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1 Introduction

In the contemporary landscape of healthcare in the United States, medi-

cal errors are identified as the third leading cause of mortality, responsi-

ble for over 250,000 deaths each year[43]. Diagnostic inaccuracies stand

out within this grim statistic, posing significant challenges to patient

safety[22, 45]. The integration of computer systems with medical imaging

has been a pivotal advancement, fostering the development of automated

tools aimed at enhancing the accuracy of clinical diagnoses[39]. The ad-

vent and progression of Artificial Intelligence (AI) in medical imaging

have marked a significant leap forward, refining these tools to meet in-

dustrial standards. The spectrum of techniques employed ranges from

basic image processing to sophisticated neural networks, each contribut-

ing to the field’s evolution[61, 49, 29, 3].

The immense potential within this domain has not gone unnoticed by ma-

jor technology firms, propelling the AI healthcare market to a valuation

of USD 16.3 billion in 2022, with a pronounced emphasis on diagnostic

imaging products[14]. Pioneers such as IBM Watson Health and Google

DeepMind have deployed AI-driven tools in leading hospitals, showcasing

their efficacy in critical tasks like breast cancer screening, often surpass-

ing human experts[44, 50].

However, the journey is not without its pitfalls. For instance, discrep-

ancies between IBM Watson for Oncology’s assessments and clinicians’

decisions in gastric cancer cases underscore the limitations of current

systems[32]. Given the stakes involved in medical diagnostics, ensuring

the reliability of AI tools is of utmost importance. This has sparked a

demand for robust testing frameworks, similar to those employed in soft-
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ware and other AI applications, like autonomous vehicles[73]. Traditional

testing approaches for computer vision software face challenges when

adapted to the medical imaging diagnosis context, due to its inherent

complexities and the critical nature of its applications[81, 47, 65, 26, 69].

The dearth of effective testing frameworks for medical imaging diagnosis

software underscores the intricacy of this challenge. The creation of test-

ing oracles necessitates a profound understanding of medical and clinical

knowledge. Additionally, the prevalent image generation models, pri-

marily trained on natural image datasets, are inadequate for producing

realistic medical images essential for accurate testing.

The expansion of AI into medical diagnostics now includes multimodal

models capable of interpreting diverse data types, offering a holistic

analysis beyond single-modality capabilities. However, testing these ad-

vanced models demands a sophisticated approach that considers their

complexity and the nuances of interpreting multimodal data.

This report introduces MedTest, an innovative metamorphic testing frame-

work devised for the analysis of medical image diagnosis software. This

framework encompasses both state-of-the-art academic models and ex-

tensive multimodal models. Through a pilot study involving over 2,500

images from three hospitals, we have identified nine metamorphic rela-

tions across four artifact categories: lightness, motion, object, and non-

object. These relations have been incorporated into MedTest to create

test cases reflecting real-world clinical scenarios, thereby ensuring the

framework’s relevance and effectiveness in evaluating medical image di-

agnosis applications.

Our application of MedTest to commercial and state-of-the-art diagnostic

tools has revealed substantial variances in performance when confronting
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original versus artifact-introduced images, highlighting areas for poten-

tial enhancement. Our ongoing research will delve into the challenges

and prospects of multimodal models, with the aim of significantly con-

tributing to AI’s role in medical diagnostics.

The primary contributions of this paper are manifold:

• Introduction of MedTest, a novel and comprehensive testing framework

tailored for validating medical image diagnosis software, marking a

significant progression in the testing of medical imaging software.

• Execution of a pilot study with 2,553 real-world medical images, identi-

fying 9 metamorphic relations crucial for MedTest’s operationalization.

• Application of 9 distinct perturbation types across 5 datasets, totaling

over 2,052 segmentation images and 3,022 classification images, result-

ing in the generation of 42,644 artifact-embedded images.

• Comprehensive evaluation of MedTest, demonstrating its utility across

various commercial and academic state-of-the-art models. Our findings

indicate that MedTest can reliably identify errors in these systems and

substantially improve the robustness of leading algorithms, thereby

advancing medical imaging technology.

2 Background

2.1 Medical Image Analysis

For decades, various medical imaging modalities such as computed to-

mography (CT), magnetic resonance imaging (MRI), positron emission

tomography (PET), mammography, ultrasound, and X-ray have been in-

strumental in early disease detection, diagnosis, and management[6]. The

task of interpreting these images has traditionally been reserved for hu-
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man experts, like radiologists and physicians. Nonetheless, the subjective

nature of interpretation and the risk of human fatigue have prompted the

healthcare sector to lean towards computer-assisted analysis. Although

computational analysis in medical imaging has lagged behind the techno-

logical advancements in imaging modalities, the recent surge in machine

learning applications within this domain marks a significant leap forward.

The crux of machine learning in medical image analysis lies in the iden-

tification or development of features that accurately represent the un-

derlying patterns in the data. Traditionally, these features were manu-

ally defined by experts, leveraging their specialized knowledge. This ap-

proach, however, presented barriers to non-experts, hindering the wider

adoption of machine learning in medical research. Recent trends have

shifted towards employing sparse representations, either through pre-

defined dictionaries or those derived from training data. Rooted in the

principle of parsimony, common across several scientific fields, this ap-

proach advocates for simpler explanations of phenomena. Techniques

like sparsity-inducing penalization and dictionary learning have proven

effective in feature representation and selection in medical image analy-

sis, albeit with a reliance on relatively simplistic architectures for pattern

identification[56, 71, 58, 12].

Contrastingly, deep learning transcends these constraints by embedding

the feature engineering process within the algorithmic learning phase.

This paradigm shift allows for autonomous identification of informative

features with minimal human intervention, streamlining the feature ex-

traction process[54]. By removing the dependency on manual feature

design, deep learning enables broader engagement with advanced analyt-

ical techniques, fostering innovation and discovery in medical diagnostics
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and treatment planning.

2.2 Metamorphic Testing

Metamorphic testing is a robust testing strategy that effectively tack-

les the oracle problem and has seen extensive application across different

software engineering domains[10]. It is grounded in the identification and

utilization of Metamorphic Relations (MRs), which define expected rela-

tionships between sequences of input-output pairs during software tests.

By transforming an initial test case into a related one through a specific

rule and comparing the outcomes, this method allows for the evaluation

of software performance even when the exact output is unknown.

For example, in testing a software implementation of the sinx function,

one might use the mathematical identity “sin(π− x) = sinx” as a meta-

morphic relation. This principle allows for the validation of the software’s

accuracy in computing sine values without needing the exact expected

result, simply by comparing the sine of an angle and its supplementary

angle[55].

In the realm of AI, metamorphic testing has gained traction for its abil-

ity to uncover errors in AI systems by creating and assessing innova-

tive MRs. It has been applied in diverse areas, including bioinformat-

ics, where Chen et al.[11] demonstrated its applicability, and in machine

learning algorithms like k-Nearest Neighbors and Naive Bayes, with Xie

et al.[75] establishing specific MRs for performance assessment. Further,

Dwarakanath et al.[16] developed MRs for evaluating image classifiers

based on SVM and ResNet architectures. Metamorphic testing has also

been applied in autonomous driving software testing by Zhang et al.[81],

who utilized GANs to generate varied driving scenarios for system eval-
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uation. These developments underscore the expanding utility of meta-

morphic testing in validating the robustness and reliability of complex

AI-driven software systems.

3 MedTest

In this section, we commence with an insightful pilot study, which delves

into an analysis of authentic medical images that have been sourced

directly from hospital environments (as detailed in Section 3.1). This

preliminary exploration sets the stage for the subsequent introduction

of nine metamorphic relations (MRs). These relations, derived and in-

spired by the findings of the pilot study, represent a significant step in

understanding and evaluating medical image analysis processes.

We have meticulously categorized these nine MRs into four distinct groups,

each based on the type of perturbation they involve. The first category

focuses on lightness perturbations, where we examine how variations in

image brightness and contrast can impact medical image analysis (dis-

cussed in Section 3.2). The second category, motion perturbations, ex-

plores the effects of simulated motion artifacts such as blurring, which

can occur during image capture in dynamic clinical settings (covered in

Section 3.3).

The third category revolves around object perturbations (Section 3.4),

where the emphasis is on alterations related to the objects within the

medical images. This includes changes in the size, shape, or position of

clinically relevant features within the image. The final category, non-

object perturbations (Section 3.5), addresses modifications that do not

directly involve the primary objects of interest in the images. This could

include alterations to background elements or other aspects of the image

9



that, while not directly related to the primary diagnostic features, may

still influence the overall analysis process.

Each of these categories plays a pivotal role in understanding how dif-

ferent types of perturbations can affect the accuracy and reliability of

medical image analysis, thereby contributing to the enhancement of di-

agnostic processes and tools in the healthcare sector. This structured

approach allows for a comprehensive exploration of the complexities in-

volved in medical image analysis and paves the way for developing more

robust and reliable diagnostic methodologies.

3.1 Pilot Study

In our research, we set out with the ambitious goal of developing a set of

MRs tailored to the field of medical imaging. These MRs are designed

on the premise that a ’seed’ test case (an original medical image) and its

’perturbed’ counterpart (the same image but with added artifacts) should

yield consistent classification labels or similar segmentation masks when

analyzed by medical image analysis software. To ensure that these test

cases are both effective and relevant, we have established a set of criteria

for the perturbations incorporated in our MRs, which include:

• Clinical-semantic-preserving : This criterion ensures that the perturbed

test cases should maintain the integrity of the analysis results, matching

those of the original seed image.

• Realistic: The perturbations should closely mirror the types of artifacts

encountered in actual clinical settings.

• Unambiguous : Clarity and precision in definition are key, ensuring that

the perturbations are well-defined and easily interpretable.

To establish a foundation for designing these perturbations, we embarked
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on a pilot study focusing on the types of artifacts typically encountered

in medical images used in real-world clinical scenarios. This involved

an extensive review of 103 endoscopic videos sourced from three hospi-

tals. From these videos, we extracted 2, 553 individual images. We then

engaged ten highly qualified annotators, each holding at least a postgrad-

uate degree in medicine, to meticulously label these images. These anno-

tators underwent thorough training, including guidelines, test tasks, and

sessions specifically focused on endoscopic images and the identification

of artifacts. During the annotation process, each image was evaluated to

determine the presence of any artifact. The consensus among the anno-

tators was used to establish the final human label, resulting in a dataset

of 1, 199 endoscopic images identified as containing artifacts.

Upon detailed examination of these artifact-laden images, we identified

and summarized 9 distinct methods of perturbation, commonly encoun-

tered in clinical settings. These methods are categorized from different

perspectives: 1) those related to endoscopic imaging cameras, including

lightness and motion perturbations; and 2) those pertaining to the visual

content within the endoscopic images, such as object and non-object per-

turbations. Building on these insights, we formulated nine correspond-

ing MRs, each based on a specific perturbation method. As shown in

Table 1, we introduce 4 different perturbation groups, i.e. lightness, mo-

tion, objects, and non-objects, where each group includes at least one

perturbation type. Fig. 1 demonstrates the visual perturbed images of

different perturbation types. According to these MRs, the diagnostic la-

bel assigned by the medical analysis software to a perturbed endoscopic

image (i.e., the generated test case) should align with the label given to

the original, unperturbed seed image. Through this approach, we aim

to rigorously test and validate the robustness and reliability of medical
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Table 1: Categorization of Perturbation Types in Medical Images: A Pilot Study.

Perturbation Group Type Description

Lighting

Saturation Over-saturation caused by excessive lighting

Contrast Resulting from underexposure or obstructions in the field of view

White Balance Color distortions due to presence of white objects

Specularity Reflections resembling a mirror-like surface

Motion Blur Blurring from hand movements or rapid camera motion

Objects

Instrument Presence of surgical instruments in the image frame

Feces Incomplete colon cleansing in patients

Blood Visible bleeding from wounds

Non-objects Text Embedded clinical information related to patients

Perturbation Group Lightness Motion
Perturbation Type Saturation Contrast White balance Specularity Blur

Example
Image

Perturbation Group Objects Non-object
Original Seed Image

Perturbation Type Instrument Feces Blood Text

Example
Image

Figure 1: The visualization of the different perturbations groups.

image analysis software, ensuring its effectiveness even in the presence of

common clinical artifacts.

3.2 MRs with Lightness Perturbations

These MRs leverage the lightness perturbations that imitate the various

illumination conditions during the endoscopic camera imaging.

3.2.1 MR1-1 Saturation

To address saturation issues in endoscopic imaging, a key concern is the

proximity of the light source to colon tissue. Overexposure can occur

when the light source is too close, leading to saturation artifacts. Our

method for simulating this effect involves applying variable levels of sat-
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uration to endoscopic images to mimic different degrees of overexposure.

This is achieved by adjusting the saturation of an image using a random

factor selected from a predefined range [s1, s2].

The process utilizes the torchvision library functions that control bright-

ness, contrast, and saturation. We define a fluctuation range and ran-

domly select a saturation factor within this range, with a bias towards

values greater than 1 to replicate the overexposure effect. This factor is

then used to modulate the saturation level, where a value of 1 indicates

no change, values less than 1 decrease saturation, contrast, and bright-

ness, and values greater than 1 increase them, thereby simulating the

impact of light source proximity on the colon tissue.

3.2.2 MR1-2 Contrast

In the context of endoscopic examinations, the distance between the colon

tissue and the light source, or obstructions, can result in underexposure.

To simulate this scenario, our method focuses on altering the contrast of

endoscopic images. Beginning with a seed endoscopic image, we establish

a contrast range denoted as [c1, c2]. A value is then randomly selected

from this range, which is used to adjust the image’s contrast level.

This technique parallels the approach used for saturation adjustments,

but with an inclination towards lower levels of contrast, brightness, and

saturation, corresponding to the underexposed nature of the images. By

carefully modulating the contrast in this manner, we aim to authentically

replicate the conditions of underexposure commonly encountered during

endoscopic procedures.
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3.2.3 MR1-3 White Balance

In endoscopic imaging, we often observe color biases, predominantly man-

ifesting as green or purple hues. The likely reason for these color biases

could be attributed to the white balance settings of the endoscopic cam-

era or the lighting conditions within the endoscopic environment, which

may not always accurately represent the true colors of the tissue.

To simulate these white balance discrepancies in endoscopic images, we

selectively modify the RGB channels. For images with a green bias, we

reduce the red and blue channels by approximately half of their original

values, maintaining their proportional relationship. Similarly, for images

exhibiting a purple color bias, we decrease the values of both the red and

green channels proportionately. This method allows us to realistically

replicate the color distortions that might occur due to white balance

issues in endoscopic imaging.

3.2.4 MR1-4 Specularity

The observed phenomena indicate that the manifestation of spots, at-

tributable to specular reflection, predominantly occurs in a compact re-

gion as opposed to being dispersed throughout the entire image. Our

initial approach involved identifying clusters as potential sites for spot

generation. Subsequently, we introduced circle, ellipse, and distorted

circle as the potential shape for generating white spots. Spots are gener-

ated at random locations near the cluster centers, with randomly chosen

radius bounded by λ times image height in order to control the size of

spots comparing with the image size. After trials and error, we found

that the elliptical spots can achieve a best effect, creating most realistic

specularity on the endoscopy images. The elliptical spots are decided by
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the following formula:

(x− x̄)2

(a+ ϵ)2
+

(y − ȳ)2

(b+ ϵ)2
= 1 (1)

where x̄ and ȳ denote the center of the ellipse, and a and b are the two

axes of the ellipse respectively. The additional ϵ acts as a term to avoid

zero denominator due to the randomized selection of parameters. The

following process involves the application of Gaussian blur to facilitate

their seamless integration into the image. Additionally, we integrated

these spots with a gray mask, derived from our algorithm, to modu-

late their intensity, particularly ensuring they do not exhibit excessive

brightness in the darker regions of the image.

3.3 MRs with Motion Perturbations

3.3.1 MR2-1 Blur

We have noted that possible camera movement and tissue movement

when the image is captured can often cause motion blur in images. To

replicate this phenomenon, we employed Gaussian Blur, a technique that

involves convolving each pixel of the image with a Gaussian function. The

blurring degradation is defined as following:

x′ = x ·GB(rB, σB) + n (2)

where GB is a Gaussian filter with a radius rB and a spatial constant

σB, and n is the random Gaussian noise added to the image. [57] In

our implementation, we first generate a random number in the range of

(5, 15] as the σ value. Based on the chosen σ, we randomly chose odd

integers within the range of σ
2 to σ for the width and height of the kernel

of the Gaussian filter, respectively. This process effectively blends each
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pixel with the information from its neighboring pixels, creating a blurring

effect reminiscent of a weighted average of the surrounding area. By using

Gaussian Blur, we can simulate the kind of blur typically introduced by

camera motion, enhancing the realism of our simulated images.

3.4 MRs with Object Perturbations

3.4.1 MR3-1 Instrument

In this study, we utilized the Kvasir-Instrument dataset [28], which com-

prises 590 images featuring medical instruments and their corresponding

segmentation masks. Our initial step involved extracting these instru-

ments from the original images and documenting their positions. Sub-

sequently, we employed our algorithm to identify an optimal target area

for each instrument, ensuring it met the following criteria:

• Avoidance of overlap with the Polyp.

• Preservation of a position and orientation akin to those in the original

image.

• Maintenance of an appropriate size, neither excessively large nor

small.

Finally, we repositioned the extracted instruments into these target ar-

eas. To enhance realism, we applied Gaussian blur and integrated our

blending algorithm, ensuring a natural appearance of the instruments in

their new context.

3.4.2 MR3-2 Feces

In this section, we employed fecal matter images extracted from the

Kvasir dataset [30] using Meta’s Segment Anything algorithm [34]. Sim-

ilar to the aforementioned method used for instruments, we replicated
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this approach, albeit without constraints on the positioning and orienta-

tion of the feces. Crucially, we calculated a brightness ratio by comparing

the fecal matter with the target image, enabling us to adjust the feces’

brightness for a more coherent integration. Furthermore, to prevent ex-

cessive brightness in particularly dark areas of the target image, we again

utilized the gray mask previously mentioned in the context of specular

reflections, providing an additional layer of realism to the adjusted fecal

images.

3.4.3 MR3-3 Blood

In this phase, we focused on the blood images and their associated masks

from the EAD2020 dataset [53, 2, 1]. Our methodology mirrored the

approach previously described for pasting feces, with an emphasis on

modifying various lighting parameters. This adjustment was crucial to

enhance the natural appearance of the blood when integrated into the

target images, ensuring a realistic representation in the context of the

dataset.

3.5 MRs with Non-Object Perturbations

3.5.1 MR4-1 Text

Our analysis revealed a consistent pattern in the text displayed on endo-

scopic images, as illustrated in figure 2. Although the specific position

and content of the text varied across images, it predominantly comprised

temporal data and device parameters. To replicate this characteristic,

we employed the ImageDraw method, generating text that adhered to

the observed pattern through random generation, thereby maintaining

consistency with the original text format in the images.
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Figure 2: Pattern of the text in Kvasir dataset

4 Experimental Settings

4.1 Datasets

In our endeavor to thoroughly validate MedTest, we have utilized a di-

verse array of datasets as seed data, drawing upon the extensive work of

previous researchers who have meticulously collected, labeled, and made

available various types of data for research applications. Our evaluation

spanned a variety of tasks, encompassing segmentation, Visual Ques-

tion answering (VQA), and classification. For each of the task, we con-

structed a separate dataset for the tailored experiments. In the following

sub-sections, we will discuss the tasks and the corresponding datasets

separately.

4.1.1 Segmentation

For the purpose of evaluating medical diagnostic systems in the segmen-

tation task, we have specifically chosen the most widely used datasets

in the field of polyp segmentation, all of which are publicly accessible.

These include CVC-300 [68], CVC-ClinicDB [5], CVC-ColonDB [60], and

Kvasir [30]. There are in total 2052 images combined.
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CVC-300, a subset of the larger EndoScene dataset, is a relatively com-

pact dataset comprising 60 images, each with dimensions of 578 × 500

pixels. In addition to CVC-300, the EndoScene dataset also encompasses

images from the CVC-ClinicDB dataset. To maintain clarity and pre-

cision in our analysis, we have treated these two datasets as distinct

entities in separate experiments, meticulously recording and analyzing

their respective results [38].

CVC-ClinicDB, also known as CVC-612, is a more extensive collection,

featuring 612 publicly available polyp images sourced from 25 different

colonoscopy videos. The images in this dataset are of the size 384× 288

pixels, offering a distinct set of characteristics for analysis.

The CVC-ColonDB dataset is composed of 15 different endoscopy se-

quences, totaling 380 polyp images. Each image in this dataset shares

the same resolution as the CVC-300 dataset, specifically 578×500 pixels.

Lastly, the Kvasir dataset, a more recent addition to the field, stands out

due to its large scale, diverse endoscopy scenes, and varied polyp shapes.

This diversity renders the segmentation task particularly challenging.

The images in Kvasir vary considerably in size, ranging from 332 × 487

to 1920 × 1072 pixels. This variability not only presents a significant

challenge for medical diagnosis software but also adds complexity to our

method of generating simulated artifacts [30] [38]. The selection of these

datasets for our validation process reflects our commitment to ensuring

that MedTest is rigorously tested against a wide spectrum of real-world

scenarios, thereby ensuring its robustness and applicability in diverse

clinical settings.
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4.1.2 Visual Question Answering

To assess the capabilities of multimodal large language models (MLLMs),

we utilized the ImageCLEFMEDVQA Dataset[27]. This dataset, derived

from the Hyper Kvasir dataset[30], includes 182 images that were also

part of our segmentation dataset to maintain consistency in testing. For

each image, participants answered 18 specific questions, as detailed in

Table 2.

Question Number Question
1 Are there any abnormalities in the image?
2 Are there any anatomical landmarks in the image?
3 Are there any instruments in the image?
4 Have all polyps been removed?
5 How many findings are present?
6 How many instruments are in the image?
7 How many polyps are in the image?
8 Is there a green/black box artefact?
9 Is there text?
10 Is this finding easy to detect?
11 What color is the abnormality?
12 What color is the anatomical landmark?
13 What is the size of the polyp?
14 What type of polyp is present?
15 What type of procedure is the image taken from?
16 Where in the image is the abnormality?
17 Where in the image is the anatomical landmark?
18 Where in the image is the instrument?

Table 2: Summary of Questions in VQA Experiment

However, questions 2, 10, 12, and 17 were either irrelevant to our objec-

tives or too vague to provide meaningful insights, leading to their exclu-

sion from our analysis. Moreover, in scenarios where we manually added

text or instruments to an image, we adjusted the ground truth responses

for certain questions accordingly: for the question Is there text?, the

answer was changed to Yes; for Are there any instruments in the

image?, it was also adjusted to Yes; and for How many instruments

are in the image?, the answer was amended to n+1, where n represents
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the initial count. Due to the random placement of instrument artifacts

by MedTest, the responses to the question Where in the image is the

instrument? were deemed unreliable.

4.1.3 Classification

Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging

device that gastroenterologists use to investigate gastrointestinal tract

disorders, which also constitutes an important scope of medical images

that collect information from organs or other structures inside the hu-

man body. As for the classification task, we selected the commonly-used

datasets in previous implementation of classification models on wireless

capsule endoscopy images based on our literature review on previous

studies. CAD-CAP [15] and KID [35] are two datasets that constitute

the training and testing data of all the chosen classification methods for

evaluation.

In order to keep consistency, we follow the design in the implementation

of AGDN model [76] to split the data and construct the training and

testing subsets.

All the involved methods for evaluation focus on the classification of

three different types of images, namely normal images, vascular lesion

frames and inflammatory frames, where the latter two are considered to

reflect the sub-healthy status of human body. The fused dataset consists

of 3022 images (1812 CAD-CAP + 1210 KID), including 1300 normal

images (600 CAD-CAP + 700 KID), 888 vascular lesions (605 CAD-

CAP + 283 KID), and 834 inflammatory frames (607 CAD-CAP + 227

KID). The original resolution of CAD-CAP and KID are 576× 576 and

360×360 with black margins over 32 and 20 pixels separately. Therefore,
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we resized all the images to 512× 512 for consistency.

In the experiment design of AGDN, the whole fused dataset were ran-

domly split for four times for effectiveness and robustness. Based on this,

we chose one of the split as our dataset, which includes 600 images (200

images for each class) as the testing set and the remaining 2422 images

as the training set. [76]

4.1.4 Pre-processing

To ensure a uniform approach in our analysis, we initially undertook

the task of standardizing the dataset. This involved pre-processing both

the images and their corresponding segmentation masks to a consistent

size of 512× 512 pixels, a dimension commonly accepted and utilized by

various medical diagnosis algorithms. This standardization is crucial for

maintaining consistency across different datasets and ensuring that the

input to the medical diagnosis algorithms is uniform, thus allowing for

more accurate comparisons and evaluations.

A notable characteristic of most endoscopy images is the presence of a

black frame around the edges, which typically lacks a consistent pattern.

This irregularity renders traditional image processing techniques, such

as thresholding and region growing, ineffective for their extraction. To

address this challenge, we developed a specialized model specifically de-

signed to extract these black frames from the images. This extraction

is vital, as it enables us to mask out any potential synthesized artifacts

that may appear on these black edges, thereby ensuring the integrity and

realism of the images used in our tests.

In addition to frame extraction, our pre-processing model plays a crucial

role in assessing the brightness levels across different areas within the
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images. By employing a sigmoid function, we generate gray masks that

reflect these brightness variations. These gray masks are then strate-

gically used in the process of artifact addition. They allow for precise

adjustments in color and brightness of the synthesized components, ef-

fectively preventing the creation of images with overtly unnatural or ar-

tificial effects. This meticulous approach to pre-processing and artifact

integration is fundamental to our objective of producing realistic test

cases that accurately mimic real-world clinical scenarios. It ensures that

our testing environment closely replicates the conditions under which

medical diagnosis software is typically employed, thus providing a robust

and reliable framework for evaluating the performance and efficacy of

these algorithms.

4.2 Software and Models Under Test

We use MedTest to test commercial medical image diagnosis software

products and SOTA academic models. Commercial software products

include ChatGPT[46] and Gemini[63], on which we want to test the per-

formance on the VQA task on polyp-related diagnosis given endoscopic

images as the input. SOTA academic models can be divided into three

parts centering segmentation, classification and VQA task. For the seg-

mentation task, our tested objects consist of PraNet [17], SANet [74],

TGANet [66] and SSFormer [70], all targeting the polyp segmentation

task on endoscopy images. Regarding the classification task, we found

relevant implementations mainly on categorizing WCE images on normal,

vascular lesion and inflammatory type. Therefore, we carefully investi-

gated previous studies and select DSI-Net [82] and AGDN [76] as the

models to be tested on. As for the VQA task, we tested on the two well-

known MLLMs, GPT-4V and Gemini, which has the ability to respond
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to both the text and image data.

4.2.1 Segmentation

PraNet

PraNet model is a well-established model on polyp segmentation task and

paved the path for the later ones. The special design on PraNet is that

it uniquely combines high-level feature aggregation via a Parallel Partial

Decoder (PPD) and detailed segmentation through Reverse Attention

(RA) modules. This approach can enable the model to effectively handle

the variability in polyps’ size, color, and texture, as well as the often-

blurred boundaries in colonoscopy images. PraNet has demonstrated

excessive performance over existing methods in terms of segmentation

accuracy, generalizability, and real-time efficiency. Because it is one of

the initial influential model, we decided to investigate deep into it and

evaluate its robustness.

SANet

Besides, we explored the Shallow Attention Network (SANet), also de-

signed to address key challenges in polyp segmentation but with more

unique designs and implementation to handle detailed problems in pre-

vious studies. SANet innovatively tackles issues like inconsistent color

distributions in samples, degradation of small polyps due to repeated

downsampling, and imbalance between foreground and background pix-

els. Based on this idea, the model employs a color exchange operation to

reduce overfitting by decoupling image content from color, enhancing fo-

cus on shape and structure. It also introduces a shallow attention module

to filter background noise in shallow features, which helps preserve small

polyps more effectively. Additionally, the probability correction strategy
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during inference improves model performance, especially for small polyps.

SANet’s extensive testing across five benchmarks shows its outstanding

capability in polyp segmentation task, suitable for us to evaluate.

TGANet

We also investigated the TGANet model, which focuses on enhanced

polyp segmentation in colonoscopy images using the auxiliary text input

as additional information. The model aimed at the challenges posed by

the variability in polyp size and number, which can impact the effective-

ness of segmentation models. Targeting this, TGANet innovatively em-

ploys text-guided attention mechanisms, leveraging attributes like polyp

size and count through additional text input to improve segmentation

accuracy. The text input containing the polyp information serves as an

auxiliary classification task and further enhance model’s learned repre-

sentations of important features within the image. After that, a feature

enhancement module and multi-scale feature aggregation within the net-

work are present to allow for more precise adaptation to varying polyp

characteristics. With these implementation, especially the module to

incorporate text description information, the model is expected to have

better performance because of the excessive learning of image feature rep-

resentations. As is describe in their inference part, text input is unnec-

essary, so we leverage this novel design to test our evaluation framework

MedTest.

SSFormer

We also explored the SSFormer model, which also targeted the challenges

imposed by the complex and diverse structure of polyps image and the

varying shapes of poly. These problems, together with the indistinctive

bound between polyp and other categories, make the whole segmentation

25



task difficult and the learning on existing dataset prone to over-fitting.

This model stands out by incorporating a pyramid Transformer encoder,

significantly enhancing the model’s generalization capabilities. The Pro-

gressive Locality Decoder (PLD) in it emphasizes local features while

integrating them into global features. This can effectively address the

common issue of attention dispersion in Transformer models. Such deli-

cate design improves the detail processing ability of the neural network

and allows the establishment of its SOTA performance in polyp segmen-

tation tasks. Because this model demonstrates exceptional learning and

generalization abilities on unseen datasets, we want to test whether its

performance is robust enough on our MedTest.

4.2.2 Visual Question Answering

GPT-4V

Introduced by OpenAI, GPT-4V represents a significant advancement in

the field of large language models (LLMs) with integrated vision capa-

bilities. This model demonstrates a profound understanding of visual

content, enabling it to perform VQA tasks across a diverse spectrum.

Although OpenAI has cautioned that GPT-4V’s reliability in medical

diagnosis is limited, the model’s potential application in healthcare and

related fields is noteworthy. Specific details regarding the model’s ar-

chitecture and training methodologies remain proprietary and have not

been disclosed to the public.

Gemini

Developed by Google, the Gemini model has been reported to surpass

the capabilities of GPT-4V in several key areas, including but not limited

to performance metrics and task-specific benchmarks. Notably, Gemini
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distinguishes itself through its exceptional multimodal capabilities, with

a particular emphasis on visual processing and interpretation. This en-

hancement in visual modality allows Gemini to engage with and analyze

image-based content with remarkable efficiency and accuracy.

4.2.3 Classification

AGDN

The Attention Guided Deformation Network (AGDN) for Wireless Cap-

sule Endoscopy (WCE) image classification is a pioneering approach de-

signed to address the inherent challenges of identifying small and often

indistinct lesions within the gastrointestinal tract. By innovatively em-

ploying a two-branch architecture that utilizes attention maps to guide

the deformation of input images, AGDN achieves precise amplification

of lesion regions, which significantly enhances lesion visibility and classi-

fication accuracy. This network introduces the Third-order Long-range

Feature Aggregation (TLFA) modules and the Deformation based At-

tention Consistency (DAC) loss, which together capture long-range de-

pendencies, aggregate contextual features, and refine attention maps

for improved diagnostic performance. Through comparing experiments,

the study demonstrated to outperform existing models on public WCE

datasets. AGDN represents a substantial advancement in automated

endoscopic analysis, offering new avenues for accurate and efficient gas-

trointestinal disease diagnosis. Its innovative mechanism of focusing on

lesion-specific features while minimizing background interference posi-

tions AGDN as a key model within our evaluation framework, under-

scoring its potential to transform clinical practices through enhanced

diagnostic precision.
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DSI-Net

Moreover, we explored the Deep Synergistic Interaction Network (DSI-

Net), which introduces a novel approach to the joint classification and

segmentation of endoscopic images, specifically targeting the challenges

in gastrointestinal tract disease diagnosis. Uniquely integrating a classi-

fication branch, a coarse segmentation branch, and a fine segmentation

branch, DSI-Net leverages deep synergistic interactions between these

tasks to significantly enhance performance. Central to its innovation are

the Lesion Location Mining module and the Category-Guided Feature

Generation (CFG) module. The Lesion Location Mining module refines

attention on lesion regions by accurately identifying neglected lesion ar-

eas and eliminating misclassified background areas, which aids in precise

classification. On the other hand, the CFG module utilizes category

prototypes from the classification branch to generate category-aware fea-

tures, thereby improving segmentation accuracy. Furthermore, DSI-Net

incorporates a task interaction loss to ensure consistency between classifi-

cation and segmentation tasks, which helps to enhance the mutual guid-

ance and improving the overall diagnostic capabilities. Demonstrating

superior performance over state-of-the-art methods on public datasets,

DSI-Net marks a significant advancement in computer-aided diagnosis

systems for gastrointestinal diseases. Its approach to leveraging comple-

mentary information across different tasks not only improves diagnostic

accuracy but also highlights the potential for synergistic interactions in

medical image analysis. Considering its novel contributions and excep-

tional performance, DSI-Net was a prime candidate for our evaluation

framework, aiming to assess its robustness and applicability in real-world

diagnostic scenarios.
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5 Evaluation: Research Questions

To rigorously assess the efficacy of MedTest, our methodology has been

applied to SOTA algorithms in various medical image diagnosis tasks fo-

cusing on endoscopy and colonscopy image inputs. Relevant tasks mainly

consist of segmentation and classification, where the segmentation task

involves segmenting polyps in images and the classification task is ded-

icated to categorizing medical images into normal and disease-detected

ones. Additionally, we extended this evaluation to include several com-

mercial software products derived from MLLMs on the VQA task, in-

cluding GPT-4V and Gemini.

Based on our design of experiments, this section is dedicated to exploring

and providing insights into four critical Research Questions (RQs), which

are as follows:

• RQ1: Does MedTest generate test cases that are diagnostically consis-

tent with the original seed images and maintain a realistic appearance?

• RQ2: Is MedTest effective in identifying incorrect outputs produced

by medical image diagnosis software and algorithms?

• RQ3: Can the test cases generated by MedTest be utilized to enhance

the performance of medical image diagnosis software?

• RQ4: What are the various factors that influence MedTest’s perfor-

mance and how do they do so?

The prerequisite of identifying the effectiveness of our method MedTest

is to ensure that the result is convincing and reliable. Therefore, we

need to guarantee that our test cases after perturbations are clinically

equivalent to the original seed images as well as reflective to realistic

29



situations and artifacts present in actual clinical scenarios. Therefore,

we designed RQ1 mainly aiming to validate whether the perturbations

introduced in the test cases preserve the clinical diagnosis and realism,

as assessed by human annotation.

The key point in the evaluation is to determine whether our method

MedTest possess the capability to attack and incur hidden errors in our

selected medical image diagnosis systems. Hence, in RQ2, we discussed

in detail the approaches we conducted to reveal the robustness and con-

sistency when models encounter corner cases constructed by our pertur-

bations, together with the description of the chosen tasks and models.

Furthermore, the discovery of errors naturally leads to their rectification.

Intuitively, we hope to see our method MedTest can be further utilized

in refining the performance of our evaluated software. Therefore, RQ3

is dedicated to discussing how the generated perturbed dataset can be

leveraged to improve the performance of how the medical image diagnosis

tools react when they are faced with potentially error-triggering corner

cases.

Besides previous concerns, RQ4 is utilized to illustrate the potential in-

fluence of different factors present in the overall experiment process on

the performance of MedTest, given the fact that our method is relatively

a pioneering approach in evaluating the diagnostic systems in the inter-

disciplinary field of biomedicine. This sub-sections aims to draw a closer

look into how various elements in both the perturbation generation and

experiment setting can affect the efficacy of MedTest in showcasing its

ability in the medical diagnosis model evaluation.

To sum up, we hope to investigate deeper into the proposed research

questions above and provide a comprehensive insight into our method
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and whole evaluation process through answering to the questions. In the

effort, we can further ensure that we not only validate the effectiveness

of MedTest but also to contribute significantly to the advancement of

medical image diagnosis technology.

6 RQ1: Are the test cases generated by MedTest

diagnosis-identical to seed images and realistic?

In this study, MedTest is designed with the specific objective of creating

test cases that not only yield identical diagnostic results compared to

their corresponding seed images but also closely resemble the types of

artifacts encountered by medical professionals in real-world clinical set-

tings. To assess the effectiveness of MedTest in achieving these goals, we

designed an evaluation based on human annotations.

First of all, we conducted thorough literature review on related medical

studies and summarized the observed patterns inside the medical images.

Based on the results, we generated a sample set containing all the pertur-

bation method. These images were then evaluated by professional expert

in medicine through surveys. Upon our survey result, we can conclude

that images generated from MedTest can be regarded as realistic and

clinically equivalent to real-world scenarios. It underscores the high de-

gree of fidelity and realism that MedTest achieves in simulating clinical

artifacts, as well as its effectiveness in maintaining diagnostic consistency.

This built up the foundation of our further experiments on applying our

method MedTest to the actual evaluation of medical diagnosis software

and models, ensuring its readiness for practical application in clinical

environments.
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Answer to RQ1: The test cases generated by MedTest are

diagnosis-identical to seed images and realistic.

7 RQ2: Can MedTest find erroneous outputs re-

turned by medical image diagnosis software?

MedTest aims to automatically generate test cases to find potential errors

in current medical image diagnosis software. Hence, in this section, we

evaluate the number of errors that MedTest can find in the outputs of

commercial software and academic models.

We first input all the original seed images and obtain the original output

for each software product or model under test. Then we conduct pertur-

bations in MedTest’s MRs described in section 3 on the seed image to

generate test cases. Finally, we use the generated test cases to validate

the software products and academic models.

In particular, we check whether the generated test cases have identical

diagnosis results as the corresponding seed images. If not, the diagnosis-

identical perturbation affects the diagnosis of the software products or

academic models, indicating erroneous outputs.

To evaluate how well MedTest does on generating test cases that trig-

ger errors, we calculate Error Finding Rate (EFR), which is defined as

follows:

EFR =
Number of misclassified test cases

Number of generated test cases
∗ 100%. (3)
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7.1 Segmentation

Segmentation task on medical images is a computer vision task that in-

volves dividing an medical image into multiple segments, where different

segments represent separate objects or structures of interest. Medical im-

age segmentation aims to provide an accurate representation of diverse

information present in the image, which can be leveraged for further

diagnosis and quantitative analysis. Therefore, the segmentation task

contributes an important division in medical diagnosis and ensuring the

robustness of SOTA methods in this area is of great significance.

7.1.1 Evaluation Criteria

In our testing on polyp segmentation task, we apply two similarity co-

efficients, Dice score and IoU score, which are proved to be simple and

useful summary measures of spatial overlap and can measure the accu-

racy in image segmentation [84]. A test case is considered misclassified

when its scores, both Dice and IoU, are 50% less than the scores tested

on the seed image. The Dice score is given by

Dice(Ŷ , Y ) =
2× |Ŷ ∩ Y |
|Ŷ |+ |Y |

=
2× TP

(TP + FP ) + (TP + FN)
.

(4)

And the IoU score is given by

IoU(Ŷ , Y ) =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

=
TP

TP + FP + FN
.

(5)
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In both equations 4 and 5, the Ŷ stands for the predicted segmentation

mask output by the models, while Y is the ground truth segmentation

mask. Here, the TP , FP , and FN are all calculated pixel-wise on the

masks.

Based on these two similarity coefficients, we define a segmentation out-

put case as ”missclassified” or ”error” when difference between the per-

formance of the seed image and that of the synthesize image to be larger

than a proportion of the performance of the seed image. We set the pro-

portion to be a threshold t. Our definition is therefore by the following:

OriginalScore− ArtifactScore

OriginalScore
> t (6)

where OriginalScore represents the Dice/IoU score calculated from the

seed image and ArtifactScore represents the Dice/IoU score calculated

from the synthesized image with specific artifact. In the table showed in

later sections, we recorded the statistics for choosing both 50% and 25%.

Regarding the EFR, we found that it can be analyzed in different dimen-

sion, regarding different artifacts, datasets and models. The EFR varies

in different experiment settings and we will use the following sections to

illustrate the influence of above factors, with our proposed explanations

for the situations. The EFR and performance with regard to different

models will be discussed in the following section, while the varying situ-

ation of EFR concerning different datasets and artifacts will be further

illustrated in later section 10.

7.1.2 Model Performance

Though the models selected for evaluation are targeting the same task,

i.e. polyp segmentation, and there are all accepted by top conferences
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or have high citations, vary in their emphasis on different components in

the network designs. Therefore, the difference between their robustness

should be discussed.

PraNet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 0.0 0.0 0.0 1.1 1.3 0.1 0.3
Feces 0.0 0.0 0.0 0.0 3.7 5.0 0.0 0.2

Instrument 3.3 5.0 1.1 2.6 7.9 9.8 0.1 0.3
Spot 0.0 0.0 0.2 0.2 1.8 1.8 0.1 0.1

Saturation 3.3 6.7 0.7 0.7 4.2 4.5 2.3 3.7
Contrast 0.0 0.0 0.3 0.3 4.0 4.2 0.3 0.6

White Balance 3.3 3.3 7.4 10.9 15.0 16.9 2.9 4.9
Blur 1.7 1.7 5.2 8.0 7.9 11.3 7.4 11.7
Text 0.0 0.0 0.5 0.5 2.4 2.6 0.0 0.1

Table 3: EFR(%) of PraNet Model on Various Datasets with t = 0.5

SANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 0.0 0.0 0.0 1.6 1.8 0.0 0.0
Feces 0.0 1.7 0.0 0.2 5.0 5.5 0.1 0.1

Instrument 0.0 0.0 0.0 0.0 3.4 3.7 0.0 0.0
Spot 0.0 0.0 0.2 0.2 2.1 2.6 0.0 0.0

Saturation 3.3 3.3 0.2 0.5 2.4 2.4 0.9 1.3
Contrast 0.0 0.0 0.0 0.0 2.4 2.4 0.0 0.0

White Balance 0.0 0.0 1.5 2.3 8.2 9.0 1.0 3.4
Blur 0.0 0.0 0.2 0.2 2.6 3.4 0.3 0.6
Text 0.0 0.0 0.2 0.2 4.0 4.0 0.0 0.0

Table 4: EFR(%) of SANet Model on Various Datasets with t = 0.5

PraNet

PraNet, renowned in the domain of Polyp segmentation, exhibits com-

mendable performance on the original dataset. Its Error Finding Rate

(EFR) on the Dice score, with a threshold of 0.25, stands at 4.38%,

indicative of its relative robustness. However, the inclusion of CVC-

ClinicDB and Kvasir datasets in PraNet’s training set may predispose

the results to bias. A more critical examination using the CVC-ColonDB
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TGANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 10.0 10.0 9.2 11.3 12.9 15.3 6.5 7.8
Feces 1.7 8.3 1.8 2.5 5.8 7.4 1.1 1.4

Instrument 11.7 16.7 2.6 4.2 8.2 10.8 1.5 1.8
Spot 3.3 3.3 0.2 0.2 3.2 3.4 0.1 0.3

Saturation 8.3 10.0 9.3 15.2 10.8 15.0 22.4 30.4
Contrast 0.0 0.0 6.7 8.7 15.3 17.6 5.5 7.3

White Balance 23.3 26.7 30.2 37.7 21.3 40.8 25.4 32.6
Blur 15.0 21.7 4.7 6.5 6.6 7.1 5.8 7.5
Text 5.0 6.7 1.1 1.8 4.2 5.0 0.6 1.0

Table 5: EFR(%) of TGANet Model on Various Datasets with t = 0.5

SSFormer CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.5 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 1.7 0.2 0.2 3.2 3.9 0.0 0.0
Feces 0.0 0.0 0.0 0.0 4.7 5.8 0.0 0.0

Instrument 0.0 1.7 0.5 1.1 5.8 5.8 0.0 0.0
Spot 0.0 0.0 0.2 0.2 1.6 1.8 0.0 0.0

Saturation 6.7 6.7 0.8 1.8 1.6 2.1 0.2 0.4
Contrast 0.0 0.0 0.2 0.2 3.4 3.4 0.1 0.2

White Balance 0.0 1.7 2.5 3.9 9.5 10.5 0.9 1.5
Blur 0.0 0.0 0.2 0.2 2.4 2.6 0.1 0.2
Text 0.0 0.0 0.2 0.2 0.8 1.6 0.0 0.0

Table 6: EFR(%) of SSFormer Model on Various Datasets with t = 0.5

dataset reveals a heightened EFR of 8.56%. Focusing on the CVC-

ColonDB analysis, PraNet demonstrates proficiency in handling Spec-

ularity and Blood artifacts, but shows vulnerability to White Balance

and Blur. This suggests a higher resilience to object-based distortions as

opposed to those induced by lighting variations. See Table 3 7 for the

specific results.

SANet

SANet, introduced a year subsequent to PraNet, is evaluated for its en-

hanced robustness. The EFR of SANet on the Dice score, with the

threshold set at 0.25, is recorded at 1.7%. To mitigate the potential bias
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PraNet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 3.3 6.7 0.5 1.0 4.0 5.0 0.5 0.6
Feces 0.0 1.7 0.8 2.0 7.4 9.2 0.5 1.5

Instrument 6.7 11.7 4.1 5.6 12.1 14.0 0.4 1.1
Spot 1.7 1.7 0.5 0.5 3.2 4.2 0.1 0.5

Saturation 8.3 13.3 1.6 3.4 6.6 8.4 5.8 9.6
Contrast 1.7 5.0 0.3 0.8 4.7 6.1 1.3 2.2

White Balance 8.3 13.3 12.7 18.0 19.8 22.7 7.5 12.3
Blur 8.3 8.3 9.6 13.6 14.2 17.2 14.2 18.8
Text 0.0 0.0 0.7 0.8 5.0 5.8 0.2 0.3

Table 7: EFR(%) of PraNet Model on Various Datasets with t = 0.25

SANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 0.0 0.0 0.0 0.0 2.9 3.4 0.1 0.1
Feces 1.7 1.7 0.3 0.5 6.9 7.4 0.1 0.2

Instrument 1.7 1.7 0.2 0.7 5.5 5.8 0.0 0.0
Spot 0.0 0.0 0.2 0.3 4.2 4.5 0.0 0.0

Saturation 5.0 6.7 1.0 1.8 3.4 5.5 1.7 3.1
Contrast 0.0 0.0 0.2 0.2 3.4 4.0 0.0 0.2

White Balance 0.0 0.0 3.4 6.2 10.8 14.0 5.4 9.2
Blur 3.3 5.0 0.3 0.5 6.3 8.7 1.1 2.0
Text 0.0 0.0 0.5 1.0 5.5 5.8 0.0 0.1

Table 8: EFR(%) of SANet Model on Various Datasets with t = 0.25

from images in the training set, we scrutinized its performance on the

CVC-ColonDB, where the EFR is noted to be 5.43%. SANet exhibits

a markedly reduced EFR across most artifact categories in the CVC-

ColonDB. It is predominantly impacted by White Balance and Blur,

while demonstrating greater resistance to artifacts related to Blood, Sat-

uration, and Contrast. See Table 4 8 for the specific results.

TGANet

TGANet has a special design of incorporating the text embedding to

provide additional information to enhance feature representations. We

found that its performance is unsatisfying on both the original seed im-
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TGANet CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 16.7 20.0 15.8 22.1 23.9 29.2 12.9 15.7
Feces 13.3 25.0 4.4 7.0 13.9 18.2 2.7 3.7

Instrument 30.0 46.7 9.2 14.9 18.9 24.2 4.4 6.9
Spot 3.3 3.3 1.5 2.1 5.5 6.6 0.8 1.0

Saturation 16.7 18.3 21.2 28.9 21.8 24.7 46.1 53.7
Contrast 0.0 1.7 12.9 17.3 26.8 29.2 14.3 18.0

White Balance 31.7 38.3 47.5 59.5 35.3 40.8 43.0 49.8
Blur 28.3 31.7 4.7 6.5 9.7 11.8 15.3 18.3
Text 8.3 8.3 3.9 5.1 10.8 13.4 3.9 5.6

Table 9: EFR(%) of TGANet Model on Various Datasets with t = 0.25

SSFormer CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir
t=0.25 Dice IoU Dice IoU Dice IoU Dice IoU
Blood 3.3 3.3 0.2 0.2 5.0 5.3 0.1 0.1
Feces 0.0 0.0 0.3 0.5 7.6 8.2 0.0 0.0

Instrument 3.3 6.7 1.8 2.5 7.1 7.6 0.0 0.0
Spot 0.0 0.0 0.3 0.3 2.4 2.4 0.0 0.0

Saturation 6.7 10.0 1.0 1.3 2.6 4.5 0.4 0.8
Contrast 1.7 3.3 0.2 0.2 3.9 4.7 0.3 0.5

White Balance 3.3 5.0 4.7 7.5 11.8 13.9 2.0 4.0
Blur 0.0 1.7 0.2 0.2 3.4 3.4 0.3 0.4
Text 0.0 0.0 0.3 0.3 2.1 2.6 0.0 0.1

Table 10: EFR(%) of SSFormer Model on Various Datasets with t = 0.25

ages and the synthesized ones, and our synthesized image inputs have

triggered even more errors. When threshold t is set to 0.25, the net-

work produced an EFR up to 15.70% on the overall 4 datasets. Among

all artifacts, EFR was much higher on White Balance, Instrument, and

Blur. Contrast and Blood artifacts also sometimes caused severe prob-

lems on specific datasets. Our conjecture on the explanation is that the

model were trained using insufficient data and the presence of auxiliary

text inputs may result in the overfitting problem when learning feature

representations. See Table 5 9 for the specific results.

SSFormer
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SSFormer is the most robust models when tested using the synthesized

images. When we relax the threshold to t = 0.25, the EFR is only

1.47% for the whole 4 datasets when calculating using Dice Score. As

the newly released model, SSFormer showed its robustness and strong

capability in addressing the task even when faced with bad image con-

ditions. Many of the artifacts only trigger a small number of errors in

specific datasets. As is the common case in other experiments, artifacts

synthesized on seed images in CVC-ColonDB, as a dataset seldom used in

training, can confuse the model the most and generate more errors conse-

quently. Light-reltaed perturbations, including White Balance, Contrast,

and Saturation, are able to find corner cases most often, which exactly

aligns with our previous conjectures. Also, SSFormer’s performance on

images synthesized with Blood also decreased, which may suggest that

blood in medical images has the potential to fool the model into mis-

classification even on a relatively robust model. See Table 6 10 for the

specific results.

Using the statistics present in tables 7 8 9 10, we calculated the EFR

for all four academic models we have tested, including PraNet, SANet,

TGANet, SSFormer, and their EFR are 4.38%, 1.70%, 1.47%, and 15.70%,

respectively. We can clearly see that SANet and SSFomer are relatively

more robust with much lower EFR on our synthesized images, While

PraNet and TGANet performed worse and more errors are triggered us-

ing synthesized images generated from our framework MedTest.

Detailed visualization of the artifacts and the corresponding output are

illustrated in Table11 and Table12, where PraNet and SANet are used

as example models.
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Table 11: Comparison of PraNet Model Outputs with Different Artifacts

Artifact
Original
Image

Image with
Artifact

Ground
Truth

Output
(Original)

Output
(Artifact)

Saturation

Contrast

White-
Balance

Specularity

Blur

Instrument

Feces

Blood

Text
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Table 12: Comparison of SANet Model Outputs with Different Artifacts

Artifact
Original
Image

Image with
Artifact

Ground
Truth

Output
(Original)

Output
(Artifact)

Saturation

Contrast

White-
Balance

Specularity

Blur

Instrument

Feces

Blood

Text
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7.2 Visual Question Answering

VQA in the medical domain is an emerging interdisciplinary field that

combines techniques from computer vision and natural language process-

ing to interpret and answer questions about medical images. This tech-

nology enables automated systems to analyze visual medical data such

as X-rays, MRI scans, or endoscopic images, and provide precise textual

responses to clinically relevant questions posed by users. Such capabil-

ities are crucial for enhancing diagnostic processes, supporting medical

education, and facilitating more efficient clinical decision-making. VQA

systems in healthcare help bridge the gap between complex visual data in-

terpretation and actionable medical insights, leveraging large-scale med-

ical datasets and advanced multimodal models to improve accuracy and

reliability in medical diagnostics and research.

7.2.1 Evaluation Criteria

Prompt Engineering

Effective prompt engineering is crucial for evaluating LLMs, particularly

in VQA tasks where precise responses are essential. Through iterative

refinement, we discovered that employing a few-shot learning approach

yielded the most consistent and accurate results. Our finalized prompt

structure is detailed below.

I’m working on the Visual Question Answering tasks on medical endoscopic

images. I will be sending you some endoscopic images , you need to answer all

the questions I give you following the format of sample answer sets. You must

not repeat the question or elaborate on your answer. From now on , answer all

the questions below for the images that I send you.

"Question ": "What types of abnormalities are there in the image?"

"Question ": "Are there any anatomical landmarks in the image?"

"Question ": "Are there any instruments in the image?"

"Question ": "Have all polyps been removed ?"

"Question ": "How many findings are present ?"
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"Question ": "How many instruments are in the image?"

"Question ": "How many polyps are in the image?"

"Question ": "Is there a green/black box artefact ?"

"Question ": "Is there text?"

"Question ": "Is this finding easy to detect ?"

"Question ": "What color is the abnormality ?"

"Question ": "What color is the anatomical landmark ?"

"Question ": "What is the size of the polyp?"

"Question ": "What type of polyp is present ?"

"Question ": "What type of procedure is the image taken from?"

"Question ": "Where in the image is the abnormality ?"

"Question ": "Where in the image is the anatomical landmark ?"

"Question ": "Where in the image is the instrument ?"

Sample answers set1: "Polyp" "No" "Biopsy forceps" "No" "2" "1"

"1" "No" "Yes" "Yes" "Red", "Pink" "Not relevant"

">20mm" "Paris ip" "Colonoscopy" "Center -right", "Upper -left" "Not relevant" "

Lower -right"

Sample answers set2: "Polyp" "No" "No" "No" "1" "0"

"1" "Yes" "Yes" "No" "Pink", "White" "Not relevant"

"11-20mm" "Paris iia" "Colonoscopy" "Center", "Lower -right" "Not relevant" "

Not relevant"

In case the question is not applicable to the image or you don ’t know , please

answer "Not relevant ". Please follow the format of the sample answers strictly

.

Answer Validation

To assess the accuracy of LLM responses, we developed a software tool

that compares each LLM-generated answer to the corresponding ground

truth. An answer is deemed correct if it encompasses the ground truth

content. Given the few-shot learning context, the format of the response

is presumed to be accurate. However, if the number of correct responses

for an image falls below a predetermined threshold n, a manual review

is initiated to ensure accuracy. Correct answers are tallied as such, while

incorrect responses are scrutinized further. It is important to note that

responses classified as non-reasonable due to the model’s limitations in

text comprehension are marked as entirely incorrect.

Metric
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For assessing performance in the VQA task, we chose to use the accuracy

metric over the EFR. Conceptualizing VQA as a binary classification

problem, accuracy is computed using the following formula:

Accuracy =
Number of correct answers

Number of generated test cases
∗ 100%. (7)

While the EFR could simply be derived as 1 − Accuracy, it offers less

intuitive insight. Thus, we rely on accuracy to clearly represent our

results in the VQA evaluations.

7.2.2 Model Performance

The performance of the LLMs, specifically GPT-4V and Gemini, in the

VQA task exhibits notable variation.

GPT-4V Original Blood Feces Instrument Spot Saturation Contrast WhiteBalance Blur Text
Are there any abnormalities in the image? 0.888 0.904 0.871 0.888 0.889 0.878 0.855 0.827 0.777 0.859
Are there any anatomical landmarks in the image? 0.341 0.351 0.314 0.39 0.364 0.355 0.327 0.335 0.364 0.32
Are there any instruments in the image? 0.947 0.947 0.945 0.312 0.946 0.943 0.943 0.941 0.936 0.947
Have all polyps been removed? 0.284 0.31 0.286 0.461 0.231 0.333 0.263 0.204 0.197 0.253
How many findings are present? 0.835 0.859 0.837 0.833 0.827 0.82 0.81 0.782 0.761 0.816
How many instrumnets are in the image? 0.963 0.963 0.957 0.714 0.96 0.957 0.959 0.961 0.946 0.957
How many polyps are in the image? 0.79 0.784 0.747 0.792 0.771 0.784 0.771 0.739 0.716 0.765
Is there a green/black box artefact? 0.624 0.594 0.618 0.653 0.64 0.68 0.659 0.669 0.732 0.48
Is there text? 0.98 0.984 0.982 0.976 0.982 0.973 0.984 0.984 0.863 0.935
Is this finding easy to detect? 0.594 0.631 0.598 0.598 0.598 0.563 0.612 0.527 0.541 0.637
What color is the abnormality? 0.465 0.406 0.416 0.451 0.423 0.371 0.412 0.312 0.402 0.463
What color is the anatomical landmark? 0.369 0.369 0.339 0.422 0.382 0.382 0.363 0.416 0.465 0.351
What is the size of the polyp? 0.21 0.173 0.198 0.194 0.233 0.224 0.192 0.186 0.225 0.229
What type of polyp is present? 0.176 0.159 0.135 0.169 0.179 0.159 0.169 0.171 0.171 0.153
What type of procedure is the image taken from? 0.976 0.98 0.982 0.982 0.984 0.984 0.978 0.91 0.903 0.976
Where in the image is the abnormality? 0.653 0.604 0.616 0.676 0.67 0.647 0.624 0.629 0.65 0.676
Where in the image is the anatomical landmark? 0.365 0.365 0.337 0.416 0.384 0.38 0.365 0.414 0.461 0.349
Where in the image is the instrument? 0.924 0.924 0.926 0.669 0.93 0.92 0.922 0.927 0.913 0.929
Average 0.632 0.628 0.617 0.589 0.633 0.631 0.623 0.607 0.612 0.616

Table 13: The VQA results of GPT-4V

GPT-4V

The GPT-4V model demonstrated robust performance on several ques-

tions such as Is there text?, What type of procedure is the image

taken from?, and How many instruments are in the image? with

respect to the original images. However, its performance was less sat-

isfactory on questions like What type of polyp is present?, What

is the size of the polyp?, and Have all polyps been removed?.
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GPT-4V Original Average Perturbation Difference (Original - Average)
Are there any abnormalities in the image? 0.888 0.861 0.027
Are there any anatomical landmarks in the image? 0.341 0.347 -0.006
Are there any instruments in the image? 0.947 0.873 0.074
Have all polyps been removed? 0.284 0.282 0.002
How many findings are present? 0.835 0.816 0.019
How many instrumnets are in the image? 0.963 0.93 0.033
How many polyps are in the image? 0.79 0.763 0.027
Is there a green/black box artefact? 0.624 0.636 -0.012
Is there text? 0.98 0.963 0.017
Is this finding easy to detect? 0.594 0.589 0.005
What color is the abnormality? 0.465 0.406 0.059
What color is the anatomical landmark? 0.369 0.388 -0.019
What is the size of the polyp? 0.21 0.206 0.004
What type of polyp is present? 0.176 0.163 0.013
What type of procedure is the image taken from? 0.976 0.964 0.012
Where in the image is the abnormality? 0.653 0.644 0.009
Where in the image is the anatomical landmark? 0.365 0.386 -0.021
Where in the image is the instrument? 0.924 0.896 0.028
Average 0.632 0.617 0.015

Table 14: The summary of VQA results of GPT-4V

GPT-4V Original Blood Feces Instrument Spot Saturation Contrast WhiteBalance Blur Text
Are there any abnormalities in the image? 0.888 0.904 0.871 0.888 0.889 0.878 0.855 0.827 0.777 0.859
Are there any instruments in the image? 0.947 0.947 0.945 0.312 0.946 0.943 0.943 0.941 0.936 0.947
Have all polyps been removed? 0.284 0.31 0.286 0.461 0.231 0.333 0.263 0.204 0.197 0.253
How many findings are present? 0.835 0.859 0.837 0.833 0.827 0.82 0.81 0.782 0.761 0.816
How many instrumnets are in the image? 0.963 0.963 0.957 0.714 0.96 0.957 0.959 0.961 0.946 0.957
How many polyps are in the image? 0.79 0.784 0.747 0.792 0.771 0.784 0.771 0.739 0.716 0.765
Is there a green/black box artefact? 0.624 0.594 0.618 0.653 0.64 0.68 0.659 0.669 0.732 0.48
Is there text? 0.98 0.984 0.982 0.976 0.982 0.973 0.984 0.984 0.863 0.935
What color is the abnormality? 0.465 0.406 0.416 0.451 0.423 0.371 0.412 0.312 0.402 0.463
What is the size of the polyp? 0.21 0.173 0.198 0.194 0.233 0.224 0.192 0.186 0.225 0.229
What type of polyp is present? 0.176 0.159 0.135 0.169 0.179 0.159 0.169 0.171 0.171 0.153
What type of procedure is the image taken from? 0.976 0.98 0.982 0.982 0.984 0.984 0.978 0.91 0.903 0.976
Where in the image is the abnormality? 0.653 0.604 0.616 0.676 0.67 0.647 0.624 0.629 0.65 0.676
Where in the image is the instrument? 0.924 0.924 0.926 0.669 0.93 0.92 0.922 0.927 0.913 0.929
Average 0.694 0.685 0.680 0.626 0.690 0.691 0.682 0.660 0.657 0.674

Table 15: The VQA results of GPT-4V after deleting the ambiguous questions

Despite these variances, GPT-4V showed considerable resilience to per-

turbations, maintaining an average accuracy difference of only 1.5% be-

tween the original and perturbed data. See Table 13 14 for the specific

results.

Several questions were deemed unsuitable for our evaluations, as noted

in Section 4.1.2, including Are there any anatomical landmarks in

the image?, Is this finding easy to detect?, What color is the

anatomical landmark?, and Where in the image is the anatom-

ical landmark?. These were omitted due to their ambiguity or irrele-

vance to the task objectives. Upon excluding these questions, there was
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GPT-4V Original Average Perturbation Difference (Original - Average)
Are there any abnormalities in the image? 0.888 0.861 0.027
Are there any instruments in the image? 0.947 0.873 0.074
Have all polyps been removed? 0.284 0.282 0.002
How many findings are present? 0.835 0.816 0.019
How many instrumnets are in the image? 0.963 0.93 0.033
How many polyps are in the image? 0.79 0.763 0.027
Is there a green/black box artefact? 0.624 0.636 -0.012
Is there text? 0.98 0.963 0.017
What color is the abnormality? 0.465 0.406 0.059
What is the size of the polyp? 0.21 0.206 0.004
What type of polyp is present? 0.176 0.163 0.013
What type of procedure is the image taken from? 0.976 0.964 0.012
Where in the image is the abnormality? 0.653 0.644 0.009
Where in the image is the instrument? 0.924 0.896 0.028
Average 0.694 0.672 0.022

Table 16: The summary of VQA results of GPT-4V after deleting the ambiguous questions

an observed performance increase of 6.2% on original images and 5.5%

on perturbed images, leading to an overall accuracy discrepancy of 2.2%

between the two data sets. See Table 15 16 for the specific results.

Gemini

In contrast, the performance of the Gemini model was less satisfactory.

It faced difficulties in interpreting the prompts accurately, even after sub-

stantial prompt engineering efforts. The responses generated by Gemini

proved challenging to analyze, even for human evaluators. We are ac-

tively continuing to test and refine the interaction with Gemini, aiming

to enhance the quality of its responses through various methodological

improvements.

7.3 Classification

Classification is also a task of great value and importance in the field

of medical imaging, which targets the problem of identifying the disease

condition and category based on the visual effects captured by medical

devices. To keep consistency, as our study mainly delved into the field

of gastrointestinal images, including endoscopy and colonoscopy images,

46



we observed that most of the classification methods focus on wireless

capsule endoscopy image input. Therefore, we decided to use this kind

of sub-type as our major seed image source.

As a painless, noninvasive imaging tool, wireless capsule endoscopy has

been widely adopted for direct visualization and early screening of the

gastrointestinal(GI) diseases. Automatic recognition algorithms are of

high demand due to the large amount of data in clinical videos and

potential limitations caused by human factors such as subjectivity. As

these intelligent methods play an vital part in assisting clinical diagnosis,

ensuring their robustness and reliability is also of immense necessity,

because a minor mistake in medical-related decision may result in severe

and irreversible consequences.

Among the GI diseases that receive extensive concern, vascular lesion and

inflammatory are two common types, mainly because they are important

syndromes or indicators of other GI abnormalities such as bleeding, ulcers

and Crohn’s diseases.[76] These two syndromes are usually not obvious

in the images, taking up tiny regions with unclear boundary, which poses

a huge challenge on algorithms targeting this task. Besides, very minor

differences may lead to divergent decision, which is the exact situation we

want to test out for models and help them to prevent. Detailed samples of

these two classes (vascular lesion and inflammatory) are shown in Fig. 3.

In our following evaluation on academic models targeting the classifica-

tion task, the classification is on annotating the given image into one of

the three types of normal image, vascular lesion image and inflammatory

image.
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Figure 3: Samples of WCE images. First two images contain vascular lesion and the other two images
show inflammatory. The lesion areas are annotated by the green circles.[76]

7.3.1 Evaluation Criteria

Given that our problem is a multi-class classification with three cate-

gories, we not only need to consider model’s overall performance across

the whole dataset, but also should evaluate the model’s ability to dis-

tinguish each class into its corresponding true label instead of biasing

towards a specific type too much. From this perspective, the evaluation

criteria we decided on our classification task consists of Accuracy, Recall,

Precision, F1 Score and Cohen’s Kappa Statistics.

Accuracy score refers to the proportion of accurately classified samples to

the total number of test cases, which adversely aligns with the definition

of our previously proposed error-finding rate (EFR). In other words, the

higher the accuracy is, the lower the EFR will be for each of the perturbed

type of images, and their relation follows the formula derived below. (For

simplicity, we denote the number of correctly classified test cases as Tn,

the number of misclassified test cases as Fn and the total number of

generated/seed test cases as N .

Given that,

EFR =
Fn

N
∗ 100%, (8)
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We can derive that,

Accuracy =
Tn

N
∗ 100%

=
N − Fn

N
∗ 100%

= 1− EFR

(9)

Since our classification involves multiple classes instead of simply the

binary choice, we also included Precision and Recall into our evaluation

criteria to examine the models’ performance with regard to distinct image

class. Here, we denote True Positive (TP) as the number of samples that

are correctly classified into their true label, False Positive (FP) as the

number of samples classified as a specific class apart from their actual

class, and False Negative (FN) as the number of samples that are in

reality in a specific class but classified wrongly into another. Based on

the above definition, we can further illustrate the formula for Precision

and Recall as follows. For a specific class C,

Precision(Class = C) =
TP (Class = C)

TP (Class = C) + FP (Class = C)
(10)

Recall(Class = C) =
TP (Class = C)

TP (Class = C) + FN(Class = C)
(11)

From the above equations, we can interpret Precision score as the pro-

portion of samples that are actually of class C among all the samples

classified into class C, measuring the ability of a classifier to identify

only the correct instances for each class. Similarly, Recall represents the

proportion of samples that are correctly classified as its true label among
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all the samples with true label of class C, examining the ability of a

classifier to find all correct instances per class.

Following the idea of Precision and Recall, F1 score emerges as a weighted

harmonic mean of Precision and Recall normalized between 0 and 1,

which is an indicator on the combined effect of both Precision and Recall.

F1 score can be expressed as,

F1 Score =
2

1
Precision +

1
Recall

=
2× Precision× Recall

Precision + Recall

=
TP

TP + 1
2(FP + FN)

(12)

From the above relation, we can see that F1 score encourages similar

values for Precision and Recall and maximizing F1 score has a joint

effect of maximizing both the metrics.

Since F1 score is calculated distinctively for each class, we have to choose

an averaging method to track the overall F1 score of all the classes. The

commonly adopted methods are macro-averaging, micro-averaging and

sample-weighted-averaging, where the latter two take the potential data

imbalance issue into consideration.

Cohen’s Kappa score is one of the most commonly-used and representa-

tive metrics for evaluating multi-class classifiers on imbalanced datasets.

The traditional metrics for evaluation may be faced with the problem of

biasing towards the majority class and assuming an identical distribution

of the actual and predicted class. Therefore, Cohen’s Kappa score can

be leveraged to measure the proximity of the predicted classes to the

actual classes when compared to a random classification. The output is
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normalized between 0 and 1 the metrics for each classifier. Therefore, it

can be directly compared across the classification task. In general, the

closer to one the score is, the better the classifier is.

The formal definition of Cohen’s Kappa score is defined as follows,

κ =
po − pe
1− pe

, (13)

where po is the relative observed agreement among raters, and pe is the

hypothetical probability of chance agreement, using the observed data

to calculate the probabilities of each observer randomly seeing each cat-

egory.

In the following section, we will discuss the model performance with seed

images and perturbed images as testing input using the above evaluation

metrics as criteria.

7.3.2 Model Performance

The models selected are centering around the task of classifying WCE

images into normal type and two GI diseases, namely vascular lesion

and inflammatory type. Given that different implementations focus on

addressing different challenges, their detailed structures vary, and thus,

their robustness and stability when facing corner cases naturally may

also vary. Therefore, we will discuss how our evaluated models performed

when feeding our generated images with artifacts by our method MedTest

as the input.

AGDN

AGDN utilizes a two-branch attention guided deformation network that

uses the attention maps to locate and zoom in lesion regions to learn the
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Artifact Accuracy Cohen’s Kappa F1 Score
Original 0.893 0.836 0.893
Blur 0.702 0.517 0.660

Contrast 0.747 0.602 0.735
Feces 0.797 0.682 0.790

Instrument 0.852 0.773 0.852
Saturation 0.685 0.516 0.682

Spot 0.817 0.712 0.811
Text 0.828 0.733 0.825

White Balance 0.532 0.226 0.463
Average 0.761 0.622 0.746

Table 17: Evaluation Metrics from AGDN Model.

important features with the specific areas.[76] However, this may lead to

a problem of paying too much attention on details without thoroughly

considering the whole image and the relation between different regions

in the image. On the other hand, the change in light condition in images

can potentially lead to the degradation of the deformation grids’ ability

in information representation. As we can see from the table 17, most

of the perturbed image types incurred significant decrease in model’s

performance compared to the original input. Among all the artifacts,

white balance and saturation artifacts triggered the most severe errors,

possibly resulted from the change in light condition, specifically under

a darker and more abnormal lighting. Another evident error-triggering

perturbation is blurring, which may cause a fuzzy boundary for the model

to recognize the key region. These effects can potentially confuse the

model by making the lesion regions similar to other parts of the tissue,

leading to inaccurate classification decisions.

DSI-Net
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Artifact Accuracy Cohen’s Kappa F1 Score
Original 0.940 0.908 0.940
Blur 0.897 0.841 0.896

Contrast 0.883 0.823 0.884
Feces 0.907 0.858 0.907

Instrument 0.897 0.843 0.897
Saturation 0.755 0.635 0.757

Spot 0.932 0.895 0.931
Text 0.908 0.859 0.908

White Balance 0.728 0.574 0.711
Average 0.872 0.804 0.870

Table 18: Evaluation Metrics from DSI-Net Model.

The key feature of DSI-Net is its deep synergistic interaction network for

joint classification and segmentation tasks with WCE images, with one

classification branch and two segmentation branches (coarse and fine seg-

mentation). The three branches share the same backbone network and in-

teract with each other to learn feature representations collaboratively.[82]

Given this design, DSI-Net’s performance is relatively more stable and

consistent under extreme cases, as we can find in the table18. Similar

to AGDN, white balance and saturation caused the most evident perfor-

mance drop compared to other artifact types. The possible reason may

also derive from the unclear difference between lesion areas and normal

areas due to the bad lighting condition. This can further result in model’s

decreased capability in segmenting out the lesion parts, which is closely

correlated with its classification accuracy on image types.

From the statistics in the two classification evaluation tables 1718, we

can see dramatic performance drops with some of the perturbations as

reflected in the Accuracy, Cohen’s Kappa score and F1 score. Compared

to the Accuracy score obtained on seed images, the white balance pertur-
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bation led to the most down-side effect in both models, with a decrease

up to 36.1% and 21.2% for AGDN model and DSI-Net model respectively.

Moreover, the total average Accuracy score (including seed images) was

13.2% and 6.8% lower than that with only seed images (original testing

score), showing that our method MedTest can effectively detect poten-

tial errors in the model with various perturbations. In general, we can

observe that DSI-Net is a more robust and stable model than AGDN,

though both of them have room for improvement.

Answer to RQ2: MedTest achieves up to a 15.70% EFR in testing

SOTA segmentation models, causes a 2.2% average accuracy drop

in the most advanced commercial LLMs, and leads to up to a 36.1%

accuracy reduction in SOTA classification models. These results

indicate that MedTest can effectively uncover corner cases and is

valuable for further robustness testing of other models.

8 RQ3: Enhancing Medical Image Diagnosis Per-

formance Using MedTest-Generated Test Cases

Our research has substantiated that MedTest is adept at creating di-

agnostically consistent and realistic test cases, which are proficient in

identifying errors in both commercial software and SOTA academic mod-

els. This leads to an imperative query: Can the test cases generated by

MedTest be leveraged to augment the performance of medical image di-

agnosis systems? Essentially, the objective is to enhance the robustness

of diagnostic models.

A logical approach to achieve this enhancement is through the further

training of models with test cases synthesized by MedTest, to assess if
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such models exhibit increased resilience to a variety of perturbations.

For this performance enhancement purpose, we could utilize our existing

test set. We randomly select images with synthesized effects that might

trigger errors, and constructing a new training dataset. This dataset will

be an amalgamation of original and synthesized diagnostically consistent

images.

8.1 Segmentation

In an effort to enhance model performance, we further trained our seg-

mentation models using MedTest.

8.1.1 Dataset Construction

We developed a specialized dataset tailored for segmentation training.

Drawing from established practices, we utilized the Kvasir and CVC-

ClinicDB datasets, as referenced in the work by Fan et al.[17] and com-

monly employed for polyp segmentation tasks like those described by

Wei et al.[74]. To adapt these datasets for training with MedTest, we

incorporated an equal number of perturbed images. Specifically, for each

of the 9 types of perturbations, we randomly selected an equal fraction,

ensuring that the dataset comprised an equivalent number of original

and perturbed images. This approach resulted in a balanced dataset

containing a total of 3223 images, split between 1612 original and 1611

perturbed images.

For testing, we assembled a set using images from CVC-300 and CVC-

ColonDB. Each image in this set was subjected to the same 9 perturba-

tions, producing a comprehensive test set of 4400 images.
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8.1.2 Hyperparameter Tuning

We followed the hyperparameter settings given by the original paper and

code.

PraNet

• Learning rate: 1× 10−4

• Epoch: 20

• Batch size: 16

• Learning rate decay: 0.1 in 50 epochs

• Device: Intel(R) Xeon(R) Platinum 8352V CPU and RTX 4090 GPU

SANet

• Learning rate: 0.4

• Epoch: 128

• Batch size: 64

• Learning rate decay: 0.5 at the 64th, 96th epoch

• Device: Intel(R) Xeon(R) Platinum 8352V CPU and RTX 4090 GPU

SSFormer

• Learning rate: 1× 10−5

• Epoch: at most 100, with early stopping

• Batch size: 16

• Learning rate decay: None

• Device: Intel(R) Xeon(R) Platinum 8352V CPU and RTX 4090 GPU
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8.1.3 Result

In line with the dataset configuration previously described, we proceeded

to further train the evaluated segmentation models to explore potential

enhancements in their performance. However, the TGANet model, which

uniquely relies on text inputs for aiding information extraction in the seg-

mentation process, could not be improved through the same continuous

training approach due to the absence of these text inputs. Consequently,

our experiments were limited to the remaining models: PraNet, SANet,

and SSFormer. For these tests, we opted to use the accuracy metric

instead of the EFR, as accuracy provides a more direct comparison of

training outcomes. A comprehensive discussion of the results and their

analysis will be provided in the subsequent section.

PraNet
CVC-300 CVC-ColonDB

Dice Score IoU Score Dice Score IoU Score
Before After Before After Before After Before After

Original 0.86 0.889 0.777 0.817 0.696 0.701 0.619 0.629
Saturation 0.818 0.878 0.735 0.806 0.677 0.711 0.598 0.636

White Balance 0.815 0.879 0.74 0.805 0.624 0.709 0.551 0.634
Contrast 0.861 0.887 0.777 0.815 0.692 0.707 0.618 0.633

Spot 0.849 0.885 0.764 0.812 0.694 0.702 0.615 0.628
Blur 0.706 0.872 0.619 0.794 0.582 0.695 0.491 0.618
Text 0.744 0.819 0.659 0.746 0.629 0.663 0.554 0.593

Instrument 0.812 0.879 0.717 0.805 0.653 0.699 0.571 0.626
Blood 0.843 0.891 0.751 0.821 0.678 0.696 0.599 0.624
Feces 0.838 0.878 0.75 0.804 0.674 0.691 0.592 0.619

Average 0.815 0.876 0.729 0.803 0.66 0.697 0.581 0.624

Table 19: Further training results on PraNet

PraNet

The enhanced training on PraNet significantly improves its segmenta-

tion capabilities across both testing sets, with a improvement of 6.1%,

7.4%, 3.7%, and 4.3% on the Dice score, IoU score of the CVC-300 and

CVC-ColonDB respectively. All scores, encompassing both datasets and
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SANet
CVC-300 CVC-ColonDB

Dice Score IoU Score Dice Score IoU Score
Before After Before After Before After Before After

Original 0.898 0.904 0.828 0.836 0.757 0.763 0.677 0.69
Saturation 0.879 0.882 0.807 0.816 0.766 0.757 0.683 0.683

White Balance 0.877 0.889 0.805 0.822 0.738 0.76 0.655 0.687
Contrast 0.898 0.897 0.827 0.829 0.754 0.765 0.673 0.691

Spot 0.899 0.904 0.828 0.837 0.754 0.76 0.675 0.686
Blur 0.851 0.899 0.773 0.831 0.735 0.773 0.646 0.697
Text 0.803 0.864 0.727 0.793 0.694 0.749 0.621 0.674

Instrument 0.898 0.903 0.829 0.836 0.747 0.749 0.668 0.679
Blood 0.899 0.903 0.829 0.835 0.753 0.762 0.675 0.689
Feces 0.901 0.904 0.831 0.837 0.743 0.759 0.665 0.687

Average 0.88 0.895 0.808 0.827 0.744 0.76 0.664 0.686

Table 20: Further training results on SANet

SSFormer
CVC-300 CVC-ColonDB

Dice Score IoU Score Dice Score IoU Score
Before After Before After Before After Before After

Original 0.891 0.891 0.825 0.827 0.774 0.774 0.698 0.700
Saturation 0.841 0.876 0.779 0.806 0.778 0.778 0.699 0.702

White Balance 0.880 0.874 0.813 0.811 0.731 0.764 0.656 0.693
Contrast 0.883 0.882 0.817 0.817 0.765 0.774 0.689 0.700

Spot 0.892 0.892 0.826 0.828 0.770 0.775 0.695 0.701
Blur 0.883 0.893 0.813 0.825 0.766 0.766 0.690 0.693
Text 0.892 0.893 0.825 0.830 0.768 0.769 0.691 0.696

Instrument 0.872 0.886 0.800 0.820 0.747 0.769 0.672 0.695
Blood 0.877 0.891 0.809 0.827 0.760 0.770 0.684 0.697
Feces 0.898 0.899 0.831 0.835 0.753 0.759 0.679 0.687

Average 0.881 0.888 0.814 0.823 0.761 0.770 0.684 0.696

Table 21: Further training results on SSFormer

metrics, exhibit improvements, confirming the augmented training’s uni-

versal benefit to the model’s performance. Notably, the ”Blur” artifact

demonstrates the most remarkable improvement, with over a 10% in-

crease across both datasets and metrics, highlighting the training’s effec-

tiveness in addressing complex scenarios. See Table 19 for the specific

results.

SANet

Post-enhancement training on SANet substantially uplifts its segmenta-
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tion efficacy on both the CVC-300 and CVC-ColonDB datasets, demon-

strating an improvement of 1.5%, 1.9%, 1.6%, and 2.2% in the Dice

score and IoU score respectively. All metrics across both datasets show

progress, underscoring the universal enhancement in SANet’s perfor-

mance through further training. The ”Text” artifacts exhibit particularly

notable improvements, with ”Text” achieving up to a 6.6% increase in

the IoU score on CVC-300, indicating the training’s success in handling

intricate scenarios. See Table 20 for the specific results.

SSFormer

SSFormer is already a very robust model, yet we can find clear evidence

that its segmentation performance on the testing dataset improved for

a certain degree. The table21 shows the increase in Dice and IOU score

on CVC-300 and CVC-ColonDB of 0.7%, 0.9%, 0.9%, and 1.2% respec-

tively, marking a positive feedback on the augmented data provided by

our method MedTest. To examine closer, we can see that the model per-

formance after continuous training with our customized dataset on some

of the perturbations that triggered greater errors, such as white balance,

instrument and feces, were drawn to a similar level as others. This proved

our method MedTest’s effectiveness in assisting in the improvement of

model’s robustness and stability.

8.2 Classification

As for classification, we applied the same method and techniques in order

to seek further improvement on models’ robustness and stability espe-

cially when faced with corner cases.
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8.2.1 Dataset Construction

In the original experimental setting, we have already split the parts for

training and testing, and our previous model evaluation were conducted

with utilizing testing dataset as the seed image. Therefore, in this sec-

tion, we following the implementation and training of AGDN model [76],

that is, leverage the same subset of training data to construct our cus-

tomized data for further training. Following the same logic as the dataset

construction in the segmentation task, we first generated the whole per-

turbation dataset with our method MedTest. To keep consistent to the

original model performance and prevent it from biasing too much towards

artifact features in learning, we included all of the seed images into our

customized dataset.

As we discovered that the blood perturbation type will affect the classifi-

cation accuracy because it actually resembles medical landmarks used for

GI disease diagnosis. Therefore, we removed the blood perturbation in

the construction of further training dataset and included the remaining

8 perturbations in the construction.

For each of the perturbation, we randomly select 1
8 of the total number of

images. In this way, all the perturbed images will add up to the number

of the seed images, leading to a ratio between seed images and images

with artifacts as 1 : 1. In total, we will obtain a customized dataset for

further training of size 4934.

8.2.2 Hyperparameter Tuning

Generally, we followed the implementation details in the original reposi-

tory, while making some necessary adjustment according to our situation.

AGDN
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• Learning rate: 0.01

• Epoch: 80

• Batch size: 8

• Learning rate decay: Reduce to 5× 10−3 at the 60th epoch

• Device: Intel(R) Xeon(R) Platinum 8352V CPU and RTX 4090 GPU

DSI-Net

• Learning rate: 1× 10−4

• Epoch: 100

• Batch size: 8

• Learning rate decay: None

• Device: Intel(R) Xeon(R) Platinum 8352V CPU and RTX 4090 GPU

8.2.3 Result

In the following part, we will illustrate how our method MedTest can be

used to improve the robustness and overall performance of the models

that underwent evaluation.

Artifact Initial Accuracy Enhanced Accuracy Difference
Original 0.893 0.885 -0.008
Blur 0.702 0.808 +0.106

Contrast 0.747 0.812 +0.065
Feces 0.797 0.860 +0.063

Instrument 0.852 0.852 0.000
Saturation 0.685 0.770 +0.085

Spot 0.817 0.873 +0.056
Text 0.828 0.858 +0.030

White Balance 0.532 0.673 +0.141
Average 0.761 0.821 +0.060

Table 22: Comparison on Accuracy Score for AGDN Model Before and After Data Augmentation.
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Artifact Initial Accuracy Enhanced Accuracy Difference
Original 0.940 0.947 +0.007
Blur 0.897 0.918 +0.021

Contrast 0.883 0.917 +0.034
Feces 0.907 0.937 +0.030

Instrument 0.897 0.928 +0.031
Saturation 0.755 0.835 +0.080

Spot 0.932 0.942 +0.010
Text 0.908 0.908 0.000

White Balance 0.728 0.848 +0.120
Average 0.872 0.909 +0.037

Table 23: Comparison on Accuracy Score for DSI-Net Model Before and After Data Augmentation.

In Table 22 23, we can see performance improvement on almost all pertur-

bations, generally leading to an overall increased accuracy on the testing

dataset.

In both of the models, we can see an evident rise in the perturbations that

did not perform well originally, such as lighting-related perturbations

of saturation and white balance. Feeding the models with samples of

these classes can allow them to draw specific information patterns within

the artifact features, thus learning to classify these previously ”unseen”

image types into the actual categories.

Although the difference between the average accuracy scores before and

after further training is not as evident as distinct artifacts because of

taking the average, we can clearly conclude that our method MedTest

can be leveraged to improve the robustness of the tested models.
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Answer to RQ3: Test cases generated by MedTest can be lever-

aged to contruct our customized training dataset and effectively

improve the robustness of academic medical image diagnosis mod-

els through further training on both segmentation and classification

tasks.

9 RQ4: How would different factors affect the per-

formance of MedTest?

This section delves into how three distinct external factors influence the

efficacy of MedTest.

Image Structure and Overlay

The heterogeneity in the source images’ locations and orientations presents

challenges in our automated object perturbation system. The lack of

comprehensive image analysis during object addition precludes optimal

object selection and placement, potentially leading to incongruous object

positioning in the synthesized images. Efforts to mitigate this include

excluding objects from atypically laid out images (such as instruments

positioned at corners in partial views) and constraining the target posi-

tions for merging objects to more closely resemble their original context,

albeit with slight positional variations. These measures aim to minimize

the incongruities arising from layout and positioning discrepancies.

Medical Landmark Characteristics

In general, the medical landmarks present in the images may potentially

affect the effectiveness of our MedTest.

As for the segmentation task on polyps, the extensive diversity in the
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dataset, particularly regarding polyp size and shape, poses challenges for

the automated synthesis of object-related perturbations. The presence

of large polyps can complicate object addition, necessitating refined au-

tomation protocols for object selection and placement. This adjustment

must accommodate the variation in polyp characteristics, striking a bal-

ance between overall performance and the generation of some suboptimal

results.

For the classification task, one of the most important influence is that the

presence of bleeding in the image will radically alter the class that the

image belongs to because the two types of GI diseases, namely vascular

lesion and inflammatory, are closely related to the bleeding situation on

tissues. Therefore, to prevent the undesired influence, we have to exclude

the blood perturbation from the whole evaluation process of classification

methods.

Ambient Lighting Conditions

Divergent lighting conditions in the seed images, especially those that

are overly dark or bright, can lead to unnatural effects in object pertur-

bations. To address this, we have implemented contrast, brightness, and

color assessments for both the target and object-containing images. This

enables the imposition of similarity constraints when selecting objects for

synthesis, thereby mitigating unnatural outcomes. Lighting conditions

also affect light-related perturbations such as saturation, contrast, and

specularity. Excessively dark or bright seed images can render the appli-

cation of saturation or contrast effects counter-intuitive and unnatural.

Specularity synthesis is similarly impacted in underexposed images.
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Answer to RQ4: The performance of MedTest can potentially

be affected by the above proposed factors, including image struc-

ture, medical landmark characteristics and ambient lighting condi-

tions. We have taken these factors into consideration in the design

of MedTest and tried to mitigate the negative effect to the greatest

extent in our implementation.

10 Discussion

10.1 Threats to Validity

This section elucidates potential threats that could affect the validity of

our study.

10.1.1 Variability in Diagnosis Ground Truth

A primary concern is the potential alteration in the diagnostic accuracy

of test cases generated by MedTest, especially after numerous perturba-

tions, which could lead to false positives. To mitigate this risk, we en-

gaged in expert annotation to affirm the diagnostic ground truth of these

generated test cases. Additionally, annotators were instructed to assess

whether the test cases authentically represent artifacts encountered in

real-world clinical settings. The findings confirm that the artifacts gen-

erated by our methodology are diagnosis-neutral.

10.1.2 Scope of Application on Endoscope Image Analysis

Another concern is the applicability of MedTest primarily to endoscope

image analysis, which may not be universally extendable to other types

of medical images. The selection of endoscope imagery was a deliberate

decision, considering its representativeness in a specific medical imag-
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ing context. However, we posit that the MRs developed can be readily

adapted to other medical imaging modalities. We provide a comprehen-

sive framework encompassing the study of clinical artifacts, formulation

and design of MRs, generation of test cases, and utilization of failure

cases to enhance robustness.

10.1.3 Evaluation on a Limited Set of Medical Image Analysis

Systems

Our evaluation encompassed 7 medical image analysis systems, which

may not comprehensively represent MedTest’s efficacy across diverse sys-

tems. To address this, our evaluation targeted both commercial software

employing LLMs and SOTA academic models pertinent to our focused

task. Future endeavors will involve extending our testing to a broader

array of commercial and research models to further validate and enhance

the generalizability of MedTest’s performance.

10.2 Performance of Perturbations

10.2.1 Segmentation

Based on our observations on the experiment results in the segmentation

task, we found evident discrepancy between the degree to which the

models are influenced based on different artifact types.

Generally, light-related perturbations, including white balance, satura-

tion and contrast, may affect the model performance more severely, that

is, leading to a higher EFR.

Especially, we discovered that models ability to properly segment polyps

reduce more dramatically when the boundary of the polyp is unclear.

A common case is when synthesized images in contrast (underexposure)
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category are input to the model, the model cannot distinguish the polyps

with their surrounding, thus outputting unsatisfying prediction masks.

White balance may also affect the model performance in a relatively sim-

ilar way. Because we adjust the RGB channel to imbalance by reducing

the undesired channel values to make the value of the vital channel out-

weigh other, this at the same time make the image darker (as the channel

value reduces). We suspected that this is one reason why white balance

biases can sometimes lead to most dramatic drop in model performance.

Besides, when using the test cases with generated saturation, the rise in

EFR may result from the scenario that polyps are present at the area

with overexposure. In this case, the color in the overexposed areas will

tend to white, making the model unable to distinguish the polyp bound-

ary.

Blurring effect may sometimes lead to higher EFR, especially when test-

ing on PraNet. We think the mechanism in confusing the model may

be similar to the light perturbations, that is, making the edge of the

polyp unclear so that the model will regard it as normal tissue as its

surroundings or segmenting a much larger area with the unimportant

tissues.

Surprisingly, the EFR on object perturbations do not affect models as

seriously as we expected, though constantly triggering a small amount of

error. The major reason for such object-based artifacts to influence model

performance is mislead the model to misinterpret them as ”polyps” that

should be segmented out. Indeed, based on our observations on the model

output predictions, this was usually the case when model performance

decreased. However, because of the relatively obvious difference between

these objects and polyps, their ability to fool the models is limited.
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10.2.2 Visual Question Answering

Unexpectedly, the performance of the LLMs was most significantly af-

fected by the presence of instrument artifacts. These models frequently

failed to recognize newly introduced instruments, considerably lowering

their scores on relevant questions. Interestingly, instruments are not com-

monly present in standard scenarios, leading us to question whether this

issue stems from the models’ inability to detect instruments or a default

tendency to predict their absence. Moreover, while questions involving

instruments generally led to reduced scores, the presence of instrument

artifacts paradoxically improved model performance on other questions,

such as Have all polyps been removed?. These observations suggest

intriguing avenues for future investigation and discussion.

10.2.3 Classification

Our findings indicate that perturbations related to lighting have the most

profound impact on model performance, significantly reducing accuracy

scores more than other types of disturbances. This decline in perfor-

mance is attributed to the fact that alterations in lighting can obscure

the distinction between lesion areas and normal tissue, leading to erro-

neous model predictions. Similarly, blurring perturbations compromise

model accuracy by smudging the visual clarity needed for accurate clas-

sification. Furthermore, the presence of fecal matter in images poses

additional challenges, as it can mimic the appearance of lesions to some

extent, further confusing the model and affecting its performance metrics.
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11 Related Work

11.1 Enhanced Testing Approaches for AI Software

AI software has permeated numerous sectors, notably transforming tech-

nologies such as autonomous vehicles and advanced facial recognition

systems. Nonetheless, a significant challenge is their susceptibility to

errors, which could lead to severe mishaps or accidents, a concern under-

scored by various studies[83, 36]. In response, there has been an intensi-

fied focus on developing techniques to test these systems more rigorously.

Researchers have devised numerous methods to generate adversarial ex-

amples or specialized test cases aimed at revealing vulnerabilities in AI

systems[7, 48, 69, 80, 79, 67, 40, 47, 78, 52, 26, 25]. Alongside these,

there are significant efforts to enhance AI resilience through robust train-

ing protocols and advanced debugging techniques[42, 4, 18, 72, 41, 62].

Our research contributes to this area by focusing on the robustness of

medical image diagnosis software, a critical AI application that has not

been extensively evaluated in prior studies.

11.2 Comprehensive Analysis of Robustness in Medical Image

Analysis Software

Our thorough literature review has explored testing and attack method-

ologies applied to medical image analysis systems, integrating insights

from fields like natural language processing (NLP) and computer vision

(CV). Various metamorphic testing strategies have been developed for

NLP applications, pioneering innovative approaches[8, 9, 21, 23, 24, 51,

59]. In parallel, the CV domain has experienced substantial progress in

identifying software errors, drawing heavily from adversarial techniques[20,

31, 33, 37, 77]. AI-driven CV applications offer significant conveniences
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but also pose risks; for instance, manipulated images can deceive facial

recognition systems, and autopilot features may fail to recognize certain

dangers. This has led to the creation of specialized testing frameworks,

such as DeepTest, designed to assess and improve the robustness of CV

algorithms[64].

Our work, however, distinguishes itself from these studies by introduc-

ing MedTest, a tailored method for evaluating medical imaging systems,

which incorporates a wide array of MRs designed for realistic clinical

perturbations. To our knowledge, the MRs utilized in MedTest have not

been previously addressed in the literature. Furthermore, MedTest sup-

ports multiple diagnostic tasks such as segmentation, VQA, and classifi-

cation, making it a versatile tool. Each MR in our framework is derived

from real-world clinical scenarios, setting our approach apart from oth-

ers that may rely on theoretical or unvalidated perturbations. Moreover,

unlike most existing research that limits testing to theoretical models,

MedTest also evaluates its efficacy on commercial medical imaging soft-

ware, emphasizing its practical applicability and pioneering nature in the

field.

12 Future Work

12.1 Image Synthesis with Generative Adversarial Networks

Since our MedTest in producing MRs mainly involves mathematical-

representation-based image transformation and processing techniques,

limitations exist on producing large-scale dataset with more variations

within each artifact class, especially object perturbations. Due to the

scarce data to serve as artifact candidates, our generated samples have

specific artifact patterns, which restrict the images from being more nat-
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ural. Besides, we cannot simulate the possible large-area presence of

artifacts and potential existence on vital areas, such as on polyps, with-

out affecting the original ground truth label. For instance, blood may

appear in a contiguous and pervasive manner, but our simulation method

only extract small parts from it and cannot produce the same effect as

original.

Therefore, generative adversarial networks (GAN) may exhibit its poten-

tial in creating a more realistic blending different elements into medical

images as we desired. After we surveyed the related work, we have as-

serted that GANs have exceptional power in generating natural fusion of

image contents and styles according to the given images and segmenta-

tion label of different instance categories. [13, 19] Similar application in

medical images, even in polyp related tasks, have been witnessed with

promising performance. Because of this, we plan to explore deeper into

this topic and try to generate more realistic images regarding the object

perturbations for our customized dataset, so that we can further improve

the overall evaluation on our target models.

12.2 Further Testing on Multimodal Large Language Models

The rapid advancements in artificial intelligence have catalyzed the de-

velopment of numerous LLMs, with multimodality becoming a central

focus. As these models become increasingly capable, particularly in per-

forming medical VQA tasks, their potential for deployment in healthcare

settings grows. We plan to extend our testing framework to continu-

ously evaluate these emerging multimodal LLMs, ensuring they meet the

rigorous demands of medical diagnostics.
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13 Conclusion

In this report, we embarked on an in-depth analysis of AI-driven diagnos-

tic tools in medical imaging, with a particular emphasis on endoscopic

image diagnosis. The choice to focus initially on this area stems from

its critical importance in healthcare. Accurate and reliable medical diag-

nostics are fundamental to patient care, and the increasing integration of

AI tools in this domain necessitates a rigorous evaluation of their perfor-

mance. Our development of MedTest, a specialized metamorphic testing

framework, marks a significant step in this direction, enabling a detailed

assessment of these tools under various clinically relevant scenarios.

Through our comprehensive pilot study, we identified and categorized

common artifacts that pose challenges to the diagnostic accuracy of these

tools. We generated the 9 different types of artifacts on 5 datasets, in-

volving more than 5, 000 images and generated over 40, 000 images with

artifacts. Our findings reveal that even SOTA algorithms exhibit vary-

ing degrees of performance degradation when faced with these realistic

test cases, underscoring the need for continual improvement and rigorous

testing.

This study provides valuable insights into the robustness of academic

medical image diagnosis software targeting segmentation and classifica-

tion tasks. Meanwhile, we also endeavored to extend the application of

our method to the fast evolving area of multimodal models. Multimodal

models, which integrate and interpret data from various modalities, are

poised to revolutionize medical diagnostics by offering a more compre-

hensive analysis than single-modality models. However, the complexity

of these models necessitates a nuanced approach to testing and valida-
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tion. Combing both parts of focus, we hope to validate our method

MedTest and provide a more comprehensive insights into the medical

imaging areas.

To this end, our future work will focus on extending the methodologies

and lessons learned from our current research further into the realm of

multimodal models, as our study still has limitations on assessing the

MLLMs, especially in their ability of VQA. Our ultimate goal is to ensure

that as these advanced AI tools become integral to medical diagnostics,

they do so with the highest standards of accuracy and reliability, thus

enhancing patient outcomes and advancing healthcare services.

In conclusion, this report not only sheds light on the vulnerabilities of

current medical image diagnosis software but also lays the groundwork for

future explorations into the broader domain of AI-driven diagnostic tools,

including multimodal models. As we continue to push the boundaries of

AI in healthcare, rigorous testing and continual improvement of these

tools will be paramount to fully realizing their potential in improving

patient care.
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[16] Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R. M., Bose, R. P. J. C., Dubash, N.,

and Podder, S. Identifying implementation bugs in machine learning based image classifiers

using metamorphic testing. Proceedings of the 27th ACM SIGSOFT International Symposium

on Software Testing and Analysis (2018).

[17] Fan, D.-P., Ji, G.-P., Zhou, T., Chen, G., Fu, H., Shen, J., and Shao, L. Pranet: Par-

allel reverse attention network for polyp segmentation. In International conference on medical

image computing and computer-assisted intervention (2020), Springer, pp. 263–273.

74

https://binariks.com/blog/artificial-intelligence-ai-healthcare-market/
https://binariks.com/blog/artificial-intelligence-ai-healthcare-market/


[18] Gao, X., Saha, R. K., Prasad, M. R., and Roychoudhury, A. Fuzz testing based data

augmentation to improve robustness of deep neural networks. 2020 IEEE/ACM 42nd Interna-

tional Conference on Software Engineering (ICSE) (2020), 1147–1158.

[19] Günther, E., Gong, R., and Van Gool, L. Style adaptive semantic image editing with

transformers. In European Conference on Computer Vision (2022), Springer, pp. 187–203.

[20] Guo, J., Zhang, Z., Zhang, L., Xu, L., Chen, B., Chen, E., and Luo, W. Towards

variable-length textual adversarial attacks. arXiv preprint arXiv:2104.08139 (2021).

[21] Gupta, S., He, P., Meister, C., and Su, Z. Machine translation testing via pathological

invariance. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (2020), pp. 863–875.

[22] Hall, K. K., Shoemaker-Hunt, S., Hoffman, L., Richard, S., Gall, E., Schoyer, E.,

Costar, D., Gale, B., Schiff, G., Miller, K., et al. Making healthcare safer iii: a criti-

cal analysis of existing and emerging patient safety practices.

[23] He, P., Meister, C., and Su, Z. Structure-invariant testing for machine translation. In

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (2020),

pp. 961–973.

[24] He, P., Meister, C., and Su, Z. Testing machine translation via referential transparency. In

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (2021), IEEE,

pp. 410–422.

[25] Huang, W., Sun, Y., Zhao, X.-E., Sharp, J., Ruan, W., Meng, J., and Huang, X.

Coverage-guided testing for recurrent neural networks. IEEE Transactions on Reliability (2021).

[26] Humbatova, N., Jahangirova, G., and Tonella, P. Deepcrime: mutation testing of deep

learning systems based on real faults. Proceedings of the 30th ACM SIGSOFT International

Symposium on Software Testing and Analysis (2021).

[27] Ionescu, B., Müller, H., Drăgulinescu, A., Yim, W., Ben Abacha, A., Snider, N.,

Adams, G., Yetisgen, M., Rückert, J., Garćıa Seco de Herrera, A., Friedrich,
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