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1 Abstract 

The recent years witnessed a rapid development of Artificial Intelligence 

(AI). In May 2017, AlphaGo, the well-known AI program that plays the 

board game Go, challenged Chinese grandmaster Ke Jie, the best Go player 

in the world ranking. Go is one of the most difficult games in the field of 

AI due to the large search space. Thanks to the development of deep 

learning, which consists of deep neural networks, and the evolution of 

computing capability of computers, especially evolution of General-

purpose computing on graphics processing units (GPUS), AI in 

complicated problems such as Go became more and more possible. There 

are many research teams trying to apply AI to medical diagnosis. Stanford 

published a paper on Nature about diagnosis of skin cancer in February 

2017. Utilizing deep learning algorithm, their model achieved an accuracy 

of 91%, which is almost the comparable to a human doctor. They let the 

deep neural network to figure out the common visual features of the disease. 

Other top universities are also putting resources on applying deep learning 

algorithms to a variety of diseases’ diagnosis, e.g. lung nodules and breast 

cancer. 

 

Take breast cancer as an example. The recent years witnessed a 

considerable increase in the number of breast cancer cases. To improve the 

long-term survival rate for patients, the key factors are early detection and 

accurate diagnosis. However, the mismatch between increasing patients 

and the lack of experienced pathologists brings a lot of challenges for 

accurate diagnosis of breast cancer. The imbalance of the medical resources 

in allocation also increase the chance of misdiagnose. Therefore, we will 

try to build a reliable computer program to help pathologist do breast 

cancer diagnosis faster and easier. While there are many automatic medical 

diagnosis attempts, few of them are targeted at pathologists with little 

artificial intelligence background. Pathologist may not understand terms 

describing an AI or statistics an AI produces. There exists possibility that 

pathologist cannot interpret a computer generated report very well. With 

such limitation, cooperating with AI may instead delay decision-making.  
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Therefore, we will try to implement a complete automated breast cancer 

diagnosis system. In this system, we will train a deep learning program 

which can give advice to pathologists, even if s/he do not know anything 

about AI. It is designed to be able to perform mammogram analysis or 

pathology analysis, and detect possible tumor location. A deliverable 

diagnosis and tumor positioning report will be generated at the end which 

can help them make a more accurate decision on diagnosis. This problem 

involves image classification, object detection and image caption together. 

 

In term one, our primary objective is to build an accurate breast cancer 

histopathological image classification model, which is the very first and 

most important procedure in our system. We train and test our model with 

BreaKHis, a breast cancer histopathological image dataset available to 

every researcher. Experimental evidence shows that our proposed deep 

learning model can effectively classify histopathological images even if the 

image resolution in our task is higher than in other image classification 

tasks. We achieved pretty high accuracy which was up to 90% average. 

Results shows that deep learning in breast cancer diagnosis is promising. 

Finally, we also study different input preprocessing techniques. 
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2 Introduction 

2.1 Motivation 

Reviewing patient’s biological tissue samples by a pathologist is a 

conventional method for many diseases diagnosis, especially for cancer 

such as breast cancer. However, reviewing samples are laborious and time-

intensive, which may delay decision-making. The reviewing of pathology 

slides is a very complex task. Sometimes agreement in diagnosis for some 

forms of breast cancer can be as low as 48% [1]. The difficulty in diseases 

diagnosis by pathologists is inevitable because the pathologists need to 

review all slides per patient while each of slide is 10+ gigapixels when 

digitized at 40X magnification. 

 

On the other hand, current automatic medical diagnosis attempts are not 

targeted at pathologists with little artificial intelligence background. 

Pathologist may not understand terms describing an AI or statistics an AI 

produces. There exists possibility that pathologist cannot interpret a 

computer generated report very well. With such limitation, cooperating 

with AI may instead delay decision-making. Therefore, we will try to 

implement a complete automated breast cancer diagnosis system. 

 

2.2 Background 

Since AlphaGo showed the possibility that AI can beat human in real world 

tasks [2], more and more people in universities [3] [4] [5] or industries are 

interested in AI for medical usage. The number of papers about AI 

diagnosis is growing exponentially. 

 

2.2.1  Development of AI Classifiers 

The classification problem is an important component in the field of deep 

learning. It is targeted on judging a new sample belongs to which 

predefined sample category, according to a train set containing certain 



6 

 

number of known samples. The classification problem is also called 

supervised classification, since all samples in train set are labeled, and all 

categories are predefined [6]. Classifier is one of the pattern recognition 

applications. 

 

The most widely applied AI classifier is spam email filter, which classify 

each email into “regular” or “junk”. Generally speaking, each instance in 

the classification problem will be transform into a computer analyzable 

vector, which is usually called “features”. A feature can be an enumeration 

or a number. 

 

 
Figure 2.1 AI classification 

 

Then the Naïve Bayes classifier was proposed in 1950s. It is a group of 

simple classifiers derived from the Bayes’ Theorem, assuming that all 

features in the samples are strongly independent. Since its publish, it has 

been widely researched. Things turned out that it performed well for text 

classification, with number of occurrence of words as features. It can do 

the aforementioned email classification task at a relatively low 

computation amount compared to more recent algorithms while still 

achieve acceptable accuracy [7]. With appropriate preprocessing, it is still 

competitive. 

posterior =
prior × liklihood

evidence
 

𝑝(𝐶𝑘|𝐹1, … , 𝐹𝑛) =
1

𝑍
𝑝(𝐶𝑘) ∑(𝐹𝑖|𝐶𝑘)

𝑛

𝑖=1

 

classify(f1, … , fn) = argmax 𝑝(𝐶 = 𝑐) ∏ 𝑝(

𝑛

𝑖=1

𝐹𝑖 = fi|𝐶 = 𝑐) 

Sample

Class 1 Class 2 Class 3 Class 4
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The Naïve Bayes classifier can have different assumptions for the 

underlying distribution of features. For continuous variables, we can 

assume they are under the classic Gaussian distribution. For text data, the 

standard assumption is multinomial distribution, where the number of 

occurrence of a word is taken into account. A simplified version is 

Bernoulli distribution, which only consider whether a word appears or not.  

 

The Naïve Bayes classifier is much more extensible than other algorithms. 

Number of parameters it needs to learn is linear to number of features, 

therefore the training time complexity is also linear. Moreover, the training 

process has a well close-formed expression. For email classification 

problem, the number of parameters is merely the number of unique words 

in all emails. This avoid the expensive linear approximation many other 

classifiers use. 

 

Later Support Vector Machine (SVM) was introduced by Vladimir 

Naumovich Vapnik and Alexey Yakovlevich Chervonenkis [8]. Given a 

train set, each sample is represented by a point the hyperspace. For SVM, 

samples are treated as p-dimensional vectors; SVM assumes that we can 

separate these points with a (p-1)-dimensional hyper plain. There may be 

may such hyper plain, and SVM will separate different categories with a 

hyper plain with as large margin as possible. Thus, we will get the hyper 

plain whose distance to nearest data points of two categories is maximized. 

This is also why it was named “Support Vector” machine. 
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Figure 2.2 Support Vector Machine 

 

SVM is usually a linear classifier. However, with some tricks called 

“Kernel trick”, SVM can also do nonlinear classification. The main idea is, 

by mapping the original sample space to a higher dimensional space, the 

original non-linear separable set may become separable. 

 

2.2.2  Development of Deep Learning 

Deep learning is a subset of machine learning. It is a family of feature 

learning algorithms in the area of machine learning. Observation values 

can be represented in various ways, such as a vector containing RGB values 

of each pixel, or more abstractly a series of edges and areas [9]. It attempts 

to do highly abstract data computation with multiple process layers which 

may contain a complicated structure or non-linear mapping. In general, it 

is a boarder machine learning method, as it is not specific to any task. There 

are multiple deep learning frameworks already widely used, such as deep 

neural network, convolutional neural network and recursive neural 

network. Deep learning has been widely used in applications, including 

computer vision, natural language processing and bioinformatics, and 

achieves supreme results. 

 

In 1989, Yann LeCun [10] proposed the deep learning mode. Through it 

could run, the computation cost was so large that the training took about 

three days. The very first deep learning attempt therefore failed going into 

real application. The trend of AI then shifted into Support Vector Machine. 

However, in 1992, Schmidhuber [11] proposed an effective algorithm to 

train neural networks. This algorithm treats each layer in the network as an 

unsupervised, and then tune its parameters with supervised back 

propagation algorithm. In experiment, it was shown that this training 

method can indeed improve the train speed of supervised learning. 

 

The advantage of deep learning is that it uses effective unsupervised or 

Semi-supervised feature learning and layered feature extraction instead of 

man-powered feature extraction. The aim of feature learning is to seek for 
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better representation of data and to create better model to learn these 

representations from large-scale unlabeled dataset. The representation is 

like development of real neural network, and is based on the understanding 

of how information is processed and transmitted in neural-like systems [12]. 

 
Figure 2.3 A deep neural network 

 

The basis of deep learning is the distributed representation in machine 

learning. “Distributed” means the assumption that the observation is 

resulted from interaction between different factors. Furthermore, deep 

learning assumes that such interaction can be spliced into multiple layers, 

which means the multiple abstraction of the observed value. Different 

number of layers and different size of layers can be used to represent 

different degree of abstraction. This idea of layered abstraction indicates 

that higher-level concepts are learned from lower-level concepts. This 

structure is usually constructed with greedy algorithm, which helps the 

machine to learn more significant features. Many deep learning methods 

are unsupervised algorithms, which enables deep learning to be applied to 

unlabeled data. This is a great advantage over other algorithms. The 

amount of available unlabeled data is much larger than labeled ones; 

unlabeled data is also cheaper to acquire. 

 

What even more encouraged researchers is General-Purpose computing on 

Graphics Processing Units (GPGPU). The development of more powerful 

hardware and increase in available data made deeper neural networks 

realizable. In 2009, Nvidia stepped into the area of deep learning and 
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started promoting its GPU. It was confirmed that the involvement of GPU 

can increase the training speed by more than 100 times. Since GPU is quite 

suitable for matrix/vector computation in deep learning algorithm, a GPU 

can reduce the time required from weeks to days. 

 

Figure 2.4 From CPU to GPU 

 

Since the emerge of deep learning, it has become one part of the most 

advanced systems in various areas, especially in computer vision and speed 

recognition. On standard verification datasets such as Cifar 10, 

experiments showed that deep learning can improve recognition accuracy. 

A deep learning method, convolution neural network, processed about 10% 

to 20% checks in US [13]. Due to the development of deep learning, the 

year 2010 witnessed a bunch of the very first industrial speech recognition 

products [14]. 

 

2.2.3  Development of Deep Learning for Medical Images 

In the area of medical image proceeding, deep learning is becoming more 

and more attractive. The recent development in deep learning has achieved 

a great leap. Generally speaking, research on deep learning for medical 

images is mainly focused on four aspects: structures detection, 

segmentation, labeling and captioning, and computer aided detection or 

diagnosis. 

 

Structure detection is one of the most important steps in medical image 

process. Pathologists generally accomplish this task by recognizing some 

anatomical feature in the image. Though the success of deep learning in 

this area mainly depends on how many anatomical feature the algorithm 
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can extract. The recent trend indicates deep learning is mature enough to 

solve real world problems. Shin et al. [15] proved deep learning in 

computer vision applicable for medical images. On top of this, they 

detected multiple organs in a series of MRI images. Meanwhile, Roth et al. 

[16] presented a method to detect organ at certain body part. They trained 

their deep neural network with 4298 images and achieved an error rate of 

5.9%. 

 

Segmentation is the process of dividing a digital image into many sub- 

images [17]. A segment is a set of pixels, and therefore is also called hyper 

pixel. The aim of image segmentation is to simplify or alter the 

representation of the image so that it becomes more easy to understand or 

analyze. Segmentation is usually used to locate objects or edges in the 

image. More precisely, segmentation is a process to label each pixel in the 

image, which makes pixels with the same label have a similar visual feature, 

such as color, brightness or texture. Moeskops et al. [18] designed a 

multiple-scale CNN for accurate tissue segmentation, using multiple patch 

sizes and multiple convolution kernel sizes to gain multiple scale 

information of each pixel, and achieved accuracy from 82% to 91%. Zhang 

et al. [19] tested four CNN on the task of brain tissue segmentation. Their 

experiment uses three convolution layers and a fully connected layer, and 

proved CNN significantly better than traditional methods. 

 
Figure 2.5 Typical Segmentation 

 

Labeling and captioning is the most widely used way to describe contents 

in an image. It is the classic classification problem in the area of medical 

images. Continuous effort is being put in to ensure disease-specific auto 

labeling. Inspired by neural networks for regular images, some research 

[20] [21] introduced RNN together with latest advance in computer vision 

to caption chest radiographs in certain contexts. The authors used image 
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captions in public available dataset to train the CNN. To avoid large error, 

many normalization techniques were applied. Then the network was used 

to describe the situation of detected disease. 

 

Computer aided detection or diagnosis involves finding or locating 

abnormalities and suspicious area, and then alert clinicians. The main aim 

of computer aided detection is to increase the detection rate of infected area 

and to decrease false negative due to observer’s mistake. Though it is 

considered a mature area in medical images, deep learning further 

improved performance in many applications and enabled some design that 

was impossible in the past. Traditionally, computer detection requires a 

preprocessed candidate region and manpower to extract features such as 

shape or statistics in the region; inly after then the features can be feed into 

the classifier. However, the advantage of feature learning is the core of the 

new developments. Deep learning can learn the hierarchical features from 

the dataset independently instead of depending handcrafted features 

specially targeted for certain area of knowledge. It soon proved to be the 

most advanced technology. Ciompi et al. [22] trained CNN with predefined 

OverFeat as feature extractor, and showed that CNN is feasible to provide 

useful feature description in lung images. Gao et al. [23] trained the model 

from the very beginning. They solved the overfitting problem by randomly 

cropping or jittering the original image, and then feed the sub images into 

the model. Finally, the model was able to classify patches into normal, 

fibrosis and other four abnormal classes. 

 

Due to the prosperity in research, more and more commercial attempts is 

being conducted recently. Startups entering the medical AI area is 

increasing. From 2012 to 2016, investments in medical AI increases from 

20 cases per year to 70 cases per year. More than 100 large companies are 

trying to apply deep learning in order to decrease time to provide aids to 

patient and to automatically diagnosis disease with medical images. IBM 

Watson Group is supporting a research to screen cancer patients with an 

affordable procedure. They are trying to make deep learning suitable for 

production. Other startups include SkinVision, Flatiron Health and 

Entopsis [24]. 

 



13 

 

2.3 Objective 

Deep learning has a natural advantage in features learning, which means 

that it has a potential to be applied to this problem mentioned above. 

Therefore, we will try to implement a complete automated breast cancer 

diagnosis system. In this system, we will train a deep learning program 

which can give advice to pathologists, even if s/he do not know anything 

about AI. 

 
Figure 2.6 Our Diagnosis System 

 

This project involves image classification, object detection and image 

caption together. It is designed to be able to perform mammogram analysis 

or pathology analysis, and detect possible tumor location. A deliverable 

diagnosis and tumor positioning report will be generated at the end which 

can help them make a more accurate decision on diagnosis. The whole 

system will have the following functionalities: 

 

Figure 2.7 Workflow of Our Diagnosis System 

 

1. Perform mammogram analysis first 

To determine if a tumor is benign or malignant, we will first require the 

patient's magnification mammogram image. The deep learning program 

will try to make a preliminary classification: cancer, not cancer, or not sure. 

More detailed diagnosis should follow. 
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2. Detect possible tumor location if classified positive 

If the program categorizes image as positive, it will further detect the exact 

existence of tumor. It will point out the most suspicious regions in the 

image for pathologists' reference. 

 

3. Make a more confident judgment with pathology analysis 

If the program cannot achieve a pre-defined certainty threshold, it will 

suggest a pathology analysis. As the pathology analysis can give more 

information, very likely the program will approach the correct inference. 

 

4. Generate human-readable report 

At the last, the program will describe its output in an understandable way. 

The report will indicate all its findings. 

 

In term one, our primary objective is to build an accurate breast cancer 

histopathological image classification model, which is the first computer 

diagnosis procedure in the workflow. This is the entry point, and will be 

the most frequently used module in the system. Therefore, we plan to spend 

more effort in this part and to get a model as accurate as possible. 
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3 Related Works 

3.1 Naïve Bayes for Breast Cancer Diagnosis 

Starting from the emerging of AI, attempts were made to predict medical 

image classes. The work from Kowal et al. [25] used a traditional Naïve 

Bayes classifier for automated breast cancer diagnosis. It turned out that AI 

is feasible for this diagnosis since simple classifiers can also do a good job. 

 

In their thesis, the first step was preprocessing. Their original data was not 

of high quality, and there were many noisy pixels in the image. They used 

Gaussian filter to blur the image and reduce the noise. Then they stretched 

the histogram to improve contrast. The second step is segmentation of 

nuclei, since classification of tumor requires identifying nuclei in each cell. 

they implemented four clustering algorithm: competitive neural network, 

fuzzy C-means, K-means and Gaussian mixture model. Then 42 features 

were extracted from each segment. The features were selected by 

experienced human pathologists. Then the features were feed into 

classifiers. They trained a Naïve Bayes classifier which was using 

estimated kernel densities. 500 real medical images from 50 patients 

formed the train dataset. 

 

They measured the performance with n-fold cross validation method. Their 

accuracy rate was about 96%-100%, which indicated AI in breast cancer 

diagnosis was quite promising for production. It showed that their 

preprocessing procedure and data collecting procedure could assure 

accurate and objective dataset. 

 KM FCM GMM CNN 

Patients Accuracy 100.00% 96.00% 100.00% 98.00%` 

Image Accuracy 90.22% 85.78% 88.00% 89.56% 

Table 3.1 Performance of Different Classifiers 
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3.2 SVM for Remote Breast Cancer Diagnosis 

The work from George et al. [26] proposed a more advanced system for 

breast cancer diagnosis. They proposed a fully automatic nuclei detection 

and segmentation method. Then they developed the AI tumor classification 

system. They proposed 12 features for research on the most effective model. 

At last, they experimentally pushed their computer aided detection and 

diagnosis system to production, connecting it to a remote medical platform. 

This web based service was expected to provide an intelligent and 

convenient diagnosis for breast cancer patients. 

 

Their first step was preprocessing. Since preprocess preprocessing is the 

most critical factor in image processing, they shrank the image size from 

2560x1920 to 640x480. Then contrast enhancement and edge sharpening 

was used to manipulate the image. They used contrast limited adaptive 

histogram equalization to enhance the quality of the image. CLAHE 

worked within each tile of the image instead of the whole image, so that 

contrast was enhanced in each tile. The next step is cell nuclei detection. 

They implemented a detector combining circle detection and local 

maximum finder. In the images, there may exist some blood cells which 

were unwanted noisy markers. They used Fuzzy C-Means Clustering 

method to remove such cells. The noise free image was then separated into 

individual objects with marker-controlled watershed transform. 

 

Figure 3.1 Workflow of SVM System 

 

They used some meaningful features to classify the image. They proposed 

two textural features and ten shape features that could yield a good 

Preprocessing
Cell Nuclei 
Detection

False Findings 
Elimination

Cell Nuclei 
Segmentation

Feature 
Extraction

Classification
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discrimination ability. The features include boundary, smoothness, etc. 

Then the features were feed into SVM. 

 

The train set and test set was generated with ten-fold cross validation 

method. A total of 3260 images were used in the experiment. The 

experiment result showed that their method was still effective for bloody 

images or noisy images. However, due to the extreme lack of data, their 

accuracy was capped at 82.6%. Some data set still did not the training goal 

after 200 epochs. This paper illustrated some effective ways to preprocess 

images, and proved that the performance converge is greatly correlated to 

the size of train set. 

 

3.3 Classification of Skin Cancer with DNN 

Some most recent research on medical deep learning discussed deep neural 

networks for classification of skin cancer. Esteva et al. [27] described a 

promising method to do image classification for skin cancer diagnosis. 

 

Instead of highly standardized images generated from specialized 

instrument such as microscope, their classifier was mainly focused on 

classifying images from general purpose photography instruments like 

smartphone. The variety of zooming, angle and brightness brought new 

challenge to the task. They used data driven method to overcome this 

difficulty – they increased the size of dataset to 1.41 million which was 

impossible for standardized images. The number of images made 

classification more robust to the variety in images. Compared to previous 

work that required many preprocess, segmentation and feature extraction, 

they required no handmade functions in the classification. Their model 

directly read the original image and original pixels and perform an end to 

end training. 

 

Their classification includes 2032 single diseases arranged in a tree 

structure. Three root nodes represented benign, malignant and non-tumor 

lesions. It was given in the bottom to top structure and therefore was very 

suitable for machine classifiers.  
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They utilized the GoogleNet Inception v3 CNN architecture [28], which 

was previously trained for 2014 ImageNet challenge, and then transferred 

to the skin cancer dataset with transfer learning technology. This is a deep 

CNN architecture which achieved 93% accuracy in the challenge. They 

deleted the final classification layer, and retrained the network with the skin 

cancer dataset, and fine tune parameters of each layer. During the train 

process, they shrank size of each image to 299x299 pixels so that it could 

fit with the input sized of the original Inception v3 network structure, and 

used ImageNet to pre-train the image feature learning ability of the network. 

This process was called transferred learning, which could result in the best 

result with given number of data. 

 
Figure 3.2 Structure of Inception v3 

 

They trained the Convolution with back propagation algorithm. All layers 

in the network was assign the same global learning rate. They used 

Tensorflow, a deep learning framework by Google to train, validate and 

test their network. 

 

They tested their network with two methods, using nine-fold cross 

validation. First, they used three top-level nodes for classification, which 

classified each image into benign, malignant or non-tumor. In this task, 

CNN achieved 72.1± 0.9 ％  accuracy for each patient. Two human 

dermatologists achieved 65.56% and 66.0% on a subset of the test set. 

Second, they classified images into different medical care requirements. 

CNN achieved 55.4±1.7％ while two dermatologists achieved 55.0% and 
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53.3%. This demonstrated the effectiveness of deep learning for cancer 

diagnosis. This method is mainly bounded by data; if given enough data, it 

can be suitable for many other image problems.  
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4 Technical Support and Preliminary Study 

4.1 Breast Cancer Diagnosis 

In this section, we will discuss about the medical background we studied 

for this project. Topics covered include histopathological image, 

pathophysiology and current diagnosis method of breast cancer. 

 

4.1.1  Histopathological Image 

Microscopic biopsy image is the standard tool for pathologists to diagnose 

breast cancer. Pathologists will inspect the size, shape, structure of cells 

and tissue and try to find some specific dangerous features in the image. 

Some signal used in this procedure include how each cell looks like, how 

each nuclei looks like and how the tissue looks like [29]. 

 

Figure 4.1 Sample of Histopathological Image 

 

Shape and size of the cells 

Observations show that cells in a piece of tissue usually do not derivate too 

much from the average overall size and shape. However, a cancerous cell 

will lose its normal appearance, being either bigger or smaller than other 

cells. Well-functioning cells have even shapes and structures. On the other 

hand, cancer cells hardly function in a meaningful way, often with their 

shapes uneven. 
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Size and shape of the cell’s nucleus 

Cancer cells often do not have a nucleus with normal size or shape. On the 

contrary to healthy nucleus, cancer nucleus is less likely to be located at 

the center of the cell. The cancer cell tends to have an appearance like an 

omelet, where the nucleus is the yolk. The nuclei of it is also bigger and 

darker compared with that of a normal cell. 

 

Distribution of the cells in tissue 

Besides things inside each cell, the functionality of tissue also depends on 

how cells are distributed and arranged. If the number of healthy cells is 

reduced, the overall texture and even color will also change accordingly, 

which leads to the shape and morphology features pathologists can directly 

observe from the tissue. This is more significant in diagnosis. 

 

4.1.2  Pathophysiology 

We investigated the pathophysiology explanation of breast cancer. This 

will help us understand features in the images, and help us develop a 

system more specific to our task. 

 

Cancer is immune defense failure 

The immune system normally seeks out cancer cells and cells with 

damaged DNA and destroys them. Breast cancer may be a result of failure 

of such an effective immune defense and surveillance. 

 

Cancer involved stromal cells and epithelial cells 

These are several signaling systems of growth factors and other mediators 

that interact between stromal cells and epithelial cells. Disrupting these 

may lead to breast cancer as well. 

 

Risk factors of cancer vary 

1. Age: The risk of developing breast cancer increases with age. 

2. Personal history: A personal history of breast cancer is also a significant 

risk factor for the development of a second ipsilateral or contralateral 
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breast cancer. 

3. Breast pathology: Proliferative breast disease is associated with an 

increased risk of breast cancer. 

4. Family history: A woman’s risk of breast cancer is increased if she has 

a family history of the disease. 

 

Lifestyle contributes to cancer 

1. Alcohol consumption: Alcohol consumption has been associated with 

increased breast cancer risk that is statistically significant. 

2. Physical activity: It has been observed that frequent physical activity 

can lower the risk of breast cancer. 

3. Obesity: Obesity, specifically in postmenopausal women, has also been 

shown to increase a woman’s risk of breast cancer. 

4. Radiation: Radiation exposure from various sources including medical 

treatment and nuclear explosion will increase the risk of breast cancer 

by a slight amount. 

 

4.1.3  Current Diagnosis Method 

We also studied the current standard diagnosis method of breast cancer. 

This will equip us with the knowledge about how to simplify the traditional 

diagnosis process. 

 

Breast cancer screening 

Breast cancer screening is defined as the medical screening process among 

women appear to be healthy for early symptoms of breast cancer [30]. It is 

proposed in the will to diagnose It is widely believed that early detection 

will improve patients lone-term survival rate.  

 

Microscopic analysis of a biopsy by pathologists 

If the screening result is inconclusive, the doctor may require a microscopic 

analysis. The doctor will sample the fluid in the lump to do a further 

diagnosis. This procedure involves needle aspiration. If the fluid is clear, it 

is highly likely that the patient is healthy; however, if there exist bloody 

fluid, a more detailed microscope inspect will be needed and it is possible 
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that the lump is affected [31]. 

 

This method is the most widely employed procedure. However, it is also 

laborious and time consuming. The probability of misdiagnoses is high 

because there can be too many variations in the process. Considering the 

incredible amount of data involved, it is a huge work. 

 

4.2 Image Processing 

Preprocessing is an important step in the process. The phrase "garbage in, 

garbage out" is particularly applicable to our project. Though the image 

gathering methods are often strictly controlled for our dataset (i.e. same 

microscope), the original data still have different attributes such as 

brightness, contrast and saturation. Analyzing data that has not been 

carefully normalized can produce misleading results. Thus, the 

representation and quality of input data should be assured before training. 

 

4.2.1  Feature Detection 

Feature detection is a concept in the area of computer vision and image 

processing. It means use computer to extract information from image and 

to decide if each pixel of the image belongs to a feature or not. The result 

of feature  

 

Figure 4.2 Points Detected in Sample 

 

Up till now there is no universal definition of “useful” or “accurate” 

features. The precise choice of features usually depends on the problem or 
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specific application. It is a primary computation of many computer image 

analysis algorithms, in other words, the start point of them. It checks each 

pixel to determine if a feature can be extracted from that pixel. Therefore, 

whether an algorithm can succeed sometimes is determined by the features 

it defines and uses. There are many feature detection algorithms developed 

to meet different kinds of requirements. Features they extract vary; their 

computation complexity and repeatability also differs. Some most popular 

shape features include perimeter, area, compactness and smoothness. 

Textual features such as grey scale are also used. There are no general rules 

for choosing features – we can only choose by experience and experiment, 

which adds difficulty to image classification tasks. 

 

Fortunately, the idea of Neural Networks saves us from the work. They are 

designed to require little preprocessing – All the works is done 

automatically be the program. This ability of learning the features is the 

first reason why people invented Neural Networks. However, we still need 

some slight amends to ensure things will not go wrong. 

 

4.2.2  Data Augmentation 

There is another thing to note: data augmentation. In deep learning, to 

avoid the well-known overfitting problem, we usually need to feed enough 

data into the model. Therefore, the amount of available data sometimes is 

the most critical issue for deep learning. The problem is high quality data 

is expensive and limited. One method to overcome the shortage of data is 

data augmentation. We need to perform geometric transformation on the 

original dataset, change pixel positions of the image while keep the original 

features. 

 

Figure 4.3 Demonstration of Data Augmentation 
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Data augmentation is very likely to improve accuracy since the model can 

see more samples. The exact amount depends, though. There are many 

ways to augment the dataset. Adding noise is an intuitive approach. More 

generally we have simple transformations. For sparse holes in the dataset, 

we can perform dimensional reduction. Several more complicated ways 

include combinations of rotation, translation, rescaling, flipping, shearing, 

and stretching [33]. 

 

4.2.3  OpenCV 

Open Source Computer Vision Library (OpenCV) is an open source library 

dedicated to the field of machine learning and computer vision. It was built 

with the idea to provide a reusable common infrastructure for computer 

vision applications, and to encourage the use of machine learning in real 

products [34]. The library was originally proposed by the CPU company 

Intel, and was later maintained by other organizations. 

 

Figure 4.4 Logo of OpenCV 

 

There are more than 2500 optimized algorithm included in this library. This 

includes both traditional and most advanced machine learning algorithms. 

This brings us convenience in developing our deep Neural Network. 

 

OpenCV support programming languages from C, C++ to Java and Python. 

The main focus of it is to improve computational efficiency and therefore 

to enable interactive applications that can respond quickly to changing 
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inputs. It has a backend optimized with C/C++, and can take the full 

advantage of multicore processors. It can also utilize hardware acceleration 

provided by different platform. 

 

4.3 Deep Learning 

Most importantly, we searched for the latest technology and tools in the 

field of deep learning. With these knowledge, we will try to build a more 

advanced deep learning program. 

 

4.3.1  Convolutional Neural Network 

In machine learning, convolutional neural network is a type of feed-

forward neural network. It is inspired by biological processes in animal 

vision system [35]. Various projects have applied convolutional neural 

network in analyzing visual imagery. In recent years, Convolutional Neural 

Network has become the state-of-art in image recognition problems, 

beating different competitors. It has been observed from existing papers 

[36] [37] that CNN is feasible to do microscopic and macroscopic image 

classification tasks, and is possible to surpass other classifiers. It is now 

believed to be the first choice for image classification type tasks. 

 

Just like other Neural Networks, CNN consists of an input layer, multiple 

hidden layers and an output layer. A notable feature of CNN is that it 

assumes inputs are pictures. In this way, it can do some more specialized 

optimization. In convolution layers, the neurons will only connect to a 

limited region of the previous layer. This reduced computation complexity, 

and enables CNN to make full use of the 2D structure of the input data. 

Therefore, compared to other deep learning architecture, CNN can often 

lead to better result in image or speed recognition. 
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Figure 4.4 Illustration of Convolution 

 

CNNs use less preprocessing than other image classifiers. This feature 

learning property reduces requirement of prior knowledge and hence 

human effort, making CNN an attractive architecture. 

 

4.3.2  Residual Network 

The idea of stacking up more layers is not new, but it became attracting 

only recently, as a result of the rapid development of Graphic Processing 

Units. GPUs can perform high computational intensive tasks at pretty low 

cost, thanks to their parallel architecture. However, as the depth of the 

network increase, the accuracy may not proportionally increase. 

 

Moreover, deeper networks will face the vanishing gradient problem. The 

problem becomes more serious when the network is going deeper. The 

hidden layer near the output layer will update its weight normally, but the 

layers in the front of the network can only update their weights very slowly, 

which makes the weights almost unchanged after training. It makes the first 

several hidden layers merely a forward layer that do a same mapping for 

all inputs. The deep network is now just equivalent to a shallow network 

with the last several layers. 
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Figure 4.5 Basic Structure of Residual Network 

 

He et al. [38] presented a residual learning framework to ease the training 

of networks that are substantially deeper than those used previously in 

2015. They explicitly reformulated the layers as learning residual functions 

with reference to the layer inputs, instead of learning unreferenced 

functions. There is empirical evidence showing that these residual 

networks are easier to optimize, and can gain accuracy from considerably 

increased depth. On the ImageNet dataset, He evaluated residual nets and 

achieved 3.57% error on the ImageNet test set. This result won the 1st place 

on the ILSVRC 2015 classification task. 

 

4.3.3  Tensorflow 

In our project, we use Tensorflow. It is also an open source software library. 

By using data flow graphs, it is capable for large scale numerical 

computation, one of which is machine learning. Besides fast speed, it also 

supports various high-level APIs for machine learning programs [39]. 
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Tensorflow supports platforms with or without GPU, from mobile, desktop 

to clusters. With limited overhead, Tensorflow + Python environment 

provides a much clearer program: we describe the data flow diagram with 

Python, benefiting from the conciseness of this language; then Tensorflow 

will execute the diagram with a C++ or CUDA backend, making full use 

of the computer hardware. 

 
Figure 4.6 Logo of TensorFlow 

 

Tensorflow introduces two new concepts: Tensor, and data flow graph. 

Data flow graph is a graph whose nodes are Tensors. Tensors are actually 

matrixes; however, they can be connected to from a data flow graph. The 

matrix together with the relations defines a Tensor. The word “flow” means 

that data will flow from one node to another, and the computation occurs 

in the transition. This gives us a very good simulation of CNNs: they both 

are graphs, and both incur computation during transitions. 

 

We are using Tensorflow 1.3.0, which is the latest version available at the 

time we start to develop our project. 

 

4.3.4  Comparing Tensorflow with Other Tools 

Generally speaking, Tensorflow is more friendly to beginners than other 

tools like Caffe. This partly results from Google, the author of Tensorflow. 

Most other tools are supported by university academics, while Tensorflow 

is supported by a commercial company. This results in difference in 
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available documents, tutorials and communities. Developing with 

Tensorflow is generally more comfortable. 

 

Though tools built for academics can provide a more detailed control over 

the model, this feature is mostly not required for implementing a model 

that has already been tested for many times. On the other hand, Tensorflow 

is more high-level, providing conciseness in development. 

 

Developer can use Tensorboard, the bundled debug tool along with 

Tensorflow, to monitor real time statistics of the diagram. Considering 

Googles’ experience in user interfaces, debugging Tensorflow models is 

much more convenience than debugging Caffe models. 

 

Moreover, as Google is a commercial company, Tensorflow is designed for 

production usage at the very beginning. We can easily export the model 

trained by Tensorflow and set up a RESTful query server in a couple of 

lines. As our project is a medical project, we should expect users may not 

have much Machine Learning background. The ease in pushing experiment 

results to production is an advantage. 
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5 Method 

5.1 Dataset 

For our project, we are using the Breast Cancer Histopathological Image 

Classification (BreakHis) dataset. It is composed of 9,109 breast tumor 

tissue microscopic images. The researchers collected samples from 82 

patients, and used different magnifying factors (40x, 100x, 200x, and 400x) 

to process them [40]. 

Class 40x 100x 200x 400x 

Benign 625 644 623 588 

Malignant 1370 1437 1390 1232 

Total 1995 2081 2013 1820 

Table 5.1 Distribution of Images 

 

The samples are stained with hematoxylin and eosin. The author of the 

dataset uses breast tissue biopsy slides to generate these samples. 

Pathologists from the P&D lab labeled them. The breast tumor specimens 

were asses by Immunohistochemistry. The biopsy procedure was Surgical 

Open Biopsy. 

 

An Olympus BX-50 system microscope was used to capture the images. 

As aforementioned, they captured image under four magnification factor, 

40x, 10x 200x and 400x. The raw image was stored into the dataset without 

any normalization of color standardization to avoid loss of information and 

complexity in analysis. The images were in Portable Network Graphics 

(PNG) format, in 3-channel RGB, 8-bit depth. 
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Figure 5.1 Same Tumor under Different Magnification 

 

5.2 Preprocess 

In this section, we will discuss how we manipulate the image before 

feeding it into the model. We proposed different methods, and would 

compare them in experiments. 

 

5.2.1  Data Augmentation 

Since we are training a deep learning neural network, the amount of train 

data is a critical problem. The size of the original dataset, 9109, is relatively 

small for our model, and is therefore very likely to cause overfitting. 

Summarizing the methods used in past works [41], we can propose 

multiple ways to extend the dataset systematically. 

 

We do not propose any color standardization since all images have the same 

color pattern, i.e. pink or purple. This is due to the stain method applied to 

tissue samples. The data augmentation methods we propose include only 

geometric transformation. They include: 

1. rotations: random with angle 

2. translations: random with shift 

3. flipping: true or false 

4. shearing: random with angle 

5. stretching: random with stretch factor between 1/1.3 and 1.3  
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Figure 5.2 Examples of Data Augmentation 

 

5.2.2  Sliding Window Crop 

It is hard to process the high-resolution images since applying deep 

learning algorithms on larger image sizes will tend to make the model 

architecture more complicated. The model will usually have more layers, 

more parameters which increase the complexity dramatically. Training and 

tuning the model may be very costly in such case. 

 

One way to solve this problem is sliding window crop. Set a window of 

size n × n, slide through the image at step = 0.5n, and then crop [42]. 

 

Figure 5.3 Examples of Sliding Window Crop 
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Overlaps between crops are deliberately designed to avoid damaging the 

structure information too much. The number of total crops is given by the 

following formula: 

#(crop) = 2 ×
IMGWIDTH

n
× 2 ×

IMGHEIGHT

n
 

 

5.2.3  Random Crop 

Another way to solve the aforementioned oversized problem is random 

crop. Set a window of size n × n, do random crop instead of sliding. This 

is similar to the previous method. 

  

Figure 5.4 Examples of Random Crop 

 

The number of total crops is not fixed. However, a higher number of crops 

will give more information. There will be no limit on how the random 

selector crop: it may or may not capture the most important features. 

 

For benign samples, there will be no problem. However, for malignant 

samples, we cannot make sure tumor exist in every crop. Crops extracted 

from malignant images may actually contains no tumor and should be 

classifies as benign. This introduces noise in train data. 

 

The gain, on the other hand, is we keep the size of network small. This 

benefits in various ways: less computation complexity, less logic 

complication, and most importantly, it reduces chance of overfitting by 
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limiting the parameters of the model to a reasonable amount. 

 

5.2.4  Resizing 

There always exists the method of simply shrinking the image. To avoid 

moiré after resizing, we will resample the image using pixel area relation. 

This is the best image interpolation method for decimation since it tends to 

give a clearer image. This makes the high-resolution image generation 

pointless, however.  

 

5.2.5  Whitening 

Whitening is the one of the standard preprocess methods for machine 

learning. The main idea is to remove extra information dimensions in the 

image. First, we represent the input dataset as 

{𝑥1, … , 𝑥𝑚} 

Then we computes the covariance matrix of x  

Σ =
1

𝑚
∑ 𝑥𝑖𝑥𝑖

T

𝑚

𝑖=1

 

Therefore, we can have 

𝑥rot = 𝑈T𝑥 

where 𝑈 is the eigenvector of Σ. 

 

This process maps 𝑥  into a new space that eliminates the correlation 

between features. Then we can have 

𝑥PCAwhite =
𝑥rot

√λ𝑖

 

which normalizes the dataset [43]. 
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Figure 5.5 Before and After Whitening 

 

After whitening, the new image satisfies two properties: features are less 

correlated, and features have the same variance. This will significantly 

accelerate the training process. 

 

5.2.6  Contrast Limited AHE 

Contrast-Limited Adaptive Histogram Equalization (CLAHE) can improve 

local contrast without damaging the image too much. Consider an image 

whose pixel values are limited to a specific range, it would be better to have 

the values distributed in all regions of the channel. This will usually 

improve the contrast of the image. Therefore, we need further scatter pixels 

clustered in the “brighter” regions. 

 

Adaptive Histogram Equalization (AHE) will do this work. However, it 

sometimes will cause loss of information due to over exposing some region 

that is already bright. This is because the image is not perfectly limited in 

a small region of the channel. To solve this problem, we can use CLAHE 

[44]. The image is divided into tiles, and each tile can perform AHE on its 

own. For a tile, the brightness across this small area is more likely to be 

confined. In this way, the image will be clearer. 
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Figure 5.6 Before and After CLAHE 

 

Generally speaking, CLAHE is more important than whitening for deep 

neural networks since the network can learn how to whiten images itself 

without manually specify it should do it. 

 

5.3 Model Architecture 

We propose deep neural network to be the framework of our deep learning 

program. To define a deep neural network, we will discuss about how we 

will construct each layer of the network in the following sections. 

 

5.3.1  Input Layer 

This is the first layer of the network. It received non-linear input data and 

prepare data to be fed into convolutional layers after it. Some simple 

transformation such as normalization can be applied in this layer. It 

produces the initial feature maps. In our experiment, the input is an image, 

and the network is parameterized according to the image width, height and 

depth. Since we will test multiple cropping methods, available parameter 

set includes multiple values, for example 700x460, 256x256, etc. 

 

5.3.2  Convolutional Layers 

The convolution layer takes data from previous layers and a group of 

trainable filters as input. A filter is just a neuron connected to a limited area 

of the previous layer. Each filter will produce a feature map in the output. 
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In the convolution layer, filter will do convolutional computation on local 

input data. The data window will keep sliding after filter finishes the local 

computation, until it finishes all data from the previous layer.  

 

While the input data may have a large size, the filter will only compute the 

convolution on a partial data window, which is called local perception 

mechanism in CNN. It is a simulation of animal focusing on a specific 

object. Meanwhile, as the data window slides and the input data changes, 

the filter weight is fixed during this iteration; in other words, focusing on 

different area will not change the way an animal see the world. This is the 

weight sharing concept in CNN. 

 
Figure 5.7 Convolution 

 

In this procedure, we need to specify several parameters: depth, stride and 

zero-padding. Since we will test multiple model architecture, available 

parameter set also includes multiple values. We will do experiments on 3x3, 

5x5, 7x7 kernels.  

 

5.3.3  Dropout 

From experience, overfitting is a common problem in deep neural network. 

Due to that large amount of trainable parameters in CNN, the model may 

simply memorize all train data without figuring out the internal regulation 

in the dataset, and cannot be generalized to new data, which leads to high 

accuracy on train set but low accuracy on test set. 
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Dropout refers to the method that temporarily disable some neural network 

unit at some certain probability during the train process of CNN. The 

discard is temporary, and its weight is preserved. For random gradient 

decline, since units are randomly disabled, the training is actually on 

different networks for each mini-batch. It forces one neuron to work with 

other randomly selected neurons, forces “free riders” to be trained equally, 

and hence decreased the correlation among neurons. In this way, we are 

actually training 2n  models for a neural network with n  nodes, while 

keeping the number of parameters unchanged. In other words, we are 

training more models with the same computation complexity. This results 

in a visible improvement in the generalization ability of the network. 

 

In our project, we applied a dropout layer after each convolution layer with 

dropout rate 0.5. 

 

5.3.4  Residual Blocks 

The representation ability of a network increases if its depth increases. For 

two network with same time complexity, the deeper network will perform 

better [38]. However, the actual classification accuracy usually does not 

increase for deeper networks; sometimes the accuracy even decrease. 

 

To solve this problem, residual learning was proposed. If multiple non-

linear layers can be approximated by a function, we can also represent the 

residual of this hidden layer as a function. Suppose a hidden layer is 

H(x) − x → F(x), we can intuitively have 

H(x) = F(x) + x 

Then we can have the residual block. The output of the residual block is 

the sum of the output of multiple cascade convolutional layers and the input 

element itself, activated by an activation function where we choose ReLU. 
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Figure 5.8 A Simplified Residual Block 

 

The residual network has some nice features. It is thin, having the number 

of parameters under control. There is layered structure which can ensure 

the feature expression ability of the network. It can perform subsampling 

without pooling layers, and therefore improved the efficiency of back 

propagation. 

 

For actual usage, the number of convolutional layers wrapped by a residual 

block may depends on scenario. For our project, we choose 5 since it is the 

best balance between train time and accuracy gain. 

 

5.3.5  Pooling Layers 

The pooling layers are used to perform subsampling. The size of its output 

will be reduces, but the depth will keep unchanged. It will reduce the 

amount of data and the number of parameters in the model. During the 

training process, it can therefore lower the computation complexity and 

avoid overfitting. The polling layer uses the same sliding window 

mechanism as convolution layers, and is defined as 

y = max
local window

(x)   

 

In our model, there will be a pooling layer after each convolution layer, so 

their activity is strictly determined by convolution layers. The filter size we 

used is 2x2 and the stripe size is 2, which will reduce the amount of data 
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by 75%. Larger sizes may be destructive to the network. 

 

5.3.6  Activation Layers 

Activation layers are introduced for adding non-liner classification ability 

to neural networks. Though it is logically just a function, usually we regard 

it as a layer. In our model, we use Rectified Linear Unit (ReLU) as the 

activation function. It is a commonly used one for CNN. The ReLU 

function is defined as 

𝑓(𝑥) = max (0, 𝑥) 

 

Figure 5.9 ReLU 

 

As shown in the graph, the activation function ReLU that we used is just a 

threshold at zero. It is proved to be a better simulation of animal brains [45]. 

For particle usage, it simplifies the computation required. 

 

5.3.7  Fully Connected Layer 

The fully connected layer has connection to all neutrons of the previous 

layer. We have only one fully connected layer. It is used at the end of the 

network to produce final prediction results. 

 

5.4 Aggregation 

As aforementioned, some images are sliced into patches; we need to 

aggregate patches to get the classification for the whole image. For patient 
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level diagnosis, we also need to draw an overall conclusion from all 

histopathological slides. We propose different aggregation rules inspired 

by Kittler [46] here, and will test their performance for both two tasks. 

 

5.4.1  Sum 

This aggregation rule assumes that a posteriori probability will not deviate 

too much from the prior knowledge. It takes into consider the ratio of 

benign samples and malignant samples among all patients. In such case we 

can assume that the posterior satisfies 

𝑃(𝑤𝑘|𝑥𝑖) = 𝑃(𝑤𝑘)(1 + 𝛿), 𝛿 ≪ 1 

Therefore 

𝑃(𝑤𝑘) ∏(1 + 𝛿𝑘) = 𝑃(𝑤𝑘) + 𝑃(𝑤𝑘) ∑ 𝛿𝑘 

By applying the Bayes' theorem, we have 

𝑃 = (1 − 𝑅)𝑃(𝑤𝑘) + ∑(𝑤𝑘|𝑥𝑖) 

We will assign 

Prediction = argmax[(1 − 𝑅)𝑃(𝑤𝑘) + ∑ 𝑃(𝑤𝑘|𝑥𝑖)] 

 

5.4.2  Plurality Vote 

This is a simple rule that reports the majority of all samples. However, this 

method is not likely to perform well, since an image should be classified 

as malignant once there is a tumor, no matter if tumor cells takes up the 

majority space of the image. We use this as the baseline for assessment. We 

will assign 

Prediction = argmax(∑ Δ𝑖) 

 

5.4.3  Average 

This rule can be view as a more advanced voting. It computes the average 

of predictions for each class over all samples; then it performs maximum 
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likelihood estimate. We will assign 

Prediction = argmax(
1

R
∑ 𝑃(𝑤𝑘|𝑥𝑖)) 

 

Thus, this rule assigns classes in a more reasonable manner, since an 

outliner tumor can still affect the average and therefore affect the final 

classification result. By summing up all predictions, it balances between 

popular opinion and individual judgement. 

 

5.4.4  Exist 

This rule is another extreme, in contrast to plurality vote. Once if a tumor 

is detected, the final prediction will be malignant. This rule will impose 

more false positive, but may be more useful in real applications since 

people are more tolerant to false positive than false negative. We will 

assign 

Predition = {
malignant, ∑ Δ𝑖 > 0

benign, ∑ Δ𝑖 = 0
 

 

5.4.5  Exist-n 

This rule is a variant of the exist rule. It adds a threshold of n  to the 

prediction, in other words, the final prediction will be malignant if and only 

if three samples report tumor at the same time. We will assign 

Predition = {
malignant, ∑ Δ𝑖 ≥ n

benign, ∑ Δ𝑖 < n
 

 

5.5 Workflow 

To develop a more accurate model, we have the following development 

workflow cycle. The cycle includes five elements: design, implement, train, 
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validate and test. 

 

Figure 5.10 Development Workflow 

 

After we implement a model, we will train it. Validation will be performed 

occasionally. If the validation result is not satisfying, we will cut off the 

training and attempt to find out the reason. After the train accuracy 

converges, we will do a thorough test of the model and compute some 

quantitative measurement to determine if our design works well. We will 

try to analyze the factors that affect the performance, and perform 

incremental modifications accordingly.  
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6 Implementation 

Applying and combining methodologies we mentioned above, we have 

successfully implemented a ResNet model, and trained it with 

preprocessed BreakHis dataset, which has also been introduced before. In 

this part, we will divide our implementation to several parts according to 

code logic and introduce details of each part one by one. Also, we will 

explain and show our assigned parameters in this section. 

 

6.1 Data Loader and Preprocess 

This part is about the implementation of loading data and preprocessing 

images to fit them into ResNet model. 

 

6.1.1  Data Loader 

There are kinds of diseases such as mucinous carcinoma and adenosis in 

original dataset. Each disease is divided into two classes, benign and 

malignant, and has a file to record paths and image numbers of it. 

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/200X : 16 

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/400X : 9 

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/100X : 22 

SOB/mucinous_carcinoma/SOB_M_MC_14-18842/40X : 15 

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/200X : 14 

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/400X : 11 

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/100X : 15 

SOB/mucinous_carcinoma/SOB_M_MC_14-13418DE/40X : 15 

SOB/mucinous_carcinoma/SOB_M_MC_14-18842D/200X : 16 

Figure 6.1 Example of One Record File 
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To read all files recording the path of each disease, we use regex in 

python and store all image paths in a list shuffled_walk : 

  shuffled_walk = [] 

   regex = 

re.compile('(?:{data_set_dir}).(\w+).SOB.(\w+).([\w-]+).({magn})X'.format( 

       data_set_dir=re.escape(data_set_dir), 

       magn=re.escape(str(FLAGS.magn)) 

   )) 

   for dirname, _, filenames in os.walk(data_set_dir): 

       if regex.match(dirname): 

           tumor_class, tumor_type, slide_id = regex.match(dirname).group(1, 2, 3) 

           shuffled_walk.append((dirname, filenames, tumor_class, tumor_type, 

slide_id)) 

   print (shuffled_walk) 

Figure 6.2 Read All Files 

 

To divide data into train dataset and test dataset, and keep them unchanged 

on accuracy test of different model, we simply use remainder of 

shuffled_walk ’s index to divide the data: 

   i1 = [ i for i in range(len(shuffled_walk)) if i%4 == 0] 

   i2 = [ i for i in range(len(shuffled_walk)) if i%4 != 0] 

   index = i1 + i2 

   tmp = shuffled_walk 

   shuffled_walk = [] 

   for i in range(len(tmp)): 

       shuffled_walk.append(tmp[index[i]]) 

Figure 6.3 Divide Data into Test and Train Dataset 

 

6.1.2  Image Segmentation 

After storing image paths, we need to do image segmentation to fit image 

with proper size into our DNN model. As mentioned above, we use three 

kinds of strategies to do image segmentation: sliding window crop, 
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random crop and resizing, which have been introduced in section 5.2 

Preprocess. The implementation and explanation of arguments and 

outputs are as follow: 

Args: 

 Image: 3-d numpy array. The raw image to be segmented. 

 sub_slides: list. The list of segmented batch. 

Returns: 

  A new list of segmented batch containing the segmentation result of 

input image. 

def resizing(image,sub_slides): 

   image_shape = np.shape(image) 

   indexes = np.random.choice(image_shape[1] - image_shape[0], 50) 

   for i in indexes: 

       sub_slides.append(image[:,i:i+IMG_HEIGHT]) 

   return sub_slides 

Figure 6.4 Resizing 

def sliding_window_crop(image, sub_slides): 

   image_shape = np.shape(image) 

   col_step = int(IMG_WIDTH / 2 - (IMG_WIDTH - image_shape[0] % 

IMG_WIDTH) / (image_shape[0] / IMG_WIDTH * 2)) 

   row_step = int(IMG_HEIGHT / 2 - (IMG_HEIGHT - image_shape[1] % 

IMG_HEIGHT) / (image_shape[1] / IMG_HEIGHT * 2)) 

   for col in range(0, image_shape[0] - IMG_WIDTH + 1, col_step): 

       for row in range(0, image_shape[1] - IMG_HEIGHT + 1, 

row_step): 

           sub_slides.append(np.array(image[col:col + IMG_WIDTH, 

row:row +IMG_HEIGHT])) 

   return sub_slides 

Figure 6.5 Implementation of Sliding Window Crop 

def random_crop(image,sub_slides): 

   image_shape = np.shape(image) 

   x = np.random.choice(image_shape[0]-IMG_HEIGHT,100) 



48 

 

   y = np.random.choice(image_shape[1]-IMG_WIDTH,100) 

   for i in range(100): 

       sub_slides.append(image[x[i]:x[i]+IMG_HEIGHT,y[i]:y[i]+IMG_W

IDTH]) 

   return sub_slides 

Figure 6.6 Implementation of Random Crop 

 

6.1.3  Image Preprocess 

After slicing images into patches, we implemented different preprocess 

methods to test whether is suitable for histopathological image, which has 

been introduced before (section 5.2). The implementation and explanation 

of arguments and outputs are as follow: 

Args: 

 Image: 3-d numpy array. The raw image to be preprocesed. 

Returns: 

  Image: 3-d numpy array. A new preprocessed image. 

 

def whitening_image(image_np): 

   for i in range(np.shape(image_np)[0]): 

       mean = np.mean(image_np[i]) 

       # Use adjusted standard deviation here, in case the std == 

0. 

       std = np.max([np.std(image_np[i]), 1.0 / 

                     np.sqrt(IMG_HEIGHT * IMG_WIDTH * IMG_DEPTH)]) 

       image_np[i] = (image_np[i] - mean) / std 

   return image_np 

Figure 6.7 The implementation of whitening 

def subtract_gaussian_smooth_image_and_CLAHE(image_np): 

   for i in range(np.shape(image_np)[0]): 
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       blur = cv2.GaussianBlur(image_np[i], (GAUSSIAN_KERNEL_SIZE, 

GAUSSIAN_KERNEL_SIZE), 0) 

       clahe_input = cv2.cvtColor(image_np[i] - blur, 

cv2.COLOR_BGR2YUV) 

       clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) 

       clahe_input[:, :, 0] = clahe.apply(clahe_input[:, :, 0]) 

       image_np[i] = cv2.cvtColor(clahe_input, cv2.COLOR_YUV2BGR) 

   return image_np 

Figure 6.8 One Version of CLAHE Implementation 

def CLAHE_image(image_np): 

   for i in range(np.shape(image_np)[0]): 

       clahe_input = cv2.cvtColor(image_np[i], cv2.COLOR_BGR2YUV) 

       clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) 

       clahe_input[:, :, 0] = clahe.apply(clahe_input[:, :, 0]) 

       image_np[i] = cv2.cvtColor(clahe_input, cv2.COLOR_YUV2BGR) 

   return image_np 

Figure 6.9 Another Version of CLAHE Implementation 

def past_pre(image_np): 

   mean = np.mean(image_np,axis=0) 

Figure 6.10 Method in Past Paper [47] 

 

6.2 Model 

Our model is not implemented in a single inference function, but we 

implement functions for different usage. The parameters and outputs of 

each function are explained and shown in section 11, Appendix.  

6.3 Train and Validation 

As usually used in DNN, a model is trained by firstly feeding it input and 

generates the output (prediction) for comparison with the label of input. 
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This kind of comparison is done by calculating the loss. We used cross 

entropy to represent loss function [48]. 

  def loss(self, logits, labels): 

       labels = tf.cast(labels, tf.int64) 

       cross_entropy = 

tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, 

                                                                   

   labels=labels, name='cross_entropy_per_example') 

       cross_entropy_mean = tf.reduce_mean(cross_entropy, 

name='cross_entropy') 

       return cross_entropy_mean 

Figure 6.11 Loss Function Implementation 

 

6.4 Hyper-parameters 

In this section, we will briefly explain the parameters related to research 

results we used and its assigned value. 

learning rate: 0.001, initial leaning rate. 

learning rate decay factor: 0.5, how much to decay the learning rate 

each time. 

decay_step_0: 500, the first step to decay the learning rate. 

decay_step_1: 2000, the second step to decay the learning rate. 

weight decay: 0.0002, weight decay for L2 regularization. 

train batch size: 64 

dropout proportion: 0.5 

train steps: 3000 

regularizer: L2 regularizer, a process of introducing additional 

information to reduce overfitting. 
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7 Results 

In the previous part, we introduced kinds of methods to do image 

preprocess, image segmentation and model construction. In this part, we 

will compare different methods and parameters together and compete with 

the past paper result using the same dataset to see whether our model is 

optimized enough.   

 

Following the experimental protocol proposed in [40], we used cross-

validation method [49] to do evaluation, the dataset was split so that 

patients used to build the training set (75% patients) are not used for the 

testing set (25% patients) to guarantee that our model can generalize to 

those patients not in the dataset, the results presented in this work are the 

average of four trials with the selected results after converging and a 

suitable early stop. 

 

Training protocol used here is the purely supervised type, the Stochastic 

Gradient Descent (SGD) method [50], with backpropagation to compute 

gradients was used to update the network’s parameters. All fixed hyper-

parameters of training are given in the Implementation section.  

 

The ResNet model were trained on a NVIDIA Tesla K40m GPU [53] using 

the Tensorflow framework [39]. Training took about 5 hours for the 

256×256 input size and 10 hours for the 512×512, which is corresponding 

to a much more complex training set. 

 

When we discuss the results of medical images, there are three ways to 

report the results in our report: batch level, image level and patient level. 

 

Batch level can be understood by batch-wise, the unit is simply each input 

we fit into the neuron network. The recognition error at the image level can 

be calculated by: 

Image Recognition Accuracy =
Ncorrect

Nall
 

Where Ncorrect  is the number of cancer images which is correctly 
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classified, and Nall is the number of cancer images in the test dataset.  

 

Patient level is a little different, each patient score is defined as: 

Patient Score =
Ncorrect−in−p

Np
 

Where Ncorrect−in−p is the number of cancer images of Patient P which is 

correctly classified,  Np is the number of cancer images of Patient P. Then 

the global patient error is calculated by: 

Patient Error = 1 −
∑ Patient Score

Total Number of Patients
 

 

Besides basic error results, we also calculated confusion matrix, precision, 

recall and F1 score [54] on either/both image level or/and patient level. 

Precision, recall and F1 score are defined as: 

Precision 

=
Number of images labeled and predicted as malignant

Number of images labeled as malignant
 

Recall =
Number of images labeled and predicted as malignant

Number of images predicted as malignant
 

F1 score =
2 × Precision × Recall

Precision + Recall
 

 

Also, we use Area under the curve (AUC) [55] to measure the performance 

of different models, the AUC of a classifier is equal to the probability that 

the classifier will rank a randomly chosen positive example higher than a 

randomly chosen negative example, i.e. 

𝐴𝑈𝐶 =  𝑃(𝑠𝑐𝑜𝑟𝑒(𝑥+) > 𝑠𝑐𝑜𝑟𝑒(𝑥−)) 

 

Because there are millions of parameters and hundreds of hyper-parameters, 

therefore which parameters need to be tuned among the test should be 

considered carefully. Through our study on both medical and deep learning 

field, we selected three major hyper-parameters (directions) to do our test: 

Preprocess method, model architecture and image segmentation method.  

  

For each hyper-parameter, we tested kinds of values or situations based on 

our guess and motivation, so each block below will contain several sub-
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blocks to explain each guess and its corresponding results in detail. 

 

7.1 Results of Different Image Preprocess Methods 

Preprocess is one of the most important part in image classification, 

especially in histopathological image classification. According to the 

previous section, we have introduced different kinds of preprocess method 

and showed the code, in this part, we will test different preprocess method 

by keeping other parameters same.  

 

Typically, the model architecture of all cases in this part is normal model 

architecture (Figure 7.1, left) and all inputs are segmented by different 

functions with size 256×256. 

 

Figure 5.4 and 5.5 show the preprocess results of one given image to offer 

reader an intuitive feeling. Table 11.2.1-11.2.7 in the section 11, appendix, 

report the results of different preprocess methods in both batch level and 

image level in detail respectively, while table 7.1 is a rough comparison 

among different preprocess methods. 

 

From the table below, we can find that different preprocess method has a 

huge influence on the results, typically, CLAHE shows a best performance 

on the higher magnification, where it shows that it is able to achieve an 

accuracy of about 5% better than the results of raw input. However, 

CLAHE won’t work when the magnification factor is 40× while whiten 

operation can help model to overcome this problem. 
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magnific

ation 
preprocess method 

image level batch level 

best 

aggregation 

method 

accurac

y (%) 
F1 score (%) 

accurac

y (%) 
AUC (%) 

40× 

raw vote 81.95 86.85 80.03 80.68 

Gaussian, CLAHE exist 68.42 80.37 65.09 68.89 

CLAHE, whiten vote 87.03 91.05 86.17 82.80 

CLAHE exist 81.20 89.59 82.93 82.19 

whiten, CLAHE average 86.28 90.48 85.84 80.97 

whiten vote 86.64 90.96 85.82 78.65 

demean vote/average 79.51 85.64 79.42 82.41 

100× 

raw exist3 78.64 85.58 79.09 79.42 

Gaussian, CLAHE vote 69.12 80.41 69.28 70.39 

CLAHE, whiten exist3 81.69 87.50 81.44 79.42 

CLAHE exist3 84.74 89.39 83.37 76.98 

whiten, CLAHE vote 82.23 87.76 81.42 82.23 

whiten vote 83.12 88.25 82.32 82.19 

demean exist3 79.89 86.10 79.01 81.54 

200× 

raw vote/average 88.87 92.13 87.74 88.36 

Gaussian, CLAHE average 77.19 83.83 75.90 81.52 

CLAHE, whiten vote 85.77 90.15 84.96 85.41 

CLAHE vote 88.87 92.87 88.33 85.02 

whiten, CLAHE vote/average 85.22 89.79 84.65 87.63 

whiten average 85.22 89.73 84.31 86.22 

demean vote/average 84.67 89.45 83.91 82.62 

400× 

raw exist 82.99 88.22 81.09 85.73 

Gaussian, CLAHE vote 80.37 85.64 78.26 82.15 

CLAHE, whiten exist3 80.56 86.73 80.15 82.05 

CLAHE exist3 86.73 90.62 86.15 82.61 

whiten, CLAHE vote 82.80 87.99 81.75 83.38 

whiten vote/average 81.31 87.01 80.49 83.11 

demean exist 84.67 89.24 82.96 82.97 

Table 7.1. Overall results using different preprocess methods 

 

7.2 Results of Different Model Architecture 

Model architecture is also one of the features we selected to test the result 

and it is usually the most critical part in DNN. Previous section has 

introduced the basic structure of residual block, in this part, we will 
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evaluate the results of slightly different model architectures, which are all 

based on residual blocks.  

 

Tested architectures follow the form in Figure 7.1 and 7.2; the detail can 

be found in Table 7.2. These networks’ inputs are segmented by Resizing 

(section 5.2.4) and preprocessed by method CLAHE (section 5.2.6) with 

size 256×256. 
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Figure 7.2 3×3 Conv and Stride 2 Architecture 
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Layer 

name 

Output 

size 
Normal 

3×3 

conv 

Stride 

conv 

Block number 

changed 

Feature map 

doubled 
2 pools 

conv00_x 

256×256 
7×7, 

16 

3×3, 

16 

7×7, 

16, 

stride 

2 

7×7, 16 

256×256 3×3, 16 

NA 

3×3, 16 3×3, 32 3×3, 16 

128×128 
2×2 max 

pool, stride 2 
2×2 max pool, stride 2 

conv01_x 

128×128 

NA 

3×3, 16 

128×128 3×3, 16 

64×64 
2×2 max pool, 

stride 2 

conv1_x 128×128 (
3 × 3 16
3 × 3 16

) × 5 
(

3 × 3 16
3 × 3 16

)

× 4 

(
3 × 3 32
3 × 3 32

)

× 5 

NA 

conv2_x 64×64 (
3 × 3 32
3 × 3 32

) × 5 
(

3 × 3 32
3 × 3 32

)

× 4 

(
3 × 3 64
3 × 3 64

)

× 5 

(
3 × 3 16
3 × 3 16

)

× 5 

conv3_x 32×32 (
3 × 3 64
3 × 3 64

) × 5 
(

3 × 3 64
3 × 3 64

)

× 5 

(
3 × 3 128
3 × 3 128

)

× 5 

(
3 × 3 32
3 × 3 32

)

× 5 

conv4_x 16×16 (
3 × 3 128
3 × 3 128

) × 5 
(

3 × 3 128
3 × 3 128

)

× 7 

(
3 × 3 256
3 × 3 256

)

× 5 

(
3 × 3 64
3 × 3 64

)

× 5 

conv5_x 8×8 (
3 × 3 256
3 × 3 256

) × 5 
(

3 × 3 256
3 × 3 256

)

× 5 

(
3 × 3 512
3 × 3 512

)

× 5 

(
3 × 3 128
3 × 3 128

)

× 5 

 2 × 1 average pool, fc, softmax 

Table 7.2. Detailed architectures of evaluated models, building blocks are shown in brackets (see also Figure. 

4.5) with the numbers of blocks stacked. Down-sampling is performed by conv1_1, conv2_1, conv3_1, 

conv4_1, and conv5_1 with a stride of 2. 
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7.2.1  Normal Model Architecture 

Our normal model architecture is shown on the figure above (Figure. 7.1 

left). The first layer is 7×7 convolution, followed by a 3×3 convolution 

and a 2×2 max pool with stride 2, to reduce the input size of following 

residual network. Then we use a stack of 𝑁𝑢𝑚𝑂𝑓𝑆𝑖𝑧𝑒 × 𝑁𝑢𝑚𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 

residual blocks with 3 × 3 convolution on the feature maps of sizes 

{128,64,32,16,8} respectively. 𝑁𝑢𝑚𝑂𝑓𝑆𝑖𝑧𝑒  represents the number of 

sizes, and the value is 5 in this model.  𝑁𝑢𝑚𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠  is one of the 

hyper-parameters we can set, the value is also 5 in this model. Table 11.2.4 

in the Appendix section shows the results of normal model and the analysis 

of the result will be discussed later while we will focus on the comparison 

with this base model in this section. 

 

7.2.2  First Convolution with Kernel Size 3×3 

In our medical research, our current goal is to classify the tumor. However, 

there are four kinds of magnification factors in our dataset, which means 

that tumor in different images may have different sizes, for example, tumor 

in 40× image is much smaller than 400× image. 

 

According to Table 11.2.4 we have mentioned last part, the model gained 

a nice accuracy on both 400× and 200× images, but is not so exciting on 

smaller magnification factors such as 40×, we doubted that it was due to 

the small tumor so that 7×7 first convolution is too big to catch the local 

feature of small tumor. Therefore, we tried to reduce the 7×7 to 3×3 of the 

first convolution’s kernel, and detected its performance on small 

magnification factor. 
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(Figure. 7.2 left) shows the basic structure of this model and Table 7.3 

indicates the performance of this model, surprisingly, we found that 3×3 

convolution model gains a better batch level accuracy on bigger 

magnification factor and a better AUC on all factors. We analyze the result 

and think the reason may be that local feature of tumor is always smaller 

than 7×7, no matter what the magnification factor is. Therefore, smaller 

first convolution layer’s kernel size can gain a better result in tumor 

classification tasks, which is different from the ResNet used in normal 

image classification problems [38]. 

magni

ficatio

n 

Image level Batch level 

aggreg

ation 

method 

accura

cy (%) 

precisio

n (%) 

recall 

(%) 

F1 score 

(%) 

accur

acy 

(%) 

confusion matrix 

40× 
sum 81.77 89.83 83.91 86.76 

81.91 

AUC(

%) 
83.03 

 

vote 82.33 96.61 80.66 87.92 predict 

average 82.33 96.61 80.66 87.92 malignant benign 

exist 81.95 99.44 78.92 88.00 
actual 

malignant 17013 687 

exist3 82.14 98.87 79.37 88.05 benign 4126 4774 

100× 
sum 81.15 88.74 83.46 86.02 

83.57 

AUC(

%) 
84.91 

 

vote 83.84 94.51 83.09 88.43 predict 

average 83.84 94.51 83.09 88.43 malignant benign 

exist 84.02 98.90 80.90 89.00 
actual 

malignant 17147 1087 

exist3 84.02 97.52 81.61 88.86 benign 3496 6170 

200× 
sum 86.86 95.89 86.00 90.67 

88.31 

AUC(

%) 
89.78 

 

vote 88.87 99.18 86.19 92.23 predict 

average 89.05 99.18 86.40 92.34 malignant benign 

exist 86.86 100.0 83.52 91.02 
actual 

malignant 17996 254 

exist3 87.96 100.0 84.69 91.71 benign 2949 6201 

400× 
sum 86.54 96.22 84.87 90.19 

86.82 

AUC(

%) 
89.84 

 

vote 87.10 98.84 83.95 90.79 predict 

average 87.29 99.13 83.99 90.93 malignant benign 

exist 86.36 100.0 82.49 90.41 
actual 

malignant 16989 244 

exist3 86.36 99.71 82.65 90.38 benign 3287 6280 

 Table 7.3. The results of model with first convolution layer’s kernel size (3×3) 

 

 

7.2.3  First Convolution with Stride 2 

We perform down-sampling by pool layers in normal model, in this model, 
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we changed the stride of the first convolution from 1 to 2 and discarded the 

pool layer before residual blocks, which is similar with the model 

architecture in [38], this work is motivated to evaluate the influence of 

convolutional layer and pool layer we added before residual blocks.  

 

The model structure is briefly shown in Fig 7.4, right, and the detailed 

results is in Table 7.4. The main discovery from Table 7.4 is that no matter 

what the magnification is, the best aggregation method is always vote or 

average, which are the most valid methods. At the same time, stride 2 

shows a almost wonderful results comparing with normal model, which 

means that stride is usually better than pool layer when doing down-

sampling. 

magni

ficatio

n 

Image level Batch level 

aggreg

ation 

method 

accura

cy (%) 

precisio

n (%) 

recall 

(%) 

F1 score 

(%) 

accur

acy 

(%) 

confusion matrix 

40× 
sum 85.15 91.53 86.86 89.13 

85.16 

AUC(

%) 
86.97 

 

vote 86.65 96.61 85.29 90.60 predict 

average 86.28 96.33 85.04 90.33 malignant benign 

exist 81.01 99.15 78.17 87.42 
actual 

malignant 16932 768 

exist3 83.08 99.15 80.14 88.63 benign 3179 5721 

100× 
sum 82.22 90.38 83.72 86.92 

84.66 

AUC(

%) 
79.13 

 

vote 85.82 97.25 83.69 89.96 predict 

average 86.00 97.53 83.73 90.10 malignant benign 

exist 84.02 99.45 80.62 89.05 
actual 

malignant 17494 746 

exist3 84.92 99.45 81.53 89.60 benign 3534 6126 

200× 
sum 87.41 95.89 86.63 91.03 

87.19 

AUC(

%) 
85.07 

 

vote 87.59 98.36 85.27 91.35 predict 

average 87.77 98.36 85.48 91.46 malignant benign 

exist 85.40 100.0 82.02 90.12 
actual 

malignant 17857 393 

exist3 86.50 100.0 83.14 90.80 benign 3116 6034 

400× 
sum 85.05 92.73 85.29 88.86 

85.68 

AUC(

%) 
87.09 

 

vote 85.98 96.80 83.88 89.88 predict 

average 86.36 97.09 84.13 90.15 malignant benign 

exist 84.67 98.84 81.34 89.24 
actual 

malignant 16563 672 

exist3 85.23 98.84 81.93 89.59 benign 3165 6400 

 Table 7.4. The results of model with first convolution’s stride 2 
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7.2.4  Model with Feature Map Doubled 

This model is easy to understand, which is simply double the feature maps 

comparing with the normal model structure, the idea is inspired by [51], 

which claims that wider ResNet is helpful for image classification. 

Therefore, we want to know whether it works on histopathological images 

or not. 

 

The model structure diagram is shown in (Figure 7.1, middle) and the 

detailed result can be found in Table 7.5, we can see that doubled feature 

maps can in deed increase the study capacity of model because almost all 

magnification’s AUC increase, which is like 3×3 convolution model. 

Typically, sum becomes a pretty good aggregation method in this model. 

 

magni

ficatio

n 

Image level Batch level 

aggreg

ation 

method 

accura

cy (%) 

precisio

n (%) 

recall 

(%) 

F1 score 

(%) 

accur

acy 

(%) 

confusion matrix 

40× 
sum 82.89 90.40 84.88 87.55 

84.91 

AUC(

%) 
84.15 

 

vote 86.28 97.46 84.35 90.43 predict 

average 86.09 97.46 84.15 90.31 malignant benign 

exist 83.83 99.44 80.73 89.11 
actual 

malignant 16962 738 

exist3 84.59 99.15 81.62 89.54 benign 3275 5625 

100× 
sum 81.87 90.11 83.46 86.66 

81.93 

AUC(

%) 
82.91 

 

vote 83.30 95.05 82.19 88.15 predict 

average 83.12 95.05 81.99 88.04 malignant benign 

exist 79.17 99.18 76.16 86.16 
actual 

malignant 17080 1156 

exist3 80.43 98.63 77.54 86.16 benign 3885 5779 

200× 
sum 88.87 99.18 86.19 92.03 

88.14 

AUC(

%) 
91.21 

 

vote 88.69 100.0 85.48 92.17 predict 

average 88.50 100.0 85.28 92.06 malignant benign 

exist 85.58 100.0 82.21 90.23 
actual 

malignant 18218 32 

exist3 86.13 100.0 82.77 90.57 benign 3217 5933 

400× 
sum 87.85 95.64 86.81 91.01 

86.56 

AUC(

%) 
89.53 

 

vote 86.73 98.55 83.70 90.52 predict 

average 86.54 98.55 83.50 90.40 malignant benign 

exist 84.67 99.71 80.90 89.32 
actual 

malignant 16833 396 

exist3 85.61 99.71 81.86 89.91 benign 3207 6364 

 Table 7.5. The results of model with feature maps doubled 
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7.2.5  Model with Two Pooling Layers Before Resnet 

Our model faces a serious over-fitting problem, which will be introduced 

in detail in the following section 7.6.1. This model, with 2 pool layers 

before ResNet, is a try to solve the overfitting problem because we doubt 

that the study capacity of ResNet is so large that the net remembers all 

special features of train dataset, which results in over-fitting. Therefore, we 

want to apply more naïve convolutional layers, which has a smaller study 

capacity than ResNet, and less Residual blocks.  

 

The model diagram is shown in Figure 7.1, right, and the results can be 

found in Table 7.6. We can see that almost all results have no difference 

from normal architecture, which means that Residual blocks are not the 

reason for overfitting. 

magni

ficatio

n 

Image level Batch level 

aggreg

ation 

method 

accura

cy (%) 

precisio

n (%) 

recall 

(%) 

F1 score 

(%) 

accur

acy 

(%) 

confusion matrix 

40× 
sum 81.20 86.72 85.28 85.99 

83.03 

AUC(

%) 
79.76 

 

vote 83.65 93.22 83.97 88.35 predict 

average 83.65 93.22 83.97 88.35 malignant benign 

exist 83.46 99.44 80.37 88.89 
actual 

malignant 16313 1387 

exist3 84.21 98.87 81.40 89.29 benign 3128 5772 

100× 
sum 80.79 89.29 82.70 85.87 

83.40 

AUC(

%) 
79.99 

 

vote 84.38 96.15 82.74 88.95 predict 

average 84.02 95.60 82.66 88.66 malignant benign 

exist 84.56 99.73 79.08 88.21 
actual 

malignant 17386 843 

exist3 84.56 99.73 81.03 89.41 benign 3788 5883 

200× 
sum 88.87 98.36 86.71 92.17 

88.15 

AUC(

%) 
88.06 

 

vote 88.69 100.0 85.48 92.17 predict 

average 88.87 100.0 85.68 92.29 malignant benign 

exist 84.67 100.0 81.29 89.68 
actual 

malignant 18181 69 

exist3 85.77 100.0 82.39 90.35 benign 3178 5972 

400× 
sum 88.04 97.38 85.90 91.28 

86.10 

AUC(

%) 
86.47 

 

vote 86.17 99.13 82.77 90.21 predict 

average 86.36 99.42 82.81 90.36 malignant benign 

exist 83.36 100.0 79.45 88.55 
actual 

malignant 16971 256 

exist3 84.30 100.0 80.37 89.12 benign 3470 6103 

 Table 7.6. The results of model with 2 pool layers before ResNet 
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7.2.6  Normal Model with Dropout 

Dropout is well known to be an effective way to solve over-fitting [52], 

therefore we also tried to apply dropout in our network. The model 

architecture is same as the normal model (Fig 7.3, left) , and we set up an 

additional dropout before the final fc layer with dropout rate 0.5. The result 

of normal model with dropout is in Table 7.7. The accuracy has a little 

improve comparing with the result of normal model, but we can still regard 

it as an effective method since almost all results are changing with a nice 

direction. 

magni

ficatio

n 

Image level Batch level 

aggreg

ation 

method 

accura

cy (%) 

precisio

n (%) 

recall 

(%) 

F1 score 

(%) 

accur

acy 

(%) 

confusion matrix 

40× 
sum 81.58 87.85 84.97 86.39 

82.94 

AUC(

%) 
81.81 

 

vote 84.02 93.79 84.05 88.65 predict 

average 84.02 93.79 84.05 88.65 malignant benign 

exist 81.77 99.15 78.88 87.86 
actual 

malignant 16469 1231 

exist3 82.71 98.02 80.32 88.30 benign 3306 5594 

100× 
sum 81.33 89.56 83.16 86.24 

83.99 

AUC(

%) 
82.38 

 

vote 84.92 97.80 82.41 89.45 predict 

average 84.92 97.80 82.41 89.45 malignant benign 

exist 83.84 99.45 80.44 88.94 
actual 

malignant 17626 603 

exist3 84.20 99.45 80.80 89.16 benign 3863 5808 

200× 
sum 87.59 96.71 86.31 91.21 

88.08 

AUC(

%) 
87.02 

 

vote 88.87 98.90 86.36 92.21 predict 

average 88.87 98.90 86.36 92.21 malignant benign 

exist 85.40 100.0 82.02 90.12 
actual 

malignant 17975 275 

exist3 86.86 99.73 83.68 91.00 benign 2992 6158 

400× 
sum 86.92 97.67 84.42 90.57 

87.14 

AUC(

%) 
84.77 

 

vote 87.66 99.42 84.24 91.20 predict 

average 87.85 99.71 84.28 91.34 malignant benign 

exist 85.61 100.0 81.71 89.93 
actual 

malignant 17064 163 

exist3 86.36 100.0 82.49 90.41 benign 3284 6289 

 Table 7.7. The results of model with dropout 
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7.2.7  Overall Comparison among Different Model Structures 

This part compares the results of different model architectures and the 

comparison is shown in Table 7.8. 

magnific

ation 
Model architectures 

image level batch level 

best 

aggregation 

method 

accurac

y (%) 
F1 score (%) 

accurac

y (%) 
AUC (%) 

40× 

normal  exist 81.20 89.59 82.93 82.19 

3×3 conv vote 82.33 87.92 81.91 83.03 

stride 2 vote 86.65 90.60 85.16 86.97 

feature maps doubled vote 86.28 90.43 84.91 84.15 

2 pools exist3 84.21 89.29 83.03 79.76 

dropout vote/average 84.02 88.65 82.94 81.81 

100× 

normal  exist3 84.74 89.39 83.37 76.98 

3×3 conv  exist 84.02 89.00 83.57 84.91 

stride 2 average 86.00 90.10 84.66 79.13 

feature maps doubled vote 83.30 88.15 81.93 82.91 

2 pools exist3 84.56 89.41 83.40 79.99 

dropout vote/average 84.92 89.45 83.99 82.38 

200× 

normal  vote 88.87 92.87 88.33 85.02 

3×3 conv average 89.05 92.34 88.31 89.78 

stride 2 average 87.77 91.46 87.19 85.07 

feature maps doubled vote 88.69 92.17 88.14 91.21 

2 pools average 88.87 92.29 88.15 88.06 

dropout vote/average 88.87 92.21 88.08 87.02 

400× 

normal  exist3 86.73 90.62 86.15 82.61 

3×3 conv average 87.29 90.93 86.82 89.84 

stride 2 average 86.36 90.15 85.68 87.09 

feature maps doubled sum 87.85 91.01 86.56 89.53 

2 pools sum 88.04 91.28 86.10 86.47 

dropout average 87.85 91.34 87.14 84.77 

Table 7.8. Overall results using slightly different model methods 

 

From the table above, we can find that there are no huge differences 

comparing with the input pre-process because we adopted ResNet as our 

fundamental.  

 

However, there are still some rules that can be found in the results, among 
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all models, we can conclude that dropout and feature maps doubled are 

helpful for classification no matter what the magnification is, and stride 2 

has a huge improvement on dataset of magnification 40× and 100×. 

However, model with 2 pools, the contrast of feature maps doubled model, 

which reduces the complexity of model, do not get a performance boost. In 

comparison, we conclude that more complex structure can still make learn 

the features better. 

 

7.3 Results of Different Segmentation Methods 

Different segmentation methods will produce inputs of different size, 

which will absolutely be fed into different model architectures. Last section 

introduces the results of different model architectures, and the difference 

between these two parts is that the former one focused on the model 

architecture difference and kept input size same, while this section will 

mainly discussion the influence of different image segmentation methods. 

 

When we study on the dataset, we found that tumor in low magnification 

images, such as 100×, was too small to be obviously found (Figure 7.3). 

We guess that the input size should be smaller when magnification is 

smaller to catch the local feature of tumor. To verify our guess, we 

implement and test our methods. Figure 7.5 shows the structure we used 

for different segmentation size and Table 7.9 is the overall comparison 

among different segmentation methods. 
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Figure 7.3 An example of 100× image, the tumor is too small  

 

 
Figure 7.4 An example of 400× image, the tumor is obvious 
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Figure 7.5 Structure for Different Segmentation Methods 
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According to Table 7.9, 64×64 and 128×128 ranks top 2 on both 40× and 

100× test dataset while 256×256 and 512×512 dominates the results of 

200× and 400× dataset, which is keeping with our guess. Also, we found 

that random segmentation method, which increases the variance of train 

dataset, is a little better than sliding window method. 

 

magnif

ication 

Segmentation 

method 

Input 

size 

image level batch level 

best 

aggregation 

method 

accurac

y (%) 

F1 score 

(%) 

accuracy 

(%) 

AUC 

(%) 

40× 

random 512×512 NA NA NA NA NA 

Random 256×256 exist 81.20 89.59 82.93 82.19 

random 64×64 vote 85.71 90.13 83.20 78.90 

sliding window 128×128 average 87.41 91.15 84.56 82.69 

sliding window 64×64 sum 85.34 89.54 83.88 82.12 

100× 

random 512×512 NA NA NA NA NA 

Random 256×256 exist3 84.74 89.39 83.37 76.98 

random 64×64 vote/average 87.61 91.34 84.80 81.61 

sliding window 128×128 vote/average 86.36 90.45 83.66 86.65 

sliding window 64×64 vote 86.89 90.86 84.40 83.86 

200× 

random 512×512 NA NA NA NA NA 

Random 256×256 vote 88.87 92.87 88.33 85.02 

random 64×64 sum 88.14 91.68 86.27 86.05 

sliding window 128×128 vote/average 89.05 92.41 87.10 86.42 

sliding window 64×64 average 88.50 92.06 86.84 89.38 

400× 

random 512×512 vote/average 87.10 90.71 86.56 85.26 

Random 256×256 exist3 86.73 90.62 86.15 82.61 

random 64×64 average 87.10 90.76 84.22 85.00 

sliding window 128×128 vote 86.91 90.72 84.37 85.78 

sliding window 64×64 vote/average 86.73 90.55 82.89 86.81 

Table 7.9. Overall results using different image segmentation methods, segmentation method has been 

introduced in section 5.2 and 512×512 input size is too large to run correctly in 40×, 100× and 200× 

magnification factors. 
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7.4 Analysis 

One of the advantages using DNN are that we needn’t design a feature 

extractor by a medical expert, but instead the model will learn it by itself. 

Figure 7.6 displays the 16 feature maps learned on the first convolutional 

layer of our model. We can see that first convolution actually learned a 

edge detection rule by itself. 

 
Figure 7.6 feature maps learned by first convolution layer, right side is 

the raw data and left side is 16 feature maps the model learned 

 

From the idea of [57], we are able to visualize the location prediction of 

our model. We use the filter of last layer (shape 256×2) and the output of 

penultimate layer (shape 8×8×256) and implement a tensor-multiplication, 

after getting two feature maps with size 8×8, we resize the 8×8 image to 

input size, which is 256×256. Finally, we can use the resized image to 

visualize the local prediction to input of our model. Figure 7.7 shows an 

example of this kind of analysis. 
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Figure 7.7 an example of localization prediction. Left: raw input. Middle: 

resized 256×256 prediction, red means more likely, blue means less 

likely. Right: the combination of two images before to visualize the 

result. 

 

According to former experiments we have done, we can get a solid 

conclusion that datasets with different magnification factors need different 

hyper-parameters considering features of tumor. Typically, in this part, we 

implemented an “best” model combing former conclusions we got. We 

adapt the model architecture of Stride 2 (Fig 7.4, right), and add a dropout 

layer before the final fc layer. And CLAHE (section 5.2.6) is used to 

preprocess the data when magnification factor is not 40×, otherwise the 

preprocess method is CLAHE + whiten (section 5.2.5, section 5.2.6). 

 

Table 7.10 shows the detailed results of “best” model and Fig 7.11 indicates 

one example of its ROC curve.  
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magni

ficatio

n 

Image level Batch level 

aggreg

ation 

method 

accura

cy (%) 

precisio

n (%) 

recall 

(%) 

F1 score 

(%) 

accur

acy 

(%) 

confusion matrix 

40× 
sum 88.72 97.74 86.93 92.02 

86.80 

AUC(

%) 
82.82 

 

vote 87.41 99.44 84.41 91.30 predict 

average 87.78 99.44 84.82 91.55 malignant benign 

exist 81.58 100.0 78.32 87.84 
actual 

malignant 17522 178 

exist3 83.08 100.0 79.73 88.72 benign 3334 5566 

100× 
sum 84.92 94.78 84.15 89.15 

85.22 

AUC(

%) 
82.35 

 

vote 85.46 97.90 82.38 89.89 predict 

average 85.46 97.90 82.38 89.89 malignant benign 

exist 82.94 100.0 79.30 88.46 
actual 

malignant 17959 273 

exist3 84.38 100.0 80.71 89.33 benign 3850 5818 

200× 
sum 88.50 98.08 86.47 91.91 

88.50 

AUC(

%) 
89.85 

 

vote 89.05 99.73 86.05 92.39 predict 

average 88.87 99.45 86.02 92.25 malignant benign 

exist 86.31 100.0 82.95 90.68 
actual 

malignant 18043 207 

exist3 87.77 100.0 84.49 91.59 benign 2945 6205 

400× 
sum 86.73 93.60 86.79 90.07 

90.43 

AUC(

%) 
89.94 

 

vote 86.17 96.51 84.26 89.97 predict 

average 86.35 96.80 84.30 90.12 malignant benign 

exist 85.61 99.13 82.17 89.86 
actual 

malignant 16494 739 

exist3 86.17 98.55 83.09 90.16 benign 2937 6630 

 Table 7.10. The results of “best” model whose parameters are selected manually to get good results 

 

 
Figure 7.8 one example of ROC in our model results 
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We can obtain some general information about general result, aggregation 

methods and AUC value from these results above (comparison of different 

methods has been discussed above): 

1. Our model achieves really high precision on image level, which is very 

practical because almost all malignant patients can be predicted as 

malignant. 

2. Five aggregation methods we apply above have slightly different 

influence on results of image level, in summary, vote/average shows a 

better performance. 

3. Lower magnification results have a lower AUC value, which means 

that more batches are labeled with not solid predictions. (Prediction of 

probabilities are closer to [0.5,0.5]). Therefore, we can conclude that 

lower magnification images have less information for learning. 

magnific

ation 
Approach 

Patient level Image level 

accuracy (%) 
accuracy 

(%) 

F1 score 

(%) 

40× 

[58]  83.00 NA 

[40] 83.80 82.80 87.80 

[47] 88.60 89.60 92.90 

[56] 84.00 84.60 88.00 

This work 88.26 88.72 92.02 

100× 

[58]  83.10 NA 

[40] 82.10 80.7 86.10 

[47] 84.50 85.00 88.90 

[56] 83.90 84.80 88.80 

This work 88.17 85.46 89.89 

200× 

[58]  84.60 NA 

[40] 85.10 84.20 88.50 

[47] 85.30 84.00 88.70 

[56] 86.30 84.20 88.70 

This work 92.27 89.05 92.39 

400× 

[58]  82.10 NA 

[40] 82.30 81.20 86.30 

[47] 81.70 80.80 85.90 

[56] 82.10 81.60 86.70 

This work 90.34 86.73 90.12 

Table 7.11. Accuracy and F1 score compared with those presented in [58], [40], [47] and 

[56] 
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7.5 Comparison with Previous Works 

Table 7.11 shows the overall comparison between our results and past 

paper’s using same dataset. 

 

Compared with accuracy and F1 score, which we defined earlier, our 

methods out-performs pervious work in [40], [47], [56] and [58] at both 

patient and image level generally. Our work is better than other research 

using same dataset in almost all of cases, only in the 40× zoom level our 

results are a little worse than previous best work. In the remaining cases, 

the accuracy and F1 score achieved at least 0.5% better, and the difference 

can be as large as 5% in most cases. Which means that our method is much 

better than pervious methods. 

 

One guess for the reason of low accuracy at 40× zoom level, may be that 

images in low magnification factors, such as 40× and 100×, has a fewer 

information and features for model to catch and learn, this is what we 

conclude in last section. However, the advantage of our applied model, 

learn capacity, cannot make contribution to the result, which makes the 

results similar at 40× and 100× zoom level. 

 

7.6 Limitation and Difficulties 

Despite the result we get as aforementioned, we are also facing some 

limitation and difficulties. The following section will describe the 

problems and our proposed solutions. 

 

7.6.1  Overfitting 

We faced serious overfitting problem since we adopted ResNet. As we can 

see in Figure 7.9, the train accuracy can be easily up to 99% but the test 

accuracy is not as good as we expected. 
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Figure 7.9 Train and validation accuracy comparison. Left: train error, 

which is close to 0 gradually. Right: validation error, which maintains at 

0.08 level. 

We have tried different technical to solve the problem, early stop, L2 

regularization and dropout, all of them did not make a huge improvement 

but early stop can get an obvious increase, which can increase 2 to 3 

percentage. We thought the reason may be the poor dataset, the dataset we 

used contain only 82 patients although there are thousands of images. We 

thought overfitting may also be the reason why past paper did not get a 

good-looking accuracy as well. 

 

7.6.2  Out of Memory 

Another difficulty we are facing now is the famous problem, OOM. ResNet 

consumed plenty of GPU memory due to the deep layers. Bigger input size 

will consume bigger memory and previous work of ResNet only fit an input 

with size 64×64 or 32×32. 

 

But current input size our model adopts is 256×256, because malignant 

images can contain normal cells. If the image is divided into small patches 

such as 32×32, it is not guaranteed that tumor appears in all patches. 

Malignant patches without tumor become noise during training, and 

confused the network (Figure 7.10). For higher magnification and bigger 

crop size, this problem is less severe, as tumor cells will be larger and hence 

less likely to be missed. 
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Figure 7.10. If red circle indicates a malignant tumor, then blue rectangle can be 

labeled as malignant correctly while black rectangle will become noise because there 

is no malignant tumor in it. 

This is, therefore, the reason we build a traditional CNN above ResNet, we 

need a pool layer to implement down-sampling, which reduces the input 

size of ResNet to reduce memory allocation.  
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8 Conclusion 

8.1 Term Review 

When we started our final year project, we knew little about Tensorflow 

and histopathological image preprocess method or even some practical 

techniques in machine learning. We, therefore, regarded this project as a 

good chance for us to enhance our knowledge about deep learning and 

machine learning. 

 

After continuous research and study from the related paper, we think we 

have achieved our basic goal, learning and understanding deep learning.  

 

At the beginning we selected our project, we re-implemented the result of 

past papers with the help of professor Michael R. Lyu and his PhD student 

Zeng Jichuan, at the same time, we are looking for related paper on 

histopathological image preprocess and image classification by DNN. 

 

With the successful re-implementation and our further understanding of 

DNN and histopathological image preprocess, we started to try designing 

our own model combing the feature of histopathological image and 

techniques using image classification using DNN. The final base model we 

use is ResNet, a state-of-the-art model in image classification with a top 

accuracy in general classification tasks.  

 

But we did many adjustments to fit the histopathological images into 

ResNet model better, for example, adding a traditional CNN before ResNet 

to increase the size of model input, and we have tried different parameters 

or methods considering the feature of histopathological images and ResNet, 

all details and results can be found in Section Result. Finally, we achieved 

pretty high accuracy which was up to 90% average comparing with 86% 

average in past paper using same dataset. 
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8.2 Future Works 

Our project is about breast cancer diagnosis using DNN and our primary 

goal is building a diagnosis system which help doctors to make decisions 

accurately and quickly. Therefore, our FYP is not only about 

histopathological image classification but also some other methods to help 

diagnosis.  

 

During the study of Fast RCNN, which achieves satisfactory object 

detection accuracy [59], we find it possible to do object detection and 

image caption efficiently using current state-of-the-art methods. Therefore, 

our future work will be mainly about another model construction: building 

a high-accuracy DNN model using mammogram as input to do 

classification and tumor location detection due to the fact that our current 

task has an acceptable result comparing to the past paper. 

 

Also, we will continue tuning our current models according to the 

shortcomings in Section Limitation we found.  
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11 Appendix 

11.1 ResNet Function API 

output_layer(input_layer, num_labels,is_training,test) 
For creating the final layer which generates the prediction. 

Args: 
    input_layer: 2D tensor 

    num_labels: Int. The number of output labels. (2 in our project) 

Returns: 
    output layer, which is calculated by Y = WX + B. 

 

batch_normalization_layer(input_layer, dimension) 
For doing batch normalization 

Args: 
    input_layer: 4D tensor to be normalized 

    dimension: Int. The depth of the 4D tensor, which is actually the 

number of feature maps in our project. 

Returns: 
    the 4D tensor being normalized. 

 

conv_bn_relu_layer(input_layer, filter_shape, stride) 
For helping to do convolution, batch normalization and ReLU sequentially. 

Args: 
    input_layer: 4D tensor 

    filter_shape: list of integers. The shape of filter. 

    stride: stride size for convolution 

Returns: 
    4D tensor, which is calculated by Y = Relu(bn(conv(X))) 

 

bn_relu_conv_layer(input_layer, filter_shape, stride) 
For helping to do batch normalization, ReLU and convolution sequentially. 

Args: 
    input_layer: 4D tensor 

    filter_shape: list of integers. The shape of filter. 

    stride: stride size for convolution 

Returns: 
    4D tensor, which is calculated by Y = conv (Relu (conv(bn(X))) 

 

residual_block(input_layer, output_channel, 



87 

 

is_training,first_block=False) 
For defining one residual block ( Image []) 

Args: 
    input_layer: 4D tensor 

    output_channel: int. The number of output's feature maps. 

    first_block: Boolean value. If this is the first residual block in the 

whole network. ( If yes, no down-sampling will be operated) 

Returns: 
    4D tensor 

 

inference(input_tensor_batch, n, is_trainning = True) 
For defining the whole model structure of our project 

Args: 
    input_tensor_batch: 4D tensor, which is actually [batch, image height, 

image width, image channels] in our project. 

    n: int. Number of residual blocks in each part with same number of 

output channels. 

    is_trainning: Boolean value. False if is testing, else True.. 

Returns: 
    last layer in the network, which is also the prediction of the model. 

 

11.2 Tables of results using different preprocess methods  

1. The results using RAW image as input (no preprocess method) in both 

batch level and image level 

2. The results whose images are preprocessed by subtracting Gaussian 

image and applying CLAHE 

3. The results using both CLAHE and whiten methods (keep the function 

order) in both batch and image level 

4. The results using CLAHE in both batch level and image level 

5. The results using both whiten and CLAHE methods (keep the function 

order) in both batch and image level 

6. The results using whiten method in both batch level and image level 

7. The results using preprocess method in past papers, simply demean the 

images 

8. Overall results using different preprocess methods 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 79.51 84.46 84.70 84.58 

80.03 

AUC(%) 80.68 

 

vote 81.95 89.55 84.31 86.85 predict 

average 81.77 89.27 84.27 86.69 malignant benign 

exist 77.63 93.79 77.34 84.80 
actual 

malignant 15594 2106 

exist3 78.95 92.37 79.37 85.38 benign 3205 5695 

100× 

sum 77.56 82.42 83.10 82.76 

79.09 

AUC(%) 79.42 

 

vote 77.56 87.91 79.80 83.66 predict 

average 77.56 87.91 79.80 83.66 malignant benign 

exist 78.28 98.35 75.69 85.54 
actual 

malignant 16097 2131 

exist3 78.64 96.98 76.57 85.58 benign 3981 5691 

200× 

sum 88.32 95.89 87.72 91.62 

87.84 

AUC(%) 88.36 

 

vote 88.87 97.81 87.07 92.13 predict 

average 88.87 97.81 87.07 92.13 malignant benign 

exist 84.67 99.45 81.57 89.63 
actual 

malignant 17699 551 

exist3 86.13 99.18 83.22 90.50 benign 2782 6368 

400× 

sum 77.94 86.92 80.38 83.52 

81.09 

AUC(%) 85.73 

 

vote 82.24 95.06 80.74 87.32 predict 

average 82.42 95.35 80.79 87.47 malignant benign 

exist 82.99 99.13 79.49 88.22 
actual 

malignant 16016 1219 

exist3 82.99 97.97 80.05 88.10 benign 3850 5715 

Table 11.2.1 The results using RAW image as input (no preprocess method) in both batch level and image level 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 62.40 65.54 74.83 69.87 

65.09 

AUC(%) 68.89 

 

vote 65.22 84.75 69.61 76.43 predict 

average 65.79 85.59 69.82 76.90 malignant benign 

exist 68.42 97.18 68.52 80.37 
actual 

malignant 14944 2756 

exist3 67.48 95.20 68.37 79.57 benign 6529 2371 

100× 

sum 59.42 49.73 80.80 61.56 

69.28 

AUC(%) 70.39 

 

vote 69.12 96.98 68.68 80.41 predict 

average 68.76 96.98 68.41 80.23 malignant benign 

exist 67.50 98.90 67.04 79.91 
actual 

malignant 17400 833 

exist3 67.68 98.63 67.23 79.95 benign 7739 1928 

200× 

sum 75.18 74.79 86.12 80.06 

75.90 

AUC(%) 81.52 

 

vote 76.64 87.67 79.40 83.33 predict 

average 77.19 88.77 79.41 83.83 malignant benign 

exist 73.91 96.99 72.84 83.20 
actual 

malignant 15872 2378 

exist3 74.45 96.44 73.49 83.41 benign 4225 4925 

400× 

sum 77.76 81.40 83.58 82.47 

78.26 

AUC(%) 82.15 

 

vote 80.37 90.99 80.88 85.64 predict 

average 80.18 91.28 80.51 85.56 malignant benign 

exist 71.78 98.26 69.98 81.74 
actual 

malignant 15433 1796 

exist3 74.21 97.38 72.20 82.92 benign 4031 5540 

Table 11.2.2 The results whose images are preprocessed by subtracting Gaussian image and applying CLAHE 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 85.90 95.48 85.14 90.01 

86.17 

AUC(%) 82.80 

 

vote 87.03 99.15 84.17 91.05 predict 

average 86.84 99.15 83.97 90.93 malignant benign 

exist 82.89 100.0 79.55 88.61 
actual 

malignant 17374 326 

exist3 84.21 100.0 80.82 89.40 benign 3352 5548 

100× 

sum 78.64 86.54 81.82 84.11 

81.44 

AUC(%) 79.42 

 

vote 81.87 93.68 81.38 87.10 predict 

average 82.05 93.96 81.43 87.24 malignant benign 

exist 81.15 98.90 78.09 87.27 
actual 

malignant 17085 1142 

exist3 81.69 98.08 78.98 87.50 benign 4035 5638 

200× 

sum 81.39 88.49 84.33 86.36 

84.96 

AUC(%) 85.41 

 

vote 85.77 97.81 83.61 90.15 predict 

average 85.40 97.26 83.53 89.87 malignant benign 

exist 82.48 99.73 79.30 88.35 
actual 

malignant 17691 559 

exist3 83.58 99.45 80.49 88.97 benign 3562 5588 

400× 

sum 77.94 86.63 80.54 83.47 

80.15 

AUC(%) 82.05 

 

vote 80.75 95.06 79.18 86.39 predict 

average 80.56 94.77 79.13 86.24 malignant benign 

exist 78.69 99.13 75.44 85.48 
actual 

malignant 16182 1047 

exist3 80.56 98.84 77.27 86.73 benign 4273 5295 

Table 11.2.3 The results using both CLAHE and whiten methods (keep the function order) in both batch and image level 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 81.58 86.72 85.75 86.23 

82.93 

AUC(%) 82.19 

 

vote 82.89 93.50 82.96 87.92 predict 

average 83.08 93.50 83.17 88.03 malignant benign 

exist 81.20 99.72 78.10 89.59 
actual 

malignant 16542 1158 

exist3 82.89 99.15 79.95 88.52 benign 3382 5518 

100× 

sum 80.07 87.09 83.20 85.10 

83.37 

AUC(%) 76.98 

 

vote 84.20 94.51 83.50 88.66 predict 

average 84.20 94.51 83.50 88.66 malignant benign 

exist 83.30 98.90 80.18 88.56 
actual 

malignant 17051 1185 

exist3 84.74 92.35 81.92 89.39 benign 3456 6208 

200× 

sum 87.77 96.99 86.34 91.35 

88.33 

AUC(%) 85.02 

 

vote 88.87 99.73 85.85 92.27 predict 

average 88.69 99.73 85.65 92.15 malignant benign 

exist 86.31 100.0 82.95 90.68 
actual 

malignant 18128 122 

exist3 87.22 100.0 83.91 91.25 benign 3075 6075 

400× 

sum 83.18 91.86 83.60 87.53 

86.15 

AUC(%) 82.61 

 

vote 86.73 97.67 84.21 90.44 predict 

average 86.73 97.67 84.21 90.44 malignant benign 

exist 86.17 99.71 82.45 90.26 
actual 

malignant 16743 487 

exist3 86.73 99.71 83.05 90.62 benign 3225 6345 

Table 11.2.4 The results using CLAHE in both batch level and image level 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 84.40 91.24 86.13 88.61 

85.84 

AUC(%) 80.97 

 

vote 86.09 98.02 83.82 90.36 predict 

average 86.28 98.02 84.02 90.48 malignant benign 

exist 84.40 100.0 81.01 89.51 
actual 

malignant 17278 422 

exist3 84.02 99.44 80.92 89.23 benign 3345 5555 

100× 

sum 79.17 88.46 81.31 84.74 

81.42 

AUC(%) 82.23 

 

vote 82.23 97.53 79.77 87.76 predict 

average 81.69 96.70 79.64 87.34 malignant benign 

exist 80.43 100.0 79.64 86.98 
actual 

malignant 17614 617 

exist3 81.51 99.73 78.06 87.58 benign 4566 5103 

200× 

sum 82.66 89.32 85.34 87.28 

84.65 

AUC(%) 87.63 

 

vote 85.22 97.53 83.18 89.79 predict 

average 85.22 97.53 83.18 89.79 malignant benign 

exist 81.39 99.73 78.28 87.71 
actual 

malignant 17731 519 

exist3 82.85 99.18 79.91 88.51 benign 3686 5464 

400× 

sum 79.81 90.41 80.57 85.21 

81.75 

AUC(%) 83.38 

 

vote 82.80 97.97 79.86 87.99 predict 

average 82.62 97.97 79.67 87.87 malignant benign 

exist 79.07 99.42 75.66 85.93 
actual 

malignant 16668 565 

exist3 80.19 99.42 76.68 86.58 benign 4325 5242 

Table 11.2.5 The results using both whiten and CLAHE methods (keep the function order) in both batch and image level 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 85.15 94.07 85.17 89.40 

85.82 

AUC(%) 78.65 

 

vote 86.84 99.44 83.81 90.96 predict 

average 86.65 99.44 83.61 90.84 malignant benign 

exist 82.14 100.0 78.84 88.17 
actual 

malignant 17444 256 

exist3 83.46 100.0 80.09 88.94 benign 3516 5384 

100× 

sum 81.69 92.31 81.95 86.82 

82.32 

AUC(%) 82.19 

 

vote 83.12 96.98 80.96 88.25 predict 

average 82.94 96.70 80.92 88.11 malignant benign 

exist 81.33 99.73 77.90 87.47 
actual 

malignant 17590 644 

exist3 82.05 98.90 78.95 87.80 benign 4288 5378 

200× 

sum 80.66 87.67 83.99 85.79 

84.31 

AUC(%) 86.22 

 

vote 85.04 96.71 83.45 89.59 predict 

average 85.22 96.99 83.49 89.73 malignant benign 

exist 82.30 99.73 79.13 88.24 
actual 

malignant 17516 734 

exist3 83.58 99.45 80.49 88.97 benign 3564 5586 

400× 

sum 79.25 89.24 80.58 84.69 

80.49 

AUC(%) 83.11 

 

vote 81.31 97.38 78.64 87.01 predict 

average 81.31 97.38 78.64 87.01 malignant benign 

exist 77.57 99.13 74.45 85.04 
actual 

malignant 16616 616 

exist3 78.69 98.84 75.56 85.64 benign 4613 4955 

Table 11.2.6 The results using whiten method in both batch level and image level 
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magnification 

Image level Batch level 

aggregation 

method 

accuracy 

(%) 

precision 

(%) 

recall 

(%) 

F1 score 

(%) 

accuracy 

(%) 
confusion matrix 

40× 

sum 79.32 84.46 84.46 84.46 

79.42 

AUC(%) 82.41 

 

vote 79.51 91.81 80.25 85.64 predict 

average 79.51 91.81 80.25 85.64 malignant benign 

exist 76.88 96.33 75.61 84.72 
actual 

malignant 16256 1444 

exist3 77.07 94.63 76.48 84.60 benign 4031 4869 

100× 

sum 72.35 75.27 81.07 78.06 

78.01 

AUC(%) 81.54 

 

vote 78.10 87.64 80.56 83.95 predict 

average 78.54 87.64 81.17 84.28 malignant benign 

exist 78.99 95.70 77.02 85.75 
actual 

malignant 15927 2311 

exist3 79.89 95.33 78.51 86.10 benign 3823 5839 

200× 

sum 80.47 88.22 83.42 85.75 

83.91 

AUC(%) 82.62 

 

vote 84.67 97.53 82.60 89.45 predict 

average 84.67 97.53 82.60 89.45 malignant benign 

exist 83.94 98.90 81.12 89.14 
actual 

malignant 17520 730 

exist3 84.12 98.63 81.45 89.22 benign 3680 5470 

400× 

sum 80.75 88.08 83.01 85.47 

82.96 

AUC(%) 82.97 

 

vote 83.55 93.60 82.99 87.98 predict 

average 83.74 93.90 83.03 88.13 malignant benign 

exist 84.67 98.84 81.34 89.24 
actual 

malignant 16002 1237 

exist3 84.49 97.38 81.91 88.98 benign 3329 6232 

Table 11.2.7 The results using preprocess method in past papers, simply demean the images 


