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In this report, we detail the process of applying deep probabilistic programming for horse 

racing prediction. We investigate the effect of using different set of features for model input. 

We design a Bayesian neural network model for prediction of the winning horse with a 

multiple horse representation. Moreover, through repeated experiments, we show that our 

model can outperform public intelligence and neural networks in terms of both accuracy and 

net gain. In addition, we demonstrate the effect of different betting strategies on the 

profitability of our model. Finally, we construct a betting strategy and verified its profitability 

in the long run with testing data. 
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Chapter 1 Introduction 

Horse racing, sport of running horses at speed, is one of the oldest of all sports and its basic 

concept has undergone virtually no change over the centuries. In Hong Kong, horse racing is 

not only a highly developed sport, but also a popular entertainment and gambling game. All 

betting over horse racing in Hong Kong is regulated and held by the non-profit organization 

Hong Kong Jockey Club, which holds a legal monopoly and provides different types of bet 

according to Pari-mutuel betting system. Because of the regulated and transparent betting 

system, the profitability of horse racing is under active research by statisticians and machine 

learning specialist alike. However, to the best of our knowledge, there has been no published 

work obtaining a net profit with neural networks. We attribute this mainly to the variability of 

horse racing and the insufficiency of training data. The variability of horse racing calls for a 

complex neural network model in order to model accurately the relations, while the lack of 

enough training data hinders the training of the large number of parameters associated with a 

complex model. 

One potential way to overcome the shortage of training data is Bayesian inference, a 

probabilistic technique which has been shown capable of learning from fewer examples [1] 

[2]. [1] build a Bayesian implementation of learning from just one to five examples by taking 

advantage of knowledge coming from previously learned categories, no matter how different 

these categories are might be, while [2] developed a density over transforms shared by many 

classes and developed a classifier based only a single training example for each class by 

using the density as prior knowledge. These examples suggest that Bayesian inference may 

be effective in overcoming the deficit of training data of in our horse racing prediction. 

However, both works tailor build their models from scratch as one–off systems, limiting their 

scope and extensibility, and hampering applications of the models to other problems. Due to 

the time and resources constraints of this project, we do not build our model from zero, 

instead, we build our model with a probabilistic programming language, Pyro, which 

provides primitives for sampling and inferring probabilistic distribution, and utilize build–in 

inference algorithms of Pyro to conduct Bayesian inference. 

Probabilistic programming languages unify techniques for the formal description of 

computation and for the representation and use of probabilistic knowledge [3]. Instead of 
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programming probabilistic models by hand, probabilistic programming languages provides an 

abstract means of describing and inferring arbitrary programming models. This enables 

programmers to build and train large models with less programming efforts. 

In this project we build a Bayesian neural network for horse racing prediction with deep 

probabilistic programming language Pyro. We test different feature selections as well as the 

different hyperparameters. To demonstrate the performance of our Bayesian neural network, 

we test two different betting method, fixed betting and Kelly betting. We are able to predict 

12 horse races with 22.29% win accuracy and net profit of 7.54%, and 14 horse races with 

22.66% win accuracy and net profit of 14.43%. 

The rest of the report is structured as follows: Chapter 2 summarizes the past efforts by 

related works. Chapter 3 describes the motivation of our work. Chapter 4 introduces the 

background of probabilistic programming, Bayesian inference, and horse racing in Hong 

Kong. Chapter 5 details our data collection method and preprocessing. Chapter 6 introduces 

the structure of our model. Chapter 7 describes the implementation of the model. Chapter 8 

records the results. Chapter 9 concludes. 
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Chapter 2 Related Works 

Despite the abundant amount of data produced every week in horse racing, few works have 

been published on the prediction of horse racing. Nonetheless, these few works, utilizing 

techniques ranging from multinomial logit regression [4] [5] to Support-Vector-Machines [6] 

and to neural networks [7] [8], have produced motivating results that makes horse racing 

prediction an attractive topic. 

Bolton and Chapman [4] [5] have proposed a multinomial logit modeling approach to 

handicapping horse races. Sophisticated handicapping factors and a large data base is used to 

apply a 20-variable pure fundamental multinomial logit model to a 2,000 Hong Kong races, 

achieving expected returns in excess of 20%. Chung et al. [6] utilized Support-Vector-

Machines on a 3-year dataset with 2691 races and 33532 horse records from Hong Kong 

races. By setting the threshold between highest horse and second highest horse, win accuracy 

of 35.85%, 56.36%, and 70.86% are achieved at threshold of 0, 0.05, and 0.1, yielding a 

840,164.1%, 13692.2%, 2494.8% return respectively. 

Cheng and Lau [7], Liu and Wang [8] have used neural networks for horse racing prediction. 

Cheng and Lau [7] used 16-year dataset of Hong Kong races from 2001 to 2016. Data from 

2001 to 2014 are used for training dataset, while data from 2015 to 2016 are used as testing 

dataset. Their single horse neural network model achieved win accuracy of 21.42%, and 

when betting on a threshold of 80%, can gain a net profit of 30% in the testing dataset. 

However, when the threshold is not used, the model result in a loss of over 20%. Liu and 

Wang [8] used dataset of Hong Kong races from January 2011 to April 2018 with 5029 races 

and 63459 horse records. Data from 2011 to 2017 are used for training models, while data in 

2018 are used as testing data. When betting only on races of specific race classes (Class 1 and 

Class 2), their best model is able to achieve 48.57% win accuracy and a net gain of 17.45%, 

but drops to 24.51% and result in a net loss of 25.78% when betting on all races. 

Our prior work [9] have used Bayesian neural networks for predicting the place of each 

individual horse, and achieved 27.96% accuracy and net gain of 39.77% when betting only 

on specific classes (Class 1 and Group 3), but drops to 25.92% accuracy and net loss of –

20.09%.
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Chapter 3  Motivation 

Past works on applying neural networks for horse racing prediction [7] [8] have not been able 

to achieve high accuracy. We attribute this mainly to the variability of horse racing and the 

insufficiency of training data. The variability of horse racing calls for a complex neural 

network model in order to model accurately the relations, while the lack of enough training 

data hinders the training of the large number of parameters associated with a complex model. 

Therefore, this project aims to predict horse racing with Bayesian neural networks which has 

been shown to able to generalize well from fewer examples [1] [2] compared to other 

methods. 

In addition, past works utilizing neural networks [7] [8] requires additional criteria, such as 

confidence levels or betting on specific race classes, to generate a profit. The selection of 

additional criteria after the testing results in information leakage from testing data and 

therefore cannot be taken as valid result for profitability on unseen data. Thus, this project 

aims to build a model for end to end prediction of horse racing and generate a profit under all 

circumstances. 

Moreover, it is observed that the although the model of [7] [8] has been able to optimize well 

in terms of objective function such as mean square error and binary cross entropy, this fails 

translate to accurate prediction of the winning horse. We attribute this to the fact that the 

model of [7] [8] only takes one horse into an account during its prediction, thus unable to 

capture the interaction of different horses in a real race and the small error in individual 

horses accumulate and reduce the resultant accuracy. In this project, we investigate the effect 

of employing a multiple horse model and compares its performance with single horse 

representation of [7] [8].
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Chapter 4 Background 

4.1 Probabilistic Programming 

Probabilistic programs are usual functional or imperative programs, but with two addition 

properties [10]: 

1. The ability to draw values at random from distributions 

2. The ability to condition values of variables in a program via observations 

However, unlike usual programs which are written for execution, the purpose of probabilistic 

programs is usually to implicitly infer a probability distribution. For example, probabilistic 

programs can be used to represent probabilistic graphical models, which use graphs to denote 

conditional dependences between random variables. The purpose in this example is then to 

infer the resulting conditional dependences between the unseen variables given the observed 

subset of random variables. 

Compared with non–probabilistic machine learning methods, probabilistic programming 

techniques has been shown capable of learning from fewer examples [1] [2]. [1] build a 

Bayesian implementation of learning from just one to five examples by taking advantage of 

knowledge coming from previously learned categories, no matter how different these 

categories are might be, while [2] developed a density over transforms shared by many 

classes and developed a classifier based only a single training example for each class by 

using the density as prior knowledge. These examples suggest that Bayesian inference may 

be effective in overcoming the deficit of training data of in our horse racing prediction. 

However, both works tailor build their models from scratch as one-off systems, limiting their 

scope and extensibility, and hampering applications of the models to other problems. 

The main goal of probabilistic programming languages is to relieve programmers the burden 

of programming complicate programs for probabilistic sampling and inference which can be 

represented by only a few mathematical statements [10]. Probabilistic programming 

languages hides the details of sampling and inference inside the compiler and runtime and 

enable programmers to express models using their domain expertise and dramatically reduce 

the programming effort of the programmer for probabilistic modeling. Programmers can then 
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refocus their effort into developing sophisticated probabilistic models that can accurate model 

their real–world observations, instead of spending most of their time in programming the 

details of sampling and inference of their models. 

4.2 Bayesian Inference 

Bayesian inference gives us a method for learning from data: given a set of latent variables 𝑧, 

we specify a prior distribution 𝑝(𝑧) quantifying what we know about before 𝑧 observing any 

data; then, we specify how the observed data 𝑥 relates to 𝑧 by specifying a likelihood 

function 𝑝(𝑥|𝑧); finally, we apply Bayes’ rule 

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)
 

to give the posterior function [11]. In the context of probabilistic programming, the model has 

observations 𝑥 and latent variables 𝑧has a joint probability density of the form 

𝑝(𝑥, 𝑧) = 𝑝(𝑥|𝑧)𝑝(𝑧) 

with the following properties: 

1. We can sample from each 𝑝 

2. We can compute the pointwise log pdf 𝑝 

Bayesian inference is used for probabilistic programs to condition the values of latent 

variables 𝑧 via observations, or in other words, inferring the posterior probability 𝑝(𝑧|𝑥) 

given observations 𝑥. Applying Bayes’ theorem, the posterior probability 𝑝(𝑧|𝑥) is calculated 

by computing the right–hand side of Bayes’ theorem. Since 𝑝(𝑥|𝑧) can be sampled from 

forward executions of the model and 𝑝(𝑧) is directly defined in the model, only 𝑝(𝑥) is 

remained to be determined for Bayesian inference. 

𝑝(𝑥) can be rewritten into the form 

𝑝(𝑥) = ∫ 𝑝(𝑥|𝑧)𝑝(𝑧)𝑑𝑧 

but this is difficult to evaluate in general. This is because the integral over the latent variables 

𝑧 often require exponential number of computations for variables of limited possible values, 

and intractable to calculate if variables 𝑧 are unbounded with infinite possible values. 

Therefore, various inference algorithms are developed to conduction Bayesian inference. 
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4.3 Bayesian Inference Algorithms 

Exact Bayesian inference via evaluation of Bayes’ theorem is difficult to achieve because 

calculation of evidence probability 𝑝(𝑥) is expensive or even intractable. In this section, we 

describe two main family of algorithms for Bayesian inference, Markov Chain Monte Carlo 

algorithms and Variational Inference, the first approximates the evidence probability 𝑝(𝑥) via 

sampling techniques, while the latter approximates the posterior probability 𝑝(𝑧|𝑥) by 

introducing a parameterized distribution serving the approximation to the posterior. In 

addition, we discuss an algorithm to solve the evidence probability 𝑝(𝑥) in the special case 

where the latent variables 𝑧 of the model have limited possible values. 

4.3.1 Enumeration 

In the special case that latent variables 𝑧 of the model have limited possible values, we can 

enumerate all the possible values of 𝑧 and sample the corresponding 𝑝(𝑥|𝑧) to obtain 𝑝(𝑥). 

In this way, 𝑝(𝑥) are determined by 

𝑝(𝑥) = ∑ 𝑝(𝑥|𝑧)𝑝(𝑧)

𝑧

 

and the conditioned value (probability density) of the latent variables 𝑧 is given by 

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

∑ 𝑝(𝑥|𝑧)𝑝(𝑧)𝑧
 

4.3.2 Markov Chain Monte Carlo Algorithms 

Markov Chain Monte Carlo algorithms estimate a distribution by first taking a sample 𝑧0 

from initial distribution 𝑞(𝑧0), then iteratively sample 𝑧𝑖 from the transitional distribution 

based the previous sample, and by judiciously choosing the transitional distribution, the 

outcome of this procedure with be a random procedure that converges in distribution to the 

exact posterior 𝑝(𝑧|𝑥) [11]. The basic idea for MCMC algorithms tend to follow the 

following framework: 

1. Sample 𝑧0 from the initial distribution 𝑞(𝑧0) 

2. Propose a new sample 𝑧𝑖
′ 

3. Accept or reject probabilistically using the 𝑞(𝑧𝑖|𝑧𝑖−1) and 𝑝(𝑥|𝑧) 

4. If the proposal is accepted, return to step 2 with 𝑧𝑖 
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5. If the proposal is rejected, return to step 2 with 𝑧𝑖−1 

6. After specified number of iterations, return all 𝑧0 to 𝑧𝑛−1 

The main difference between MCMC algorithms is how the new sample is proposed and how 

the proposal is decided for acceptance. Here, we introduce one of the simpler Markov Chain 

Monte Carlo Algorithms: Metropolis Algorithm [12]. The Metropolis algorithm uses a 

normal distribution to propose a jump. This normal distribution has a mean value μ which is 

equal to the current position and takes a parameter known as proposal width for its standard 

deviation σ. The proposal width is a parameter of the Metropolis algorithm and has a 

significant impact on convergence. A larger proposal width will jump further and cover more 

space in the posterior distribution but might miss a region of higher probability initially. 

However, a smaller proposal width won't cover as much of the space as quickly and thus 

could take longer to converge. 

Once new state has been proposed, we need to decide (in a probabilistic manner) whether it is 

a good move to jump to the new position. In Metropolis algorithm, the ratio of the proposal 

distribution of the new state and the proposal distribution of the current state is used as the 

probability of accepting proposal, 𝑝: 

𝑝 =
𝑝(𝑧′|𝑥)

𝑝(𝑧|𝑥)
=

𝑝(𝑥|𝑧′)𝑝(𝑧′)

𝑝(𝑥|𝑧)𝑝(𝑧)
 

Therefore, we are visiting regions of high posterior probability 𝑝(𝑧|𝑥) relatively more often 

that those of low posterior probability. 

4.3.3 Variational Inference 

Variational inference provides a different approach to approximate Bayesian inference. The 

basic idea of variational inference is to introduce a parameterized variational distribution 

𝑞(𝑧) to approximate the posterior 𝑝(𝑧|𝑥) [13] [14]. To make the approximate as close as 

possible to the actual posterior, we search over the space of approximating distributions to 

find the particular distribution with the minimum Kuller–Leibler divergence with the actual 

posterior. Then, the problem of inferring the posterior probability is transformed to an 

optimization problem minimizing the Kuller–Leibler divergence 

KL(𝑞(𝑧)||𝑝(𝑧|𝑥)) = E𝑞 [log
𝑞(𝑧)

𝑝(𝑧|𝑥)
] = ∫ 𝑞(𝑧) log

𝑞(𝑧)

𝑝(𝑧|𝑥)
𝑑𝑧 
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which is the measure of the divergence of one probability distribution from a second, 

reference probability distribution [15]. This measure goes to zero when the approximation 

𝑞(𝑧) perfectly matches 𝑝(𝑧|𝑥).However, since 𝑝(𝑧|𝑥) is intractable to compute, we cannot 

minimize the Kuller–Leibler divergence exactly. A simple derivation from [16] yields an 

alternative representation allowing minimization 

KL(𝑞(𝑧)||𝑝(𝑧|𝑥)) = E𝑞 [log
𝑞(𝑧)

𝑝(𝑧|𝑥)
] 

 = E𝑞[log 𝑞(𝑧)] − E𝑞[log 𝑝(𝑧|𝑥)] 

 = E𝑞[log 𝑞(𝑧)] − E𝑞 [log
𝑝(𝑥,𝑧)

𝑝(𝑥)
] 

 = E𝑞[log 𝑞(𝑧)] − E𝑞[log 𝑝(𝑥, 𝑧)] + log 𝑝(𝑥) 

 = −(E𝑞[log 𝑝(𝑥, 𝑧)] − E𝑞[log 𝑞(𝑧)]) + log 𝑝(𝑥) 

The term inside the bracket is known as Evidence Lower Bound 

ELBO = E𝑞[log 𝑝(𝑥, 𝑧)] − E𝑞[log 𝑞(𝑧)] 

which can be directly maximized because both 𝑝(𝑥, 𝑧) and 𝑞(𝑧) can be computed efficiently. 

Notice that log 𝑝(𝑥) does not depend on q, therefore, minimizing the Kuller–Leibler 

divergence in the parameter space of 𝑞(𝑧) is the same as maximizing the ELBO, which can 

be done via gradient ascent [13]. Let ϕ be the parameters that defines distribution 𝑞(𝑧), then, 

each step of variation inference that maximize ELBO at the learning rate of α are as follows: 

1. Calculate ELBO(𝑥, 𝑧, ϕ) 

2. Calculate δ𝜙 =
𝜕ELBO

𝜕𝜙
 

3. Update 𝜙 ← 𝜙 + αδ𝜙 
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4.4 Artificial Neural Networks 

Artificial neural networks are collections of connected units or nodes called artificial neurons 

inspired by the biological neural networks in animal brains [17] [18]. The figure below shows 

the structure of a unit in neural networks: 

 

Figure 1. A unit in neural networks, taken from [19] 

Each unit in neural networks are composed of an input function, a linear component that 

computes the weighted sum of the unit’s input values, and an activation function, a nonlinear 

activation component that transforms the weighted sum into a final value serving as the unit’s 

activation value (output value) [19]. The choice of activation functions is different for 

different network, but the sigmoid function, hyperbolic tangent (tanh), and rectified linear 

unit (ReLU) are the most popular activation functions. For example, let 𝑎𝑗 be the inputs of the 

unit 𝑖, 𝑊𝑗,𝑖 be the weights of the unit, 𝑔 be the activation function. The input function 

computes 

𝑖𝑛𝑖 = ∑ 𝑊𝑗,𝑖𝑎𝑗

𝑗

 

, and the activation function transforms the weighted sum into the final output value 

𝑎𝑖 = 𝑔(𝑖𝑛𝑖) = 𝑔(∑ 𝑊𝑗,𝑖𝑎𝑗

𝑗

) 

Despite the simple structure of neural networks, it has been found that multilayer feedforward 

networks can approximate any functions [20]. A 2–layer neural network with 1 hidden layer 

can approximate any continuous functions, while 3 or more layers neural network with 2 or 

more hidden layers can approximate any functions. This makes neural networks very useful 

for modeling unknown relations. 
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4.4.1 Neural Network Training 

Neural networks are commonly trained using gradient descent, which calculates the partial 

derivative of the error with respect to each parameter by chain rule and adjust the parameter 

by the product the learning rate and the derivative [19]. For example, let 𝐸 denote the error, 

𝑊𝑗,𝑖 denotes the weight matrix of the unit to adjust, 𝑔 be the activation function, 𝑎𝑗 be the 

inputs of the unit, and 𝛼 denote the learning rate. If the unit is located at the final layer, then 

the gradient of the weighted sum 𝑖𝑛𝑖 can be calculated directly  

δ𝑖 =
𝜕𝐸

𝜕 𝑖𝑛𝑖
= 𝑔′(𝑖𝑛𝑖) × 𝐸 

and the gradient of each weights 

δ𝑗,𝑖 =
𝜕𝐸

𝜕𝑊𝑗,𝑖 
= 𝑎𝑗

𝜕𝐸

𝜕 𝑖𝑛𝑖
= 𝑎𝑗 × δ𝑖 = 𝑎𝑗 × 𝑔′(𝑖𝑛𝑖) × 𝐸 

Then, each weight is updated by 

𝑊𝑗,𝑖 ← 𝑊𝑗,𝑖 + 𝛼 × δ𝑗,𝑖 

However, if the unit is not located at the final layer, the gradient needs to be calculated by 

backpropagation, which the error in latter layer 𝑖 are propagated to earlier layer 𝑗: 

δ𝑗 = 𝑔′(𝑖𝑛𝑗) ∑ 𝑊𝑗,𝑖

𝑖

δ𝑖 

and the gradient of each weights 

δ𝑘,𝑗 =
𝜕𝐸

𝜕𝑊𝑘,𝑗 
= 𝑎𝑘

𝜕𝐸

𝜕 𝑖𝑛𝑗
= 𝑎𝑘 × δ𝑗 = 𝑎𝑘 × 𝑔′(𝑖𝑛𝑗) ∑ 𝑊𝑗,𝑖

𝑖

δ𝑖 

Then, each weight is updated by 

𝑊𝑘,𝑗 ← 𝑊𝑘,𝑗 + 𝛼 × δ𝑘,𝑗 

With gradient descent and backpropagation, each parameter of the neural network can be 

updated accordingly in each step based on the error after one inference. The whole process is 

repeated until the network converges [19]. 
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4.5 Deep Probabilistic Programming 

Deep probabilistic programming combines neural networks with probabilistic models [21] 

[22]. By combining neural networks with probabilistic models, deep probabilistic 

programming is capable of handling hierarchical representation learning while accounting for 

uncertainty. There are many kinds of different models where neural networks are embedded 

in probabilistic models, for example, neural networks can be used as for modeling the 

probabilistic relations between latent variables and observations. The most used deep 

probabilistic programming models are Bayesian neural networks. 

4.5.1 Bayesian Neural Networks 

Bayesian neural networks are artificial neural networks inferred by Bayesian inference [23]. 

Compared to traditional neural networks trained using back propagation, Bayesian neural 

networks are trained with a distribution instead of a single value for each parameter in the 

neural networks, such as weights and biases. In context of previous sections, the parameters 

of the Bayesian neural networks are then latent variables 𝑧 of a probabilistic model, and the 

data points are the observations 𝑥. Applying Bayesian inference, parameters of Bayesian 

neural network can be obtained by Bayes’ theorem 

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)
 

Here, we encounter the same problem of intractable 𝑝(𝑥), which calls for the various 

Bayesian inference algorithms to be applied to infer the parameters of neural networks. For 

example, consider a Bayesian neural network with prior on the weights and biases 𝑧 to be the 

unitary normal and trained using Variational Inference. The prior on the parameters can be 

expressed as 

𝑝(𝑧) = Normal(0,1) 

Applying Variation Inference, we introduce the variational distribution 𝑞(𝑧) to approximate 

the posterior distribution 𝑝(𝑧|𝑥). In this example, we let the variational distribution to be a 

normal distribution with learnable parameters 𝜇, ρ. To avoid negative values of standard 

deviation, a softplus function is placed over ρ. 

𝑞(𝑧) = Normal(𝜇, log(1 + eρ)) 

Then, each step of variation inference at the learning rate of α are as follows: 
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1. Sample ϵ from Normal(0,1) 

2. Sampled 𝑧 = 𝜇 + ϵ log(1 + eρ) 

3. Calculate ELBO(𝑥, 𝑧, 𝜇, 𝜌) 

4. δµ =
𝜕𝐸𝐿𝐵𝑂

𝜕𝑧
+

𝜕𝐸𝐿𝐵𝑂

𝜕µ
  

5. δρ =
𝜕𝐸𝐿𝐵𝑂

𝜕𝑧

ϵ

1+e−ρ
+

𝜕𝐸𝐿𝐵𝑂

𝜕ρ
  

6. Update µ ← µ + αδµ, ρ ← ρ + αδρ 

Note that 
𝜕𝐸𝐿𝐵𝑂

𝜕𝑧
 can be obtained from the backpropagation of standard neural networks. 
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4.6 Horse Racing 

Horse racing, sport of running horses at speed, is one of the oldest of all sports and its basic 

concept has undergone virtually no change over the centuries. In Hong Kong, horse racing is 

not only a highly developed sport, but also a popular entertainment and gambling game. All 

betting over horse racing in Hong Kong is regulated and held by the non–profit organization 

Hong Kong Jockey Club, which holds a legal monopoly and provides different types of bet 

according to Pari-mutuel betting system. 

Pari-mutuel betting is a betting system in which the stake of a particular bet type is place 

together in a pool, and the returns are calculated based on the pool among all winning bets 

[24] Dividend will be shared by the number of winning combinations of a particular pool. 

Winners will share the percentage of pool payout in proportion to their winning stakes. The 

following tables taken from [24] show the different betting types: 

Single–race Pool Dividend Qualification 

Win 1st in a race 

Place 1st, 2nd or 3rd in a race, or 1st or 2nd in a race of 4 to 6 

declared starters 

Quinella 1st and 2nd in any order in a race 

Quinella Place Any two of the first three placed horses in any order in 

a race 

3 Pick 1 (Composite Win) 

Winning Trainer (Composite Win) 

Winning Region (Composite Win) 

Composite containing the 1st horse in a race  

Tierce 1st , 2nd and 3rd in correct order in a race 

Trio 1st, 2nd and 3rd in any order in a race 

First 4 1st, 2nd , 3rd and 4th in any order in a race 

Quartet  1st, 2nd , 3rd and 4th in correct order in a race 
Table 1. Types of bets in Single–race Pool 

Multi–race Pool Dividend Qualification 

Double 1st in each of the two nominated races  

Consolation :1st in 1st nominated race and 2nd in 2nd nominated race  

Treble 1st in each of the three nominated races 

Consolation : 1st in the first two Legs and 2nd in 3rd Leg of the three 

nominated races 
Table 2. Types of bets in Multi–race Pool 
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Jackpot Pool  Dividend Qualification 

Double Trio 1st, 2nd and 3rd in any order in each of the two nominated races  

Triple Trio 1st, 2nd and 3rd in any order in each of the three nominated races  

Consolation :Select correctly the 1st, 2nd and 3rd horses in any 

order in the first two Legs of the three nominated races  

Six Up 1st or 2nd in each of the six nominated races 

Six Win Bonus :1st in each of the six nominated races 
Table 3. Types of bets in Jackpot Pool 

Among these pools, Hong Kong Jockey Club does not pay out 100% of the pool amount. 

Instead, the percentage of the pool payout are according to the following tables from [24]: 

Single Pool Percentage of Pool Payout  

Win / Place / Quinella / Quinella Place / Double 82.5% 

Tierce / Trio / First 4 / Quartet / Double Trio / Triple 

Trio / Treble / Six Up 
75% 

 

Table 4. Percentage of Pool Payout in Single Pool 

Merged Pool  Percentage of Pool Payout  

Win (including Composite Win) 82.5% 

Quartet & First 4 75% 
Table 5. Percentage of Pool Payout in Merged Pool 

Because Hong Kong Jockey Club does not pay out 100% of the pool amount, there is an 

expected loss of 17.5% for bets Win, Place, Quinella, Quinella Place, and Double bets, and 

an expected loss of 25% for Tierce, Trio, First 4, Quartet, Double Trio, Triple Trio, Treble, 

Six Up. The expected loss makes generating profit from horse racing a challenging task. In a 

Pari-mutuel pool with 100% payout, an individual only has to slightly beat the public 

intelligence to have a net gain, but to generate a profit from a Pari-mutuel pool with only 75% 

or 82.5% payout, an individual needs to beat the public intelligence by a large amount to 

generate profit. 
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Chapter 5 Data 

5.1 Data Collection 

Many companies sell horse racing data online. One possible way to obtain training data for 

our model is to purchase from them. However, due to the lack of budget and the questionable 

authenticity of these data, we decided to collect the data from the official website of Hong 

Kong Jockey Club. 

 

5.2 Data Description 

The horse racing dataset contains 8 years of racing data from January 1, 2011 to December 

31, 2018. Each entry in the dataset represent the information of a horse in a race. The dataset 

contains 77562 records from 6251 races taken place in Hong Kong. In addition to race data, 

we also scrape corresponding horse data from HKJC website and weather data from 

TimeAndDate. Apart from the obtaining raw data, we also add some features extracted from 

the data. 

The dataset is split into two parts: training dataset and testing dataset. The training dataset 

contains data from 2011 to 2017 with 68074 records and 5461 races, while the testing dataset 

contains data of the year 2018 with 9489 records and 790 races. 

The following tables describes the races features, horse features obtained from HKJC 

website, weather features obtained from TimeAndDate, and additional features we extracted. 
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Feature Description Types Values 

raceyear Year of the race Date – 

racemonth Month of the race Date – 

raceday Day of the race Date – 

raceid Unique id of the race Index – 

location Location of the race Categorical ST, HV 

class Class of the horses Categorical Class 1 to 5, Group 1 to 3 

distance Distance of the race Categorical 1000, 1200, 1400, 1600, 

1650, 1800, 2000, 2200, 2400 

course Track used for the race Categorical A, A+3, AWT, B, B+2, C, 

C+3 

going Soil measurement Categorical FIRM, GOOD TO FIRM, GOOD, GOOD 

TO YIELDING, YIELDING, YIELDING 

TO SOFT, FAST, SLOW, WET FAST, WET 

SLOW 

raceno Race number in a race 

day 

Categorical 1 to 11 

horseno Number assigned by 

HKJC to horse 

Categorical 1 to 14 

horseid Unique id of horse Categorical 4373 distinct values 

jockeycode Unique id of jockey Categorical 169 distinct values 

trainercode Unique id of trainer Categorical 147 distinct values 

draw Draw of the horse in race Categorical 1 to 14 

actualweight Weight added to horse Real value – 

horseweight Weight of horse itself Real value – 

winodds Bet return on win Real value 1 to 99 

place Place of horse in race Categorical 1 to 14 

finishtime Finishing time of horse Real value – 

Table 6. Race features from HKJC website 
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Feature Description Types Values 

origin Place of origin Categorical  

age Age of horse Real value 3 to 10 

color Color of horse Categorical Bay, Black, Brown, Chestnut, 

Dark, Grey, Roan 

sex Sex of horse Categorical Colt, Filly, Gelding, Horse, 

Mare, Rig 

sire Father of horse Categorical 786 distinct values 

dam Mother of horse Categorical 3786 distinct values 

dam’s sire Maternal grandfather of 

horse 

Categorical 1009 distinct values 

horseid Unique id of horse Categorical 4373 distinct values 

Table 7. Horse features from HKJC website 

 

Feature Description Types Values 

location Location of the race Categorical ST, HV 

temperature Air temperature Real value – 

weather Description of weather Categorical Bay, Black, Brown, Chestnut, 

Dark, Grey, Roan 

wind _speed Wind speed in km/h Real value – 

wind_direction Wind direction Categorical – 

humidity Humidity Real value 0 to 100 

moon Moon phase Real value 0 to 29.5305882 

raceid Unique id of the race Index – 

Table 8. Weather features from TimeAndDate 

 

Feature Description Types Values 

dn Day or Night Categorical D, N 

old_place Place of horse in last race Categorical 1 to 14 

weightdiff Difference in weight 

from previous race 

Real value – 

Table 9. Extracted features 
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5.3 Features Analysis 

Some features, like origin, age, color, and sex of the horse are traditional considered as 

important factors in determining the wining horse. In this section, we investigate the effect of 

these features on the winning horse. 

5.3.1 Origin 

Historically, the best performing horses comes from Britain, Ireland, and the United States, 

but recently some of the best horses come from Australia and New Zealand [25]. In addition, 

the guiding principle for breeding winning racehorses has always been best expressed as 

“breed the best to the best and hope for the best” [26]. Therefore, the origin of the horse may 

have an impact on the horse performance. 

To analyze whether the origin of the horse is really correlated to the winning probability, we 

have plotted the origin distribution of winning horse on the next page.  

Note that the origin distribution of winning horse alone is not enough to determine the 

winning probability of horses of different origin, since the distribution is obscured by the 

origin distribution of all horses. Therefore, we also plot the conditional origin distribution of 

winning horses. 

From the figure, it can be inferred that the origin of the horses has an influence over the 

winning probability with horses from Japan and Australia having the highest winning 

probability and horses from Brazil and Spain having the lowest winning probability. 

Therefore, the origin of the horses should be included for the model input. 
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Figure 2. Origin distribution of winning horse 

 

Figure 3. Condition Origin distribution of winning horse 
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5.3.2 Age 

The racing career of the horse is from age 2 to 10 and retirement is mandatory at age 11. The 

age of the horse is directly related to its performance. Usually, horses reach their peak 

performance at age 4 to 6 [27], and start to age subsequently and decrease in performance. 

To verify whether the statement above is true, the age distribution and the conditional age 

distribution of the winning horse is shown on the next page. 

From the figure, it can be inferred that horse’s age has a large influence on performance, with 

age 2 horses having the highest winning probability and age 4 having the second highest 

winning probability. Therefore, age is an important feature for predicting the winning horse 

and should be included for the model input. 

In addition, it should be noted that age 2 horses are not common and only contribute to a 

small number of wins, which may because these age 2 horses are prodigies with exceptional 

performance. Other horses join horse racing at age 3 and takes a year to gain experience and 

reach peak performance. 
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Figure 4. Age distribution of winning horse 

 

Figure 5. Conditional Age distribution of winning horse  
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5.3.3 Color 

It is commonly believed that the color of the horse indicates the horse’s performance. In 

Hong Kong, the major types of colors are Chestnut, Brown, Bay and Grey [27]. To analyze 

whether color is a factor correlated to winning probability, the color distribution and the 

conditional color distribution of the winning horse is shown on the next page. 

From the figure, it can be inferred that color is correlated to winning probability with horses 

of dark and roan color being more likely to win while horses of bay, black, brown, and 

chestnut have similar winning probability. Therefore, color should be included for model 

input. 
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Figure 6. Color distribution of winning horse 

 

Figure 7. Conditional Color distribution of winning horse  
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5.3.4 Sex 

The sex of the horse is mainly classified into Gelding, Colt, or Filly. Over 90% of the runners 

in Hong Kong are geldings [27]. The different hormones levels of different sex may lead to 

different performance [28]. To analyze whether sex affects winning performance of the 

horses, the sex distribution and conditional sex distribution of winning horse is shown on the 

next page. The analysis of sex distribution of winning horse reveals that sex is also important 

in determination of winners and should be included for the model input. In general, it can be 

inferred that male horses (Colt, Gelding, Horse, Rig) has a higher winning probability than 

female horses (Filly, Mare). 
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Figure 8. Sex distribution of winning horse 

 

Figure 9. Conditional Sex distribution of winning horse  
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5.3.5 Draw 

In general, horses starting with an inside draw (smaller draw number) have a competitive 

advantage, since an inside rail has a shorter distance at turns [29]. However, the distance and 

the running style of the horse may also impact the influence of draw number. For example, 

Shatin Turf 1000M Straight has no turns and there is no advantage for having an inside draw. 

In addition, as there is less damage to the track on the outskirts of the track, horses that start 

from an outside draw (larger draw number) have a competitive advantage. 

To verify whether the above principle is correct, we plot the draw distribution and the 

conditional draw distribution of winning horse. 

The figures indicate that horses with smaller draw number are more likely to win, which 

supports the general principle of [27]. Therefore, it can be concluded that draw is indeed an 

important feature and should be included for the model input. 
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Figure 10. Draw distribution of winning horse 

 

Figure 11. Conditional Draw distribution of winning horse  
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5.3.6 Old place 

Apart from the intrinsic characteristic of the horse, the past performance of the horse is also 

important. Intuitively, a horse with a track record of all first places is more likely to win then 

a horse with a track record of all last places. 

To verify whether our intuition is correct, we plot the old place distribution of winning horse 

and the conditional old place distribution of winning horse below. Here, –1 indicates that 

there is no past record for the horse.  

The data shown has clearly points out that winners will remain winners, and losers will 

remain losers. Therefore, the old place of the horse is also an important feature for prediction 

of horse place and should be included for model input. 
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Figure 12. Old place distribution of winning horse 

 

Figure 13. Conditional Old place distribution of winning horse  
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5.4 Feature Selection 

5.4.1 Excluded Features 

Some of the features in the data are not used for the model input. Features like raceyear are 

excluded as they are artificial numbering system. On the other hand, features like horseid, 

sire, dam are excluded as our past result from [9] shown below in indicates that they can only 

slightly improve accuracy but at the same time decrease the net gain. In the table below, 

Features Set A contains no identity features, B contains only human identity features, and C 

contains both human and horse identity features. 

Feature Set A A+Odds B B+Odds C C+Odds 

Accuracy 0.1840 0.2576 0.1798 0.2592 0.1830 0.2634 

Net Gain –184.68 –184.5 –177.45 –164.65 –220.29 –188.06 

Return/Bet –0.2165 –0.2163 –0.2080 –0.2009 –0.2583 –0.2205 

Table 10. Past results of different input features from [9]. 

Therefore, the complete list of excluded features is shown below. 

Feature Description Reason 

raceyear Year of the race Artificial numbering system 

racemonth Month of the race Replaced by weather features 

raceday Day of the race Replaced by weather features 

raceid Unique id of the race Artificial numbering system 

raceno Race number in a race day Artificial numbering system 

horseno Number assigned by HKJC to horse Artificial numbering system 

horseid Unique id of horse Too many distinct values /  

cannot handle unseen horses 

place Place of horse in race Information cannot be gained 

before the race 

finishtime Finishing time of horse Same reason as place 

sire Father of horse Same reason as horseid 

dam Mother of horse Same reason as horseid 

dam’s sire Maternal grandfather of horse Same reason as horseid 

Table 11. Excluded features 
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5.4.2 Included Features 

The included features used for model input are listed in the following table. 

Feature Description Types Values 

location Location of the race Categorical ST, HV 

class Class of the horses Categorical Class 1 to 5, Group 1 to 3 

distance Distance of the race Categorical 1000, 1200, 1400, 1600, 1650, 

1800, 2000, 2200, 2400 

course Track used for the race Categorical A, A+3, AWT, B, B+2, C, C+3 

going Soil measurement Categorical FIRM, GOOD TO FIRM, GOOD, 

GOOD TO YIELDING, 

YIELDING, YIELDING TO SOFT, 

FAST, SLOW, WET FAST, WET 

SLOW 

jockeycode Unique id of jockey Categorical 169 distinct values 

trainercode Unique id of trainer Categorical 147 distinct values 

draw Draw of the horse in race Categorical 1 to 14 

actualweight Weight added to horse Real value – 

horseweight Weight of horse itself Real value – 

winodds Bet return on win Real value 1 to 99 

origin Place of origin Categorical  

age Age of horse Real value 3 to 10 

color Color of horse Categorical Bay, Black, Brown, Chestnut, Dark, 

Grey, Roan 

sex Sex of horse Categorical Colt, Filly, Gelding, Horse, Mare, 

Rig 

temperature Air temperature Real value – 

weather Description of weather Categorical Bay, Black, Brown, Chestnut, Dark, 

Grey, Roan 

wind _speed Wind speed in km/h Real value – 

wind_direction Wind direction Categorical – 

humidity Humidity Real value 0 to 100 

moon Moon phase Real value 0 to 29.5305882 

dn Day or Night Categorical D, N 

old_place Place of horse in last race Categorical 1 to 14 

weightdiff Difference in weight from 

previous race 

Real value – 

Table 12. Included features 
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5.4.3 Investigated Feature 

Compared to our past work [9], we have added a set of weather features for model input. The 

features under investigate are listed in the table below. 

Feature Description Reason 

temperature Air temperature Investigate effect of weather 

weather Description of weather Investigate effect of weather 

wind _speed Wind speed in km/h Investigate effect of weather 

wind_direction Wind direction Investigate effect of weather 

humidity Humidity Investigate effect of weather 

moon Moon phase Investigate effect of weather 

dn Day or Night Investigate effect of weather 

winodds Bet return on win Investigate influence of public intelligence 

Table 13. Investigated features 

To compare the effect of adding such features, we create three sets of features for model 

input, all features, without “winodds” feature, and without weather features. The list of used 

features in each features set is shown in the following table. The total number of features in 

asset and the resultant input dimension per horse is also included. 
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Feature\Feature Set All Features Without “winodds"  Without Weather 

location X X X 

class X X X 

distance X X X 

course X X X 

going X X X 

jockeycode X X X 

trainercode X X X 

draw X X X 

actualweight X X X 

horseweight X X X 

winodds X  X 

origin X X X 

age X X X 

color X X X 

sex X X X 

temperature X X  

weather X X  

wind _speed X X  

wind_direction X X  

humidity X X  

moon X X  

dn X X  

old_place X X X 

weightdiff X X X 

Total features 24 23 17 

Input Dimension 455 454 391 

Table 14. Features used in each feature set 
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5.5 Data Preprocessing 

5.5.1 Real Value Data 

We apply normalization on real value data to make training less sensitive to the scale of 

individual features. We use the z–score normalization to make the data have zero mean and 

unit variance. To prevent information leakage, we use the mean and variance of the training 

data for normalization. The data is then normalized according to the following equation: 

�̂� =
𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)
 

5.5.2 Categorical Data 

We use one hot encoding to represent categorical data. This approach, while creating a high 

dimension and memory intensive, represents categorical data in an unbiased way so that 

every class is equally separated and unrelated. This approach is also the most straight forward 

way to represent categorical data. For example, suppose we have data of different categories 

as follows: 

Item Category 

1 Apple 

2 Orange 

3 Banana 

After one hot encoding, the data will be transformed into the following: 

Item Is Apple Is Orange Is Banana 

1 1 0 0 

2 0 1 0 

3 0 0 1 

Note that the dimension of the data is increased by the number of categories. 

After this step, the dimension of the data is increased by over 20 times from 21 to 455. One 

approach to overcome the high dimensionality and large memory consumption is to train an 

embedding network for each of column of the data set. However, this requires careful 

selection of embedding dimension and complicated network design. Since our dataset are still 

well within the size of available memory, it is not deemed as necessary to use embedding 

networks.
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Chapter 6 Design 

In this chapter, we describe the design of our model and explain the design decisions made. 

In addition, we highlight the key design differences of our model with related works.  

6.1 Design Goals 

The design goals of our model are to accurately predict the winning horse and to generate 

profit with the “win” bet provided by the Hong Kong Jockey Club. All subsequent design 

choices are evaluated by 1. Accuracy of the prediction of the winning horse and 2. Simulated 

testing return with the “win” bet provided by the Hong Kong Jockey Club. 

6.2 Race Representation 

In this section we describe the different representations of horse races. In previous studies [7] 

[8], regression on finishing time and binary classification on win/lose are mainly studied, 

while our previous work [9] focused on multi–class classification of place to model horse 

performance. 

6.2.1 Single Horse Representations 

1. Finishing time regression – Regression on finishing time is a simple yet effective way 

to interpret horse racing results. In this approach, finishing time of each individual 

horse are predicted and the horses are ranked based on the predicted time. 

2. Win/lose binary classification – Binary classification on win/lose is another 

straightforward way to predict whether the horse is going to win. However, binary 

labeling the data of win/lose will result in highly uneven distributed labels with less 

than 10% of positive data and more than 90% of negative data. 

3. Place prediction – Directly predicting the place of the horses is more complicated 

method but give even data to each class. Moreover, score of each place of a horse can 

be interpreted as the probability of the horse getting each place, which facilitates 

building a probabilistic model. Although this may result in duplicated place within the 

same race, the score for each place can be used for ranking the horses in a race. 

However, in races with less than the maximum number (14) of horses, this model is 

not coherent with intuition and gives probability for impossible places. 
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6.2.2 Multiple Horses Representations 

All of the above methods predict their result based on the information of a single horse, 

which is unable to capture the interaction of different horses in a real race. In addition, the 

small errors in each individual horse may accumulate to lead to a large error in prediction. In 

this project, instead of using single horse representation, our model predicts the race result 

based on information from all the horses. However, this requires different models for 

prediction of races with different number of horses because of the difference in input and 

output dimension caused by the different number of horses. This is amortized by most races 

having 12 or 14 horses, as shown below in Figure 14. Therefore, by building two separate 

models for races of 12 horses and 14 horses, we can handle over 75% of the races.  

 

Figure 14. Number of horses in each race 

For multiple horses, there are also different possible representations: 

1. Multiple horse finishing time regression – Regression on finishing time is a simple yet 

effective way to interpret horse racing results. In this approach, finishing time of each 

individual horse are predicted and the horses are ranked based on the predicted time. 

However, this leads to a difficult choice of activation function for the output layer and 

may requires an additional transformation from the output of the model to the final 

output for training. 
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2. Winning horse classification – Binary classification on win/lose is a straightforward 

way to predict whether the horse is going to win. In addition, in the multiple horse 

case, binary labeling the data with win/lose will not result in uneven data labels, since 

in each race, there is always a horse which wins. 

3. Multiple horses place prediction – Directly predicting the place of the horses is more 

complicated method that predict more information about the relative rankings of the 

horses apart from the winning horse. However, it requires a two–dimensional output 

layer for representing place probability for each of the horses. 

In this project, we choose to use winning horse classification because it is the simplest 

representation that avoids the difficult choice of activation functions and the two–

dimensional output layer while still being able to predict the winning horse. In addition, while 

finishing time regression and place prediction can yield additional information about the 

rankings of individual horses, we are only concerned with the prediction of the winning horse 

and betting on the “win” bet of Hong Kong Jockey Club in this project. 

6.3 Network Design 

6.3.1 Distribution Selection for Neural Network Parameters 

Han et al. [30] [31] have studied the weight distribution of three state of the art deep neural 

networks, LeNet [32], AlexNet [33] and VGGNet [34], shown below in Figure 15. 

 

Figure 15. Distribution of weights in different deep neural networks 
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The weight distribution in these neural networks has been found to resemble narrow normal 

distributions with mean very close to zero. Therefore, in our model, both the prior 

distributions and variational distributions are set to be normal distributions. 

On the other hand, despite narrow distribution of parameters found by Han et al. [30] [31] 

with standard deviation less than 0.01, we set our prior distribution to be fairly wide with 

standard deviation of 1, Normal(0,1), to accommodate a larger range of possible values. 

6.3.2 Number of Layers and Neurons in Network 

In our previous work [9], we have determined that neural network with 4 layers of which 3 of 

them hidden works best. Therefore, in this work, we retain the same number of layers in the 

neural network. Instead, we test different number of neurons each layer ranging from 16 to 

256 and select the best number of neurons. Figure 16 below illustrates our 4–layer network 

structure with 16 neurons per layer. The dimension of the input layer in the figure has been 

reduced to 20 for a better presentation. The output of this neural network will then be used as 

rank probabilities during training. The complete flow is shown in Figure 17. 

 

 

Figure 16. Our 4–layer neural network with 16 neurons per layer 
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Figure 17. Flow of our neural network with final categorical sampling 
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Chapter 7 Implementation 

We have implemented our model on Python 3.7 with PyTorch 1.0.1 and Pyro 0.3.1. In this 

section, we describe the process of translating our model to implementation on Pyro. 

7.1 Pyro 

Pyro is a probabilistic programming language build on Python as a platform for developing 

advanced probabilistic models [22]. It leverages PyTorch on the backend to support neural 

networks, backpropagation, and automatic differentiation. As a probabilistic programming 

language, it abstracts probabilistic sampling and inference with simple primitives. For 

example, only one statement is needed in Pyro to sample a Normal(0,1) distribution, 

x = pyro.distributions.Normal(0.0, 1.0).sample()  

Given the model model and variational distribution guide, (stochastic) variational inference 

can be done with a few lines as follows: 

svi = SVI(model, guide, optimizer, loss=Trace_ELBO()) 
for i in range(num_epochs): 
    svi.step(data)  

Similarly, Markov Chain Monte Carlo sampling can be done as simple as: 

nuts_kernel = pyro.infer.mcmc.NUTS(model, adapt_step_size=True) 
posterior = pyro.infer.mcmc.MCMC(nuts_kernel, num_samples=num_epochs).run(data)  

Running either would yield the approximate posterior distribution 𝑝(𝑧|𝑥), stored in guide or 

posterior, depending on whether variational inference or Markov Chain Monte Carlo is 

used. 

7.2 Bayesian Neural Network in Pyro 

The following code implements our Bayesian neural network as described in Section 6.3 : 
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class Net(Module): 
    def __init__(self, num_feature, num_hidden, num_rank): 
        super(Net, self).__init__() 
        self.hidden1 = Linear(num_feature, num_hidden)   # hidden layer 1 
        self.hidden2 = Linear(num_hidden, num_hidden)   # hidden layer 2 
        self.hidden3 = Linear(num_hidden, num_hidden)   # hidden layer 3 
        self.predict = Linear(num_hidden, num_rank)   # output layer 
        self.nonlinear = ReLU()   # ReLU activation for intermediate layers 
        self.softmax = Softmax(1) )   # Softmax activation for final layer 
 
    def forward(self, x): 
        hid1 = self.nonlinear(self.hidden1(x)) 
        hid2 = self.nonlinear(self.hidden2(hid1)) 
        hid3 = self.nonlinear(self.hidden3(hid2)) 
        pred = self.softmax(self.predict(hid3)) 
        return pred 
 
def model(data): 
    # Create unit normal priors over the parameters 
    loc = pyro.zeros(num_hidden, num_feature) 
    scale = pyro.ones(num_hidden, num_feature) 
    bias_loc = pyro.zeros(num_hidden) 
    bias_scale = pyro.ones(num_hidden)  
    loc2 = pyro.zeros(num_hidden, num_hidden) 
    scale2 = pyro.ones(num_hidden, num_hidden) 
    bias_loc2 = pyro.zeros(num_hidden) 
    bias_scale2 = pyro.ones(num_hidden) 
    loc3 = pyro.zeros(num_hidden, num_hidden) 
    scale3 = pyro.ones(num_hidden, num_hidden) 
    bias_loc3 = pyro.zeros(num_hidden) 
    bias_scale3 = pyro.ones(num_hidden) 
    loc_out = pyro.zeros(num_rank, num_hidden) 
    scale_out = pyro.ones(num_rank, num_hidden) 
    bias_loc_out = pyro.zeros(num_rank) 
    bias_scale_out = pyro.ones(num_rank) 
 
    w_prior = Normal(loc, scale).independent(2) 
    b_prior = Normal(bias_loc, bias_scale).independent(1) 
    w_prior2 = Normal(loc2, scale2).independent(2) 
    b_prior2 = Normal(bias_loc2, bias_scale2).independent(1) 
    w_prior3 = Normal(loc3, scale3).independent(2) 
    b_prior3 = Normal(bias_loc3, bias_scale3).independent(1) 
    w_prior_out = Normal(loc_out, scale_out).independent(2) 
    b_prior_out = Normal(bias_loc_out, bias_scale_out).independent(1) 
    priors = {'hidden1.weight': w_prior, 'hidden1.bias': b_prior, 'hidden2.weight': 
w_prior2, 'hidden2.bias': b_prior2, 'hidden3.weight': w_prior3, 'hidden3.bias': 
b_prior3, 'predict.weight': w_prior_out, 'predict.bias': b_prior_out} 
 
    lifted_module = pyro.random_module("module", Net, priors) 
    lifted_reg_model = lifted_module() 
    x_data = data[:, :-1] 
    y_data = data[:, -1] 
    with pyro.plate("map", len(data)): 
        prediction_mean = lifted_reg_model(x_data) 
        pyro.sample("obs", Categorical(prediction_mean), obs=y_data)  

Figure 18. Implementation of Bayesian neural network model in Pyro 
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def guide(self, data): 
    # define our variational parameters 
    w_loc = data.new_tensor(pyro.randn(num_hidden, num_feature)) 
    w_log_sig = data.new_tensor(pyro.zeros(num_hidden, num_feature)) 
    b_loc = data.new_tensor(pyro.randn(num_hidden)) 
    b_log_sig = data.new_tensor(pyro.zeros(num_hidden)) 
    w_loc2 = data.new_tensor(pyro.randn(num_hidden, num_hidden)) 
    w_log_sig2 = data.new_tensor(pyro.zeros(num_hidden, num_hidden)) 
    b_loc2 = data.new_tensor(pyro.randn(num_hidden)) 
    b_log_sig2 = data.new_tensor(pyro.zeros(num_hidden)) 
    w_loc3 = data.new_tensor(pyro.randn(num_hidden, num_hidden)) 
    w_log_sig3 = data.new_tensor(pyro.zeros(num_hidden, num_hidden)) 
    b_loc3 = data.new_tensor(pyro.randn(num_hidden)) 
    b_log_sig3 = data.new_tensor(pyro.zeros(num_hidden)) 
    w_loc_out= data.new_tensor(pyro.randn(num_rank, num_hidden)) 
    w_log_sig_out= data.new_tensor(pyro.zeros(num_rank, num_hidden)) 
    b_loc_out= data.new_tensor(pyro.randn(num_rank)) 
    b_log_sig_out= data.new_tensor(pyro.zeros(num_rank)) 
 
    # register learnable params in the param store 
    mw_param = pyro.param("guide_mean_weight", w_loc) 
    sw_param = Softplus(pyro.param("guide_log_scale_weight", w_log_sig)) 
    mb_param = pyro.param("guide_mean_bias", b_loc) 
    sb_param = Softplus(pyro.param("guide_log_scale_bias", b_log_sig)) 
    mw_param2 = pyro.param("guide_mean_weight2", w_loc2) 
    sw_param2 = Softplus(pyro.param("guide_log_scale_weight2", w_log_sig2)) 
    mb_param2 = pyro.param("guide_mean_bias2", b_loc2) 
    sb_param2 = Softplus(pyro.param("guide_log_scale_bias2", b_log_sig2)) 
    mw_param3 = pyro.param("guide_mean_weight3", w_loc3) 
    sw_param3 = Softplus(pyro.param("guide_log_scale_weight3", w_log_sig3)) 
    mb_param3 = pyro.param("guide_mean_bias3", b_loc3) 
    sb_param3 = Softplus(pyro.param("guide_log_scale_bias3", b_log_sig3)) 
    mw_param_out = pyro.param("guide_mean_weight_out", w_loc_out) 
    sw_param_out = Softplus(pyro.param("guide_log_scale_weight_out", w_log_sig_out)) 
    mb_param_out = pyro.param("guide_mean_bias_out", b_loc_out) 
    sb_param_out = Softplus(pyro.param("guide_log_scale_bias_out", b_log_sig_out)) 
 
    # guide distributions for w and b 
    w_dist = Normal(mw_param, sw_param).independent(2) 
    b_dist = Normal(mb_param, sb_param).independent(1) 
    w_dist2 = Normal(mw_param2, sw_param2).independent(2) 
    b_dist2 = Normal(mb_param2, sb_param2).independent(1) 
    w_dist3 = Normal(mw_param3, sw_param3).independent(2) 
    b_dist3 = Normal(mb_param3, sb_param3).independent(1) 
    w_dist_out = Normal(mw_param_out, sw_param_out).independent(2) 
    b_dist_out = Normal(mb_param_out, sb_param_out).independent(1) 
    dists = {'hidden1.weight': w_dist, 'hidden1.bias': b_dist, 'hidden2.weight': 
w_dist2, 'hidden2.bias': b_dist2, 'hidden3.weight': w_dist3, 'hidden3.bias': b_dist3, 
'predict.weight': w_dist_out, 'predict.bias': b_dist_out} 
 
    lifted_module = pyro.random_module("module", Net, dists) 
    return lifted_module()  

Figure 19. Implementation of variational distribution for Bayesian neural network in Pyro 
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7.3 Data Augmentation 

To create more data points from available data, we employ data augmentation to transform 

data entries into additional entries. Data augmentation is often used in machine learning to 

prevent overfitting as a result of small training dataset, especially for tasks where manual 

labeling is expensive, such as image recognition [32] [33] [34]. However, for horse racing, 

data augmentation is a challenging task. Unlike image recognition where a human can easily 

distinguish between different labels given the input image, in horse racing the winning horse 

cannot be determined by a human given only the input data. In addition, for image 

recognition, noise filter placed over the input data does not drastically changes the label, but 

for horse racing, slight differences in the race condition can lead to different outcome. 

Therefore, we do not modify the values of the data, but only crop and shuffle the ground truth 

data. 

7.3.1 Data Cropping 

The presence of 13-horse races and 14-horse races present an opportunity for creating 

additional data for training 12-horse model. We crop the top 12 horses from 13-horse and 14-

horse races for use in training the 12-horse model. As a result, the number of training races 

for the 12-horse model doubles from 2292 12-horse races to 4605 races of 12-horse, 13-horse 

and 14-horse combined. For the 14-horse model, there are no additional data that can be 

created from cropping because there is no race with more than 14 horses, so the number of 

training data for 14-horse model is only 1940 races. 

7.3.2 Data Shuffling 

In our multiple horse representation, the input features of different horses are symmetric, and 

there is no information encoded in the relative positions between the features of different 

horses. For example, for an input vector of 12 horses as follows: 

Horse 1 Horse 2 Horse 3 Horse 4 Horse 5 Horse 6 Horse 7 Horse 8 Horse 9 Horse10 Horse11 Horse12 

There is no difference in information encoded if the input vector is flipped: 

Horse12 Horse11 Horse10 Horse 9 Horse 8 Horse 7 Horse 6 Horse 5 Horse 4 Horse 3 Horse 2 Horse 1 

This enables an additional dimension for data shuffling. 

Therefore, during training, the training data is shuffled along two dimensions, the order of 

training data and the order of each horse’s features, before running each step of variational 

inference or Markov Chain Monte Carlo sampling.
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Chapter 8 Results 

8.1 Setup 

We have implemented our model on Python 3.7 with PyTorch 1.0.1 and Pyro 0.3.1. All 

experimented are run on CentOS Linux 7 with Nvidia Titan V. We have trained our models 

with 100,000 epochs of variation inference over the training dataset with Adam optimizer 

with an initial learning rate of 0.0001. The amount of epochs is selected so that even the 

model with the largest number of parameters are trained to convergence. Since the variational 

distribution are not able to be directly used as network parameters, we sample the most likely 

set of weights and biases from our model by setting them to the mean of the variational 

distribution. Note that this is different from our previous approach [16], where 100 different 

sets of neural weights and biases from the variational distribution were sampled and the 

average performance taken as the result. We demonstrate in later sections that this approach 

of using the most likely model reduces the variability and improves the prediction accuracy 

and net gain. 

8.2 Results 

We use the following criteria to evaluate the different models: 

1. Accuracy: accuracy of predicting the winning horse in testing dataset 

2. Net gain: overall net gain of win over the testing dataset and ratio of return over bet 

To generate the net gain, we bet a fixed amount of 1 for each race in the testing dataset on the 

predicted winning horse. This results in bet amount of 341 for 12-horse model and 203 for 

14-horse model. The following tables show the performance of the model corresponding to 

the three set of features, All Features, Without “winodds” Feature, and Without Weather 

Features. The bet based on the public intelligence (lowest “winodds”) is also shown for 

comparison. To better illustrate the trend of our total asset during the testing process, we also 

included the betting curve showing the value of our total asset throughout the testing year.  
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12-horse Model (Tested with 341 12-horse races) 

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit? 

Public Intelligence N/A 22.87 –114.5 –33.58 No 

All Features 

16 7.62 –136.0 –39.88 No 

32 17.01 –88.9 –26.07 No 

64 22.58 –26.9 –7.89 No 

128 17.60 –31.7 –9.30 No 

256 18.18 –80.6 –23.64 No 

Without “winodds” 

Feature 

16 8.80 –185.2 –54.31 No 

32 8.80 –185.2 –54.31 No 

64 20.82 –15.8 –4.63 No 

128 16.42 –67.6 –19.82 No 

256 17.60 –43.1 –12.64 No 

Without Weather 

Features 

16 9.68 –47.6 –13.96 No 

32 22.29 25.7 7.54 Yes 

64 19.35 –82.7 –24.25 No 

128 17.30 –73.5 –21.55 No 

256 17.30 –87.3 –25.60 No 

Table 15. Testing performance of 12-horse model with different features and number of neurons 

14-horse Model (Tested with 203 14-horse races) 

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit 

Public Intelligence N/A 27.59 –36.9 –18.18 No 

All Features 

16 5.91 –117.6 –57.93 No 

32 16.75 –41.6 –20.49 No 

64 14.29 –35.3 –17.39 No 

128 22.66 29.3 14.43 Yes 

256 17.24 –21.1 –10.39 No 

Without “winodds” 

Feature 

16 9.85 –117.7 –57.98 No 

32 15.76 –44.0 –21.67 No 

64 18.23 –27.5 –13.55 No 

128 23.15 15.4 7.59 Yes 

256 17.73 –38.6 –19.01 No 

Without Weather 

Features 

16 5.91 –117.6 –57.93 No 

32 20.20 –23.8 –11.72 No 

64 23.15 7.5 3.69 Yes 

128 15.76 –58.2 –28.67 No 

256 17.24 –49.7 –24.48 No 

Table 16. Testing performance of 14-horse model with different features and number of neurons 
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12-horse Model (Tested with 341 12-horse races) 
Feature Set Neurons Betting Curve 

Public Intelligence N/A 

 

All Features 

16 

 

32 
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64 

 

128 

 

256 
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Without “winodds” 

Feature 

16 

 

32 

 

64 
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128 

 

256 

 

Without Weather 

Features 
16 
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32 

 

64 

 

128 
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Table 17. Betting curves of 12-horse model with different features and number of neurons 

14-horse Model (Tested with 203 14-horse races) 
Feature Set Neurons Betting Curve 

Public Intelligence N/A 

 

All Features 16 
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32 

 

64 

 

128 
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256 

 

Without “winodds” 

Feature 

16 

 

32 
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64 

 

128 

 

256 
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Without Weather 

Features 

16 

 

32 

 

64 
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128 

 

256 

 
Table 18. Betting curves of 14-horse model with different features and number of neurons 
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8.3 Discussion 

8.3.1 Profitability of Horse Racing 

From Table 15 and Table 16, we observe that both the 12-horse model and 14-horse model 

can generate a net profit with certain combination of feature set and number of neurons. The 

profit is 7.54% for 12-horse model with feature set Without Weather Features at 32 neurons, 

14.43%, 7.59% and 3.69% for 14-horse model with feature set All Features at 128 neurons, 

Without “winodds” Feature at 128 neurons, and Without Weather Features at 64 neurons 

respectively. This suggests that it is possible to generate profit via horse racing betting and 

our Bayesian neural network is suitable for predicting horse racing and can generate a net 

profit.  

8.3.2 Optimal Number of Neurons per Layer 

For the 12-horse model, best performance for each feature set is obtained at 64 neurons, 64 

neurons, and 32 neurons respectively. For the 14-horse model, best performance for each 

feature set is obtained at 128 neurons, 128 neurons, and 64 neurons respectively. Here we 

observe two trends, first, the optimal number of neurons for 12-horse model is consistently 

smaller than that of 14-horse model across all three feature sets, and second, the optimal 

number of neurons for Without Weather Features is consistently smaller than that of other 

feature sets across both 12-horse model and 14-horse model. 

The reduced optimal number of neurons per layer of 12-horse model compared to 14-horse 

can be explained by the reduction in number of features as a result of less horses. The number 

of features per horse is 455 after preprocessing, thus the number of features for 12-horse 

model is 455×12=5460 while the number of features for 14-horse is 455×14=6370. 

Therefore, the optimal number of neurons per layer of 12-horse model is smaller than that of 

14-horse model. 

Similarly, the reduced optimal number of neurons for feature set Without Weather Features 

can be explained by the reduced complexity of the smaller number of features when weather 

features are removed. While removing the real valued “winodds” only decrease the features 

per horse from 455 to 454, removing weather features with many categorical data reduce this 

number by 64 to 391. This 14% decrease in number of features has led to the reduced optimal 

number of neurons for feature set Without Weather Features.  
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Profitable 14-horse Model (Tested with 203 14-horse races) 
Feature Set Neurons Betting Curve 

All Features 128 

 

Without “winodds” 

Feature 
128 

 

Without Weather 

Features 
64 

 
Table 19. Betting curves of profitable 14-horse models 



Chapter 8 Results 

68 

 

8.3.3 Optimal Feature Set 

To better understand the effect of using different feature sets, we extract the three profitable 

betting curves of 14-horse model from Table 18 to Error! Reference source not found.. F

rom the table, we can see that the betting behavior using All Features is different from that of 

Without “winodds” Feature and Without Weather Features and is more stable without 

exhibiting large losses throughout the betting in the testing year, while removing either 

“winodds” or weather features results in a large initial drop in asset. This suggests that the 

combined knowledge of “winodds” or weather are important in predicting horse racing. 

While this may contradict with the result for 12-horse model, where the only profitable 

feature set is Without Weather Features, we attribute this result to the influence of other 

factors in data augmentation. To verify our hypothesis, we rerun the experiment for 12-horse 

model without data cropping of 13 or 14-horse race and only use 12-horse races for training. 

Due to time and resources constraint, we only rerun the experiment with the optimal 

configurations of 12-horse model and 14-horse model. The results are shown in Table 20 and 

Table 21. Without data augmentation, the performance of using all features are the best in 

terms of both accuracy and net return. Therefore, we can conclude that using All Features are 

the best when there is no data augmentation. This seems to suggest that data augmentation by 

cropping influences the performance of model under different feature set. Further 

investigation of influence of data augmentation must be done in order to explain how data 

augmentation influence the performance of model under different feature set. 

 

12-horse Model without Data Augmentation (Tested with 341 12-horse races) 

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit? 

All Features 
64 20.53 0.0 0.0 No 

128 17.01 –1.3 –0.38 No 

Without “winodds” 

Feature 

64 19.65 –14.3 –4.19 No 

128 14.66 –39.7 –11.64 No 

Without Weather 

Features 

32 19.35 –64.7 –18.97 No 

64 15.84 –87.3 –25.60 No 

Table 20. Performance of 12-horse model without data augmentation 
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12-horse Model without Data Augmentation (Tested with 203 14-horse races) 
Feature Set Neurons Betting Curve 

All Features 

64 

 

128 

 

Without “winodds” 

Feature 
64 
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128 

 

Without Weather 

Features 

32 

 

64 

 
Table 21. Betting curves of 12-horse model without data augmentation 
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8.4 Kelly Betting 

The fixed betting in the previous sections may not be the optimal betting strategy of a rational 

being. Indeed, experienced human betters may not bet fixed amounts on every race even 

when they hold different confidences about the races [35]. To incorporate confidence into 

betting, we employ Kelly betting on each model. Kelly betting is a formula for bet sizing that 

leads to optimal wealth increase in the long run as the number of bets goes to infinity [35]. It 

sets the bets size by maximizing the expected logarithm of wealth which is equivalent to 

maximizing the expected geometric growth rate. 

For example, let 𝑝 be the probability of winning, and 𝑏 be the return per unit bet, which is the 

amount won per unit bet on top of getting the bet amount back. Also, we denote the current 

amount of asset to be 𝐴. Then, the Kelly bet is 

𝑓 = 𝐴 ×
𝑝(𝑏 + 1) − 1

𝑏
 

In our experiments, we take the output of the neural network as the probability of winning of 

each horse. The sum of this output is 1, which is consistent to be interpreted as probability. 

To give a fair comparison to fixed betting, the initial asset is set to equal to 341 for 12-horse 

model and 203 for 14-horse model. The results are shown on the next page. 

8.4.1 Discussion 

From the results, most of our models lost all the asset when utilizing Kelly betting, even 

when it can generate a profit using fixed betting. One possible explanation is that while our 

models are comparatively accurate in predicting the winning horse, they are over confidence 

in its prediction and therefore lost all of their asset. 

One notable exception is the 14-horse model with 64 neurons using Without “winodds” 

Feature feature set. This model obtained a 403.22% net gain of 818.5 and the highest amount 

reached in the process is over 35000. However, without additional testing data, we are unable 

to conclude whether this model is about to make a profit in the long run. 
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12-horse Model (Tested with 341 12-horse races) 

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit? 

Public Intelligence N/A 22.87 –114.5 –33.58 No 

All Features 

16 7.62 –313.6 –91.95 No 

32 17.01 –340.6 –99.90 No 

64 22.58 –336.3 –98.61 No 

128 17.60 –340.1 –99.75 No 

256 18.18 –315.3 –92.50 No 

Without “winodds” 

Feature 

16 8.80 –341.0 –100 No 

32 8.80 –341.0 –100 No 

64 20.82 –341.0 –100 No 

128 16.42 –340.2 –99.77 No 

256 17.60 –341.0 –100 No 

Without Weather 

Features 

16 9.68 –315.7 –92.57 No 

32 22.29 –314.9 –92.34 No 

64 19.35 –332.4 –97.48 No 

128 17.30 –338.6 –99.30 No 

256 17.30 –341.0 –100 No 

Table 22. Kelly betting performance of 12-horse model with different features and number of neurons 

14-horse Model (Tested with 203 14-horse races) 

Feature Set Neurons Accuracy (%) Net Return Return/Bet (%) Profit 

Public Intelligence N/A 27.59 –36.9 –18.18 No 

All Features 

16 5.91 –203.0 –99.98 No 

32 16.75 –202.7 –99.86 No 

64 14.29 818.5 403.22 Yes 

128 22.66 –201.6 –99.29 No 

256 17.24 –202.6 –99.79 No 

Without “winodds” 

Feature 

16 9.85 –203.0 –99.98 No 

32 15.76 –203.0 –99.99 No 

64 18.23 –203.0 –100 No 

128 23.15 –203.0 –100 No 

256 17.73 –203.0 –99.98 No 

Without Weather 

Features 

16 5.91 –203.0 –99.98 No 

32 20.20 –202.5 –99.75 No 

64 23.15 –202.9 –99.95 No 

128 15.76 –202.8 –99.89 No 

256 17.24 –202.7 –99.86 No 

Table 23. Kelly betting performance of 14-horse model with different features and number of neurons 
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12-horse Model (Tested with 341 12-horse races) 
Feature Set Neurons Kelly Betting Curve 

All Features 

16 

 

32 

 

64 
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128 

 

256 

 

Without “winodds” 

Feature 
16 
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32 

 

64 

 

128 

 



Chapter 8 Results 

76 

 

256 

 

Without Weather 

Features 

16 

 

32 
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64 

 

128 

 

256 

 
Table 24. Kelly betting curves of 12-horse model with different features and number of neurons 
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14-horse Model (Tested with 203 14-horse races) 
Feature Set Neurons KellyBetting Curve 

All Features 

16 

 

32 

 

64 
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128 

 

256 

 

Without “winodds” 

Feature 
16 
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32 

 

64 

 

128 
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256 

 

Without Weather 

Features 

16 

 

32 
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64 

 

128 

 

256 

 
Table 25. Kelly betting curves of 14-horse model with different features and number of neurons 
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8.5 Comparison with Related Works 

In this project, we used a similar dataset as Liu and Wang [8] with Hong Kong races from 

2011 to 2018. The data of the same time period from 2011 to 2017 are used as training set, 

while the testing data set are extended to races of the whole year 2018 instead of only from 

January to April to minimize testing noise and provide a better measure of the model 

performance. The use of training data on the same period allows a direct comparison between 

our work and that of Liu and Wang [8]. 

The best model of Liu and Wang [8] can achieve 24.51% in win accuracy and result in a net 

loss of 25.78%. Our best 14-horse model have win accuracy of 22.66% and a net gain of 

14.43%, and 12-horse model have win accuracy of 22.29% and a net gain of 7.54%. While 

our model does not exceed that of [8] in terms of accuracy, we note that the number of horses 

in a race of their testing data ranges from 6 horses to 14 horses, thereby increasing the testing 

accuracy as a result of less uncertainty due to less horses in a race, while our testing data is 

only composed of 12-horse races and 14-horse races. A fair comparison of accuracy cannot 

be done without setting the same number of horses in the testing data for [8] and our model. 

In terms of net gain however, our model can generate a net profit while that of Liu and Wang 

[8] cannot. 

Apart from Liu and Wang [8], Cheng and Lau [7] have also used neural networks for horse 

racing prediction. Compared to our work and Liu and Wang [8], Cheng and Lau [7] used a 

larger 16–year dataset of Hong Kong races from 2001 to 2016. Their neural network model 

achieved win accuracy of 21.42%, and when the threshold is not used, the model result in a 

loss of over 20%. Our best 14-horse model have win accuracy of 22.66% and a net gain of 

14.43%, and 12-horse model have win accuracy of 22.29% and a net gain of 7.54%. 

Therefore, our model performed better than that of [7] in terms of both accuracy and net gain. 

While our Bayesian neural network model does not perform significantly better than neural 

network models of Cheng and Lau [7], Liu and Wang [8] in term of accuracy, we are able to 

perform better in terms of net gain. We partly attribute this to the difference of objectives 

between Bayesian neural network and neural network, the first attempts to infer the true 

posterior probability of the network weights, while the latter optimizes directly on accuracy. 

In the last term, we have used a similar Bayesian neural network model as current model but 

for predicting the place of each individual horse [9], and achieved 25.92% accuracy and net 
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loss of –20.09%. Our best 14-horse model have win accuracy of 22.66% and a net gain of 

14.43%, and 12-horse model have win accuracy of 22.29% and a net gain of 7.54%. Similar 

to [8] the test data we used last term [9] has number of horses in a race ranging from 6 horses 

to 14 horses, thereby increasing the testing accuracy as a result of less uncertainty due to less 

horses in a race, while our testing data is only composed of 12-horse races and 14-horse 

races. A fair comparison of accuracy cannot be done without setting the same number of 

horses in the testing data for our past model [9] and our current model. In terms of net gain 

however, our current model can generate a net profit for both 12-horse races and 14-horse 

races while that of our past model [9] cannot. 

In conclusion, comparison with works utilizing neural networks and single horse 

representations [7] [8] [9] for modeling the races demonstrate that our multiple horse 

representation is able to achieve comparable win accuracy and superior net gain. This 

suggests that our multiple horse representation is more suitable than single horse 

representations for modeling horse racing.



Chapter 9 Conclusion 

85 

 

 

Chapter 9 Conclusion 

9.1 Conclusion 

This report has detailed the process of using deep probabilistic programming to predict horse 

racing. Though repeated experiments, we shown that horse racing prediction with deep 

probabilistic programming and Bayesian neural network can beat public intelligence and 

generate net profit in the long run under all circumstances, with our best 14-horse model have 

having accuracy of 22.66% and net gain of 14.43%, and 12-horse model having win accuracy 

of 22.29% and net gain of 7.54%. We also observed that more neurons per layers are needed 

for fully capturing the relations when the input dimension is increased, whether it is due to 

increased number of horses or increases number of features. In addition, our results suggest 

that both odds data and weather data can be useful for horse racing prediction. Finally, 

through comparison with related works using single horse representations, our multiple horse 

representation is able to achieve comparable win accuracy and superior net gain, and is more 

suitable than single horse representations for modeling horse racing. 

9.2 Future Work 

One of the main limitations is of our model is that separate models are needed for races with 

different number of horses. In the future, we plan to research on the direction of transfer 

learning, network parameter sharing and transformations [1] [2], to alleviate the need of 

training separate models. 

Another short coming of our model is that it is unable to generate accurate confidence. While 

this does not affect the prediction accuracy of the winning horse, it leads to poor performance 

when the betting requires an accurate estimate of confidence, such as Kelly betting. Also, 

although we obtained a distribution from the model, only the mean is used during prediction. 

In the future, we plan to incorporate the variance of the distribution to obtain an estimate of 

model confidence for use in betting. 
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