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Abstract of thesis entitled:
User Review Mining for Assisting App Development

Submitted by GAO, Cuiyun
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2018

Mobile app developers design user-friendly applications (apps) and
update their apps to ensure good users’ experience. User reviews
serve as an essential channel between app developers and users, and
deliver users’ recent experience with the apps. By analyzing app
reviews, developers can gain valuable information for app updates,
including the features to improve, new functionalities sought-after
by users, and also functional and non-functional issues to be rec-
tified. Traditional review mining methods are mostly focusing on
automatically analyzing a static review collection and provide little
support for contrasting reviews across multiple time periods and
dimensions. In this thesis, we propose automated review analysis
methods for identifying important app issues over different time
periods, along with evolving app versions, and across different app
markets.

Firstly, we propose an aspect-tracking method for tracking the
changes in user-concerned aspects from top-ranked reviews. Topic
extraction from user reviews is one typical step to understand the
delivered user experience. The extracted topics usually represent
user-concerned app aspects. Instead of analyzing one static review
collection, we explore the quantitative changes of prioritized topics
along with time periods. By comparing different topic modeling
methods, we propose effective topic-ranking and review-ranking
schemes for capturing the most up-to-date issues. In this way, the
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non-informative reviews can be avoided during the ranking. We
further show a case study to indicate the effectiveness of tracking
topic changes over time to promptly identify important issues.

Secondly, we propose a phrase-based issue prioritization method
by analyzing reviews over different release versions. The method
design is based on the fact that app issues presented in the level
of phrase, i.e., a couple of consecutive words, can be more ef-
ficiently understood by developers than those presented in long
review sentences. We automatically label ranked topics with most
representative phrases based on their semantic relevance, and visu-
alize the topic trends with ThemeRiver for facilitating developers’
observation. App changelogs, which record the changes of current
release, are utilized to measure the effectiveness of our method in
detecting important app issues for app evolution.

Thirdly, we design an automated online review analysis frame-
work for identifying emerging app issues. Emerging issues are
the issues that rarely appear in previous app versions, but occupy
significant proportions of user reviews in current versions. Detecting
emerging issues timely and precisely offers great help to developers
in updating their apps. We propose an online topic modeling method
for generating version-sensitive topic distributions, and employ typi-
cal anomaly detection method to determine the emerging topics. The
topics are automatically interpreted with the prioritized phrases and
review sentences based on an effective ranking scheme considering
both semantic relevance and user sentiment.

Fourthly, we conduct an empirical study to explore whether
there exist significant differences among app issues on three app
markets, i.e., Google Play, Apple’s App Store, and Windows Store.
Understanding differences of app issues on these platforms can
assist developers in efficiently choosing corresponding testing cases.
We focus on analyzing seven general app issues, including battery,
crash, memory, network, privacy, spam, and UI. We propose an
issue-related keyword extraction method for establishing a keyword
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dictionary for each app issue. An extensive study on around five
million user reviews of 20 apps shows issue distributions of apps
designed for different app markets exhibit significant difference.

Lastly, we focus on studying an important component for many
mobile apps, i.e., in-app advertising (ad). Mobile resource occupa-
tion caused by in-app ads is non-negligible for app developers to
ensure a good user experience and continuous profits. Thus, we
explore the effects of in-app ads on user experience by analyzing
app reviews from Google Play. We prioritize concrete user concerns
about in-app ads by mining ad-related user feedback, measure
ads’ practical performance costs, and observe user opinions on the
performance costs of ads in practice. We obtain six insightful
suggestions on designing user-friendly in-app ads.

In summary, the thesis targets at user review analysis for facili-
tating app developers in the app design, testing, and updating pro-
cesses. Large-scale experiments on real-world datasets demonstrate
the effectiveness of our proposed methods in various applications.
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學系  ：計算機科學與工程學系 

修讀學位 ：哲學博士 

摘要  ： 

  

 手機應用程式開發者為確保良好的用戶體驗需要設計用戶

友好型的應用，並對其及時更新。用戶評論作為開發者和用

戶之間的主要媒介，傳達了最近的用戶體驗。通過分析用戶

評論，開發者可以獲得有助於應用更新的有效信息，包含需

要完善的特徵，用戶需求的新功能，以及待糾正的功能性和

非功能性問題。傳統的評論挖掘方法大多集中在自動化分析

靜態的評論數據集，且提供較少的多時間和多維度的對比。

在本論文中，我們提出了跨時間、跨版本、跨平台的自動化

分析方法以識別重要的應用問題。 

 

首先，我們提出了基於評論排序的主題追蹤方法。從用戶評

論中提取主題是理解用戶體驗的很經典的步驟。提取的主題

通常代表了用戶對應用所關心的方面。區別於以往的基於靜

態評論數據集的研究，我們探索了隨著時間變化優先主題的

iv



數量變化。通過比較不同的主題模型方法，我們提出了有效

的主題排序和評論排序方法。同時，無信息含量的評論也在

排序的過程中被過濾掉。通過案例研究，我們進一步展示了

追蹤主題隨時間變化對快速發現重要問題的有效性。 

 

其次，我們通過分析連續版本的用戶評論，提出了基於詞組

的問題優先化方法。該方法設計是基於用詞組表示的應用問

題比用長的評論句子表示的應用問題能夠更高效地被開發者

所理解的事實。我們自動地對為每個主題用最具有代表性的

詞組打標簽，並用主題河來可視化主題趨勢以輔助開發者觀

察。記錄了當前版本的應用更新日誌被用來驗證我們方法在

檢測重要應用問題的有效性。 

 

再次，我們設計了在綫評論自動化分析框架來發現突發的應

用問題。突發應用問題是指在之前的應用版本中比較少出現，

而在當前版本的用戶評論中比例顯著。及時並準確地檢測突

發問題對開發者更新應用程式提供了非常極大的幫助。其中

我們提出了在綫主題模型方法來生成對版本敏感的主題分佈，

然後採用經典的異常檢測方法來確定突發主題。最後，基於

兼顧語義相關性和用戶情感的有效的排序機制，這些主題被

自動地用優先性最高的詞組和評論句子來解釋。 

 

然後，我們執行了經驗研究來探索不同應用市場的應用問題
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是否存在顯著差異。這些應用市場包括谷歌市場，蘋果應用

商店和微軟應用商店。理解這些平台上應用問題的差異可以

幫助開發者高效地選擇相應的測試用例。我們集中分析七種

常見的應用問題，包含電量、崩潰、內存、網絡、隱私、垃

圾信息以及界面。我們為每個應用問題簡歷一個關鍵詞詞典，

並提出了提取於問題相關的關鍵詞的自動化方法。基於 20 個

應用程式的將近五百萬條評論上的實驗表明不同應用市場上

的應用問題分佈存在顯著性差異。 

 

最後，我們集中分析許多免費移動應用程式中很重要的組成

部分，即應用內廣告。由應用內廣告產生的手機資源消耗對

開發者確保良好的用戶體驗和持續的廣告利潤來說不可忽視。

因此，我們通過分析谷歌市場上的用戶評論探索了應用內廣

告對用戶體驗的影響。通過分析與廣告相關的用戶評論，我

們對用戶對於廣告的具體的關心問題進行排序，測量了廣告

的實際性能消耗，並觀察用戶是否對實際的性能消耗敏感。

我們獲取了六種有助於開發者設計友好型應用內廣告的建議。 

 

綜上所述，本論文的目標是通過用戶評論分析，來幫助應用

程式開發者的應用設計、測試以及更新環節。大量基於真實

數據的實驗驗證了我們提出的方法在不同應用中的有效性。 
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Chapter 1

Introduction

This thesis presents our research towards user review analysis for as-
sisting mobile app developers, which is currently an important field
of study and practice in app evolution, testing, and maintenance. We
provide a brief overview of the research problems under study in
Section 1.1, and highlight the main contributions of this thesis in
Section 1.2. Section1.3 outlines the thesis structure.

1.1 Overview

Smartphones penetrate many facets of everyday life, including
entertainment (e.g., game playing), connectivity with others (e.g.,
social networking), and efficient work (e.g., file sharing). By 2018,
over 36% of the world’s population is projected to use a smartphone,
up from about 10% in 2011 [123]. Google’s Android system and
Apple’s iOS system are the most two popular smartphone operating
systems in the industry. To enjoy the convenience provided by
mobile phones, users need to download and use mobile apps. The
major distribution channel for mobile apps is an app store, such as
Google Play, Apple’s App Store, and Windows Phone Store. With
more and more user consumption on mobile apps, more developers
are motivated to design and publish apps on these app stores by
the potential revenue (e.g., mobile ads and in-app purchase) and
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relatively easy implementation [41]. The number of apps in app
stores is thereby increasingly growing. For example, Google Play
and App Store provide around 3.8 million and two million apps in
2018, respectively. To make their apps outstanding among the vast
numbers of apps, developers should design their apps with attractive
or important functionalities, and most importantly, ensure good user
experience.

Different from traditional software repositories such as source
code [80] and API documents [133], user reviews on mobile apps
are direct and instant feedback from the users who have experienced
the apps. They reflect the practical user experience, in terms of bug
fixing, feature refinement, and functionality request. Analyzing app
reviews provides developers an opportunity to proactively collect
these user complaints, and facilitate scheduling of next releases, as
shown in Figure 1.1.

Mobile Apps

Release

Today my timeline is broken. I don't 
see posts of my friends just some 
random stuff from unknown sources. 
Fix it!

1App Reviews

App Market
App Developer

Figure 1.1: App development cycle.

The characteristics of user reviews make efficient and effective
review analysis very challenging. First, app reviews are generated
every day in large volume. Manual analysis is prohibitively time-
consuming for apps with large numbers of reviews (e.g., Facebook
receives more than 10,000 reviews in Google Play every day [2]).
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Second, app reviews contain numerous noise words, such as mis-
spelled words, repetitive words, non-English words, and casual
words. Also, they are often shorter in length and limited in context,
since most of them are written by users via mobile terminals. Third,
only 30% of the reviews provide informative user opinions for app
updates [52]. Filtering out non-informative reviews manually is non-
trivial and labor-intensive. Furthermore, detailed issues specific to
each app are hard to be predefined, because they are diverse for
different apps and versions. All these characteristics lead automatic
review analysis to be a non-trivial task.

Previous research mainly focuses on reducing the manual power
in extracting software aspects or user preferences, such as establish-
ing dictionaries for preprocessing reviews and assisting review re-
trieval [186], filtering out non-informative reviews [52], or classify-
ing reviews to predefined topics [167]. Some research work [72, 76]
is devoted to predicting user sentiment about specific app features,
which can be used for app maintenance. These studies generally act
on static review collection, and do not consider the timeliness feature
of apps. However, apps are typically rapidly-evolving software, and
app development is incremental and iterative. This signifies that app
reviews are continually updating along with new versions released,
and the time-sensitive characteristic of reviews is helpful and non-
negligible for comprehensive review analysis.

Better app evolution (or release planning) [132] based on user
reviews has drawn more and more attention recently. Release
planning of mobile apps refers to making proper decisions about
the functionalities of the evolving app releases. It is critical for
the success or failure of an app [132]. In [96, 63, 86, 116], the
variations of app ratings, prices, or reviews sizes over time are
explored. To determine which issues to fix or improve, the previous
work [142, 185, 141] generally relies on predefined topics, such as
bug reporting, feature request, and GUI, etc. However, the newly-
appearing and detailed app issues (e.g., newly-added app features)
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User Review

Mining
Issue Distribution

Varying App

Issues

Issue Tracking

Prioritization

Anomaly Detection

In-App Ads 

Analysis

(AR-Tracker)

(PAID)

(IDEA)

(CrossMiner)

App

Performance

App Platforms

Figure 1.2: Overview of our user review mining framework.

are hard to be determined manually in advance for popular apps, and
rarely studied by the previous work. The challenging point is that
the topics are varying with different version releases, and they are
diverse for different apps. In this thesis, we overcome this challenge,
and detect the detailed issues over time based on prioritized reviews
and top-ranked phrases with reduced manpower.

The research of this thesis comprises five parts. The overview of
the user review mining framework is depicted in Fig. 1.2. It contains
three major topics, including analysis on varying app issues, cross-
platform understanding, and app performance exploration. During
the exploration on ever-changing app issues (the first three parts of
the thesis), we first show a case study illustrating the usefulness of
tracking app issues (AR-Tracker), then a phrase-level issue tracing
framework for prioritizing app issues along with version releases
(PAID), and finally an emerging issue detection framework for
identifying anomaly issues timely (IDEA).

The diversity of app platforms is another characteristic of app
reviews. To make apps more publicly available, developers gen-
erally choose to deliver their apps on more than one platform
to enlarge the potential user volume and revenue [27]. Due to
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the differences in operating systems and user preferences of these
platforms, user-concerned issues may exist distinctions for the same
app. Understanding the issue distributions on different platforms
can help developers invest limited energy in testing and modifying
the issues that users care more about. In the fourth part of the
thesis, we study the distributions of critical issues on the three major
app platforms (i.e., Google Play, App Store, and Windows Store),
and summarize the similarities and differences on these platforms
(CrossMiner).

Mobile Apps’ performance, such as mobile resource occupation,
has a vital impact on user experience and continuous profits [107].
In this thesis, we focus on exploring the performance cost of
in-app advertising (ad), as in-app ads are the primary source of
revenue for many free mobile apps. Previous work is mainly
devoted to addressing performance cost generated by ads [182, 164],
or resorting surveys to collect general factors that impact users’
acceptance of ads [199, 168, 55]. However, users’ detailed concerns
about ads, and their attitude towards ads’ practical performance cost
(e.g., memory cost) have rarely been studied. In the fifth part of
the thesis, we determine concrete user concerns about in-app ads
based on user review mining, and explore user opinions about the
performance costs of ads in practice (i.e., whether more performance
costs can generate more user concerns.). Our exploration of in-app
ads provides several actionable guidelines for in-app advertising.

1.2 Thesis Contributions

In this thesis, we make contributions to user review mining in the
following ways:

1. Issue Tracking based on Prioritized Reviews
App reviews are usually massive in size, mixed with non-
informative reviews, and span over multiple issues, thus lead-
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ing to great challenges for developers to efficiently track the
quantitative changes of app issues, and identify the key reviews
of interest. The existing methods require extensive human
efforts to manually label informative reviews for filtering noisy
reviews out, and generally focus on mining the static review
collection. However, app reviews are updating as new versions
come out, and they only reflect app issues of specific app
versions. The dynamic information delivered by user reviews
of different review periods can help developers determine the
bugs to fix or features to add. To this end, this thesis develops
AR-Tracker, a tool specifically designed for issue tracking
based on prioritized reviews. We propose a review-ranking
algorithm based on top-ranked topics, where reviews convey
more important user-concerned topics would be prioritized.
Experimental evaluation of four popular mobile apps with 500k
user reviews illustrate that our tool can automatically surface
informative and urgent reviews, comparing to the state-of-the-
art method. We track the quantitative changes of app issues
by manually checking the top-ranked reviews. We also show
a case study which indicates that tracing user reviews along
with time periods can assist developers in timely identifying
important user demands.

2. Issue Prioritization over Release Versions
User review analysis is critical to the bug-fixing and version-
modification process for app developers. Manually tracing app
issues based on prioritized reviews still consumes developers
amounts of time in understanding user intentions in the top-
ranked reviews. Also, hypothetically, in contrast with phrase-
level issues, sentence-level app issues generally cost developers
more time to grasp the important ones. In this thesis, we
develop a framework called PAID for automatically prioritizing
phrase-level app issues for each version. Besides, one major
missing point of the previous work on issue tracking is that the
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result verification is usually qualitative and not quantifiable.
This impedes the generalization of the problem. To mitigate
the limitation, we propose to employ official app changelogs
as ground truth for verifying the performance of issue tracking.
We aim at prioritizing the app issues that are considered im-
portant by developers during new version design. We conduct
large-scale experiments on 18 popular apps with millions of
reviews to verify the effectiveness of PAID.

3. Emerging Issue Detection
Detecting emerging issues (e.g., new bugs, features to improve,
and functionalities to add) timely and precisely is critical for
developers to update their apps. App reviews provide an op-
portunity to proactively collect user complaints and promptly
improve apps’ user experience, in terms of bug fixing and
feature refinement. However, the tremendous quantities of
reviews and noise words (e.g., misspelled words) multiply
the difficulties in accurately identifying newly-appearing or
suddenly-increasing app issues. To address this challenge, in
this thesis, we define these issues as emerging issues, and
propose an automated framework called IDEA to identify
the emerging app issues/topics effectively based on online
review analysis. We evaluate IDEA on six popular apps from
Google Play and Apple’s App Store, employing the official app
changelogs as our ground truth. Experiment results demon-
strate the effectiveness of IDEA in identifying emerging app
issues. Feedback from engineers and product managers shows
that 88.9% of them think that the identified issues can facilitate
app development in practice. Moreover, we have successfully
applied IDEA to several products of Tencent, which serve
hundreds of millions of users. The code and review data are
open-source released online.

4. Issue Understanding Across App Platforms
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App developers publish their apps on different app platforms,
such as Google Play, App Store, and Windows Store, to
maximize their user volumes and potential revenues. Apps
for different platforms are particularly designed for specific
operating systems. Due to the different characteristics of
the operating systems and user preference on the platforms
(e.g., Android provides a more customizable platform, and
iOS attaches more attention to the user interface.), app issues
on these platforms may exhibit significant difference. Under-
standing the differences in app issues on the platforms can
help developers prioritize their design and testing effort. In
this thesis, we propose a framework named CrossMiner to
automatically prioritize app issue and explore that whether the
issues on the platforms are distributed differently. We focus on
analyzing seven app issues, including battery, crash, memory,
network, privacy, spam, and UI. Extensive experiments on
around five millions of app reviews from 20 popular apps
show that apps designed for the platforms present significantly
different issue distributions. Source code and input data are
also made publicly available.

5. Exploration of the Effects of In-App Ads on User Experi-
ence
One primary revenue model adopted by many mobile apps
is in-app ads that are embedded in the apps and displayed
at various points during usage. The integration of ads has
strong impacts for both users and app developers. For example,
the consumption of ads on mobile resource and distraction to
users’ interactions with apps may cause customer churn, thus
leading to reduced ad profits. Gaining in-depth knowledge
of users’ actual feelings when interacting with ads is helpful
to developers for designing user-friendly ads. To this end,
we conduct a comprehensive empirical study to explore con-
crete user concerns about in-app ads and user opinions on
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the performance costs of ads in practice. We quantify user
concern levels about specific ad issues based on user review
analysis. Our work provides several actionable guidelines for
in-app advertising, which have been endorsed by 94.6% of the
engineers in a developer survey, such as shortening compulsory
video ads, and embedding ad SDKs which support accurate ad
recommendation.

1.3 Thesis Organization

• Chapter 2
In this chapter, we review some background knowledge and
related work on user review mining for assisting mobile app
development. First, we introduce the typical topic modeling
methods and the neural network method for short text under-
standing, as the methods are adopted or improved in our situa-
tions and throughout the thesis. Then we review previous work
on app review analysis, including user intention mining, user
sentiment prediction, assistance in release planning, and cross-
platform study. Finally, we review the previous exploration on
ad costs, and briefly clarify the difference comparing with our
study.

• Chapter 3
This chapter presents an automated tool for prioritized in-
formative user reviews based on topic ranking, with the aim
to trace app issues over different time periods. We show a
case study that tracking app issues can assist developers in
timely detecting app bugs to fix or features to improve. More
specifically, in Section 3.1, we introduce the motivation and
challenges of automatic extracting valuable information from
user feedback. Section 3.2 presents the overview of our tool
and detailed steps in the tool implementation. Section 3.3
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elaborates on the subject dataset, comparison results on the
performance of the proposed review ranking method, and the
effectiveness of tracing app aspects reflected in user reviews.
We conclude this chapter in Section 3.4.

• Chapter 4
In this chapter, we propose an issue-ranking framework, namely
PAID. PAID prioritizes phrase-level app issues along with re-
lease versions with minimal manual labor. We aim at capturing
critical app issues for determining changes for next release.
The official changelogs are chosen as ground truth for the
verification. More specifically, Section 4.1 introduces the
motivation for exploring the trends of concrete app features
from user reviews. Section 4.2 illustrates the workflow of
PAID, which includes three main steps, and its implementation
details of each step. Section 4.3 explains the experimental
dataset and the evaluation results. We discuss the validity and
generalizability of PAID in Section 4.4, and summarize this
chapter in Section 4.5.

• Chapter 5
This chapter presents an emerging issue detection framework,
namely IDEA, which can automatically identify emerging app
issues based on online app review analysis. Although prior-
itizing issues can help developers schedule app modification,
the emerging issues are relevantly more important and ur-
gent. More specifically, Section 5.1 presents the motivation of
emerging issue detection. The background of IDEA, including
the concept of emerging app issues, the importance of online
review analysis, and our ground truth (i.e. the app changelogs),
is introduced in Section 5.2. Section 5.3 describes the overall
framework of IDEA, which includes four components, and
the details of each component. We evaluate the performance
of IDEA based on case studies in Section 5.4. The practical
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effectiveness of IDEA and the threats to validity are displayed
in Section 5.5 and Section 5.6, respectively. Finally, we
conclude this chapter in Section 5.7.

• Chapter 6
In this chapter, we present an empirical study on exploring
differences and similarities of issue distributions on different
app platforms. We focus on studying three popular app plat-
forms, including Google Play, App Store, and Windows Store,
and seven app issues (i.e., crash, battery drainage, memory
consumption, network connection, privacy, spam, and UI de-
sign). We design an effective tool, namely CrossMiner, for
retrieving keywords relevant to specific app issue. More specif-
ically, we introduce the motivation of exploration on different
app platforms in Section 6.1. Section 6.2 elaborates some
background knowledge and detailed motivation. Section 6.3
gives an overview of our tool, CrossMiner, and explains the
two major procedures in CrossMiner. Section 6.4 illustrates
the performance of CrossMiner in issue prioritization and
platform-level observations. We discuss the threat to validity
in Section 6.5, and conclude this chapter in Section 6.6.

• Chapter 7
This chapter explores the effects of in-app ads on user ex-
perience based on app reviews from Google Play. We study
the major ad issues expressed by users and users’ opinions on
the performance costs of ads in practice. More specifically,
Section 7.1 presents the motivation and challenges of our in-ads
exploration. Section 7.2 details the methodology used during
the exploration. We illustrate the subject datasets and insights
obtained during experimental analysis in Section 7.3. One case
study 7.4 is conducted to indicate the usefulness of the obtained
insights. We finally conclude this chapter in Section 7.5.

• Chapter 8
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The last chapter summarizes this thesis and provides some
future directions that deserve further exploration.

To make each chapter self-contained, we may briefly reiterate the
critical contents, such as motivations and framework descriptions, in
some chapters.

2 End of chapter.



Chapter 2

Background Review

This chapter briefly reviews some background knowledge and re-
lated work of our research. App reviews are usually short in length
as they are often written by users from mobile keyboards. First,
we provide background knowledge about short text understanding
in the field of natural language processing in Section 2.1, including
topic modeling based methods and typical neural network methods.
Then in Section 2.2, we introduce previous work on app review
analysis in four main aspects, i.e., user intention mining, user senti-
ment prediction, assistance in release planning, and cross-platform
study. Finally, we review related studies on ad cost exploration and
illustrate the difference of our research from them in Section 2.3.

2.1 Short Text Understanding

Short texts (such as tweets, web search snippets, news feeds, and
forum messages), have become an important form for individuals to
voice opinions and share information on online platforms. There is
a growing demand for automatic language understanding techniques
for processing and analyzing such content. The challenge of accu-
rate short text understanding stems from the data sparsity issue. To
alleviate such data sparsity, previous work improves topic modeling
methods to better represent the topic distributions in the short text

13
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collection, or modifies neural network methods for learning better
word representations.

2.1.1 Topic Modeling Method

Topic modeling methods [45, 83] are designed to implicitly infer
word co-occurrence patterns at document-level, to present topic
structure. The key idea is to map high-dimensional count vectors,
such as vector space representations of text documents [161], to
a lower dimensional representation. Mining semantic structure in
a text collection can be traced back to Latent Semantic Analysis
(LSA) [58], which adopts the singular value decomposition of
the document-term matrix to reveal the major associative word
patterns. Based on topic modeling, we can obtain topic distributions
of words and documents in the collection. Probabilistic Latent
Semantic Analysis (pLSA) [83] is proposed to improve the (LSA)
in a probabilistic sense by using a generative model. The pLSA can
model documents as a mixture of multinomial distributions basing
on a statistical latent variable model for factor analysis of count data.
pLSA has been successful in many real-world applications, includ-
ing computer vision, and recommend systems. However, since the
number of parameters grows linearly with the number of documents,
pLSA is confronted to a large number of estimation parameters. The
offline nature of pLSA also makes it incapable to apply to unseen
documents. Latent Dirichlet Allocation (LDA) [49] is a generative
probabilistic model that represents a Bayesian upgrade to pLSA by
introducing Dirichlet priors on document-topic distributions. LDA
resolves problematic issues of pLSA such as increasing number of
estimation parameters and inability to be applied incrementally to
unseen documents by placing a Dirichlet prior distribution. LDA has
an increased complexity than pLSA, several approximate inference
algorithms are derived, such as Variational Inference [50], and
various Markov Chain Monte Carlo algorithms, such as Gibbs
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Sampling [70], can efficiently infer the model parameters. LDA is
one of the most popular methods in topic modeling. There are lots
of complex variations of LDA are proposed to model relationships
between topics [47], to model evolution of topics over time [48], to
model the hierarchical topics [46], to model authorship [155] and
others.

With the emergence and prosperity of social media, topic models
have been utilized for social media content analysis in various
tasks, such as classification[170], content characterizing [151], event
tracking [103], comment summarization[110], content recommen-
dation [146], user interest profiling [192], and topic detection [189].
In early stage, some researchers directly applied conventional (or
slightly modified) topic models for analysis [151, 37].

Generally, text collections with more word co-occurrence would
generate more reliable topic inference. Thus, short texts, which
contain fewer co-occurred words than long texts, are suffered a lot
from the data sparsity problem in short texts, leading to inferior topic
inferences with conventional topic models in topic inference [100].
Earlier studies focus on exploiting external knowledge to enrich
the representation of short texts. In [145], Phan et al. propose to
infer topic distribution of short texts by using the latent topics from
Wikipedia. Similarly, the work [93] propose to infer latent topics of
short texts for clustering by using auxiliary long texts. Sahami and
Heilman [160] suggest a search-snippet-based similarity measure
for short texts. These models require a large high-quality regular
text corpus, which maybe domain and/or language specific. Many
aggregation strategies have been proposed by merging short texts
into long pseudo-documents to enrich context information in short
texts. Conventional topic modeling is then applied to infer the latent
topics. For example, Weng et al. [192] propose to aggregate tweets
from the same user as a pseudo-document before performing the
standard LDA model. Other metadata (e.g., timestamps, hashtags)
that have been used for short text aggregation [84, 118]. However,
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such aggregation metadata may not be available in some domains,
e.g., news title and search snippets. These studies are empirical and
hard to extend for general short texts topic modeling.

Topic modeling specific designed for general short text is studied
in later studies. Yan et al. [195] propose a novel biterm topic model
(BTM) to explicitly model the generation of word co-occurrence
patterns instead of single words as do in conventional topic models.
BTM is demonstrated to generate good discriminative topic repre-
sentations as well as more coherent topics. In [197], the authors pro-
posed to employ a simple and effective topic model, named Dirichlet
Multinomial Mixture (DMM) model to discover latent topics in
short texts. DMM is inspired by author-topic [155] model, in which
each document has a single author, and based on the assumption
made in the mixture of unigrams model proposed by [135], i.e., each
document is sampled from a single latent topic. Such an assumption
is suitable for short text because of the data sparsity issue. DMM is
proven to be more effective than conventional topic models in many
follow-up short text studies [201, 150, 99].

2.1.2 Neural Network Method

Learning word representations is an important step for understand-
ing texts. To reduce the computation complexity of representation
learning, Mikolov et al. [121] propose two shallow neural network
architectures, i.e., the Skip-gram model and the Continuous Bag-
of-Words model. At the meantime, to handle the intractability of
full softmax function at the output, several solutions have been
proposed, either using hierarchical versions of softmax [127] or
unnormalized models for training [122]. Among these variants of
Skip-gram model, the Skipgram model with negative sampling [121]
has achieved the state-of-the-art results in several evaluation tasks
of word embeddings, including the analogy reasoning, sentiment
analysis, sentence completion and so on.
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These models use a shallow neural network with only one hidden
layer to learn the relationship between the center word and the
context words and obtains the hidden weights as word vectors. It is
capable of learning semantic and syntactic meanings among words,
and mapping similar words into nearby locations in the vector space.
The simplicity enables it to train on huge datasets with billions
of token within a short period. By arithmetic operations on word
vectors, it is able to produce meaningful phrases, which is quite
amazing.

As the neural network language models became popular, word
embedding learned from external corpus are incorporated into topic
model to help fix the limited content issue of short text. Qiang et
al. [149] propose an embedding-based topic model (ETM) for short
texts, inspired by the aforementioned aggregation strategies. ETM
incorporates the word correlation knowledge provided by words
embedding over the latent topic to cluster short texts to generate long
pseudo-text. In the work [99], Li et al. propose GPU-DMM extends
the DMM model by incorporating the learned word embedding
(relatedness) from a large text corpus.

2.2 App Review Analysis

User feedback analysis has recently attracted the attention of soft-
ware engineering researchers in several explorations, including app
feature identification [139, 89, 77], prioritizing app issues [190, 64,
112, 65], and code localization [56, 140], etc. App reviews serve
as a communication bridge between developers and users. They are
provided by users with actual usage experience and are not biased
by questionnaire specific issues [147]. Analyzing app reviews can
help developers understanding user requests and existing app bugs
in a timely manner. The observed information provides developers
with clues about scheduling app modification and designing testing
cases. However, automated and effective review mining is inherently
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challenging due to the large quantity and noisy nature of user review
data. We review the previous manual or automatic review mining
tasks, in terms of mining user intention, predicting user sentiment,
assisting app evolution, and cross-platform exploration.

2.2.1 User Intention Mining

Mining user intention aims at accurately capturing users’ requests
and purposes delivered by their reviews. Iacob et al. [90] manually
analyze 3,278 reviews of the apps in Google Play and summarize
nine recurring themes among feedbacks. They find that major bugs
usually trigger additional negative feedback, which can support app
testing. Khalid et al. [95] manually tag 6,390 low star-rating reviews
from iOS apps and reach the conclusion that the most frequent
complaints are related to functional errors, feature requests, and
app crashes. Ciurumelea et al. [56] manually analyzed 1,566 user
reviews and defined different levels of taxonomy contain mobile
specific categories (such as performances and resources), based on
which they recommend source code files for modification. Driven
by the increasing amount and importance of user reviews, there
exists research effort [147, 111, 139, 167] aiming at automating
the review tagging process. For example, Iacob and Harrison [89]
automatically extract the reviews related to feature requests based
on predefined linguistic rules. Platzer [147] groups 16 types of basic
desires according to usage motives that are addressed in the text, and
uses multi-class classification method to predict the user motives.
Chen et al. [52] focus on prioritizing the informative reviews by
employing the typical topic modeling method LDA based on filtered
reviews. Sorbo et al. [167] introduce two-level classification model
to predict both user intention (e.g., information giving and problem
discovery) and review topic (e.g., GUI and contents) of one review.
Vu et al. [186] propose a keyword-based framework called MARK
for semi-automated review analysis. MARK allows developers to
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retrieve the most semantically relevant reviews to a set of interested
keywords. Martin et al. [116] conduct a comprehensive survey on
app store analysis, including app review mining.

2.2.2 User Sentiment Prediction

Generally, the sentiment analysis approaches can be categorized
into two types, based on machine/deep learning [113, 98] or lexi-
cons [98, 176]. The former approaches usually require manually-
labeled data, which limits the generalization of trained models cross
domains. Lexicon-based approaches are more flexible for distinct
domains and involve much less labor, which is also the foundation
of the feature sentiment analysis in our work, where the app feature
can be regarded as one product aspect.

In software engineering area, identifying “what parts of software
are used/loved by users” is one of the most important questions
software developers care about [43]. Online app platforms such as
Google Play and App Store provide a channel for users to express
opinions and polarized sentiment (one to five stars) on experienced
apps. High rantings and positive reviews usually promote the avail-
ability of an app. Although user reviews are generally connected
with user ratings, users’ attitude towards specific features is not
easily achieved. Hoon et al. [85] analyze 8.7 million reviews on
App Store and discover that the most frequently-used words in user
reviews are likely to be sentiment words. They also find that the
words describing negative opinions are significantly more than those
expressing positive sentiment. Guzman and Maalej [76] propose to
automatically score fine-grained app features with user sentiments,
where the app features are grouped phrases by LDA. Evaluation
on seven subject apps from the Apple App Store and Google Play
Store verify the effectiveness of their approach. Gu and Kim [72]
focus on capturing feature-opinion pairs with F1-score 0.81, which
significantly outperform Guzmans’ method (0.55). However, their
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feature-opinion pairs are clustered based on common words in
feature descriptions, may ignoring semantically similar but not same
features, such as the feature “UI” and “interface”. Thus the feature
sentiment may be biased across app reviews. Luiz et al. [108]
propose a general framework that allows developers to filter and
analyze user sentiment about specific app features. Topic modeling
method is adopted to extract semantic topics from textual reviews,
and the target features are captured based on the most relevant
words of each discovered topic. Their evaluation shows that topic
modeling method can organize information provided by users in
subcategories that facilitate the understanding of which features
more positively/negatively impact the overall rating of the app.

2.2.3 Assistance in Release Planning

Decisional process for assigning features to subsequent releases
under technical, resource, risk, and budget constraints is one of
the most critical activities in software product development [62].
The decision-centric process of mobile apps is referred to as app
release planning [157]. Mobile app platforms allow developers to
deploy and rapidly update their apps. According to McIlroy et al.’s
study [117], around 15% of the studied 10,713 mobile apps are
updated on a bi-weekly basis or more frequently. The authors also
obtain that users tend to highly rank frequently-updated apps instead
of being annoyed about the high update frequency. Although the
authors in [116] show that neither higher numbers of releases nor
shorter release intervals correlate strongly with changes in success,
the quality of app updating indeed influences an app’s destiny, being
hot or aborted.

Palomba et al. [141] devise a method called CRISTAL for track-
ing informative crowd reviews onto source code changes. CRISTAL
also monitors how many reviews have been addressed and assesses
users’ reaction (user ratings) to these changes. The study discovers
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that developers implementing user reviews are rewarded in terms
of ratings. Similarly, Martin et al.’s work [116] finds that 33% of
the studied app releases cause a statistically significant change in
user ratings. Nayebi et al. [131] perform surveys with users and
developers to understand the common release strategies used for
mobile apps. Their study achieves that an app’s release strategy
is a factor that affects the ongoing success of mobile apps. Thus,
providing developers with timely and accurate information for app
updating is a critical and beneficial task.

Based on the prior study [139], Guzman et al. [75] propose a
taxonomy for classifying app reviews into categories relevant for
software evolution. However, their method relies on manually-
labeled datasets. Villarroel et al. [185] automatically prioritize
the categorized reviews to be implemented when planning the
subsequent app release. Generally, the suddenly-increasing app
issues are more important for developers. Identifying version-
based bursty app issues is a tough problem due to the lack of real
datasets with complete version information and labels. Most current
work focuses on observing the trends of app issues over time. For
example, Vu et al. [186] detect sudden issues by counting the most
related keywords. Since a single word may be ambiguous without
contexts, their follow-up work [187] proposes a phrase-based clus-
tering approach, where the phrase template mining process is time-
consuming and labor-intensive due to the manual validation of part-
of-speech (PoS) sequences.

2.2.4 Cross-Platform Study

Various studies have focused on the similarities and differences
among different mobile application platforms. Tor-Morten et al. [71]
utilize a mobile game app to compare the four platforms (i.e., An-
droid, Windows Phone, iOS, and Firefox OS) in terms of technical
functionality, APIs, development effort, development support and
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deployment to live devices. In [177], Tracy discovers the differences
of development environment for iOS and Android OS. Benenson
et al. [44] conduct an online questionnaire to compare users on
different platforms based on the demographic differences, security
and privacy awareness. In Luo et al.’s work [109], they investigate
the security impact of UI-based APIs in the WebView component for
Android, iOS, and Windows Phone. Ahmad et al. [36] examine the
security requirements on Android and iOS platforms with respect
to the application sandboxing, memory randomization, encryption,
data storage format and built-in antivirus. Liu et al. [106] explore
the Internet streaming access on Android and iOS by analyzing a
server-side workload collected from a top mobile streaming service
provider. In Zhou et al.’s work [202], they identify the different
topics and attributes on different platforms (i.e., desktop, Android,
and iOS) from bug reports. Different from the previous work, our
study aims at discovering the essential issues from users’ perspective
to better facilitate the app development on different platforms.

2.3 Ad Cost Exploration

The performance cost of mobile apps is one of the major concerns
for both developers and users. Taking the energy cost as an example,
[114]’s study finds that practitioners would like oracles that can
detect energy issues as they occur, instead of waiting for battery
drain to become evident. [143] characterize real-world no-sleep
energy bugs and automatically detects these bugs based on dataflow
analysis algorithm. To measure the energy consumption of mobile
apps, [82] and [137] propose hardware-based and software-based
methods, respectively. A comprehensive discussion about energy
consumption in Software Engineering can be found in the work by
[81]; in the following, we center our discussion on ad cost related
work.

Mobile ads can also generate several types of costs for end users,
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e.g., battery drainage [128], privacy leakage [53, 152, 120], and
traffic data cost [148]. According to the research by [95], privacy
and ethics, and hidden cost are the two most negatively perceived
complaints (and are mostly in one-star reviews) among all studied
complaint types. The work [166] shows that malicious ads can
infer sensitive information about users by accessing external storage.
[172] investigates the effect on user privacy of popular Android
ad providers by reviewing their use of permissions. The authors
show that users can be tracked by a network sniffer across ad
providers and by an ad provider across applications. The study [73]
proposes several lightweight statistical approaches for measuring
and predicting ad related energy consumption, without requiring ex-
pensive infrastructure or developer effort. [191] and [129] discover
that the “free” nature in free apps comes with a noticeable cost,
by monitoring the traffic usage and system calls related to mobile
ads. The work [179] achieves that although user’s information is
collected, the subsequent use of such information for ads is still low.
[158] also explores how many ad libraries are commonly integrated
into apps, and whether the number of ad libraries impacts an app’s
ratings. The authors find that no evidence that the number of ad
libraries in an app is related to its possible rating in the app store,
but integrating certain ad libraries can negatively impact an app’s
rating.

To alleviate these threats, [124] and [182] develop a system for
enabling energy-efficient ad delivery. In the work [164], the authors
propose an architecture MASTAds for allowing ad networks to
obtain only the necessary information to provide targeted advertise-
ments with user privacy preserved. An interesting empirical study
given by [74] exhibits obvious hidden costs caused by ads from both
developers’ perspective (i.e., app release frequencies) and users’
perspective (e.g., user ratings). In [159], the authors further validate
that ads-supported apps use more resources than their corresponding
paid versions with statistically significant differences.
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The closest studies to our work are [158], [159] and [74].
Different from [158], we propose method to measure user concerns,
instead of using user ratings directly. Also, we analyze the correla-
tions between user concerns and performance cost of ads. Different
from [159] and [74] which focus on demonstrating whether ads can
bring more hidden costs, we aim at exploring what cost types users
actually care about, and how the hidden performance costs of ads
can affect user opinions. We conduct large experiments and case
studies to answer these questions and provide suggestions for app
developers.

2 End of chapter.



Chapter 3

Tracking the Changes of
User-Concerned App Aspects

Tracking the quantitative changes of app aspects/topics discussed in
user reviews can help developers timely understand user demands
along with time periods. This chapter presents an aspect-tracing
mechanism based on top-ranked reviews. The key notion is that
the proposed review-ranking method does not need labeled reviews
to filter the non-informative ones out. A case study on the public
Facebook Android app indicates that our mechanism can success-
fully expose one crucial issue of the app. The main points of this
chapter are as follows. (1) It presents a review-ranking method
based on prioritized topics. (2) It conducts extensive experiments to
evaluate the effectiveness of the proposed review-ranking method.
(3) It demonstrates the advantage of analyzing user reviews over
time.

3.1 Introduction

User reviews are written by app users to express their experience
with specific app versions. One piece of user review generally
contains the post date, user rating, review text, review title, and app
version. The rich information delivered by reviews helps developers
monitor the app issues encountered by users timely and further

25
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improve the quality of their apps in the next release. For instance,
with review-based app modification, the game app, Flappy Bird,
shot to the top of the App Store with zero marketing spent, estimated
to cost over $80,000 through customer acquisition.

The reviews are usually massive in size, shorter in length, and
contain massive useless information, thus leading to great challenges
for developers to identify the key reviews of interest with manual
labor. For example, the public Facebook Android app receives
around 10,000 reviews per day [2]. Handling the reviews manu-
ally is prohibitively time-consuming for developers, especially for
popular apps.

Besides, only 35% reviews are informative [52], where “infor-
mative” reviews imply the reviews contain information that app
developers are looking to identify and is potentially useful for
improving the quality or user experience of apps. The effectiveness
of removing non-informative reviews in surfacing important topics
has been demonstrated in [52]. Although the supervised methods
for judging the informativeness of a review save much more time
than purely manual inspection (7.4 hours), they still consume around
0.5∼0.9 man-hours on inspecting 2,000 Facebook reviews. How to
extract valuable information from user feedback is a critical problem
yet to be well addressed. In this chapter, to automate the review
filtering process, we propose a review-ranking method based on
prioritizing topics, during which reviews conveying important topics
are ranked higher.

Moreover, user reviews are continually updating along with
rapidly-evolving app versions. They usually reflect user experience
of specific app versions. Previous work generally focuses on
extracting topics [52, 89, 76] or empirical study [77, 90] based
on a static collection of user reviews, ignoring the timeliness of
reviews. Tracing the changes of user-concerned app aspects along
with time is helpful for developers to design the next release, such as
determining the bugs to fix, new functionalities to add, and features
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to improve. To fill this significant gap, we trace the quantitative
changes of app aspects based on the top-ranked reviews of different
time periods.

Specifically, we propose a tool named “AR-Tracker” (App Re-
view Tracker) for prioritizing user-concerned reviews and tracing
the changes of app aspects along with time. The review-ranking
method is built on topic extraction and topic ranking. We compare
five topic modeling algorithms for determining the most effective
topic extraction methods. For prioritizing topics, we consider se-
mantic relevance between the extracted topics and also user ratings.
A case study on the Facebook Android app shows the usefulness of
tracking app aspects over time in timely identifying important app
issues. We also visualize the aspect-tracking results in an intuitive
and interpretable way, so developers can observe the trends of hot is-
sues clearly. Experiments on four popular mobile apps indicate that
our review-ranking method achieves comparable accuracy with the
state-of-the-art method [52], while guaranteeing the informativeness
of top reviews.

In summary, this chapter makes the following contributions:

• We propose topic-ranking and review-ranking methods for
prioritizing important and informative user reviews, which can
help developers capture the most user-concerned app aspects.

• We establish a tool, AR-Tracker, to trace and visualize the
changes of top-ranked reviews over different time periods, and
show a case study on the usefulness of such tracking.

• We evaluate the effectiveness of the proposed review-ranking
method on a large-scale experiment involving over 500,000
user reviews of four popular Android apps.
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Figure 3.1: Overview of AR-Tracker

3.2 Methodology

This section first gives an overview of the proposed tool, AR-
Tracker, and then elaborate each of the five procedures in AR-
Tracker, including review preprocessing, topic extraction, topic
ranking, and review ranking.

3.2.1 Overview of AR-Tracker

The general framework of AR-Tracker is illustrated in Fig 3.1,
which comprises 5 main steps. To begin with, we need to collect user
reviews of subject apps from Google Play market, and preprocess
the raw user reviews to clean reviews for subsequent analysis.
The second step is to extract topics from preprocessed reviews
using topic modeling methods. We incorporate five different topic
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Table 3.1: Example of User Review Instances

Review ID Review Text Rating Date Version
1 Never had an issue with it 5.0 11/08/14 21.0.0.23.12
2 Hate that I have to download. 1.0 09/08/14 20.0.0.25.15
3 Can’t download videos. 2.0 07/14/14 12.0.0.15.14
... ... ... ... ...
n rn an tn vn

Notes: Each row means a review instance, including a review text, user rating, post
date and the corresponding app version.

modeling methods to observe their performance in topic extraction.
The topic modeling methods will be briefly introduced in the topic
extraction procedure. Then, we illustrate our proposed topic-ranking
scheme to prioritize the extracted topics in order of importance. In
the next step, on the basis of the ranked topics, we prioritize the user
review instances. We employ the official website of the subject app
as ground truth for comparing different topic modeling methods in
review ranking. Finally, we manually extract user-concerned app
aspects from top-ranked reviews, and visualize the qualitative trends
of the app aspects along with different time periods.

3.2.2 Problem Setting

Considering an individual appA from a certain app store, it involves
a list of n review instances with review texts R = {r1, r2, · · · , rn},
user ratings A = {a1, a2, · · · , an}, post time T = {t1, t2, · · · , tn}
and corresponding versions V = {v1, v2, · · · , vn}. Therefore, for
each review instance ri, we have its attributes: post date ti, rating
ai, and version vi. The general structure of data is designed as A :
{R,A,T,V}. Table 3.1 shows the notations of all the variables and a
review sample with n review instances respectively.

To track the changes of app aspects along with time, we divide
app reviews into several time sequences T = {T1, T2, · · · , Tz},
where z indicates the number of time periods.
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3.2.3 Step 1: User Review Collection and Preprocessing

We choose four subject popular Android apps from Google Play,
including the public Facebook (social app), Facebook Messenger
(communication app), TempleRun2 (action game app), and Insta-
gram (social app). The reason why we choose these apps are that
they belong to different categories. Also, some of them (Facebook,
Facebook Messenger, and Instagram) are possessed by the same
company, so that we can expect to detect some app issues of
the company. Most importantly, they are prevalent worldwide,
making sure the quantities of reviews in different time periods are
considerable and sufficient for app aspect tracking.

We collected meta-information and user reviews of mobile apps
by (a) building a customized web crawler using a web-automation
and testing tool Selenium based on Python; (b) and utilizing
officially-provided app crawling APIs to capture user reviews given
apps’ package names.

We conduct basic preprocessing methods to clean the raw user
reviews, such as taking their lower cases, removing the stop words
provided by NLTK [17], and filtering out reviews that contain
no words. The preprocessed reviews are utilized for subsequent
analysis.

3.2.4 Step 2: Topic Extraction

Extracting topics in a large number of user reviews is helpful to
efficiently understand user-concerned app features. Topic modeling
methods are typical statistical methods for analyzing the words of
the original texts to discover the main delivered topics [45]. They do
not require any prior annotation or labeling of the documents - the
topics emerge from the analysis of the texts. Various topic modeling
methods have been proposed based on probabilistic graph models,
such as Latent Semantic Indexing (LSI) [58], Latent Dirichlet
Allocation (LDA) [49], Random Projection (RP) [94], and Non-
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Negative Matrix Factorization (NMF) [102], and Gibbs Sampling
of LDA [196]. Previous research directly utilized the popular topic
modeling method - LDA [52, 76] or other feature clustering meth-
ods [187, 77], and rarely explores which topic modeling method is
better for app review mining. We compare topic extraction from user
review instances with different topic modeling methods in this step.

3.2.5 Step 3: Topic Ranking

In order to discover the important topics for developers, we need to
prioritize the extracted topics from Step 2. Existing methods merely
consider the explicit review attributes, such as user rating, post date,
and the number of duplicates, ect., and ignore the implicit relations
between these topics. Generally, the topics with larger semantic
relevance with other topics would likely to be more concerns of
users. Thus, we propose a topic-ranking method by combining the
implicit information with explicit user ratings.

Given a list of review texts R = {r1, r2, · · · , rn}, we can simply
obtain the corresponding vocabulary D = {ω1, ω2, ..., ωd} (d is the
magnitude of the vocabulary, ω means one specific token). Topics
β = {β1, β2, ..., βk} (k is the number of topics) represent the topics
extracted through topic modeling. A review text r can also be
expressed as a probability distribution over the topics β, as shown in
Table 3.2.

Table 3.2: Review-Topic Matrix
β1 β2 · · · βk

r1 p11 p12 · · · p1k
r2 p21 p22 · · · p2k
...

...
... . . . ...

rn pn1 pn2 · · · pnk

The topic-ranking method involves two factors, i.e., one is the
semantic similarity with other topics, and the other is the cor-
responding user ratings. The score S of the i th topic can be
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represented as S(βi) = {S(di), S(ai)}, where S(di) and S(ai)
indicate the scores stemmed from the above two influence factors.
Next, we will introduce the detail of the computation.

Topic Similarity

Commonly, ranking and clustering are regarded as orthogonal tech-
niques [173]. Intuitively, if one topic has a larger similarity with
other topics, this topic tends to have more significance than the other
and can be ranked higher. As shown in Fig. 3.2, Topic C seems
closer to the other topics than Topic A or Topic B does, which
implies that the words in Topic C are more related to those in B
and C. Here, we introduce Hellinger distance, a statistical method to
quantify the similarity between two probability distributions.

Figure 3.2: Explanation of Topic Similarity. Note: The clusters A, B and
C indicate three topics. And the dots inside each cluster represent the words
belonging to that topic.

For any two topics βi and βj, their discrete probability dis-
tributions among review instances are βi = (pi1, · · · , pin) and
βj = (pj1, ..., pjn) respectively, where n means the number of
review instances. The Hellinger distance between these two topics
is defined as:

H(βi, βj) =
1√
2

√√√√ n∑
u=1

(p
1
2

iu − pju
1
2 )2 (3.1)
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The score of topic similarity for the topic βQ, Q ∈ [1, k], is the
inverse distance to all the other topics, that is:

S(dQ) =
1∑k

i=1H(βQ, βi)
(3.2)

where k is the number of the topics.

User Rating

Generally, user reviews with lower ratings imply the users are highly
frustrated with some features of the app. And reviews with medium
or higher ratings indicate the corresponding features are not very
critical.

We define I1 as the set of reviews with rating 1.0 or 2.0, I2 as the
set with rating 3.0, and I3 as the set with rating 4.0 or 5.0. Then the
score of user ratings for the topic βQ can be described as:

S(aQ) = w1

∑
i∈I1

PiQ + w2

∑
i∈I2

PiQ + w3

∑
i∈I3

PiQ (3.3)

where w1, w2 and w3 are the weights corresponding to each index
set I1, I2 and I3 respectively and w1 + w2 + w3 = 1, 0 ≤ w3 ≤
w2 ≤ w1 ≤ 1. In this way, topics with lower ratings are given higher
scores.

Overall Score

In terms of topic similarities and user ratings, the overall score of
the topic βQ is defined as:

S(βQ) = (S(aQ) + γ1) · (S(dQ) + γ2), (3.4)

where γ1 and γ2 are the weights that can be modified according
to individual requirements and 0 ≤ γ1, γ2 ≤ 1. The parameters
are experimentally defined in our situation. We use multiplication
for combining the two factors for highlighting their impact on the
overall score.



CHAPTER 3. EVALUATION STUDY 34

3.2.6 Step 4: Review Ranking

Our goal is to provide developers with more interpretable and direct
results, so only a few undefined topics are not satisfying. We need
to prioritize the review instances among massive raw user reviews
and show the representative ones to developers.

Given a list of review texts R = {r1, r2, ..., rn} and their rating
information, we get the topic probability distributions of each review
text in Table 3.2 and the sorted topics in the last step. The review-
ranking method involves three elements, i.e., topic importance
score, user rating and semantic similarity to other review instance.
We adopt the probability distributions among different reviews to
measure the similarity. The grade G of the i-th review instance
can be described as G(ri) = {G(mi), G(ai), G(di)}, where G(mi),
G(ai) and G(di) denote the grades calculated for the above three
elements respectively. The detail is described as below.

Topic Importance

For a review text, larger probability distributions in more important
topics mean that the instance also tends to be more important
for developers. Thus, we group reviews according to the topic
probability distributions in a simple mode, which means that one
review text belongs to the topic with the largest proportion. Thus,
we have k groups of reviews, each with nj (where j ∈ [1, k], k is the
number of topics) review texts. The score of topic importance for
the review text rQ can be defined as:

G(mQ) =

∑k
j=1 λj · pQj

k
, (0 ≤ λj ≤ 1), (3.5)

where k represents the number of extracted topics. λj means the
weight to the j th topic and λj =

nj
n , where n is the total number of

review instances. pQj is the probability distribution of j th topic to
the review text rQ.
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User Rating

Analogous to the impact of user ratings on prioritizing topics, user
ratings also influence the importance order of review instances.
Here, we adopt the similar scoring method as the one described in
the last step. That is, I1 means the review group with rating 1.0 or
2.0, I2 with rating 3.0, and I3 with rating 4.0 or 5.0. The score of
user ratings G(aQ) for the reveiw rQ is described as:

G(aQ) = wi, i ∈ [1, 3] (3.6)

where wi is the wight to the i th review group. Generally, w1+w2+
w3 = 1, 0 ≤ w3 ≤ w2 ≤ w1 ≤ 1. A larger wi means the review
group with a certain rating has more priority. Equation 3.6 indicates
that reviews with lower ratings will be ranked higher.

Review Similarity

If a review text has more resembling texts, the topic reflected by
the review would tend to be significant, as the topic is expressed
by a majority of users. Thus, this review instance can be ranked
higher. A review text can be regarded as a probability distribution
over different topics, as shown in Table 3.2. Here, we also adopt the
Hellinger distance to measure the similarity between reviews. The
score of review similarity G(dQ) for the review rQ is defined as:

G(dQ) =
1∑n

i=1H(rQ, ri)
, (3.7)

where n is the number of user reviews in R. H(rQ, ri) means the
Hellinger distance between rQ and all the reviews inR. Equation 3.7
indicates that the reviews that are semantically closer to other review
texts tend to be ranked higher.

Overall Score

With respect to the above three elements, i.e., topic importance, user
rating, and review similarity, the overall score G(rQ) of the review
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rQ is denoted as:

GQ = (α1 ·G(mQ) + α2 ·G(aQ)) ·G(dQ), (3.8)

where αi(i ∈ [1, 2]) means the weight to each factor and (0 ≤
α1, α2 ≤ 1). Developers can adjust them according to their own
demands.

3.3 Evaluation Study

We evaluate our framework AR-Tracker on a large sample of online
app reviews crawled from Google Play during August∼November
in 2014. Table 3.3 lists the subject apps and the number of reviews
in each time sequence of these apps. In the first column of the
table, “11-01” means the time period from “11-01” to the latest date
of the reviews; “10-15” indicates the period from “10-15” to “11-
01”. The total number of reviews is 555,529, including 176,362
Facebook reviews, 205,505 Facebook Messenger reviews, 42,807
TempleRun2 reviews, and 130,855 Instagram reviews. We manually
divide the reviews into seven time slices for tracking the app aspect
changes along with time periods. Our experimental study aims to
answer two research questions:
RQ1: Which topic modeling method can better extract the topics
from user reviews and whether our review ranking method outper-
forms the state-of-the-art method AR-Miner?
RQ2: Can AR-Tracker effectively track the quantitative changes of
the app aspects reflected in user reviews?

Also, we utilize the dataset of SwiftKey (6,282 reviews in total)
used in [52] for comparison of different topic modeling methods
and evaluation of AR-Tracker, i.e., answering RQ1. We introduce
our performance metrics and answers to the two research questions
in the following sections.
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Table 3.3: Experimental Dataset
Facebook

Facebook Messenger TempleRun2 Instagram

11-01 12,678 14,515 2,531 11,836
10-15 31,787 29,715 7,312 31,797
10-01 26,690 23,966 6,259 26,035
09-15 23,538 30,143 7,195 27,315
09-01 29,096 39,793 6,901 28,144
08-15 31,303 40,510 7,933 5,728
08-01 21,270 26,863 4,676 -

3.3.1 Performance Metric

In this part, we introduce the performance metrics used for our ex-
perimental evaluation. To compare with the state-of-the-art method
AR-Miner [52], we adopt the same metrics such as Hit-rate (recall)
and Normalized Discounted Cumulative Gain NDCG@k [57]. They
are calculated as below.

Recall(Hit− rate) = TP

TP + FN
, (3.9)

where TP, FN indicate the numbers of true positives (hits) and false
negatives (misses), respectively.

NDCG@k =
DCG@k

IDCG@k
, (3.10)

where NDCG@k ∈ [0, 1], and a higher value implies a stronger
agreement between the predicted rank order and the true rank order.

Also, since our framework does not filter the non-informative
user reviews, we use self-defined Info-rate as one index for analyz-
ing the proportion of informative reviews in the top reviews.

Info-rate =
#informative reviews

#top reviews
(3.11)

where Info-rate ∈ [0, 1], and the higher value implies more infor-
mative reviews are included in the top reviews.



CHAPTER 3. EVALUATION STUDY 38

The ground truth for evaluating the proposed review-ranking
method is similar to that for evaluating AR-Miner. The ground truth
is the SwiftKey feedback forum created by the developers. Feedback
forum provides users a voting mechanism for every feedback, and
feedback with high-voting is ranked top. Since we use the same
datasets of Swikftkey as AR-Miner, we also adopt their snapshot
from the user forum as ground truth, as shown in Table 3.4.

Table 3.4: Top-10 ranked results attained from SwiftKey feedback forum [52].
Rank Votes User Facebook

1 5711 More themes. More themes. More themes
2 4033 Continuous input - glide your fingers across the screen /

Flow
3 4025 Option to disable auto-space after punctuation and/or pre-

diction
4 3349 customizable smileys / emoticons
5 2924 AutoText - Word Substitution / Macros (brb = ’be right

back’)
6 2923 Traditional Chinese
7 2504 An option to use swiftkey predictions everywhere in every

app including a web searches
8 2313 Chinese pinyin
9 2095 Thai

10 2014 After Jelly Bean update, Swiftkey keeps returning to an-
droid default keyboard after restart or shutdown

3.3.2 Answer to RQ1: Effectiveness of AR-Tracker

For evaluating the performance of the proposed review-ranking
method, we experimentally set w1, w2, w3 as 0.85, 0.1, and 0.05,
respectively. The whole parameters are illustrated in Table 3.5. Due
to the limitation of writing space, we just describe the top five results
of AR-Tracker (using Gibbs Sampling LDA during topic extraction),
shown in Figure 3.3. We can discover that the fifth review text
is non-informative and three of the top five reviews hit the ground
truth.
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Table 3.5: Experimental parameters.
Parameter k α1, α2 γ1, γ2 w1 w2 w3

Value 10 1 0 0.85 0.1 0.05

Figure 3.3: Top five review texts of Gibsampling LDA. The numbers beside the
key phrases indicate the phrase rankings in the ground truth in Table 3.4.

To compare with AR-Miner and different topic extraction meth-
ods, we use the same datasets of SwiftKey (6,282 user reviews
totally) and performance metrics. The results are illustrated in
Figure 3.4.

As can be seen from Figure 3.4, Gibbs Sampling LDA can
achieve the identical hit-rate as AR-Miner (LDA), and a higher
hit-rate than AR-Miner (ASUM). However, pure LDA without the
filtering process for removing non-informative reviews does not
perform better than the pure GibLDA. In terms of Info-rates and Hit-
rates (only applicable to methods without filtering1), LSI, LDA, RP,
and NMF all present lower performance than Gibbs Sampling LDA,

1That is ignoring AR-Miner (LDA) and AR-Miner (ASUM) methods.
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Figure 3.4: Comparison of different methods. We consider the Info-rate for the
methods in AR-Miner as 1.0 by default.

which means these methods are more vulnerable to noises (e.g., non-
informative reviews). Although the NDCG@10 of Gibbs Sampling
LDA is a bit lower than that of AR-Miner (LDA), Gibbs Sampling
LDA is higher than AR-Miner (ASUM).

Most importantly, Gibbs Sampling LDA spends developers zero
manual labor for labeling informative reviews. In AR-Miner, the
total number of reviews amounts to just 6,282 (3,282 for the unla-
beled set), far less than the actual number (thousands of reviews per
day) for popular apps. As [52] stated, AR-Miner took 0.5 man-
hours (for 3,000 labeled data) for EMNB filtering and 7.4 hours
for purely manual inspection, while filtering is non-necessary in our
framework. Therefore, AR-Tracker is more applicable and practical
for the scenario where tremendous numbers of raw reviews need to
be analyzed. And we will use AR-Tracker (Gibbs Sampling LDA)
for tracking the changes of app aspects from user reviews during
answering RQ2.

3.3.3 Answer to RQ2: Tracking changes of app aspects

We analyze the reviews of Facebook over time for illustrating the
helpfulness of tracking app aspects. From the top 10 review texts
of different time sequences, we extract 10 key topics - Crash,
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Newsfeed, Picture, Post, Notification, Privacy, Space, Video, Mes-
senger, and Navigation. We summarize the ranks and frequencies
of occurrence of these themes in a specific time period, depicted in
Figure 3.5. In the cell of the figure, the number beside the bracket
indicates the rank of the topic, and the inside denotes the occurrence
frequency of the topic. If the topic only appears once in the top
reviews, we just display the rank without bracket.

Figure 3.5: Summary of top 10 reviews in different time periods.

To clearly describe the changes of each topic, we divide the
topics into two groups: General issues (with the orange ground
in Figure 3.5) and Content issues (with the gray ground), where
content issues are specific to app functionalities. And we define
Importance-rate as below to illustrate the significance level of each
topic belonging to content issues.

Importance-rate =
1− rank

N
∗ (λ+ frequency), (3.12)

where rank and frequency represent the rank and occurrence fre-
quency of the topic in specific time period, respectively. λ is
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for regularization and here we experimentally set λ = 0.1. The
Importance-rate of each topic over time is illustrated in Figure 3.6.
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Figure 3.6: Dynamics of Topical Issues

As Figure 3.6 described, the trend of the topic “Messenger” is
the sharpest and most interesting one among all the studied topics.
This is because users were forced to download Messenger app to
check Facebook messages when the Facebook Messenger app first
launched, which aroused much discontent and strong response, also
reported by [10]. If the developers can identify such topics in a
timely manner, they can immediately solve the bugs or improve
the features, and thereby the user experience can be guaranteed.
Thus, we suppose that tracking the quantitative changes of the top
app aspects can really help developers timely detect the most user-
concerned issues.

Further, we summarize the average Info-rate of the top-ranked
reviews for the subject apps along with time, described in Figure 3.7.
It shows that Game app TempleRun2 has the lowest informative rate
but not less than 0.5, and all the other apps achieve informative
rates higher than 0.8, which indicates the validity of AR-Tracker
on avoiding noises without manual labor.
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Figure 3.7: Info-rates of Different Apps Over Time
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3.4 Summary

User reviews are a favorable and crucial repository for mobile
app developers. Since the user reviews are normally massive and
messy for popular apps, manual labor is rather time-consuming and
inapplicable. In this chapter, we propose a novel review-ranking
method without manual labeling for filtering. Also, we produce a
new index for measuring the proportion of informative reviews in the
top reviews. Furthermore, we visualize the changes of top-ranked
app aspects based on these top reviews, and evaluate the tracking
results with a case study on Facebook.

There are two major advantages of our framework: (i) it does not
need any manual labor and can achieve similar effect as the state-of-
the-art method - AR-Miner. (ii) It can track the changes of major
app aspects reflected by the top reviews, which would facilitate
developers to determine the next commit.

2 End of chapter.



Chapter 4

Prioritizing App Issues over
Versions from App Reviews

Automatically tracking the app issues, such as laggy user inter-
face, high memory overhead, and privacy leakage, along with app
versions is helpful for developers to discover the important ones
in current versions. This chapter presents PAID, a framework
designed for prioritizing app issues with minimal manual labor
and good accuracy. The key notion is that PAID presents app
issues in the level of phrase (i.e., a couple of consecutive words),
as phrases can be more efficiently understood by developers than
long review sentences. The main points of this chapter are as
follows. (1) It presents an issue-ranking method systematically and
automatically, where the app issues are represented with phrases.
(2) An evaluation metric is proposed to measure the accuracy of app
issue prioritization by employing the official app changelogs. (3) It
evaluates the effectiveness of PAID on a real large-scale dataset.

4.1 Introduction

Different from traditional software resources such as source code
and documentation, user reviews on mobile apps are resources di-
rectly from customers and can be exploited by developers during the
bug-fixing and feature-enhancing process. They are time-sensitive,

44
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that is, the important reviews are varying along with different app
versions. For example, according to the official announcement of
WhatsApp, a popular communication app, it commits a new version
every 3.77 days on average from November 2014 to January 2015, as
shown in Figure 4.1. The ratings fluctuate with the version updates,
indicating that app versions indeed affect user feedback. Although
there exists work [163] focusing on discovering the migration of
general app properties (e.g., “Games” shows a tendency to “Spots &
Recreation”, and “Finance” grows close to “Business”), few studies
have explored the trends of concrete app features from user reviews.

Figure 4.1: Rating changes along with different official releases of Android
WhatsApp Messenger app [3]. The capitals above the line indicate the main
version releases of the app.

There are several challenges in automating the concrete issue
tracking from user reviews. On one hand, filtering meaningless re-
views manually or in a supervised manner would be labor-intensive
especially to popular apps with tremendous reviews. On the other
hand, the topics extracted using topic modeling methods, such as
Latent Dirichlet Allocation (LDA) [49], are usually represented as
probability distributions over the whole vocabulary. The topic mean-
ings are not intuitive and understandable enough for developers.
Thus, automatic interpretation of the topics is helpful and time-
saving for developers.

To overcome the challenges, we propose an issue-tracking frame-
work named PAID1 for prioritizing app issues by tracking user
reviews over release versions. Our goal is to facilitate the process

1Acronym for Prioritizing App Issues for Developers
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of detecting important app issues from app reviews while achieving
good performance. Specifically, we propose a phrase-level app issue
detection method. We assume that issues represented in phrases
can consume developers less time to recognize the issue meanings
than in review sentence. Here, one phrase indicates a 2-gram term
(i.e., two consecutive words) especially. As the example shown in
Figure 4.2, the developers can quickly learn the main aspects of the
user’s complaints with key phrases (highlighted in dash rectangles)
presented. PAID is thereby designed to provide app issues in the
level of phrase. Similar to “Bag-of-Phrases”, we establish a Phrase
Bank, a dictionary containing all the meaningful phrases in the user
reviews.

Figure 4.2: An instance of user reviews with useful phrases in dash rectangles.

To automate the exclusion of non-informative reviews, we label
60 useless words, including common emotional words (such as,
“like”, “amazing”, “cool”, etc.) and meaningless description words
(such as, “facebook”, “star”, “app”, etc.). This labeling process
just takes a couple of minutes. Phrases containing the useless
words are eliminated. The list of the non-informative words can
be easily applied and extended to the preprocessing step of other
apps. We employ dynamic topic modeling method [48] to track
the topic changes along with different app versions. To interpret
the meaning of each topic, we present a topic labeling method to
label topic with the most relevant phrase from the Phrase Bank. In
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this way, developers can directly understand the extracted topics via
the phrase labels. For facilitating the observation of quantitative
changes of the topics, we also present a visualization way based
on ThemeRiver [79]. Large-scale experiments on 18 apps with 117
version releases validate the effectiveness of PAID.

In summary, this chapter makes the following contributions:

• We propose an issue-prioritizing framework for ranking phrase-
level issues. We mitigate the impact of non-informative reviews
by filtering out predefined useless words. A topic labeling
method is also presented to automatically interpret the semantic
meaning of each topic.

• An evaluation metric based on the official app changelogs
is introduced for measuring the performance of app issue
prioritization.

• Extensive experiments on large real-world datasets are con-
ducted to validate the effectiveness of PAID in prioritizing user-
concerned app issues along with versions.

4.2 Methodology

This section first gives an overview of the proposed issue-prioritizing
framework, PAID, and then elaborate on the main three procedures
in PAID, which includes data extraction, app issue generation, and
visualization and issue analysis.

4.2.1 Overview of PAID

The overall framework of PAID is shown in Figure 4.3, including
three main steps. During the data extraction step, we preprocess
the raw user reviews crawled from Google Play Store, and filter out
the noise words and non-informative reviews. Then, we import the
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Figure 4.3: The framework of PAID

filtered reviews into the issue-generation segment. In the second
step, we first construct Phrase Bank and group time-sensitive topics,
then we label each topic with the most relevant phrase in Phrase
Bank. The topic labels are the prioritized app issues. In the last
step, we compute the occurrence of each app issue along with
versions, and display them to developers through visualization. For
developers who want to gain an in-depth understanding of an issue,
we also recommend important user reviews correspondingly.

4.2.2 Step 1: Data Extraction

Data extraction serves to format the raw data and remove the useless
information for the subsequent analysis. It includes data crawling,
data preprocessing, and filtering.
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Table 4.1: A Snapshot of the Database
No. Author Review Title Date Star Version

1 Marvin
Not working in
Lenovo A606
plus. Fix it.

Help.
2015-05-
26T11:00:42

1 5.4.0.3239

2 Sibiya I love it.
Best app
ever.

2015-05-
26T10:52:19

5 5.4.0.3239

3 Moham Nice apps. Khalil
2015-05-
26T10:52:33

3 5.4.0.65524

4 Hassan Superrrrrrr. Alcshita
2015-05-
26T10:41:01

5 5.4.0.45564

5 Andrew
Would’s worst
app.

Can’t sing
till

2015-05-
26T10:34:56

1 5.4.0.3239

Data Crawling

PAID employs specific crawling APIs provided by AppFigures [4].
AppFigures supports access to app store repositories, such as re-
views, products, user ratings, and app ranks, etc., along with a
variety of query filters. It takes us a few weeks to collect the
review repositories of the subject apps. Table 4.1 presents a snapshot
of the collected dataset. The dataset contains seven attributes for
each review instance and we use five of them in this chapter:
Number, Review, Date, Star, and Version. The words highlighted
in yellow are considered as non-informative, as they do not deliver
any information potentially useful for improving the quality or user
experience of the app. In total, we have crawled 2,089,737 user
reviews of 37 apps during a period of 10 months (see details in
Table 4.6).

Preprocessing

The preprocessing part and filtering part prepare the dataset for the
subsequent topic grouping process, as shown in Figure 4.3. Our goal
is to track user reviews over versions; therefore, we need to divide
user reviews into different app versions. As some versions possess
insufficient reviews for analysis, we combine the consecutive ones
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to form a larger review collection.
First, we take the lowercase of all the words in the review texts.

Then we reduce the words to the root form by lemmatization [15].
The reason why we do not choose stemming [26] is that stemming
crudely chops off the ends of words, which is not suitable for reviews
with large numbers of casual words. Meanwhile, lemmatization can
preserve the informative derivational ends with the inflectional ends
removed. Table 4.2 illustrates this fact (e.g., “occasions” is reduced
to “occas” in Stemmer and to “occasion” in Lemmatizer).

First-Layer Filtering

To remove non-English words, we use the typical wordset - Synsets [18]
as the first-layer filter. Then we guarantee that the remaining words
exclude the stop words in the NLTK [17] corpus.

Table 4.2: Comparison between Stemmer and Lemmatizer
Original Word Stemmer Lemmatizer

another anoth another
attentions attent attention
available avail available

compatible compat compatible
concentrations concentr concentration

occasions occas occasion
notifications notif notification

solutions solut solution

Second-Layer Filtering

As we can observe from Table 4.1, reviews contain casual (e.g., “su-
perrrrrrr”) and emotional words (e.g., “nice”, “love”, and “worst”).
To weeding out the non-informative words, we will conduct second-
layer filtering. The second-layer filtering part targets at removing
non-informative reviews (e.g., “Nice apps”, “I love it”, etc., as
shown in Table 4.1).
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In PAID, we simply label 60 meaningless words that frequently
appear in the non-informative reviews, such as emotional words
(e.g., “annoying” and “awesome”), everyday words (e.g., “good”
and “much”), etc. We group these words into Filter Bank. The Filter
Bank used in PAID is listed in Table 4.3. The words in the bank are
manually identified. Since the number is rather small, it just takes
us a couple of minutes to label them. In contrast, it takes about half
an hour for the approach proposed in [52] to label hundreds of non-
informative reviews. The output of the second-layer filter is fed into
the topic grouping process in step 2.

Table 4.3: Filter Bank to Filtering Non-Informative Reviews
app, good, excellent, awesome, please, they, very, too, like, love, nice, yeah,
amazing, lovely, perfect, much, bad, best, yup, suck, super, thank, great,
really, omg, gud, yes, cool, fine, hello, god, alright, poor, plz, pls, google,
facebook, three, ones, one, two, five, four, old, new, asap, version, times,
update, star, first, rid, bit, annoying, beautiful, dear, master, evernote, per,
line.

4.2.3 Step 2: App Issue Generation

The step of app issue generation aims at recommending the most
important app issues to developers. We first propose a rule-based
method to establish the Phrase Bank, which includes all the mean-
ingful phrase candidates. We then cluster the words of the filtered
reviews from the last step along with release versions. The app
issues are the phrases extracted from Phrase Bank for representing
the meanings of the word clusters.

Phrase Generation

The foundation of prioritizing phrase-level app issues is to build
a Phrase Bank (i.e., a phrase collection). Since the preprocessed
review texts have been lemmatized and filtered, the meaning of
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the phrases generated from these texts may be confusing (e.g.,
“applic unstabl”, “get unlik”, etc.). Hence we extract the phrases
(specifically referring to 2-gram terms) from the raw user reviews
directly instead of the preprocessed reviews by using the rule-based
method. Four rules are adopted during this process. First, we use
TMI (True Mutual Information) [126] to rank the 2-gram phrases.
TMI is defined as the weighted average of the pointwise mutual
information for all the observed and expected value pairs, indicating
the co-occurrence rate of the words in each pair. Intuitively, a
meaningful phrase should frequently occur in the collection, in
which the words tend to be highly correlated to each other. The
TMI between two words w1 and w2 is defined as

TMI(w1, w2) =
Pr(w1, w2)

Pr(w1)Pr(w2)
, (4.1)

where Pr(w1, w2) and Pr(w) denote the probability of phrase w1w2

and ungram w respectively, and are estimated by their frequencies
in the review collections.

Rule 1 (Length Limit) The length of each word in the phrase must
be no less than three.

Rule 2 (Informative Assurance) Each word in the phrase should
not appear on the stop-word list of NLTK or in the Filter Bank.

Rule 3 (Part of Speech Limit) Each word in the phrase should not
be an adverb or a determiner.

Rule 4 (Quality Assurance) We set a threshold to the probability of
Pr(w1, w2). The co-occurrence frequency of w1 and w2 must exceed
five times. Furthermore, we only consider the top 150 phrases based
on TMI score. These are to ensure the quality of the phrases in the
Phrase Bank.

Based on the above rules, we obtain the Phrase Bank, from which
we will recommend the important ones to developers.
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Topic Grouping

We prioritize phrases in the Phrase Bank to the developers by a
grouping-based ranking strategy. First, we adopt a topic modeling
method to summarize the words into different topics. Then for each
group, we pick a phrase to represent the topic meaning, which can
be regarded as a topic interpretation process.

To capture the timeliness of user reviews, we use dLDA (Dy-
namic Latent Dirichlet Allocation) [48] to discover the latent topic
sets for each app version. In dLDA, the reviews in the collection
are categorized into discrete topics according to their corresponding
versions, and the topics evolve as time goes by. A direct explanation
of dLDA model is depicted in Figure 4.4, in which the number of app
versions is m. For each version, an LDA model [49] is established
on the user reviews. The connections between topics of different
versions stem from the assumptions of two Dirichlet distributions
α and β. Thus we can view the changes of users’ attention among
versions.

Figure 4.4: A direct explanation of the dLDA model.

Similar to LDA, the number of topics in dLDA also demands to
be defined in advance. Preprocessed user reviews in the last step are
used as the input of topic modeling. If we set the number of topics
of topic modeling to be five, one sample output of user reviews
on the Facebook app is shown in Table 4.4. We can observe the
transformation of latent topics across different app versions. For
example, the top word “video” in Topic 1 disappears during the next
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several versions, while the other words such as “fix” and “close”
gradually surface.

Table 4.4: One Sample Output of dLDA on Reviews of Facebook
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Version 1

video use download post updat
fix phone messag see work

time need messeng feed new
play access take recent friend
close make space news slow

Version 2

video use messeng post updat
fix phone download feed work

time need messag news new
close access take see load
keep permiss space recent slow

Version 3

fix use messeng post updat
close phone download feed work
time need messag news load
keep access space see new
open make take recent slow

Issue Prioritizing

From the generated Phrase Bank, we select the most representative
one for indicating the meaning of each topic produced by dLDA. We
recommend the selected phrase-level issues to developers.

The result of dLDA for a specific app version can be displayed in
Table 4.5. Given the collection of user reviewsD = d1, d2, . . . , rn (n
is the number of reviews), we denote the corresponding vocabulary
W = w1, w2, . . . , wg (g is the magnitude of the vocabulary). After
topic grouping, we obtain the probability distribution Pr(w|β) for
each word w over the topics β. We design a topic-interpretation
method from both semantic aspect and sentiment aspect.

Semantic Aspect: A representative phrase for one topic should
cover the semantic meaning of the whole topic as much as possible
and discriminate across the topics simultaneously. Similar to Mei et
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Table 4.5: Review-Topic Matrix for a Specific App Version
β1 β2 · · · βk

w1 Pr(w1|β1) Pr(w1|β2) · · · Pr(w1|βk)
w2 Pr(w2|β1) Pr(w2|β2) · · · Pr(w2|βk)
...

...
... . . . ...

wg Pr(wg|β1) Pr(wg|β2) · · · Pr(wg|βk)

al.’s work [119], we use KL-Divergence to measure the similarity
Sim(β, l) between the topic β and the phrase candidate l.

Sim(β, l) = −KL(Pr(w|β)||Pr(w|l))

≈
∑
w

Pr(w|β)log( Pr(w, l|c)
Pr(w|C)Pr(l|C)

),
(4.2)

where Sim(β, l) is the similarity function, Pr(w|β) and Pr(w|l)
are the probability distributions over word w respectively generated
by β and l, and C indicates the whole review collection. We use
the occurrence frequency to calculate the probability Pr(x|C) (x
denotes l or w).

Pr(x|C) = {d ∈ C|x occurs in d}
{d ∈ C}

, (4.3)

where d represents one user review. The lower the KL-Divergence
is, the more the phrase is semantically similar to the topic. More-
over, to make the phrases across topics to be diverse, we add a term
to punish those which present a higher similarity score to multiple
topics. Thus, the overall similarity function is modified as

Sem(βi, l) = Sim(βi, l)−
µ

k − 1

∑
j 6=i

Sim(βj, l), (4.4)

where βi stands for the current topic to be scored, and µ is used to
adjust the penalty due to the similarity to other topics, which is a
parameter to be empirically set.
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Sentiment Aspect: Intuitively, the developers prefer the reviews
with lower ratings and longer lengths. Figure 4.5 reflects this fact.
Obviously, the first review provides the developers more information
about the app bugs and features, such as enabling the comment
functionality and playing video in higher resolution automatically.

Figure 4.5: Two review instances showing that longer-length and lower-rating
reviews are preferred by developers.

For the phrases l1, l2, . . . , lz (z denotes the number of the phrase
candidates) in the Phrase Bank, we define their sentiment scores
based on user ratings r and review lengths h.

Sen(l) = e
−r

ln(h) , (4.5)

where r and h of one phrase are defined as the average rating and
average length of all the reviews including the phrase, respectively.
The phrases contained in the reviews with longer lengths and lower
ratings will be scored higher.

Total Score: Combining the semantic aspect with the sentiment
aspect by multiplication, the impacts of both factors on the final
score are interrelated. We select the phrase l with the highest score
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S(l) to represent the topic βi. The phrases are the app issues we will
recommend to the developers for bug fixing or feature improving.

S(βi, l) = Sem(βi, l) ∗ Sen(l). (4.6)

4.2.4 Step 3: Visualization and Issue Analysis

To help developers better understand the changes of the important
app issues over versions, we also involve visualization in the end
and provide the issue analysis.

Visualization

We adopt ThemeRiver [79] to represent the transformation of app
issues. The technique has been used in handling large document
collections [91, 78], but never in the user reviews. The reason we
use ThemeRiver is that it provides users with a macro-view of issue
changes in the corpus over a serial dimension.

Figure 4.6 shows an example ThemeRiver visualization on Face-
book. The “river” flows from left to right through versions, changing
its width to depict quantitative changes in the thematic importance
of temporally associated reviews. The width is denoted by the dash
line in Figure 4.6. Colored “current” flowing within the river narrow
or widen to indicate decreases or increases in the importance of an
individual issue or a group of issues in the related reviews. Here, the
importance of the issue is defined as the occurrence frequency of the
selected phrase for that issue in the corresponding review collection.

Issue Analysis

We also prioritize user reviews for the developers in the case that
they want to gain a deep insight into the phrase-level issue. Similar
to the sentiment score of the phrase, the importance score I(d) of the
review d is computed based on its length h and user rating r as well.
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Figure 4.6: A sample ThemeRiver visualization on Facebook. The colored
“current” within the “river” indicates an individual issue. The width of the
“current” changing with versions denotes the corresponding topic has different
degrees of importance for different versions. The issue is represented in phrase.

The number of top reviews to be displayed is determined according
to developers’ requirements.

I(d) = e
−r

ln(h) . (4.7)

Finally, the reviews with longer lengths and lower ratings will
be ranked higher. Developers can comprehend more about the app
issues by checking the reviews in the top list.

4.3 Evaluation

For experimental evaluation, we have crawled more than two million
user reviews of 37 apps beginning from August 2014 to June
2015. The subject apps belong to 10 different categories. Each
app receives roughly 56,479 reviews on average. With multiple
categories and massive reviews, we can verify the effectiveness of
PAID while mitigating the data bias from only one type of reviews.
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Table 4.6: The Review Dataset of 37 Apps
Category App Name Review Quantity

Social
Facebook 176,362
Twitter 132,981
Instagram 130,855

Books & Reference Amazon Kindle 575
Wikipedia 541

Shopping eBay 91,368
Amazon Shopping 792

Photography

Photo Grid - Collage Maker 91,425
Camera360 Ultimate 79,640
PicsArt Photo Studio 569
Autodesk Pixlr - photo editor 500

Tools
Clean Master (Boost & AppLock) 234,342
Battery Doctor (Battery Saver) 116,534
CM Security Antivirus AppLock 87,785

Travel & Local

Booking.com Hotel Reservations 29,632
Google Earth 18,919
Expedia Hotels, Flights & Cars 1,367
Foursquare - Best City Guide 494

Communication

WhatsApp Messenger 130,761
Skype - free IM & video calls 103,479
Messenger 95,070
Viber 87,647
LINE: Free Calls & Messages 70,408
Chrome Browser - Google 54,707
Wechat 46,330
Hangouts 27,515
Gmail 21,138
CM Browser - Fast & Secure 500
Firefox Browser for Android 500
Contacts+ 499

Education Coursera 608
Duolingo: Learn Languages Free 487

Productivity
Evernote 48,525
SwiftKey Keyboard + Emoji 48,028
ES File Explorer File Manager 507

Music & Audio YouTude 86,395
Spotify Music 71,952
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Specifically, we aim to answer the following three research
questions:
RQ1: What are the trends of app issues reflected by user reviews
along with different versions?
RQ2: Would developers modify the issues prioritized by PAID?
RQ3: What is the influences of parameter settings on the perfor-
mance of PAID?

4.3.1 Answer to RQ1: Case Demonstration

Here, we show the effectiveness of PAID on apps from differ-
ent categories: Viber (Communication), Evernote (Productivity),
Camera360 Ultimate (Photography), and Spotify Music (Music &
Audio). The numbers of user comments belonging to various
versions of these four apps are shown in Figure 4.7.

Figure 4.7: Distribution of user reviews for different app versions. We overlook
the versions with less than 100 user reviews, and display the latest eight versions
in the collection.

Table 4.7 illustrates the top 25 phrases in the Phrase Bank
of Viber, which is established based on the four proposed rules.
In the top list, phrases “video call”, “video calls”, and “video
calling” deliver exactly the same meaning. This is because Viber is
characterized by video calling, but developers may not desire such
repetitive information. The prioritized phrase-level issues should
distinguish from the others in semantics.
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Table 4.7: Phrase Bank (top 25) of the Viber app
video call, video calls, activation code, samsung galaxy, call quality,
phone number, internet connection, free calls, video calling, profile
picture, sound quality, public chat, sony xperia, voice quality, online
status, globus mobile, asus zenfone, start earning, voice call

Based on the proposed issue-prioritizing method, the phrases
possessing the highest total scores are elected for the topics gen-
erated by dLDA. We present them with the corresponding scores
and along with versions in Table 4.8. The phrases can cover more
kinds of app issues (e.g., the phrases for topics of Viber 5.2.2.478 are
“free calls”, “sony xperia”, “animated stickers”, “chat background”,
“activation code”, and so on. ), and the semantics of the phrases
are consistent within one topic (e.g., the phrases for topic 3 are
“animated stickers” for Viber 5.2.2.478, “download stickers” for
Viber 5.3.0.2274, and “download stickers” for Viber 5.3.0.2331).
They are the important issues to be reported to developers ultimately.

Table 4.8: Phrases prioritized for Viber developers (k = 8, µ = 1)
Topics 5.2.2.478 5.3.0.2274 5.3.0.2331
Topic 1 free calls:0.67 free calls:0.66 free calls:0.65
Topic 2 sony xperia:0.97 sony xperia:0.93 sony xperia:0.91
Topic 3 animated stickers:0.53 download stickers:0.56 download stickers:0.63
Topic 4 chat background:0.69 incoming messages:0.70 chat background:0.73
Topic 5 activation code:3.66 activation code:3.69 activation code:3.72
Topic 6 galaxy tab:0.63 galaxy tab:0.62 samsung galaxy:0.61
Topic 7 voice call:1.95 call quality:1.94 call quality:1.94
Topic 8 start earning:1.42 start earning:1.44 start earning:1.45

However, by analyzing so many phrases and figures directly, it is
extremely tedious to decide which app issues to modify. Therefore,
we apply ThemeRiver [79] to visualize the importance of these app
issues. Figure 4.8 displays the ThemeRiver of Viber. The width
of the “current” represents the importance score of the issue by
counting the occurrence frequency of the corresponding phrase. The
issues are in random order within one version, but their positions
are consistent over versions. For example, Figure 4.8 demonstrates
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that there exists an increasing trend of the issue “activation code”,
colored in pure blue, for Viber 5.2.1.36, 5.2.2.478, and 5.3.0.2339.

Figure 4.8: Themeriver visualized for the Viber app. The horizontal axis denotes
app versions, while the vertical axis means the start point of the “river”. Each
“current” represents a phrase-level issue. Wider currents stand for more important
issues.

To obtain an in-depth knowledge about one issue, such as “acti-
vation code”, we provide the top reviews associated with the issue
based on the method in Chapter 4.2.4. Table 4.9 lists the top three
reviews related to the issue “activation code”. All these reviews
express some bugs of the app and illustrate different aspects (e.g.,
“Messages are not present” in review 1, “a white popup written
only” in review 2, and “keeps on saying activation code sent to your
device” in review 3). Therefore, developers can examine the urgent
concerns from users by viewing issues first, then decide and analyze
them deeply, and finally scheduling the modification.
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Table 4.9: Top three reviews related to the issue “Activation Code”.
User Review Importance Score

1 Upload viber! I went. Enter a phone number. I enter. Asks
for sure your phone? It will be sent an activation code. Ok.
Messages are not present. He writes to activate viber here,
install it to your phone first. But I have it pumped? What to
do? Help!

0.836

2 I hard reset my tab 3. Installed viber for activation code
when i write my phone number and press okay a white
popup written only. ERROR no description given and an
okay button on it please help me vibers my only way to
contact my son abroad.

0.834

3 I don’t know what’s wrong with Viber. Just downloaded it
nd it keeps on saying activation code sent to your device.
For almost a month, no any activation code and it’s really
pissing me off. Pls fix.

0.828

. . . . . . . . .

4.3.2 Answer to RQ2: Performance Evaluation

Case Evaluation

To establish the connection between the analysis of user reviews and
the decisions made by developers, we employ the official changelogs
of mobile apps. Changelog [6] is a record of all the changes made to
a software project, usually including such records as fixed bugs and
newly-added features. It is a first-hand and practical ground truth
labeled by developers directly.

We collect the official changlogs of six versions of Viber from
APK4Fun [1] for evaluation. The version of the changelog we
compare is the one immediately following the experimental version.
For example, to assess the result of Viber 5.2.1.36, we need to
inspect the changelog of the next version, i.e., 5.2.2.478. Since our
issues are in phrase level, we manually summarize the changelogs
into phrases (not limited to 2-gram terms) as Table 4.10. We remove
the meaningless phrases and sentences such as “bug fixes”, “General
stability and bug fixes to improve overall performance.”, etc. The
highlighted phrases comprise the ground truth of the Viber app.
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Table 4.10: Changelogs of Viber and its identified phrases. The phrases high-
lighted constitute the ground truth, and the strike-through phrases or sentences are
discarded.

Versions Detailed Changelog & Identified Phrases

5.2.1.36

1. Improved sticker menu;
2. Redesigned forward screen gives you the option to send to groups, contacts;
3. Public chats;
4. General stability and bug fixes to improve overall performance.

5.2.2.478 1. Bug fixes and updated emoticons.

5.3.0.2274

1. Become an Admin and manage your group chats;
2. Send and receive messages from your watch;
3. Clearer contact info;
4. Public Chat enhancements.

5.3.0.2331 Same as the previous version.
5.3.0.2339 Same as the previous version.

5.4.0.2519

1. Enhancements for tablet users;
2. Easier to activate Viber account on your tablet;
3. Improved call and video screens;
4. Send multiple photos more easily;
5. Personalise your groups with your own icon;
6. Customise Viber notifications in Priority Mode on Android L only.

To measure the similarities between the prioritized issues L and
the ground truth U , we adopt the sentence-based semantic similarity
measure method proposed by Li et al. [101]. The method focuses
directly on computing the similarity between short texts of sentence
length, which fits our situation. We denote the similarity degree
between two phrases as s(u, l), where u indicates the phrase in the
ground truth, and l means the phrase in the prioritized issues. For
each phrase u in the ground truth, we compute its similarity degrees
to all the phrases in our results, and the highest one is defined as the
rate of the phrase Rate(u), defined in Equation 4.8. The precision
of our method is indicated by the average rate of all the phrases in
the ground truth.

argmax
u

Rate(u) = {s(u, l)|∀l : l ∈ L}. (4.8)

Similarly, the precision of the other three apps (Evernote, Cam-
era360 Ultimate, and Spotify Music) can also be calculated. Fig-
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ure 4.9 depicts the results of these four apps, with the average
precision and standard deviations shown in Table 4.11. All the
four apps have precision larger than 55% and two of them (Viber
and Camera360 Ultimate) are larger than 70%. Three of the four
apps produce the standard deviations less than 0.045, while only
the output of Camera360 Ultimate is larger than 0.1. From the
Figure 4.9, we can observe that V2 of Camera360 reaches the lowest
of its record. By checking the corresponding changelog, we find
it is just one sentence “New HDR ‘Storm’ effect will blow your
mind”, which is manually identified as “HDR Storm effect” (a kind
of technique used in imaging and photography). Contrasting with
our prioritized issues (“selfie camera”, “tilt shift”, “stock camera”,
“save edited”, etc.), we consider the main reason for the result is that
the phrase in the changelog is brand-new and has not been embodied
in the semantic corpus. However, the acceptable performance of
other apps displays the effectiveness of our method. Without the
loss of generality, we provide the evaluation of the available apps in
our collection in the following chapter.

Figure 4.9: Precision of PAID for the apps from four different categories. The
experimental parameters for similarity measure settings are α = 0.002, β =
0.3, η = 0.6, φ = 0.8, and δ = 0.9.
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Table 4.11: Average Precision of Four Apps and Their Standard Deviations
Viber Evernote Camera360 Ultimate Spotify Music

Average Precision 0.703 0.585 0.775 0.560
Standard Deviation 0.042 0.045 0.109 0.041

Generality Evaluation

We employ the apps in Table 4.6 to demonstrate the generality
of PAID. Searching the changelogs online, we discover that 19
of the 37 apps do not provide detailed information about version
modification. So we adopt the remaining 18 apps with 117 version
changes for the verification. The result is shown in Figure 4.10. The
average precision for these apps is 60.3%, which is quite acceptable
for app review analysis [52].

Figure 4.10: Precision of 18 subject apps.

To analyze the correlation between the app category and the
performance of PAID, we compute the average precision of the apps
belonging to one category and the corresponding average review
number (Figure 4.11). We discover that a larger review quantity
tends to produce a better result.
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Figure 4.11: Relation between the average precision and the review number
regarding to app category. The review numbers have been normalized by the
maximum value.

4.3.3 Answer to RQ3: Parameter Study

In this part, we study the influence of parameter settings (i.e., the
number of topics k for each version and the penalty factor µ in ) for
PAID. Figure 4.12 (a) shows that a larger number of topics can pro-
duce better precision. This is because more topics generally cover
more app issues, and hence possibly contain the issues described
in changelogs. Figure 4.12 (b) indicates that more penalty on the
dissimilarity to other topics can generate more promising precision
and lower standard deviation. Larger penalty makes the prioritized
issues more diverse. Thus, more phrases in the changelogs can be
covered.

4.4 Discussions

We discuss the validity and generalizability of our framework PAID
as below.

As for the validity, our framework may require a large number of
user reviews. A small number of reviews might restrict the size and
quality of the Phrase Bank and further influence the performance
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(a) Topic number k. (b) Penalty µ in issue prioritization.

Figure 4.12: Influence of different parameters on precision of PAID.

of prioritizing issues. Moreover, since the width of “current” in
ThemeRiver is calculated by the occurrence of the corresponding
issue in the collection, insufficient reviews cause a narrow current,
even if the issue would be crucial.

With respect to the generalizability, firstly, the category of apps
may affect the phrase-prioritizing process. For game apps, since
users tend to leave more significantly shorter and non-informative
reviews than the apps of other categories [78], the generated Phrase
Bank may contain few meaningful phrases. Hence, the selected
phrases to topics may not be very helpful for developers. However,
to reduce the interference, we can try to use the low-rating reviews
and introduce linguistic rules to extract useful features. Secondly,
for apps with only one version, dLDA is not applicable. We can use
LDA alternatively which possesses the same functionality as dLDA
essentially. Finally, we implement and testify PAID on reviews of
apps from Google Play Store. It is uncertain whether our framework
can achieve similar performance for apps in other stores (e.g., App
Store and Amazon Appstore). Future work will be conducted on a
more large-scale experimental study to address this threat.

4.5 Summary

This chapter proposes an issue-prioritizing framework PAID to rank
app issues automatically and accurately. Chapter 3 has already
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shown the effectiveness of tracking user reviews along with time
periods. PAID traces the quantitative changes of phrase-level app
issues over release versions. Specifically, we propose a rule-
based method to extract meaningful phrases, and two-layer filtering
method to reduce non-informative reviews. The topics, represented
by the most relevant phrases, are tracked along with app versions.
The comparison with official changelogs indicates the effectiveness
of PAID in scheduling app evolution.

2 End of chapter.



Chapter 5

Identifying Emerging Issues based
on Online App Review Analysis

Detecting emerging issues (e.g., new bugs) timely and precisely is
crucial for developers to update their apps. Although prioritizing
issues can help developers schedule app modification, the emerging
issues are relevantly more important and urgent. To address this
problem, this chapter presents an automated framework named
IDEA for identifying emerging app issues effectively based on
online review analysis. The main points of this chapter are as
follows. (1) It presents the design of an online emerging issue
detector IDEA. (2) It introduces an online review analysis method
for adaptively determining topics in current versions. (3) It displays
large experiments based on real-world datasets and industrial prod-
ucts to verify the effectiveness of IDEA.

5.1 Introduction

App developers are eager to know what is going on with their apps
after published [162]. Timely and precisely identifying the emerging
issues of apps is of great help for app developers to update their
apps, such as fixing bugs, refining existing features, and adding new
functions.

The emerging issues detected from user reviews, such as the

70
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existing bugs (e.g., crashes) and unfavorable app features (e.g., too
many ads) [72], can provide informative evidence for app developers
in maintaining their apps and scheduling the app updates. For
example, Facebook Messenger received massive one-star ratings
(the lowest rating) in August, 2014, accounting for nearly 94% of
all its reviews on Apple’s App Store1, and suffered a large loss
of users [10], since the version contained severe privacy issues
(e.g., accessing the photos and contact numbers in users’ phones).
However, such issues had already been flushed out with complaints
from over 12,600 user reviews on App Store one month ago. The
situation could be effectively alleviated if the emerging issues were
timely detected from user reviews. Therefore, user reviews provide
an effective and efficient way to identify the emerging issues of apps,
which would be a significant help to the developers.

We propose an automated framework IDEA for detecting emerg-
ing issues/topics2 based on online review analysis. IDEA takes
reviews of different versions as input. To track the topic variations
over versions, a novel method AOLDA (Adaptively Online Latent
Dirichlet Allocation) is employed for generating version-sensitive
topic distributions. The emerging topics are then identified based on
the typical anomaly detection method. To make the topics compre-
hensible, IDEA labels each topic with the most relevant phrases and
sentences based on an effective ranking scheme considering both
semantic relevance and user sentiment. The prioritized topic labels
are the app issues identified. Finally, IDEA visualizes the variations
of app issues along with versions, and highlights the emerging ones
for better understanding.

To verify the effectiveness of IDEA, we consider the official
app changelogs as ground truth, since they encompass the primary
changes of the releases and represent the issues concerned by
developers. Our experiments are conducted on six popular apps,

1The App Store in this chapter refers to Apple’s App Store.
2The topics and issues are semantically equal in this chapter.
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with two of them from App Store and the others from Google
Play. We compare IDEA with the method based on OLDA (Online
Latent Dirichlet Allocation) [37], one classical method for emerging
issue detection. Results indicate that the average precision, recall,
and F-score of IDEA on the subject apps are 60.4%, 60.3%, and
58.5% respectively, which increases the F-score of the OLDA-based
method by 72.0%. We also conduct a user survey in Tencent,
indicating that 88.9% of respondents think that the identified issues
of IDEA can facilitate app development in practice. Moreover,
we apply IDEA to four Tencent3 products which serve hundreds
of millions of users worldwide, and confirm the effectiveness and
efficiency of IDEA in industrial practice.

The main contributions of this chapter are as follows.
• We propose a framework called IDEA to automatically identify

emerging issues from app reviews effectively. Also, IDEA is
an online analysis tool and can process new app reviews in a
timely fashion.
• We propose a novel method called AOLDA for online review

analysis, which adaptively combines the topics of previous
versions to generate topic distributions of current versions.
• We visualize the variations of the captured (emerging) app

issues along with versions, with the emerging ones highlighted.
We publish the code and review data on website4.
• We verify the effectiveness of IDEA based on the app reviews

of six popular apps which are from different categories and
platforms. The survey and application in Tencent also validate
the performance of our framework in practice.

3The company has many popular products, such as WeChat, QQ, and Honor of Kings, and
serves billions of users worldwide.

4https://github.com/ReMine-Lab/IDEA
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5.2 Background and Motivation

In this part, we introduce the concept of emerging app issues, the
importance of online review analysis, and our ground truth (i.e. the
app changelogs).

5.2.1 Emerging App Issues

For an app issue to be considered an emerging issue, it must be
(heavily) discussed in this time slice but not previously [88]. Fig-
ure 5.1 (a) presents the issue distributions of Facebook Messenger
in three periods (March-April, May-June, and July-August), based
on the manually labeled 100 review samples from each period.
Generally, the issue distributions are nearly consistent along with
periods, e.g., from March-April to May-June in Figure 5.1 (a).
However, emerging issues can influence the issue distribution of
one period, creating significant differences with those of previous
periods in terms of proportion. For example, the proportion of
the crash issue presents a huge increase during the July-August
period. We further investigate the number of reviews containing
the keyword “crash” along with their timing, and present the results
in Figure 5.1 (b). The volume of the crash issue shows a sudden
increase around July-August, which signifies that the issue tends to
be an emerging issue during that period.

Definition 1 (Emerging Issues in User Reviews) An issue in a time
slice is called an emerging issue if it rarely appears in the previous
slice but is mentioned by a significant proportion of user reviews in
current slice.

In Definition 1, the “time slice”, the degree of “rarely”, and the
“significant proportion” can be defined according to different situa-
tions. For example, the “time slice” in this chapter corresponds to
the app version. Based on the detected emerging issues, developers
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can locate the buggy features of their apps efficiently, update the
apps accordingly, and ultimately improve the user experience.

(a) Issue distribution in Facebook Messenger.

(b) The number of reviews containing the keyword “crash”.

Figure 5.1: Illustration of emerging issues.

5.2.2 Online Review Analysis

Online review analysis (ORA) is an automated way to acquire and
process user reviews in real time as reviews are arrived continuously.
As shown in Figure 5.2, ORA takes the reviews of slice t (current
review slice) as input, and outputs analysis results, such as tracking
user preference and detecting emerging issues. In this way, the
urgent user concerns incarnated by app reviews can be captured by
ORA in a timely manner and fed back to developers for instant bug
fixing or feature improvement. Thus, ORA is a crucial component
in the closed cycle of app development.
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User Reviews

Online Review Analysis

App Update

Current Review Slice

Slice (t-3) Slice (t-2) Slice (t-1) Slice t
Review Stream

…

• Emerging Issues

• Rating Changes

• Bug Tracking

• …

Figure 5.2: Closed cycle for app development.

Currently, most of the app issues mined from user reviews are
manually settled or defined [105, 167, 186], such as privacy and
GUI, which are usually general categories. Although such defini-
tion facilitates the process of task assignment to individuals, it is
unfavorable for detecting newly-presented and more detailed issues
(e.g., notification center). Thus, for detecting emerging issues, ORA
is a practical way due to its timeliness and no need for predefined
issues, which has rarely been studied previously.

5.2.3 App Changelogs

App changelogs describe the noticeable modifications of the latest
versions for attracting users to install and experience new releases.
Similar to user reviews. changelogs also correspond to specific
versions. Generally, developers write into the changelogs with
information related to whether the apps are adding or removing
features, and whether the apps have made improvements with certain
devices or to specific bugs. Figure 5.3 illustrates a sample changelog
of NOAA Radar Pro, a weather alerts & forecast app in App Store.

As Figure 5.3 indicates, the new version introduces new function-
ality (i.e., weather reporting) and refines performance issues. The
delivered changes exhibit the issues that are concerned by develop-
ers. Although the changelogs may not cover all the modifications
to the releases, they represent a lower bound and the prominent
part of the changes. Hence, changelog is a reasonable ground truth
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What's New in Version 3.16
- Introducing weather reporting. The app now allows anyone to be 

a weather reporter. Confirm the weather or report your weather 

conditions and take part in improving our data and forecasts.

- Performance improvements you won't necessarily notice but 

definitely enhancing your experience with the app.

Figure 5.3: Changelog of NOAA Radar Pro. The rectangles highlight two key
terms which represent the major changes of Version 3.16.

for verifying whether the extracted emerging issues are helpful for
developers.

5.3 Methodology

Figure 5.4: Framework of IDEA.

In this part, we first outline the overall framework of IDEA in
Figure 5.4 and then elaborate on the four components involved in the
framework. Each time, in the first stage (Part A in Figure 5.4), IDEA
preprocesses a version of raw reviews from the review stream for re-
ducing noisy words and non-informative words, and extracts phrases
for subsequent analysis. In the second stage (Part B in Figure 5.4),
the proposed algorithm AOLDA captures the topic distributions of
each version by considering the topics in previous versions, based
on which emerging topics are identified using anomaly discovery.
Then, to interpret the topics (Part C in Figure 5.4), IDEA employs
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the meaningful phrases and sentences as candidates to label each
topic according to their semantic relevance and user sentiment.
The topic labels are the identified app issues. Finally (Part D in
Figure 5.4), IDEA visualizes the app issues along with the different
versions, and highlight the emerging ones for better understanding.

5.3.1 Preprocessing

Since app reviews are generally submitted via mobile terminals
and written using limited keyboards, they contain massive noisy
words, such as casual words, repetitive words, misspelled words,
and non-informative words (e.g., the words simply describing users’
feelings). In the following, we introduce our rule-based methods
for formatting words, the phrase extraction process, and our filtering
method for reducing non-informative words.

Word Formatting

We first convert all the words in the review collection into lowercase,
and then stem each word into its original form. We employ the
preprocessing method in [112] for lemmatization. We then replace
all digits with “<digit>”. Since new terms and casual words
would continuously increase in user reviews, we do not employ
the dictionaries provided by [186] for avoiding over correction.
We adopt the rule-based methods based on [186, 112] to rectify
repetitive words, misspelled words, and non-English words.

Phrase Extraction

Since phrases (mainly referring to two consecutive words in this
chapter) are employed in Part C of IDEA for interpreting topics,
they should be extracted in the preprocessing step and trained along
with all the other words in Part B. In this way, we can capture the se-
mantics of each phrase, based on which we can label the topics with
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the most relevant phrases. Since the topic labels in phrases should be
meaningful and comprehensible, we use a typical phrase extraction
method based on PMI (Pointwise Mutual Information) [21], which is
effective in identifying meaningful phrases based on co-occurrence
frequencies:

PMI(wi, wj) = log
p(wiwj)

p(wi)p(wj)
, (5.1)

where p(wiwj) indicates the co-occurrence probability of the phrase
wiwj and p(wi) (or p(wj)) represents the probability of the word
wi (or wj) in the whole review collection. Higher PMI values
exhibit that the combination of the two words is more likely to
be a meaningful phrase. We extract the meaningful phrases by
experimentally set a threshold for PMI. The phrases with PMIs
larger than the threshold are extracted.

Filtering

The filtering step aims to reduce the non-informative words, such
as emotional words (e.g., “bad” and “nice”), abbreviations (e.g.,
“asap”), and useless words (e.g., someone). Non-informative words
are summarized by two researchers from 1,000 reviews, which are
also referred to as predefined stop words. The box below lists 18
of the total 78 non-informative words due to space limitations5.
The predefined stop words are filtered out together with the stop
words provided by NLTK [17]. We do not employ the supervised
method in [52] for filtering, since in this work labeling massive non-
informative reviews requires a great deal of manual effort. Finally,
all the remaining words and extracted phrases (where the words in
each phrase are connected with “ ”) are fed into the next step for
emerging topic detection.

5The whole list of predefined stop words can be found in our project website:
https://github.com/ReMine-Lab/IDEA.
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Predefined Stop Words: cool, fine, hello, alright, poor, plz,
pls, thank, old, new, asap, someone, love, like, bit, annoying,
beautiful, dear.

5.3.2 Emerging Topic Detection

In this section, we aim to detect the emerging topics of current
versions by considering the topics in previous versions. We first
introduce the proposed method AOLDA for adaptively online topic
modeling, from which we capture the topic evolutions along with
versions. We then present how we discover the emerging topics (e.g.,
anomaly topics).

AOLDA - Adaptively Online Latent Dirichlet Allocation

Online Latent Dirichlet Allocation (OLDA) [37] is a classic method
for tracking the topic variations of text streams, which models the
topics of texts in one time slice based on the topics of the last slice.
However, app reviews are typically short and contain massive noise
words. Such review features can influence the topic distributions in
consecutive versions with OLDA, and thereby decrease the perfor-
mance of emerging topic detection. To reduce the influence of noise
words and more accurately capture the topic evolution along with
versions, we propose an adaptively online topic modeling method,
AOLDA. The proposed AOLDA improves OLDA by adaptively
combining the topic distributions in previous versions. The details
are described below.

The preprocessed reviews are divided by version, denoted as
R = {R1, R2, ..., Rt, ...} (where t indicates the t-th version), and
input into AOLDA one by one. In AOLDA, each review is treated
as one document. The prior distributions over document-topic and
topic-word distributions are defined initially, represented as α and
β respectively. β determines the topic distributions of the terms in
the input. The number of the topics is specified as K. For the k-
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th topic, φtk is the probability distribution vector over all the input
terms. We introduce the parameter - window size w, which defines
the number of previous versions to be considered for analyzing the
topic distributions of the current version. The overview of the model
AOLDA is depicted in Figure 5.5.

Figure 5.5: Overview of AOLDA. The red rectangle with dashed dots highlights
the adaptive integration of the topics of the w previous versions for generating the
prior β in the t-th version. Rt is the review corpus in the t-th version. The dotted
lines indicate that we simplify the original LDA [50] steps for clearness.

Different from OLDA, as Figure 5.5 shown, we adaptively
integrate the topic distributions of the previous w versions, denoted
as {φt−1, ..., φt−i, ..., φt−w}, for generating the prior βt of the t-th
version. The adaptive integration refers to summing up the topic
distributions of different versions with different weights γt,i:

βtk =
w∑
i=1

γt,ik φ
t−i
k , (5.2)

where i denotes the i-th previous version (1 ≤ i ≤ w). The weight
γt,ik is determined by the similarity of the k-th topic between the
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(t− i)-th version and the (t− 1)-th version, which is calculated by
the softmax function [24]:

γt,ik =
exp(φt−ik · β

t−1
k )∑w

j=1 exp(φ
t−j
k · βt−1k )

, (5.3)

where the dot product (φt−ik · β
t−1
k ) computes the similarity between

the topic distribution φt−ik and the prior of the (t − 1)-th version
βt−1k . Such adaptive integration can endow the topics of the previous
versions with different contributions to the topic distributions of the
current version.

Anomaly Discovery

Based on the captured topic evolution by AOLDA, we identify the
anomaly topics which present obvious differences with those of the
previous versions. The identified anomaly topics are regarded as
emerging topics. To obtain the difference of the k-th topics between
two consecutive versions, e.g., φtk and φt−1k , we employ the classic
Jensen-Shannon (JS) divergence [13]. JS divergence measures the
similarity between the two probability distributions:

DJS(φ
t
k||φt−1k ) =

1

2
DKL(φ

t
k||M) +

1

2
DKL(φ

t−1
k ||M), (5.4)

where M = 1
2(φ

t
k + φt−1k ). The Kullback-Leibler (KL) divergence

DKL is utilized to measure the discrimination from one probability
distribution P to another Q, computed by:

DKL(P ||Q) =
∑
i

P (i) log(P (i)/Q(i)), (5.5)

where P (i) is the i-th item in P . Higher JS divergence indicates that
the two topic distributions have a larger difference.

Based on the computed divergences DJS between the topics of
consecutive versions, we capture anomaly topics by leveraging a
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typical outlier detection method [156]. The method assumes that
the divergences follow a Gaussian distribution with the mean and
variance at µ and σ2 respectively. The anomaly topics are then
detected by setting a threshold δ. For the t-th version, the threshold
δt is dynamically defined according to the following steps.

1. We compute DJS of the previous w versions for each topic,
which generates a w × K matrix (where K is the number of
topics).

2. We compute the mean µ and variance σ2 of all the values in the
computed DJS matrix.

3. We set the threshold δt as δt = µ+1.25σ, where the coefficient
1.256 is experimentally set for accepting 10% of topics as
anomaly topics, as shown in Figure 5.6.

Figure 5.6: Gaussian distribution for anomaly discovery. The shaded area means
the integral of the Gaussian distribution, which equals 90%. The topics with
divergence larger than δt are considered as emerging topics.

For the t-th version, the topics with divergences higher than the
defined threshold δt are regarded as emerging topics.

6The coefficient can be adjusted according to the percentage of anomaly topics to be
discovered. We use 1.25 here for accepting 10% of the total topics as anomalies.
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5.3.3 Topic Interpretation

The topics based on AOLDA are represented as the probability
distributions over all the input terms. One snapshot of the top five
terms to each topic is illustrated in Table 5.1. By only observing
a few words, it would be non-trivial for developers to capture the
meaning of the topics. In this section, we aim to interpret the
topics automatically. To interpret each topic, we can utilize words,
phrases, sentences, or entire reviews. However, single words may be
ambiguous in semantics and cannot display the complete meanings
of the topic. For example, we list the top five relevant words for
each of the four topics of YouTube, as shown in Table 5.1, although
both the words “video” and “work” are most relevant to Topics 2
and 4, these two topics may deliver different meanings, e.g., Topic
2 is related to the video descriptions and Topic 4 is about loading
videos. Moreover, one review may complain about several issues.
For example, one Instagram user complains about the videos and
stories in one review: Videos don’t post. Videos don’t load. Stories
disappear all the time. Therefore, topic labels in words or reviews
may not be helpful in accurately capturing the semantics of the
topics. To render the topics comprehensible, we employ the most
relevant phrases and sentences to label each topic in this section.

Candidate Extraction

We obtain candidate phrases and sentences for labeling topics.
Phrase Candidate: The candidates of the phrase labels are

generated based on the extracted phrases. Three rules are employed
to identify more meaningful phrases: 1) Length limit: The length of
each word in the phrase should be no less than three; 2) Stop word
limit: The phrase should not contain words that are in the stop word
list of NLTK [17]; and 3) Part-Of-Speech limit: The phrase should
include at least one noun or verb, and no adverbs (e.g., “here”) or
determiners (e.g., “the”).
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Table 5.1: Top five terms for each topic of YouTube.

Topic Topic 1 Topic 2 Topic 3 Topic 4

Term

comment link back load
say video also video

reply open button even
try work change work

error description go back take

Sentence Candidate: We employ the reviews before the filtering
step in, starting by chunking them into sentences based on NLTK’s
punkt tokenizer [22]. Then we retrieve sentences with more than
four words, during which the noisy sentences (such as so far so bad
and great one) are filtered out. The remaining sentences are regarded
as our sentence candidates.

Topic Labeling

The topic labeling method is a ranking method, which considers
two aspects: the semantic similarity between the candidates and the
topics, and also the user sentiment of the candidates.

Semantic Score: Good topic labels should cover the latent
meaning of the topic [119]. The semantic score measures the
semantic similarity between the candidate and the topic. Moreover,
the labels of different topics should be discriminative and cover
different aspects of input reviews, instead of delivering overlapping
information. Hence, the semantic score of one candidate involves
the semantic similarity to the target topic and also the semantic
similarities to all the other topics. A good topic label should be
similar to the target topic and also different from the other topics in
semantics.

We employ the method in [119] to measure the semantic similar-
ity between one phrase candidate a and the target topic φtk, defined
as:
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sim(a, φtk) = −DKL(a||φtk)

≈
∑
w

p(w|φtk) log
p(a, w|C)

p(a|C)p(w|C)
,

(5.6)

where p(w|φtk) is the probability of term w in the topic distribution
φtk. p(w|C) and p(a|C) denote the percentages of the terms w and
a in the whole review collection C, respectively. The p(a, w|C)
indicates the co-occurrence probability of the two terms a and w

in the collection C. For the sentence candidates s, we utilize
Equation (5.7) to calculate the similarity.

sim(s, φtk) = −DKL(s||φtk)

≈
∑
w

p(w|φtk) log
p(w|s)/len(s)
p(w|φtk)

,
(5.7)

where p(w|s) can be calculated by the term frequency of w in
the sentence s. The semantic score is then defined by combining
sim(l, φtk) with the similarity scores to other topics

∑
j 6=k sim(l, φtj),

which means the label l should be semantic close to the topic
distribution φtk and discriminate from other topic distributions.

Scoresem(l, φ
t
k) = sim(l, φtk)−

µ

K − 1

∑
j 6=k

sim(l, φtj), (5.8)

where l can be a phrase candidate a or sentence candidate s, and
K is the number of topics. The parameter µ is utilized to adjust
the penalty for the semantic similarities to other topics. Larger µ
signifies that the candidates that are more different from other topics.

Sentiment Score: The topic labels should reflect users’ con-
cerns. Generally, the reviews with low ratings tend to express
poor user experience and app issues [52], and the reviews with
longer lengths are more likely to provide valuable information to
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developers. Therefore, we compute the sentiment score Scoresen of
one candidate l by combining the user ratings and review lengths:

Scoresen(l) = exp(− rl
log(hl)

), (5.9)

where l can be a phrase candidate or sentence candidate. r and h
denote the average user rating and the average word length of the
reviews containing l, respectively.

Overall Score: We prioritize the candidates for each topic based
on their semantic scores and sentiment scores. The overall score
Score(l, φtk) is defined as:

Score(l, φtk) = Scoresem(l, φ
t
k) + λScoresen(l), (5.10)

where the weight λ is to balance the two aspects. In this manner, all
the topics including the detected emerging topics are labeled with
the prioritized candidates. The topic labels are the identified app
issues. For each topic, there is a trade-off between the number of
prioritized labels and the cost of user comprehension (e.g., too many
labels usually spend users more time in understanding the meaning
of the topic). According to the survey [188], three labels are the
moderate choice for users to comprehend the topics. Therefore, for
one topic, we choose the three most relevant phrases and sentences
respectively as labels for each topic.

5.3.4 Visualization

In this part, we visualize the the evolution of app issues (i.e., topic
labels) along with versions for better understanding. We employ
an issue river to display issue variations. Figure 5.7 presents one
example of YouTube for iOS. All the app issues constitute one river
and each branch of the river indicates one topic. By moving the
mouse over one topic, one can track detailed issue changes along
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with versions, where the emerging issues are highlighted as shown
in Figure 5.7. The app issues with wider branches are of greater
concern to users, where the width of the k-th branch in the t-th
version is defined as:

widthtk =
∑
a

logCount(a)× Scoresen(a), (5.11)

where Count(a) is the count of the phrase label a in the review
collection of the t-th version, and Scoresen(a) denotes the sentiment
score of the label a.

Figure 5.7: Issue River of YouTube for iOS. The number of topics K is set as
10, corresponding to 10 branches of the river. The horizontal axis represents the
app versions, and the branches with larger widths indicate that the corresponding
issues are more cared about by users at those versions.

5.4 Experimentation

We evaluate the performance of IDEA in identifying emerging app
issues based on case studies. In this section, we explain how we
select the subject apps for experiments, the performance metrics,
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and finally the comparison results of different methods. We focus
on answering the following three research questions.
RQ1: What is the performance of IDEA in identifying emerging app
issues?
RQ2: Can IDEA achieve better performance compared with other
methods?
RQ3: How do different parameter settings impact the performance
of IDEA?

5.4.1 Dataset

We select the subject apps based on the following four criteria: The
apps are i) popular apps in the app markets - indicating that the
developers would update their apps regularly and the user reviews
can be collected from several consecutive versions; ii) apps from
different categories and platforms - to ensure the generalization
of the proposed framework; iii) apps with enough user reviews -
which necessitates an automated analysis; and iv) apps with detailed
changelogs for most versions - to facilitate our validation process.

To obtain apps that satisfy the first three criteria, we randomly
inspect the apps ranked in the top 100 on either App Store or
Google Play according to App Annie [2], an app analytics platform.
Only the apps with more than 2,000 US reviews [52] are inspected
further, since significant effort is required for manual analysis. To
filter out the apps that do not meet the fourth criterion, we check
the historical changelogs of these apps. We eliminate apps with
more than five successive sketchy changelogs, i.e., the changelogs
provide no details related to what functionality had been changed
or how the user experience was being affected. One example of
sketchy changelogs is “Multiple bug fixes and improvements across
the entire app”, where the bugs and improvement are not concrete
enough for verifying prioritized app issues. Finally, we select six
subject apps, with the details illustrated in Table 5.2.
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Table 5.2: Subject apps.

App Name Category Platform #Reviews #Versions
NOAA Radar Weather App Store 8,363 16
YouTube Multimedia App Store 37,718 33
Viber Communication Google Play 17,126 8
Clean Master Tools Google Play 44,327 7
Ebay Shopping Google Play 35,483 9
Swiftkey Productivity Google Play 21,009 16

In Table 5.2, we list the subject apps with the app name, category,
platform, the number of reviews crawled, and the number of versions
in the review collection. Overall, we obtain 164,026 reviews (from
August 2016 to April 2017) for the six apps, from 89 versions in
total. The apps are distributed in different categories, with two
of them from App Store and the others from Google Play. With
multiple categories and platforms, the generalization of IDEA can
be ensured.

5.4.2 Performance Metrics

The app changelogs, i.e., our ground truth, are collected from App
Annie. Since the prioritized issues of IDEA are in phrases and
sentences, we manually extract key terms from these changelogs
for verification. One example is illustrated in Table 5.6, with
the key terms highlighted. For each key term in changelogs, we
validate whether the term is covered by the prioritized issues. Since
the word2vec model [121] can accurately capture the semantic
meanings of input terms based on their vector representations, we
obtain the cosine similarities between each key term and the phrase-
level issues based on the model. The key term is considered covered
if its similarity to one of the issues is larger than 0.6 [92]. For
sentence-level issues, we split the sentences into terms (including
phrases and words) and verify whether the key term in changelogs
can be covered in a similar way. We employ such semi-automatic
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evaluation method to facilitate parameter adjustment and compari-
son with other methods.

We employ three performance metrics7 for verifying the effec-
tiveness of IDEA. The first metric is for measuring the accuracy
in detecting emerging issues, defined as PrecisionE. The second
is to evaluate whether our prioritized app issues (including both
emerging and non-emerging issues) reflect the changes mentioned
in the changelogs, defined as RecallL. We introduce the third
metric Fhybrid to measure the balance between PrecisionE and
RecallL. Higher values of Fhybrid indicate that changelogs are more
precisely covered by detected emerging issues and more changelogs
are reflected in the prioritized issues.

PrecisionE =
I(E ∩G)
I(E)

, RecallL =
I(L ∩G)
I(G)

,

Fhybrid = 2× PrecisionE ×RecallL
PrecisionE +RecalL

.

(5.12)

where E, G, and L are three sets, containing the detected emerging
issues, the key terms in the changelogs, and all app issues (including
both emerging and non-emerging issues), respectively. I(·) denotes
the number of the issues in ·. During evaluation, we experimentally
set the parameters as w = 3, K = 10, λ = 0.5, PMI = 5, and
µ = 0.75. We also initialize α and β with 0.1 and 0.01 respectively.

5.4.3 Answer to RQ1: Case Study

In this part, we evaluate the performance of IDEA by employing a
case study on YouTube. We first present the results of the version-
sensitive topic distributions based on AOLDA, then exhibit the

7We do not involve RecallE for validation since changelogs possibly include partial emerging
issues. Also, PrecisionL cannot be considered because changelogs may cover items other than
user-concerned issues. Here, PrecisionE and RecallL measure the precision of the emerging
issues and coverage rate of changelogs by all the extracted issues respectively, which are consistent
with the standards and convincing for this task.
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Table 5.3: Topic-word distributions based on AOLDA.

v11.07 v11.10 v11.11

Topic 1

link open video
open video watch
video work fine go
work go want

description click change

Topic 2

make <digit> back
want thing make

button get would
back interface button
use want people

prioritized labels to interpret the topics, and finally illustrate the
performance of the proposed framework on YouTube.

Result of AOLDA

Table 5.3 depicts the example topic-word distributions based on
AOLDA, where the top five words are listed for each topic. Accord-
ing to the table, the general meanings of the topics are consistent
along with versions. For example, Topic 1 is related to the video
for all the three versions, and Topic 2 is constantly related to the
user interface. However, for one topic, the specific meanings may
be distinguished in the three versions. Take Topic 1 as an example.
The topic may discuss the video description/link for version 11.07,
while it talks about “click”-related things in version 11.10. It would
be very laborious for developers to comprehend topics based on the
top words. Therefore, we conduct automatic topic interpretation in
the next step.

Result of Topic Interpretation

Table 5.4 illustrates the prioritized phrases for labeling topics,
where only one of the three labels are listed for saving space.
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The highlighted labels in Table 5.4 are the emerging app issues
detected by the anomaly discovery method. Topic 1 of version 11.07
is interpreted as “description box”, which is consistent with the
meaning of that topic in Table 5.3 intuitively. Table 5.5 illustrates the
ranked sentence for labeling each topic. Although phrase labels can
be quickly understood, we discover that sentence labels can detail
the information conveyed by phrases and interpret the topics more
comprehensively. For example, the sentence label of Topic 1 for ver-
sion 11.07 (i.e., “...click a link in the description...”) provides more
details than the corresponding phrase label (“description box”) in
Table 5.4. With both issues in phrases and sentences, developers can
efficiently spot and locate specific app issues. To help developers
gain better understanding, we visualize the identified issues along
with versions in Figure 5.7. By moving the mouse over Topic 10 of
version 11.15, we can observe both phrase-level and sentence-level
issues, among which the emerging ones are highlighted. Developers
can readily track the changes of each topic and discover urgent
issues in a timely manner.

Table 5.4: Topic labels in phrases for YouTube. The highlighted ones indicate
detected emerging issues. The value after each label is the overall score of the
label.

v11.07 v11.10 v11.11
Topic 1 description box: 2.03 comment section: 1.48 notification center: 1.33
Topic 2 user interface: 1.25 split screen: 1.23 split screen: 0.94
Topic 3 playback error: 1.44 battery drain: 0.99 performance improvement: 1.41
Topic 4 certain spot: 1.81 cpu usage: 0.85 camera roll: 1.22
Topic 5 profile picture: 2.19 main page: 1.11 home screen: 1.18
Topic 6 say playback error: 1.54 long period: 0.92 force quit: 1.26
Topic 7 copyright issue: 1.11 bring back: 1.14 nothing happen: 1.53
Topic 8 take forever: 1.88 ten minute: 1.12 pure torture: 1.02
Topic 9 sound quality: 1.55 major issue: 1.45 buffer forever: 1.03

Topic 10 home button: 1.15 full screen: 1.07 home page: 1.29
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Table 5.5: Topic labels in sentences for YouTube. The highlighted ones are the
detected emerging issues.

v11.07 v11.10
Topic 1 I mean it work but why do you take

off where you would click a link in the
description and it doesn’t even let me
go through the video: -0.05

It say error every time I try to reply
back to a comment: 0.52

Topic 2 But right now the lack of multitasking
have actually make it a better experi-
ence to use YouTube in safari: -0.79

Add split view and slide over but no
picture in picture: -1.36

Topic 3 Please fix this app fix this bug and that
playback error: -0.80

Dear YouTube please release a fix for
overheat issue on older iPhone and the
battery drain just too ridiculous: -0.45

Performance Evaluation

We collect the ground truth of YouTube based on the method.
Table 5.6 displays part of the changelogs. We manually inspect
whether the identified app issues of one version can be reflected in
the changelogs of the next version. According to Table 5.6, version
11.10 improves the user interface by adding the functionality of
multitasking (i.e., sliding over and splitting view [16]) and fixes the
bug in video descriptions. Referring to Table 5.4 and Table 5.5, we
discover that the two issues are detected by IDEA in Topic 1 and
Topic 2 of the previous version 11.07. Then to statistically measure
the performance of our framework, we employ the proposed three
metrics. Based on the collected 33 versions for YouTube, IDEA
achieves PrecisionE, RecallL, and Fhybrid at 0.628, 0.666, 0.636
in sentence-level issues and 0.592, 0.472, and 0.523 in phrase-level
issues, respectively.

Discussion of the performance: Since the changelogs may not
cover all the changes in releases, the metric PrecisionE represents
a lower bound of the performance. For example, the highlighted
emerging issues, such as “split screen” and “battery drain” for ver-
sion 11.10 in Table 5.4, are not clearly embodied by the changelog of
version 11.11 (shown in Table 5.6). We then inspect the reason why
the detected issues “fail” to be noticed by developers. We discover
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Table 5.6: Changelog of YouTube
Version Date Changelog

11.10 22-Mar-16

(1) Added slide over and split view support
(2) Moved home tabs into navigation bar for iPad in land-
scape mode
(3) Fixed bug that prevented URLs in video descriptions
from opening

11.11 29-Mar-16

(1) Fixed bug where accessibility VoiceOver looped over
the same elements
(2) Fixed issue where the video couldn’t be exited after
completing
(3) Bug fixes and stability improvements
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Figure 5.8: Count of posts and views related to the battery issue in YouTube iOS
forum.
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that “split screen” is one new added feature of version 11.10 and it is
reasonable for a hot discussion about the drawbacks of this feature in
the user reviews, which explains why “split view” is identified as one
emerging issue. Then for the issue “battery drain”, we dig into the
official user forum of YouTube for iOS [28], and observe the number
of posts and views of the issue by searching the phrase (illustrated in
Figure 5.8). We find that there exists a sudden increase in the counts
of posts and views around May 2016, which also demonstrates that
the battery issue was an emerging issue for the version. Therefore,
we summarize that changelogs may not completely cover all emerg-
ing issues, and our performance metric computes a lower bound of
the performance of IDEA. The comparison with other methods can
validate our proposed framework more sufficiently.

5.4.4 Answer to RQ2: Comparison Results with Different
Methods

For validating the performance of AOLDA in IDEA, we choose the
typical method for online topic modeling - OLDA [37]. For evalu-
ating the proposed topic labeling method, we also compare with the
method only considering the sentiment score for labeling (denoted
as IDEA-R), and the method only considering the semantic score for
labeling (denoted as IDEA-S). For clarity, our proposed framework
is represented as IDEA+. Table 5.7 illustrates the comparison results
on the six subject apps. We discuss the performance of IDEA from
three aspects in the following subsections.

Issues in Phrases v.s. Issues in Sentences

According to the results of IDEA+ in Table 5.7, issues in sentences
can attain better performance than those in phrases by 30.7%,
52.5%, and 43.2% in PrecisionE, RecallL, and Fhybrid on average
respectively. This may be attributed to the fact that sentences can
deliver more detailed and complete information than phrases, and
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Table 5.7: Comparison result of different methods on six subject apps. The value
under each app name indicates the average number of reviews across the versions.

PrecisionE RecallL Fhybrid PrecisionE RecallL Fhybrid

OLDA 0.468 0.528 0.473 0.482 0.622 0.534
IDEA-R 0.606 0.461 0.520 0.478 0.570 0.503
IDEA-S 0.250 0.530 0.340 0.417 0.547 0.473
IDEA+ 0.571 0.497 0.531 0.476 0.639 0.546
OLDA 0.441 0.462 0.451 0.578 0.664 0.597

IDEA-R 0.506 0.429 0.456 0.550 0.659 0.586
IDEA-S 0.548 0.466 0.502 0.456 0.656 0.522
IDEA+ 0.592 0.472 0.523 0.628 0.666 0.636
OLDA 0.157 0.305 0.166 0.313 0.550 0.375

IDEA-R 0.542 0.326 0.407 0.625 0.571 0.597
IDEA-S 0.500 0.342 0.406 0.500 0.518 0.509
IDEA+ 0.625 0.340 0.440 0.625 0.651 0.638
OLDA 0.300 0.269 0.160 0.200 0.421 0.129

IDEA-R 0.500 0.216 0.301 0.750 0.377 0.502
IDEA-S 0.067 0.289 0.366 0.500 0.398 0.443
IDEA+ 0.667 0.318 0.431 0.667 0.434 0.526
OLDA 0.167 0.238 0.196 0.500 0.488 0.494

IDEA-R 0.229 0.243 0.220 0.646 0.496 0.561
IDEA-S 0.125 0.285 0.132 0.354 0.476 0.406
IDEA+ 0.229 0.251 0.227 0.646 0.527 0.580
OLDA 0.100 0.567 0.148 0.367 0.617 0.458

IDEA-R 0.333 0.611 0.376 0.417 0.733 0.515
IDEA-S 0.333 0.622 0.372 0.500 0.711 0.587
IDEA+ 0.517 0.653 0.523 0.583 0.700 0.587

Viber
(2,141)

Clean Master
(6,332)

Ebay
(3,943)

SwiftKey
(1,313)

App Name
(#avg. reviews) Method

Phrase Sentence

NOAA Radar
(523)

Youtube
(1,143)
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thereby cover more key terms in changelogs. Focusing on the metric
Fhybrid, employing sentence-level issues improves the properties of
using phrase-level issues by 2.7%∼1.56 times. For PrecisionE,
the issues in sentences increase those in phrases by -16.7%∼1.8
times. The negative increase only occurs to the app NOAA Radar,
which may be because the small datasets of the app (512 reviews
per version) introduce instability for our framework [14]. For the
metricRecallL, IDEA+ shows an increase range of 7.1%∼1.1 times.
Overall, sentence-level issues can better represent app issues, and
we employ such issue representations for comparing with different
methods in the following.

AOLDA v.s. OLDA

On average, IDEA+ achieves 0.604, 0.603, and 0.585 for PrecisionE,
RecallL, and Fhybrid respectively, while the OLDA-based method
only obtains 0.407, 0.560, and 0.431 for the three metrics. Con-
sidering the metric Fhybrid, AOLDA enhances the performance of
OLDA by 2.1%∼3.08 times, where OLDA presents the poorest
performance (0.129) on the app with the largest quantity of reviews
(e.g., Clean Master with 6,332 reviews per version). For the
metrics PrecisionE and RecallL, our framework can improve the
performance by -1.1%∼2.33 times and 0.3%∼18.4% respectively.
Although IDEA+ exhibits a slightly lower PrecisionE than the
OLDA-based method for the app NOAA Radar, it shows better
performance in both Fhybrid and RecallL, which indicates that
our framework can well balance the precision and recall in issue
detection.

IDEA v.s. Different Topic Labeling Methods

We discover that IDEA+ can achieve better performance than IDEA-
R and present the increase rates at 7.1%, 7.3%, and 7.7% on average
for the three metrics respectively. For Fhybrid, our framework
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improves IDEA-R by 3.4%∼14.0%. When compared with IDEA-S,
our framework increases by 34.9%, 10.4%, and 20.7% on average
in PrecisionE, RecallL, and Fhybrid, respectively. Therefore, both
the user sentiment and semantic similarity should be considered for
topic labeling.

5.4.5 Answer to RQ3: Effect of Different Parameter Settings

In this part, we demonstrate the impact of different parameter set-
tings on the performance of our framework. We focus on analyzing
two important parameters, including the window size w and the
number of topics K. We also explain how we choose the parameters
in our experiments.

Window Size

Figure 5.9 illustrates the results of different window sizes on two
apps, including YouTube and Ebay. For both apps, the values of
Fhybrid present an inverted “U” shape for both phrase-level and
sentence-level issues. We attribute this to the reason that the topic
distributions of the current version are strongly dependent on those
of the previous versions. When the window size is set relatively
small, the detected issues of current versions may be more divergent
and unstable. However, larger window sizes may weaken the
distinction of app issues among versions, which is unfavorable for
detecting the emerging issues. Since w = 3 can achieve the best
performance on our datasets (indicated in Figure 5.9), we set the
window size as three in our experiments.

The Number of Topics

Generally, the topic number should be defined according to the size
of the review collection [42]. In IDEA, a larger topic number can
bring more prioritized app issues, which can cover more changelogs
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Figure 5.9: Impact of window size.

(i.e., increasing RecallL). However, more app issues may be a
double-edged sword, since the metric PrecisionE can be decreased.
Figure 5.10 shows the results of different topic numbers on two apps,
including NOAA Radar and Ebay. For Ebay (on average 3,943
reviews per version), the values of Fhybrid display an ascending
tendency in both phrase-level and sentence-level issues. But for
NOAA Radar (on average 523 reviews per version), a larger topic
number will reduce the performance when using phrase-level issues.
To better balance the precision and recall, we set the topic number
as 10 during experiments.
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5.5 IDEA in Practice

In this section, we explore the performance of IDEA in practice.
First, we introduce a user survey conducted in Tencent. Then we
describe the successful application of IDEA in Tencent’s products.

5.5.1 User Survey

To further demonstrate the significance and effectiveness of our
work, we conduct a user study among 45 staff in Tencent, with 29
developers (64.4%), five data analysts (11.1%), four product man-
agers (8.9%), three maintenance engineers (6.7%), one test engineer
(2.2%), and three from other positions (6.7%). The user study is
conducted through an online questionnaire, which consists of six
questions: one question on participants’ background, four questions
for experimental assessment, and one question for understanding
their attitude towards such automatic analysis.

Changelogs as Ground Truth.

We interview the participants about their opinions of using changel-
ogs as ground truth, since changelogs may only include partial
changes of the releases. The survey results indicate that 31 (68.9%)
of the interviewees agree that changelogs can reflect modified issues
of the new releases, and 10 (22.2%) of them indicate a strong
approval. Moreover, 88.9% of participants think that changelogs
embody the user concerns of the previous releases, with 11.1%
echoing strong agreement. Since our framework aims to prioritize
app issues based on user reviews, using changelogs as ground truth
is reasonable.

Effectiveness of Our Framework.

During the survey, we validate our framework in terms of three
aspects: the presentation style of IDEA’s results, the performance



CHAPTER 5. EMERGING ISSUE IDENTIFICATION 101

achieved by our framework, and the significance of such automatic
analysis. The survey results indicate that 75.6% of participants
think the visualization with an issue river is comprehensible for
them, while the phrase-level issues (only with the approval rate at
11.1%) are considered more difficult to understand than sentence-
level issues (with an approval rate of 37.8%). For inquiring about
their opinions of the performance of IDEA, we present the example
results of WizNote [31] with PrecisionE and Fhybrid at 50%∼60%.
According to the survey, 88.9% of the interviewees think that the
performance is acceptable in practical usage, and 31.1% strongly
approve of such performance. In addition, all the participants think
such automatic analysis of detecting emerging issues is significant
for app development, with 73.3% of them strongly agreeing with this
sentiment. These results provide strong evidence of the effectiveness
of our framework.

5.5.2 Successful Story in Industrial Practice

Team X of Tencent aims to provide developers with abnormal events
report and operation statistics of 20+ apps of Tencent. Traditional
review analysis in X requires lots of manpower. With the increasing
quantities of app reviews and the onslaught of spam in user reviews,
X has been seeking a means of automatic analysis. We have
successfully applied IDEA into X to maintain four apps with review
quantities at 500∼5,000 per day. The four apps serve hundreds of
millions of users worldwide, and their quality is very important for
the company. IDEA obtains user reviews by the hour or day based
on the review collection API provided by X. The collected reviews
are grouped by versions and processed in real time. The detected
emerging issues are fed back to developers for further analysis.

In July of 2017, App Y encountered a serious problem when the
content search service was not available for a period of time, and
received a sudden increase in the amount of user feedback. With
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IDEA, the team X quickly identified the issue and reported it to the
development team. The team also confirmed this issue.

Moreover, IDEA can efficiently analyze large numbers of re-
views. We deploy IDEA on a PC with Intel(R) Xeon E5-2620v2
CPU (2.10 GHz, 6 cores) and 16GB RAM. For 36,000 product
reviews per version, IDEA achieves a high throughput (nearly 160
reviews per second), and only consumes 1.02GB of memory on
average. Overall, IDEA is proved to be effective and efficient in
quickly pinpointing urgent app issues for developers in the industrial
practice.

5.6 Threats to Validity

First, we only select six subject apps for validating our framework
and the apps represent a tiny portion of all apps on app markets.
Since we utilize user reviews for detecting emerging issues, our
methods can be easily applied to other apps, even those with other
languages. Also, we alleviate this threat by choosing the apps from
different categories and platforms. Second, the number of user
reviews can impact the performance of IDEA. However, since small
datasets can be easily analyzed manually, our framework aims for
automatic analysis of large review datasets. We also mitigate this
threat by selecting apps with different quantities of user reviews (on
average 523∼6,332 reviews per version). Third, the topic number
should be manually defined, which can influence the performance of
our framework. Such a threat stems from the original topic modeling
method [50], which is still a great challenge in academia [200]. In
this chapter, we alleviate this threat by testing on different topic
numbers (introduced in the parameter study part). In practice, we
can employ heuristic approaches [200] to determine the optimal
topic number.
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5.7 Summary

Timely and effectively detecting app issues is crucial for app de-
velopers. We propose IDEA, a novel framework for automatically
identifying emerging issues from user reviews. Our framework can
be easily applied to text-based online detection tasks and report
emerging issues timely. The industrial practice also validates the
effectiveness of IDEA. In the future, we will refine IDEA to be
capable of defining the topic number automatically, and make IDEA
a distributed algorithm for supporting ultra-large-scale datasets.

2 End of chapter.



Chapter 6

Understanding Cross-Platform App
Issues

App developers generally publish apps on different platforms, such
as Google Play, App Store, and Windows Store, to maximize the
user volumes and potential revenue. Due to the different charac-
teristics of the platforms and different user preference, app testing
cases on these three platforms should be designed accordingly. In
this chapter, we understand the differences in the app issues on these
platforms to facilitate app testing process. The main points of this
chapter are as follows. (1) It proposes a retrieval method to extract
issue-related keywords. (2) It shows the differences and similarities
of app issue distributions on different app platforms. (3) It illustrates
the effectiveness of prioritizing issues of different platforms.

6.1 Introduction

Smartphones have penetrated into people’s daily life. By 2015, the
global user volume of smartphones has exceeded half the world’s
population [19]. Accounting for this popularity is the growing
creation and usage of mobile applications (i.e., apps). To distribute
the apps to users, developers are required to publish the apps on
the distribution platforms specific to mobile apps. Generally, app
developers choose to deliver their apps on more than one platforms

104
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to enlarge the potential user volume and revenue [27]. In 2017, the
three largest global platforms for app distribution are Google Play,
App Store, and Windows Store, which occupy 85.0%, 14.7%, and
0.1% of the market, respectively [23]. These three platforms are
then regarded as the focus of our study.

To ensure user experience, developers should examine the soft-
ware reliability before the app delivery. The unique characteristics
of the operating systems indicate that the testing on these platforms
is not exactly the same [20], shown in Figure 6.1. For example,
Android is more customizable and offers an open platform, while
iOS prioritizes the user interface over just about anything [12]. Fur-
thermore, the users of different platforms possess different prefer-
ences. For example, iOS users are considered to be more “addicted”
to digital devices than Android users [30]. Therefore, different
platforms may generate different app issues, and understanding the
differences facilitates the app development process for developers.

Figure 6.1: User experience on different platforms. Here, “UXF” denotes the user
experience friction - the aspects of a device that can annoy users in a niggling way.

The existing studies concentrate on comparing the characteristics
of the operating systems, such as the accessing Internet streaming
services [106], security mechanisms [36], and the demograph-
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ics [44]. There is no exploration of the differences of app issues on
these platforms. Although one piece of work [202] analyzes bugs
and bug-fixing for projects on different platforms, the work focuses
on the updating rates and bug details. To fill this significant gap, in
this chapter, we aim at comparing the app issues for the platforms
and provide developers with insights on testing apps.

Since user reviews provide a valuable data source for developers
to identify potential issues of their mobile apps, we employ the
reviews to discover app issues. We have crawled about five mil-
lion user reviews of 20 apps for the three platforms (i.e., Google
Play, App Store, and Windows Store). By examining the app
reviews, we choose seven issues for comparison. They are “crash”,
“battery drainage”, “memory consumption”, “network connection”,
“privacy”, “spam”, and “UI design”. We design a framework
named CrossMiner to comprehend the issues distributions on these
platforms, and provide developers with crucial issues for different
platforms.

To analyze the differences of app issues on different platforms,
we propose an issue-retrieval method to extract relevant words for
each issue. Specifically, we first preprocess raw reviews to obtain
input for word2vec[121] model and convert each word into a vector.
Then, we cluster the words by k-means algorithm and summarize the
corresponding keywords for each issue based on cosine similarity
method. By using the issue-retrieval method, we compute and
visualize the distribution of each issue on different platforms. For
better understanding specific issues, we also prioritize important
reviews correspondingly to developers. We conduct an empirical
study on a large scale dataset (4,663,316 reviews of 20 popular
apps), and demonstrate the differences and similarities existing
along with the three platforms. We also show a case study to
verify the effectiveness of CrossMiner in reflecting the important
user concerns.

The main contributions of this chapter are as follows:
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• We propose an issue-retrieval framework CrossMiner to extract
issue-related keywords comprehensively from user reviews.
• We obtain insights about differences and similarities of app is-

sue distributions on different platforms from users’ perspective.
• We demonstrate that our framework reflects the importance

of user concerns accurately. Developers can also analyze the
detailed concerns based on the prioritized user reviews.

6.2 Motivation and Background

A report from [19] illustrates the quantities of apps available for
downloading in leading app stores during July 2015. There are more
than 1.6 million, 1.5 million, and 0.34 million in Google Play, App
Store, and Windows Store, respectively. As a process for improving
app’s functionality, usability, and consistency, mobile app testing de-
termines the delivery quality to end users, and becomes increasingly
important for any companies that desire to keep competitive in the
intensive app markets.

However, designing comprehensive app testing cases is time-
consuming and sometimes difficult for app developers. One key
challenge for the app testing is attributed to the diverse mobile
platforms, such as Android, iOS, and Windows Phone. Each mobile
operating system possesses unique limitations and properties. App
testing across different platforms requires app developers to be
familiar with the characteristics of each platform, and design test
cases specifically. Moreover, users of different platforms embody
different preferences and perceptions about an app [20]. Therefore,
comprehending app issues on different platforms can facilitate the
whole process for developers.

User reviews can be regarded as the “voices of users”. They
directly reflect the user experience [134]. Since analyzing user
reviews assists developers in fixing bugs and adding new features,
different user concerns on different platforms can be captured by
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utilizing the corresponding app reviews. Thus, developers can test
apps more specifically and efficiently based on the extracted user
issues.

In this chapter, we select seven issues which are crucial for app
testing [29, 11]. They are “battery”, “crash”, “memory”, “network”,
“privacy”, “spam”, and “UI”. To verify whether users concern these
issues practically, we take Facebook as an example and examine
the corresponding user reviews. Table 6.1 illustrates example user
reviews regarding these issues.

Table 6.1: Example user review related to each issue type from the Facebook app
Issue Platform Review Rating

Battery
Google Play This app is the main reason to drain down the bat-

tery!
1.0

App Store Nice but make wasteful battery, first fix dong. 4.0
Windows Store Battery draining app. 1.0

Crash
Google Play The app crash as soon as i tap on the facebook icon. 1.0
App Store Crash and hang issue in ios.... Pls fix. 1.0

Windows Store Turrible, it crashes every 4 minutes and its just. 1.0

Memory
Google Play The app is good but it takes too much memory

space.
4.0

App Store Since the last update covers much memory space. 3.0
Windows Store This it takes whole space in my memory card. 1.0

Network
Google Play It always gives me a network problem. 1.0
App Store Network connection error. 1.0

Windows Store Waiting for network for days, slowest app ever. 2.0

Privacy
Google Play The Big Brother version. No privacy anymore. 1.0
App Store Poor. Privacy invading. 1.0

Windows Store It got privacy problems. 1.0

Spam
Google Play Uses too many resources, and includes a lot of

spam.
2.0

App Store All this spam and posts I didn’t make are annoying. 2.0
Windows Store This app puts spam ads for weight loss on the news

feed.
1.0

UI
Google Play Change ui of app. its boring to use same ui app. 2.0
App Store This app can be so much better...yet the UI just

drives me nuts.
1.0

Windows Store We need the call feature and little tweak in the UI. 1.0

Table 6.1 demonstrates that users really complain about these
issues on different platforms. The highlighted phrases indicate the
keywords or key phrases representative for the issues. For example,



CHAPTER 6. CROSS PLATFORM ISSUES 109

with respect to “battery”, the users state the issues with “drain down
the battery”, “wasteful battery”, and “battery draining” on the three
platforms respectively. Furthermore, we discover that almost all the
reviews are corresponding to low ratings (less than three). Hence,
we suppose that these issues are concerned by users. Investigating
the issues on different platforms is helpful for app developers.

In this chapter, we aim at implementing a framework, namely
CrossMiner, to help developers understand the differences of app
issues on different platforms based on user reviews. Developers can
then focus on the important issues on these platforms during the
app testing. Given the app reviews of each platform, CrossMiner
automatically prioritizes the issues on this platform. We focus on
the seven app issues shown in Table 6.1.

6.3 Methodology

This section first gives an overview of the proposed tool, Cross-
Miner, and then elaborate on each of the two major procedures
in CrossMiner, including clean review extraction and keywords
generation.

6.3.1 Overview of CrossMiner

Figure 6.2 illustrates the overview of the proposed framework Cross-
Miner, which consists of three steps. The first step preprocesses
and filters raw user reviews from the three app stores, including
Google Play, App Store, and Windows Store. In this process, raw
user reviews are converted into clean user reviews to facilitate the
following steps. The second step trains a model for our dataset.
This model can extract the keywords automatically for the seven
issues illustrated in Table 6.1. Based on the extracted keywords,
we prioritize these issues for each platform, and compare these
issues distributions among the three platforms. To gain an in-depth
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understanding of specific issues, we also recommend essential user
reviews corresponding to these issues. Finally, we visualize the
experimental findings for app developers, and will be detailed in the
experimental part.

Figure 6.2: Overview of the framework CrossMiner

6.3.2 Step 1: Clean Review Extraction

App reviews are short in length, and contain massive misspelled
words and made-up words [52]. In the first step, CrossMiner obtains
clean reviews to facilitate the model training in the subsequent
process. The step mainly contains two parts, i.e., preprocessing and
filtering.
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Preprocessing

To facilitate the subsequent analysis, we first remove the non-
English characters existing in the raw reviews and convert raw
reviews into lowercases. Then we remove all the non-alpha-numeric
symbols but keep the punctuations to ensure the semantic integrity [5].
Finally, we tokenize the reviews to word-level collections. To better
reduce the inflectional forms to the common base forms, we propose
a novel lemmatization method. We do not utilize stemming, since it
usually refers to a crude heuristic process that chops off the ends of
words, illustrated in Table 6.2. Some words are difficult to identify
after stemming (e.g., “minutes” to “minut”, and “adding” to “ad”).

Table 6.2: Results of stemming and lemmatization
Original Word Stemming Lemmatization(v) Lemmatization(n)

are be be are
adding ad add adding
several sever several several
settings set settings setting

developers develop developers developer
minutes minut minutes minute
serves serv serve serf
does doe do doe
uses use use us
pass pass pass pas
less less less le

Furthermore, considering the influence of the part of speech,
we combine the lemmatization for verbs, denoted as Lemmatiza-
tion(v), and the lemmatization for nouns, denoted as Lemmati-
zation(n). Lemmatization(n) cannot convert verbs into the base
forms. Moreover, some words are converted into other words that
are totally irrelevant with original words, such as “serves” to “serf”,
“does” to “doe”, “uses” to “us”, which can be compensated by
Lemmatization(v). However, Lemmatization(v) cannot achieve the
desired result either. For example, “settings” and “developers” keep
unchanged after the lemmatization(v), while Lemmatization(n) can
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return the correct forms. Therefore, neither lemmatizations can
achieve ideal results solely.

The combinations of Lemmatization(v) with Lemmatization(n)
are implemented as following. We first lemmatize all words by
Lemmatization(v). We then conduct the Lemmatization(n) for
words without “ss” ends, since Lemmatization(n) converts the words
ending with ’ss’ into other words instead of their base forms (e.g.,
“pass” to “pas”, and “less” to “le”, illustrated in Table 6.2). Ta-
ble 6.3 presents the results of our proposed lemmatization method,
which demonstrates its effectiveness. The Lemmatizer employed is
implemented based on the NLTK [17].

Table 6.3: Results of proposed lemmatization method
Original Word Proposed Lemmatization

adding add
several several
settings setting

developers developer
minutes minute
serves serve
does do
uses use
pass pass
less less

Filtering

The previous step generates a preprocessed review collection, with
examples presented in Table 6.4. We then classify each review into
three types, i.e., “useless”, “non-informative”, and “informative”.
The “useless” reviews are those reviews with too much made-up or
misspelled words. Some users type letters just arbitrarily during the
review writing, which cannot provide any suggestions to developers.
The “non-informative” reviews contain no information beneficial for
the app development (e.g., “nice app.”, and “pls fix it!”). We retain
the “non-informative” reviews since they possess intact sentence
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structures, which can serve as the input of the model training. All the
other reviews are determined as “informative” reviews, which offer
developers suggestions on fixing bugs or adding features. In the
end, only the “useless” reviews are filtered out for the subsequent
process.

Subsequently, to filter noises in the reviews, we conduct a rule-
based method in the word-level granularity and spell checking at the
review-level granularity.

a) Word-Level: Three rules are adopted during the word-level
filtering process, illustrated in the following.

Rule 1 (Consecutive Duplicate Letter Limit). We remove consec-
utive duplicates, since the length of consecutive repeated letters is
less than three generally [7]. Specifically, if the repetition times of
a letter is more than two, the repeated ones will be eliminated (e.g.,
“suuuuper” to ‘super”).

Rule 2 (Word Length Limit). We remove all the words whose
length is more than 15, since 99.93% English words’ lengths are
less than 16 [9] (e.g., “jfieendkwjjfkkdn”).

Rule 3 (Consecutive Duplicate Word Limit). We remove consec-
utive duplicate words in a sentence (e.g., “very very very beautiful’
to “very beautiful”’).

b) Review-Level: In review level, we employ Enchant [8], a
generic spell checking library, to conduct the spell checking in each
review. Any reviews with more than half words not correctly spelled
will be removed.

After preprocessing and filtering, we convert all raw reviews into
clean reviews. Table 6.4 presents the results after preprocessing and
filtering.

6.3.3 Step 2: Keywords Generation

We have obtained clean reviews based on preprocessing and filtering
in the last step. In this step, we train the word2vec model on our
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Table 6.4: Example reviews after preprocessing and filtering.
Type Preprocessed Review Clean Review

Useless gk bgitu jlek anyway. tp gmna lg
mw. hrus ttap there perubhan.

Non-informative nice app. nice app.
Non-informative pls fix it! pls fix it!
Non-informative it be suuuuper. it be super.
Non-informative jfieendkwjjfkkdn i dont know what

to say its awsone.
i dont know what to say its
awsone.

Non-informative very very very beautiful. very beautiful.
Informative it be so slow and it glitch up. it be so slow and it glitch up.

datasets, based on which the keywords are retrieved with respect
to the seven issues, i.e., crash, battery, memory, network, privacy,
spam, and UI. Finally, reviews for each issue are prioritized accord-
ing to its importance and usefulness to developers.

Training Model

To establish the model, we first convert all words to vectors by
employing word2vec [121], a neural network implementation for
learning vector representations of words. Single sentence serves
as the input of word2vec, generally represented by a list of words.
Since reviews may consist of several sentences, we demand to split
the reviews into sentences. Here, NLTK’s punkt tokenizer [22] is
employed for the splitting. Based on the obtained parsed sentences,
we then adopt skip-gram, one flavor of word2vec, as our training
model.

Given a sequence of words to train {w1, w2, w3, ..., wT}, the
objective function of skip-gram model is to maximize the log prob-
ability of any context word given the current center word, defined
as

J(θ) =
1

T

T∑
t=1

∑
−m≤j≤m,j 6=0

log p(wt+j|wt), (6.1)
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where T is the number of training words, m is the size of the
training context, and θ represents all variables to be optimized.
The log probability logp(wt+j|wt) can be trained by hierarchical
softmax or negative sampling. We leverage the hierarchical softmax
as the training algorithm, since it achieves better performance for
infrequent words [154].

Extracting Keywords

Based on the training model, we attain the vector representation of
each word in the clean reviews. For the seven user-concerned issues
(i.e., “crash”, “battery”, “memory”, “network”, “privacy”, “spam”,
and “UI”), we capture 21 most related words to each issue based on
the cosine similarity. Given two vectors of the app issue I and the
examining word W , the cosine similarity is determined as

similarity =

n∑
i=1

IiWi√
n∑
i=1

I2i

√
n∑
i=1

W 2
i

, (6.2)

where Ii and Wi are the ith components of the vectors I and W ,
respectively.

By employing the cosine similarity method, we obtain 21 most
similar words corresponding to each issue. Instead of regarding
these words as keywords directly, we remove the stop words which
occur frequently but carry fewer meanings in the reviews, e.g.,
“a”, “is”, and “the”. We eliminate the stop words provided by
the NLTK [17] corpus. Moreover, we remove these words that
appear close to the app issue in distance but not semantically related
actually. To achieve this, we employ k-means algorithm to cluster
all words into groups. Thus, these words in the same group are
consistent semantically in theory.

Table 6.5 shows similar words and keywords of “battery”. Sev-
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eral similar words are removed from the keywords list because they
are not in the same cluster with battery, including “cpu”, “ram”,
“deplete”, “memory”, and “foreground”. After getting keywords of
each issue, we prioritize issues in different platforms by a keyword-
based method.

Table 6.5: Similar words and keywords of “Battery”
Issue Similar Words Keywords

Battery battery, drain, usage, consump-
tion, overheat, drainer, consume,
cpu, power, ram, hog, electricity,
drainage, charger, batter, standby,
discharge, energy, deplete, memory,
foreground

battery, drain, usage, consump-
tion, overheat, drainer, consume,
cpu, power, ram, hog, elec-
tricity, drainage, charger, batter,
standby, discharge, energy, de-
plete, memory, foreground

Ranking Reviews

To help developers understand one specific issue deeply, we also
prioritize raw user reviews regarding the issue according to their
importance and usefulness for app developers. We consider one
review related to the issue, if the review comprises the corresponding
keywords. For all the related reviews, we rank their importance
based on the lengths and ratings. Generally, reviews with lower
ratings and longer lengths are preferred by developers, since they
tend to express the app bugs or the necessary features. The ranking
score score(t) for the issue t is defined as follows.

score(t) = e−r(
1

ln(h)+1+
1

ln(nt)+1 ), (6.3)

where nt indicates the number of keywords for the issue t, r denotes
the user rating, and h represents the review length. The definition
ensures the ranking score to be ranged from 0 to 1. Finally, the
reviews with lower ratings and longer lengths are prioritized.
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6.4 Experimental Study

n this section, we first illustrate the subject datasets and performance
metrics. We present the experimental results of CrossMiner on the
subject datasets. To verify that CrossMiner can help developers in
practice, we conduct several experiments and case studies. More
specifically, we aim to answer the following three research ques-
tions:
RQ1: What are the issue distributions on different platforms based
on CrossMiner?
RQ2: What is the issue-prioritization performance of CrossMiner
on different app platforms?
RQ3: In addition to prioritizing app-level issues, can CrossMiner
provide developers with platform-level advice?

6.4.1 Dataset

Our dataset has been collected from AppFigures [4], a website pro-
viding APIs to crawl user reviews in multiple app stores, including
Google Play, App Store, Windows Store, etc. Our dataset contains
4,663,316 reviews posted by users between September, 2014 and
March, 2016. 20 popular apps belonging to 8 categories are studied.
Specifically, our dataset comprises 2,637,438 reviews from Google
Play, 1,687,003 reviews from App Store, and 338,875 reviews from
Windows Store, which are large enough for review analysis [52].
Table 6.6 lists the details of our dataset.

6.4.2 Performance Metrics

To measure the performance of the issue prioritizing results based
on CrossMiner, we adopt Normalized Discounted Cumulative Gain
(NDCG) in the following:

NDCG@k =
DCG@k

IDCG@k
, (6.4)
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Table 6.6: Review dataset of 20 subject apps.
Category App Name Google Play App Store Windows Store

Communication

LINE 102,155 104,960 9,511
Messenger 244,516 234,400 15,801
Skype 186,868 8,834 35,355
Viber 161,833 109,710 21,569
WeChat 89,205 204,922 9,508
WhatsApp 241,792 85,117 25,130

Education Duolingo 65,632 59,659 12,365
TED 778 905 380

Entertainment

Netflix 97,503 45,383 28,846
Spotify Music 178,477 249,212 33,143
VLC 3,725 771 4,674
YouTube 69,300 210,371 13,404

Photography Camera360 122,350 51,777 2,319
Productivity Evernote 65,540 30,795 2,308

Shopping eBay 142,129 20,000 4,485

Social

Facebook 244,897 232,347 51,040
Instagram 249,132 13,741 55,596
Tango 122,638 200 53
Twitter 246,546 23,200 13,218

Transportation HERE 2,422 699 170
Total Reviews 2,637,438 1,687,003 338,875

where NDCG@k ∈ [0, 1], with 1 representing the ideal rank order.
The higher value indicates the predicted rank order is closer to the
ideal rank order.

6.4.3 Keywords Generation Results

We train the word2vec model based on all the clean reviews,
3,113,111 reviews totally. As for the parameter settings, we set
the word vector dimensionality as 300, the context size as 10, and
the minimum word count as 80. The model training process takes
several minutes to tens of minutes depending on the vocabulary size.
Ultimately, we obtain the word2vec model based on our dataset.
Each word in the dataset is represented by a 300-dimension vector.

Next, we extract the keywords for each issue based on the key-
words generation method introduced in the step 2 in the Methodol-
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ogy section. Table 6.7 depicts the relevant keywords corresponding
to the seven issues.

Table 6.7: Keywords corresponding to seven issues.
Issue Keywords

Battery battery, drain, usage, consumption, overheat, drainer, consume, power,
hog, electricity, drainage, charger, batter, standby, discharge, energy

Crash crash, freeze, foreclose, lag, crush, stall, close, shut, laggy, glitch, hang,
load, stuck, startup, buffer, open, laggs, freez, glitchy, buggy

Memory memory, storage, space, gb, internal, gigabyte, ram, 6gb, occupy, 4gb,
mb, 300mb, 8gb, 500mb, 16gb, byte, 5gb, gig, 2gb, 1gb, 1g

Network network, connectivity, internet, consumption, wifi, connection, recep-
tion, conection, connect, signal, 4g, wi, 3g, broadband, fibre, lte,
reconnecting, fi, wireless, reconnect, disconnect

Privacy privacy, security, invade, safety, personal, policy, invasion, breach,
protection, protect, private, disclosure, secure, unsafe, insecure, per-
mission, fingerprint, encryption, violation, encrypt

Spam spam, spammer, scammer, unsolicited, harassment, unwanted, bot,
bombard, junk, scam, advertisement, popups, scraper, hacker

UI ui, interface, design, layout, gui, ux, clunky, redesign, aesthetic,
navigation, usability, desing, sleek, appearance, aesthetically, intuitive,
minimalistic, ugly, slick, graphic, unintuitive

Compared to the method for selecting keywords manually, our
keywords generation method has these following advantages. First,
CrossMiner can automatically generate the keywords for each issue,
which is more time-saving and more efficient. In contrast, manually
selecting the keywords for the issues could be laborious. Second,
CrossMiner can extract misspelled and made-up words that are
related to the issue, which are generally ignored during the manual
process. For example, as illustrated in Table 6.7, CrossMiner
specifies “conection” as a keyword for the “network” issue, although
it is a misspelled word of “connection”. Moreover, among the
keywords of the “memory” issue, made-up words (e.g., “6gb”,
“300mb”, etc.) are utilized to discuss the issue. In summary, we
present an automatic and effective keywords generation method that
outperforms the traditional method [97].
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6.4.4 Answer to RQ1: Issues Distributions on Different Plat-
forms

To answer RQ1, we conduct experiments on the 20 apps (listed in
Table 6.6). In this section, we employ two apps - Spotify Music
and eBay for illustration. In our dataset, Spotify Music has 178,477
reviews from Google Play, 249,212 reviews from App Store, and
33,143 reviews from Windows Store, while eBay has 142,129
reviews, 20,000 reviews, and 4,485 reviews from these three app
stores, respectively. To reduce the influence of “useless” reviews,
we only analyze the “informative” and “non-informative” reviews
of the two apps. We determine whether a user indeed complains
about a certain issue in his/her review based on two requirements:
1) The review must contain at least one of the keywords for the
corresponding issue; 2) The rating of the review must be less than
three stars to ensure that the reviews are expressing complaints. The
experimental results of Spotify Music and eBay are discussed in the
following.

Case Study on Spotify Music

We focus on studying Spotify Music in this part. After preprocess-
ing, Spotify Music has 154,550 clean reviews from Google Play,
217,535 clean reviews from App Store, and 25,480 clean reviews
from Windows Store. The issue distributions are illustrated in
Fig. 6.3 and Fig. 6.4, visualizing issue percentages and correspond-
ing average ratings, respectively.

Results: Figure 6.3 presents the percentage distribution on the
seven issues for Spotify Music. We discover that the “crash”,
“network” and “memory” issues are the primary concerns of An-
droid users, accounting for 1.429%, 0.867%, and 0.181%, respec-
tively. For the iOS users, they are more concerned about issues
related to “crash” (0.732%), “network” (0.215%), and “battery”
(0.061%). Among Windows Phone users, they complain more
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(a) Google Play. (b) App Store. (c)Windows Store.

Figure 6.3: Percentage distribution on issues of Spotify Music.

(a) Google Play. (b) App Store. (c)Windows Store.

Figure 6.4: Rating distribution on issues of Spotify Music.

about the “crash”, “network”, and “UI” issues, occupying 1.213%,
0.432%, and 0.192%, respectively.

Figure 6.4 depicts the rating distribution of the seven issues.
We identify that the “privacy” (1.08), “crash” (1.35), and “spam”
(1.39) issues represent lower ratings than other issues in Google
Play. Similarly, in App Store, the three issues also correspond to
the lowest ratings, which are 1.09, 1.25, and 1.26, respectively.
However, in Windows Store, the issues with the lowest ratings
become related to “battery”, “memory”, and “crash”, with average
ratings at 1.29, 1.33, and 1.37, respectively.

Discussion: As Figure 6.3 illustrates, Spotify Music users of the
three platforms concern more about issues relevant to “crash” and
“network”. Frequently crash can definitely destroy users’ percep-
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tions and generate unfavorable reviews. Regarding the “network”
issues, since Spotify Music is a music streaming app that provides
digital music service, users may feel uncomfortable or annoyed if
the music downloading is too slow or consumes too much traffic.
Besides the “crash” and “network” issues, for the Android platform,
users also complain about “memory” (0.181%), “battery” (0.127%),
“privacy” (0.125%), “UI” (0.067%), and “spam” (0.027%). With
respect to the iOS platform, 0.061% users convey dissatisfaction
with “battery”, with other issues “UI”, “memory”, “privacy”, and
“spam” accounting for 0.052%, 0.045%, 0.04%, and 0.009%, re-
spectively. For the Windows Phone platform, “UI” (0.192%) are
more concerned by users, followed by “memory” (0.059%), “bat-
tery” (0.125%), “privacy” (0.067%), and “spam” (0.027%).

Overall, the iOS version seems to outperform the Android ver-
sion and Windows Phone version. For example, the percentages of
the “crash” and “network” issues for the iOS version are lower than
those of the other versions. To verify the fact, we also calculate the
average ratings across the three platforms. We discover that the iOS
version receives the highest ratings (4.48), with the Windows Phone
version (4.1) followed after. The Android version only receives 3.90
stars.

Therefore, we suggest that the Spotify Music developers should
focus on testing issues related to “crash” and “network” on the
three platforms, especially weighing more on the Android version.
Moreover, the developers should also design comprehensive testing
cases for the “memory” for the Android version, “battery” for the
iOS version, and “UI” for the Windows Phone version.

To help developers gain an in-depth understanding about one
specific issue, we prioritize reviews associated with the issue based
on the method. Table 6.8 illustrates the top three reviews related to
the “UI” issue in Google Play. As the Table shown, all the reviews
complain about some aspects of “UI” (e.g., “no way to go back”
in review 1, “missing basic and obvious music player features” in
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review 2, and “playing view the artwork is smaller to fit in the
artwork on either side” in review 3). Thus, developers can schedule
the app modification based on the prioritized reviews.

Table 6.8: Top three reviews related to “UI” of Spotify Music in Google Play
Rank User Review Score

1 Seriously bad user experience and interface. Once you’ve liked or
unliked a song, there’s no way to go back even if you’ve made a
mistake. I don’t know why Spotify is so popular with suck poor
graphic design.

0.943

2 Clunky unintuitive interface missing basic and obvious music
player features. You must get the basics right first before trying to
push rubbish the user doesn’t want.

0.914

3 Don’t like the new design, in the now playing view the artwork is
smaller to fit in the artwork on either side. I don’t care what’s on
either end of my current playing track, or at least show it in a way
that doesn’t take up artwork space. The album art is always an
awesome part of the music’s personality so it shouldn’t be min-
imised like this. Also the now playing bar at the bottom of the
screen isn’t flat looking, looks like design from windows XP. Not
happy. An awesome service needs an awesome interface.

0.890

... ... ...

Case Study on eBay

We focus on analyzing the experimental results of eBay in this part.
After preprocessing, the shopping app eBay possesses 122,977 clean
reviews from Google Play, 19,192 clean reviews from App Store,
and 4,207 clean reviews from Windows Store. The percentage and
rating distributions on the seven issues are illustrated in Figure 6.5
and Figure 6.6, respectively.

Results: Figure 6.5 describes the issue percentage distribution of
eBay. As the figure illustrates, Android users are most concerned
about issues related to “network”, “crash”, and “UI”, accounting
for 2.737%, 1.586%, and 0.644%, respectively. While iOS users
complain more about “crash”, “UI”, and “network”, with percent-
ages 2.626%, 1.443%, and 0.245%, respectively. With regarding to
the Window Phone platform, the users also care about the “crash”
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(a) Google Play. (b) App Store. (c)Windows Store.

Figure 6.5: Percentage distribution on issues of eBay

(a) Google Play. (b) App Store. (c)Windows Store.

Figure 6.6: Rating distribution on issues of eBay

(1.925%), “UI” (0.594%), and “network” (0.285%), similar to the
iOS users.

Figure 6.6 depicts the rating distribution on the seven issues. In
Google Play, the “spam”, “privacy”, and “network” issues corre-
spond to the lowest ratings than the others, scored at 1.11, 1.13, and
1.177, respectively. For App Store, the three issues with poorest
ratings are “spam” (1.043), “battery” (1.1), and “privacy” (1.143).
Regarding the Windows Store, the poorly rated issues are “battery”
(1.0), “privacy” (1.0), and “spam” (1.0).

Discussion: As Figure 6.5 illustrates, users of different platforms
all complain more about “crash”, “network” and “UI”. Differences
also exist across the platforms. For example, in Google Play, 1.586%
users express about the “network” issue, much more than other two
platforms. Therefore, the eBay developers are suggested to focus on
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testing the “network” issue for the Android version. As Figure 6.6
depicts, users tend to give poor ratings to the “privacy” and “spam”
issues. In comparison, the Window Phone users are more critical,
since they all rate with the lowest ratings (1.0) for these two issues.

Summary: By these two app-level case studies, we discover that
users of different platforms indeed concern about different issues
of an app. CrossMiner automatically prioritizes the user-concerned
issues. Developers can arrange and design the testing cases for the
important issues on each platform. Moreover, based on the case
studies, we also identify some similarities across the platforms. For
example, users generally concern more about “crash” and “network”
issues.

6.4.5 Answer to RQ2: Evaluation of issue prioritization

If the prioritized issues are consistent with the practical user con-
cerns, the performance of CrossMiner can be verified.

We employ Spotify Music for the performance verification, and
the official user forums as the ground truth [25]. An issue with more
user views indicates that the issue is more concerned by users. Thus,
we obtain the ranks of the seven issues, with an example of Android
forums illustrated in Table 6.9.

Table 6.9: Ranked issues from Android community of Spotify Music
Rank Views User Feedback Issue

1 56416 No internet connection available Network
2 32495 No SD Card storage !! Memory
3 24797 Spotify for Android causing massive battery

drain and heating of phone
Battery

4 11315 Spotify crashes on Android Crash
5 1796 Issues with Android UI context menu touch

area
UI

6 197 Intrusive or what!!!!!! Privacy
7 80 Tired of the push notification spam! Spam

Similarly, we capture the issue rankings from the official iOS
community and Window Phone community. For the iOS version,
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the ranked issues are crash(53683), memory(10797), UI(8439), bat-
tery(6174), connection(4767), spam(1903), and privacy(1558). Re-
garding the Windows Phone version, the issue order is crash(4097),
connection(1362), battery(300), UI(282), memory(229), spam(94),
and privacy(76). We then compare the prioritization results attained
by CrossMiner with the ground truth for these three platforms. The
NDCG@7 scores are utilized for the measurement, with results
described in Table 6.10.

Table 6.10: Performance of issue prioritization
Android iOS Windows Phone

NDGC@7 0.943 0.911 0.982

By examining the results, we discover that CrossMiner achieves
0.943, 0.911, and 0.982, in terms of NDGC@7 for the Android, iOS,
and Windows Phone versions, respectively. The average accuracy
arrives at 0.945, which indicates that CrossMiner prioritizes issues
effectively and reflects the user concerns accurately.

6.4.6 Answer to RQ3: Platform-level advice to developers

In this section, we aim at exploring the platform-level issues.
Figure 6.7 illustrates the issue distributions with respect to the 20
subject apps in Google Play, iOS, and Windows Phone.

Results: As Figure 6.7 depicts, the blue bar indicates the issue
distributions in Google Play, with the orange bar representing the
App Store and the green bar denoting the Window Store. Each bar
in the graph represents the percentage of an issue. We discover that
the top three issues Android users complain most about are “crash”
(1.76%), “network” (0.85%), and “memory” (0.31%). Similarly,
the iOS users also express more about “crash” (4.48%), “network”
(1.05%), and “memory” (0.48%). For the Window Phone users, they
are more concerned about “crash” (2.76%), “network” (0.66%), and
“battery” (0.38%).
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Figure 6.7: Average percentage distributions on issues for different platforms.

Discussion: We identify that users for all the platforms concern
more about the “crash” and “network” issues. In Khalid et al.’s
study [95], “app crashing” and “network problem” are ranked at the
third and fourth position among all the most frequent complaints list
(the top two complaints are “functional error” and “feature request”,
which are excluded from our study), which is compatible with our
findings.

6.4.7 Parameter Study

In our framework, one key problem is to set the number of the
similar words n for each issue. To obtain an optimal solution, we
conduct an experimental study on the parameter settings. We first
determine n for the similar words extraction, and obtain the ultimate
keywords corresponding to each issue. We then define “Cover-rate”
to compute the ratio of the number of keywords to the number of
similar words extracted in the first step. Smaller Cover-rate indicates
that the similar words comprise more unrelated words to the issue.
Figure 6.8 depicts the Cover-rate along with the number of similar
words n.



CHAPTER 6. CROSS PLATFORM ISSUES 128

Figure 6.8: Influence of n on Cover-rate.

Figure 6.8 illustrates that fewer similar words correspond to
relatively high Cover-ratio. However, some keywords will be missed
if n is set too small. On the other hand, larger numbers of similar
words can cover most keywords, but also carry with more unrelated
words. Therefore, we set the number of the similar words n to be 21
due to the higher performance (illustrated in Figure 6.8).

6.5 Discussions

In this section, we discuss the threats to validity of our work and talk
about the steps we take to mitigate these threats.

First of all, the results and conclusions of our work are based on
20 apps from Google Play, App Store, and Window Store, which
is an extremely small dataset compared to all the apps in the three
app stores. To mitigate the threat, we select apps that are popular
among all the app stores and try to diversify their categories. This
indicates that the subject apps are representative and comprehensive
for the experimental study. Massive user reviews also guarantee the
effectiveness of our results.

Second, apart from Android, iOS, and Windows Phone, there
are other mobile operating systems, such as BlackBerry OS and
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Symbian OS. It is unclear that if CrossMiner can attain good results
in other platforms. Considering the three mobile operating systems
have occupied 99.3% of the market, we conclude that the explored
platforms are effective for verifying our proposed framework. Since
we analyze the app issues from user reviews, CrossMiner can also
be generalized to other platforms.

Third, we just analyze seven issues in the chapter, which may not
cover all the app issues. However, since our framework can identify
the keywords related to the issue effectively, other types of issues
can also be analyzed similarly. This also illustrates the scalability
and usability of our framework.

Finally, we are uncertain whether our discoveries can really
facilitate the app testing process for app developers. Through the
experiments, we determine that the same app indeed exhibits differ-
ent distributions of app issues on different platforms. Developers
can prioritize the testing cases accordingly, which are supposed
to improve the efficiency of the testing procedure. Moreover, the
prioritized issues are consistent with the issues reflected on the user
forums. Therefore, we believe that our framework can facilitate the
app development.

6.6 Summary

In this chapter, we propose a novel framework named CrossMiner
to automatically analyze app issues from user reviews by employing
a keyword-based method. We aim at discovering the differences
of issue distributions on three popular app stores, i.e., Google Play,
App Store, and Windows Store. Based on the identified issue dis-
tributions, app developers can design and arrange the testing cases
more efficiently for different platforms. To our best knowledge,
CrossMiner is the first framework proposed to explore app issues
on different platforms from users’ perspective. The experimental
study also verifies that our framework can reflect the user concerns
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accurately.

2 End of chapter.



Chapter 7

Exploring the Effects of In-App Ads
on User Experience

In-app advertising is the primary source of revenue for many mobile
apps. However, ad cost, such as mobile resource occupation and
customer churn, is non-negligible for app developers to ensure
a good user experience and continuous profits. Previous studies
mainly focus on addressing performance costs generated by ads,
or resorting to surveys to collect general factors that impact users’
acceptance of ads. However, users’ detailed concerns about ads, and
their attitude towards ads’ practical performance costs (e.g., memory
costs) have rarely been studied. In this chapter, we prioritize
concrete user concerns about in-app ads by mining massive ad-
related user feedback, and explore user opinions on the performance
costs of ads in practice. The main points of this chapter are as
follows. (1) It proposes a measurement method for evaluating user
concerns about specific app issue. (2) It analyzes ad-related user
feedback and categorizes major ad issues cared by users into five
types of ad issues. (3) It explores whether more performance costs
of ads can generate more user concerns.

131
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7.1 Introduction

In-app advertising is a type of advertisement (ad) within mobile ap-
plications (apps). Many organizations have successfully monetized
their apps with ads and reaped huge profits. For example, the mobile
ad revenue accounted for 76% of Facebook’s total sales in the first
quarter of 2016 [61], and increases 49% year on year to about
$10.14 billion in 2017 [60]. Triggered by such visible profits, mobile
advertising has experienced tremendous growth recently [32]. Many
free apps, which occupy more than 68% of the over two million
apps in Google Play [40], adopt in-app advertising for monetization.
However, the adoption of ads has strong implications for both users
and app developers. For example, almost 50% of users uninstall
apps just because of “intrusive” mobile ads [33], resulting in a heavy
reduction in user volume of the apps. Smaller audiences generate
fewer impressions (i.e., ad displaying) and clicks, thereby making
ad profits harder for developers to earn. To alleviate the conflicts
between users and developers, we conduct an empirical study to
explore the effects of in-app ads on user experience, i.e., what ad-
related issues are concerned by users.

Previous research has been devoted to investigating the hidden
costs of ads, e.g., energy [124], traffic [129], system design [69], and
other factors [74, 166], among which user surveys are commonly
employed to understand users’ perceptions of mobile advertising,
e.g., interactivity [199], perceived usefulness [168], and credibil-
ity [55]. Nevertheless, there is still a lack of systematic studies
on exploring users’ attitude towards in-app ads in practice, that is,
whether and what users care about the displaying ads and generated
performance costs during their interactions with apps. There are
several challenges to this study. First, collecting massive user
feedback that reflects ad-related issues by survey is intractable, since
tremendous manual work will be required, e.g., distributing ques-
tionnaires. Also, designing comprehensive questionnaires normally
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requires a deep understanding of ad issues. Second, users’ concerns
about ad costs are difficult to be quantified, where user behaviors
(such as app downloading and rating apps) should be well involved.
Moreover, measuring the performance costs solely incurred by ads
are difficult practically due to diverse usage patterns (e.g., different
ad viewing durations).

In this chapter, we try to overcome these challenges and focus on
answering the following three questions.

a) Can ads adversely impact user behaviors towards apps? This
is to investigate whether ads can reduce download times and cause
lower user ratings.

b) What are the top ad issues concerned by users? We aim
at prioritizing app issues produced by ads, and providing concrete
suggestions on displaying ads in a user-friendly fashion.

c) How can the performance costs of ads affect user opinions? We
concentrate on the performance-related cost (i.e., consumption of
CPU, memory, battery, and data traffic), which is intensively studied
by previous work. We explore whether users express more care for
more performance costs.

To answer the first question, we conduct a statistical analysis on
4,355 popular apps and another 22,327 general apps provided by
PlayDrone [184]. All the apps were crawled from Google Play
in May, 2018. We discover that for both popular free apps and
general free apps, there exist a significant difference between apps
containing ads and apps without ads regarding user ratings and the
number of user ratings1.

During answering the second question, we focus on mining ad-
related reviews and manually categorize the ad issues complained
by users into five types. To facilitate developers’ understanding
of the importance and contents of these issue types, we design an
interactive and direct visualization way to display the ad issues.

1We use number of user ratings as an indication of download times due to the lack of such data
on Google Play.
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For answering the last question, we collect the usage traces
of 17 volunteer users on 20 Android apps containing ads. We
focus on measuring four types of performance costs, including
memory consumption, CPU utilization, network usage2, and battery
drainage. The recorded usage traces are then replayed multiple times
for simulating real usage scenarios and accurate cost measurement,
resulting in the collection of 2,040 measurements for those apps.
To quantify users’ concerns about performance costs, we analyze
34,455 user reviews corresponding to the 20 subject apps from
Google Play. Based on the quantified cost values and corresponding
user concerns, we adopt a comprehensive correlation analysis to in-
vestigate how the performance costs of ads can affect user opinions.

Our study results in several interesting findings:

• Rating alone is not enough to understand users’ reaction to in-
app ads.

• Irrelevant content is the most common complaint from users
about ads, e.g., spam ads and phishing ads.

• Some actions, such as shortening compulsory video ads, avoid-
ing pop-up ads, and choosing appropriate sizes, can mitigate
users’ aversion to ads.

• Users are more concerned about the battery costs of ads, and
tend to be insensitive to other performance cost types (i.e.,
CPU, memory, and data traffic).

The key contributions of this chapter are as follows.
(a) We propose a novel method for automatically prioritizing

users’ concerns towards ads from user reviews, by involving user
sentiment and feedback volume. We visualize user-concerned ad

2Network usage is included here since it can impact mobile performance [182].
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issues in an interactive and directly-perceived form for facilitating
developers’ observation.

(b) We provide detailed findings and insights captured from
extensive analysis on user feedback, which would be referred by
app developers when designing ads.

(c) This is the first work to explore the correlations between user
concerns and the practical performance costs of ads, from which we
deduce whether these costs can influence user opinions.

(d) We conduct survey on app developers to gain deep knowledge
of users’ concerns about in-app ads and whether our findings are
beneficial for developers, respectively.

(e) The source code for cost measurement and user review
analysis used in our study has been made publicly available3 for
allowing developers and researchers to use the code for their own
purposes.

7.2 Methodology

Figure 7.1 presents an overview of the methodology used during our
exploration about in-app ads. First, we conduct statistical analysis
on 4,355 popular apps and 22,327 general apps crawled from Google
Play. The two categories of collections have 1,084 overlapping
apps. We analyze whether in-app ads can influence user ratings and
number of user ratings for free apps. We will elaborate the datasets
and our findings in the experimental section.

Then to identify the top ad issues concerned by users, we extract
those reviews describing mobile ads. To this end, we retrieve the
terms (including phrases and single words) that frequently co-occur
with “ads”. Based on sentiment analysis, we propose an approach
for quantifying user concerns about each ad issue. The details will
be illustrated in Section 7.2.1, with the visualization manner of the
captured ad issues depicted in Section 7.2.1.

3https://remine-lab.github.io/adbetter.html
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Finally, we analyze users’ attitude towards the performance costs
of ads, focusing on the consumption of CPU, memory, battery,
and data traffic. Similar to [74], the measurement of performance
costs in our work is also implemented on instrumented mobile
phones. We start by installing the subject apps into the instrumented
phones. The measuring strategies of different types of performance
costs are explained in Section 7.2.2. The usage patterns of users
using the subject apps are collected for practical cost measurement
(will be introduced in Section 7.3.3). For gauging user concerns
of these performance costs, we employ the similar approach for
quantifying users’ attitudes towards ad issues (Section 7.2.3). Based
on the measured user concerns and performance costs in practice, we
conduct correlation analysis to determine whether users care about
performance costs (Section 7.2.4).
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Figure 7.1: Workflow of our study.

7.2.1 Top Ad Issues in User Reviews

In this section, we explore how to capture top ad issues and quantify
users’ complaints about these issues.
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The pipeline of our review analysis is depicted in Figure 7.1.
First, we preprocess raw app reviews to obtain structured reviews
(Section 7.2.1). We extract the reviews that are explicitly related to
ads, i.e., reviews containing words such as “ad”, “ads”, or “advert*”
(with regular expression). These reviews are referred to as ad-
related reviews throughout this chapter. Then we retrieve key
phrases (i.e., more than one word) that are commonly used in user
reviews as phrase candidates (Section 7.2.1). We identify the terms
(including phrases and single words) that are commonly adopted to
describe mobile ads in an unsupervised way. The identified terms are
the descriptions of ad issues. We manually categorize the ad issues
into five types, and group review sentences according to the issue
types (Section 7.2.1). Then, we present our methods for measuring
users’ concerns about different issue types based on sentiment
analysis and their proportions among user feedback (Section 7.2.1).
Finally, to assist developers in understanding these ad issues, we
visualize their importance in an intuitive way (Section 7.2.1).

Preprocessing

App reviews are usually short in length and contain many casual
words. To facilitate subsequent analysis, we eliminate the noisy
characters in this step. We first convert all words into lowercase, and
remove all non-English characters and non-alpha-numeric symbols.
We retain the punctuations to ensure semantic integrity. Then, we
reduce the words to their root forms by lemmatization [17], e.g.,
“was” to “be”. Finally, we keep reviews with the number of words
larger than three. We do not remove stop words [136] here for
phrase retrieval in the next step. Since app reviews contain growing
compound words (e.g., redownload), new words (e.g., galaxys8),
and misspelled words (e.g., updte [update]), we do not involve the
preprocessing methods in [186] where the custom dictionary may
introduce information loss (e.g., over correction) for our situation.
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Phrase Retrieval

Phrase retrieval aims to identify the key terms (particularly those
with multiple words) that are commonly used by users to voice their
experience. The phrases are extracted here since one single word
may be ambiguous in its semantic meanings without the context
information.

However, given that user reviews are casually written, extracting
the meaningful phrases poses a challenge. In this chapter, we adopt
the typical Point-wise Mutual Information (PMI) method [104]. The
PMI method measures the co-occurrence probabilities of two words,
and thereby can eliminate terms which are rarely used. The phrases
we retrieve contain 2-gram terms (i.e., two consecutive words) and
3-gram terms (i.e., three consecutive words). Since phrases with
more than three words rarely exist in the review collection, they
are not extracted here. Equation (7.1) defines the PMI between two
words w1 and w2:

PMI(w1, w2) = log
Pr(w1 w2)

Pr(w1)Pr(w2)
, (7.1)

where Pr(w1 w2) and Pr(wi) denote the occurrence probabilities of
the phrase (w1 w2) and the single word wi, respectively. The terms
with higher PMIs indicate that they appear together more frequently
and tend to be semantically meaningful. The PMI thresholds are
experimentally set. Based on the PMI results, we also ensure that
at least one noun is included in each phrase via the Part-Of-Speech
tagging method [171].

Ad Issue Extraction

Automatically clustering ad issues from ad-related reviews is dif-
ficult. Because it would not be easy to predefine the number of
clusters and explain the topics of each cluster for unsupervised
clustering methods, such as k-means [186] and topic modeling [52]
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methods [35, 54]. We propose to employ a simple method based on
the neural network model word2vec [121] to discover similar words
and phrases. The model represents input terms as low-dimensional
(e.g., 200) dense vectors by capturing their semantic relations. The
model is effective in retrieving similar words, where the semantic
similarity between two terms can be computed as the cosine distance
of their vector representations. We retrieve k (e.g., 50) terms most
similar to the words “ad” or “ads” using the model, e.g., “banner ad”
and “ popups”. Then we manually trim the noise words and phrases
(e.g., “gimmick” and “commercial”), and cluster the remained terms
(called ad-related terms) into w types, i.e., {I1, I2, ..., Ii, ..., Iw}.
The box below shows the terms for the ad size type. The review
sentences containing any terms in the dictionary Ii will be grouped
into the issue type Ii.

Ad Size: fullscreen ad, banner ads, full screen ad, banner ad.

Ad Issue Grading

In this section, we explain the novel method we propose for measur-
ing users’ concerns about specific ad issues, e.g., the ad size. Similar
to previous work [52, 190], we assume that issues complained about
in more reviews and yielding poorer ratings indicate higher concern
levels among users. The time information (used by [52]) of the
issues is not considered here, since we do not care about whether
one issue is fresher than others.

Sentiment Score: We have obtained the reviews related to each
type of ad issues discovered in Section 7.2.1. Since one piece of
review may describe several app aspects with diverse sentiment, e.g.,
one user of br.com.ctncardoso.ctncar commented that “Good design
and easy use. Free version includes too much advertising. You need
to setup regular payment to get pro version which is ridiculous.”, the
users’ attitude towards in-app ads should be assessed per sentence.
In our study, we chunk the reviews into sentences by utilizing
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NLTK’s punkt tokenizer [22]. Inspired by Guzman and Maalej’s
work [76], we employ SentiStrengh [175], a lexical sentiment
extraction tool specialized in dealing with short, low-quality texts,
for the sentiment analysis. Although Gu and Kim’s study [72]
improve the performance of aspect sentiment analysis in [76], we
choose to use the approach proposed by Guzman and Maalej here
for the efficient implementation.

SentiStrength assigns a positive and negative value to each review
sentence, with positive scores in the range of [+1, +5], where +5
denotes an extremely positive sentiment and +1 denotes the absence
of sentiment. Similarly, negative sentiments with the range [-5, -1],
where -5 denotes an extremely negative sentiment and -1 indicates
the absence of any negative sentiment. Table 7.1 displays examples
of SentiStrength scores for review sentences. If the negative score
multiplied by 1.5 is larger than the positive score, the sentence is
assigned the negative score. Otherwise, the final sentiment score
is defined as the positive score. As explained in [76], multiplying
the negative scores by 1.5 is considered due to users tend to write
positive reviews [90]. The sentiment score of issue type Ii in the
m-th app is the average sentiment scores of all the contained review
sentences, indicated as Ri

m, where m indicates the m-th app.
Frequency Score: The number of the reviews for issue type Ii in

the m-th app can then be calculated, denoted as N i
m.

Concern Score: The final concern score is defined in Equa-
tion (7.2), for measuring the user concern U i

m by combining the two
factors.

U i
m = − log f(Ri

m)× P i
m, (7.2)

where P i
m = N i

m/Ni, representing the percentage of the Ii-related
reviews in the m-th app reviews. The function f(Ri

m) is to confine
the rating Ri

m to be in the range (0, 1), which is empirically defined
as the soft division function, i.e., (Ri

m−0.9)/5. Equation (7.2) shows
that issues with lower user ratings and larger review percentages will



CHAPTER 7. IN-APP ADS 141

Table 7.1: Example of SentiStrength scores and defined sentiment scores for
example review sentences.

Review Sentence SentiStrength
Score

Defined
Sentiment
Score

Great but why make a browser if you
don’t have the resource to keep it up to
date? the last update be april, it needs
update.

[3,-1] 3

Would be 5 stars if i could pay and
remove all the ads.

[1,-1] -1

I like what it does but the additional
stuff is annoying, eg loud video advert
is disturbing.

[2,-3] -3

be given higher user concern values, which is consistent with our
assumption.

Ad Issue Visualization

To better illustrate the ad issues, we visualize them into a bubble
graph. Each issue corresponds to a bubble, and the distance between
the two bubble centers represent the cosine distance of their vector
representations under word2vec. We use bubble sizes to denote
the quantified user concerns regarding the issues, as shown in
Figure 7.3. Issues with similar colors belong to the same issue types.
Larger bubbles indicate that the represented issues are more cared
about by users. The implementation of such visualization is based
on gensim [153] and Google Chart [68]. To get the details of each
issue, one can click the bubble to view the corresponding concern
degree and other information.

7.2.2 Performance Cost Measurement

In this part, we elaborate on the measurement methods for each type
of performance costs, including the consumption of memory, CPU,
network, and battery. For precise estimation, we measure those costs
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of both with-ads and no-ads versions of each app, denoted asCg
m and

C̃g
m respectively, where g ∈ {memory, CPU, network, battery},

and m is the app id for the subject apps. The costs of ads Ag
m are

then calculated by Equation (7.3):

Ag
m = Cg

m − C̃g
m. (7.3)

Two mobile devices are used for measuring the performance
costs of ads, including a Nexus 5 smartphone with a rooted Android
5.0.1 operating system, and a Nexus 6P smartphone with a rooted
Android 6.0.1 operating system. Both phones are instrumented with
Xposed. Below we introduce how we generate no-ads versions of
subject apps, how we collect actual usage traces for cost measure-
ment, and also the measurement methods.

Generation of No-Ads Versions

The no-ads versions of the subject apps are generated for measuring
the performance costs of ads, as shown in Equation (7.3). For no-ads
versions, we activate the module AdBlocker Reborn [34] pro-
vided by Xposed [194]. The module removes in-app ads according
to a pre-loaded list of ad-related activities (e.g., “com.google.android
.gms.ads.AdView” for AdMob) and layouts (e.g., “android.webkit.-
WebView”). To check whether the ads have been successfully
removed, we ensure that there are no ad-related requests from the
no-ads versions with tcpdump [174]. Also, we ensure that the
app structures, including the layout and functionality, are same as
the original apps. Note that the module AdBlocker Reborn
introduces negligible influences to the mobile performance, meaning
that we can calculate the ad costs directly by subtracting the costs of
the no-ads versions from those of the with-ads versions.
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Collection of Usage Traces

To measure the practical ad costs, we collect the usage traces of
subjects apps from volunteer users and on the instrumented phones
without the AdBlocker Reborn module activated. We invite the
users to exercise the functionalities of the subjects according to their
own usage habits. Also, only one subject app is interacted with at
one time to avoid interference from other apps. Each app is closed
after use. For each volunteer, we introduce our rule (e.g., one app at
one time) and the functionalities of each app at the beginning. We
have no limitations to their interaction duration with apps. The usage
traces are collected in a safe and casual way using the getevent
tool [66].

Measurement of Costs

We measure the performance costs generated by each usage trace as
below.

Memory Consumption: We measure the memory consumption
by employing a standard tool top [39] in Android, and with
the metric Resident Set Size (RSS). RSS indicates the portion of
memory occupied by a process in the main memory (RAM). The
process name of each subject app can be obtained via appt [38],
an Android asset package tool. We run the top tool in one second
interval, and compute the average value for analysis.

CPU Utilization: Ad display involves additional loading and
processing of images or videos, which may incur high CPU usage.
High CPU usage may cause performance lags. We again leverage
the tool top to monitor the CPU occupancy rate of a process per
second. The average CPU utilization is calculated for our analysis.

Network Usage: We measure this type of cost based on the total
bytes transmitted. The metric is estimated by adopting a common
tool tcpdump. It starts when the app is launched, and captures all
the data transmitted during the app runtime.
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Battery Drainage: Since using external devices, such as Mon-
soon Power Monitor [125], cannot measure the power consumed by
an app, we determine to adopt an available measurement framework
AppScope [198]. AppScope shows an error rate lower than
7.5% in estimating battery costs. The framework provides the
battery usage measurement based on five components, including
CPU, LCD, WiFi, cellular and GPS. To simplify our measurement
process, we switch off GPS and cellular signals and consistently set
the LCD settings. We, therefore, ignore these components and focus
only on measuring the power consumption of CPU and WiFi, i.e.,
PCPU and PWiFi. The total battery consumption P is calculated via
Equation (7.4).

P = PWiFi + PCPU , (7.4)

which combines the battery drainage of both WiFi and CPU, and
PWiFi and PCPU are calculated via AppScope.

The measurement methods we used for memory, CPU and net-
work were also employed by [74]. Based on the collected usage
traces, we leverage the tool RERAN [67] to replay these events,
during which we record the performance-related data. To mitigate
background noise, we restore the system environment to its original
state before each version execution. Then we install the app and
start its execution. When a subject app is launched, the tools
tcpdump and top are started to capture the transmitted data traffic
and memory/CPU consumption, respectively. We also monitor the
app execution to ensure that they are consistent with the records. We
run each of the usage traces three times for both the with-ads and
no-ads versions in order to measure the costs and take the average to
minimize measuring errors.
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7.2.3 Performance Issue Quantification

In this part, we illustrate the procedures for quantifying user con-
cerns about the studied performance issues. We measure users’
attitudes towards the performance costs of both the with-ads apps
and in-app ads, denoted as U g

m and Agm respectively, where g ∈
{memory, CPU, network, battery}, and m is the app id for the
subject apps.

Cost-Related Dictionary Construction

Similar to ad issue extraction explained in Section 7.2.1, we employ
word2vec model to capture top k terms (including phrases and
single words) that are semantically close to the target cost type.
For example, to build the battery-related dictionary, we collect
the terms most relevant to the word “battery”. We then manually
remove ambiguous and noise ones from the collected terms, such
as the terms “data volume” and “data plan” in the box below
this paragraph. The remaining terms constitute the battery-related
dictionary. We note that misspelled words (e.g., “batery”) can also
be captured through word2vec. The ultimate dictionaries are utilized
to group review sentences into different performance costs in the
next step.

Battery-related dictionary: battery life, data volume, batery, battery power,
data plan, battery juice, ...

Sentence Grouping

Let s be one review sentence and g be one cost type, where g ∈
{memory, CPU,
network, battery}. The method for grouping sentences is illus-
trated in Equation (7.5).

Ps,g =
|Dictg

⋂
Sents|

|Sents|
, (7.5)



CHAPTER 7. IN-APP ADS 146

where Sents and Dictg denote the terms in sentence s and in the
dictionary related to the cost type g, respectively. | · | is the number
of terms in the collection ·. Similar to Di Sorbo et al. [167], Ps,g is
greater than 0.05 for avoiding mis-grouping. Also, one sentence can
be assigned to one or more performance cost types.

Performance Issue Grading

In order to grade performance issues, we adopt a method similar
to the one we proposed for ad issue grading in Section 7.2.1. The
number and average sentiment score of the reviews for cost type g in
the m-th app can be calculated, denoted as N g

m and Rg
m respectively.

Equation (7.6) measures the user concern U g
m by combining the two

factors.

U g
m = − log f(Rg

m)× P g
m, (7.6)

where P g
m = N g

m/Nm, representing the percentage of the g-related
reviews in the m-th app reviews. The function f(Rg

m) is to limit the
rating Rg

m to be within the range (0, 1), which is empirically defined
as the soft division function, i.e., (Rg

m − 0.9)/5.
To capture users’ concerns about the performance costs of ads,

we group the ad-related reviews to different cost types via the
method in Section 7.2.3. However, directly employing the grouping
method may not correctly distinguish whether costs are caused by
ads or not. For example, we cluster the review in the box below
as one memory-related review via the method (due to the memory-
related terms “memory” and “storage”), but for the user, the memory
issue is not related to ads. Therefore, such reviews cannot be
grouped into the memory costs of ads. To identify whether the
performance costs are caused by ads, we analyze the reviews from
the sentence level and focus on the ad-related sentences. In the
review example, the second sentence is ad-related (due to the word
“ads”) and has no terms related to performance costs, and thereby we
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will not group the review into any cost types of ads. Based on the
grouped ad-related reviews, the calculation of user concerns about
the performance costs of ads Agm is similar to Equation (7.2).

Agm = − log f(Rg
m)× Pgm, (7.7)

where Rg
m and Pgm denote the average rating and proportion of the

ad-related reviews under the cost type g respectively. U g
m and Agm

measure the user concerns about apps and in-app ads respectively.

Memory-related review: “I’m not the only one who has problems with memory
storage. Also, less ads if possible.”

For each performance cost type g, we implement the correlation
analysis on the two observations {Ag

1, A
g
2, ..., A

g
n} and {Ag1,A

g
2, ...,Agn}.

7.2.4 Correlation Analysis

In this part, we detect how the performance costs of ads can
affect user opinions by investigating the correlations between the
measured performance costs {Ag

1, A
g
2, ..., A

g
n} and corresponding

user concerns {Ag1,A
g
2, ...,Agn} on the n subject apps, where g ∈

{memory, CPU, network, battery}. To comprehensively analyze
the correlations, we employ the Pearson correlation coefficient
(PCC) [144] for detecting a linear correlation between two variables,
and Spearman rank correlation (SRC) [169] for measuring their
monotonic relationship in ranking. The results of PCC rp and SRC
rs range from -1 to 1, with higher absolute values signifying stronger
correlations. The signs of rp and rs indicate a positive correlation or
negative correlation. Larger absolute values of rp and rs signifies
that the relationship is much stronger (e.g., r ∈ [0.6, 0.8) means a
strong relationship, and within the scope of r ∈ [0.4, 0.6) implies a
moderate relationship) [59]. The results with p-value≤ 0.05 indicate
that the correlations can be considered statistically significant [138].
For example, for PCC, p-value≤ 0.05 means that the two variables
have a strongly linear relationship.
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7.3 Experiments

In this section, we describe the extensive experiments we conduct to
answer the three research questions introduced in the Introduction
part, including whether ads can impact user ratings (see 7.3.1), the
top ad issues concerned by users (see 7.3.2), and user opinions about
the performance costs of ads (see 7.3.3).

7.3.1 RQ1: Do in-app ads negatively impact user ratings?

To answer this question we analyze if the rating of apps containing
ads is generally lower than the rating of those apps containing no
ads. If so, this may provide developers with an initial alarming
indication of the impact of ads in their apps. Otherwise more
sophisticated approaches are needed to sought users’ reaction to
in-app ads. In the following subsections we first describe the
experimental data we used and then illustrate the analysis of our
results.

Dataset of popular apps and general apps

In order to investigate the relationship between in-app ads and user
ratings/number of users we collect information about two sets of
apps (popular apps and general apps) available from the Google
Play Store, thus mitigating the app sampling problem [115]. For
collecting information on popular apps, we took a snapshot of the
4,355 popular apps available in the 45 categories of Google Play
on May 24th, 2018. For collecting general apps, we utilize the app
ids provided by PlayDrone [184], a public collection of Android
apps and metadata, as input of our customized crawler. PlayDrone
offers 1,402,894 app ids in total. Due to existing deprecated apps
and time limit, we captured the updated details of 22,327 general
apps across 48 categories in May 2018. Table 7.2 and Table 7.3 list
the number of apps in each category of popular apps and general
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Table 7.2: Distributions of Experimental Popular Apps on Google Play.
Category #Apps Category #Apps
Productivity 45 Arcade 36
Entertainment 180 Personalization 233
Food & Drink 111 Health & Fitness 148
News & Magazines 15 Beauty 63
Libraries & Demo 100 Educational 8
Music & Audio 157 Dating 553
Racing 10 Events 10
Travel & Local 53 Photography 224
Parenting 90 Adventure 46
Maps & Navigation 143 Books & Reference 93
Casual 30 Tools 208
House & Home 75 Weather 16
Video Players & Editors 152 Puzzle 20
Communication 23 Business 146
Education 27 Finance 7
Strategy 2 Shopping 24
Action 55 Social 128
Casino 2 Medical 1,051
Comics 97 Art & Design 47
Lifestyle 130 Sports 9
Word 2 Card 2
Auto & Vehicles 111 Simulation 10
Puzzle 20 Music 6

apps, respectively. The two sets have 1,084 overlapping apps. The
information collected include app name, user rating, category, price,
number of user ratings, containing ads or not, and whether offering
in-app purchase. No information about developers and users were
collected.

Do in-app ads impact user ratings?

As users may express different feelings for ads in free apps and
those in paid apps, we analyze the relationships between ads and
user ratings for these two types of apps separately. Table 7.4
depicts the distributions of experimental popular apps. We can
observe that apps with ads account for the largest proportions among
both popular and general apps, which reflect the importance of
our explorations on in-app ads. Due to the limited the number
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Table 7.3: Distributions of Experimental General Apps on Google Play.
Category #Apps Category #Apps
Educational 334 Productivity 691
News & Magazines 481 Entertainment 1,327
Libraries & Demo 50 Sports 749
Food & Drink 78 Music 55
Board 175 Word 203
Trivia 155 Racing 646
Events 4 Art & Design 17
Dating 17 Shopping 353
Arcade 970 Business 274
Photography 677 Parenting 29
Adventure 205 Maps & Navigation 286
Music & Audio 742 Card 319
Auto & Vehicles 36 Lifestyle 798
Travel & Local 469 Role Playing 184
Comics 73 Medical 139
Casino 207 Simulation 437
Social 356 Action 489
Health & Fitness 423 Strategy 237
Finance 494 House & Home 42
Beauty 13 Communication 574
Puzzle 1,155 Video Players & Editors 328
Weather 198 Personalization 1,418
Education 916 Tools 1,858
Casual 1,852 Books & Reference 794
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of paid apps collected, we focus our subsequent analysis on free
apps. Specifically, we use the Wilcoxon rank-sum test [193] to
compare the distributions of user ratings of different app groups,
i.e., free apps with ads (Group A) and free apps without ads (Group
B). The Wilcoxon rank-sum test is an unpaired, non-parametric
statistical test checking the null hypothesis “two input distributions
are identical”. If the p-value computed by Wilcoxon rank-sum test is
smaller than 0.05, we reject the null hypothesis and conclude that the
two input distributions are significantly different. On the other hand,
if the p-value is larger than 0.05, we cannot claim any difference
between the two input distributions. We use an unpaired test because
an app cannot have a version with ads and a version without ads on
Google Play meanwhile.

In addition, we consider a non-parametric effect size measure,
namely the Vargha and Delaney’s A12 statistic [183], to assess
whether the effect size is worthy of interest. The A12 measure
is agnostic to the underlying distribution of the data, and thereby
applicable for our situation. We use the following thresholds for
interpreting, according to [183]:

Effect Size =


negligible, if A12 ≤ 0.56.

small, if 0.56 < A12 ≤ 0.64.

medium, if 0.64 < A12 ≤ 0.71.

large, if 0.71 < A12.

Figure 7.2 (a) illustrates the user rating distributions in different
groups of popular apps. The Wilcoxon rank-sum test shows that
the two distributions are significantly different (with p-value=1.52e-
21�0.05), however with a small A12 value at 0.58. Figure 7.2 (b)
displays the user rating distributions in different groups of general
apps. The Wilcoxon rank-sum test shows that the two distributions
are significantly different, but with a negligible effect size (A12 =
0.47).
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These results suggest that free popular apps with ads present
slightly better user ratings than those apps without ads, but the
difference is small. On the other hand, free general apps with ads
obtain slightly lower user ratings than those apps without ads, but
the difference is negligible.

Based on these results, we conjecture that free popular apps
containing ads tend to be designed with more friendly app func-
tionalities for attracting users to use, and thereby receive higher user
ratings. On the other hand for some general apps, developers may
not devote lots of effort into creating them, and inserting annoying
ads into apps, and therefore these apps get slightly more negative
ratings. Our results are in line with a previous study by [158] that
explored whether the number of ad libraries impacts app ratings and
find no correlations between the number of ad libraries in a given
app is related to its rating in the app store.

Our analysis has revealed that in-app ads do not always lead
to poor user ratings yet previous work show that they affect users
reactions [95]. This simple sanity check has confirmed that apps’
rating alone might not be enough to understand users’ reaction to
in-app ads. Thus, it is important to find other ways to explore users’
opinion about in-app ads in order to help developers understand ads’
impact, design user-friendly ads and ensure a good user experience.
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Figure 7.2: Rating distributions in different app groups. Group A and Group B
indicates free apps with ads and free apps without ads, respectively.
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Table 7.4: Distributions of Experimental Popular and General Apps on Google
Play.

Group
Popular Apps General Apps

With Ads Without Ads With Ads Without Ads
Free Apps 2,172 1,688 16,214 5,840
Paid Apps 10 485 31 242

7.3.2 RQ2: What are the top ad issues concerned by users?

In this section, we aim to detect what users really care about
with respect to in-app ads. To answer this question, we focus
on 19,579 ad-related reviews mined from our review collection by
utilizing the method in Section 7.2.1. The review collection contains
2,637,438 Google Play reviews used in [112]. We then identify 22
ad-related terms based on the method proposed in Section 7.2.1.
These terms are descriptions of ad-related issues. We evaluate users’
concerns about each issue based on the proposed grading strategy
in Section 7.2.1, and visualize them in Figure 7.3. We manually
classify the ad issues into five issue types according to their semantic
meanings and illustrate different types with different colors. Larger
bubbles indicate that the corresponding issues are of more concern
to users.

In this part, we elaborate on the five types of ad issues by
combining user reviews with the feedback from volunteer users, as
some volunteers also complain to us about the badly-designed in-
app ads during their interactions with subject apps.

Ad Content

Based on the review analysis, we discover that ad contents receive
the highest concerns (64.0%) from users (shown in Figure 7.3), e.g.,
reviews with “spam” occupy 59.9% of the ad review collection.
This indicates that ads with junk or unwanted information are
likely to receive unfavorable user feedback. For example, users
complain about “Annoy ad and notification spam.” for the app
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Figure 7.3: Visualization of ad issues.

com.myfitnesspal.android, and “Spam bogus ad is annoying.” for
the app com.droid27.transparentclockweather. When users are
frequently shown irrelevant ads, they tend to uninstall the apps.
During our experiments, two volunteers clearly describe the contents
delivered by in-app ads as not what they want, saying they would
uninstall such apps immediately. Also, according to the study [130],
ad displaying without considering the content of the page or user
preference is one key reason for reduced users’ dwell time on ads,
and declining developers’ ad benefits. For example, displaying gam-
bling ads in a bible app is not uncommon for users. Thus, developers
should choose ad SDKs with good performance in recommending
relevant ads.

Insight 1: App developers should choose ad SDKs with good perfor-
mance in recommending relevant ads to users.

Appearance Style

The appearance styles of ads, such as popping up, significantly in-
fluence users’ acceptance of ads. Annoyed users may post negative
reviews with terms, such as “ad pop up”, “pop up ad”, and “popups”,
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which account for 14.7% of all ad issues. For example, one user
complains that “The same reviews repeat all the time, especially
the pop-up ad is very annoying.” (bbc.mobile.news.ww). Such
ads can interfere with the user experience of the apps, since pop-
up ads may interrupt users’ interactions with apps and generate
inadvertent clicks on the ads. This is reflected in that “click bait”,
whose main purpose is to attract users to click and visit particular
web pages, is close to the issue of “popups” in Figure 7.3. During
the experiments, four participants state that the pop-up ads usually
appear near the buttons and are prone to being clicked (e.g., for the
app com.avg.cleaner). One person also states that it is irritating
when ads with sizes larger than banners pop up in the center of the
screen (e.g., com.wunderground.android.weather). Thus, developers
should avoid embedding pop-up ads into apps.

Insight 2: App developers should avoid pop-up ads in the apps and place
the ads away from the gadgets (e.g., buttons) that are inclined to be clicked
by users.

Ad Size

Generally, developers are required to define the ad display sizes,
mainly including full-screen ads (i.e., interstitials) and banner ads
(i.e., banners). As Figure 7.3 depicts, the issues related to ad sizes,
represented as red bubbles, occupy a certain proportion of all the
ad-related issues (3.7%). The negative reviews about ad sizes are
usually described with terms like “banner ad” and “full screen ad”.
We also discover that the “full screen ad” is more concerned by
users than “banner ads” (0.7% more), which implies that full screen
ads are more disruptive to users. During the experiments, two
respondents also complained that the interstitials with unobservable
closing buttons are less enjoyed by users. Such annoying settings
may provoke users to uninstall the apps. Hence, developers should
choose ads with appropriate sizes and visible closing symbols.
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Insight 3: App developers should avoid full-screen ads during the app
usage, and provide distinguishing closing symbols in both banners and
interstitials.

Ad Timing

Ad timing refers to a particular ad display time that users cannot
skip. This kind of ad issues mainly occurs with video ads and
occupies 3.0% of all ad issues. Users are compelled to view ads
at the beginning or end of an activity without any skipping choices,
which may cause discontents in users. Annoyed users may express
this with “unskippable”, “30 second ads”, “15 second ad” and other
terms with time settings in reviews. For example, one review
mentions “A 15 seconds ad play before any video content which is
really annoying.” (bbc.mobile.news.ww). During the experiments,
two participants complain that the 15-second ads before watching
news are very disturbing. Moreover, these ads are not skippable,
reflected in the reviews like “The ad is most annoying as they are
repetitive and there is no way to skip them.” (bbc.mobile.news.ww)
and “Shouldn’t force to watch the same 30 seconds ad over and
over without option to skip ads.” (con.foxnews.android). Thus,
developers should display short video ads in apps and provide users
with skip permissions.

Insight 4: App developers should shorten the compulsory video ads and
provide clear skipping or closing options for users.

Obstruction

The previous work [181] shows that almost 50% of users uninstall
apps just because of intrusive advertising. In Figure 7.3, the
characteristics of such obstruction are reflected in terms such as
“intrusive ad”, “obtrusive”, and “obnoxious ad”. This type of ad
issues occupies a large proportion (14.7%) of all the ad issues.
As Figure 7.3 shows, terms related to “obstruction” are close to
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those related to the appearance style of ads (“popups”), ad contents
(“spam”), ad timing (“30 second ads”), and ad sizes (“full screen
ad”). This indicates that all the ad issues above are correlated
with the “obstruction” feature of ads. Developers should therefore
pay much attention to ad design and provide user-friendly mobile
advertising that does not interfere with the user experience.

7.3.3 RQ3: How can the performance costs of ads affect user
opinions?

To answer this question, we conduct a correlation analysis on the
measured performance costs of ads and corresponding user con-
cerns. In this section, we first detail the subject apps and collected
usage tracts. We then present and discuss the measuring results of
the performance costs generated by ads. We illustrate the quantified
concern levels from users for the performance costs of ads for the
20 subject apps. Finally, we exhibit the correlation analysis results
of the two factors.

Dataset of Subject Apps for Performance Cost Analysis

In our study, we select 20 popular apps from Google Play as the
subjects based on the following four criteria: (1) they are selected
from different categories - to ensure the generalization of our results;
(2) they are apps containing ads; (3) they have a large number of
reviews - indicating that user feedback can be sufficiently reflected
in the reviews; and (4) they can be convertible to no-ads versions -
for measuring the costs caused by ads.

To collect apps that satisfy the first criterion, we randomly
search the top 20 apps in each of the categories (except games
and family apps) on Google Play. Since Google Play provides the
number of reviews and declaration about ads, we extract apps with
more than 10,000 reviews and with ads contained. To satisfy the
last criterion, we convert these apps to no-ads versions based on
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Xposed [194] in a random order and then inspect whether the ads
had been successfully removed. Finally, we choose 20 subjects for
our experiment analysis. Their details are illustrated in Table 7.5.

In Table 7.5, we list the category, app name, package name,
version, number of reviews and overall rating for each subject
app. The subject apps belong to four different categories. We
crawl total 34,455 reviews published from December, 2016 to April,
2017 for the 20 apps. The reviews are large enough for review
analysis [52], which can effectively capture the user experience.
Moreover, since the word2vec model used in Section 7.2.3 usually
requires large datasets to achieve better performance [121], we also
collect 4,007,628 reviews from other apps to enrich the training data
of word2vec. The trained word2vec model can be found in our public
repository [178].

Usage Trace

We introduce the selection of volunteer users and collected usage
traces in this subsection.

Volunteer Users: For rendering the viewing traces of ads vari-
ous, 17 users are selected from different genders (six females and
11 males), and distributed in different age groups (six of them are
aged at 18-25, ten at 25-30, and one at 30-35). All the participants
selected satisfy the following criteria: 1) they interact with apps for
more than 30 minutes daily - indicating that the users are familiar
with using mobile apps; 2) they have experience using apps of
different categories - considering the multi-categories of the subject
apps; and 3) they are willing to spend time on our experiments -
implying that they will take patience to execute the apps according
to their usual habits. We invite them to exercise the functionalities
of the 20 subject apps according to their own usage habits. As it is
difficult for volunteers to complete interacting with all the apps at
once, collecting the usage traces of one volunteer cost 1 ∼ 2 days.

Collected Interaction Duration: The average interaction time
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for the apps ranges from 14 seconds to 2.48 minutes. Short interac-
tion spans may be attributed to the simple functionality provided by
some apps. For example, the app “com.rechild.advancedtas- kkiller”
mainly supports service killing by clicking one button on the home
page, which costs about 23 seconds on average according to our
records. At least 70% apps are executed for more than one minutes
on average, and only one app (“com.gamma.scan”) is executed with
less than 20 seconds.

Reproduction of Usage Scenarios: For each app, we measure
102 times4 by repeating both the with-ads version and no-ads version
three times. The average values are calculated to alleviate noise.
Note that even though running tools, such as top and Xposed, can
affect mobile performance, the effects could be consistent on both
versions (with-ads and no-ads) [74] and can thus be ignored in our
cost measurement. Overall, we measure the 20 subject apps 2,040
times5 in total. The whole measurement process lasted for more than
one month.

Result of Cost Measurement

For each subject app, we measure the four types of performance
costs (i.e., memory, GPU, network and battery consumption) for
both with-ads and no-ads versions. Figure 7.4 depicts the costs of
the 20 apps, with blue bars indicating the memory costs of the no-
ads versions and orange bars representing the ad costs. According
to the figure, all the with-ads versions consume more performance
cost than their no-ads versions. The memory increase ranges from
5.9% (A16) to 46.4% (A6), with an average of 25.2%. For CPU
cost, ads in the subject apps consume 1.0% to 12.0% with respect
to occupation rate, with median cost at 7.4%. This indicates that
mobile ads indeed influence the device storage, which is consistent

4102 = 17×6, where 17 is the number of volunteer users and six denotes the total measuring
times for both the with-ads and no-ads versions of an app.

52040 = 102×20, where 20 denotes the number of subject apps.
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with the results by Gui et al. [74].
Table 7.6 shows the statistics of all measured performance costs

for the 20 subjects, with the average increase rate and corresponding
deviation (which represents the cost increase variations among the
subject apps). Network usage has the most remarkable increase
(113.9%) on average. The distinct cost increase (s.d. at 108.9%) of
network usage may be attributed to the ads-oriented design of some
apps. CPU costs experience a modest increase (6.9% on average).
Moreover, the growth in battery drainage is also noteworthy, with
the average increase at 17.7% and deviation at 11.9%. Heavy per-
formance costs may ruin user experience and drive users to uninstall
the apps, which is the reason why developers and researchers pay
attention to the performance costs of ads.
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Figure 7.4: RQ3: Performance consumption of with-ads (in orange) and no-ads
versions (in blue).

We further observe whether statistically significant differences
exist between performance costs of with-ads versions and those
of no-ads versions. We first check the distributions of each type
of measured performance costs by the Shapiro-Wilk test [165].
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Table 7.6: Average and standard deviation of the increase rate of performance cost
when comparing with-ads version with the no-ads version.

Cost Type Memory CPU Network Battery
Average 25.2% 6.9% 113.9% 17.7%
Standard Deviation 12.5% 3.7% 108.9% 11.9%

The Shapiro-Wilk test is a typical test of normality of which the
null hypothesis is that the input samples come from a normally
distributed population. If the p-value computed by the Shapiro-Wilk
test is smaller than 0.05, we achieve that the input distribution is
significantly different from the normal distribution. Table 7.7 lists
the p-value results of Shapiro-Wilk test for different performance
cost types. We can discover that except for the traffic cost of with-
ads versions, all the other measured costs render normal distribu-
tions. Therefore, for memory, CPU, and Battery costs, we use
the paired t-test [87] for comparing the distributions between with-
ads and no-ads versions, and use the Wilcoxon signed-rank test for
analyzing the traffic costs. The paired t-test is a statistical test to
determine whether the mean difference between paired observations
is zero, with the p-value less than 0.05 indicating the difference
between the two paired inputs is significant. We use paired t-test for
costs of memory, CPU, and Battery, because the subject apps may
have different cost values for with-ads and no-ads versions, and the
differences between pairs are normally distributed. The Wilcoxon
signed-rank test is a paired version of the Wilcoxon rank-sum test
we used in Section 7.3.1.

Finding: Performance costs of with-ads versions are signifi-
cantly larger than those of no-ads versions. Figure 7.5 illustrates
the comparison on the performance costs of with-ads and no-ads
versions. The p-values in paired t-test and Wilcoxon signed-rank
tests show that the two input distributions are significantly different.
The effect sizes measured by Vargha and Delaney’s A12 are all
negligible. The results indicate that versions with ads expend more
performance costs, consistent with the studies in [74] and [159].
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Table 7.7: Normality test of differences between measured performance costs of
with-ads versions and no-ads versions. The p-value<0.05 means the differences
are not normally distributed.

Cost Type Memory CPU Battery Traffic
p-value 0.666 0.116 0.429 0.001

Result of Review Analysis

Based on the methods proposed in Section 7.2.1, we extract 3,130
2-gram terms (PMI=5.0) and 5,134 3-gram words (PMI=3.0). We
train the word2vec model on 4,042,083 reviews which include the
reviews of the 20 subject apps and 4,007,628 reviews from other
apps. The dimensions of the output term vectors are defined as
200, with other parameters specified by Mikolov et al. [121]. For
each type of performance costs, we identify cost-related terms based
on their cosine similarities to the target words, such as “memory”,
“cpu”, “network”, and “battery”. During the experiments, we first
extract the 50 most similar terms for each cost type, and then
build the performance-related dictionaries after manually filtering
out noise terms (illustrated in Table 7.8). To ensure that user
reviews are specific to subject app versions, we select the reviews
posted by users within two months6 after the corresponding version
release. Following the methods in Section 7.2.3, we calculate users’
concerns over the performance costs of ads. In the following, we
present the user concern analysis on the 20 subject apps.

We illustrate the results of users’ concerns about the performance
costs in Figure 7.6, with the blue bars and orange bars denoting the
measured values for no-ads and with-ads versions respectively. For
the 20 subjects, users express different levels of concerns about the
memory overhead of the in-app ads. For example, for the memory
cost, A2 receives the most complaints about ads among all the
subject apps, with an obvious increase of 35.9% compared with the
no-ads version. By inspecting A2, we discover that in-app ads can

6The period is defined following the previous work [56].
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Figure 7.5: Performance cost distributions for with-ads (in purple) and no-ads
versions (in light blue).

occupy almost the whole screen space, especially with one banner
in the top and one rectangle ad appearing in the middle when sliding
downward. Interestingly, we find that 15 (75%) apps receive zero
negative feedback about the memory costs of ads, such as A1. This
implies that in most cases, users tend to be insensitive to the memory
costs caused by in-app ads.

By observing the increase rate of quantified user concerns about
all performance costs (shown in Table 7.9), we identify that memory
costs have the largest rate of growth in user concerns (6.3% on
average) and the most obvious deviation (17.0%) among the 20 apps.
However, users express the least concerns about network costs,
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Table 7.8: Performance-related dictionaries.
Cost Type #Terms Related Term

Memory 19

ram memory, storage, storage space, memory space, space, in-
ternal memory, ram, internal storage, internal space, disk space,
gb, battery power, extra space, ram memory, unnecessary space,
capacity, mb, valuable space, precious space

CPU 17
cpu, processor, gpu, cpu usage, laggy, slowly, too slow, incredibly
slow, extremely slow, sluggish, painfully slow, terribly slow, take
age, slower, slower than before, lag, fast

Network 12

network connection, data connection, wifi connection, network
signal, wifi, wifi network, wifi signal, internet connectivity,
wireless connection, 4g connection, internet connection, wireless
network

Battery 14
battery life, battery power, batery, batt, battery drain, battery
usage, battery rapidly, battery dry, battery overnight, battery
juice, batterie, battery excessively, battery life, drain battery

with the increase rate averaging at 0.9% and a deviation of 1.9%.
Such an observation is different from what we have discovered in
Table 7.6, where network costs exhibit the highest increase among
all the performance costs. We find that 15/20, 12/20, 15/20, and
15/20 of the subject apps do not receive any complaints from users
regarding the cost of memory, CPU, battery, and traffic, respectively.
We guess that users may perceive different types of performance
costs differently. We then conduct correlation analysis to explore
there are strong correlations between user concerns and performance
costs of ads.

Table 7.9: Increase rate of quantified user concerns about performance costs.

Cost Type Memory CPU Network Battery
Average 6.3% 3.5% 0.9% 2.7%
Standard Deviation 17.0% 8.9% 1.9% 9.6%

Correlation between Ad Costs and User Concerns

The correlations between performance costs and corresponding user
concerns are illustrated in Table 7.10. Almost all the PCC results in-
dicate that their linear correlations are weak, especially for memory
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Figure 7.6: Quantified user concerns about different performance cost types of the
20 subject apps.

usage which represents nearly no correlation with the quantified user
concerns (with PCC score rp = −0.132). The only one performance
type that presents strong correlation with the quantified user concern
is battery cost, with rp = 0.534 and p = 0.015 < 0.05.

The results of PCC are consistent with those of SRC, where
user concern shows a strongly increasing trend with more battery
consumed (p = 0.0009 � 0.05). This allows us to achieve that
users care most about the battery cost among all the performance
cost types. We attribute this to that the consumption of battery is
more sensible than other costs to users, and therefore more battery
costs tend to cause more unfavorable reviews.

We also observe the negative correlation between network cost
and the corresponding user concern with respect to both PCC and
SRC analysis. This means that more network costs could possibly
bring better user experience. This might be against our common
sense. We attribute this to the ubiquity of WiFi leading to fewer
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concerns about traffic consumed. According to [180], over 90%
of users choose WiFi connections when using smartphones. We
therefore achieve that the network consumption of ads may not be
concerned to users.

For CPU costs, the PCC (rp = 0.166) and SRC (rs = 0.213)
scores display weak correlations with user concerns. The result is
predictable, as users may not perceive the CPU cost on their mobile
phones, and would generally think the crash or laggy performance
is caused by mobile systems or app-specific functionalities. We
conclude that the effect of CPU consumption on users may be
weak. Note that since our data are not time-series, causal impact
analysis [116, 51] is not applicable in our situation. Moreover, our
correlation analysis is applicable and convincing to determine the
correlations between the two factors.

Table 7.10: Correlation test result between performance costs of ads and user
concerns.

Cost Type
Memory CPU Network Battery
r p3 r p r p r p

PCC1 0.132 0.578 0.166 0.482 -0.281 0.229 0.534 0.015
SRC2 0.372 0.105 0.213 0.366 -0.127 0.591 0.679 0.0009

1,2 The absolute values of the PCC/SRC scores r represent very weak correlations if |r| <
0.2, weak correlation if 0.2 ≤ |r| < 0.4, moderate correlations if 0.4 ≤ |r| < 0.6,
strong correlations if 0.6 ≤ |r| < 0.8, and very strong correlation if |r| ≥ 0.8 [59].

3 p < 0.05 indicates that the correlation is statistically significant.

Insight 5: Users are most concerned about the battery cost of ads among all the
four cost types. They tend to pay little attention to the memory and CPU cost of
ads. Network cost of ads is least cared by users.

7.4 Case Study

To validate whether our insights are endorsed by developers, we
conduct a survey of engineers from Microsoft. We collect 87
survey feedback in total. We focus on analyzing the answers of
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those participants who answered that they have app development
experience (34/87). The participants include seven staff develop-
ers, 24 interns, and three researchers. 15 (44.1%) of them have
designed more than one apps (for Android, iOS, or Windows Phone
Systems) and 19 (55.9%) of them have experience in designing one
app. The user study is conducted through an online questionnaire,
which consists of four questions: two questions on the participant’s
background, one question as a transitional inquiry and about in-
app advertising, and one question (including five multiple-choice
questions) for assessing of our advertising insights 1∼5.

The insights are assessed via three metrics: rationality, useful-
ness, and novelty, where novelty indicates whether the suggestions
are rarely noticed before but instructive. Insights 1∼5 correspond to
the five small questions, with results in Figure 7.7. As the results
indicate, more than half respondents of agree with the rationality
of the insights, with Insight 2 (i.e., avoiding pop-up ads) having
the highest endorsement (85.3%). Also, these insights are deemed
useful by 26.5%, 23.5%, 32.4%, 38.2%, and 32.4% of them,
respectively. Interestingly, the novelty of Insight 5 (i.e., users tend
to pay little attention to the memory/CPU/netowrk cost of ads) is
recognized by 20.6% of participants. In addition, 91.2% (31/34) of
participants give positive feedback and consider these insights to be
either rational, useful, or novel. Overall, our insights cannot only
inspire developers, but also provide guidance on in-app advertising.
These results strengthen the validation of our suggestions.

7.5 Summary

In the chapter, we explore the effects of in-app ads on user ex-
perience by answering three research questions, i.e., can in-app
ads adversely impact user behaviors towards apps, what users are
actually concerned about in-app ads, and how the performance costs
of ads affect user opinions. Our findings are not only complementary
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Figure 7.7: Insight validation. Insight 1 suggests that developers should choose
ad SDKs with good performance in recommending relevant ads to users. Insight
2 is about avoiding pop-up ads. Insight 3 is related to avoiding full-screen ads
and providing obvious closing symbols in ads. Insight 4 suggests shortening the
compulsory video ads. Insight 5 summarizes that users are most concerned about
the battery cost of ads, and tend to pay little attention to ads’ memory, CPU, and
network cost.

to previous work in this area, but also provide developers with
actionable and valuable suggestions on in-app advertising. In future
work, we will extend our experiments by involving much more real
apps, and design an automated system for app developers to evaluate
the feasibility and friendliness of in-app ads.

2 End of chapter.



Chapter 8

Conclusion and Future Work

In this chapter, we summarize the main contributions of this thesis
and provide several interesting future directions.

8.1 Conclusion

User review mining is critical for understanding the user experience
with apps and facilitating app development. However, in many
cases, traditional methods involve much manual labor for filtering
non-informative reviews out and labeling user intention of each
review, so the application scenario of these methods is limited prac-
tically. In this thesis, we have developed novel methods to analyze
online user reviews automatically for assisting release planning.
We further analyze the characteristics of reviews from different
platforms and user concerns about in-app advertising.

In particular, in Chapter 3, we propose an automated tool, namely
AR-Tracker, for ranking informative reviews. The review-ranking
method is calculated based on ranked topics, so the non-informative
reviews can be avoided in the top list. Experimental evaluation on
four popular apps indicates the effectiveness of our tool in review
ranking. We also demonstrate a case study that shows tracking app
aspects reflected in top-ranked reviews can help developers identify
important app issues.

170
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In Chapter 4, we propose an issue-prioritizing framework, called
PAID, to rank phrase-level app issues automatically and accurately.
PAID traces the quantitative changes of app issues over consecutive
release versions. Specifically, we design a rule-based method
to capture meaningful phrases, and two-layer filtering method to
remove non-informative reviews. We label each topic with the
most semantically relevant phrases, and track the changes in number
along with app versions. We adopt official changelogs as ground
truth, and the evaluation results indicate the effectiveness of PAID
in prioritizing important app issues.

In Chapter 5, we design an emerging issue detection frame-
work, namely IDEA, for identifying newly-appeared and suddenly-
increasing app issues. We propose an adaptively online topic model-
ing method, named AOLDA, to capture topic distributions in review
streams. Then an automatic topic interpretation method labels each
topic with most relevant and poorly-rated phrases. Experimental
evaluation on six popular apps, distributed on two app platforms,
shows the effectiveness of IDEA. IDEA can be easily applied to
text-based online detection tasks and report emerging issues timely.
Industrial practice also validates the efficiency of IDEA in release
planning.

In Chapter 6, we conduct an empirical study to analyze the
issue distributions on different app platforms for the same app. We
propose a framework, namely CrossMiner, to automatically retrieve
relevant keywords given a word-level or phrase-level app issue. We
aim at discovering the differences and similarities of app issues
on three popular app platforms, i.e., Google Play, App Store, and
Windows Store. Based on the identified issue distributions, app
developers can design and arrange the testing cases more efficiently
for different platforms. To our best knowledge, CrossMiner is
the first framework proposed to explore app issues on different
platforms from users’ perspective. The experimental study also
verifies that our framework can reflect the user concerns accurately.
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In Chapter 7, we aim at exploring the impact of in-app ads on
user experience. We study whether in-app ads adversely impact
user behaviors towards apps, analyze major user concerns delivered
by user reviews, and observe whether more performance costs can
cause more user concerns. Our findings are not only complemen-
tary to previous work, but also provide developers with actionable
suggestions on designing in-app ads.

In summary, we design novel methods for analyzing user re-
views with less manual labor and mining useful information to
assist mobile app development (e.g., design, testing, and updating).
Specifically, our proposed methods can effectively rank informative
reviews, extract important phrase-level app issues, identify abnormal
app issues, discover issue distributions cross platforms, and capture
user-concerned issues about in-app ads. We evaluate our research
results based on large experimental datasets, with partial verification
from industrial practice or user survey.

8.2 Future Work

Automatic user review analysis has been widely studied in recent
years, and it is a promising research topic. Although we have
proposed a number of novel frameworks that advance the state-of-
the-art solutions or assist mobile app development from a different
perspective, there are still many interesting research directions
which are considered as future work.

Understanding User Reviews with Knowledge from User Forum

Mobile app developers are promoted to ensure user experience
steadily due to furious app competition and constantly-updated user
requirements. Since app reviews (i.e., user feedback) can reflect
current app bugs and requested features from users, exploring such
source for facilitating development has been gaining much attention
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from both academic and industrial communities. However, user
forums, which are online peer-to-peer support and generally contain
app issues provided by users in more detail, have never been studied.

Utilizing information from user forums is challenging. On
one hand, the number of questions on user forums is limited and
imbalanced. On the other hand, the quantity of apps with public user
forums provided is not large enough, so the application scenarios of
this task could be restricted.

To fill this gap, we plan to conduct comprehensive exploration
on user forums, and study how to exploit the information from user
forms to comprehend app reviews. Specifically, we first analyze
whether we can classify user reviews according to questions and
question tags on user forums, as the question tags are usually more
app-specific and function-based. Then we explore whether we can
transfer knowledge from user forum of one app to understand user
reviews of other apps with similar functionalities. Finally, we will
exhibit several possible application scenarios of our study, such as
automatic user forum generation.

Automatic User Review Reply

This task is based on accurate user intention mining. Positive ratings
and reviews can encourage customers to download or purchase your
app. In practice, developers can establish a better user experience
by delivering great responses to user reviews and helping those
who have requests or problems in the apps. Although industry
usually adopts rule-based methods for automatic reply, there still
exists some difficulties in timely and accurate reply. For example,
the predefined rules may not cover the newly- presented issues im-
mediately, and sometimes users have to switch to human customer
service.

Automatic review reply is quite challenging. First, we should
recognize whether a review indeed needs developers’ reply. Second,
reviews with limited contexts are difficult to accurately infer the user
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intention without enough ground truth. Besides, replying reviews
requires sufficient background knowledge about the app versions,
and also considers users’ acceptance.

In the future, we plan to implement this task based on the
question and answering (QA) technique in the Natural Language
Processing (NLP) field. We first collect enough datasets containing
user reviews, corresponding developers’ replies, and app changel-
ogs. Then we learn the rules in the collected review-reply pairs in
a supervised manner. Finally, the learned rules can be utilized to
automatically generate replies for specific reviews.

User Feedback based Log Prioritization for Efficient Code Localization

Appropriate logging statements and effective log parsing can assist
developers pinpointing issue-related code. To capture urgent soft-
ware issues, log-based problem identification methods such as KPI
correlation can be efficient. However, the quantity of logs generated
by popular software systems every day is tremendous, which is a
challenge for effective and efficient log prioritization even with these
methods. For example, the WeChat software of Tencent involves
thousands of modules running on tens of thousands of servers, and
can produce terabyte-level logs.

Since user feedback delivers users recent experience with soft-
ware systems, it is real-time resource for developers. User feedback
generally reflects existing software bugs and features to improve,
and its volume is much smaller than that of logs. Therefore, mining
user feedback is helpful for prioritizing logs that associate with
software issues.

To this end, we plan to design a code localization framework
based on user feedback and generated logs. Specifically, we will use
deep learning based methods (e.g., convolutional neural networks or
recurrent neural networks) to convert log sequences to embeddings.
The log sequences are extracted based on effective log parsing,
and can be regarded as sentences or documents. User feedback
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will be online processed, during which important user-concerned
issues are detected. The captured software issues will also be
converted to embeddings by the typical word2vec model or other
language models. Based on the issue embeddings and log sequence
embeddings, we identify important logs. These logs will be utilized
for code localization.

2 End of chapter.
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