
Intelligent Run-time Reliability
Engineering for Python Software

Yun Peng
Supervisor: Prof. Michael R. Lyu

25 June, 2024

1

2

4

3

2

Outline

• Introduction & Background

• Dynamic Type System

• Dynamic Run-time Environment

• Conclusion & Future Work

O N E

3

Introduction & Background

The Popularity of Python Language

• Python has been the 2nd most popular language at GitHub since 2019.
• Python has been used by more than 5 million developers at GitHub in 2023.

4Reference: GitHub Octoverse - https://github.blog/2023-11-08-the-state-of-open-source-and-ai/

GitHub Octoverse: The state of open source and rise of AI in 2023.

Dynamic Featuresà Fast Prototyping

• Dynamic Type System

As a dynamic language, Python does not require type declarations in code. The types of
variables are determined at run time. This makes it easier to write generic functions.

• Dynamic Run-time Environment

Python does not require compilation before execution, making it portable on different
platforms and systems.

5

Dynamic Type System

def add(a, b):
return a + b

6

int add(int a, int b){
return a + b;

}

string add(string a, string b){
a.append(b);
return a;

}

>>> add(1, 2)
>>> 3

>>> add(“1”, “2”)
>>> “12”

Python Code

C++ Code

• Dynamic type system makes it easier for Python developers towrite generic functions.

Reliability Issue #1 – Type Error

7

• Python allows flexible operations between
types.

>>> “100” * 2
>>> “100100”

>>> “100” / 2
>>> TypeError

• Python allows heterogeneous data types.

def divide(input_list):
result = input_list[0]
for item in input_list[1:]:

result = result / item
return result

>>> divide([100, 100])
>>> 1

>>> divide([100, “100”])
>>> TypeError

Reliability Issue #1 – Type Error

8

Type errors are the most mentioned
Python program errors.

About 50% of type errors costmore
than one week to be fixed.

Reference: PyTER: effective program repair for Python type errors

Dynamic Run-time Environment

9Developer User

.cpp, .c, .h files

Preprocessor Compiler Assembler Linker

Include
heads

Expand
Macro

Assembly
Code

Machine
Code

.s files .o/.obj files

Static Libs
.a/.lib files

Developer User

• Python’s run-time environments are dynamically built by users.

 setup.py,
 requirements.txt,
 setup.cfg,
 pyproject.toml,
 ...

>=3.8

Required Python Version

Configuration Files

numpy>=1.20.3
python-dateutil>=2.8.2
pytz>=2020.1
tzdata>=2022.1

Required Package Dependencies

 numpy==1.24.1
 python-dateutil==2.8.2
 pytz==2020.3
 tzdata==2023.3

Supported Platforms

Installed Package Dependencies

==3.8

Installed Python Version

Required System Libraries

User Selection

import numpy as np
...
def _get_colors_from_colormap(
 colormap: str | Colormap,
 num_colors: int,
) -> list[Color]:
 """Get colors from colormap."""
 cmap = _get_cmap_instance(colormap)
 return [cmap(num) for num in np.linspace(0, 1,
num=num_colors)]
...

Program in the ProjectInstalled System Libraries

Manual
Installation

Python Project

Solving
Constraints①

②

Analyzing
Dependencies

③ ④

Installing
Packages

User Selection

⑤ ⑥

⑦

Running

C/C++

Python

Reliability Issue #2 – Run-time Environment Conflicts

requirements.txt:

torch>=1.3.0
gym>=0.9.7
numpy>=1.10.4
filelock
pillow

pfrl/wrappers/monitor.py:

...
from gym.wrappers import Monitor as _GymMonitor
...

Installed Dependencies:

torch==1.13.1
gym==0.26.2
numpy==1.21.6
filelock==3.12.2
pillow==9.5.0

AttributeError: module 'gym.wrappers'
has no attribute 'Monitor'

10

• Run-time environment conflicts occur when the implementations of external APIs used in
the Python software cannot be found or are not the required ones in the run-time
environment.

• Configuration files written by developers are not validated before distribution.

Outline of Thesis

11

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

T W O
12

Dynamic Type System

Improve the Reliability of Dynamic Type System

• Pathway #1 (Prevention): Use type inference to statically get the types of variables so that
common static checking techniques can be used to detect potential issues.

13

Type Checking Test Case Generation

Type Inference

14

1 def add(num1, num2):
2 a = num1 + num2
3 b = 1 + 2
4 return a + b

Parameters:
num1 : ?
num2 : ?
Local Variables:
a : ?
b : ?
Return Value:
add : ?

• Type Inference aims to determine the types of each variable in code.

How to Do Type Inference?

• Static type inference, which is frequently used in compilers.

15

1 def add(num1, num2):
2 a = num1 + num2
3 b = 1 + 2
4 return a + b

____________ ______________
π ⊢ 1 : int π ⊢ 2 : int (Constant)
π ⊢ 1 : int π ⊢ 2 : int

π ⊢ 1 + 2 : int (Add)
π ⊢ 1 + 2 : int
π ⊢ b : int (Assign)

Premise 1, …, Premise N
conclusion

Typing Rule Format

• Very accurate (sound).

• Suffer from the low coverage problem.

How to Do Type Inference?

• Supervised Type Inference.

16

• Address the low coverage
problem.

• Require high-quality type
annotations to train, may not
be accurate.

How to Do Type Inference?

• Static type inference vs. Supervised type inference.

17

Static Supervised

• Very accurate (sound).
• Suffer from the low coverage problem.

• Address the low coverage problem.
• Require high-quality type annotations

to train, may not be accurate.

Outline of Thesis

18

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

Hybrid Type Inference - HiTyper

19

Type Dependency Graph (TDG)

• To bridge static type inference and supervised type inference.

20

Graph G = (N, E)
N: nodes E: edges

Four kinds of nodes:
• symbol node / type slot
• expression node
• branch node
• merge node

Hybrid Type Inference - HiTyper

21

Static Inference and Rejection

• To Infer correct types as many as possible and reject incorrect type predictions from deep
learning models.

22

Expressions Basic Format:

Type Rejection RulesTyping Rules

Infer result types for
expression.

Reject operand types
for expression.

Static Inference and Rejection

• To Infer correct types as many as possible and reject incorrect type predictions from deep
learning models.

23

Basic Format:

Type Rejection RulesTyping Rules

Infer result types for
expression.

Reject operand types
for expression.

Forward Type Inference:

• Start from nodes with no input nodes.
• Forward traverse the whole TDG.
• Activate typing rules in expression nodes.

Backward Type Rejection:

• Start from nodes with no output nodes.
• Backward traverse the whole TDG.
• Activate type rejection rules in expression nodes.

Hybrid Type Inference - HiTyper

24

Neural Type Prediction

Hot Type Slot Finder:
Identify the key variables that hinders the static inference part from inferring other variables.
à reduce the variables that predicted by DL models.

Similarity-based Type Correction:
Map the never imported type predictions from DL models into valid types.
à enhance the ability of predicting user-defined/third-party types.

import torch
prediction: tf.Tensor,mapping to: torch.Tensor

25

Hybrid Type Inference - HiTyper

26

Evaluation

27

HiTyper shows great
improvement (11% ∼ 15%)
on overall type inference
performance,
and the most significant
improvement is on return
value inference (22% ∼
39%).

Limitations of HiTyper

28

• The performance upper bound of HiTyper depends on the performance of deep learning models used in
the framework.

• If deep learning model cannot give correct type predictions, static inference cannot validate and give the
final predictions.

A Recent New Approach – Cloze-Style Type Inference

29

1 def add(num1:<mask0>, num2:<mask1>) -> <mask2>:
2 c:<mask3> = num1 + num2
3 d:<mask4> = 1 + 2
4 return c + d

Parameters:
<mask0> (num1) : int
<mask1> (num2) : int

Local Variables:
<mask3> (c) : int
<mask4> (d) : int

Return Value:
<mask2> (add) : int

A Recent New Approach – Cloze-Style Type Inference

30

1 def add(num1:<mask0>, num2:<mask1>) -> <mask2>:
2 c:<mask3> = num1 + num2
3 d:<mask4> = 1 + 2
4 return c + d

• Do not require a high quality training set.

• Lack of static domain knowledge:
With internal knowledge only in the pre-trained code models.

• Lack of interpretability:
No idea about how the model reaches the prediction.

Outline of Thesis

31

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

Generative Type Inference - TypeGen

32

LLM

Let LLMs act like a static type inference tool!
See what static inference sees, think how static inference thinks.

Input prompt
with static domain
knowledge

Output chain-of-
thought prompt
making predictions

Generative Type Inference - TypeGen

33

Challenge 1: Lack of static domain knowledge

What knowledge should a model have to infer a type for a variable?
(See what static inference sees)

Knowledge 1: The context of the target variable – Code slicing.

Knowledge 2: The valid type set of the variable – Type hint collection.

Code Slicing

34

Source Code Type Dependency Graph

• Remove all statements without data dependencies with the target variable.
• Remove statements with very far data dependencies with the target variable.

Type Hint Collection

35

Imported types = third-party types + user-defined types

User-defined types:
• Collect all classes in the current source file.

Third-party types:
• Download top 10,000 popular Python packages in Libraries.io.
• Collect all classes and their paths as a third-party type database.
• Query the database based on the import statements in current source file.

Generative Type Inference - TypeGen

36

Challenge 2: Lack of Interpretability

How to know/guide the model to reach a type prediction like static inference?
(Think how static inference thinks)

Simulate the inference steps of static inference!

Chain-of-Thought Prompt Generation

37

Translate the Type Dependency Graph into a Chain-of-Thought prompt.

Chain-of-Thought Prompt Generation

38

Translate the Type Dependency Graph into a Chain-of-Thought prompt.

• First, the variable DATABASES is
assigned from a dict.

• Second, the key of the dict is a str.
The value of the dict is a dict.

• Third, the keys of the dict are a str
and a str. The values of the dict are a
str and a function call os.path.join.

• Therefore, the type of the variable
DATABASES is `dict[str, dict[str, str]]`.

In-Context Learning

39

Static Analysis
Generated

LLM Predicted

Performance of TypeGen

40

Performance of TypeGen

41

TypeGen is capable of consistently improving
the zero-shot performance of type inference for
language models with different parameter
sizes and achieves 2x ~ 3x of improvements
made by the Standard ICL setting.

Improve the Reliability of Dynamic Type System

• Pathway #1 (Prevention): Use type inference to statically get the types of variables so that
common static checking techniques can be used to detect potential issues.

• Pathway #2 (Repair): Implement automatic repair methods to fix issues caused by the
dynamic type system.

42

Type Checking Test Case Generation

Outline of Thesis

43

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

How to Fix Existing Type Errors?

44

Prompt-based program repair

+ Do not need training set.
+ Most effective.
- Require good prompt template design.

• Incorporate domain knowledge into prompt templates à Domain-aware prompts.

General prompt template:
user_pass = ’%s:%s’ % (<mask>…<mask>unquote(password))

Bug Line:
user_pass = ’%s:%s’ % (unquote(user), unquote(password))

Domain-aware prompt template:
user_pass = <mask>…<mask>(’%s:%s’ % (unquote(user),
unquote(password)))

Domain-Aware Type Error Repair - TypeFix

45

GitHub Pull
Requests

Bug
Fixes Fix

Patterns

Hierarchical Clustering

Pre-trained
Model

 attributes =
user.get('attributes', {}) or <mask>

Code Prompt

 attributes =
user.get('attributes', {}) or {}

Patch

Fix Parsing

Prompt-based Patch Generation

Internal
Context

External
Context

Frequency-Aware
Template Matching

 attributes =
user.get('attributes', {})

Buggy Code

Selected Fix
Template

Fix Templates

Clustering Tree

Coarse-
Grained

Fix Template Mining

Fix Template Matching

Fine-
Grained

Phase I: Fix Parsing

46

Root

Variable

value

Root

Compare

Op

IsNot

opcomparators left

B_Tree A_Tree

Root

If

IC_Tree

（test, test)

Root

Assign

Call

Variable

value

Variable

value

BC_Tree

value targets

args

 if value_type in ('boolean', 'bool'):
 value = boolean(value, strict=False)
- elif value:
+ elif value is not None:
 if value_type in ('integer', 'int'):

(c) Fix Pattern (d) Internal Context (e) External Context

(a) Fix Commit

Root

Variable

value

Root

Compare

Op

IsNot

Literal

None
Reference

opcomparators left

Bug_Tree Fix_Tree

If
If

(b) ASTs of Buggy Code and Fixed Code

If
If

test body
body

test
....

....

Variable

value

Literal

None
If

rn

• Fix Pattern: Indicate the exact code change.
• Internal Context: Indicate the statement where fix pattern should apply.

• External Context: Indicate the location of the statement in internal context.

• Fix Pattern: Indicate the exact code change.

• Internal Context: Indicate the statement where fix pattern should apply.
• External Context: Indicate the location of the statement in internal context.

x

• Fix Pattern: Indicate the exact code change.

• Internal Context: Indicate the statement where fix pattern should apply.

• External Context: Indicate the location of the statement in internal context.

x

x

Phase I: Fix Parsing

47

Root

Variable

value

Root

Compare

Op

IsNot

opcomparators left

B_Tree A_Tree

Root

If

IC_Tree

（test, test)

Root

Assign

Call

Variable

value

Variable

value

BC_Tree

value targets

args

 if value_type in ('boolean', 'bool'):
 value = boolean(value, strict=False)
- elif value:
+ elif value is not None:
 if value_type in ('integer', 'int'):

(c) Fix Pattern (d) Internal Context (e) External Context

(a) Fix Commit

Root

Variable

value

Root

Compare

Op

IsNot

Literal

None
Reference

opcomparators left

Bug_Tree Fix_Tree

If
If

(b) ASTs of Buggy Code and Fixed Code

If
If

test body
body

test
....

....

Variable

value

Literal

None
If

rn

• Definition of Template Tree Node
A node is a quadruple (bt, t, v, i) where

bt ∈ {Variable, Op, Literal, Builtin, Type, Attribute, Expr, Stmt} is the base type of node,

t is the AST node type, v is the value, and i is the id.

Phase II: Fix Template Mining

48

• Distance of Fix Patterns
• Defined as 1 minus the rate of same nodes in two template trees.
• Calculate from the root to leaves, i.e., two nodes can be compared if and only if their parent nodes are the

same (top-down).

• Distance of Contexts
• Defined as 1 minus the rate of same nodes in two template trees.
• Calculate from leaves to the root, i.e., two nodes can be compared if and only if their children nodes in the

leaf-root path are the same (bottom-up).

Overall Methodology: Hierarchical Clustering

Phase II: Fix Template Mining

• Abstraction of 2 Nodes a and b in Fix Patterns or Contexts

• Same Node: a and b are exactly the same, and they can be reserved for
the generalized fix template.

• Value Abstraction: a and b have the same types but different values. We
create a node with the same type and set the value as a special ABS token
to indicate a hole.

• Type Abstraction: a and b have the same base types but different types
and values. We create a node with the same base type, and set the type
and value as a special ABS token to indicate a hole.

• Node Removal: a and b have no common attributes. We directly remove
the two nodes.

49

a: (Literal, int, 1, 1024)
b: (Literal, int, 1, 2024)
res: (Literal, int, 1, -)

a: (Literal, int, 1, 1024)
b: (Literal, int, 2, 2024)
res: (Literal, int, ABS, -)

a: (Literal, int, 1, 1024)
b: (Literal, str, “a”, 2024)
res: (Literal, ABS, ABS, -)

a: (Literal, int, 1, 1024)
b: (Op, add, -, 2024)
res:-

Node: (bt, t, v, i)

Phase III: Fix Template Matching

• Select Fix Templates
• We match the ASTs of the buggy programs with the contexts of mined fix templates.
• For the same type of fix templates, we select the most detailed fix template since it has the most domain
knowledge.

• Rank Different Types of Fix Templates
• Group different fix templates with the same contexts.
• Rank the fix templates in one group according to the occurrence frequency obtained in the mining phase.
• Rank the groups according to the abstraction ratio, i.e., the rate of program holes that require LLMs to
synthesize.

50

Phase IV: Patch Generation

51

Bug Line:
user_pass = ’%s:%s’ % (unquote(user), unquote(password))

Domain-aware prompt template:
user_pass = <mask>…<mask>(’%s:%s’ % (unquote(user),
unquote(password)))

Patch:
user_pass = to_bytes(’%s:%s’ % (unquote(user),
unquote(password)))

LLM

Evaluation

52

TypeFix successfully fixes 55 and 26 type errors in two
benchmarks, outperforming state-of-the-art approaches by at
least 14 type errors and 9 type errors, respectively. Meanwhile,
TypeFix obtains the most unique type error fixes in two
benchmarks.

Unique type errors fixed by each approach.

Evaluation

53

Comparison with rule-based approach

Ablation Results

TypeFix achieves a template coverage of about 75% on both
benchmarks, which is 30% larger than that achieved by fix
templates manually defined in PyTER.

Ablation results also demonstrate the usefulness of fix templates
mined by TypeFix under each category.

THREE
54

Dynamic Run-time Environment

Improve the Reliability of Dynamic Run-time Environment

• Pathway #1 (Prevention):

Run-time environments provide implementations for external APIs used in the code.

à Provide high-quality API recommendation to avoid API misuse.

55

requirements.txt:

torch>=1.3.0
gym>=0.9.7
numpy>=1.10.4
filelock
pillow

pfrl/wrappers/monitor.py:

...
from gym.wrappers import Monitor as _GymMonitor
...

Installed Dependencies:

torch==1.13.1
gym==0.26.2
numpy==1.21.6
filelock==3.12.2
pillow==9.5.0

AttributeError: module 'gym.wrappers'
has no attribute 'Monitor'

Outline of Thesis

56

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

Two Categories of API Recommendation Approaches

1 public class Sort {
2 public static void main(String args[]) {
3 String[] strArray =
4 new String[] { "example" };
5 List l = Arrays.asList(strArray);
6 Collections.<Recommendation Point>;
7 ...
8 }
9 }

Target Code

Implementation of String,
Arrays.asList(),...

External Context

(c) AST MethodDeclaration

LocalVariable
Declaration

ClassDeclaration

LocalVariable
Declaration

Current Code Before
Recommendation Point

Internal Context

......

Pattern-based
Methods

Learning-based
Methods

String Arrays.asList() ...
func1 0 1 ...

func2 1 0 ...

main 1 1 ...

(d) API Matrix

Context Representation

Recommendations:

java.util.Collections.sort(),
java.util.Collections.addAll(),

java.util.Collections.min()
....

(a) API Sequence: String, Arrays.asList, ...

(b) Token Flows: public class sort public ...

57

Original Query:
Calculate int value square root

API Candidates

Retrieval-based
Methods

Official Documentations
Q&A Forums

API Tutorial Sites

Recommendations:

java.lang.Math.sqrt(),
java.lang.Math.nextDown(),

java.lang.Math.cbrt()
....Learning-based

Methods

Query - API Pairs
Official Documentations

Q&A Forums
API Tutorial Sites

finally calculate int value square root

Return int value square root

Query Modification

Query Expansion

Query-Based:

Code-Based:

APIBench-Q for Query-Based Approaches

• Mining Stack Overflow
• All posts from Aug 2008 to Feb 2021
• 1,756,183 Java posts and 1,661,383 Python posts

• 148,938 Java posts and 156,493 Python posts

• 13,755 posts

• 1,320 Java queries and 1,925 Python queries

58

Format Check

Keyword Filtering

Manual Check

• Mining Tutorial Websites

APIBench-C for Code-Based Approaches

• Mining GitHub
• General: 1,000 most starred + 1,000 most forked
repos at entire Github.

• Specific Domain: 500 most starred + 500 most
forked repos under one topic.

59

Query-Based Baselines

60

Effectiveness of Query-based Approaches

61

Class Level vs. Method Level

Finding: Existing approaches fail to predict 57.8% method-level APIs that could be successfully predicted
at the class level. Accurately recommending the method-level APIs still remains a great challenge.

Impact of Query Reformulation Techniques

62

Finding: Query reformulation
techniques are quite effective in helping
query-based API recommendation
approaches give the correct API by
adding an average boost of 27.7% and
49.2% on class-level and method-level
recommendations, respectively.

Finding: Query expansion is more stable
and effective to help current query-
based API recommendation approaches
give correct APIs than query
modification.

Code-Based Baselines

63

Cross-Domain Performance

64

General: multiple domains

Finding: Training on multiple domains helps the current approaches to recommend APIs in different
single domains, and the performance is even better than only training on the certain single domain.

Improve the Reliability of Dynamic Run-time Environment

• Pathway #1 (Prevention): Provide accurate API recommendation to avoid external API
misuse.

• Pathway #2 (Detection): Detect compatibility issues in the configuration files before
software usage.

65

requirements.txt:

torch>=1.3.0
gym>=0.9.7
numpy>=1.10.4
filelock
pillow

pfrl/wrappers/monitor.py:

...
from gym.wrappers import Monitor as _GymMonitor
...

Installed Dependencies:

torch==1.13.1
gym==0.26.2
numpy==1.21.6
filelock==3.12.2
pillow==9.5.0

AttributeError: module 'gym.wrappers'
has no attribute 'Monitor'

Outline of Thesis

66

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

Source-level Run-time Environment Conflict Check

• Version constraints defined in configuration files are not reliable.
• We should validate whether the import statements in source code can be successfully
executed.

67

requirements.txt:

torch>=1.3.0
gym>=0.9.7
numpy>=1.10.4
filelock
pillow

pfrl/wrappers/monitor.py:

...
from gym.wrappers import Monitor as _GymMonitor
...

Installed Dependencies:

torch==1.13.1
gym==0.26.2
numpy==1.21.6
filelock==3.12.2
pillow==9.5.0

AttributeError: module 'gym.wrappers'
has no attribute 'Monitor'

Version-level Check

Source-level Run-time Environment Conflict Check

• Installation Check: Assign the correct Python version and check whether a package can be
successfully installed based on configuration files.

68

Installation Check

69

• Python Version Assignment

Examine the classifiers set by developers in PyPI

Choose the latest Python version released 180 days before
the package release time

Copy the Python version from other releases of the same
package

Choose commonly used Python versions 2.7, 3.6, 3.10, etc

Try all Python versions

Fail

Fail

Fail

Fail

PyPI Classifiers

Source-level Run-time Environment Conflict Check

• Dependency Check: Check potential conflicts between indicated versions in configurations
and installed versions via pip.

70

Dependency Check

• Metadata Check
• Existence of file <package>-<version>.dist-info.
• Top modules in file top_level.txt.

• Run-time Environment Check
• Solve the valid dependencies in configurations provided by developers.
• Collect the installed dependencies in the run-time environment built by Installation Check.
• Check inconsistences between the required dependencies and installed dependencies.

• Source Files Check
• Locate the source files based on the modules provided in the configurations.
• Check the syntax of all source files.

71

Source-level Run-time Environment Conflict Check

• Import Validation: check potential conflicts between import statements in source code and
the installed run-time environment.

72

Import Validation

• Imports
• Internal Imports: introduce local modules within the project.
• External Imports: require third-party packages from the run-time environment.

• Collect Local Modules
• All Python files and sub-directories with __init__.py file in the same directory.
• Image files such as .so and .pyd.

73

Import Validation

• Import Blocks
• Developers employ different methods to handle different run-time environments, such as using if-else
statements and try-except statements to incorporate import statements.

74

Block Analysis

75

• Block analysis aims to reformulate an import block to a boolean expression, so that we know
whether an import block is successfully executed.

Block Analysis

76

Block Analysis

77

Block Analysis

78

Boolean Expression

(
(a and b) and
(
c or
(d and e)

)
) or
(f and g)

Import Validation

• Execute imports to validate boolean expression:

((a and b) and (c or (d and e))) or (f and g)

79

Detected Run-time Environment Conflicts

80

• All Libraries
• 8,282 packages and 338,069 releases on PyPI Platform.

• Installed Libraries (pass the Installation Check)
• 7,830 (95%) packages and 303,377 (90%) releases.

• Validated Libraries (pass all checks)
• 5,371 (65%) packages and 131,720 (39%) releases.

Detected Run-time Environment Conflicts

• Incomplete Configuration
• Missing configuration files – 281
• Missing required libraries for setup – 3,318
• Missing Python versions – 55,138 (16%)
• Missing required libraries for direct imports – 142,521 (42%)

81

Finding: Developers tend to provide inadequate configurations for the usage of libraries,
especially for Python versions and direct imports in source code.

Detected Run-time Environment Conflicts

• Incorrect Configuration
• Dependency conflicts in setup – 6,318
• Incorrect Python versions – 4,155
• Other run-time errors in setup – 3,464

• Inconsistent configurations with metadata – 592
• Inconsistent version numbers with release dates – 12,018
• Missing required modules for indirect imports – 11,023
• Inconsistent modules in direct imports with installed dependencies – 6,678
• Other run-time errors in imports - 8,178

82

Finding: Developers make mistakes in writing configurations since 19% of configuration
issues are incorrect configurations. What‘s more, about 50% of incorrect configuration
issues can only be detected by Import Validation, indicating the importance of source-
level validation.

Detected Run-time Environment Conflicts

• Incorrect Code
• Missing source code – 2,588
• Parsing error – 431
• Multiple version control failure - 15,507 (5%)

83

Finding: Incorrect configurations can hardly be handled by the multiple version control
logic in source code, as there are 5% of library releases suffering from import block
failures.

FOUR
84

Conclusion & Future Work

Conclusion

85

Lead to

Lead to

Prevented by

Prevented by

Fixed by

Improve

Prevented by

Detected by

[ASE’23 Distinguished Paper Award]

[ICSE’22 Distinguished Paper Nomination]

[ICSE’24]

[ICSE’24]

[TSE’22]

Only first-author publications are listed.

Future Work

Dynamic Type
System Type Errors

Hybrid Type Inference

Generative Type Inference

Prevented by

Improve

Prompt-based Type Error RepairFixed by

Lead to

Synergistic Type Inference

86

Synergistic Type Inference:
• LLMs and static inference handle different kinds of

variables
• LLMs get instant feedbacks from type checkers and

improve the predictions
• Single-variable inferenceàmultiple-variable inference

def add(num1, num2):
 res = str(num1 + num2)
 return res

def add(num1, num2):
 a = num1 + 1
 b = num2 + 2
 return a + b

def add(num1, num2):
 res = num1 + num2
 return res

Static Inference:

Static Type Check:

LLM Prediction:

Static Inference:

Static Type Check:

LLM Prediction:

Static Inference:

Static Type Check:

LLM Prediction:

Code: Code: Code:

(2) Context Sensitive (3) Context Insensitive(1) Static Inferred

Future Work

Dynamic Run-time
Environment

Run-time
Environment

Conflicts

API Recommendation Performance Study

Source-Level Run-time Environment Check

Lead to

Detected By

Prevented by

Run-time Environment Dependency Inference

High-quality API Recommendation

Fixed By

Guide
Prevented By

87

High-quality API Recommendation:
• Make use of query reformulation techniques.
• Train the deep learning model on multiple-domain data.

Run-time Environment Dependency Inference:
• Infer correct configurations of run-time environments based on the source code of software.

List of Publications

• [ICSE’24] Less is More? An Empirical Study on Configuration Issues in Python PyPI
Ecosystem.

• [ICSE’24] Domain Knowledge Matters: Improving Prompts with Fix Templates for Repairing
Python Type Errors.

• [FSE’24] Less Cybersickness, Please: Demystifying and Detecting Stereoscopic Visual
Inconsistencies in Virtual Reality Apps.

• [LLM4Code] Enhancing LLM-Based Coding Tools through Native Integration of IDE-Derived
Static Context.

• [ASE’23] Generative Type Inference for Python.

• [ASE’23 Industry Challenge] REEF: A Framework for Collecting Real-World Vulnerabilities and
Fixes. 88

List of Publications

• [TSE’23] Prompt Tuning in Code Intelligence: An Experimental Evaluation.

• [TSE’23] API Usage Recommendation via Multi-View Heterogeneous Graph Representation
Learning.

• [TSE’22] Revisiting, Benchmarking and Exploring API Recommendation: How Far Are We?

• [FSE’22] No More Fine-tuning? An Experimental Evaluation of Prompt Tuning in Code
Intelligence.

• [ICSE’22] Static Inference Meets Deep Learning: A Hybrid Type Inference Approach for
Python.

89

Awards

• ACM SIGSOFT Distinguished Paper Award (ASE’23).
• ACM SIGSOFT Distinguished Paper Award Nomination (ICSE’22).
• Distinguished Paper Award of Industry Challenge Track (ASE’23).

90

