8 Simplified actuator allocation in D-RDPL
for i = 1 to w do

ni = 0;
end for
remaina = M ;
for i = 1 to w do

if ai > 0 then
ni = 1;
remaina −−;
ai −−;

end if
end for
while remaina > 0 do

Find the maximum ai∗;
ni ∗++;
remaina −−;
ai ∗ −−;

end while

Forming the TSP Solution

Similar to RDPL, route prolongation is required for route Ri if ni >

ai. It implies that excessive actuators are assigned to Ri, so they are

CHAPTER 7. THE ROUTE DESIGN PROBLEM 125

expected to prolong the length and visit more sensors. Then, parti-
tion of routes can be performed if there are more than one actuator
serving a route, for example ni > 1. Finally, the TSP solution can
be computed by each actuator to form its own route.

Complexity Analysis:
We now analyze the communication complexity and time complex-
ity of D-RDPL. The communication complexity is the worst case
analysis for the total number of elementary messages sent during the
algorithm. The time complexity is the maximum possible number of
time units from start to the completion of the algorithm, assuming
that the inter-message delay and the propagation delay of an edge is
at most one time unit of the global clock. The complexity for each
step of the D-RDPL algorithm is as follow:

• Step 1: The sensors broadcast “hello” messages to their neigh-
bors to obtain the weights of their adjacent edges, which take
O(N) messages. We adopted a distributed MST construction
algorithm [43] to form the R-clusters. It requires O(Er+NlogN)
messages and O(N) time, where Er is the number of node pairs
that are within the communication range R in N . Since R is
small, Er ¿ N 2.

• Step 2: The actuators exchange messages for finding the out-
going edges with the minimum weight among the R-clusters
in different areas. Assume the actuators can communicate di-
rectly with long range communication, they require O(NR)
messages, where NR is the number of R-clusters, and NR < N .
Afterwards, they can connect the R-clusters with the Kruskal’s
algorithm [22], which takes O(ERlogNR) time, where ER =
N 2

R.

• Step 3: The actuator allocation algorithm in Algorithm 8 can
be computed locally in O(Mwlogw) time. Then, the actuators
can select their routes by exchanging O(M) messages.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 126

• Step 4: Similar to RDPL, the running time of the Appro-TSP-
Tour algorithm is O(E) = O(N 2).

As a result, the D-RDPL algorithm requires O(NlogN) mes-
sages in total and the convergence time is O(N). Overall, D-RDPL
takes O(N 2) computation time, given that w ≤ M < N .

7.5 Performance Evaluation

We have conducted extensive simulations for our proposed route de-
sign algorithms with multiple actuators. The simulation settings are
mainly drawn from [52], which are summarized in Table 8.1.

Table 7.2: Simulation Parameters

Network size 200m x 200m
Sensor distribution Uniform random or

Cluster-based uniform
or Cluster-based non-
uniform

No. of sensors (N) 100
Weight of sensors (Wj) 0.0-1.0
No. of actuators (M) 5 or 8
Speed of actuators v
Radio range 40m
MAC layer IEEE 802.11

7.5.1 Average Actuator Inter-Arrival Time

In the first set of experiments, we evaluate the average actuator inter-
arrival time Aavg with various kinds of sensor distributions.

Note that the average inter-arrival distance Davg is shown in our
results, instead of the inter-arrival time Aavg. It is because the mov-
ing speed v of actuators may vary in different environments. Indeed,

CHAPTER 7. THE ROUTE DESIGN PROBLEM 127

the average inter-arrival time of actuator Aavg can be readily calcu-
lated by Davg/v, where v is the moving speed of the actuators. We
also compare our results with the baseline algorithm, which divides
the sensors into different groups according to their weights, and pro-
vides a route for each group to be walked through by an actuator.

Uniform Random Sensor Distribution

Figure 7.4(a) shows the average inter-arrival distance Davg for an ac-
tuator to visit the sensors periodically under uniform random sensor
distribution with N = 100 and M = 5. It evaluates distances Davg to
the sensors with weights in the ranges 0.0-0.2, 0.2-0.4, 0.4-0.6, 0.6-
0.8, and 0.8-1.0, respectively. The result of a baseline algorithm,
in which the sensors of the same weight range are walked through
by the same actuator, is shown for comparison. The experimen-
tal result demonstrates that the sensors with higher weights achieve
shorter inter-arrival distances Davg, and hence shorter inter-arrival
time Aavg in our algorithms. Also, all the three algorithms perform
better than the baseline algorithm in terms of achieving shorter inter-
arrival times. Figure 7.4(b) shows the same experiment with M=8.
The average inter-arrival distances become much shorter when the
number of actuator increases. It is because more sensors can be vis-
ited in the same period of time with more actuators. The lengths
of the routes can be shorter as well. From the two figures, RDNV
performs better than RDPL and D-RDPL with both M=5 and M=8.
The reason is that RDNV provides greater flexibility in building the
routes. Since the routes have similar lengths in RDNV, sensors in
different weight ranges may join any routes with the least cost. On
the contrary, the routes have different lengths in both RDPL and D-
RDPL. The sensors with higher weights must join shorter routes, so
their choices are limited.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 128

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

(a) (b)

Figure 7.4: Average inter-arrival distance under uniform random sensor distribu-
tion with N=100 (a) M=5 (b) M=8.

Cluster-Based Uniform Sensor Distribution

We next evaluate our algorithms under cluster-based and uniform
sensor distribution. Sensors are deployed unevenly, which may re-
sult in clusters and network partitions. Specifically, we place the
sensors into three clusters and generate the weights of sensors uni-
formly and randomly in this experiment.

Figures 7.5(a) and (b) show the average actuator inter-arrival dis-
tance Davg with M=5 and M=8, respectively. Under a cluster-
based sensor deployment, our algorithms again achieve better per-
formance than the baseline algorithm. An interesting observation
is that the Davg under cluster-based sensor deployment is generally
shorter than that under uniform random deployment for all the algo-
rithms. The reason is that the sensors are more concentrated under
cluster-based deployment, so they have shorter Euclidean distances
and lead to the routes with shorter lengths. Similarly, RDNV usually
performs better than RDPL and D-RDPL. However, the difference
between its Davg and that of RDPL and D-RDPL becomes smaller
under cluster-based deployment, especially with M=8. It is because

CHAPTER 7. THE ROUTE DESIGN PROBLEM 129

RDPL and D-RDPL can form routes among the sensors within the
same cluster when there are enough actuators. This greatly reduces
the lengths of the routes, and hence the average inter-arrival time.
The result of Algorithm 8 also provides satisfactory performance
with more lightweight computation.

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

(a) (b)

Figure 7.5: Average inter-arrival distance under cluster-based uniform sensor dis-
tribution with N=100 (a) M=5 (b) M=8.

Cluster-Based Non-Uniform Sensor Distribution

We further evaluate our algorithms under a cluster-based and non-
uniform sensor distribution. Apart from deploying the sensors into
three clusters, we also put the sensors with similar weights into one
cluster here. The weights of the sensors in the three clusters fall in
the ranges 0-0.33, 0.34-0.66, 0.67-1.0, respectively.

Similarly, Figures 7.6(a) and (b) show the results for the same
network with M=5 and M=8. It is interesting that the inter-arrival
distance of the baseline algorithm is not a flat line, but an “M” shape.
Remember that we divided the weight of sensor into five ranges 0-
0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1.0 in our study. The sensors
in weight range 0-0.2 are included in cluster 1. Likewise, the sensors

CHAPTER 7. THE ROUTE DESIGN PROBLEM 130

in weight ranges 0.4-0.6 and 0.8-1.0 are included in cluster 2 and 3
separately. On the other hand, sensors in weight range 0.2-0.4 are
involved in both clusters 1 and 2, and the same case in 0.6-0.8. The
route formed across two clusters is naturally longer than that within
only one cluster Therefore, the Davg of the sensors in weight ranges
0.2-0.4 and 0.6-0.8 is longer than that in other three weight ranges.

From Figure 7.6, we observe that RDPL performs generally bet-
ter than RDNV. It shows that forming routes with various lengths
can reduce the actuator inter-arrival time under cluster-based and
non-uniform sensor deployment. The algorithm performs especially
well for the sensors in lower weight ranges. In RDNV, all routes
have similar lengths and the sensors in the lowest weight range is
served by only one actuator. Differently, RDPL and D-RDPL do
not restrict the number of actuators serving the sensors in the lowest
weight range, so multiple actuators can serve them cooperatively to
reduce the inter-arrival time.

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

(a) (b)

Figure 7.6: Average inter-arrival distance under cluster-based non-uniform sensor
distribution with N=100 (a) M=5 (b) M=8.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 131

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

Figure 7.7: S.D. of inter-arrival distance with N=100 and M=5 under uniform
random distribution.

7.5.2 Standard Deviation of Actuator Inter-Arrival Time

We have observed Davg for the sensors with the same weight in the
previous experiments. We are also interested in knowing whether a
sensor can achieve similar Davg to the other sensors with the same
weight. In this experiment, the standard deviation (S.D.) of inter-
arrival time among the sensors in different weight ranges will be
evaluated. Again, S.D. of inter-arrival distance will be shown, in-
stead of the time.

Figure 7.7 shows the S.D. of actuator inter-arrival distance in a
network with N=100 and M=5 under uniform random sensor dis-
tribution. Note that the baseline algorithm has S.D.=0 for all weight
ranges as sensors in the same weight range are included in the same
route. It is clear that the S.D. in RDNV is monotonically decreasing
when the weight of a sensor increases. The reason is that the sensors
with lower weights are visited by fewer actuators, so the difference

CHAPTER 7. THE ROUTE DESIGN PROBLEM 132

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

Figure 7.8: S.D. of inter-arrival distance with N=100 and M=5 under cluster-
based uniform distribution.

on the route lengths may lead to more significant variations on their
final inter-arrival distances Davg.

RDPL achieves slightly higher S.D. than RDNV, while D-RDPL
achieves much higher S.D. than both RDNV and RDPL. The S.D. of
RDPL and D-RDPL is mainly due to route prolongations. Since the
number of actuators is a discrete value, some routes may be assigned
with excessive actuators. For example, a route which expects 1.6
actuators, may be assigned with 2 actuators. In this case, the route
that is assigned with excessive actuators will prolong itself by adding
more sensors. D-RDPL is relatively simple in forming routes and
allocating actuators. Basically, sensors in the same weight range
will be put on the same route and served by at least one actuator.
The algorithm provides a differentiation of inter-arrival time relying
heavily on route prolongations, thus, leading to the higher S.D. Note
that both RDPL and D-RDPL obtain S.D.=0 for the sensors in the
lowest weight range, as those sensors will not be affected by route

CHAPTER 7. THE ROUTE DESIGN PROBLEM 133

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

Baseline Algorithm
RDNV
RDPL

D-RDPL

Figure 7.9: S.D. of inter-arrival distance with N=100 and M=5 under cluster-
based non-uniform distribution.

prolongation.
Similarly, Figure 7.8 shows the results of the same experiment

under cluster-based uniform sensor distribution. RDNV and RDPL
achieve similar S.D., but D-RDPL achieves lower S.D. in compar-
ison with that under uniform random sensor distribution. Since D-
RDPL relies heavily on route prolongations, the effect of the reduced
distances among the sensors becomes more obvious under cluster-
based deployment.

Finally, Figure 7.9 shows the results of a network under cluster-
based non-uniform sensor distribution. An interesting observation
is that the S.D. in D-RDPL is not monotonically decreasing, but
appears to be in “M” shape. Recall the “M” shape in the baseline
algorithm, the increased Euclidean distances among the sensors also
affect the S.D., so the sensors in weight ranges 0.2-0.4 and 0.6-0.8
bring higher S.D. than the others.

CHAPTER 7. THE ROUTE DESIGN PROBLEM 134

7.5.3 Message Overhead and Convergence Time in D-RDPL

Apart from evaluating the inter-arrival times for the proposed al-
gorithms, we also study the communication overheads and conver-
gence times, especially for the distributed algorithm. D-RDPL re-
lies on the communications among the sensors and actuators when
forming the R-clusters and connecting them. The number of mes-
sages and the convergence time are shown in Figure 7.10(a) and (b),
respectively.

0

100

200

300

400

500

600

700

800

900

0 0.2 0.4 0.6 0.8 1

N
o
.
o
f
M
e
s
s
a
g
e
s

Weight (w)

Random Uniform
Cluster-based Uniform

Cluster-based Non-uniform

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Weight (w)

Random Uniform
Cluster-based Uniform

Cluster-based Non-uniform

(a) (b)

Figure 7.10: (a) Message overhead (b) Convergence time of D-RDPL with N=100
and M=5.

In Figure 7.10(a), it shows that D-RDPL achieves the fewest
number of messages under uniform random sensor distribution than
cluster-based sensor distribution. The sensors form an R-cluster if
they are within a communication range R, so sensors under cluster-
based distribution usually construct R-clusters in larger sizes. A
greater set of nodes requires more messages to form an MST in a dis-
tributed algorithm. Since the message overhead is dominated by the
formation of R-clusters, sensors under cluster-based distribution re-
quire more messages than those under uniform random distribution.
Moreover, sensors form R-clusters only with the other sensors in the

CHAPTER 7. THE ROUTE DESIGN PROBLEM 135

same weight range. Since the sensors in the same weight range are
usually located in the same cluster under cluster-based non-uniform
distribution, we can imagine that their R-clusters are more concen-
trated than those under cluster-based uniform distribution. Conse-
quently, they construct larger R-clusters, and hence require more
messages. Note that the message overhead appears to be “W” shape
under cluster-based non-uniform distribution. The reason is that the
sensors in weight ranges 0.2-0.4 and 0.6-0.8 are both separated into
two clusters, so they usually form R-clusters with smaller sizes.

Figure 7.10(b) shows the convergence time in D-RDPL. The con-
vergence time is dominated by the size of the largest R-cluster in the
network as forming the greatest MST usually takes the longest time.
Again, sensors under uniform random distribution achieve the short-
est convergence time, while the sensors under cluster-based non-
uniform distribution perform the worst. The same reasons on the
size of the R-clusters apply here to explain the convergence time of
D-RDPL, as well as its message overhead.

7.6 Summary

In this chapter, we focused on wireless sensor networks with multi-
ple actuators and their route design. We demonstrated that the prob-
lem is NP-hard and proposed two effective MST-based algorithms
for route design. Our algorithms aim at minimizing the overall inter-
arrival time of actuators, while differentiating the visiting frequency
to the sensors with different weights. The two algorithms, RDNV
and RDPL, adopt two different approaches. In RDNV, sensors are
visited by various number of routes with the same length. Sensors
with higher weights will be visited by more routes. On the other
hand, sensors are visited by routes with different lengths in RDPL.
Sensors with higher weights will be visited by shorter routes. Af-
terwards, a distributed implementation of the route design algorithm
D-RDPL is also provided as an extension of RDPL. Simulation re-

CHAPTER 7. THE ROUTE DESIGN PROBLEM 136

sults suggested that our algorithms can greatly reduce the average
inter-arrival times in wireless sensor-actuator networks.

2 End of chapter.

Chapter 8

Adaptive Delay-Minimized Route
Design

8.1 Overview

In WSANs, the powerful and mobile actuators can patrol along dif-
ferent routes and communicate with the static sensor nodes. This
chapter is motivated by applications in which the objective is to
minimize the data collection time in a stochastic and dynamically
changing sensing environment. This is a departure from the previ-
ous static and deterministic mobile element scheduling problems.

In this chapter, we propose PROUD, a probabilistic route de-
sign algorithm for wireless sensor-actuator networks. PROUD of-
fers delay-minimized routes for actuators and adapts well to network
dynamics and sensors with non-uniform weights. This is achieved
through a probabilistic visiting scheme along pre-calculated routes.
We present a distributed implementation for route calculation in PROUD
and extend it to accommodate actuators with variable speeds. We
also propose the Multi-Route Improvement and the Task Exchange
algorithms for load balancing among actuators. Simulation results
demonstrate that our algorithms can effectively reduce the overall
data collection time in wireless sensor-actuator networks. It well
adapts to network dynamics and evenly distributes the energy con-
sumption of the actuators.

137

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 138

8.2 Overview of The Route Design Problem

In this section, we describe the network model and give an overview
to the route design problem.

8.2.1 Network Model

We consider a Wireless Sensor-Actuator Network (WSAN) consist-
ing of M mobile actuators and N static sensors. Each of the sensors
and actuators is equipped with a wireless transceiver. The actuators
move in the sensing field along independent routes, at constant or
variable speeds. Each static sensor has a limited buffer to accom-
modate locally sensed data. When an actuator approaches, the sen-
sor can upload the data to the actuator and free its buffer. We also
assume that the sensors have different weights, according to their
data generation rates or event frequencies. Intuitively, sensors with
higher weights expect shorter average actuator inter-arrival times.
The weight of sensors may change dynamically according to the
varying data generation rate and event frequency in the network.

8.2.2 The Route Design Problem

We consider the design of routes for multiple actuators in WSANs,
and the objective is to minimize the waiting time for the sensors
to upload data to the actuators. Specifically, we try to minimize
the weighted average actuator inter-arrival time to sensors, which is
defined as

Minimize
∑

∀i
Ai ∗ wi ∗Ni, (8.1)

where Ai and Ni are the actuator inter-arrival time and the total num-
ber of sensors with weight wi. We consider periodical routes, i.e.,
each actuator visits along a route cyclically. It is easy to show that
this periodic route design minimized the expected inter-arrival time
if the route is optimized.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 139

W=0.5

W=1.0

2,

4
1,

3

5

8

1,10

2, 11

3, 12

4, 13

5,14

6

7

8

9

15

16

17

18

(a) (b)

6

7

Actuator

Figure 8.1: Two examples of route design.

Figure 8.1 illustrates two examples of route design in a single
actuator case. The set of black nodes Sb and white nodes Sw have
weights of Wb = 1.0 and Ww = 0.5 respectively. Let Ab and Aw

be the actuator inter-arrival time of all black and white nodes. We
expect the inter-arrival time of Sb to be half of Sw, such that Aw =
2 ∗ Ab. The periodic route of the actuator is marked with numbers
which indicate the visiting sequence. In this simple example, we
assume that actuators move at a constant speed. In Figure 8.1(a), the
actuator would visit the black nodes twice and the white nodes once
every cycle. The average inter-arrival time of white nodes is thus,

Aw =
2|TSP (Sb)|+ |TSP (Sw)|+ 2 ∗ ‖Sw, Sb‖

v
, (8.2)

where |TSP (Sb)| is length of the shortest path in the traveling sales-
man problem (TSP) that contains the set of nodes Sb, ‖Sb, Sw‖ is
the closest distance between the set Sw and Sb, and v is the mov-
ing speed of the actuator. Note that the TSP itself is an NP-complete
problem, but there are many approximation algorithms available [33].

Figure 8.1(b) shows a more complicated example with one actua-
tor. Again, it is easy to see that the route design problem is NP-hard
even in this single actuator case, so will be the multi-actuator case.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 140

8.3 The Probabilistic Route Design (PROUD) Algo-
rithm

We now describe the probabilistic route design (PROUD). In this
algorithm, a priori route is calculated at the very beginning. Then,
the sensors are visited along the route probabilistically according to
their weights. For instance, sensors with a visiting probability 1.0
are visited in every cycle, while sensors with a visiting probability
0.5 only have half chance to be visited in each cycle. In this scheme,
an actuator can easily update the visiting probability of the sensors
based on its observed data generation rate or event frequency. In
other words, the priori route can be re-used without re-calculation
when adapting to network dynamics.

In the following, we first give a centralized design that depends
on one of the actuators or the base station to execute the algorithm.
We then extend it to a distributed implementation in the next section.

8.3.1 Small-Scale Network
Forming a Priori Route

A priori route is formed by constructing a TSP path which contains
all locations to be visited. Many polynomial-time approximation
algorithms have been proposed for the NP-hard TSP problem [11,
7, 22]. We adopt the well-known Approx-TSP-Tour algorithm [22]
here for its low cost and bounded performance. This algorithm first
creates a minimum spanning tree (MST) whose weight is a lower
bound on the length of an optimal traveling-salesman tour. It then
creates a tour based on the MST, and the cost of that tour is not
more than twice of the optimal. The MST can be created using a
polynomial-time, e.g., Prim’s algorithm [22].

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 141

1.0
1.0

1.0

1.0

1.0

0.5

0.5

0.5

0.5

0.5

W=0.5

W=1.0

Actuator

Figure 8.2: Visiting nodes probabilistically according to their weights.

Visiting Sensors Probabilistically

We then apply a probabilistic visiting model, in which actuators visit
the sensors on the priori route in sequence, but selectively. Let
s1, s2, ..., si, si+1, ..., sn be the sequence of sensor locations along
the priori route. After visiting location si, the actuator determines
whether to visit si+1 by generating a random number between 0.0
and 1.0. If the random number is smaller than the visiting probabil-
ity of si+1, i.e., pi+1, then it visits si+1 in the next step. If not, the
actuator skips si+1 and determines whether to visit the next location
si+2. This process repeats in every cycle.

Intuitively, the sensors with higher weights should be assigned
with a higher probability, such that they are visited more frequently.
Hence, we set the visiting probability pi of a location i to be wi,
where wi is the (normalized) weight of the sensors. Figure 8.2 shows
an example of probabilistic route design with two types of sensor
nodes. The black nodes have visiting probability 1.0, which indi-
cates that they will be visited in every cycle. On the other hand,
each white node is visited only with a probability 0.5 in every cycle.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 142

Allocating the Actuators

For a small network, the actuators can be placed evenly on the priori
route during initialization. The actuators then work along the priori
route and visit the sensor locations probabilistically according to the
weights.

The expected route length with probabilistic visiting can be cal-
culated as

E[R] =
n−2∑
r=0

n∑
i=1

‖i, i + r‖ ∗ pi ∗ pi+r+1Π
r
k=1(1− pi+k), (8.3)

where 1, ..., n is a sequence of nodes on the route R of actuator,
‖i, j‖ is the distance between i and j, and pi is the visiting probabil-
ity of i.

For a sensor i with a visiting probability pi, its average actuator
inter-arrival time Ai is thus

Ai =
E[R]

pi ∗ v ∗M
, (8.4)

where v is the moving speed of the actuators.
In a dynamic environment, the visiting probability of the sen-

sors can be updated according to their data generation rate or event
frequency, but the route does not have to be re-calculated for each
individual change.

Time Complexity Analysis:

Recall that N and M denote the number of sensors and the num-
ber of actuators, respectively. Then, the complexity for each step of
the PROUD algorithm is as follow:

• Step 1: The running time of the Approx-TSP-Tour algorithm is
O(E) = O(N 2), since the input is a complete graph.

• Step 2: The time complexity is O(N) for an actuator to select

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 143

the next locations according to the visiting probability in every
cycle.

• Step 3: The time complexity of actuator allocation is O(M).

In summary, the PROUD algorithm has an overall time complex-
ity of O(N 2 + M).

Bound Analysis:

Since the inter-arrival time Ai is proportional to the weights of
sensors, we can focus on analyzing Ai of the locations in the lowest
weight range. Let Ai and Ai∗ be the average actuator inter-arrival
time for sensors Si in the lowest weight range wi in PROUD and
the optimal algorithm, respectively. The optimal algorithm would
visit all locations in the lowest weight range at least once in one
cycle. Thus the actuator will walk on a route with a length at least
|TSP (Si)|. Since there are M actuators in the network, we have

A∗
i ≥

|TSP (Si)|
v ∗M

. (8.5)

The ratio of Ai/A
∗
i is thus equal to

Ai

A∗
i

≤ E[R]

pi ∗ |TSP (Si)| . (8.6)

8.3.2 Large-Scale Network with Partitions

In large-scale sensor networks, network partitions may happen, which
divide the sensors into different clusters. In this case, actuators shar-
ing the same route may not be as efficient as walking on distinct
routes. Consider the network in Figure 8.3, route designs with two
actuators walking on the same route and distinct routes are in (a)
and (b) respectively. Clearly, the routes in (b) can achieve shorter

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 144

inter-arrival time than (a) if

‖q1, q4‖+ ‖q2, q3‖ ≤ ‖q1, q2‖+ ‖q3, q4‖. (8.7)

This suggests that the sensor distribution should be an important
consideration on route design. In particular, sensors in different
clusters should be visited by actuators on independent routes to min-
imize the inter-arrival time.

Forming Clusters

We use a simple algorithm for clustering the sensors, as shown in
Algorithm 9. It divides an MST into two sub-trees by removing
its longest edge e, provided that w(e)/w(m) ≥ δ, where w(e) is the
length of edge e. By doing this, the sensors which are geographically
far apart will be involved in different sub-trees, and later, distinct
routes. Note that δ is set to ensure the number of clusters is smaller
than the number of actuators.

Algorithm 9 Clustering the sensors
Function Cluster(MST (S))
Find the edge m with the median length;
Find the longest edge e;
if w(e)/w(m) ≥ δ then

delete edge e;
Cluster(MST (S1));
Cluster(MST (S2));

end if

Forming Priori Routes and Visiting Sensors Probabilistically

After clustering the sensors, the probabilistic route design algorithm
can be applied in each cluster following the simple case in a small-
scale network.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 145

a1

a2

(b)(a)

a1, a2

q1

q2

q3

q4

Figure 8.3: Two actuators walking on (a) the same route (b) distinct routes.

Allocating the Actuators

Multiple routes are formed from the above. They may have different
expected route lengths due to the various sensor locations and visit-
ing probabilities in the clusters. The uneven expected route lengths
may cause unequal inter-arrival times for the sensors with the same
weight. To address this problem we can allocate different number
of actuators to the routes. Intuitively, routes with longer expected
lengths should be allocated with more actuators. This is illustrated
in Algorithm 10, where NR is the total number of routes, remaina is
the number of remaining unassigned actuators, and nj is the number
of actuators assigned to route Rj.

Algorithm 10 Actuator allocation for distinct routes
for j = 1 to NR do

nj = 1;
end for
remaina = M −NR;
while remaina > 0 do

Find the maximum E[R∗
j];

E[R∗
j] = E[R∗

j] ∗ n∗j/(n∗j + 1);
n∗j + +;
remaina −−;

end while

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 146

8.4 Distributed Implementation

For large network, it can be difficult for a single node to collect the
information and execute the route design algorithm in a centralized
manner. In this section, we present a practical distributed implemen-
tation for PROUD, in which sensors and actuators form clusters by
constructing MSTs cooperatively, then the actuators construct the
priori routes by traversing the MSTs independently.

Forming R-clusters

First, the sensors construct MSTs locally by communicating with
their neighbors. Given the communication range of sensors is Rs,
the weight of each edge e in the MST must be smaller than or equal
to Rs; that is, w(e) ≤ Rs. We refer to such an MST as an R-
Cluster, RC(V,E), which includes all the sensors that are within
Rs to some sensors in RC(V,E). The cost of the R-cluster is de-
noted by Cost(RC), which is the sum of w(e), ∀e ∈ E. It will be
stored by the sensors in RC(V,E). There are many existing dis-
tributed algorithms for forming an MST [43, 9], and we apply a fast
algorithm from [36] for this purpose.

Connecting R-clusters

An R-cluster forest is formed by the sensors as above. These R-
clusters can be connected together to form MSTs that contain more
sensor locations. We divide the network into M sub-areas, each of
which is explored by one actuator. Each actuator looks for the R-
clusters in its area and connects them if they are within a certain
distance, say ‖RC1, RC2‖ ≤ δ. Then, a new cluster is formed with
cost Cost(RC1) + Cost(RC2) + ‖RC1, RC2‖.

Similarly, the actuators also connect their R-clusters/clusters with
those in their neighboring areas. Algorithm 11 shows how two actu-
ators A1 and A2 connect their R-clusters RC1 and RC2, where BD

is the boundary of the two corresponding areas.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 147

Algorithm 11 Connecting the R-Clusters
Function Connect-Cluster(RC1(V1, E1), RC2(V2, E2))
if (‖RC1, BD‖ ≤ δ) and (‖RC2, BD‖ ≤ δ) then

Actuators A1 and A2 exchange locations close to BD;
Find the shortest edge e that connects RC1 and RC2;
if e ≤ δ then

Form new cluster Cnew(V, E);
V = V1

⋃
V2;

E = E1
⋃

E2
⋃{e};

Cost(Cnew) = Cost(RC1) + Cost(RC2) + w(e);
end if

end if

Allocating Actuators

Actuators are then allocated to the clusters, such that each cluster
is assigned to at least one actuator and no clusters are unassigned.
This can be achieved by running Algorithm 12 by individual actu-
ators. Each actuator associates itself to any unassigned clusters in
its area. If the associated cluster is crossing two or more areas, the
actuator has to inform the actuators in those areas. It is possible that
the number of clusters is greater than the number of actuators. The
unassigned clusters can be connected with some assigned clusters to
ensure they are served by at least one actuator. On the contrary, a
remaining actuator can associate itself with a nearby cluster with the
highest cost. If multiple actuators are serving one cluster, they can
divide it equally and serve the sensors involved independently.

Finally, a priori route is computed by the actuator in each cluster
using the Approx-TSP-Tour algorithm [22].

8.5 Enhancements to PROUD

In this section, we discuss the integration of actuators with variable
speeds and also show two enhancements for load balancing among
actuators.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 148

Algorithm 12 Allocating actuators to clusters
Function Allocate-Actuator (Actuator A)
if ∃ unassigned Ci in A’s area then

A associates with any Ci∗;
if Ci∗ across other areas χ then

A alerts the actuators in χ;
end if
for ∀ remaining unassigned Ci do

Find closest assigned cluster C′ to Ci;
Connect-Cluster(Ci, C′);

end for
else

Find C∗ with the highest cost in neighboring areas;
A associates with C∗;
Divide C∗ equally with other associated actuators;

end if

8.5.1 Actuators with Variable Speeds

So far we have considered actuators with constant speeds only. Ac-
tuators with variable speeds however could achieve even shorter
inter-arrival time for heterogeneous networks.

Let oi be the expected average actuator inter-arrival time for the
sensors with weight wi. For simplicity, we assume the visiting prob-
ability p1 of the sensors with the shortest expected average actuator
inter-arrival time o1 to be 1. The visiting probability of the remaining
sensors with the expected average actuator inter-arrival time, say oi,
can be calculated by o1/oi. The visiting probability to sensors can be
updated adaptively by the actuators according to the dynamic change
of the expected average actuator inter-arrival time. By adjusting the
speeds of the actuators, we can ensure sensors with the same visit-
ing probability can achieve similar inter-arrival times, even they are
visited by different actuators on distinct routes.

Assume that node i on Rj has a probability pi of being visited by
actuator j every cycle. Its average actuator inter-arrival time Ai can
be calculated as

Ai = E[Rj]/(pi ∗ vj), (8.8)

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 149

where vj is the moving speed of actuator j.
Since Ai must be shorter than oi,

vj ≥ E[Rj]/(pi ∗ oi). (8.9)

Without loss of generality, vj can be determined easily by assuming
pi = 1, that is, vj ≥ E[Rj]/o1.

8.5.2 Load Balancing in Route Design

For mobile actuators, since its energy consumption is also increasing
with its speed [88], the unequal moving speeds might cause imbal-
anced energy consumption. To tackle this problem, we propose two
algorithms to balance the workload of the actuators, while guaran-
teeing the routes designed are energy-efficient.

Multi-Route Improvement Algorithm

Since the actuator on a route with a longer expected length con-
sumes more energy, the loads of actuators can be balanced by form-
ing routes with identical expected lengths. A loaded actuator may
assign some of its sensor locations to its neighboring actuator with
the minimum expected route length.

Consider two routes R1 and R2 involved in multi-route improve-
ment. Their new expected route lengths become ideal if E[R′

1] =
E[R′

2] = (E[R1] + E[R2])/2. In other words, R1 should transfer a
length of (E[R1] − E[R2])/2 to R2. Although sensor locations can
be transferred one by one from R1 to R2, until the expected lengths
of the two routes become equal, but this kind of node-by-node con-
sideration is inefficient. Therefore, we provide an approximation
method to find the proportion of sensor locations ξ to be transferred
from MST1 to MST2:

cost(ξ)

cost(MST1)
=

(E[R1]− E[R2])/2

E[R1]
, (8.10)

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 150

a1

a2

(b)(a)

W = 0.1

0.2

0.1

0.1

0.3

0.7

0.9

0.8 0.7

0.9

1.0

Figure 8.4: Routes involve (a) different amount of sensors (b) sensors with differ-
ent weights.

where cost(ξ) and cost(MST1) represent the costs of the minimum
spanning trees that contain the sensor locations in ξ and R1, respec-
tively.

Task Exchange Algorithm

In certain scenarios, it is more energy efficient for one actuator to
take up more load than another in the overall energy consumption
point of view. For example, the two actuators walking on two dis-
tinct routes with unequal lengths (see Figure 8.4) achieve better per-
formance than those on routes with identical lengths. It may happen
in a network that involves clusters with different sizes or weights. It
is unfavorable to enforce load-balancing by equalizing the lengths
of the two routes as it will increase the lengths of both routes.

In this scenario, load balancing among the actuators can be achieved
by exchanging their routes. Intuitively, an overloaded actuator may
exchange its route with another actuator traveling at a lower speed.
More formally, we define EnergyA1 and EnergyA2 to be the re-
maining energy of actuator A1 and A2, and v1 and v2 to be the
minimum actuator speeds on routes R1 and R2. A task exchange
algorithm is executed when one of the actuator A1 has less remain-
ing energy than the other actuator A2, but it is required with a higher

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 151

moving speed. As shown in Algorithm 13, tasks of the two actuators
are exchanged by swapping their routes.

Algorithm 13 Task exchanges among actuators
if (EnergyA1 << EnergyA2)and(v1 >> v2) then

A1 moves to R2;
A2 moves to R1;

end if

8.6 Performance Evaluation

We have conducted extensive simulations for our proposed route
design algorithms with multiple actuators. The simulation settings
are summarized in Table 8.1, which are drawn from existing works
[99, 52, 40].

Table 8.1: Simulation Parameters

Network size 200m x 200m
Sensor distribution Uniform random

or Cluster-based
uniform or Cluster-
based non-uniform

No. of sensors (N) 100
Weight of sensors (Wj) 0.0-1.0
No. of actuators M
Speed of actuators v
Radio range 40m
MAC layer IEEE 802.11

8.6.1 Average Actuator Inter-Arrival Time

In the first set of experiments, we evaluate the average actuator inter-
arrival time Aavg with various kinds of sensor distributions. Note
that the average inter-arrival distance Davg is shown in our results,

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 152

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

PROUD

BELP-2D

PBS

Figure 8.5: Actuator inter-arrival time under uniform random sensor distribution.

instead of the exact Aavg. Given the moving speed v for a specific
actuator hardware, the average inter-arrival time of actuator Aavg can
be readily calculated as Davg/v.

We compare our results with that of two state-of-the-art algo-
rithms: the partitioning based scheduling algorithm (PBS) [49] and
the bounded event loss probability (BELP-2D) algorithm in the 2D
case [12]. The PBS algorithm partitions all nodes into several groups
(called bins) and forms a schedule that concatenates them, such that
buffer overflow can be avoided in sensors with different data gener-
ation rates. The BELP-2D algorithm deals with the bounded event
loss problem in a 2D space, which ensures that time elapsed between
two consecutive visits is less than a critical time. It uses the solu-
tions of the Traveling Salesman with Neighborhoods (TSPN) to find
routes. To achieve a fair comparison, we adapt the Approx-TSP-
Tour algorithm [22] to approximate the TSP paths in all the three
algorithms.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 153

0

500

1000

1500

2000

2500

3000

3500

4000

0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

PROUD

BELP-2D

PBS

Figure 8.6: Actuator inter-arrival time under cluster-based uniform sensor distri-
bution.

Uniform Random Sensor Distribution

Figure 8.5 shows the average inter-arrival distance Davg for an ac-
tuator to visit the sensors periodically under uniform random sensor
distribution with N = 100 and M = 5. It evaluates distances Davg

to the sensors with weights in the ranges 0.0-0.2, 0.2-0.4, 0.4-0.6,
0.6-0.8, and 0.8-1.0, respectively. The results of PROUD, PBS, and
BELP-2D are shown for comparisons.

The experimental results demonstrate that PROUD, PBS, and
BELP-2D have comparable inter-arrival distance Davg for sensors
with wi = 1. Both PROUD and PBS differentiate the actuator
inter-arrival times according to the weights of sensors. Sensors with
higher weights achieve shorter inter-arrival distances Davg, and hence
shorter inter-arrival times Aavg. However, the Davg of PBS is im-
practically long for most lower weighted sensors. PBS does not
work well here as the locations of bins are widely spread.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 154

0

200

400

600

800

1000

1200

1400

1600

0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

PROUD

BELP-2D

PBS

Figure 8.7: Actuator inter-arrival time under cluster-based non-uniform sensor
distribution.

On the other hand, BELP-2D achieves constantly low Davg for
all sensors, though it does not differentiate the inter-arrival times
at all. This is because the route in BELP-2D is the shortest TSP
path that contains all the sensor locations. Nevertheless, PROUD is
still more suitable for sensor networks with different weights. Re-
call that the minimum required moving speed of the actuators is de-
termined by o1 in both PROUD and BELP-2D. Since the Aavg of
sensors with wi = 1 in PROUD is lower than that in BELP-2D,
by Aavg = Davg/v, the minimum required speed of actuators in
PROUD is actually lower than that in BELP-2D.

Cluster-Based Uniform Sensor Distribution

We next evaluate our algorithm under cluster-based sensor distri-
bution. Specifically, we place the sensors into three clusters and
generate the weights of sensors uniformly and randomly in this ex-

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 155

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.2 0.4 0.6 0.8 1

D
is
ta
n
c
e
 (
m
)

Weight (w)

PROUD

BELP-2D

PBS

Figure 8.8: Actuator inter-arrival time under Eye Topology.

periment.
Similarly, Figure 8.6 shows the average actuator inter-arrival dis-

tance Davg of the three algorithms. Under this cluster-based sensor
deployment, PROUD achieves shorter Davg than both BELP-2D and
PBS algorithms for sensors with high and median weights. PROUD
is able to differentiate the sensor visiting frequency and provide the
shortest Davg to highly weighted sensors, which satisfies our main
objective. An interesting observation is that the Davg under cluster-
based sensor deployment is generally shorter than that under uni-
form random deployment in all the algorithms. The reason is that the
sensors are more concentrated under cluster-based deployment, so
they have shorter Euclidean distances, which leads to shorter routes.

Cluster-Based Non-Uniform Sensor Distribution

We further evaluate our algorithm under a cluster-based and non-
uniform sensor distribution. Apart from deploying the sensors into

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 156

three clusters, we also put the sensors with similar weights into one
cluster here. The weights of the sensors in the three clusters fall in
the ranges 0-0.33, 0.33-0.66, and 0.66-1.0, respectively.

Again, Figure 8.7 shows the results for the same network with
M = 5. We observe that PROUD performs generally better than
BELP-2D. It achieves relatively short Davg for sensors with high and
median weights. Again, it differentiates the Davg, and hence Aavg,
among sensors according to their weights. PROUD also achieves
comparable Davg with PBS for wi = 1 and much lower Davg for all
the remaining sensors.

Overall, PROUD performs generally better than BELP-2D and
PBS under various sensor and weight distributions. It always achieves
shorter Davg than BELP-2D for highly weighted sensors, and much
shorter Davg than PBS for most sensors in all cases.

8.6.2 Minimum Speed of Actuators

We investigated the average inter-arrival time (or distance) for a net-
work that involves actuators with constant speed in the previous ex-
periment. Now, we extend the experiment to investigate behaviors
of actuators with variable speeds in PROUD. Different from the pre-
vious settings, sensors have a bound on the average actuator inter-
arrival times. The aim of this experiment is to show the minimum
required speeds of actuators for satisfying the required average inter-
arrival times. We evaluate our algorithm in a network with M = 8
and N = 100, and set the expected average actuator inter-arrival Ai

for the sensors with the highest weights wi = 1 to be 2 min.
Figure 8.9 shows the minimum moving speeds of actuators in a

network under uniform random sensor deployment. The eight actu-
ators have similar minimum moving speeds as they are walking in
the sub-areas where the sensor locations and weights are generated
randomly. The figure also shows that the minimum speeds increase
with the number of sensors. It is because the actuators need to walk
on longer routes in order to visit more sensors.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 157

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100

M
in
im
u
m
 S
p
e
e
d
 o
f
A
c
tu
a
to
r
(m

/s
)

Number of Sensors (N)

Actuator 1

Actuator 2

Actuator 3

Actuator 4

Actuator 5

Actuator 6

Actuator 7

Actuator 8

Figure 8.9: Minimum speed of actuators under under uniform random sensor dis-
tribution.

Figure 8.10 and 8.11 show the result in a network under cluster-
based sensor distribution. Similar to the previous experiment, the
sensors are deployed into three clusters. Again, the weights of sen-
sors are random in Figure 8.10, while the weights in the three clus-
ters fall in the ranges 0-0.33, 0.33-0.66, and 0.66-1.0 in Figure 8.11.
The experiment results show that the required moving speeds of ac-
tuators under cluster-based sensor deployment are lower than those
under uniform random deployment. The reason is that the sensors
are concentrated in smaller areas, therefore, can be walked through
with shorter routes. We also observe that the actuator speeds con-
verge to three lines. The effect is especially obvious in Figure 8.11
due to its special distribution pattern of sensor weights. The three
clusters are walked through by three routes with constant number of
actuators on them consistently.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 158

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100

M
in
im
u
m
 S
p
e
e
d
 o
f
A
c
tu
a
to
r
(m

/s
)

Number of Sensors (N)

Actuator 1

Actuator 2

Actuator 3

Actuator 4

Actuator 5

Actuator 6

Actuator 7

Actuator 8

Figure 8.10: Minimum speed of actuators under cluster-based uniform sensor dis-
tribution.

8.6.3 Multi-Route Improvement

We next evaluate the performance of PROUD with multi-route im-
provement in this experiment. A network with 100 sensors is de-
ployed with uniform random distribution, together with two actua-
tors. The actuators are assigned to two sub-areas at initialization and
form distinct routes separately. Since the weights of sensors change
dynamically, the two actuators have to update their routes accord-
ingly.

We let the actuators update their routes every 10 mins. The speeds
of the actuators with and without multi-route improvement are com-
pared. Figure 8.12 shows that the two actuators with multi-route
improvement walk at closer speeds than that without. It is clear that
the multi-route improvement balances the expected lengths of the
two routes and reduces the speed difference effectively. This trans-
lates into a balanced energy consumption.

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 159

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100

M
in
im
u
m
 S
p
e
e
d
 o
f
A
c
tu
a
to
r
(m

/s
)

Number of Sensors (N)

Actuator 1

Actuator 2

Actuator 3

Actuator 4

Actuator 5

Actuator 6

Actuator 7

Actuator 8

Figure 8.11: Minimum speed of actuators under cluster-based non-uniform sensor
distribution.

8.6.4 Task Exchange Among Actuators

Finally, we evaluate the task exchange algorithm and focus on the
energy consumptions of actuators directly. We consider a network
with M = 5 and N = 100 under cluster-based distribution. Again,
Clusters I, II, and III are formed, which involve sensors with low,
medium, and high weights, respectively.

Figure 8.13 shows that the actuators without task exchange have
significantly different energy consumptions. Particularly, Actuator
1 and Actuator 5 have a significantly different energy consumption
(lower and higher, respectively) than the others. Cluster III is as-
signed with three actuators (Actuators 2,3,4) due to the high weights
of its sensors, while Clusters I and II are both assigned with only 1
actuator. Since Cluster II has a longer expected route length than
Cluster I, its actuator (Actuator 5) will move faster and consume en-
ergy more quickly. With the task exchange algorithm, Actuator 1

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 160

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

M
in
im
u
m
 S
p
e
e
d
 o
f
A
c
tu
a
to
r
(m
/s
)

Time (min)

Actuator 1

Actuator 2

Actuator 1 with Route Improvement

Actuator 2 with Route Improvement

Figure 8.12: Speed of actuators with multi-route improvement.

and Actuator 5 walk on the routes of Clusters I and II interchange-
ably to balance their workloads, hence, achieve comparable energy
consumptions.

8.7 Summary

In this chapter, we focused on wireless sensor networks with multi-
ple actuators and their route design. We proposed an adaptive Prob-
abilistic Route Design (PROUD) algorithm, which aims at minimiz-
ing the overall inter-arrival time of actuators with non-uniform sen-
sor weights in a dynamically changing environment. It constitutes
a significant departure from traditional static and deterministic mo-
bile element scheduling. In PROUD, sensors are visited by actuators
probabilistically along a priori route. Sensors with higher weights
are visited with higher probabilities, enabling shorter actuator inter-
arrival times. Most importantly, the visiting frequency to sensors

CHAPTER 8. ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN 161

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
k
J
)

Time (min)

Actuator 1

Actuator 2, 3, 4

Actuator 5

Actuator 1 with Task Exchange

Actuator 2, 3, 4 with Task Exchange

Actuator 5 with Task Exchange

Figure 8.13: Energy consumption of actuators with task exchange.

can be updated easily by adjusting their visiting probability without
complicated route re-calculations. We studied the proposed algo-
rithm for actuators with constant velocity in both small-scale and
large-scale networks. We also discussed a distributed implemen-
tation and extended the approach to accommodate actuators with
variable speeds. We further proposed the Multi-Route Improvement
and the Task Exchange algorithms for evenly distributing workload
among the actuators. Simulation results suggested that the proposed
algorithm can greatly reduce the average inter-arrival times in wire-
less sensor-actuator networks for highly weighted sensors. The ap-
proach also adapts well to the dynamic change of the network and
effectively balances the energy consumption of the actuators.

2 End of chapter.

Chapter 9

Intruder Detection for Sinkhole
Attack

9.1 Overview

We have disccused several aspects in delay-oriented reliable com-
munication and coordination for WSANs. Now, we also consider
the security issues in data collection for sensor networks. In particu-
lar, we propose an efficient algorithm to protect the network against
a common and destruction attack on data collection.

In a WSN or WSAN, multiple nodes would send sensor read-
ings to a base station for further processing. It is known that such
a many-to-one communication is highly vulnerable to a sinkhole at-
tack, where an intruder attracts surrounding nodes with unfaithful
routing information, and then performs selective forwarding or al-
ters the data passing through it. A sinkhole attack forms a serious
threat to sensor networks, particularly considering that the sensor
nodes are often deployed in open areas and of weak computation
and battery power. In this chapter, we present a novel algorithm
for detecting the intruder in a sinkhole attack. The algorithm first
finds a list of suspected nodes through checking data consistency,
and then effectively identifies the intruder in the list through analyz-
ing the network flow information. The algorithm is also robust to
deal with multiple malicious nodes that cooperatively hide the real
intruder. We have evaluated the performance of the proposed algo-

162

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 163

rithm through both numerical analysis and simulations, which con-
firmed the effectiveness and accuracy of the algorithm. Our results
also suggest that its communication and computation overheads are
reasonably low for wireless sensor networks.

9.2 Network Model and Problem Statement

We consider a wireless sensor network that consists of a base station
(BS) and a collection of geographically distributed sensor nodes,
each denoted by a unique identifier IDv. The sensor nodes continu-
ously collect and forward the sensed environmental data to the base
station in a multi-hop fashion. As mentioned earlier, this commonly
used many-to-one communication pattern is vulnerable to sinkhole
attacks. In this type of attack, an intruder usually network traffic by
advertising itself as having the shortest path to the base station. For
example, as shown in Fig. 9.1a, an intruder, which is equipped with
much higher computation and communication power than a nor-
mal sensor node, creates a high-quality single-hop link to the BS.
It can then advertise imitated routing messages about the high qual-
ity route, spoofing the surrounding nodes to create a sinkhole (SH).
A sinkhole can also be performed using a wormhole [78], which cre-
ates a metaphorical sinkhole with the intruder being the center; the
intruder then relays the messages received in one part of the network
toward the sink using a tunnel (see Fig. 9.1b).

We assume the sensor nodes are either normal or malicious. The
center of a sinkhole attack is a malicious node compromised by the
intruder. Note that, even if there is only one compromised node, it
can affect many surrounding normal nodes by creating a high quality
route to the base station. Furthermore, this intruder may also collude
with some other malicious nodes. They could even collaboratively
cheat the detection algorithm by suggesting a normal node as the
intruder (the victim, denoted as SH’).

The focus of our work is to effectively identify the real intruder

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 164

(a) (b)

Figure 9.1: Two examples of sinkhole attack in wireless sensor networks. (a)
Using an artificial high quality route; (b) Using a wormhole.

(SH) in the sinkhole attack. Once it is identified, a routing pro-
tocol or a higher-layer application can easily isolate the intruder
from the network to avoid further loss. We assume that the base
station is physically protected or has tamper-robust hardware [111];
hence, it acts as a central trusted authority in our algorithm design.
The base station also has a rough understanding on the location of
nodes, which could be available after the node deployment stage or
obtained by various localization mechanisms [57]. For ease of ex-
position, in Table 9.1, we list the major notations used throughout
this chapter.

9.3 Intruder Detection for Sinkhole Attack

We now describe our algorithm for detecting a sinkhole attack, and
then efficiently identifying the intruder. We first focus on the case of
a single malicious node only, i.e., the intruder (SH). We assume that,
in this simple scenario, the SH will affect sensor data collection,
but will not interfere the detection algorithm through dropping or
altering the control messages. In the next section, we will present
enhancements dealing with multiple malicious nodes that collude

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 165

Table 9.1: List of Notation

BS Base station
SH Real intruder in the sinkhole attack
SH ′ False intruder (victim) in the sinkhole attack
IDv Identity of sensor node v
p Probability of a node being malicious
d Packet drop rate
k No. of neighbors to which a message will be

forwarded
hmax Hops from the farthest node to the BS
hrc Hops from the BS where root correction takes

place
l Levels from the BS in the tree of network flow
tl Number of nodes at level l
N Total number of nodes in the attacked area
Fr Number of correct network flow information

collected
Fm Number of incorrect network flow information

collected
Fs Number of missing network flow information
Fn Total number of network flow information col-

lected

and even interfere the detection algorithm.

9.3.1 Estimating the Attacked Area

In a sinkhole attack, the intruder can drop, alter, or selectively for-
ward the sensing data. The BS can suspect the existence of an attack
through various statistical or application-specific data analysis. The
sensors, which are closely located, are expected to have similar read-
ings from the environment. We divide the network into a number of
sub-areas and compare the data within each of them. The BS can
detect the attack by finding the inconsistent data between the nor-
mal sensors and attacked sensors in the sub-areas. It can also detect

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 166

the missing data from the attacked sensors and identify the attacked
area. Since the area affected by the attack is limited in size, it is
impossible for an intruder to alter the data from all sensors in the
network. Thus, the attack must be detected in some of the sub-areas.

For illustration, consider a monitoring application in which sen-
sor nodes submit data to the BS periodically. Let X1, ..., Xn be the
sensing data collected in a sliding window, and X̄ be their mean.
Define f(Xj) as,

f(Xj) =

√
(Xj − X̄)2

X̄
.

A simple measure for identifying a suspected node is whether
f(Xj) is greater than a certain threshold, for the data from this node
is noticeably inconsistent with others in the same area. More ad-
vanced statistical methods can be found in [117, 129]. After identi-
fying a list of suspected nodes, the BS can estimate where the sink-
hole locates. Specifically, it can circle a potential attacked area,
which contains all the suspected nodes. An example is shown in
Fig. 9.2, where the shaded nodes are found to contain missing or
inconsistent data. Note that all the nodes in the circle could be at-
tracted by the sinkhole sooner or later, and we thus refer to them as
affected nodes.

9.3.2 Identifying the Intruder

Since the attacked area may contain many nodes, and the sinkhole is
not necessarily the center of the area in a multi-hop sensor network,
it is necessary to further locate the exact intruder and isolate it from
the network. This can be achieved through analyzing the routing
pattern in the affected area.

We now demonstrate a method for collecting the network flow
information, which facilitates the routing pattern analysis. First, the
BS sends a request message to the network. The message contains
the IDs of the affected nodes, and is flooded hop by hop. For each

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 167

BS

SH

Nodes with missing

or inconsistent data

Figure 9.2: Estimate the attacked area.

node receiving the request, if its ID is there, it should respond to
the BS with a message, which includes its own ID, the ID of the
next-hop node, and the cost for routing, e.g, hop-count to the BS.
Note that the next-hop and the cost could already be affected by the
attack; hence, the response message should be transmitted along the
reverse path in the flooding, which corresponds to the original route
with no intruder.

At the BS, each piece of network flow information can be rep-
resented by a directed edge, a

−−→
cost b, where a denotes an affected

node, b denotes the next hop of a, and cost is the cost from a to the
BS. The BS can then visualize the routing pattern by constructing
a tree using the collected next hop information. Note that the area
invaded by a sinkhole attack has a special routing pattern, where
all network traffic flows toward the same destination, that is, the in-
truder SH. As shown in Fig. 9.3, once the tree is constructed, the
BS can easily identify the SH, which is exactly the root of the tree
in this single malicious node case.

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 168

BS

SH

Figure 9.3: Network flow in the attacked area.

9.4 Enhancements Against Multiple Malicious Nodes

As mentioned before, there could be multiple malicious nodes that
prevent the BS from obtaining correct and complete flow informa-
tion for intruder detection. Specifically, they may cooperate with the
intruder to perform the following misbehavior:
1. Forward the response messages selectively or even drop all (de-
nial of service);
2. Modify the response messages passing through; and
3. Respond with false network flow information of itself.

In this section, we present effective enhancements that address
these problems.

9.4.1 Dealing with Dropped Flow Information

Malicious nodes may drop the response messages of network flow
information, as shown in Fig. 9.5a. To mitigate the problem, the

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 169

sensors can forward the information to the BS through multiple re-
dundant paths. Specifically, a node can forward reply messages to k

neighbors, k ≥ 1. Let p be the probability that a node is malicious,
hmax be the number of hops from the farthest node to the BS, and
the number of nodes in level l (i.e., hop count of l to the BS) be tl.
For uniformly distributed sensors, tl can be estimated as

tl = [(lR)2π − (l − 1)2R2π] ∗D = (2l − 1)R2π ∗D, (9.1)

where R is the transmission range, and D is the sensor distribu-
tion density. Consider the extreme case in which a malicious node
does not generate a response and drops any responses passing by, the
probability that the response message from a node at level l reaches
the BS is (a−p)(a−pk)l−1. Thus, the expected number of responses
reaching the BS is

n =

hmax∑

l=1

(1− p)(a− pk)l−1tl. (9.2)

As an example, for p=0.1, k=2, hmax=5, R=10m, D=0.01node/m2,
we have n=67.73. That is, on average, 67.73 responses will reach
the BS. Such a result is reasonably good, given that the total number
of normal nodes is around 78 in this setting.

Since there are still losses of the responses, the tree to be con-
structed based on the network flow information might be broken into
several subtrees. Algorithm 14 shows a procedure to construct these
trees, and the intruder is clearly in the tree with direct connection to
the BS.

In some extreme cases, the malicious nodes may perform denial
of service attacks. They may refuse to reply and drop all the mes-
sages passing through. However, this kind of attacks can be easily
detected, as the information from the same area is completely lost.

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 170

BS

SH

Colluding nodes

SH'

3

3

3

3

3

3

3

2

33

3

2

2

1

A

SH'

SH

C

D

E

F

G
H

(a) (b)

Figure 9.4: Attacked area with colluding nodes. (a) Dropping responses; (b) Pro-
viding false responses.

Algorithm 14 Identify multiple subtrees
R = ∅;
for each v ∈ S do

if v has no incoming edge then
R = R

⋃
FindSubtree(v);

end if
end for
subroutineF indSubtree(node u);
R = ∅;
if u is not yet visited then

mark u is visited;
else

return ∅;
end if
if u has no outgoing edge then

return u;
end if
for each e(u, v) do

R′ = R′⋃ FindSubtree(v);
end for
return R′

end FindSubtree

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 171

9.4.2 Dealing with Tampered or False Flow Information

In the process for collecting the network flow information, the mali-
cious nodes could even tamper the responses passing by or generate
false responses. The receiver thus has to protect the reply message,
so as to prevent an attacker from forging the network flow informa-
tion. To this end, we assume every node v shares a secret key Kv

with the BS, which they use in conjunction with a message authen-
tication code (MAC) function (for example HMAC [10]) to authen-
ticate control messages. This key can be loaded to the node through
a pre-distribution protocol, e.g., that in [81]. To send a reply mes-
sage R, v actually sends < R, MACKv

(R) > to BS, where the nota-
tion MACKv

(R) is the MAC message authentication code computed
over message R with key Kv. MAC message authentication code is a
short piece of information used to authenticate a message. An MAC
algorithm accepts a secret key and an arbitrary-length message to be
authenticated as input, and outputs an MAC (sometimes also known
as a tag). Although the encryption process for generating the MAC
imposes additional calculations to the sensors and the base station,
the overhead is affordable with the existing lightweight symmetric
encryption algorithms. Recent studies have shown that symmetric
encryption and hashing function schemes can be efficiently imple-
mented in various small sensing devices [46, 139]. The code sizes in
some of these algorithms, like RC4 and RC5, are very small. They
are suitable for the low-cost processors in sensors which lack large
amounts of program memory. When BS receives this message, it
can verify the authenticity of the message by comparing the received
MAC value to the MAC that it computes for itself over the received
message with Kv. More importantly, the encryption applies to the
responses, whose volume is much smaller than that of the normal
data traffic.

The encryption, however, cannot solve the problem that the mali-
cious nodes themselves provide false responses to hide the real SH.

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 172

BS

SH

Colluding nodes

SH'

3

3

3

3

3

3

3

2

33

3

2

2

1

A

SH'

SH

C

D

E

F

G
H

(a) (b)

Figure 9.5: Attacked area with colluding nodes. (a) Dropping responses; (b) Pro-
viding false responses.

As shown in Fig. 9.5b, two colluding nodes A and C, together with
the real SH, suggest outgoing edges to a victim node SH’. To deal
with this problem, the BS can detect the inconsistency among the
hop count information. For instance, we can see that the incoming
edges of the SH’ have different number of hop counts, which is sus-
picious because the nodes sending messages via the same next hop
should have the same hop counts to the BS. Also note that the mali-
cious nodes D, E, and F have identical hop counts in their incoming
and outgoing edges, which is again abnormal. In our algorithm, we
calculate the difference between the hop counts provided by a node
and the number of edges from the node to the current root. We then
identify the SH and other suspicious nodes by spotting the inconsis-
tency of the hop counts.

To this end, we maintain an array Count, where the i-th entry
stores the total number of nodes having hop count difference i. Note
that index i can be negative, which indicates that the hop count pro-
vided by a node is smaller than its actual distance from the current
root. Intuitively, if Count[0] is not the dominated one in the array, it
means the current root is unlikely the real intruder. Through analyz-
ing the array Count, we can estimate the hop counts from the SH’

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 173

to the SH. For example, if most non-zero entries of Count fall in the
index range [-2, 2], we suspect that the SH is two hops away from
the SH’, which is the current root. Given this estimation, the BS
can make root correction and re-calculate the entries of Count for
those nodes within two hops from the SH’. After several iterations,
it can conclude the intruder if a majority of the nodes agree with a
consistent result. A formal description of the above procedure can
be found in Algorithm 15.

As an example, consider the attacked area in Fig. 9.6a, where the
node SH’ is the original root of the network flow tree, and its array
Count is as follow,

i -2 -1 0 1 2
Count[i] 0 14 8 6 0

It shows that only 8 nodes agree that the SH’ is the intruder. How-
ever, 14 nodes do not agree with it. In-stead, they suggest that the
SH should be one hop closer to the BS than the node SH’. Since
they are the majority, our correction algorithm runs again to look
for a new root. After that, the node SH becomes the new root (Fig.
9.6b), and the corresponding Count[] becomes,

i -2 -1 0 1 2
Count[i] 0 1 21 6 0

We can see that 21 nodes provide consistent information about
the current root SH. Since the value of Count[0] is the majority, the
SH is concluded as the intruder.

The time complexity for calculating array Count is O(N), and
that for correcting the roots is

∑hrc

l=1 tl∗N = O(thrc∗N). Here, hrc is
the average number of hops where a root correction will take place,

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 174

Algorithm 15 Find the real intruder with root corrections
for each root r do

initialize a new Array count[];
initialize a new Path correctPath;
checkRootByCount(r, count, 1);
S = x > 0|∀y > 0, count[x] + count[−x] > count[y] + count[−y];
x = min(S);
correctRoot(r, r, x, 0, corretPath, count[0]);
apply correctPath on Network G;

end for
subroutinecheckRootByCount (Node r, Array count[], int depth);
depth = depth + 1;
for each precedent Node c of r do

increase count[hopcount(c)− depth] by 1;
checkRootByCount(c, count, depth);

end for
end checkRootByCount;
subroutinecorrectRoot (Node r, path p, int totalLevel, int currentLevel, Path
correctPath, int bestCount);
if currentLevel ≥ totalLevel then

return;
end if
currentLevel = currentLevel + 1;
for each precedent node c of r do

initlaize a new array count[];
reverse edge(c, r);
if checkRootByCount(c, count, 1) then

correctPath = p → c;
bestCount = count[0];

end if
correctRoot(c, p → c, totalLevel, currentLevel, correctPath, bestCount);
reverse edge(c, r);

end for
end correctRoot;

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 175

2

3

2

3

3

34

4

4 4

4

4

3

4

2
3

3

4

4

3
44

3

4

4

3

2

2

1
A

SH'

SH

Correct information

Missing information

Wrong information

Root correction

2
3

2

3

3
34

4

4 4

4

4

3

4

2
3

3

4

4

3
44

3

4

4

3

2

2

1
A

SH'

SH

(a) (b)

Figure 9.6: Example of intruder identification with multiple malicious nodes.

which can be estimated from count[] and is in general quite small.
The total time is thus O(N) + O(N) + O(thrc ∗N) = O(thrc ∗N),
which is relatively low.

9.4.3 Proof of Correctness

We now give a simple analysis on the correctness of the above al-
gorithm. We assume that N is the number of nodes in the attacked
area, namely, N = Fn + Fs = (Fm + Fr) + Fs.

Property: For any Fm, our sinkhole detection algorithm works if
there are more than 2Fm sensors reporting their network flow infor-
mation successfully to the BS and at most Fm are malicious among
them.

Proof: Since there are more than 2Fm sensors successfully report-
ing their network flow information, we have Fn > 2Fm, and conse-
quently Fr > Fm. In the worst case, all the Fm malicious sensors are
colluding and suggesting victim SH’ as the intruder. Yet, Fr normal
sensors will suggest SH, the real intruder, and the number of these
nodes (Fr) is greater than the malicious nodes (Fm). Hence, our al-

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 176

gorithm can correctly identify the real intruder through the majority
vote.

Our algorithm might not work if Fn ≤ 2Fm and the malicious
nodes are all colluding. Nevertheless, it unlikely happens in most
sensor networks, where a majority of sensors should be in normal
condition.

9.5 Performance Evaluation

We further evaluate the performance of our sinkhole detection algo-
rithm through simulations. We simulate a wireless sensor network
with a 200 meter by 200 meter field in which 400 nodes are placed
with uniform random distribution. The sensors adopt IEEE 802.11
MAC protocol with radio range of 10 meter. A base station is placed
at the center of the network to collect data from the sensors. More-
over, a sinkhole is added to the network at x- and y-coordinates (50,
50) for emulating a sinkhole attack. We are interested in evaluating
the accuracy on intruder identification, communication overhead,
and energy consumption of our intruder detection algorithm. Table
9.3 shows the default environment settings of our implementation,
mostly adapted from [23, 26].

9.5.1 Accuracy of Intruder Identification

In the first set of experiments, we investigate the accuracy of our
intruder detection algorithm for sinkhole attacks. We focus on the
following three measures: 1) success rate, which is the percentage
that our algorithm can correctly identify the SH; 2) false-positive
rate, which is the percentage that our algorithm incorrectly identifies
the SH; and 3) false-negative rate, which is the percentage that our
algorithm is not able to identify any intruder but it does exist.

We first consider a mildly hostile environment in which 20%
nodes are malicious. For those networks with less malicious nodes
or even one (the intruder itself) only, the results are even better. We

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 177

Table 9.2: Simulation Parameters

Network size 200m x 200m
No. of sensors 400
Transmission range 10m
Location of BS (100,100)
Location of sinkhole (50,50)
Percentage of malicious nodes m
Percentage of colluding nodes mc

Message drop rate (d) 0-80%
No. of neighbors which a message is for-
warded to (k)

1-2

Packet size 30 bytes
Max. number of reply messages per
packet

5

vary the ratio of colluding nodes from 0% to 20% of the total nodes
in the network. When the ratio is 20%, all the malicious nodes are
colluding with the intruder; for the ratios lower than 20%, a mali-
cious node might randomly drop response messages only but would
not collaborate with the intruder to provide misleading routing infor-
mation, if it is not a colluding node. Fig. 9.7 shows that the success
rates for dropping rates of 0, 0.2, and 0.4, respectively. For the zero
dropping rate at the malicious nodes, we can see that the success
rates are 100%. Also the corresponding false-positive and false-
negative rates are zero, as shown in Figs. 9.8 and 9.9, respectively.
This is because the number of correct routing information pieces is
much more than that of the incorrect ones in this scenario, and the
intruder can always be identified through routing pattern analysis
and majority vote. When the drop rate increases, the success rate
slightly decreases, however. Intuitively, when the malicious nodes
randomly drop a lot of responses, it is possible that the correct in-
formation pieces become less than the incorrect ones, which leads
to lower success rate, and, not surprisingly, higher false-positive and

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 178

98

98.5

99

99.5

100

0 5 10 15 20

S
u
c
c
e
s
s
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.7: Success rate in intruder identification (m=20%).

false-negative rates. Nevertheless, the change is quite minor, even
with a dropping rate of 80%. Such results suggest that our algorithm
works well under a normally hostile environment.

Given the above results, it is clear that for less than 20% ma-
licious nodes, our intrusion detection algorithm can be even more
effective. We are thus more interested in its performance with other
extreme hostile environments. To this end, we repeat the above ex-
periments for m=50% and 80%, that is, more than half of the nodes
are malicious. We again vary the ratio of the colluding nodes (with
upper bounds of 50% and 80%, respectively). The corresponding
results are shown in Figs. 9.10 through 9.15. For m=50%, the suc-
cess, false-positive, and false-negative rates have similar trends as
those with m=20%. Though the results are generally worse, they
are still acceptable. It is worth noting that some of the curves are
not monotonic, e.g., Fig. 9.12 (false-negative rates), when the ratio
of colluding nodes is around 40%. This is mainly due to the random

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 179

0

0.5

1

1.5

2

0 5 10 15 20

F
a
ls
e
-p
o
s
it
iv
e
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.8: False-positive rate in intruder identification (m=20%).

drops by the malicious nodes.
For m=80%, the performance of our detection is generally un-

acceptable, because the malicious nodes become dominating in the
network. Also note that the trends of the curves in this case are
often the inverse of that in the previous two cases. For example,
the success rate is the highest with a dropping rate of 0.8, and the
false-negative rate decreases with increasing the ratio of colluding
nodes. The reason again is because the misbehaved nodes dominate
the network. Nevertheless, we do not expect any detection algo-
rithms would work well in such an extreme environment.

9.5.2 Communication Cost

In this experiment, we evaluated the communication overhead of our
algorithm. Fig. 9.16 shows the number of packets sent or received
by nodes of different hops to the BS. We can see that the nodes
closer to the BS have higher overheads. This is because most of

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 180

0

0.5

1

1.5

2

0 5 10 15 20

F
a
ls
e
-n
e
g
a
ti
v
e
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.9: False-negative rate in intruder identification (m=20%).

the communication overhead is incurred in collecting the network
flow information, and, in this process, a node closer to the BS has
to relay more messages. Note that, however, the BS (0 hop) sends
one request messages only, and does not have to relay response mes-
sages. The figure also shows the overhead when path redundancy is
introduced for responses, where k represents the number of neigh-
bors to which a message will be forwarded. Clearly, the larger the
value of k is, the less the network flow information will be dropped
by malicious nodes. Yet, our experiment shows that, when k=2, the
overhead is reasonably low while a good delivering ratio can be ex-
pected. In addition, for the nodes that are far away from the attacked
area (in Fig. 9.16, those of six or more hop counts), their communi-
cation overhead is almost independent of k because they do not have
to respond to the request from the BS.

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 181

0

20

40

60

80

100

0 5 10 15 20

S
u
c
c
e
s
s
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.10: Success rate in intruder identification (m=50%).

9.5.3 Energy Consumption

Finally, we study the energy consumption for our intruder identifi-
cation algorithm. As mentioned, we assume that the BS has high
enough computation and battery power; hence, we mainly focus on
the energy consumption in the individual sensors. It is related to
both the transmission cost for request and response messages and the
computation cost for encrypting messages. Table III shows a typical
energy consumption for a sensor node, as adapted from [100, 53].

Table 9.3: Parameters of Energy Consumption

Communication circuit power 5× 10−8J/bit
Communication antenna power 1× 10−10J/bit/m2

Encryption and MAC computation 3× 10−9J/bit

Fig. 9.17 shows the average energy consumption for our algo-

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 182

0

20

40

60

80

100

0 5 10 15 20

F
a

ls
e

-p
o

s
it
iv

e
 r

a
te

 (
%

)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.11: False-positive rate in intruder identification (m=50%).

rithm at each single node as a function of its hop counts to the BS. It
can be seen that the consumption monotonically decreases with in-
creasing the hop count. This is consistent with the data in Table III
and the result from the previous section; basically, the communica-
tion overhead is the dominated one, and the computation part is less
than 5% in the total consumption. In addition, similar to the previ-
ous experiments, applying redundant paths consumes more energy,
as seen in the curve for k=2. Nonetheless, the energy consump-
tion for our intruder detection algorithm is indeed lightweighted.
For example, consider a sensor node equipped with two 3V 1.2
Amp − Hour batteries [86, 67]. The total energy available at this
node is Et = 7.2V ∗A∗Hour, which translates into 2000uJ . Hence,
the node needs to spend only a minor portion of the available energy
for intruder identification throughout its lifetime.

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 183

0

20

40

60

80

100

0 5 10 15 20

F
a
ls
e
-n
e
g
a
ti
v
e
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.12: False-negative rate in intruder identification (m=50%).

9.6 Summary

In this chapter, we presented an effective method for identifying
sinkhole attacks in a wireless sensor network. The algorithm con-
sists of two steps: It first locates a list of suspected nodes by check-
ing data consistency, and then identifies the intruder in the list through
analyzing the network flow information. We also presented a series
of enhancements to deal with cooperative malicious nodes that in-
terfere the detection algorithm and attempt to hide the real intruder.

The performance of the proposed algorithm was examined through
simulations. The results demonstrated the effectiveness and accu-
racy of the algorithm. They also suggested that its communication
and computation overheads are reasonably low for wireless sensor
networks. There could be many future directions toward enhancing
this work; in particular, we are working on more effective statistical
methods for identifying data inconsistency, which will facilitates our

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 184

0

20

40

60

80

100

0 5 10 15 20

S
u
c
c
e
s
s
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.13: Success rate in intruder identification (m=80%).

algorithm to precisely locate the suspected nodes in sinkhole attacks.

2 End of chapter.

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 185

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

F
a
ls
e
-p
o
s
it
iv
e
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.14: False-positive rate in intruder identification (m=80%).

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

F
a
ls
e
-n
e
g
a
ti
v
e
 r
a
te
 (
%
)

Ratio of colluding nodes (%)

d=0

d=0.2

d=0.4

d=0.6

d=0.8

Figure 9.15: False-negative rate in intruder identification (m=80%).

CHAPTER 9. INTRUDER DETECTION FOR SINKHOLE ATTACK 186

0

5

10

15

20

0 1 2 3 4 5 6 7

P
a
c
k
e
ts
 p
e
r
n
o
d
e

Hops to base station

packet receive (k=1)

packet receive (k=2)

packet send (k=1)

packet send (k=2)

Figure 9.16: Communication cost for intrusion detection.

0

20

40

60

80

100

1 2 3 4 5 6 7

E
n
e
rg
y
 c
o
n
s
u
m
p
ti
o
n
 p
e
r
n
o
d
e
 (
u
J
)

Hops to base station

k=1

k=2

Figure 9.17: Energy consumption for intrusion identification.

Chapter 10

Conclusion

In this chapter, we investigate delay-oriented reliable communica-
tion and coordination in wireless sensor-actuator networks (WSANs).
We propose a general reliability-centric framework for event report-
ing and data collection in a real-time system that consider the impor-
tance and freshness of the reported data. We focus on the commu-
nication from the sensors to the actuators for reporting the sensing
data and the coordination among the actuators on independent routes
for more efficient data collection.

Firstly, we present a real-time communication framework for wire-
less sensor-actuator networks. It provides an efficient event-reporting
algorithm, which reduces the network traffic and minimizes the trans-
mission delay by dividing the event area into smaller pieces of maps.
The data are aggregated and further divided into different layers ac-
cording to their importance. It is then transmitted to the closest actu-
ator in the order of significance. This approach enables the actuators
to start coordination without waiting for the arrival of the complete
event information. Multiple actuators can combine their pieces of
maps and decide on the appropriate actuator(s) to perform the ac-
tions as soon as possible. The assigned actuators will broadcast
their move to the surrounding nodes, so the affected sensors can up-
date the actuator information dynamically for future reporting. We
also consider the heterogeneous characteristics and functionalities
of sensors and actuators, and offer a distributed, self-organized, and

187

CHAPTER 10. CONCLUSION 188

comprehensive solution for real-time communications in WSANs.
A key part of this chapter is on reliable event reporting from sen-

sors to actuators in a WSAN. We pointed out that the reliability in
this context is closely related to the delay, or the freshness of the
events, and they should be jointly optimized. We also suggest that
the issue of non-uniform importance of the events can be explored
in the optimization. Following this argument, we propose a gen-
eral delay- and importance-aware event reporting framework. Our
framework seamlessly integrates three key modules to maximize the
reliability index: 1) A multi-level data aggregation scheme, which
is fault-tolerant with error-prone sensors; 2) A priority-based trans-
mission protocol (PREI), which accounts for both the importance
and delay requirements of the events; and 3) an actuator allocation
algorithm, which smartly distributes the actuators to match the de-
mands from the sensors.

Based on reliable event reporting, we further propose a latency-
oriented fault tolerant (LOFT) data transport protocol in WSANs.
We provide a cross-layer two-step data transport protocol for on-
time and fault tolerant data delivery from sensors to actuators. Our
protocol adopts smart priority scheduling that differentiates the event
data of non-uniform importance and copes with node and link fail-
ures by an adaptive replication algorithm. Apart from that, a power-
controlled real-time (POWER-SPEED) data transport protocol is pro-
posed for WSANs. POWER-SPEED achieves energy-efficiency while
maintaining the QoS requirement in the timeliness domain. It sends
packets that will expire later with lower transmission power to save
energy. On the other hand, it sends packets that will expire sooner
with higher transmitter power level in fewer hops, so it guarantees
these packets can reach the destination earlier.

Another important part of this chapter is on the route design prob-
lem in wireless sensor-actuator networks. We demonstrated that the
problem is NP-hard and proposed two effective MST-based algo-
rithms for route design. Our algorithms aim at minimizing the over-

CHAPTER 10. CONCLUSION 189

all inter-arrival time of actuators, while differentiating the visiting
frequency to the sensors with different weights. The two algorithms,
RDNV and RDPL, adopt two different approaches. In RDNV, sen-
sors are visited by various number of routes with the same length.
Sensors with higher weights will be visited by more routes. On the
other hand, sensors are visited by routes with different lengths in
RDPL. Sensors with higher weights will be visited by shorter routes.
Afterwards, a distributed implementation of the route design algo-
rithm D-RDPL is also provided as an extension of RDPL.

In addition, we propose an adaptive Probabilistic Route Design
(PROUD) algorithm for WSANs in a dynamically changing envi-
ronment. It constitutes a significant departure from traditional static
and deterministic mobile element scheduling. In PROUD, sensors
are visited by actuators probabilistically along a priori route. Sen-
sors with higher weights are visited with higher probabilities, en-
abling shorter actuator inter-arrival times. Most importantly, the vis-
iting frequency to sensors can be updated easily by adjusting their
visiting probability without complicated route re-calculations. We
studied the proposed algorithm for actuators with constant velocity
in both small-scale and large-scale networks. We also discussed a
distributed implementation and extended the approach to accommo-
date actuators with variable speeds. We further proposed the Multi-
Route Improvement and the Task Exchange algorithms for evenly
distributing workload among the actuators.

Finally, we study the security in wireless sensor networks to guar-
antee reliable collection of sensing data. More specifically, we present
an effective method for identifying sinkhole attacks in a wireless
sensor network. The algorithm consists of two steps: It first lo-
cates a list of suspected nodes by checking data consistency, and
then identifies the intruder in the list through analyzing the network
flow information. We also present a series of enhancements to deal
with cooperative malicious nodes that interfere the detection algo-
rithm and attempt to hide the real intruder. The simulation results

CHAPTER 10. CONCLUSION 190

demonstrate the effectiveness and accuracy of the algorithm with
low communication and computation overheads.

In the future, communications among the actuators can be fur-
ther investigated. Although the actuators have longer communica-
tion range than the sensors, this range is still limited for direct com-
munication in a large network. Since communications among the
actuators are crucial for exchanging information and coordinating
the actuators to perform the required actions, more advanced actu-
ator communication mechanisms can be explored. For instance, an
actuator may spread the event information and assign tasks to other
actuators. Similarly, the routes of the actuators will be updated ac-
cording to the dynamic change of the sensing environment. The
change of one route may also affect the others. Distributed route
design, which includes more sophisticated communications and co-
operation among the actuators, can be further examined. Particu-
larly, communication points may be setup for exchanging informa-
tion among the actuators on different routes.

Apart from the above, different hardware facilities and MAC layer
protocols of sensors can be studied. Our proposed protocols for
delay-orient event reporting can be evaluated under different hard-
ware settings. More experiments can be conducted to understand
the performance of our protocols in terms of transmission delay and
energy consumption on different sensor network platforms.

Furthermore, this work may be extended to handle the existence
of malicious peers in the networks. More advanced security mea-
sures can be studied to protect the networks against multiple collud-
ing nodes.

2 End of chapter.

Bibliography

[1] J. Aidemark, P. Folkesson, and J. Karlsson. A framework for
node-level fault tolerance in distributed real-time systems. In
Proc. of IEEE DSN, Yokohama, Japan, Jun 28 - Jul 1, 2005.

[2] I. Akyildiz and I. Kasimoglu. A protocol suite for wireless
sensor and actor networks. In Proc. of IEEE Radio and Wire-
less Conference, pages 11–14, Sep 2004.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A
survey on sensor networks. IEEE Communication Magazine,
Aug 2002.

[4] I. F. Akyildiz, W. Su, and T. Sandarasubramaniam. Wireless
sensor networks: a survey. Computer Networks, 38(5):393–
422, 2002.

[5] I. F. Akyldiz and I. Kasimoglu. Wireless sensor and actor
networks: research challenges. Elsevier Ad Hoc Networks
Journal, Octocber 2004.

[6] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wire-
less sensor networks: a survey. Elsevier Ad Hoc Networks
Journal, pages 325–349, 2005.

[7] S. Arora. Polynomial time approximation schemes for eu-
clidean traveling salesman and other geometric problems.
Journal of ACM, 45(5):753–782, Sep 1998.

191

BIBLIOGRAPHY 192

[8] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling
heuristic for distributed embedded systems under reliability
and real-time constraints. In Proc. of IEEE DSN, Florence,
Italy, Jun 28 - Jul 1, 2004.

[9] B. Awerbuch. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election, and related
problems. In Proc. of ACM STOC, pages 230–240, 1987.

[10] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-
tions for message authentication. Lecture Notes in Computer
Science, 1109:1–15, 1996.

[11] J. Bentley. Fast algorithms for geometric traveling salesman
problem. ORSA Journal on Computing, 4:387–411, 1992.

[12] N. Bisnik, A. Abouzeid, and V. Isler. Stochastic event capture
using mobile sensors subject to a quality metric. In Proc. of
ACM MobiCom, Sep 2006.

[13] D. Braginsky and D. Estri. Rumour routing algorithm for sen-
sor networks. In Proc. of WSNA ’02, pages 23–31, Sep 2002.

[14] N. Bulusu, J. Heidenmann, and D. Estrin. GPS-less low-cost
outdoor localization for very small devices. In IEEE Personal
Communication, Oct 2000.

[15] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo. An
implicit prioritized access protocol for wireless sensor net-
works. In Proc. of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS), pages 39–48, Austin, TX, U.S., Dec 2002.

[16] E. Cayirci, T. Coplu, and O. Emiroglu. Power aware many
to many routing in wireless sensor and actuator networks. In
Proc. of the 2nd European Workshop on Wireless Sensor Net-
works (EWSN), pages 236–245, Istanbul, Turkey, 31 Jan - 2
Feb 2005.

BIBLIOGRAPHY 193

[17] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using pre-
dictable observer mobility for power efficient design fo sensor
networks. In Proc. of the 2nd International Workshop on In-
formation Processing in Sensor Networks (IPSN), Apr 2003.

[18] S. Chen and K. Nahrstedt. Distributed quality-of-service rout-
ing in ad hoc networks. IEEE Journal on Selected Areas in
Communications, 17(8):1488–1505, 1999.

[19] T. Chen, J. Tsai, and M. Gerla. Qos routing performance in
multihop multimedia wireless networks. In Proc. of the 6th
IEEE International Conference on Universal Personal Com-
munications, pages 557–561, 1997.

[20] N. Christofides, A. Mingozzi, and P. Toth. Exact algo-
rithms for the vehicle routing problem, based on spanning tree
and shortest path relaxations. Mathematical Programming,
20(1):255–282, Dec 1981.

[21] M. Coates. Evaluating cau.s.l relationships in wireless sen-
sor/actor nteworks. In International Conference on Acoustics,
Speech, and Signal Processing, pages 937–940, Mar 2005.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and et al. Intro-
duction to Algorithms. The MIT Press, 2002.

[23] B. Culpepper and H. C. Tseng. Sinkhole intrusion indicators
in dsr manets. In Proc. of BroadNets ’04, pages 681–688, Oct
2004.

[24] F. Delgosha and F. Fekri. Key pre-distribution on wireless
sensor networks using multivariate polynomials. In Proc. of
SECON, pages 118–129, Sep 2005.

[25] H. Deng, W. Li, and D. P. Agrawal. Routing security in
wireless ad hoc networks. IEEE Communications Magazine,
40:70–75, 2002.

BIBLIOGRAPHY 194

[26] J. Deng, R. Han, and S. Mishra. Insens: Intrusion-tolerant
routing for wireless sensor networks. Elsevier Computer
Communications, 29:216–230, 2006.

[27] D. E. Denning. An intrusion detection model. In Proc. of
IEEE Symposium on Security and Privacy, pages 118–131,
1986.

[28] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized fault-
tolerant event boundary detection in sensor networks. In Proc.
of IEEE Infocom, pages 902–913, Mar 2005.

[29] D. V. Dinh, M. D. Vuong, H. P. Nguyen, and H. X. Nguyen.
Wireless sensor actor networks and routing performance anal-
ysis. In Proc. of International Workshop on Wireless Ad-hoc
Ntework, May 2005.

[30] P. Djukic and S. Valaee. Reliable packet transmissions in mul-
tipath routed wireless networks. IEEE Transactions on Mo-
bile Computing, 5(5):548–559, May 2006.

[31] S. S. Doumit and D. P. Agrawal. Self-organized critically
and stochastic learning based intrusion detection system for
wireless sensor networks. In Proc. of MILCOM ’03, pages
609–614, Oct 2003.

[32] H. Dubois-Ferriere, D. Estrin, and M. Vetterli. Packet com-
bining in sensor networks. In Proc. of ACM Sensys, San
Diego, California, U.S., Nov 2005.

[33] A. Dumitrescu and J. S. B. Mitchell. Approximation algo-
rithms for TSP with neighborhoods in the plane. In Proc. of
SODA’01, pages 38–46, 2001.

[34] A. Durresi and V. Paruchuri. Geometric broadcast protocol
for sensor and actor networks. In International Conference on

BIBLIOGRAPHY 195

Advanced Information Networking and Applications, pages
343–348, Mar 2005.

[35] ed. D.J. Cook and S. Das. Smart Environments: Technologies,
Protocols, and Applications. John Wiley, 2004.

[36] M. Elkin. A faster distributed protocol for constructing a min-
imum spanning tree. In Proc. of ACM-SIAM SODA, pages
359–368, 2004.

[37] S. C. Ergen and P. Varaiya. Energy efficient routing with de-
lay guarantee for sensor networks. ACM Wireless Networks,
2006.

[38] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next
century challenges: Scalable coordination in sensor networks.
In Proc. of ACM MobiCom, Seattle, Washington, U.S., 1999.

[39] K. Fall and K. Varadhan. The ns manual, Dec 2003.
http://www.isi.edu/nsnam/ns.

[40] E. Felemban, C.-G. Lee, and E. Ekici. MMSPEED: Multipath
multi-SPEED protocol for QoS guarantee of reliability and
timeliness in wireless sensor networks. IEEE Transactions on
Mobile Computing, 5(6):738–754, 2006.

[41] E. Felemban, C.-G. Lee, E. Ekici, R. Boder, and S. Vural.
Probabilistic QoS guarantee in reliability and timeliness do-
mains in wireless sensor networks. In Proc. of IEEE Infocom,
Miami, FL, U.S., Mar 2005.

[42] H. Frey and I. Stojmenovic. On delivery guarantees of face
and combined greedy-face routing algorithms in ad hoc and
sensor networks. In Proc. of ACM MobiCom, pages 390 –
401, Los Angeles, U.S., Sep 2006.

BIBLIOGRAPHY 196

[43] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees. ACM Trans-
actions Program. Lang. Syst., 5(1):66–77, 1983.

[44] S. Ganeriwal, A. Kansal, and M. B. Srivastava. Self aware
actuation for fault repair in sensor networks. In IEEE In-
ternational Conference on Robotics and Automation, pages
5244–5249, Apr 2004.

[45] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-
resilient, energy-efficient multipath routing in wireless sensor
networks. Mobile Computing and Communication Review,
1(2), 2001.

[46] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean,
F. Mueller, and M. Sichitiu. Analyzing and modeling encryp-
tion overhead for sensor network nodes. In WSNA ’03: Proc.
of the 2nd ACM international conference on Wireless sensor
networks and applications, pages 151–159, New York, NY,
U.S., 2003. ACM Press.

[47] L. Girod, N. Ramanathan, J. Elson, T. Stathopoulos,
M. Lukac, and D. Estrin. Emstar: a software environment
for developing and deploying heterogeneous sensor actuator
networks. ACM Transactions on Sensor Networks, 2007.

[48] D. K. Goldenberg, P. Bihler, Y. R. Yang, M. Cao, J. Fang,
A. S. Morse, and B. D. O. Anderson. Localization in sparse
networks using sweeps. In Proc. of ACM MobiCom, pages
110–121, 2006.

[49] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C.-G. Lee.
Partitioning-based mobile element scheduling in wireless sen-
sor networks. In Proc. of SECON, pages 386–395, Santa
Clara, U.S., Sep 2005.

BIBLIOGRAPHY 197

[50] X. Han, X. Cao, E. Lloyd, and C.-C. Shen. Fault-tolerant
route relay node placement in heterogeneous wireless sensor
networks. In Proc. of IEEE Infocom, May 2007.

[51] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Ab-
delzaher. Range-free localization schemes for large scale sen-
sor networks. In Proc. of ACM MobiCom, pages 81–95, San
Diego, CA, U.S., 2003.

[52] T. He, J. Stankovic, C. Lu, and T. Abdelzaher. SPEED: a real-
time routing protocol for sensor networks. In Proc. of IEEE
ICDCS, pages 46–55, Providence, RI, U.S., May 2003.

[53] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
An application-specific protocol architecture for wireless mi-
crosensor networks. IEEE Transactions on Wireless Commu-
nications, 1(4), 2002.

[54] J. Hightower and G. Borriella. Location systems for ubiqui-
tous computing. IEEE Computer, 34(8):57–66, 2001.

[55] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Cullar, and K. Pis-
ter. System architecture directions for networked sensors. In
Proc. of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Nov 2000.

[56] F. Hu and X. Cao. Security in wireless actor and sensor net-
works (WASN): towards a hierarchical re-keying design. In
Proc. of International Conference on Information Technol-
ogy Coding and Computing (ITCC’05), pages 528–533, Apr
2005.

[57] L. Hu and D. Evans. Localization for mobile sensor networks.
In Proc. of ACM MobiCom, pages 99–110, Philadelphia, PA,
U.S., 26 Sep - 1 Oct 2004.

BIBLIOGRAPHY 198

[58] W. Hu, S. Jha, and N. Bulusu. A communication paradigm for
hybrid sensor/actuator networks. In Proc. of the 15th IEEE In-
ternational Symposium on Personal, Indoor and Mobile Ra-
dio Communications (PIMRC), Bacelona, Spain, Sep 2004.

[59] Y.-C. Hu, A. Perrig, and D. Johnson. Packet leashes: A de-
fense against wormhole attacks. In Proc. of IEEE Infocom,
pages 1976–1986, Mar 2005.

[60] Y. Huang and W. Lee. A cooperative intrusion detection sys-
tem for ad hoc networks. In Proc. of SASN ’03, pages 135–
147, Oct 2003.

[61] J. Hubaux, L. Buttyan, and S. Capkun. The quest for security
in mobile ad hoc networks. In Proc. of ACM MobiHoc, pages
146–155, Oct 2001.

[62] B. Hughes and V. Cahill. Achieving real-time guarantees in
mobile ad hoc wireless networks. In Proc. of the 24th IEEE
Real-Time Systems Symposium (RTSS), Dec 2003.

[63] J. S. Hunter. The exponentially weighted moving average.
Journal of Quality Technology, 18:203–210, 1986.

[64] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm for
sensor networks. In Proc. of ACM MobiCom, pages 56–67,
Aug 2000.

[65] S. Jain, M. Demmer, R. Patra, and K. Fall. Using redundancy
to cope with failures in delay tolerant network. In Proc. of the
ACM SIGCOMM, Pennsylvania, U.S., Aug 2005.

[66] E. H. C. Jr. Wireless Sensor Networks: Architectures and Pro-
tocols. CRC Press, 2003.

BIBLIOGRAPHY 199

[67] R. Jurdak, C. V. Lopes, and P. Baldi. Battery lifetime estima-
tion and optimization for underwater sensor networks. IEEE
Sensor Network Operations, 2004.

[68] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century
challenges: Mobile networking for smart dust. In Proc. of 5th
Ann. International Conf. on Mobile Computing and Network-
ing, page 271V278, Aug 1999.

[69] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Es-
trin. Intelligent fluid infrastructure for embedded networks. In
Proc. of the 2nd ACM MobiSys, 2004.

[70] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer
security architecture for wireless sensor networks. In Proc.
of the 2nd International Conference on Embedded Networked
Sensor Systems, pages 162–175, 2004.

[71] C. Karlof and D. Wagner. Secure routing in sensro networks:
attacks and countermeasures. In Proc. of the 1st IEEE Work-
shop on Sensor Network Protocols and Applications, pages
1–15, May 2003.

[72] B. Karp and H. Kung. GPSR: Greedy perimeter stateless
routing for wireless networks. In Proc. of ACM MobiCom,
Boston, MA, U.S., 2000.

[73] G. Khanna, S. Bagchi, and Y.-S. Wu. Fault tolerant energy
aware data dissemination protocol in sensor networks. In
Proc. of IEEE DSN, Florence, Italy, Jun 28 - Jul 1, 2004.

[74] S. Koenig, M. Lagoudakis, V. Markakis, D. Kempe, P. Ke-
skinocak, A. Kleywegt, C. Tovey, A. Meyerson, and S. Jain.
Auction-based multi-robot routing. In Robotics: Science and
Systems, 2005.

BIBLIOGRAPHY 200

[75] B. Krishnamachari, D. Estrin, and S. Wicker. The impact of
data aggregation in wireless sensor networks. In Proc. of In-
ternational Workshop on Distributed Event-Based System, Jul
2002.

[76] B. Krishnamachari, D. Estrin, and S. Wicker. Modelling data-
centric routing in wireless sensor networks. In Proc. of IEEE
Infocom, 2002.

[77] H. Lau, M. Sim, and K. Te. Vehicle routing problem with time
windows and a limited number of vehicles. European Journal
of Operational Research, 148:559–569, 2003.

[78] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and
L. Chang. Preventing wormhole attacks on wireless ad hoc
networks: a graph theoretic approach. In Proc. of WCNC ’05,
pages 1193–1199, Mar 2005.

[79] L. Lee, K. Tan, K. Ou, and Y. Chew. Vehicle capacity plan-
ning system: A case study on vehicle routing problem with
time windows. IEEE Transactions on Systems, Man and Cy-
bernetics, Part A, 33:169–178, 2003.

[80] J. Li, J. Jannotti, D. D. Couto, D. Karger, and R. Morris. A
scalable location service for geographic ad hoc routing. In
Proc. of ACM MobiCom, pages 120–30, Boston, Massachus-
sets, U.S., 2000.

[81] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. In CCS ’03: Proceedings of the 10th ACM
conference on Computer and communications security, pages
52–61, New York, NY, U.S., 2003. ACM Press.

[82] C. A. Lowry, W. H. Woodall, C. W. Champ, and S. E. Rigdon.
A multivariate exponentially weighted moving average chart.
Technometrics, 34:46–53, 1992.

BIBLIOGRAPHY 201

[83] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and
T. He. RAP: a real-time communication architecture for large-
scale wireless sensor networks. In Proc. of IEEE RTAS, San
Jose, CA, U.S., Sep 2002.

[84] J. Luo and J. Hubaux. Joint mobility and routing for lifetime
elongation in wireless sensor networks. In Proc. of the 24th
IEEE Infocom, Mar 2005.

[85] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. an-
derson. Wireless sensor networks for habitat monitoring. In
Proc. of ACM WSNA, 2002.

[86] M. U. Manual. An application-specific protocol architecture
for wireless microsensor networks. Document 7430-0021-06,
Rev. B, Apr 2005.

[87] J. G. McNeff. The global positioning system. IEEE Trans-
actions on Microwave Theory and Techniques, 50:645–652,
Mar 2002.

[88] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee. A case study
of mobile robot’s energy consumption and conservation tech-
niques. In Proc. of IEEE International Conference on Ad-
vanced Robotics, pages 492–497, 2005.

[89] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz. A
distributed coordination framework for wireless sensor and
actor networks. In Proc. of ACM Mobihoc, pages 99–110,
Urbana-Champaign, IL, U.S., 2005.

[90] V. P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and
N. Shroff. A minimum cost heterogeneous sensor network
with a lifetime constraint. IEEE Transactions on Mobile Com-
puting, 4(1), Jan/Feb 2005.

BIBLIOGRAPHY 202

[91] C. Miller, A. Tucker, and R. Zemlin. Integer programming
formlation of the travelling salesman problem. Journal of the
Association for computing machinery 7, 1960.

[92] E. C.-H. Ngai, J. Liu, and M. R. Lyu. On the intruder de-
tection for sinkhole attack in wireless sensor networks. In
Proc. of IEEE International Conference on Communications
(ICC’06), Jun 2006.

[93] E. C.-H. Ngai, J. Liu, and M. R. Lyu. Delay-minimized
route design for wireless sensor-actuator networks. In Proc. of
IEEE Wireless Communications and Networking Conference
(WCNC’07), Mar 2007.

[94] E. C.-H. Ngai, J. Liu, and M. R. Lyu. An efficient intruder
detection algorithm against sinkhole attacks in wireless sensor
networks. Computer Communications, 2007.

[95] E. C.-H. Ngai and M. R. Lyu. An authentication service based
on trust and clustering in wireless ad hoc networks: Descrip-
tion and security evaluation. In Proc. of IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustwor-
thy Computing (SUTC’06), Jun 2006.

[96] E. C.-H. Ngai, M. R. Lyu, and R. T. Chin. An authentication
service against dishonest users in mobile ad hoc networks.
In Proc. of IEEE Aerospace Conference, Big Sky, Montana,
U.S., Mar 2004.

[97] E. C.-H. Ngai, M. R. Lyu, and J. Liu. A real-time com-
munication framework for wireless sensor-actuator networks.
In Proc. of IEEE Aerospace Conference, Big Sky, Montana,
U.S., Mar 2006.

[98] E. C.-H. Ngai, Y. Zhou, M. R. Lyu, and J. Liu. A delay-
aware reliable event reporting framework for wireless sensor-

BIBLIOGRAPHY 203

actuator networks. CSE Technical Report CS-TR-2006-04,
The Chinese University of Hong Kong, Mar 2006.

[99] E. C.-H. Ngai, Y. Zhou, M. R. Lyu, and J. Liu. Reliable report-
ing of delay-sensitive events in wireless sensor-actuator net-
works. In Proc. of the 3rd IEEE MASS, Vancouver, Canada,
Oct 2006.

[100] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler.
Spins: Security protocols for sensor networks. Wireless Net-
work Journal, 8:521–534, 2002.

[101] A. A. Pirzada and C. McDonald. Secure routing protocols for
mobile ad-hoc wireless networks. In T. A. Wysocki, A. Dadej,
and B. J. Wysocki (Eds.), Advanced Wired and Wireless Net-
works. Springer, 2004.

[102] A. A. Pirzada and C. Mcdonald. Circumventing sinkholes and
wormholes in ad-hoc wireless networks. In Proc. of Interna-
tional Workshop on Wireless Ad-hoc Networks, 2005.

[103] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Communications ACM, 43(5):551–558, 2000.

[104] S. S. Pradhan, J. Kusuma, and K. Ramchandra. Distributed
compression in a dense microsensor network. IEEE Signal
Processing Magazine, Mar 2002.

[105] C. S. Raghavendra, K. M. Sivalingam, and T. Znati. Wireless
Sensor Networks. Kluwer Academic Publishers, 2004.

[106] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter. On the
capacitated vehicle routing problem. Mathematical Program-
ming, 94(2-3):343–359, Jan 2003.

[107] T. Rappaporrt. Wireless Communication: Principles and
Practices (2nd Edition). Upper Saddle River: Prentice Hall,
2002.

BIBLIOGRAPHY 204

[108] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and
Y. Zhang. Failure data analysis of a large-scale heterogeneous
server environment. In Proc. of IEEE DSN, Florence, Italy,
Jun 28 - Jul 1, 2004.

[109] A. Savvides, C. C. Han, and M. B. Srivastava. Dynamic
fine-grained location in ad hoc networks of sensors. In Proc.
of ACM MobiCom, pages 166–179, Philadelphia, PA, U.S.,
2001.

[110] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Mod-
eling a three-tier architecture for sparse sensor networks. In
Proc. of IEEE Workshop on Senosr Network Protocols and
Applications (SNPA), 2003.

[111] E. Shi and A. Perrig. Designing secure sensor networks. IEEE
Wireless Communications, 11:38–43, 2004.

[112] A. Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and
H. Wong. Decentralized intrusion detection in wireless sen-
sor networks. In Proc. of the 1st ACM international workshop
on Quality of service and security in wireless and mobile net-
works, pages 16–23, 2005.

[113] R. Sivakumar, P. Sinha, and V. Bharghavan. Cedar: Core
extraction distributed ad hoc routing algorithm. IEEE Jour-
nal on Selected Areas in Communications, 17(8):1454–1465,
1999.

[114] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava.
Mobile element scheduling for efficient data collection in
wireless sensor networks with dynamic deadlines. In Proc. of
the 25th IEEE Real-Time Systems Symposium (RTSS), pages
296–305, 2004.

BIBLIOGRAPHY 205

[115] J. Staddon, D. Balfanz, and G. Durfee. Efficient tracing of
failed nodes in sensor networks. In Proc. of WSNA ’02, pages
122–130, Sep 2002.

[116] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and
J. C. Hou. Realtime communication and coordination in
embedded sensor networks. Proceedings of The IEEE,
91(7):1002V1022, Jul 2003.

[117] D. Wagner. Resilient aggregation in sensor networks. In Proc.
of ACM SASN, Washington, DC, U.S., 2004.

[118] Y. Wang and H. Wu. DFT-MSN: The delay fault tolerant mo-
bile sensor network for pervasive information gathering. In
Proc. of IEEE Infocom, 2006.

[119] Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli.
Exploiting sink mobility for maximizing sensor networks life-
time. In Proc. of the 38th Hawaii International Conference on
System Sciences (HICSS), 2005.

[120] A. Woo, T. Tong, and D. Culler. Taming the underlying chal-
lenges of relable multiple routing in sensor networks. In Proc.
of ACM Sensys, Nov 2003.

[121] A. D. Wood, J. A. Standovic, and S. H. Son. Jam: A jammed-
area mapping service for sensor networks. In Proc. of the 23th
IEEE Real-Time Systems Symposium (RTSS), pages 286–297,
Dec 2003.

[122] A. D. Wood and J. A. Stankovic. Denial of service in sensor
networks. IEEE Computer, 35:54–62, 2002.

[123] J. Wu, S. Yang, and F. Dai. Logarithmic store-carry-forward
routing mobile ad hoc networks. IEEE Transactions on Par-
allel and Distributed Systems, 18(6), Jun 2007.

BIBLIOGRAPHY 206

[124] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for
structural monitoring. In Proc. of ACM SenSys, Nov 2002.

[125] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed
energy conservation for ad-hoc routing. In Proc. of ACM Mo-
biCom, pages 70–84, Rome, Italy, 2001.

[126] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu,
and S. Singh. Exploiting heterogeneity in sensor networks. In
Proc. of IEEE Infocom, Miami, FL, U.S., Mar 2005.

[127] F. Ye, A. Chen, S. Lu, and L. Zhang. A scalable solution to
minimum cost forwarding in large sensor networks. In Proc.
of ICCCN ’01, pages 304–309, Oct 2001.

[128] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filter-
ing of injected false data in sensor networks. In Proc. of IEEE
Infocom, pages 2446–2457, Mar 2004.

[129] N. Ye and Q. Chen. An anomaly detection technique based on
a chi-square statistic for detecting intrusions into information
systems. Quality and Reliability Engineering International,
17:105–112, 2001.

[130] W. Zhang, G. Xue, and S. Mistra. Fault-tolerant route relay
node placement in sensor networks: Problems and algorithms.
In Proc. of IEEE Infocom, May 2007.

[131] Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc
networks. In Proc. of ACM MobiCom, pages 275–283, Aug
2000.

[132] Z. Zhang and Z. Fei. Route design for multiple ferries in delay
tolerant networks. In Proc. of IEEE WCNC, Mar 2007.

[133] F. Zhao and L. Guibas. Wireless Sensor Networks: An Infor-
mation Processing Approach. Morgan Kaufmann, 2004.

BIBLIOGRAPHY 207

[134] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic
sensor collaboration for tracking applications. IEEE Signal
Processing Magazine, Mar 2002.

[135] J. Zhao and R. Govindan. Understanding packet delivery per-
formance in dense wireless sensor networks. In Proc. of ACM
Sensys, Nov 2003.

[136] W. Zhao, M. Ammar, and E. Zegura. Controlling the mobility
of multiple data transport ferries in a delay-tolerant network.
In Proc. of IEEE Infocom, Miami, FL, U.S., Mar 2005.

[137] W. Zhao, M. Ammar, and E. Zegura. A message ferrying
approach for data delivery in sparse mobile ad hoc networks.
In Proc. of ACM MobiHoc, Mar 2005.

[138] Y. Zhou, E. C.-H. Ngai, M. R. Lyu, and J. Liu. Power-speed:
A power-controlled real-time data transport protocol for wire-
less sensor-actuator networks. In Proc. of IEEE Wireless
Communications and Networking Conference (WCNC’07),
Mar 2007.

[139] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient security mech-
anisms for large-scale distributed sensor networks. In CCS
’03: Proceedings of the 10th ACM conference on Computer
and communications security, pages 62–72, New York, NY,
U.S., 2003. ACM Press.

