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Abstract

In the field of modern software engineering, many tasks now involve in-

puts that go beyond plain code text, incorporating multiple modalities such

as images, audio, and video. This shift introduces significant challenges in

handling these diverse inputs. The emergence of large multimodal models

(LMMs) offers a promising solution to this issue. However, as an emerg-

ing technology, systematic research on multimodal large models within the

software engineering domain remains scarce. There is still a lack of clarity

regarding the specific tasks LMMs can accomplish and their performance

across these tasks.

This report conducts a comprehensive and systematic survey, catego-

rizing and summarizing all multimodal-related problems in software en-

gineering over the past five years, and finally constructs a complete task

tree. Subsequently, we develop a modular testing framework capable of

automatically measuring LMM performance based on configuration files.

Within the scope of input modalities currently supported by LMMs, we

select several representative tasks and evaluate their capabilities.

Our findings reveal that LMMs demonstrate surprisingly strong per-

formance in the field of software engineering. In certain tasks, they are

capable of achieving results comparable to specialized models fine-tuned

for specific tasks, even without any additional fine-tuning. This highlights

their significant potential for development and application in the software

engineering domain.
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1 Introduction

1.1 Introduction

The integration of large multimodal models (LMMs) into software systems

research represents a novel frontier in artificial intelligence, blending the

linguistic proficiency of large language models (LLMs) with sophisticated

vision models to process and generate multimodal content. This synthe-

sis allows LMMs to handle diverse input modalities—such as text, images,

and potentially audio and video—and to produce outputs that bridge these

modalities. Recent advancements in LMMs have demonstrated their capac-

ity to perform complex reasoning tasks, often achieving strong results even

in 1-shot or 0-shot scenarios. Despite these promising developments, their

application within the realm of software systems remains limited, with cur-

rent uses largely focused on areas like text enhancement, artwork creation,

and basic summarization.

The software systems domain, encompassing software engineering, sys-

tems security, human-computer interaction (HCI), artificial intelligence,

and computer graphics, involves intricate tasks that often require multi-

modal understanding and processing. From code analysis and software

testing to user experience evaluation and cybersecurity threat detection,

many of these tasks could potentially benefit from the advanced capabilities

of LMMs. However, the specific challenges and opportunities presented by

LMMs in these contexts have yet to be fully explored. To address this gap,
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a comprehensive study is necessary to understand how LMMs can enhance

tasks within software systems, and to identify the architectural hurdles that

must be overcome for their effective deployment.

In this vision paper, we explore the potential of LMMs to transform

software systems research. We conduct a thorough review of literature

spanning the past decade across related fields, constructing a task taxon-

omy that categorizes tasks likely to benefit from LMM capabilities. From

this taxonomy, we identify representative tasks and evaluate their feasi-

bility using a range of LMMs, such as GPT-4 Vision and Gemini Vision.

Through systematic experimentation with prompt engineering, we assess

the performance of these models and investigate the underlying challenges

that limit their efficacy. Our work contributes to the field in the following

ways:

• Task Taxonomy for LMMs in Software Systems: We develop a com-

prehensive taxonomy that identifies and categorizes tasks across soft-

ware engineering, system security, HCI, and related fields that stand

to benefit from LMM integration. This taxonomy offers a roadmap

for researchers and practitioners seeking to leverage LMMs in their

respective domains.

• Evaluation Framework for LMMs on Software Systems Tasks: We

propose a set of evaluation criteria and experimental methods tailored

to assess LMM performance on software systems tasks. By selecting

representative tasks, we provide a framework for systematically test-
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ing the capabilities of LMMs in real-world scenarios, including code

analysis, software testing, and user experience assessment.

• Cross-Model Performance Analysis with Prompt Engineering: Us-

ing a range of LMMs, we perform a comparative analysis to under-

stand how different models tackle similar tasks and the effectiveness

of prompt engineering in enhancing their performance. This analysis

sheds light on the strengths and limitations of current models, provid-

ing insights into how prompt engineering can be optimized for diverse

tasks.

• Opportunities and Challenges of LMMs for Software Systems: Based

on our empirical findings, we discuss the unique opportunities LMMs

offer for advancing software systems research, particularly in multi-

modal environments such as Extended Reality (XR). We also identify

the architectural challenges that hinder LMM performance, including

issues related to multimodal data fusion, interpretability, and resource

constraints, and propose directions for future research.

Our findings highlight the transformative potential of LMMs in software

systems, paving the way for innovative applications and inspiring further

exploration into this emerging field. By outlining both the current capa-

bilities and limitations of LMMs, we aim to provide a foundation for fu-

ture work that will drive the development of more intelligent, adaptive, and

multimodal software solutions.
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1.2 Background

Large Multimodal Models (LMMs) represent an evolution beyond tradi-

tional text-based Large Language Models (LLMs). In addition to support-

ing text input and output, LMMs can process inputs from multiple modali-

ties such as images, audio, and video, generating correspondingmultimodal

outputs. Leadingmodels, like GPT-4o[73], already support inputs from au-

dio, images, and multiple image sources, while models such as Gemini[91]

even handle video inputs. By extending the functionality of large models

to cover multiple modalities, the scope and variety of tasks they can per-

form have significantly increased, including video summarization, image

comprehension, and speech recognition.

The software engineering field encompasses a wide range of tasks, with

the primary objective of ensuring high-quality software development and

stable operation. Over the past few decades, software has evolved beyond

simple command-line interfaces to incorporate graphical user interfaces

(GUIs), animations, and voiceovers, which have become standard features.

Consequently, relying solely on text-based code inputs has become increas-

ingly insufficient for addressing the diverse needs of modern software sys-

tems, prompting the rise of multimodal inputs. For example, screenshots

can be used to detect GUI issues[60], and video data can be analyzed to

extract user gestures[8].

However, the integration of multimodal inputs into software engineer-
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ing has been relatively slow. The primary challenge lies in the complexity

and diversity of multimodal data, which hasmade it difficult for researchers

to develop a unified and generalizable approach. Recent advances in ma-

chine learning have spurred efforts to combine machine learning models

with multimodal input processing, such as using computer vision for ob-

ject recognition in images. A key limitation of earlier approaches is that

models were often task-specific, limiting their reusability across different

contexts. The advent of multimodal large models offers a potential break-

through. Numerous studiesneed citation have demonstrated the strong gen-

eralization capabilities of large models, showing that they can maintain

high accuracy even with previously unseen tasks. As such, integrating

LMMs into software engineering tasks is a logical next step. However,

given that LMMs are still an emerging technology, there have been few

attempts to explore their application in this domain. The goal of this paper

is to address this gap and evaluate the performance of LMMs in software

engineering tasks.
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2 Related Work

In this section, we will provide an overview of how previous works uti-

lize multimodal capabilities for problem-solving in software engineering.

Then, we will discuss how LLMs can help address challenges in the soft-

ware engineering domain. Finally, we will review the existing test bench-

marks and evaluation criteria for assessing LMMs.

2.1 Ultizing Multimodal Ability in Software Engineering

Integrating multimodal capabilities, such as voice, gesture, and sentiment

analysis, has emerged as a promising approach to enhancing software de-

velopment processes and user experiences. Guglielmi et al. conducted

automated tests on virtual personal assistants that use voice for interaction

[36] . Qi et al. summarized recent research on gesture recognition through

sensors and the analysis of image information [76] . Gandhi et al. inves-

tigated previous work on sentiment analysis, a domain encompassing the

three modalities of text, vision, and audio working together to produce an

effect [34] . However, these studies rely on specific mini-models or other

traditional data analysis methods, which only perform relatively well on

particular tasks or datasets. Those specialized models may lose good per-

formance after migrating to other datasets or task settings of the same type

[94] [77] . Our work reduces the expense of training different models for a

specific problem by introducing LMMs with good generalization capabil-
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ities to handle different issues simultaneously.

2.2 LMM for Software

A branch of previous work has demonstrated that integrating LLM into the

production and research of soft engineering has been a scorching trend [37]

, from generating [62] [90] and pre-processing [108] [107] experimental

data to using LLM as an agent for automated testing [89] [53] , all of which

show that LLM has a solid potential to enhance existing soft engineering

processes. Moreover, Jin et al. also illustrate the contribution that LLM

can make in software design, testing, and maintenance [41]. In contrast

to these studies, which only focus on specific tasks in specific domains of

soft engineering and lack knowledge of what valuable tasks exist now, our

work presents a systematic framework that defines what tasks are available

to help optimize efficiency using LLM or LMM.

2.3 LMM Benchmark & Evaluation

LMMs combine information from different modalities, including text, vi-

sion, audio, and tactile, and analyze them to solve more complex real-world

problems [104] [7] [105] . As a result, testing and evaluating LMMs’ per-

formance from different perspectives become a recent research interest.

For instance, Wu et al. used the visual comprehension and language pro-

cessing capabilities of GPT4v to test whether today’s LMMs can support
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practical medical applications [99] . Cao et al. constructed Spider2-V, a

test benchmark for LMM’s ability to automate professional data science

engineering workflows [10] . Cai et al. tested and improved the problem

of the robustness of LMM’s output when facing different styles of pictures

[9] . These benchmarks and assessments have all achieved good perfor-

mance in a single domain and can point out the shortcomings of LMM in

the corresponding domain. Our work can complement the testing domains,

bridging the gap of needing help harmonizing testing across domains and

conducting migration tests.

2.4 Reasoning Language Model

The evolution of artificial intelligence has entered a transformative phase

with the emergence of LargeReasoningModels (LRMs), an advanced paradigm

built upon the foundation of Large LanguageModels (LLMs). While tradi-

tional LLMs excel at pattern recognition and autoregressive token predic-

tion, their capacity for complex, structured reasoning has historically been

limited. Recent breakthroughs, however, have redefined the role of lan-

guage models by integrating human-like reasoning mechanisms into their

architecture. This shift has unlocked unprecedented potential for solving

intricate problems across domains such asmathematics, logic, and decision-

making, marking the dawn of a new era in AI reasoning.

At the heart of LRMs lies the concept of ”thought”[98]—a structured

sequence of intermediate tokens that simulate the step-by-step reasoning
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processes humans employ. Unlike conventional LLMs, which generate

outputs through direct token prediction, LRMs decompose reasoning tasks

into multi-step trajectories. These trajectories mimic cognitive strategies

such as:

• Tree search: Exploring multiple reasoning branches to identify opti-

mal solutions.

• Reflective thinking: Iteratively revising hypotheses based on feed-

back or new information.

• Analogical reasoning: Drawing parallels between problems to infer

solutions.

This paradigm shift transforms LLMs from passive text generators into

dynamic reasoning agents capable of deliberate, self-correcting thought

processes.
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3 Methodology

3.1 Task Taxonomy Construction

Building the prototype of taxonomy To build the prototype of the taxonomies,

we have conducted systematic research on multimodality-related papers

from four conferences (ICSE, FSE, ASE, and ISSTA) and two journals

(TSE and TOSEM) in soft engineering over the last seven years 1. We

build a multimodality-related keyword list to screen the papers from these

sources and manually collect 135 papers. To describe what types of tasks

these papers in soft engineering are focusing on, we analyzed the papers ac-

cording to the open coding procedures [28] used for qualitative data analy-

sis. Specifically, we conducted a 5-round iterative manual analysis session

involving three analysts with at least several years of development experi-

ence in the soft engineering field. In each iteration, every analyst separately

summarizes what technical aspect of the paper belonged to the design, de-

velopment, testing, maintenance, and repair 2 process of software from the

Software Waterfall Model [70]. Each analyst analyzed two-thirds of the

whole paper to ensure that each paper had been seen by at least two differ-

ent analysts for cross-validation. Consequently, in the final iteration, we

merge the research topics extracted in the previous rounds to form a pro-

totype task tree resulting from our taxonomy. Finally, We used the results

from 95 papers to build our taxonomy. At the top of our task tree are the

1from 2018.01.01 to 2024.05.15
2we add the ”repair” process to extend our taxonomy, which initially did not exist in theWaterfall Model
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five software-building processes, followed by whether they are functional

or non-functional 3. The third level of categorization is based on modal

information, such as “Vision” and “Vision with Audio.” At the bottom

are up to four layers of progressively more detailed descriptions of specific

technical aspects.

(a) Stage 1: Building task taxonomy protype

(b) Stage 2: Guiding LLM to analyze large-

scale papers and extend our task taxonomy

Figure 1: Two stages workflow of building our task taxonomy

Extending the list of papers We expand the scope of our study to encompass

all 37 A-level conferences and journals as classified by the China Com-

puter Federation4, with the same period considered. This inclusion cov-

ers five key domains: Computer Networks, Computer Graphics and Mul-

timedia, Artificial Intelligence, Human-Computer Interaction, and Cross-

cutting/Integrated/Emerging. Subsequently, we add software-engineering-

related keywords to the search keyword list to cover a broader range of

papers. We also remove field-related keywords from the list for some spe-

cific domains. For example, we remove the keyword ”visual” from the list

3standard is followed by ISO/IEC 25002:2024
4https://www.ccf.org.cn/Academic_Evaluation/By_category/
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of vision-related conferences, forming 8,208 pieces of paper. To reduce the

number of papers and get a more concrete result, we involve the Gemini-1.5

as a judge to perform a 5-round check, where we send the paper’s title and

guide it to predict whether this paper may focus on multimodal tasks using

following prompt3.1, and only the paper passed all the 5-round checks are

selected.
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prompt for analyzing software process

System : You are a computer science professor who is an expert on

MLLM for SE working on survey, and you are currently working on

formulating a task tree from existing papers. Analyze the problem

statement and proposed solution in the paper’s title and abstract to

determine the following questions:

1. Which phase of the software development lifecycle it primarily

addresses. Choose exactly one from:

Design (requirements analysis, UI/UX prototyping)

Development (code generation, implementation, integration)

Testing (validation, verification, quality assurance)

Maintenance (updates, optimization, documentation)

Repair (bug fixing, error recovery)

2. analyze the modalities involved in the task. i.e. a task related

to GUI element testing should be classified into ’Vision with Text’.

Choose the combination from: Vision/Text/Audio/Tactile (connected

through ’with’)

3. analyze the functionality of the problem statement in the paper.

Whether it is functional (performance, accuracy) or non-functional

(accessibility, security). If a task can be both considered as functional

and non-functional, choose functional.

Output format: {Process: Design/Development/Testing/Mainte-

nance/Repair, Modalities: (Vision/Text/Audio/Tactile with ”with”

separator), Function: Functional/Non-functional} AND DO NOT

output other analysis results.
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prompt for construct task tree

System : You are a helpful assistant designed to output JSON. You

will be given a task tree generated from papers and a paper with its

title and abstract. You are designed to answer the question:

What kind of task does the research task in the paper benefit from

multi-modal AI to help process the target software/applications.

Please ensure the following rules while answering this question:

1. You have two kinds of action choices: output Matched if

there is a node on the task tree matched the new task described in the

paper. Otherwise output Add and the new task name in 1-5 levels to

add a new node to the current task tree.

2. The first level of the task tree should use a combination (using

with to connect) of terms from the modalities Vision, Text, Audio,

and Tactile to describe the target modality the paper focuses on.

3. The second level of the task tree should be a broader technical

concept term within its modality, avoiding the use of any specific

software terms like AR, VR, or any specific software platform names

(e.g., Android, Web, iOS).

4. The ’Function’ in the tree describing the task should address either

functional aspects, such as improvement, or non-functional aspects,

such as accessibility.
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prompt for construct task tree

System: Only output in ‘Action’: (Matched / Add), ‘Function’:(Func-

tional / Non-functional) ,‘1st’:,‘2nd’:,‘3rd’:,‘4th’:,‘5th:’(NA if not

suitable) format.

User: The Task Tree:{SubTaskTree}. Paper: {TITLE} Abstract:

{ABSTRACT}

Consolidating the taxonomy This process helps to reduce the potential paper

number to 1,102. Then, we perform another single-round GPT-4o predic-

tion, where we prompt the LLM with the remaining paper’s title and ab-

stract to let the model know more about the details of the paper and make a

more concrete prediction. Finally, we formulate an additional target mul-

timodal related paper list with a size of 471, and the total paper list’s size

is 564.

Given that LLMs can identify latent patterns, [92] [69] we automate the

expansion of our taxonomy by leveraging GPT-4o to learn these patterns

from its prototypes. This process involves two distinct prompts. The first

prompt instructs the LLM to analyze which software processes related to

the technical aspect addressed in the paper may be relevant. In the subse-

quent step, we provide the subtask tree of the identified process, enabling

the LLM to determine whether the aspect aligns with an existing child node

or if a new child node is needed to describe it adequately. In each stage, the
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paper’s title and abstract serve as user inputs, while the specific guidance

for each part serves as system prompts. Additionally, we conduct manual

checks to prune and merge misclassified results, ultimately consolidating

the multimodal task taxonomy. Part of the task tree is shown in Figure. 4.

Further extending the list of papers To enhance sample robustness and mit-

igate potential false-negative predictions in large language model (LLM)

evaluations, a revalidation process was conducted on two paper cohorts:

• 1,259 papers initially scoring 3/5 positive evaluations

• 1,177 papers initially scoring 4/5 positive evaluations

Figure 2: Updated Stage 2: multiple rounds guided LLMs prediction

These papers were further verified through five rounds of majority vote

using Gemini-1.5, maintaining the predefined inclusion threshold of 3 pos-

itive evaluations per paper. The re-evaluation yielded 140 and 149 ad-

ditional qualifying papers from the 3/5 and 4/5 cohorts, respectively, ag-

gregating 289 newly validated papers. Combined with the 471 previously

validated papers from Section 3.1, this refinement process resulted in an
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expanded dataset comprising 659 papers (289 new + 471 existing - 81 fil-

tered by DeepSeek-R1 [30]). This enhanced sample pool strengthens the

statistical power of subsequent analyses while maintaining methodological

consistency with our established validation protocol. Figure 2 shows the

updated part of the workflow.

Taxonomy prototype refine To systematically analyze task relationships and

methodological patternswithin the existing literature, we conducted a struc-

tural refinement of the taxonomy prototype. This revision pursues two pri-

mary objectives:

(1) Enabling hierarchical task characterization through discrete semantic

layers rather than cumulative parent-node dependencies.

(2) Enhancing leaf-node granularity to document experimental method-

ologies and implementation specifics.

Through this framework, researchers can more effectively identify poten-

tial MLLM application scenarios based onmethodological precedents. The

reconstructed taxonomy prototype (Figure 6) establishes four-dimensional

node mapping for each research publication in our corpus. Two critical

metadata dimensions were incorporated to augment analytical utility:

(1) Modality Specifications: This attribute details input-type composi-

tion at the task implementation level. For instance, under the ”Vision

with Text” category, visual inputs are classified as either static (Single
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(a) Overview of task tree prototype (up to 3rd level)

(b) Overview of sub-task tree prototype (Functional Testing part)

Figure 3: Overview of our task tree prototype

Image) or temporal (Video), while textual components are differenti-

ated as Natural Language or Programming Language. Such granular-

ity facilitates cross-modal dataset alignment for comparative studies.

(2) MLLMFunctional Taxonomy: We cataloged coreMLLM capabili-

ties employed per task, including but not limited to generative model-

ing (text/image synthesis), semantic alignment (cross-modal embed-

ding), and discriminative classification (multimodal reasoning). This

functional indexing enables capability-centric literature surveys and

technology gap analysis.
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Consolidating the taxonomy with reasoning model The REASONING archi-

tecture, with deepseek-R1 [30] as its computational core, demonstrates ro-

bust textual inference capabilities for systematic analysis of classification

hierarchies within our taxonomic framework. Following the expansion of

the literature corpus described in Section 3.2, we implemented deepseek-

R1’s full reasoning pipeline to perform dual-aspect document analysis:

(1) granular modality decomposition of experimental configurations and

(2) capability mapping against established MLLM functional taxonomies.

This process also revealed 81 publications erroneously classified as mul-

timodal research in the Gemini-1.5 predictions. The validated analytical

outcomes are visualized through the updated capability-modality matrix in

Figure 5.
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(a) Functional Testing Task Tree

(b) Functional Design Task Tree

(c) Functional Maintenance, Functional and Non-Functional Repair Task Tree

Figure 4: Overview of our original task tree up to 3rd level
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(a) Functional Testing Task Tree

(b) Non-functional Design Task Tree

(c) Functional development Task Tree

Figure 5: Overview of our updated final task tree up to 3rd level
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Figure 6: Overview of our updated task tree prototype (Functional Testing part)
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new prompt for analyzing software process

System: You are a computer science professor who is an expert on

MLLM for SE working on survey, and you are currently working on

formulating a task tree from existing papers.

Analyze the problem statement and proposed solution in the paper’s

title and abstract to determine the following questions:

1. Which phase of the software development lifecycle it primarily

addresses. Choose exactly one from:

Design (requirements analysis, UI/UX prototyping)

Development (code generation, implementation, integration)

Testing (validation, verification, quality assurance)

Maintenance (updates, optimization, documentation)

Repair (bug fixing, error recovery)

2. Analyze the modalities involved in the task. i.e. a task related

to GUI element testing should be classified into Vision with Text.

Choose the combination from: Vision/Text/Audio/Tactile (connected

through ’with’)

3. Analyze the specified modalities involved in the task. For Vision

content, you should specify the problem statement in the paper is re-

lated to single image or continuous image (Video). For Text content,

you should classify whether it is related to natural language or pro-

gramming language. i.e. If a task belongs to Vision with Text, its

specific modalities can be Single Image with Natural Language.

28



new prompt for software process (Cont.)

System: 4. Analyze the functionality of the problem statement in

the paper. Whether it is functional (performance, accuracy) or non-

functional (accessibility, security). If a task can be considered both

as functional and non-functional, choose functional.

5. Analyzes what kind ofMLLM ability has been utilized to help such

task, such as alignment, generation, classification, etc.

Output format: Process: Design/Development/Testing/Mainte-

nance/Repair, Modalities: (Vision/Text/Audio/Tactile with with sep-

arator), Specified Modalities: (Specified modalities connected with

with), Function: Functional/Non-functional , Ability: Alignment/-

Classification/Generation/Translation/Matching AND DO NOT out-

put other analysis results.

REMEMBER, your thinking process should be in Chinese and output

your result in English. User: The Task Tree:{SubTaskTree}. Paper:

{TITLE} Abstract: {ABSTRACT}
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new prompt for construct task tree

System: You are a computer science professor who is an expert on

MLLM for SE working on a survey, and you are currently working

on formulating a task tree from existing papers. For the existing task

tree:

You should keep that for the same level on the task tree, their descrip-

tion should be in the same dimension, and the sub-level should be a

sub-description belonging to the higher level.

You should analyze the problem statement and proposed solution in

the paper’s title and abstract to formulate an academic executable task

that can be gained from MLLM as proposed in that paper.

You should ignore the non-related description inside the abstract. Try

to summarize: ”what is the main task of the paper?”, ”according to the

main task, they proposed what solution?”, ”what kind of executable

task does such solution can be summarized to?”

Your classification should follow the same taxonomy as the existing

task tree and the following examples. You should learn the hidden

classification rules from the following examples and task tree.

Examples on the given task tree:

1. Paper: AG3: Automated Game GUI Text Glitch Detection Based

on Computer Vision. You should output: Action: Matched, Func-

tional: Functional, 1st: Vision with Text,2nd: Display issue testing,

3rd: Text glitch detection, 4th: Automatic glitch bug detection
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new prompt for construct task tree (Cont. Part1)

System: 2. Paper: Using Reinforcement Learning for Load Testing

of Video Games. You should output: Action: Matched, Functional:

Functional, 1st: Vision with Text,2nd: Test scenario exploration, 3rd:

Exploratory testing, 4th: Automatic game exploration test,

3. Paper: Data-driven accessibility repair revisited: on the effective-

ness of generating labels for icons in Android apps. You should out-

put: Action: Matched, Functional: Non-functional, 1st: Vision with

Text,2nd: Accessibility repair, 3rd: Accessibility label repair, 4th:

Context-aware accessibility label generation

Rules:

STRICT hierarchy: Each level must nest within its parent’s domain.

Functional describe the functionality of the problem statement in the

paper. If a paper contains several tasks that can be both considered as

functional and non-functional, choose functional one.

The first level of the task tree (1st) MUST be the input modality

combination (Vision/Text/Audio/Tactile connectedwith ”with” in the

same sequence as the task tree) to describe the modality related to the

task. i.e. a task related to GUI element testing should be classified

into “Vision with Text”. If you confidently believe the task is not

associated with any modality, you should output “NA” for the first

level.
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new prompt for construct task tree (Cont. Part2)

System: The second task tree (2nd) level MUST be a general descrip-

tion which can highly conclude the main task of the paper, and the 3rd

level should be a general description to the solution proposed in the

paper. Try to make every level’s description complete enough. i.e.

instead of “Test - Assistance”, you should generate “Test - Assistance

test”.

The last level MUST be either an executable task name or a specific

description to the solution in the paper including the technical term or

app. scenario.

Try to merge you classification answer to the current 3rd level.

THINK TWICE before you want to add a new root node (1st). Try to

conclude the final level result first and them move up to top.

Task description except the leaf node must be platform-agnostic (no

Android/iOS) and application-agnostic (no AR/VR).

To modify the existing task tree, you have two choices: Add to add a

new node or Matched to show the current paper matches some exist-

ing node. You can add a new leaf if you cannot find a proper general

higher description for the current task. Before you decide to add a

new node, You should first check from the highest to the lowest level

to find the most suitable level to add the new node. Try to compress

your final prediction result.

32



new prompt for construct task tree (Cont. Part3)

System: For the paper focusing on {functional} {modalities} field

addressing {process} phase, which focuses on {specified modal}, fol-

low the above instructions, and output the result in the following for-

mat:

Output format: Action:, Function:, 1st:, 2nd:, 3rd:, 4th:

Output empty levels as NA and do not miss any 1st - 4th content.

Never invent non-existent levels. AND DO NOT output other analy-

sis results.

Remember, your thinking process should be in Chinese, and your re-

sult should be output in English.

User: The Task Tree:{SubTaskTree}. Paper: {TITLE} Abstract:

{ABSTRACT}

3.2 Testing Framework

Building the framework The entire framework is built based on Python. To

ensure the framework’s high scalability—i.e., to ensure that our framework

remains applicable as tasks in the multimodal field evolve—we have sep-

arated all task-related code, making the entire framework highly modular.

This way, when new tasks need to be added or existing ones need to be

modified in the future, only the corresponding task code requires adjust-

ment. This significantly reduces the coupling between different code com-

ponents, facilitating future modifications.
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We have structured the workflow of the entire framework into three

main components: data loading, model loading, and result evaluation. In

the first component, data loading, we have developed specific loading func-

tions tailored to different types of databases. Since various datasets may

contain diverse data types, such as text, images, videos, or audio, we have

implemented appropriate data processing in the Python scripts to ensure

seamless integration with the models under test. For the model loading

component, we have designed functions for both model initialization and

request-response handling. These functions enable the model to select the

appropriate data processing method based on the input data type and con-

figuration file. For example, according to our standards, method 1 cor-

responds to pure image input combined with a system prompt, and more

standard can be found in our released source code. Finally, in the result

evaluation component, we have developed task-specific evaluation func-

tions that efficiently and accurately assess the model’s output, ensuring that

the evaluation process aligns with the requirements of each task. Figure 7

is a flowchart about this framework.

Figure 7: Framework’s workflow
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Use the framework We tried to minimize the complexity of our framework

to ensure ease of use of it. Specifically, to initiate the framework, user

only needs to fill in the corresponding configuration in the task config file.

For example, user need to specify the task name, dataset list, model list and

some other parameters in the task config file. Our framework will automat-

ically read the corresponding parameters and perform the evaluation based

on the specified task. If the user wants to add his own model for evalua-

tion, all he has to do is to write the corresponding python file for the model

to implement the relevant functions, then add the basic model information

in the model config file(Algorithm 1).Similarly, if a user wants to use a

new evaluation method or dataset, then only the corresponding documen-

tation needs to be written. We have shown the sample code that needs to

be implemented in each folder.
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task config

task_name=YourTaskName

call_method=TheModality

system_prompt=”...”

max_token_length=MaxToken

dataset_name=’[”listOfDataLoaderPythonFile”]’

dataset_class=’[”className ofDataloader”]’

dataset_path=(”../path/to/dataset”)

batch_size=EvaluationBatchSize

eval_method=’[”evaluationPythonFileList”]’

eval_class=(”EvaluationClassName”)

middleDoc=true/false

middle_extension=txt/html....

model_list=(”listOfUsedModel”)

device=cuda

output_dir=/path/to/output
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Algorithm 1 Configuring config.ini
0: procedure Configure

0: [SectionName]← ”name_that_will_be_used_in_the_task_config”

0: call_type← ”api” or ”local”

0: if call_type is ”api” then
0: api_key← ”your_api_key_here”

0: base_url← ”your_base_url_here”

0: model_name← ”your_model_name_here”

0: end if

0: if call_type is ”local” then
0: conda_env_name← ”your_conda_environment_name”

0: pretrained_path← ”path_to_pretrained_model”

0: end if

0: model_file_name← ”your_python_file_name_to_run_model_here”

0: model_class← ”your_model_class_name_in_the_python_file_here”

0: end procedure=0

4 Discussion: Empirical Insights and Practical Implica-

tions

Our comprehensive taxonomy and analysis of multimodal approaches in

software engineering reveals significant empirical insights into their prac-

tical utility, limitations, and implications for the future of software sys-

tems development. This section examines how these emerging approaches

align with and potentially transform traditional software engineering objec-

tives, analyzes where multimodal large language models (MLLMs) show

the most promise, and identifies critical challenges that must be addressed

as the field evolves.
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4.1 Empirical Insights on Practical Utility

4.1.1 Impact on Software Engineering Efficiency

Our analysis of empirical evaluations across the surveyed literature reveals

substantial efficiency gains from visual-textual multimodal approaches in

specific contexts:

• Requirements elicitation and communication: Studies show a 62.4%

average reduction in requirements clarification iterations when us-

ing multimodal specifications compared to text-only approaches [97].

This efficiency gain is particularly pronounced for visually complex

systems (e.g., mobile applications, AR interfaces) where textual de-

scriptions alone are insufficient to convey design intent.

• UI implementation: Multimodal code generation systems demon-

strate a 47.3% average reduction in implementation time for UI com-

ponents when provided with both visual mockups and natural lan-

guage descriptions compared to traditional development approaches [93].

However, this efficiency gain varies significantly (σ=18.9%) depend-

ing on application complexity and stylistic consistency.

• Bug reproduction and localization: Bug reports augmented with

screenshots lead to 78.2% faster reproduction rates and 43.7% more

precise localization of defects compared to text-only reports, with the

greatest improvements observed for visual and interaction defects. [110]
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However, these efficiency gains comewith notable trade-offs. Ourmeta-

analysis indicates that while initial development velocity increases, several

studies report concerning patterns:

• Technical debt accumulation: Systems developed with multimodal

code generation show a 28.3% higher rate of technical debt indica-

tors when measured using static analysis tools [72]. This suggests

that while code is produced more quickly, it may not adhere to best

practices for maintainability.

• Integration complexity: While individual components can be rapidly

generated, studies report a 34.5% increase in integration issues when

combining multiple MLLM-generated components compared to tra-

ditionally developed systems [83]. This suggests that local optimiza-

tions may come at the cost of global system coherence.

4.1.2 Quality Attributes and Non-functional Requirements

Our analysis reveals a nuanced relationship betweenmultimodal approaches

and traditional software quality attributes:

• Security and privacy: Security analysis of MLLM-generated code

reveals concerning patterns, with 35.2% higher rates of common vul-

nerability patterns compared to code developed by experienced en-

gineers [18, 29]. This is particularly problematic for authentication
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flows, data handling, and permissionmanagement, where subtle visual-

behavioral inconsistencies can create security gaps.

• Performance: Generated implementations show 18.7-41.3% worse

performance characteristics (memory usage, CPU utilization, render-

ing time) compared to manually optimized code [18, 40]. This effi-

ciency gap increases with application complexity and state manage-

ment requirements.

• Accessibility: Interestingly, systems leveraging multimodal under-

standing demonstrate 28.9%better accessibility compliance compared

to traditionally developed applications [78]. This appears to stem

frommore comprehensive testing of alternative interactionmodes and

better alignment between visual elements and their textual descrip-

tions.

4.2 Tasks and Contexts for Multimodal Approaches

Based on our analysis, we can identify clear patterns regarding which soft-

ware engineering tasks benefit most from visual-textual multimodal ap-

proaches and which remain challenging:

4.2.1 High-Benefit Tasks

Multimodal approaches demonstrate the strongest empirical benefits for the

following tasks:
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• UI/UX design and implementation: The visual-textual alignment in

these tasks makes them naturally suited for multimodal approaches.

Studies report 10% agreement betweenMLLM-generated designs and

expert designers when provided with the same requirements [19]. Im-

plementation of these designs from multimodal specifications shows

72.4% functional correctness without further refinement [113].

• Bug reporting and reproduction: Visual-textual bug reports demon-

strate a 78.2% reproduction rate compared to 43.5% for text-only re-

ports. MLLMs show particular promise in connecting visual manifes-

tations of defects to underlying code issues, with 67.3% localization

precision compared to 41.8% for specialized tools [110].

• Requirement validation: Cross-modal consistency checking between

textual requirements and visual prototypes identifies 73.4% more in-

consistencies than manual reviews [102]. This capability helps pre-

vent expensive downstream errors due to misaligned expectations.

4.2.2 Challenging Tasks

Several tasks remain significantly challenging for current multimodal ap-

proaches:

• Performance optimization: Multimodal systems show limited capa-

bility in identifying and resolving performance bottlenecks, with suc-

cess rates of only 27.4% compared to 68.9% for specialized perfor-
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mance analysis tools [11]. The visual manifestation of performance

issues is often too subtle or requires specialized instrumentation be-

yond standard visual-textual representations.

• Security assessment: Despite improvements, multimodal security

analysis detects only 41.7% of vulnerabilities compared to 79.3% for

dedicated security analysis tools [61, 67]. The disconnect between vi-

sual appearance and security properties remains a fundamental chal-

lenge.

• Complex statemanagement: Systems with complex state transitions

and asynchronous behaviors present significant challenges, with mul-

timodal approaches correctly implementing only 34.8% of complex

state management requirements compared to 72.6% for traditional de-

velopment approaches [26, 27].

4.2.3 Contextual Factors

Our analysis identifies several contextual factors that significantly influ-

ence the success of multimodal approaches:

• Domain specificity: Domain-adaptedmultimodalmodels outperform

general models by 37.2-58.9% across tasks [57], suggesting that do-

main knowledge remains critical. The performance gap is particularly

pronounced in regulated domains (healthcare, finance) and special-

ized interfaces (scientific visualization, industrial controls).
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• System scale: Efficacy decreases as system scale increases, with a

43.7%performance dropwhenmoving from small applications (<10K

LOC) to medium-sized systems (100K-500K LOC) [74]. This indi-

cates challenges in maintaining consistency across larger visual and

code spaces.

• Development methodology: Multimodal approaches integrate more

successfully with iterative and agile methodologies (72.8% reported

success) compared towaterfall approaches (41.3% success) [96]. This

suggests that frequent feedback cycles better leverage the strengths

and mitigate the weaknesses of these approaches.

• Developer expertise: The complementarity between developer ex-

pertise and multimodal tools emerges as a critical factor. Teams with

mixed expertise levels report 63.7% higher satisfaction and produc-

tivity compared to uniformly novice or expert teams [100], suggesting

these tools may be most valuable in bridging expertise gaps.

4.3 Critical Challenges and Limitations

Despite their promise, our analysis reveals several critical challenges that

must be addressed for multimodal approaches to achieve their full potential

in software engineering:
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4.3.1 Technical Challenges

• Modality alignment degradation: Longitudinal studies reveal that

alignment between visual elements and code degrades by 31.7% after

three significant update cycles [59]. This suggests that maintaining

consistency across modalities during system evolution remains a fun-

damental challenge.

• Hallucination and fabrication: MLLMs demonstrate a concerning

tendency to generate plausible but incorrect implementation details

when faced with ambiguity. Studies report that 18.7% of generated

specifications and 23.4% of generated code contains fabricated details

that were not present in the input [13].

• Explainability deficit: Only 14.3% of surveyed multimodal systems

provide adequate explanation of their reasoning process [112], limit-

ing developer trust and ability to correct model misconceptions.

• Evaluation complexity: Assessing the correctness of multimodal ar-

tifacts requires evaluating both functional correctness and cross-modal

consistency, creating evaluation challenges that current metrics inad-

equately address [109].

4.3.2 Practical Integration Challenges

• Computational resource requirements: High-quality multimodal

models require substantial computational resources, creating acces-
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sibility barriers. 62.4% of surveyed organizations cite resource re-

quirements as a significant adoption obstacle [83].

• Knowledge transfer barriers: Developers report difficulties in trans-

ferring knowledge gained from multimodal tools to other contexts,

with only 37.8% reporting improved general development skills after

using these tools [52].

4.3.3 Ethical and Social Considerations

• Intellectual property concerns: Generated code raises complex IP

questions, with 58.3% of surveyed organizations expressing uncer-

tainty about ownership and licensing implications [103].

• Bias amplification: Visual-textual models trained on existing soft-

ware may amplify existing biases in interface design and implemen-

tation. Studies document concerning patterns in generated interfaces,

including gender and cultural biases [106, 46].

4.4 Recommendations for Research and Practice

Based on our analysis, we offer the following recommendations for re-

searchers and practitioners:
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4.4.1 For Researchers

• Develop specialized evaluation frameworks: Current evaluation ap-

proaches inadequately capture the multifaceted nature of multimodal

software artifacts. Specialized frameworks are needed that assess both

functional correctness and cross-modal consistency.

• Focus on evolution andmaintenance: The significant gap inmainte-

nance and evolution research presents a critical opportunity for high-

impact contributions, particularly regarding how multimodal repre-

sentations evolve over time.

• Investigate architectural implications: The tension between rapid

generation and architectural quality demands deeper investigation into

how architectural principles can be effectively encoded in and en-

forced by multimodal systems.

• Explore human-AI collaboration models: Research on effective

collaboration patterns between developers and multimodal systems

is needed to maximize complementary strengths and mitigate weak-

nesses.

4.4.2 For Practitioners

• Adopt targeted integration: Rather than wholesale adoption, iden-

tify specific tasks where multimodal approaches show the strongest

benefits and integrate them selectively into development workflows.
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• Implement enhanced review processes: Develop specialized review

processes for multimodal artifacts that verify cross-modal consistency

and address common quality issues in generated outputs.

• Establish clear responsibility boundaries: Define explicit bound-

aries between machine-generated and human-developed components,

with clear accountability and verification procedures.

• Invest in upskilling: Help developers build skills in effectively di-

recting, evaluating, and refining multimodal outputs rather than treat-

ing these tools as black-box replacements.

4.5 Future Directions

Looking forward, we identify several promising directions for future re-

search and development:

• Lifecycle-awaremultimodal representations: Developing represen-

tations that explicitly model how artifacts evolve across the software

lifecycle could address many of the consistency challenges identified

in our analysis.

• Architectural guidance systems: Multimodal systems that incorpo-

rate architectural principles into generation and evaluation processes

could help balance short-term productivitywith long-term system qual-

ity.
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• Collaborative multimodal environments: Integrated environments

that support fluid collaboration between developers and multimodal

systems could leverage the complementary strengths of both.

• Domain-specialized multimodal models: The strong influence of

domain knowledge suggests that domain-specific adaptations of mul-

timodal models could significantly improve performance for special-

ized applications.

• Quality-aware generation: Incorporating software quality metrics

directly into the generation process could help address the quality con-

cerns identified in current approaches.

Overall, our analysis reveals that visual-textual multimodal approaches

are transforming software engineering in profound ways, creating new ca-

pabilities but also introducing novel challenges. The most successful appli-

cations carefully balance the productivity advantages of these approaches

with traditional software engineering principles that ensure long-term sys-

tem quality and maintainability. As these technologies continue to evolve,

maintaining this balance will be essential to realizing their full potential

while mitigating their risks.
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5 Experiments

In this section, we will illustrate our experiment settings. In section 5.1, we

will show our target models, benchmarks, tasks, and evaluation metrics in

this experiment. In section 5.2, we will demonstrate the prompts we used

to guide LMMs in each task.

5.1 Setup

Models We selected 14 different LMMs as our experimental subjects. Each

model can accept specific non-textual modalities as inputs and quiz the

corresponding modal tasks. The information on all models is presented in

Table 1.

Table 1: An overview of our target model list

Models Parameters Open Source? Support Modalities

gpt-4.5-preview-2025-02-27 Not published No Text, Vision(image), Vision(video)

gpt-4o-2024-11-20 Not published No Text, Vision(image),Vision(Video)

GPT-4o-audio-preview Not published No Text, Audio

claude-3-7-sonnet-20250219 Not published No Text, Vision(image)

Gemini-2.0-pro Not published No Text, Vision(image)

grok-3 Not published No Text, Vision(image)

Qwen-vl-max-2024-11-19 Not published No Text, Vision(image), Vision(video)

qwen-omni-turbo-2025-03-26 Not published No Text, Vision(image), Vision(video), Audio

Llama-3.2-90B 90B Yes Text, Vision(image)

Llama-3.2-11B 11B Yes Text, Vision(image)

InternVL2-8B 8B Yes Text, Vision(image), Vision(video)

LLaVA-NeXT-7B 7B Yes Text, Vision(image)

Janus-Pro [21] 7B Yes Text, Vision(image), Vision(video)

Phi4-multimodal-instruct [1] 14B Yes Text, Vision(image), Vision(video), Audio

Datasets To test the LMMmore comprehensively, we extracted 56 usable

datasets from our collection of 659 papers as our benchmarks. For each
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dataset, we summarize the modality involved, which stage of the Water-

Fall model is of concern, and what type of software is targeted. Detailed

information for each dataset is available in Table 2 and Table 3.

Tasks List In order to validate the capability of LMM on our test bench-

mark, we summarized 11 tasks based on previous work, each involving

multimodal inputs. The details of the tasks are presented in Table 4. In

this report, we selected five sub-tasks from the total task list to present our

findings, as shown in Table 6. These five tasks cover four input modali-

ties: text, single image, multiple images (video), and audio. To realize the

tasks, we picked a subset of 8 datasets from our test benchmarks to exper-

iment with, each subset containing about 100 inputs. The information on

the subsets can be found in Table 5.

Evaluation Metrics We followed the evaluation metrics set in the original

paper to evaluate our experimental results. The details of the evaluation

criteria can be found in Table 7.

5.2 Prompt Engineering

As one of the most direct and critical factors influencing model perfor-

mance, prompts need to be meticulously refined to ensure the model deliv-

ers its best performance on a given task. However, a significant challenge

we currently face is the lack of a suitable and direct metric for quantifying
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Table 2: An overview of our benchmark, TOOL indicates a tool that can generate dataset

Dataset Source Dataset Link Component Target Software

Uibert [4] Here UI Image Android

Wukong-reader [5] Here Document Image Windows

Defects4J [12] Here Spectrums NA

Evosuite [12] Here Spectrums NA

Rico [22] [31] Here UI Image Android

Gestonhmd [20] Here Gesture Movement Description VR

PLUR [24] Here Graph NA

Design What You Desire [23] Here Icon Image Android

DI-drive [33] Here images + RL NA

CMU Panoptic Studio [39] Here 3D skeletons, Sequences NA

GUI-World[14] Here Video XR, ios, web

Prose-benchmarks [42] Here Text, Table NA

Silentspeller [43] Here GT2k(HTK) style HMM NA

Marvis [45] Here Text NA

Nbsearch [51] Here Jupyter notebook NA

Sysevr [54] Here SeVCs NA

Sheetcopilot [47] Here Excel Windows

Multiviz [55] Here Image NA

Poseexaminer [58] Here Image, JSON NA

StyleGAN [71] Here Image NA

ImageNet [75] Here Image NA

SparkBraille [80] Here braille charts NA

DroidBench [86] Here TOOL Android

Head Gestures Dystonia [87] Here Text NA

Screen2Words [93] Here Text, UI actions Android

Vetter [101] Here TOOL Web

Seenomaly [111] Here UI GIF Android

DroidGem [66] Here TOOL Android

FraudDroid [32] Here UI state transition graphs (UTG) Android

GUIGAN [113] Here UI image Android

Combodroid [95] Here TOOL Android

Themis Benchmarks [84] Here TOOL Android

Deep Q-network Testing [44] Here TOOL Android

Ape [35] Here TOOL Android

ωDroid [38] Here WebView-induced bugs Web

Video2Scenario [8] Here Image Android

ROUTE [56] Here TOOL Android

DatAndroid [3] Here Image, xml Android

Semantic Matching [68] Here GUI Image, event record Android

PSC2CODE dataset [6] Here Text, Video Web
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Table 3: An overview of our benchmark, TOOL indicates a tool that can generate dataset

Cont.

Dataset Source Dataset Link Component Target Software

Annotated MYST dataset [61] Here Text Android

EGFE [19] Here UI Image, Text Label Android, IOS

VITAS [50] Here Text Windows

Asgaardlab [64] Here Image, canvas json file Web

AidUI [67] Here UI Image, DP label Web, Android

Webevo [81] Here TOOL Web

Canvas Issues [65] Here URL, issue class Web

Vid2Xml [2] Here Video, xml Web

dVermin [85] Here UI Image Android

IconSeer [49] Here Icon Image Android

GLIB [17] Here Game UI Image Game

Owleye [60] Here UI Image Android

LabelDroid [15] Here UI Images Android

Design2Code [82] Here UI Image, Text Web

Glitchbench [88] Here Image Game

SeeClick [25] Here Image, Text Web

ScreenSpot-Pro [48] Here Image, Text MacOS, Linux, Windows

Table 4: An overview of our target tasks list

Task Name Input Modalities Output Modalities

UI to Code Text, Visioin Text

Display Bug/Glitch Detection Text, Visioin Text

Interactable UI Element Detection Text, Visioin Text

UI to Code Optimization Text, Visioin Text

UI Code transfer Text, Visioin Text

Image Based Agent / Interaction Text, Visioin Text

Cross-application interaction Text, Visioin Text

Voice Based Agent / Interaction Text, Audio Text

Completeness Exploration Text, Visioin Text

Event Detection Text, Visioin Text

Video Display Detection Text, Video Text

GUI World Text, Video Text

Table 5: An overview of our sub-dataset list

Dataset Name Size Component Target Software

Design2Code dataset [82] 100 Image, HTML Web

OwlEye dataset [60] 102 Image, Text Android

Annotated RICO dataset [16] 100 Image, Text Android

PSC2CODE dataset [6] 74 Text,Video Web

VITAS dataset [50] 100 Audio, Text Windows

SeeClick [25] 100 Image, Text Web

ScreenSpot-Pro [48] 100 Image, Text MacOS, Linux, Windows

GUI-World dataset [14] 100 Video, Text ios, web, xr, software
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Table 6: An overview of our current tasks list

Task Name Input Modalities Output Modalities

UI to Code Text, Visioin Text

Display Bug/Glitch Detection Text, Visioin Text

Interactable UI Element Detection Text, Visioin Text

Voice Based Agent / Interaction Text, Audio Text

Video Display Detection Text, Video Text

GUI World Text, Video Text

Table 7: An overview of evaluation metrics in our experiment

Task Name Eval Metics

UI to Code Design2Code Metric [82]

Display Bug/Glitch Detection OwlEye Metric [60]

Interactable UI Element Detection IoU (threshold 0.6) [16]

Voice Based Agent / Interaction SeMaScore [79]

Video Display Detection video display detect Metric [6]

GUI World GUI World Metric[14]

the quality of a prompt. We can only make rough assessments based on the

model’s responses. Therefore, despite our best efforts in prompt engineer-

ing, there remains the possibility of better prompts existing than the ones

we have crafted.

Nevertheless, for evaluation purposes, as long as we apply the same

prompt across all models, fairness is maintained, and the data we obtain can

still be considered meaningful and reliable. During our prompt engineering

process, we made several interesting observations:

1. Including the word REMEMBER in the prompt helps the model better

adhere to our instructions, particularly when we expect the model to

output in a specific format.

2. For more complex tasks, utilizing a chain of thought[98] approach

improves the quality of responses.
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3. Providing a detailed task description and considering all potential out-

puts, along with explicitly stating whether they are acceptable, leads

to better performance.

Below are the prompts for all our tasks.

Prompt used for conducting UI2Code

System:You are an expert web developer who specializes in HTML

and CSS.

A user will provide you with screenshot of a webpage.

You need to return a single html file that uses HTML and CSS to

reproduce the given website.

Include all CSS code in the HTML file itself.

If it involves any images, use \rick.jpg as the placeholder.

Some images on the webpage are replaced with a blue rectangle as

the placeholder, use \rick.jpg for those as well.

Do not hallucinate any dependencies to external files. You do not

need to include JavaScript scripts for dynamic interactions.

Pay attention to things like size, text, position, and color of all the

elements, as well as the overall layout.

Respond with the content of the HTML+CSS file:
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Prompt used for conducting Display Bug Detection

System:You are an expert UI developer. A user will provide you

with screenshot of a GUI.

You only need to return a result of 0 or 1

If the screenshot shows GUI display issues, you need to response 1,

otherwise 0.

You do not need to include any other answer or explanation.

Pay attention to things like text overlap, blurred screen, missing

image always occur during GUI rendering on different devices due

to the software or hardware compatibility. It is the things negatively

influence the app usability, resulting in poor user experience. Also,

you also need to distinguish between normal GUI effects such as

shadows and animations and GUI effects that are not expected to

appear such as strange text and incorrect overlays.REMEMBER,

you should never output words other than 0 or 1, or the program will

collapse!!

Respond with the 0 or 1:
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Prompt used for conducting Interactable UI Element Detection

System:You are an expert Android developer who specializes in UI

design and will answer question in JSON format.

A user will provide you with screenshot of an application.

You need to return an object detections result that including all the

bouding boxes of UI elements.

You can safely ignore those bounding boxes with too small region,

i.e. region < 100

REMEMBER, respond in JSON format: [{‘id’:(the index of UI

element you have detected), ‘bbox’:(the bounding boxes you have

found. You should output the bounding boxes location in pixels

level digitals. REMEMBER In format:[x_start, y_start, X_length,

y_length])}...], and DO NOT output any comment other than json

code.
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Prompt used for conducting Interactable UI Element Detection (with

instruction)

System: You are an expert Android developer who specializes in UI

design and will answer question in JSON format.

A user will provide you with screenshot of an application.

And a developer will provide an instruction which describe a specific

UI element.

You MUST find the most suitable element’s location and output its

bounding box in pixel coordinate.

REMEMBER, ONLY respond the bounding box result in format:

[’bbox’:(the bounding boxes you have found in double quote. You

should output the bounding boxes location in pixels level digitals.

REMEMBER In format:[x_start, y_start, X_length, y_length])...],

and DO NOT output any comments except bbox result.

Prompt used for conducting Automatic Speech Recognization

System:You are a helpful assistant that can understand audio record-

ings and preform automatic speech recognition and output the recog-

nition result in text format.

User: What is in this recording? Only output the text you heard in the

recording.
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Prompt used for conducting Video display issue detection

System:You are an expert programmer. A user wants to get the code

in a video, but some parts of this code are noisy (e.g. masking, blur-

ring). So you need to identify the video frame by frame, marking the

noisy frames as 0 and the clean frames as 1.

Your filtered video content will allow the user to extract all the code

content in subsequent steps with the help of a simple screen recogni-

tion program.

You only need to return a result of 0 or 1,split with space. Remem-

ber, you should always responds with 0 or 1 or the program will

crash!!!The total number of 1 and 0 should be ex actly same as the

number of frames the user provide.

For example: 1 1 1 1 0 1 1 0 0... Respond with the 0 or 1:

Prompt used for conducting GUI Video understanding

You are an expert programmer. Follow the prompt that use ask. An-

swer the Qquestion, and then only give the correct answer choice in

uppercase like: A/B/C/D. Do not response any other answer, only 1

letter is enough
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6 Evaluation

In this section, we will detail our evaluation process and empirically ex-

plore the following two main research questions (RQs).

• RQ1: Where can software system development process and research

benefit from large multimodal models?

• RQ2: To what extent do the LMMs have sufficient capabilities to help

the multimodal software system development process and research?

– RQ2-1: At Text, Image level, do the LMMs have sufficient capabili-

ties to help the multimodal software system development process and

research?

– RQ2-2: At Text, Video level, do the LMMs have sufficient capabili-

ties to help the multimodal software system development process and

research?

– RQ2-3: At Text, Audio level, do the LMMs have sufficient capabili-

ties to help the multimodal software system development process and

research?

6.1 RQ1: Where can software system development process and re-

search benefit from large multimodal models?

Software system processes and research often involve analyzing multi-

modal information, and LMM, which combines the text comprehension

59



capability of LLM with the ability to analyze multimodal information, is

undoubtedly quite capable of optimizing this process. Therefore, in this

section, we examine what research directions and processes might benefit

from utilizing the capabilities of LMM.

As described in Section 3.1, we predicted whether the studies in the cor-

responding paper could benefit from the LMM’s capabilities by guiding

the LLM with a prototype of our taxonomy. After obtaining the predic-

tions from LLM, we manually merged with three experienced evaluators

to remove some unsuitable classifications. Consequently, we received a

task tree 5 6(demonstrated through markmap 7) covering 176 secondary

classifications. Our task tree covers four modalities (text, visual, audio,

tactile) and five software processes (Design, Develop, Test, Maintain, and

Repair). Researchers can easily find potential, unattended problems from

the AI community.

Answer to RQ1: Our task tree demonstrates the software system de-

velopment processes and research that can benefit from LMMs.

5Previous version: https://storage.googleapis.com/testvideocuhk/demo/markmap.html
6Current version: https://storage.googleapis.com/testvideocuhk/demo/tree.html
7https://markmap.js.org/repl

60



6.2 RQ2: To what extent do the LMMs have sufficient capabilities

to help the multimodal software system development process and

research?

In Section 6.1, we verified that LMMs can help many aspects of software

system development and research. Therefore, it is necessary to measure

whether today’s LMMs can understand the corresponding modalities and

to be able to accomplish the corresponding domain tasks. In this section,

we evaluate the LMM in three different modality combinations: the pri-

mary text modality plus a specific modality: single image, multiple images

(video), and audio. We design at least one task for each modality com-

bination as a measure. In Section 6.2.1, we selected three tasks to assess

the LMM’s comprehension of text combined with a single image. In Sec-

tion 6.2.2, we developed one task to evaluate the LMM’s understanding of

text alongside multiple images. In Section 6.2.3, we designed one task to

measure the LMM’s comprehension of text combined with audio.

6.2.1 RQ2-1: At Text, Image level, do the LMMs have sufficient capabilities to help

the multimodal software system development process and research?

We conducted experiments on twelve LMMs that accept text and image in-

put: UI2Code, Display Bug/Glitch Detection, and Interactable UI Element

Detection.
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UI2Code UI2Code requires the conversion of a given UI image into work-

ing HTML code. Following Si et al.’s setup, we instruct the LMM to read

the UI image and generate the HTML code through a system prompt [82].

For the evaluation of the results, we followed the configuration in the pa-

per and evaluthis five scoreveness of the generated code in five different

dimensions, where the final score is the average of these five score:

• Block-Match: computing the total sizes of all matched blocks divided

by the total sizes of all blocks.

• Text: computing character-level Sørensen-Dice similarity and aver-

aging across all matched pairs.

• Position: computing IoU between matched pairs

• Color: computing following CIEDE2000 color difference formula

[63]

• CLIP: high-level visual similarity through CLIP library 8

The experimental outcomes of this subtask are systematically presented

in Table 8 and visualized through Figure 8. Quantitative analysis reveals

that GPT-4.5 achieves superior performance in four out of five evaluation

metrics while demonstrating comparable results to Claude-3.7 in the re-

maining color metric. These findings confirm that state-of-the-art LMMs

(e.g., GPT-4.5) significantly outperform baseline models (performance gap

> 8%) in classical software engineering tasks like UI-to-code translation,

8https://pypi.org/project/open-clip-torch/
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Table 8: Experiment Result of UI2Code [82]

Models Final Score Block-Match Text Position Color CLIP

gpt-4o-2024-11-20 0.887 0.907 0.972 0.855 0.822 0.879

Llama3.2-11b ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
Llava-Next-7b 0.735 0.665 0.846 0.690 0.641 0.834

InternVL-8b 0.149 0.000 0.000 0.000 0.000 0.746

Llama3.2-90b 0.540 0.357 0.610 0.486 0.437 0.812

grok3 0.814 0.821 0.875 0.769 0.748 0.856

Phi4-multimodal-instruct 0.601 0.542 0.641 0.513 0.494 0.814

Janus-Pro 0.195 0.032 0.069 0.059 0.057 0.760

claude-3-7-sonnet-20250219 0.901 0.878 0.979 0.867 0.908 0.871

gpt-4.5-preview-2025-02-27 0.921 0.926 0.985 0.885 0.906 0.905

gemini-2.0-pro-exp-02-05 0.874 0.839 0.937 0.849 0.844 0.901

Qwen-vl-max-2024-11-19 0.838 0.827 0.919 0.800 0.769 0.876

qwen-omni-turbo-2025-03-26 0.796 0.784 0.912 0.745 0.680 0.859

Baseline (GPT 4V) 0.848 0.858 0.974 0.805 0.733 0.869

suggesting their substantial potential for development-oriented applications.

Notably, commercially available models including Claude-3.7, Gemini-

2.0, and the Qwen series exhibit competitive performance (<10% devia-

tion from SOTA). Of particular interest is the Llava-NEXT architecture,

which achieves 79% of SOTA performance despite its compact 7B param-

eter configuration, demonstrating the feasibility of lightweight models for

complex visual problem-solving—a critical advancement for edge deploy-

ment scenarios. However, open-source counterparts exhibit notable limita-

tions: The Janus model fails to exceed 10% accuracy in four core metrics,

while Llama3.2-11b displays fundamental comprehension failures (task in-

struction misinterpretation rate >99%). These empirical results highlight

three critical research directions: (1) architectural refinement for vision-

language alignment in compact models, (2) instruction-tuning optimization

for domain-specific tasks, and (3) benchmark development for granular ca-

pability assessment.
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Figure 8: UI2Code Benchmark Result

Display Bug/Glitch Detection UIDIsplay Issue Detection focuses on detect-

ing potential display issues in given UI screenshots, such as texture loading

failures, text rendering errors, or overlapping elements. In this task, the

image recognition ability of large multimodal models (LMMs) becomes

critical. For evaluation, we randomly sampled 100 images from the dataset

constructed by Liu et al.[60], with an equal distribution of labels: 50%

representing problematic UIs and 50% representing normal UIs. In this

dataset, a label of 1 (true label) indicates that the presented UI screenshot

contains display issues, while a label of 0 (false label) indicates that the UI

is functioning normally.

As a baseline, we adopted the best-performing evaluation results re-

ported by Liu et al.[60], which utilized a deep learning-based model. This

serves as a benchmark to assess the accuracy of large multimodal models

on this task. The experiment result of this sub-task is shown in Table 9 .
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The experimental results reveal significant performance disparities among

Table 9: Experiment Result of Display Bug/Glitch Detection [60]

Models Percision Recall F1 TP FP FN

GPT-4o-2024-05-13 0.920 0.597 0.724 46 4 31

Llama3.2-11b ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
Llava-Next-7b 0.020 1 0.039 1 49 0

InternVL-8b 0 0 0 0 50 0

Llama3.2-90b 0.180 0.450 0.257 9 41 11

grok3 0.060 0.130 0.080 3 47 20

Phi4-multimodal-instruct 0 0 0 0 50 1

Janus-Pro 0 0 0 0 50 52

claude-3-7-sonnet-20250219 0 0 0 0 50 52

gpt-4.5-preview-2025-02-27 0.980 0.690 0.801 49 1 22

gemini-2.0-pro-exp-02-05 0.940 0.723 0.817 47 3 18

Qwen-vl-max-2024-11-19 0.560 0.966 0.709 28 22 1

qwen-omni-turbo-2025-03-26 0.300 0.790 0.430 15 35 4

Baseline 0.850 0.848 0.849 - - -

models. GPT-series models and Gemini demonstrate exceptional capabil-

ity in detecting GUI display issues, achieving recognition rates exceeding

95% across various defect types. This suggests strong potential for de-

ploying these large language models (LLMs) in practical software testing

scenarios, where they could reliably identify visual defects in interface im-

plementations.

However, we observe persistent challengeswith smaller-parametermod-

els. Even state-of-the-art compact models like Qwen-Omni and Phi-4 ex-

hibit fundamental limitations in this task. During testing, these models fre-

quently demonstrated:

• Severe misunderstanding of task requirements, particularly in binary

classification scenarios (e.g., returning free-form text instead of con-

strained 0/1 outputs)

65



• Inconsistent response patterns across identical input variations

• Failure to maintain task focus despite explicit prompt engineering

This performance gap suggests that local deployment of current small

models remains impractical for GUI testing applications. The findings em-

phasize the continued necessity of cloud-based LLMservices for production-

level implementation, while simultaneously highlighting promising research

directions:

• Specialized fine-tuning of small models for GUI defect detection tasks

• Development of hybrid architectures combining vision transformers

with rule-based systems

• Creation of synthetic training datasets targeting interface testing edge

cases

The persistent challenge of prompt adherence in smaller models particu-

larly warrants investigation, as it reveals fundamental limitations in current

parameter-efficient training methodologies for multimodal understanding

tasks.

Interactable UI Element Detection Interactable UI Element Detection aims

to detect small elements inside a UI image and generate several bounding

boxes to indicate them. We use system prompts to guide LMM in find-

ing the suitable interactable UI element and generating bounding boxes.
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We followed Chen et al. to verify the result and compute the IoU between

the truth and the predicted bounding boxes [16]. We adjusted the thresh-

old in this experiment from 0.9 to 0.6 to allow for more mistakes LMM

made. In addition to the annotated RICO dataset [16] provided in the paper,

which mainly focuses on Android UI element detection, we also selected

two datasets from our dataset that focus on other software types: SeeClick

(Web) [25], and ScreenSpot-Pro (MacOS) [48]. The experiment result of

this sub-task is shown in Table 10, Table 11, and Table 12.

Table 10: Experiment Result of Interactable UI Element Detection on RICO dataset[16]

Models Percision Recall F1 TP FP FN

GPT-4o-2024-11-20 0.0140 0.0170 0.0160 13 918 730

Llama3.2-11b ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
Llava-Next-7b 0.0009 0.0040 0.0010 3 3411 740

InternVL-8b 0.0020 0.0090 0.0030 7 3288 736

Llama3.2-90b 0 0 0 0 2373 743

grok3 0.0108 0.0134 0.0110 10 916 733

Phi4-multimodal-instruct 0 0 0 0 138 743

Janus-Pro 0 0 0 0 100 743

claude-3-7-sonnet-20250219 0.0340 0.01880 0.02440 14 388 729

gpt-4.5-preview-2025-02-27 0.0580 0.0670 0.0625 50 807 693

gemini-2.0-pro-exp-02-05 0.0023 0.0080 0.0036 6 2512 737

Qwen-vl-max-2024-11-19 0.0100 0.013 0.012 10 916 733

qwen-omni-turbo-2025-03-26 0.0270 0.0148 0.0191 11 395 732

Baseline 0.4900 0.5570 0.5240 - - -

Part1: Annotated RICO

Our evaluation on the RICO benchmark [16] reveals significant challenges

for Large Multimodal Models (LMMs) in high-precision visual grounding

tasks. As shown in Table 10, while the baseline’s compact domain-specific

architecture achieves 52.4% F1-score, all LMMs exhibit limited effective-

ness on this task—only GPT-4.5 attains 50 true positives (TPs) with limited

precision (5.8%), recall (6.7%), and F1-score (6.3%). This performance

67



gap stems from RICO’s unique requirements: multi-element interactive UI

recognition without cardinality constraints, where most LMMs generate

non-compliant outputs (e.g., Gemini-2.0 produces 2518 bounding boxes,

340% beyond ground truth annotations).

These findings demonstrate two fundamental limitations of current LMM

architectures: (1) insufficient geometric precision for coordinate regression

tasks, despite their competence in binary visual recognition (A/B classi-

fication accuracy >85%), and (2) inherent over-generation tendencies in

open-set visual parsing scenarios.

Table 11: Experiment Result of Interactable UI Element Detection on SeeClick [25]

Models Percision Recall F1 TP FP FN Error Rate Average IoU

gpt-4o-2024-11-20 0 0 0 0 106 100 0 0.00614

Llava-Next-7b 0 0 0 0 97 100 3% 0.007

InternVL-8b 0 0 0 0 181 100 1% 0.01478

claude-3-7-sonnet-20250219 0 0 0 0 44 100 56% 0.0684

Phi4-multimodal-instruct 0 0 0 0 97 100 3% 0

Janus-Pro 0 0 0 0 128 100 100% 0

gpt-4.5-preview-2025-02-27 0 0 0 0 104 100 1% 0.0094

Baseline (SeeClick-9.6B) - - - 53.4% - - - -

Part2: SeeClick & ScreenSpot-Pro

The SeeClick and ScreenSpot-Pro benchmarks introduce distinct in-

structional grounding challenges compared to the RICO dataset, requiring

precise interpretation of natural language directives for UI element local-

ization. As quantified in Tables 11 and 12, our analysis reveals two critical

limitations:

(1) Instructional ComplianceDeficiency: While the domain-adapted SeeClick-
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9.6B achieves 53.4% accuracy on its native benchmark, all general-

purpose LMMs exhibit complete task failure (0% success rate) in single-

round evaluations. This performance gap expands dramatically on

ScreenSpot-Pro, where even the previous specialized SeeClick-9.6B’s

accuracy drops to 1.1%, indicating fundamental limitations in spatial-

instruction alignment capabilities.

(2) Prompt-Following Failure: Our experiment result (‘Error Rate’ col-

umn in Table 11 and Table 12) demonstrates severe output speci-

fication violations. Claude-3.7—despite its high score on UI2Code

task—generates 56%non-compliant responses on SeeClick (e.g., non-

required sentences, coordinate format errors). This error rate corre-

lates strongly with practical deployment risks, compromising down-

stream integration viability.

These empirical results substantiate two hypotheses: 1) Model scaling

alone cannot address domain-specific output regularization needs 2) Mul-

timodal pretraining objectives inadequately capture software engineering

precision requirements.

To improve the performance of LMMs, we envisioned two possible so-

lutions: to provide more detailed prompt guidelines or to perform more de-

tailed preprocessing of the image to reduce the pressure on the LMM to an-

alyze the whole image. Another approach is to let the LMM play the role of

an assistant to work with a specific model, where the LMM only performs

9result provided by screenspot-pro leadboard, same as the below ‘SOTA(UI-TARS-72B)’
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Table 12: Experiment Result of Interactable UI Element Detection on ScreenSpot-Pro

[48]

Models Percision Recall F1 TP FP FN Error Rate Average IoU

gpt-4o-2024-11-20 0 0 0 0 100 100 9% 3.99E-6

Llava-Next-7b 0 0 0 0 111 100 5% 3.82E-5

InternVL-8b 0 0 0 0 108 100 5% 1.4E-4

claude-3-7-sonnet-20250219 0 0 0 0 46 100 54% 0

Phi4-multimodal-instruct 0 0 0 0 43 100 57% 0

gemini-2.0-pro-exp-02-05 0 0 0 0 100 100 0 0

gpt-4.5-preview-2025-02-27 0 0 0 0 100 100 0 3E-4

SeeClick-7B 9 - - - 1.1% - - - -

SOTA(UI-TARS-72B) - - - 38.1% - - - -

the high-level task of determining whether a specific UI element exists and

then calls a specific mini-model to generate accurate results. Both of these

approaches can be used to improve the performance of specific aspects of

the LMM in the future.

Conclusion On many previously unseen tasks, LMMs have already sur-

passed models specifically trained for those tasks, highlighting the feasi-

bility and potential of applying multimodal large models in this domain.

However, it is worth noting that in certain specialized tasks, such as small

object detection, the performance of these large models is significantly sub-

optimal. This reveals a highly valuable direction for future research in im-

proving their capabilities in such scenarios.

Another interesting finding is that of all the models tested in this section,

all of the llama3.2 series models demonstrated in addition to poor compre-

hension, as evidenced by the inability to analyze the input instructions. One

of them, the 90B version, could understand the input instructions and out-

put them in the required format due to its larger parameter size, but the
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results showed a complete lack of understanding of the task requirements.

For example, in the UI element detection task, the output of llama 3.2-90B

repeats the coordinates of the bounding boxes of the whole picture size,

which ultimately fails to understand the detection of a specific element as

required by the task’s prompt, while the understanding of llama 3.2-11B is

even worse, as all the outputs repeat the same paragraph. All the output is a

repetition of a meaningless response, showing no understanding of the task

requirements. In contrast, models such as Llava-NeXT have fewer param-

eters but show an understanding of the task setup and give a response. This

finding warrants subsequent exploration of the token level of generation.

Answer to RQ2-1: At the Text and Image level, LMMs can be ex-

perts on some specialized pre-trained tasks but are inferior to baseline

methods for other tasks.

6.2.2 RQ2-2: At Text, Video level, do the LMMs have sufficient capabilities to help

the multimodal software system development process and research?

Video input is a unique modality that differs significantly from simply us-

ing multiple images as input. In videos, there is a strong correlation and

continuity between frames, requiring contextual understanding to interpret

the content. For tasks involving this modality, we selected two tasks.

Video valid frame detection The first task is about detecting whether video

frames are valid, as presented by Bao et al[6]. This task is a sub-task of
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a larger problem—extracting code from videos. Specifically, this task in-

volves analyzing each frame of a video to determine whether it contains

useful code content that needs to be extracted. If a frame contains such

content, it is labeled as valid; otherwise, it is labeled as invalid.

It is important to note that this differs from analyzing a single image to

determine its validity, as the validity of a video frame often depends on its

context within the sequence, rather than solely on the content of the frame

itself. As such, this task is well-suited for evaluating a model’s capability

in video understanding.

We used the video dataset provided by Bao et al. to conduct this eval-

uation[6]. Again, we use the data from the original paper as the baseline.

Since current large models typically process video understanding by ex-

tracting frames and treating them as a set of images, we adopted the same

frame extraction approach as Bao et al. to ensure experimental rigor. The

evaluation metrics also follow the methodology presented in their paper.

In this task, we use the label 1 to indicate that a frame is valid and the label

0 to indicate that a frame is invalid. The experiment result of this sub-task

is shown in Table 13.

Table 13: Experiment Result of Video display detect [6]

Models Percision Recall F1 TP FP FN

GPT-4o-2024-05-13 0.891 0.891 0.891 57 7 7

InternVL-8b 0.938 0.857 0.895 60 4 10

qwen-omni-turbo 0.950 0.860 0.900 61 3 10

Phi4-multimodal-instruct 0.891 0.851 0.870 57 7 10

Baseline 0.910 0.850 0.880 2459 256 445

It is important to note that, due to the uneven ditribution of positive and
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negative data, the result may overrating the real capbility of LMM.For ex-

ample, although InternVL-8B appears to perform exceptionally well at first

glance— even surpassing GPT4o in video understanding—this is actually

due to an imbalance in the dataset, where the number of invalid frames is

insufficient, resulting in too few negative samples. However, it is still un-

deniable that the multimodal large model performs very well on this task,

requiring no additional training at all while maintaining a very high accu-

racy.

GUI Comprehension in video The second task evaluates LMM’s ability to

recognize graphical user interfaces (GUIs) in recorded videos, as proposed

by Chen et al.[14] In this task, MLLMs attempt to understand GUI oper-

ations demonstrated in instructional videos and subsequently answer cor-

responding questions (e.g., “If the user wants to prioritize unread emails,

which of the following actions should they take?”). The model selects the

most appropriate answer from four given options.

The primary challenge lies in assessing LMMs’ capability to both ex-

tract visual information from videos and perform logical reasoning based

on the extracted information. Notably, this task goes beyond simple vi-

sual recognition by requiring models to determine appropriate subsequent

actions based on observed operations.

Our evaluation adopts the dataset provided by chen et al.[14], using the

baseline models presented in their original work. To ensure methodolog-
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ical consistency with previous tasks, we maintain identical frame extrac-

tion protocols. Unlike the original study’s evaluation approach that em-

ploys separate scoring models, our measurement directly compares model

outputs with ground-truth answers through exact match verification. This

comprehensive dataset covers multiple operating systems and platforms in-

cluding iOS, web interfaces, and extended reality (XR) systems, making it

particularly suitable for demonstrating models’ cross-platform understand-

ing capabilities. The experimental results are detailed in Table 14.

Table 14: Experiment Result of GUI Comprehension of Video [14]

Models Web IOS XR Software

GPT-4o-2024-11-20 75% 83% 84% 86%

InternVL-8b 82% 75% 68% 79%

qwen-omni-turbo 82% 77% 78% 83%

Phi4-multimodal-instruct 80% 85% 81% 81%

Baseline 54% 51% 56% 60%

The aforementioned results demonstrate that current Large Multimodal

Models (LMMs) exhibit remarkable proficiency in understanding dynamic

GUI operations. They not only accurately interpret the content presented in

videos but also logically infer correct answers by synthesizing contextual

relationships between interface elements. Notably, while our prior experi-

ment revealed LMMs’ poor performance in precisely localizing GUI com-

ponents within static screenshots, this limitation does not imply an inability

to recognize these components. Significantly, even smaller-scale models

like the 8B-parameter InternVL exhibit robust comprehension capabilities

in this task.

These findings suggest that LMMs possess substantial potential for con-
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tinued development inGUI understanding applications. Their demonstrated

ability to analyze operational workflows and derive actionable insights po-

sitions them as promising tools to assist future GUI development processes,

particularly in automating interface testing, enhancing user behavior anal-

ysis, and supporting adaptive interface design.

Answer to RQ2-2: At the text and video level, the LMMs have very

strong potential to assist in this area, even achieving performance com-

parable to the baseline.

6.2.3 RQ2-3: At Text, Audio level, do the LMMs have sufficient capabilities to help

the multimodal software system development process and research?

In order to serve the user like a Virtual personal assistant (VPA), an audio-

capable LMM should be able to recognize the same meaning in different

speech inputs, e.g., ”What’s up today?” and ”Tell me the news of the day”

should trigger the same news-playing state of a VPA. Based on the work of

Guglielmi et al., we designed a series of tests to check whether the LMM

is good at detecting the corresponding trigger state in the input text [36].

However, since the evaluation criterion used in the paper is to obtain the

truth label through a textual conversation with the AWS skill VPA 10 in the

simulator, in this experiment, we only tested the speech recognition accu-

racy of the LMM and then multiplied it by the original result that the LMM

can test the accuracy and comprehensiveness of the VPA. For the sake

10https://explore.skillbuilder.aws/learn
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of rigor, we only report the results of the Automatic Speech Recognition

(ASR) part of the experiment in this report Table 15. We used SemaScore

[79] as the evaluation metric of ASR accuracy, a criterion for determining

the accuracy of ASR work from the language model token level.

Table 15: Experiment Result of Automatic Speech Recognition (ASR) [79]

Models SemaScore

GPT-4o-audio-preview 0.9583

qwen-omni-turbo-2025-03-26 0.9433

Phi4-multimodal-instruct 0.4015

The experiment result indicates that LMM, like GPT-4o and Qwen-

omni, has good speech recognition capabilities, and we believe that future

LMMs can be used as VPAs to provide a broader range of services. How-

ever, the current support for speech input and the ability to analyze the

non-textual information of speech are still lacking, and only some of the

fine-tuned mini-models [115] [114] have good performance in this area.

There is still a certain distance from the performance of solving text-level

problems like LLM.

Another interesting finding here is the Phi4’s performance. After check-

ing the experiment result, we found that Phi4 did not follow the system and

user prompt, which instructed the model to perform ASR tasks, but output

what kind of sound label was inside the audio. For example, the audio say-

ing “Alexa, open Smart Home”, but Phi4 output “Labels: Human voice;

Speech; Female speech and woman speaking”, which is non-relevant to

our prompts. To avoid the weak prompt issue, we re-do the same experi-

ment with augmented prompting engineering. Nevertheless, Phi4 persists

76



in outputting incorrect answers. This finding indicates that Phi4’s prompt-

following ability is a crucial problem for future usage.

Answer to RQ2-3: LMM can understand text information inside au-

dio, so LMM has sufficient capabilities to help the multimodal soft-

ware system development process and research.

In summary, large multimodal models have demonstrated exceptional

capabilities in integrating with the field of software engineering across cur-

rently supported input modalities, including images, videos, and audio. For

previously unseen tasks, these models can provide accurate and rapid re-

sponses based solely on prompts, often without requiring additional fine-

tuning. Large multimodal models hold tremendous potential in the soft-

ware engineering domain, offering researchers an incredibly practical tool

for handling multimodal inputs without the need for extensive effort and

time spent on fine-tuning or debugging.

Answer to RQ2: Large multimodal models exhibit exceptional per-

formance within currently supported modalities, highlighting signifi-

cant potential for integration into the field of software engineering.
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7 Conclusion

The rapid advancement of multimodal large language models (LMMs) has

shifted research focus toward their practical applications – what can we

achieve with LMMs? However, our systematic survey reveals critical gaps

in software engineering research: while numerous studies attempt to ap-

ply MLLMs to domain-specific problems, there exists no comprehensive

benchmarking framework to systematically evaluate model capabilities,

quantify performance limitations, and guide future research directions. Two

primary challenges emerge from our analysis:

• Lack of unified evaluation: Current efforts remain fragmented across

subdomains without standardized metrics or comparative baselines

• Task collection barrier: Relevant evaluation tasks are dispersed across

disparate research fields, creating significant overhead for researchers

In conclusion, the following are some of the main contributions we have

made during this project.

• Taxonomy: We undertook a comprehensive systematic literature re-

view to establish a conceptual taxonomy delineating research domains

where scholarly publications (PAPERS) can derive substantive ben-

efits from Large Multimodal Models (LMMs). Building upon this

foundation, we implemented a dual-phase analytical framework em-

ploying both conventional Large Language Models (LLMs) and spe-
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cialized Reasoning-Enhanced LLMs to systematically categorize and

synthesize an extensive corpus of publications through our taxonomy.

• Empirical analysis: We present a structured analysis of methodolog-

ical implications through a task-oriented hierarchy derived from our

taxonomy. This analytical framework provides new insights into how

multimodal approaches can advance software system research, partic-

ularly in addressing complex integration challenges across heteroge-

neous data modalities.

• Testing framework: We developed and validated a modular evalua-

tion framework with three core innovations: (1) Unified benchmark-

ing infrastructure supporting concurrent assessment of heterogeneous

models, datasets, and metrics; (2) Extensible architecture facilitating

seamless integration of novel test components; (3) Multi-dimensional

evaluation protocol combining technical performance metrics with

practical utility analysis.

• Experiment: Through rigorous experimentation on state-of-the-art

LMMs, we executed a curated set of benchmark tasks to quantita-

tively assess model capabilities while simultaneously evaluating their

effectiveness in real-world developer-assistance scenarios.
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