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Abstract 

 

Network Time Protocol is one of the most important protocol in computer network 

history. Most systems rely on NTP to synchronize the system time. However, the design 

of this protocol is vulnerable in today’s internet environment. To mitigate the risk of man-

in-the-middle attack and distributed denial-of-service attack, using a distributed approach 

of blockchain can provide a more secure time keeping mechanism. 

Timechain is the blockchain-based time keeping solution introduced in this project. It 

focuses on giving a more secure time instead of a more accurate time. The block structure 

and the consensus algorithm are modified to achieve the purpose of time keeping. 

Credibility is established when more and more blocks are appended to the chain. In the 

future, it can also take into consideration the network delay to offer a more accurate time.  
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1. Introduction 

 

In modern days computer networking, keeping the time synchronized across all machines 

on the network is critical. Without time synchronization, the local clock on each machine 

will slowly drift away from each other and eventually resulted in a significant time 

difference. The effect is especially crucial on time-critical systems. When these systems lost 

their frame of time reference across different machines, many security protocols will fail to 

work properly. For example, when you are establishing a secure communication with a 

remote server, it offers you a Transport Layer Security (“TLS”) certificate to ensure its 

identity. Every certificate has an expiration date, and in fact an incorrect system time is one 

of the major causes for HTTPS certificate errors. A recent study of Google Chrome users 

shows that 6.75% of the client-reported times were having an error of over 24 hours. [1] 

The idea behind the expiration is to minimize the chance of the private key of the certificate 

owner being compromised. Whenever a new certificate is being generated after the old one 

expires, it ensures that the owner possess his new private key. However, if the time on the 

local machine is delayed, it may consider expired certificates as valid, and hence the 

certificate cannot serve the purpose of authenticating the server. 

Nowadays, most systems rely on Network Time Protocol (“NTP”) and its variants (such as 

Simple NTP) to get the time synchronized. These protocols are successful at providing a 

high precision time. However, they were developed before the 2000s and lack modern 

security features, which makes these protocols highly vulnerable to Distributed Denial-of-

Service (DDoS) and man-in-the-middle (MITM) attacks.  



With the increasing popularity of blockchain, it eliminates the central authority by a 

distributed network and maintain the operation by a consensus algorithm agreed by all nodes. 

This distributed model of networking mitigates the risk of single-point-of-failure and MITM 

attacks. It seems to be a solution in keeping the time safely. Credibility of time is being 

established when more and more blocks are being appended to the ledger, and gradually 

establishes a trustworthy time. 

In this project, I will investigate the problems brought along by the current time 

synchronization approaches and suggest an alternative solution in blockchain. This report 

will be organized as follows: In chapter 2, I will investigate the design of NTP and analyze 

its security concerns. In chapter 3 and 4, I will propose the Timechain solution, an 

implementation of blockchain for time keeping in a distributed network. And finally, in 

chapter 5, I will propose the further development for the Timechain in the following 

semester. 

  



2. Background 

 

2.1 Network Time Protocol 

 

2.1.1 History 

NTP was originally developed by Professor David L. Mills at University of Delaware. It 

was first implemented as NTP version 0 (NTPv0) in 1985 and documented in RFC 958. 

However, that document only specifies the data representation and message formats and 

lacks synchronizing or filtering mechanisms. [2] These algorithms were implemented in the 

NTPv1, published in RFC 1059 in 1988. [3] The protocol was bought to wide attention in 

the engineering community with the publication of the article in the IEEE Transactions on 

Communications. [4] The latest version is NTPv4 which is specified in RFC 5905 published 

in 2010. It is modified to accommodate the Internet Protocol version 6 (IPv6) addresses and 

algorithms that increases the potential accuracy. [5] Following the retirement of David Mills, 

the NTP project is now maintained by the Network Time Foundation.  

 

2.1.2 Clock strata 

NTP uses a hierarchy structure for time sources. Each layer is called a stratum and is given 

a number starting from 0. The first layer, i.e. stratum 0, high-precision time-keeping devices, 

such as atomic clocks and satellites. They generate a very accurate pulse per second signal 

which are assumed that the clock skews are extremely small. They are used as the reference 

clocks for the whole system. And for the remaining stratums, the hosts at stratum n 

synchronize their time with other hosts in the stratum n-1. The number represents the 

distance of the distance from the reference clock and is used to prevent cyclic 



synchronization. Within each stratum, there also exist peer-to-peer connections for sanity 

check and backup. The connection is illustrated in Figure 2.1 [6].  

 

 

2.1.3 NTP packet 

NTP operates over the User Datagram Protocol (“UDP”). The NTP server listens for NTP 

client packets on port 123. Both NTP requests and responses share a common format, as 

shown in Figure 2.2 [7].  

Figure 2.1Illustration of NTP Connections 



 

Figure 2.2 NTP Packet Format 

 

2.1.4 Time synchronization 

NTP uses the client/server model for exchange of time information. The communication 

between the client and server is illustrated as follows: 



1. When the client requests the server for the current time, it sends the NTP packet with 

its own local timestamp t1 in “Origin Timestamp”. It is the time the packet is being 

transmitted to the server. 

2. When the server receives the request, it adds the server time of receive t2 in “Receive 

Timestamp” in the data packet.  

3. The NTP server sends the response back to the client with the timestamp of the 

packet leaving the server t3 appended in “Transmit Timestamp”. The response is the 

whole NTP packet, including the “Origin Timestamp” and “Receive Timestamp”. 

When the client receives the response, it logs its local time of receive as t4. By doing so, the 

client can derive both the server time and the round-trip network delay between the client 

and the server. The round-trip delay can be modelled by the time between the client sending 

the request and receiving the response minus the processing time of the server. It is given 

by the following formula:  

δ = (𝑡4 − 𝑡1) − (𝑡3 − 𝑡2) 

And hence the offset of the client clock from the server clock can be calculated with the 

following formula. It is assumed that the upstream and downstream delay is symmetric: 

θ =
1

2
[(𝑡2 − 𝑡1) + (𝑡3 − 𝑡4)] 
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Figure 2.3 Round-trip delay δ 



2.2 Security Concerns of NTP 

 

2.2.1 Man-in-the-middle Attack (“MITM”) 

While NTP supports both symmetric and asymmetric cryptographic authentication, they are 

rarely used in practice. Symmetric cryptographic authentication requires the client to be pre-

configured manually to accept packets hashed with the correct symmetric key, which makes 

this solution troublesome for public deployment. The secure distribution for symmetric key 

to only trustable users is a big challenge. For example, the internet time service provided by 

the National Institute of Standards and Technology (“NIST”), which is under the United 

States Department of Commerce, only accepts registered users to access their authenticated 

time service. The key is sent to the users only by mail or facsimile and it expires every year. 

[8] Hence, this approach is not suitable to deploy public NTP service which accepts arbitrary 

clients. 

The asymmetric cryptographic authentication is provided by the Autokey protocol, which 

is specified in RFC 5906 [9]. However, RFC 5906 is an informational document instead of 

a standard requirement. Clients do not request Autokey associations by default, and most 

public NTP servers do not support Autokey. The major reason for the lack of 

implementation of Autokey is the performance drawback. Asymmetric cryptography 

authentication is considered as computationally expensive. While symmetric key 

authentication is believed to require almost constant CPU time, public key algorithms 

requires a significantly more and unpredictable CPU time. As NTP servers are designed to 

handle a huge number of requests, the computational overhead for asymmetric key 

authentication makes it impractical to be implemented. [10] 



Unauthenticated network communications are highly vulnerable to man-in-the-middle 

attacks, and NTP is no exception. In fact, most operating systems take in unauthenticated 

NTP packet as their time reference. It becomes extremely easy to perform an on-path attacks. 

On-path attackers are attackers having a privileged position in the network. By exploiting 

various traffic hijacking techniques, it is possible to hijack the NTP communications 

between the client and the server. [11] For instance, NTP server is defined by either the host 

name or the IP address. It is configured manually and static. If the Domain Name System 

(“DNS”) is being hijacked, the domain name can be resolved to another address which 

response to the NTP queries with an incorrect time.  

 

 

 

 

 

 

 

 

 

 

 

 

1. DNS lookup: time.google.com 

2. DNS Result 

    time.google.com → 216.239.35.0 

Client DNS Server 

Authentic NTP Server 

(216.239.35.0) 

4. NTP Response 3. NTP Request 

Figure 2.4 NTP Time synchronization in an expected environment. Client has NTP server 

configured to time.google.com is resolved correctly to the authentic NTP server. 



 

 

 

 

 

 

 

 

 

The implementation of NTP defines a panic threshold of 1000 seconds (16 minutes 40 

seconds) to mitigate the effect of the system time being influenced by an incorrect time. If 

the NTP time received instruct the local clock to alter by over the panic threshold, no 

adjustment to the clock will be made. NTP also defines a step threshold of 125 milliseconds. 

If the timestep is larger than the step threshold and smaller than the panic threshold, the 

clock will be altered if the predefined time duration called “stepout” have elapsed since the 

last clock update. [5] In the most recent implementation of the NTP daemon (ntpd v4.2.8), 

the stepout value is 300 seconds. Therefore, to shift the client clock for 1 year, it requires at 

least 114 days. [11] 

However, there exist another method to shift the time by a great step by exploiting reboot. 

In the implementation of NTP, most operating systems allow any time shift when the system 

starts. This is a reasonable implementation as on-board clocks shift significantly when 

powered down. Yet whenever rebooting the system due to manual intervention, system 

1. DNS lookup: time.google.com 

2. DNS Result 

    time.google.com → 115.24.35.0 

Client Hijacked DNS Server 

Fake NTP Server 

(115.24.35.0) 

4. NTP Response 

3. NTP Request 

Authentic NTP Server 

(216.239.35.0) 

Figure 2.5 The DNS server is hijacked and time.google.com is resolved to another address. The client hence requests 

the NTP time from the fake server without authenticating and update its own time accordingly. 



upgrade, or power cycling, it creates a window for a fake NTP time to be injected into the 

system. [11] 

 

2.2.2 Single Point of Failure and Distributed Denial-of-Service Attack  

All centralized servers are the single points of failure within a system. Their failure produces 

an outage of the whole time synchronization mechanism. In the implementation of NTP 

client, it is allowed to have set one or multiple sources of time as the NTP server, but by 

default usually only one server is being set. Also, all centralized servers are subject to DDoS 

attacks. The attacker can generate a huge amount of traffic from different sources and flood 

them against the NTP server, thus disabling the ability for the server to handle proper 

requests. If that single server fails or the time is tampered with, all the clients polling this 

server will be unable to obtain an authentic server time.  

The risk of single point of failure can be mitigated by setting multiple time servers for 

reference and use NTP server pools instead of a single server. The server pool creates 

redundancy for the timing service. In case a single server breaks down, other services in the 

cluster can still share the load of the down server. For instance, pool.ntp.org is a project of 

a big cluster of time servers. It is estimated to be serving around 5-15 million systems 

worldwide. [12] However, they are also worry about the rapid increase of internet-connected 

devices and the need of more timing capacity for these devices.  

 

 

 

 



 

 

 

 

  

NTP request 

Client NTP Server 

Machines controlled by attacker 

No response 

Figure 2.6 Illustration of attacker disabling NTP server with big volume of requests. 



3. Solution Design 

 

3.1 Blockchain 

 

Blockchain is a decentralized, distributed and public digital ledger. The ledger is maintained 

by the participants of the network without a centralized authority. It allows data to be 

appended to the blockchain by different nodes and each node participants in verifying and 

auditing the data involved. Each block is being built on top of previous blocks such that the 

blocks cannot be modified easily. Due to the distributed nature of blockchain, it eliminates 

the weakness of single point of failure.  

 

3.1.1 History 

In 2008, a whitepaper titled “Bitcoin: A Peer-to-Peer Electronic Cash System” was 

published by a person (or a group of people) named Satoshi Nakamoto to solve the existing 

financial market problems. This paper focuses on developing a decentralized online 

payment method such that no central authority is required to process the transaction. [13] 

He implemented the system in the follow year. That is where the word “block chain”, as 

two separate words, first appeared in a comment of his source code.  

After the success of Bitcoin in recent years, the public realized the importance of blockchain 

technology, not only in financial industry, in keeping that data safe from being altered. Other 

blockchain platforms are being developed, such as Ethereum and Hyperledger. These 



blockchains may not include a native currency but enabled other possibilities such as smart 

contracts.  

 

3.1.2 A block 

The distributed ledger is represented by chain of blocks stored in a database. It is maintained 

by a network of machines called nodes. Unlike traditional database models, the entire 

database is stored on every node and each node is allowed to write to its own copy with 

validated blocks. The moment a node joins the network, it downloads the most updated 

chain of blocks and work with other nodes to keep the chain continuing.  

A block mainly consists of the following fields: 

➢ Block index: A block index of 0 indicates a genesis block. 

➢ Timestamp: The timestamp of the block creation. 

➢ Hash: The hash value of the current block. A fixed-length string is generated 

according to the content of the block.  

➢ Previous hash: The hash value of the previous block. It links the current block to the 

previous block. 

➢ Nonce: A value used to track the Proof of Work (“PoW”) algorithm counter. It will 

be explained later. 

➢ Block body: The data to be stored. 

 

 

 



 

 

 

 

 

 

 

Hashing is the backbone of the immutability of the blockchain. It ensures no blocks are 

being tampered with. As the hash of the block is computed with the content of the whole 

block, it also takes into the previous hash for calculation. In other words, the hash of a block 

is dependable on the hash of the previous block. In order to add a block, it has to be approved 

and verified by every other node in the network. If a block in the chain is altered, the hash 

will be changed and the whole the blockchain will become disconnected. To connect the 

blockchain again, all hashes of the subsequent blocks have to be updated, and the resulted 

blockchain will also be different. In fact, the process of updated all the blocks is extremely 

difficult and computational-intensive. This will be explained in the following parts. 

 

3.1.3 Consensus 

Consensus algorithm is an important part of the blockchain system. As anyone can 

participate in maintaining and updating the blockchain, it is important to setup a set of rules 

such that every node adheres to to maintain the blockchain. Whenever new block is being 

generated by a node, it is broadcasted to other nodes. The other nodes will verify the block 

Index Timestamp 

Hash 

Previous Hash 

Nonce 

Block body 

Index Timestamp 

Hash 

Previous Hash 

Nonce 

Block body 

Index Timestamp 

Hash 

Previous Hash 

Nonce 

Block body 

Figure 3.1 Illustration of relationship between blocks 



with the consensus algorithm and only if the block is verified, it will be added to the 

blockchain. 

The most widely used consensus algorithm is the Proof of Work (“PoW”). It was invented 

by Satoshi Nakamoto and implemented in the Bitcoin. In order to create a valid block, a 

node has to solve a complicated mathematical puzzle which takes computational power. The 

mathematical puzzle is nothing but to achieve a desired hash. In computing the hash, the 

algorithm takes in the block content and reaches a hash of a desired pattern. The only varying 

field in a block is the nonce. By taking in the content of the block with varying nonce, 

eventually, a block hash of a desired pattern is reached. The block, together with the hash 

and the nonce, is then being broadcasted to the network. Other nodes receiving the block 

will verify if the combination of block content and nonce can come up with the desired hash. 

Block content 

Nonce Hash 

0001 888B19A43B151683C87895F6211D9F8640F97BDC8EF…… 

0002 4FAC6DBE26E823ED6EDF999C63FAB3507119CF3CB…… 

0003 446E21F212AB200933C4C9A0802E1FF0C410BBD75F…… 

…… 

1234 03AC674216F3E15C761EE1A5E255F067953623C8B38…… 

 

Figure 3.2 Illustration of the Proof of Work mathematical puzzle. In this example, an arbitrary hashing 

algorithm is used. Block content is kept constant and only the nonce is changing. The block is accepted if the 

hash starts with “0”. 

 

As the process of hashing is believed to generate a string which the probability of a pattern 

is equally distributed, the process of solving this mathematical puzzle can only be achieved 

by brute-force approach. The computational power required is the barrier to update a block, 



or in the case of an attacker, after altering of a certain block, it requires a huge amount of 

computational power to modify the hashes of all subsequent blocks. The difficulty is defined 

by the complexity of the matching pattern. For instance, requiring the hash to start with two 

zeros (“00……”) is more difficult of starting with one zero (“0……”). 

However, in order to verify the correctness of the proof of work, it only takes constant time. 

Upon receiving of a block, a node simply calculates the hash, which includes the nonce and 

the block content, of it. If the resulted hash matches the hash as indicated in the block and 

the desired pattern, the block can be deemed valid. This also shows that the block created 

have worked on creating the block, hence the method is called Proof of Work. 

Other methods of consensus also exist, such as Proof of Stake, Byzantine fault tolerance 

algorithm, and the delegated Proof of Stake algorithm. In this project, I will focus on the 

Proof of Work. 

 

3.1.4 Network 

The blockchain runs in the following sequence: 

1. Each node collects the data and prepare its own block  

2. Each node works on finding the proof of work for its block 

3. If the proof of work is found, the node broadcast the block to all nodes reachable 

4. Nodes that receives a block verify the PoW result and its data (if necessary) 

5. If the block is being accepted, it appends the block to the end of its chain and use its 

hash to work on the next block. Otherwise, it continues to work on the current block 

and wait if some other nodes broadcast other solutions. 



In case of multiple nodes broadcasting different versions of the next valid block at the same 

time, different nodes may receive different blocks. Nodes always consider the longest chain 

of blocks as the valid one. Hence, they work on the first node they received. Eventually, 

when then next PoW is found and a new block is arrived, the tie will be broken. If the new 

block contributed to the other chain, that chain will become longer and the chain the node 

is working on will be disposed.  

  



3.2 Timechain 

 

Inspired by the blockchain, I have designed Timechain: a more secure time synchronization 

mechanism. It is designed mainly to mitigate the security risks of NTP: 

➢ It is designed mainly to mitigate the risk of man-in-the-middle attack. By nature of 

blockchain, the creditability of data is established by the consensus of the whole 

network. The chain is immutable and there is no single node the hacker can 

compromise to get the fake data being spread in the network. 

➢ As blockchain works in a distributed manner and every node holds a copy of the 

ledger, the single point of failure is eliminated and almost impossible to perform a 

denial of service attack. Even if the attacker compromised a number of nodes in the 

network, the time synchronization mechanism can still function. 

However, compared to NTP, this design of time synchronization is mainly targeted on 

security applications, such as certificate expiration. In such scenario, the precision of time 

is less important. It is acceptable to have a certain error, say, within 1 minute. This is 

sufficient to reject a certificate which is expired by 1 minute or more. Hence, is this 

implementation, the time security is more important than the time precision. It can be 

worked together with NTP to achieve redundancy for time synchronization. 

 

3.2.1 Block 

The block structure of the Timechain is similar to that of a blockchain. However, in the 

original implementation of the blockchain, the timestamp is recorded at the time of block 

creation. As it takes time for the proof of work to be completed, by the time the block is 



being broadcasted to other nodes, the time is already delayed, hence the timestamp cannot 

be used directly for time synchronization. 

To take into consideration the time of the block being broadcasted to the network, instead 

of using a nonce value for PoW, the timestamp itself will be used as the nonce. In other 

words, for every time a node calculates the hash, the timestamp on the node is being updated. 

This ensures that the block comes with the timestamp being broadcasted to the network (and 

the processing time for computing the hash value, but it is negligible as the time required to 

compute a single hash value is constant). After subsequent blocks are being appended to the 

chain, their hashes are also affected by the hash of preceding blocks that includes an updated 

time, hence altering any of the blocks will break the chain.  

Block content 

Timestamp Hash 

13:24:01.89392 24/12/2018 888B19A43B151683C87895F6211D…… 

13:24:01.89393 24/12/2018 4FAC6DBE26E823ED6EDF999C63…… 

13:24:01.89394 24/12/2018 446E21F212AB200933C4C9A0802…… 

…… 

13:24:05.29348 24/12/2018 03AC674216F3E15C761EE1A5E25…… 

Figure 3.3 Illustration of the Proof of Work mathematical puzzle. In this example, an arbitrary hashing 

algorithm is used. The timestamp is used as the nonce. 

 

3.2.2 Consensus 

The proof of work consensus algorithm is being used in the Timechain implementation. 

However, apart from validating the mathematical puzzle solution as shown above, upon 

receiving a new block, each node also checks the timestamp for an acceptable range of error 

(mainly due to network latency). If the time difference between the timestamp on the block 

and the local time is above a certain threshold, say 15 seconds (meaning an error of 15 



seconds), the block is considered having an inaccurate timestamp instead of a large delay, 

and will be discarded by the node.  

 

3.2.3 Network 

The blockchain runs in the following sequence: 

1. Each node repeats the following until the PoW is solved: 

a. Create a block with the current timestamp 

b. Calculate the hash of the block 

2. If the PoW is solved, the block is broadcasted to other reachable nodes 

3. Nodes that receives a block log the local time of receive and verify the PoW result 

4. If the PoW is correct, a node then compare the logged time to the timestamp on the 

block. Accept the block if the time difference is smaller than the threshold 

5. If the block is being accepted, it appends the block to the end of its chain and use 

its hash to work on the next block. Otherwise, it continues to work on the current 

block and wait if some other nodes broadcast other solutions 

6. For every certain amount of time, say 5 minutes, each node will broadcast the 

chain of nodes on their local machines to its peers. By doing this each of the nodes 

will check if they are having the same chain. If no, the longest, and yet valid chain 

will replace the existing local chain. 



 

Figure 3.4 Flow of Timechain 

 

As a node is more likely to receive new blocks and chains announcements from nearby 

nodes (nearby here refers to low network delay) first, the delay for each message is small, 

but the total time delay propagates from the writer of the time blocks.  The system works 

well in a small scale without caring about the time delay, but when it is deployed in a wide 

area network, the delay should be taken into consideration. This will be further explained 

in the part of “Further Development”. 

 

3.2.4 Credibility 

As it takes time for the PoW to come up with a solution, in order to taper with a certain 

block in a blockchain, all the PoW of the subsequent blocks have to be recalculated. This 



requires a huge amount of computing power and makes it almost impossible to catch up 

with the development of the blockchain.  

For instance, an attacker attempts to alter the n-5 block, where n is the total number of 

blocks currently exist in the longest chain. Suppose generating the PoW for each block 

requires approximately 10 minutes. (As PoW is a brute force approach, the time required 

for computation is unpredictable. This number here is just an average value.) In order to 

alter the n-5 block and keeping the whole chain valid, the attacker also has to modify 

blocks n-4, n-2, n-1 and n. To modify 5 blocks in total, it takes 50 minutes. By then, the 

whole chain is still progressing by other nodes in the network, and probably reach the n+5 

blocks already. The attacker is unable to catch up with the longest chain.  

Hence, by the PoW, when more and more blocks are being appended to a chain, the more 

credible and previous blocks are. The Timechain algorithm will determine the current 

clock with reference to blocks few levels before the latest block. The time is more 

trustworthy compared to consider only the timestamp of the latest block. 

  



4. Implementation 

 

4.1 Blockchain Platforms 

In order to implement the Timechain blockchain, major blockchain platforms are 

considered.   

 

4.1.1 Bitcoin 

Bitcoin is the first peer-to-peer payment method which operates with no central authority. 

It is decentralized and every participant on the network manage transactions and issue 

bitcoins collectively. [13] 

 

4.1.2 Ethereum 

Ethereum is a public, block-chained based distributed environment which is equipped with 

the capability of running applications on top of it. It consists of a native currency Ether 

and the decentralized virtual machine, the Ethereum Virtual Machine, which can execute 

scripts on the network. The idea is to avoid a complete dependency on a single server for 

data storage and manipulation. The smart contract is the programmable interface which is 

mainly used to manage agreements between users. [14] 

 

4.1.3 Hyperledger 

Hyperledger is a project started by the Linux Foundation. It is designed for cross-industry 

business usage. It aims to create enterprise grade distributed ledger framework and code 

bases to support business transactions. It also supports smart contracts and membership 



services, such that the blockchain can operated as a permissioned network. Nodes can be 

configured for read/write permissions, allowing certain nodes to write to the blockchain 

while some other nodes can only view what is in the blockchain. [15] 

 

4.1.4 Comparison 

 Bitcoin Ethereum Hyperledger 

Governance Bitcoin Developers 

Ethereum 

Developers 

The Linux 

Foundation 

Permission 

restrictions 

Permissionless Permissionless Permissioned 

Consensus 

algorithm 

Proof of Work Proof of Work 

Byzantine fault 

tolerance 

Native currency Bitcoin Ether N/A 

Scripting ability Limited 

High 

High level language 

support: Solidity 

High 

High level language 

support: Go 

Mining reward Yes Yes No 

Figure 4.1 Comparison between Bitcoin, Ethereum and Hyperledger 

 

After comparing the three major options of blockchains available, Bitcoin has a limited 

customization ability, hence firstly rejected in this project. Ethereum and Hyperledger both 

allows a higher level of customization. Hyperledger, designed for implementing cross-

industry business logic, is more suitable in our situation as there are less limitations 

compared to Ethereum. However, the consensus algorithm in both platforms cannot be 



modified easily. To modify the consensus algorithm, an extensive editing on the source code 

of the consensus algorithm is required. In this project, the main purpose is to demonstrate 

the ability of using the blockchain for time-keeping. To streamline the development process, 

I have chosen to deploy my own blockchain. 

  



4.2 Golang 

In this project, I have chosen Golang as the language of development. It is developed by 

Google in 2009 and is designed to improve programming efficiency. The language is static 

typed (like C++) and designed with ease of use (like Python). It is also a great language for 

system design as support for various web frameworks and concurrency is built in. [16] 

 

4.3 Implemented functions 

The following are the major functions included in the implementation: 

➢ func newBlock(prevBlock Block) Block 

It takes in the previous block and extracts the index number and the hash value. It 

then creates a new block by filling in the corresponding values and hash the block 

to attempt to match the Proof of Work pattern. 

➢ func checkHash(hash string) bool 

It takes in the hash of the block as a string and compare the string to the required 

pattern. A Boolean value is returned. 

➢ getHash(block Block) string 

It is called by the newBlock function and generates the hash value of the block. 

SHA256 is used here and the string of the hash value is returned. 

➢ checkValid(generatedBlock Block, prevBlock Block) bool 

When a new block is being received, this function is being called to check if the 

block is valid. It checks the validity of the block by 4 requirements: 1. The index of 

the block should be 1 larger than the previous block; 2. The previous hash of the 

block should match the hash of the previous block; 3. getHash of the block should 



be the same as the hash field of the block; and 4. The timestamp of the block is 

within the acceptable delay range. In this implementation for demonstration purpose, 

this value is configured to 5 seconds.  

➢ func replaceChain(newBlocks []Block) 

It checks for the length of the blockchain. If the chain is longer than the Timechain 

record in the machine, the local chain will be replaced by the longest chain. 

In order to test the functionality of consensus based on the timestamp, I have added support 

for a manual clock deviation. It accepts a manual input of deviation value and adds it to the 

timestamp being broadcasted to other nodes. If the deviation is larger than 5 seconds, other 

nodes will not accept this block. 

  



5. Future Development 

 

5.1 Round-trip delay calculation 

In the current implementation, it is assumed that all nodes are very close to each other, and 

hence the network latency is negligible. However, in reality, the network delay in the worst 

scenario can reach tens of seconds. Not only the time is unable to get synchronized, valid 

blocks are also being rejected, creating unnecessary computations and network 

communications. In order to take the delay into consideration, I will be utilizing the 

blockchain announcement in the network to achieve a delay calculation. 

The idea is whenever a new block is generated and being announced, it includes the 

timestamp of the node time of the block leaving the node (t0). When another node receives 

the block, it logs the local time of receive (t1). It then updates the local time accordingly. 

After some time, the node announcing the block broadcasts its whole chain of blocks to all 

other nodes. The broadcast includes the timestamp of the broadcast leaving the node (t3). 

When another node receives the broadcast, it logs its local time again (t4). Notice that during 

the first synchronizing, t1 is corrected to t0 already. It is assumed that the time on the two 

nodes are synchronized. The resulting difference between t3 and t4 is solely due to the 

network delay.  

 

 

 

 



 

 

 

 

 

 

 

 

 

In the calculation of delay, instead of sending a request for time, the node only receives 

block and chain broadcasts from other nodes. Only down stream network communication 

is involved. Hence, the delay is given by the difference between t3 and t4. Also, as the time 

is already synchronized without taking care of the delay, t4 is strictly larger than t3. 

θ = 𝑡4 − 𝑡3 

As a result, even though multiple time sources can publish their time to the blockchain and 

being accepted within the allowed threshold, the calculation of network latency is simpler 

than NTP. Therefore, when the chain grows, the time in all nodes will converge.  

time 

Node comes up 

with the block 

time 

Node receiving 

the block 

t2: receives the block 

t3: sends out chain t1: sends out the block 

t4: receives chain 

Time correction: make the 

relative time of t2 becomes t1 

Figure 5.1 Calculation for network delay. 



5.2 Browser Plugin 

Another future development for this project is a browser plugin which checks the validity 

of the certificates. In the modern browsers, a warning is often displayed if the certificate of 

a site is expired. This detection is based on the local clock of the machine. If there is a huge 

error on the local clock, say over a day, expired certificates may still be deemed valid. 

Therefore, the plugin works independently from the local machine clock. It acts as another 

layer of validity check but instead of checking the validity according to the local clock, it 

gets the time from the Timechain. This is a scenario where a safe, but less accurate time is 

more important than a super-accurate time.  

 

5.3 2nd Term Schedule 

December 2018 – January 2019 Investigation on how to calculate the network 

delay; test if the suggested method is accurate 

enough in the scenario. 

January – Mid-February 2019 Implement the delay calculation. 

Mid-February to Mid-March 2019 Development of browser plug-in. 

Mid-March to April 2019 Testing on the functionality on the whole 

implementation. 

 

  



6. Conclusion 

In this final year project, through a set of research, I am aware that the widely-used protocol 

in time synchronization, the network time protocol, is indeed highly vulnerable to various 

attacks. With the increasing popularity on blockchain, it seems to be a great idea of 

providing timing service in a distributed network. I examined the idea behind the blockchain, 

with a more in-depth research on how the blocks are being generated and the consensus 

algorithm. I also examined the different blockchain frameworks available and end up 

decided to write up my own blockchain to achieve the time keeping purpose.  

In the Timechain, the time is being kept on a distributed ledger across the network. All nodes 

can participate in maintaining the chain by providing its own time, as well as benefit from 

the chain of ensuring the local machine time is in sync with other nodes in the network. 

There are difficulties as the original idea of blockchain is not designed to be real-time, hence 

using the idea of blockchain for time keeping requires modifying the generation of the block 

and the consensus algorithm. 

The implementation, although not completed, but demonstrates the ability of Timechain 

keeping an updated time and rejecting some nodes from appending an inaccurate time to the 

chain. Eventually, when the chain among all the nodes are in sync, a synchronized time in 

the whole network can be achieved. 
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