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Modern	software	systems	are	serving	many	aspects	of	our	life.
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Software failure can happen…

Power	Outage	

CPU	Saturation/		
Memory	Saturation

Network	
Bandwidth	Limited	

Network	Partition

More	and	More	…...
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Real-world revenue loss

24h-hour outage:
Loss $3.4 billion

3.4 billion

ReputationMoney

Hard	to	mitigate

Software Reliability Engineering (SRE) is in 
urgent need.



Fault ToleranceFault RemovalFault	Prevention

Topology
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Automated SRE (data-driven)

Meter	DataLogCode Open	Forum

Code	Production Code	Repair Software	Operations
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How do we monitor run-time systems?

• Program	intention
• Reflect	code	activities

• Bug	information
• Localize	and	remove	bugs

• System	run-time	information
• Reveal	internal	status

TopologyMeter	
Data

Code Open	
Forum

Log

Code	Production Code	Repair Software	Operations

The most widely-used resources for diagnosis.
@Amazon, Microsoft, Alibaba
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Log-driven automated SRE: What are logs?

Logging 
statements

Log	filesTh
e	
lif
ec
yc
le
	o
f	l
og
s

# Logging statements from Spark 
(spark/storage/BlockManager.scala) 
logError(s"Failed to report ${blockId} to master; giving up.") 
logDebug(s"Putting block ${blockId} with replication took 
${usedTimeMs}") 
logInfo(s"Writing block ${blockId} to disk")

17/08/22 15:50:46 ERROR BlockManager Failed to report rdd_0_1 
to master; giving up. 
17/08/22 15:51:18 DEBUG BlockManager Putting block rdd_1_1 
with replication took 0 
17/08/22 15:51:55 INFO BlockManager Writing block rdd_1_1 to 
disk 
…
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Log-driven automated SRE: Challenges

How	to	write	the	
logging	statements	
in	high-quality?

How	to	automate	
log	analysis to
monitor systems?

• Big	volume• Instrumentation	overhead

• Information	content
• High	variety
• Semi-structured	language

• Fast	evolution
• Evolving	log	events

• Lacking	open	dataset
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Contributions
Software development Software operations

/*simplified function*/

public void setPhysicalName(String 
physicalName) {
… 

try { 
sequenceId = 

Integer.parseInt(seqStr); 
} catch (NumberFormatException e) 

{
 LOG.debug("Did not parse 
sequence Id from " + physicalName); 
...

Fault tolerance

Deployment

An empirical study on automatic 
logging statement generator.

4

A semantic-aware log parser 
for software operations.

1

An anomalous log localizer
for evolving systems.

2

An automatic log sequence 
synthesizer for anomaly 
detection.

3

Fault prevention

Log collection

(Logging quality)

(High variety)

(Fast evolution)

(Insufficient 
public data)
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Outline

Log-driven 
automated SRE

Reactive
Log analysis

Proactive
Logging practice

o Topic1: A semantic-aware log parser for
software operations

o Topic2: A log localizer for evolving software 
systems

o Topic3: An automatic log sequence 
synthesizer for anomaly detection

o Topic4: An empirical study on automatic 
logging statement generator

o Conclusion and Future Work

[ICSE’23]
(Chapter 3)

[ISSRE’23]
(Chapter 4)

[ASE’23]
(Chapter 5)

[TSE’24 Major]
(Chapter 6)

[ICSE’23, ASE’23, ISSRE’23, 
ICSE’24, FSE’24, ISSTA’24]

[FSE’24, TSE’24 Major]
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Outline
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Preliminary: The workflow of log analysis

Log	messages

Anomaly 
detection

Root cause
analysis

Downstream	applications
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Preliminary: The workflow of log analysis

Log	messages

SVM

Decision Tree

Neural networks

Log	mining

Anomaly 
detection

Root cause
analysis

Downstream	applications

…

Structured	log	events

Log parsing
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Preliminary: Log-based anomaly detection

• The	most	widely-studied	task	in	log	analysis

• Purpose:	Detect	if	a	system	has	run-time	anomalies	in	a	period	of	time via

analyzing log files

ü Network	error,	CPU	saturation,	power	outage	etc..

Unexpected behaviors
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Preliminary: Log-based anomaly detection

• The	most	widely-studied	task	in	log	analysis

• Purpose:	Detect	if	a	system	has	run-time	anomalies in	a	period	of	time

Log	collection

Log	parsing

(Event1, Event2, Event2, 
Event3, Event4, Event3, …)

Piecing log windows

Event1, Event2, Event2 

Event3, Event4, Event3 

block namesystem allocateblock
Receiving block src dest
…

Extracting features

Log	partition	and	
feature	extraction

1 ⋯ 3
⋮ ⋱ ⋮
0 ⋯ 2

Anomaly	detection

Send to IT team
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Existing log parser
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Statistical-based
• SLCT:	word frequency.
• Logram:	n-gram	patterns.
• SHISO:	word	length.

Current parsers are working with syntax-based superficial 
features, which cannot capture semantics.

Existing log parsers

[IPOM’03] SLCT
[TSE’20] Logram
[SCC’13] SHISO
[ICDE’22] Prefix-graph
[ICWS’17] Drain

Graph-based
• Prefix-graph:	

probabilistic	graph.

Tree-based
• Drain:	traverse	leaf	

nodes	in	a	tree	
structure.
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Insufficient semantic information obstructs subsequent analysis.

Existing log parsers

E1
E2
…

E10

Log	Sequence Log	mining	
algorithms

Neural	networks
…

Out-of-vocabulary

Why	not	encode	variables?
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Semantic-based
log	parsers

Semantic	Parser
• Distinguish	event	templates	and	parameters.
• Acquire	semantics	of	parameters	(variables).

Semantics	of	variables:
• What	does	949e1227	mean?

• Cell	ID

Motivation: We care semantics

Returning 200 to user
Returning 500 to user Connection timed out!

Connection OK
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• Terminologies
• Semantic	roles

• Concepts:	Technical	terms	in	the	log	message	(e.g.,	block).
• Instances:	Variables	in	the	log	message	(e.g.,	blk_38865049064139660).

• Variable	semantics
• Concept-Instance	pairs	(CI	pairs),	describing	the	concept	that	the	instance	refers	to.

Preliminary
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Semantics Miner

Joint Parser

Instances

Domain 
Knowledge

CI pair 
in DK?

False

Conceptualized template

[“949e1227”]
[“949e1227”, “Nova.context()”]

Concepts
[“instance”, “cell”]
[]

Explicit CI pairs
[(“cell”, “949e1227”)]
[]

Log messages
Listing instance in cell 949e1227
Lock 949e1227 acquired by nova.context()

Orphan conceptsCI pairs Orphan instances
Listing instance in cell <cell>
Lock <cell> aceuired by  <*>

[(“cell”, “949e1227”)]
[(“cell”, “949e1227”)]

[]
[“nova.context()”]

[“instance”]
[]

• Root cause analysis
• Anomaly detection
• Others

Log analytical tasks

1

2(“cell”, “949e1227”),
(“project”, “e5a6171e”)

…

Overview	(2	steps)

• Input:	Log	messages

• Step1:	Semantics	Miner
• Mine	explicit	variable	semantics	within	
single	log	message.

SemParser

Listing instance in cell 949e1227…

Observation#1:
CI pairs can appear in the same log.
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Semantics Miner

Joint Parser

Instances

Domain 
Knowledge

CI pair 
in DK?

False

Conceptualized template

[“949e1227”]
[“949e1227”, “Nova.context()”]

Concepts
[“instance”, “cell”]
[]

Explicit CI pairs
[(“cell”, “949e1227”)]
[]

Log messages
Listing instance in cell 949e1227
Lock 949e1227 acquired by nova.context()

Orphan conceptsCI pairs Orphan instances
Listing instance in cell <cell>
Lock <cell> aceuired by  <*>

[(“cell”, “949e1227”)]
[(“cell”, “949e1227”)]

[]
[“nova.context()”]

[“instance”]
[]

• Root cause analysis
• Anomaly detection
• Others

Log analytical tasks

1

2(“cell”, “949e1227”),
(“project”, “e5a6171e”)

…

• Step2:	Joint	Parser
• Conduct	implicit	variable	semantics	
inference	across	log	messages.

SemParser
Overview	(2	steps)

• Input:	Log	messages

• Step1:	Semantics	Miner
• Mine	explicit	variable	semantics	within	
single	log	message.

Observation#2:
        CI pairs can also occur in different logs.

Lock 949e1227…
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Semantics Miner

Joint Parser

Instances

Domain 
Knowledge

CI pair 
in DK?

False

Conceptualized template

[“949e1227”]
[“949e1227”, “Nova.context()”]

Concepts
[“instance”, “cell”]
[]

Explicit CI pairs
[(“cell”, “949e1227”)]
[]

Log messages
Listing instance in cell 949e1227
Lock 949e1227 acquired by nova.context()

Orphan conceptsCI pairs Orphan instances
Listing instance in cell <cell>
Lock <cell> aceuired by  <*>

[(“cell”, “949e1227”)]
[(“cell”, “949e1227”)]

[]
[“nova.context()”]

[“instance”]
[]

• Root cause analysis
• Anomaly detection
• Others

Log analytical tasks

1

2(“cell”, “949e1227”),
(“project”, “e5a6171e”)

…

• Output: Log	events	(C-Template),	
semantic	pairs	(CI	pairs),	etc..

• Step2:	Joint	Parser
• Conduct	implicit	variable	semantics	
inference	across	log	messages.

Overview	(2	steps)

• Input:	Log	messages

• Step1:	Semantics	Miner
• Mine	explicit	variable	semantics	within	
single	log	message.

SemParser



Bidirectional LSTM

<TMP> Listing instance in cell 949e1227

LossP

Word feature

Mention pair feature

ScorePi

["!	; %ℎ'(!	;)*+%'*!]

[-!	;-"; %+./0!,"]

LossM1

ScoreMi

LossM2 LossM6 = Loss… …+ + +Loss computation

IC[1 .! 	;1(%!)	;1(4!)]

softmax softmax softmaxsoftmax

IC IC
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Token	representation
• Word-level: Word2vec.
• Character-level: CNN	encoding.
• Local-level: One-hot	encoding.

Contextual	encoder
• Bi-LSTM	to	capture	interactions	and	
dependencies	between	words.

Acquire	contextual	representation	for	each	token:

Step1: Semantics miner



Bidirectional LSTM

<TMP> Listing instance in cell 949e1227

LossP

Word feature

Mention pair feature

ScorePi
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Use	contextualized	word	representations	for	two	sub-tasks
• Word	scoring:	determine	the	semantic	roles.
• Pair	matching:	extract	CI	pairs.

Multi-task	learning
• Optimized	simultaneously.

Step1: Semantics miner
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Pair	matching
• Goal:	discern	the	CI	(concept,	instance)	pairs

Word	scoring
• Goal:	determine	the	semantic	role

• Concept?	Instance?	Neither	of	both	(N)?
• Multi-classification	problem	solved	by	one	
feed-forward	neural	network.

<TMP> Listing instance in cell 949e1227

instanceconceptNconceptNN

Semantic	role	for	each	word?

Step1: Semantics miner

cell
status

<TMP> Listing instance in cell 949e1227
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Pair	matching
• Goal:	discern	the	CI	(concept,	instance)	pairs

• Paring	problem:	combat	the	close-world	
assumption.

<TMP> Listing instance in cell 949e1227

Best description for 949e1227?

For	each	word:
1. Form pairs.
2. Rank	the	probability	score	for	each	pair	

(by	a	feed-forward	neural	network).
3. Compute	loss	function.

Word	scoring
• Goal:	determine	the	semantic	role

• Concept?	Instance?	Neither	of	both	(N)?
• Multi-classification	problem	solved	by	one	
feed-forward	neural	network.

<TMP> Listing instance in cell 949e1227

instanceconceptNconceptNN

Semantic	role	for	each	word?

Step1: Semantics miner



1.	Incorporate	newly	discovered	CI	pairs	from	the	
semantics	miner.

• Resolve	implicit	variable	semantic.

• Sharing	knowledge	for	multiple	log	messages.

28

Step2: Joint parser

2.	Update	the	domain	knowledge	module.

3.	Match	with	orphan	variables.
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• Dataset	for	evaluating	semantics	mining
• 6 representative	system	logs	from	Loghub.
• Finetune	:	test	=	50	:	1950.

• Metrics
• Precision
• Recall
• F1

• Dataset	for	downstream	task	evaluation
• Contain	labeled	anomalies.
• HDFS	Dataset.
• F-Dataset	(from	OpenStack).

Experimental settings

Can	SemParser	effectively	extract	semantics?
(RQ1)

Can	such	semantics	benefit	operation	tasks?
(RQ2,	RQ3)
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Experimental results

o Variable	semantics	mining	ability
ü 94.3%	- 99.5%	in	accuracy
ü Each	component	is	beneficial
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Experimental results

o Enhance	subsequent	anomaly	detection
ü 0.82%	- 2%	in	HDFS
ü 8.27%	-	16.58%	in	OpenStack
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Experimental results

o Enhance	subsequent	failure	identification
ü 3.81%	- 12.5%	in	Recall@1
ü -0.42%	– 2.65%	in	Recall@2



o SemParser:	a	semantic-aware	log	parsing	techniques	for	subsequent	analysis

üMotivation:	Existing	syntax-based	parsers	ignore	semantics	within	logs.

üBuilding	the	first	semantic-based	log	parser,	which	can	actively	capture	intra-log	and	
inter-log	semantics.

üReveal	the	contribution of log semantics on	software	operation tasks.

33

Summary of  Topic 1
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Outline

Log-driven 
automated SRE

Reactive
Log analysis

Proactive
Logging practice

o Topic1: A semantic-aware log parser for
software operations

o Topic2: A log localizer for evolving software 
systems

o Topic3: An automatic log sequence 
synthesizer for anomaly detection

o Topic4: An empirical study on automatic 
logging statement generator

o Conclusion and Future Work

[ICSE’23]
(Chapter 3)

[ISSRE’23]
(Chapter 4)

[ASE’23]
(Chapter 5)

[TSE’24 Major]
(Chapter 6)

[ICSE’23, ASE’23, ISSRE’23, 
ICSE’24, FSE’24, ISSTA’24]

[FSE’24, TSE’24 Major]
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Finer-grained log analysis

Anomaly detection

Anomalous 
log identification
(root cause analysis)

• Coarse-grained approach
• Detect anomalies in a session
• Provide limited information

• Fine-grained approach
• Identify specific “anomaly” logs
• Provide detailed information

line104 : Anomalous!

line100-200 : Anomalous!
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Existing solutions

Model all possibilities of the 
normal log sequences

Any violation of the reference model will be 
considered as the anomalous log.

Strict, 
rigorous, 

Close-world assumption

Simple assumption
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Software keeps evolving…

[DATE] [TIME] INFO Started reading broadcast variable 9
[DATE] [TIME] INFO Got assigned task 5
[DATE] [TIME] INFO Found block 46
…

public void handleEvent(Event event){ 
String path = event.getProperty(PATH); 
log.info(”Started reading broadcast variable", variable);
log.info(“Started reading broadcast variable”, variable, “with pieces in total size”, size)
if (PATH != null) { 

String includePath = PATH
…

[DATE] [TIME] INFO Started reading broadcast variable 5 with pieces in
total size 1024
[DATE] [TIME] INFO Got assigned task 5
[DATE] [TIME] INFO Found block 46
…

Log more details?
More 
functionalities?

Version 1.1

Version 1.2

Software 
evolution +

-
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The evolution of logging statements

Unchanged

Inserted

Paraphrase Removed

o Spark2 and Spark3

o Evolving logging statements

ü Insert (12.9%)

ü Paraphrase (1.49%)

ü Remove (9.7%)

Observation#1: A large amount of logging statements 
(24.9%) change over software evolution 
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The evolution of logging statements

o Spark2 and Spark3

o Evolving logging statements

ü Insert (12.9%)

ü Paraphrase (1.49%)

ü Remove (9.7%)

Observation#2: developers always change the 
frequently-used logging statements.

1.49% paraphrased 
logging statements

8.75% log messages

Account for



40

How does the evolution affect reference models?

Raw logs Parsed log events Reference model

#1 Challenge. Parsing error

• Log parsers can introduce 
errors.

• The evolution of logs over 
time can make parsing even 
more challenging.
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How does the evolution affect reference models?

Raw logs Parsed log events Reference model

#2 Challenge. Evolving events

• Event-matching.
• A paraphrased logging statement can

mislead the reference model.
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How does the evolution affect reference models?

Raw logs Parsed log events Reference model

#3 Challenge. Unstable sequences

A new logging statement E2 can alter previously collected log 
sequences. 
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Our approach: EvLog

Two Insights
• The majority of logs are normal in a healthy system (normal >> abnormal).
• The anomalous logs are unknown a priori because we cannot inject all kinds of 

failures. 

Intuition
• Happy families are all alike; every unhappy famility is unhappy in its own way.

Normal logs anomalous log ---<<Anna Karenina>>

Basic idea
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Our approach: EvLog

• Our goal: Identifying anomalous logs over software evolution
• Our challenge: Parsing error, evolving events, unstable sequences
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Multi-level representation extractor

Rich representation
• Using a pre-trained language model to obtain log semantics.
• Eliminating log parsing errors.

Abstract representation
• Goal: extract a high-level semantic representation
• Cluster the rich representation by HDBSCAN
• Each log is represented by the centroid of its cluster

Paraphrased logs will not change their abstract 
representation à stable over evolution
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Anomaly discriminator

Basic idea
• Learn the “normality” of normal logs

How to measure normality?
• Two aspects

• Unitary
• Local (context)

Unitary discriminator
• Learn the single log feature 
• The individual log with negative words (“failure”) 

usually be anomalous.
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Anomaly discriminator

Basic idea
• Learn the “normality” of normal logs

How to measure normality?
• Two aspects

• Unitary
• Local (context)

Local discriminator
• Different logs, different importance
• Asynchronized log collection -> unstable sequences
• Apply the “attention mechanism” to learn the 

surrounding log context
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Anomaly discriminator

Basic idea
• Learn the “normality” of normal logs

How to measure normality?
• Two aspects

• Unitary
• Local (context)

How to integrate?
• Consider the two discriminator jointly
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Experiments

Dataset

• 2 widely-studied systems
• Hadoop and Spark

• 2 version for each system
• 22 different workloads
• 18 typical failures

In total, 6,703,460 log messages with recognized 69,513 anomalous logs.
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Experiments

Metrics

• (binary classification) Precision, Recall, and F1
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Experiment results

o Effectiveness	in	localizing	anomalous	logs
ü 91.5%	- 97.2%	in F1	for intra-version
ü 79.5%-88.4%	in F1	for	inter-version
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Experiment results

o Robust	for	evolution	types	(blue	line)
ü Evolving	log	events
ü Unstable	log	sequences	
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Case study
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Summary of  Topic 2

oEvLog:	an	anomalous	log	localization	framework	for	evolving	software	systems

üMotivation:	Existing	approaches	rely	on	unchanged	log	events

üRevealing	three	challenges from log	evolution.

üBuilding	the	first	evolution-adaptive	log	localizer	via	one-vs-all	classification	techniques.
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Outline

Log-driven 
automated SRE

Reactive
Log analysis

Proactive
Logging practice

o Topic1: A semantic-aware log parser for
software operations

o Topic2: A log localizer for evolving software 
systems

o Topic3: An automatic log sequence 
synthesizer for anomaly detection

o Topic4: An empirical study on automatic 
logging statement generator

o Conclusion and Future Work

[ICSE’23]
(Chapter 3)

[ISSRE’23]
(Chapter 4)

[ASE’23]
(Chapter 5)

[TSE’24 Major]
(Chapter 6)

[ICSE’23, ASE’23, ISSRE’23, 
ICSE’24, FSE’24, ISSTA’24]

[FSE’24, TSE’24 Major]
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Inspired from the training process of LLMs

Large	language	models
(ChatGPT	as	an	exampe)

ChatGPT:	Intelligent	chatbot

Copilot:	Smart	programming	assistant

Bing	AI:	Searching	with	AI

…

Continuing	developing

Foundation:	training	with	a	large	amount	of high-quality dataset.
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Dataset	is	the	core	of	data-driven	models

What	do	we	have	for	intelligent	log	analysis?

Collecting	logs	for	open-source	research	is	demanding	yet	challenging!

• Collecting	logs	from	real-world	service	providers:
+	Rich	log	events
-- Privacy	issues

• Collecting	logs	from	laboratory	environments:
									+ Publicly	available
									-- Simplified	log	events
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Existing log datasets for anomaly detection

One	of	the	most	widely-used	log	datasets,	LogHub.

#1	Comprehensiveness
of	log	events

#2	Scalability
over	diverse	systems

#3	Flexibility
of	log	utility

• Limited number of workloads
and failures.

• Unrealistic	to	simulate	all	
kinds	of	system	behaviors.

• Require	human	efforts	to	
deploy	new	systems.

• Limited	in	system	diversity.

• Not	controllable	for	imitating	
different	scenarios.
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The idea of AutoLog

Logs	are	generated	during	the	execution	of	logging	statements	in	the	source	code.

Collected	logs

How	logs	are	generated?

Logging	statements	in	
the	source	code
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The idea of AutoLog

Log	collection	problem
Constructing	log	sequences	
based	on	the	execution	order	

of	logging	statements

Logs	are	generated	during	the	execution	of	logging	statements	in	the	source	code.
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AutoLog framework

Goal:	Constructing	execution	paths	related	to	logging	statements	in	a	program.

1.	Exploring	the	methods	
with	logging	statements	and	
their	calling	relationships.

2.	Finding	log-related	execution	
paths	over	the	program.

3.	Traversing	the	execution	
paths	to	obtain	normal	log	
sequences	and	abnormal	ones.
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Phase1: Logging statement probing

Exploring	logging	statements	in	the	whole	
program.

• Deriving	call	graphs.
• Marking	methods	containing	logging	

statements	(LogMethod).
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Phase2: Log-related execution path finding

Constructing	log-related	execution	path.

Challenge:	Enumerating	the	paths	in	large-
scale	software	is	impractical.

Step1:	Pruning	call	graph.

Topological	
sorting

LogMethod
May-induce LogMethod
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Phase2: Log-related execution path finding

Constructing	log-related	execution	path.

Challenge:	Enumerating	the	paths	in	large-
scale	software	is	impractical.

Step2:	Acquiring	log-related	execution	
paths (LogEPs).

Getting	LogEPs

1. Constructing	control	flow	graphs	for	intra-methods.
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Phase2: Log-related execution path finding

Getting	LogEPs

1. Constructing	control	flow	graphs	for	intra-methods.
2. Linking	the	invocations.

Constructing	log-related	execution	path.

Challenge:	Enumerating	the	paths	in	large-
scale	software	is	impractical.

Step2:	Acquiring	log-related	execution	
paths (LogEPs).
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Phase2: Log-related execution path finding

Getting	LogEPs

1. Constructing	control	flow	graphs	for	intra-methods.
2. Linking	the	invocations.
3. Recording	the	invocations	and	 logging	statements	.	

• methodA: [Log@1, callB]; [Log@1, callC]
• methodB: [Log@2]
• methodC: [callD]
• methodD: [Log@3, Log@4]

Constructing	log-related	execution	path.

Challenge:	Enumerating	the	paths	in	large-
scale	software	is	impractical.

Step2:	Acquiring	log-related	execution	
paths (LogEPs).
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Phase3: Log path walking

Generating	normal	log	sequences	and	anomaly	ones.						Efficient	annotation:	seed-propagation

Bottom-up
propagation

Anomaly LogEP Infected LogEP

Top-down
Generate

1. Annotating	“seed”	anomaly	LogEPs.
2. Propagating	labels	to	all	LogEPs.
3. Generating	log	sequences	by	walking	over	LogEPs	and	their	invocations.
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Experimental settings

Can	AutoLog	generate	quality	log	sequence?
(RQ1,	RQ2)

Can	such	sequence	benefit	anomaly	detection?
(RQ3)

• Dataset	
• Same	system	as	in	LogHub
• 50	most-popular	Java	projects	from	Maven

• Metrics
• Coverage	of	all	logging	statements
• Execution	time

• Training	resource
• Train	in	AutoLog	VS.	Train	in	LogHub

• Benchmarking	resource
• Evaluating	by	AutoLog

• Metrics
• Precision
• Recall
• F1
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RQ1: Comprehensiveness?

o Simulate	comprehensive	system	behavior
ü 9x	– 58x	on	the	number	of	log	events
ü Covers	87.8%	logging	statements	on	average
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RQ2: Scalable?

o Efficient	and	scalable	approach
ü Shortens	generation	time	(15x)
ü Execution	within	60	mins	for	50	projects
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RQ3: Benefit anomaly detection?

o Benefit	anomaly	detectors
ü Consistently	improve	(1.93%)	performance	consistently
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Summary of  Topic 3

oAutoLog:	a	code-guided	log	sequence	synthesizer	for	anomaly	detection

üMotivation:	Existing	public	log	datasets	fall	short	of	comprehensive	events,	scalability,	
and	flexibility.

üFormulating	the	log	sequence	generation	problem	as	an	execution	order	acquisition	task.

üApplying	program	analysis	to	automatically	simulate	log	sequences.	
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Outline

Log-driven 
automated SRE

Reactive
Log analysis

Proactive
Log analysis

o Topic1: A semantic-aware log parser for
software operations

o Topic2: A log localizer for evolving software 
systems

o Topic3: An automatic log sequence 
synthesizer for anomaly detection

o Topic4: An empirical study on automatic 
logging statement generator

o Conclusion and Future Work

[ICSE’23]
(Chapter 3)

[ISSRE’23]
(Chapter 4)

[ASE’23]
(Chapter 5)

[TSE’24 Major]
(Chapter 6)

[ICSE’23, ASE’23, ISSRE’23, 
ICSE’24, FSE’24, ISSTA’24]

[FSE’24, TSE’24 Major]
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Logging statement generation

public void handleEvent(Event event){ 
String path = event.getProperty(PATH); 
<Logging Point>
if (PATH != null) { 

String includePath = PATH
...

public void handleEvent(Event event){ 
String path = event.getProperty(PATH); 

log.info("Library at {} validated.", path);
if (PATH != null) { 

String includePath = PATH
...

public void handleEvent(Event event){ 
String path = event.getProperty(PATH); 

+ log.debug(“Reload received for path:” + path);
if (PATH != null) { 

String includePath = PATH
...

• Remove logging statement
• Construct <Logging Point>

--

Model input

Original file

Generate logging statementsModel output

o Logging statements
o Natural language descriptions
o Program variables

Generating human language

Generating programs

Generating logging statements?
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Study subjects 

o 11 top-performing LLMs
ü General-purpose LLMs
ü Logging-specific LLMs
ü Code-based LLMs

o 3 traditional logging models
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Experiment preparation

o LogBench-O
o Crawling from GitHub
o 2,420 files
o 3,870 methods
o 6,849 logging statements

o LogBench-T
o Transforming from LogBench-O

ü RQ1: How do different LLMs perform for logging statements generation?

ü RQ2: How do LLMs compare to conventional logging models in logging ability?

ü RQ3: How do the prompts for LLMs affect logging performance?

ü RQ4: How do external factors influence the effectiveness in generating logging statements?

ü RQ5: How do LLMs perform in logging unseen code?
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Selected experiment results & Findings  

ü Existing models correctly predict levels for 74.3% of logging statements
ü There is significant room for improvement in producing logging variables and logging texts.
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Selected experiment results & Findings  

o Comment or non-comments?
ü Ignoring code comments results in an average 2.43% decrease in recommending logging 

texts.
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Selected experiment results & Findings  

o Function-level or file-level?
ü Incorporating file-level programming contexts leads to a great improvement
ü More helpful than comments
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Summary of  Topic 4

oAn	empirical	study	on	LLM-powered	logging	statement	generation

üMotivation:	To	what	extent	can	LLMs	produce	correct	and	complete	logging	statements	
for	developers?	

üTwo	benchmarks	for	evaluating	logging	statement	generation.

üEight	findings	and	five	implications
ü File-level	context	incorporation
ü Generalizability	for	unseen	code
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Outline

Log-driven 
automated SRE

Reactive
Log analysis

Proactive
Logging practice

o Topic1: A semantic-aware log parser for
software operations

o Topic2: A log localizer for evolving software 
systems

o Topic3: An automatic log sequence 
synthesizer for anomaly detection

o Topic4: An empirical study on automatic 
logging statement generator

o Conclusion and Future Work

[ICSE’23]
(Chapter 3)

[ISSRE’23]
(Chapter 4)

[ASE’23]
(Chapter 5)

[TSE’24 Major]
(Chapter 6)

[ICSE’23, ASE’23, ISSRE’23, 
ICSE’24, FSE’24, ISSTA’24]

[FSE’24, TSE’24 Major]
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Conclusion
Log-driven automated	software	reliability	engineering

Large volume

Proactive logging practice Reactive log analysis

High variety Evolving software Insufficient dataLogging quality

SemParser
• Semantic extraction
• Event identification
• Reduce variety

EvLog
• Pinpoint anomalous 

logs
• Adaptable to 

software evolution

AutoLog
• Synthesize log 

sequences
• Data augmentation
• Training resources

An empirical study on LLM-powered 
logging statement generation
• Challenges in logging
• Existing limitations
• Future guidance

Fault prevention Fault tolerance

Challenges

(Chapter6) (Chapter3) (Chapter4) (Chapter5)
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Future work
Log-driven automated	software	reliability	engineering

Large volume

Proactive logging practice Reactive log analysis

High variety Evolving software Insufficient dataLogging quality

Fault prevention Fault tolerance

Challenges

DevOps

Fault removal

Multimodal 
software operations

2

1
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Multi-modal software operations

Textual	dataNumerical	data Graphs

KPIs Traces,	topologies

Anomaly	
detection

Failure
diagnosis

Root	cause
analysis

Failure
prediction

• Software	becomes	more	complicated
• Incidents	are	highly-correlated
• But	they	are	separately	resolved

Reliable	Operations

Logs,	alerts,	tickets
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Operation-guided software development

Development Operation

LLMs	for	Operations	(LLM4Ops)LLMs	for	Development	(LLM4Dev) DevOps

• Operations	for	software	development
• Operation-guided	software	testing
• Operation-guided	program	repair

Evolution

Continuous	Integration
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