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® Introduction
[

Modern software systems are serving many aspects of our life.
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Software failure can happen...




® Real-world revenue loss

The 15 Biggest Cloud Outages Of 2023 HECHAEL

BY WADE TYLER MILLWARD P ‘ : RN

DECEMBER 13, 2023, 3:37 PM EST

In fart carvice niitanace have harnmae en econmmannnlace and nranaratinn en accantial that

Software Reliability Engineering (SRE) is in

urgent need.

IKELATCED. TNE TU MTOWEST NETWOTKINYG Frouaucts UT ZUZJ]

A report this year from Parametrix Insuranc ed that a 24-hour outage of mission-
critical services from AWS us-east-1 — th with the largest number of Fortune
500 companies relying on it — could cost{ 3.4 billion lirect revenue. A 48-hour outage could

cost $7.8 billion.

A 24-hour loss of east-1 and west-2 AWS services could cost $8.2 billion, $17.5 billion if lost
for 48 hours, according to the report.

mitigate

Reputation

24h-hour outage:
Loss $3.4 billion



= Automated SRE (data-driven)
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How do we monitor run-time systems?
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= Log-driven automated SRE:What are logs?

The lifecycle of logs

Logging
statements

Log files

# Logging statements from Spark
(spark/storage/BlockManager.scala)
logError(s"Failed to report ${blockId} to master; giving up.")
logDebug(s"Putting block ${blockId} with replication took
${usedTimeMs}")

logInfo(s"Writing block ${blockId} to disk")

(,

17/08/22 15:50:46 ERROR BlockManager Failed to report rdd 0 1
to master; giving up.

17/08/22 15:51:18 DEBUG BlockManager Putting block rdd_1 1
with replication took 0

17/08/22 15:51:55 INFO BlockManager Writing block rdd 1 1 to
disk

~




= Log-driven automated SRE: Challenges

DATA BREACHES

4.5 Million Individuals Affected by Data Breach

at HealthEC

HealthEC says personal information received from business partners

was compromised in a July 2023 data breach.

(11 (|| U | |

207,320

4 )

How to automate
log analysis to
monitor systems?

\/ /
Big volume
High variety
* Semi-structured language

Fast evolution
* Evolving log events

Lacking open dataset



= Contributions
[]

Software development Software operations

Fault prevention

@ | B @

- N
/ \
/*simplified function*/ 1
A semantic-aware lo arser : . .

public void setPhysicalName(String \1" f f .g P (ngh varlety)
physicalName) { @E or software operations. :
.o I
try | I
sequenceld = Deployment I
|

Integer.parselnt(seqStr);
} catch (NumberFormatException e)

C\,} An anom.alous log localizer —b (Fast evolution)
for evolving systems.

R

Log collection

{

LOG.debug("Did not parse
sequence Id from " + physicalName);

@ An automatic log sequence

: .
synthesizer for anomaly —> (Insufficient

An empirical study on automatic 1 public data)

logging statement generator.

/ /
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- Outline

[FSE’24, TSE’24 Major]

o Topicl:Asemantic-aware log parser for [ICSE’23]
software operations (Chapter 3)
Reactive . _ . ,
Log analysis Topic2:Aloglocalizer for evolving software [ISSRE"23]
systems (Chapter 4)
[ICSE’23,ASE’23, ISSRE’23,
ICSE’24, FSE’24, ISSTA24]
Log-driven Topic3:An automatic log sequence [ASE’23]
automated SRE synthesizer for anomaly detection (Chapter 5)
Proactive o Topic4:An empirical study on automatic [TSE’24 Major]
Logging practice logging statement generator (Chapter 6)

Q Conclusion and Future Work
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- Outline
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* Preliminary:The workflow of log analysis

Log messages

Raw Log Messages

10

2008-11-11 03:40:58 BLOCK* Juser i/
temporary/_task_200811101024_0010_m_000011_0/part-
B001L bik §04791515409399662

2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010

2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010

2008-11-11 03:41:48 PacketResponder O for block blk_904791815409399662
terminating

2008-41-11 03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.250.18.1"

2008-11-11 03.41.48 PacketResponder 1 for block blk_904791815409399662
terminating

2008-11-11 03:41:48 Recelved block bk_804791815409399652 ofsize 67108364
from /10.251.43.2

2008-11-11 03.01.48 BLOCK* NameSystem.addsStoredBlock: blockMap updated:
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addstoredBlock: blockMap updated
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Downstream applications

Anomaly
detection

Root cause
analysis

12



* Preliminary:The workflow of log analysis

Log messages

Structured log events

Raw Log Messages

2008-11-11 03:40:58 BLOCK* : [use

temporary/task 200811101024 0010-m. 000011, O/part. -
T00TLbik 5047818 15409399662
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010

2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18:114:52231 dest: /10.250.18.114:50010
2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662
terminating.

20082111 03:41:48 Received block blk_S04791815409399662 of size 67108864
from /10.250.18.1
20081221 03148 PacketResponder 1 for block blk_904791815409399662
terminating

2008-11-11,03:41:48 Received block blk_904791815409399662 of size 67108864
from /10.251.43.2

2008-11-11 ns.ams BLOCK* NameSystem.addstoredlock: blockMap updated:
10.251.43.210:50010 is added to blk_9047918154093996632 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addstoredBlock: blockMap updated:
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Log Events

Eventl | BLOCK* NameSystem.allocateBlock: *
Event2 | Receiving block * src: * dest: *

Event3 | PacketResponder * for block * terminating

Event4 | Received block * of size * from *
EventS | BLOCK* NameSystem.addStoredBlock:
blockMap updated: * is added to * size *

Event6 | Verification succeeded for

Log parsing

Y
A%

0::

Log mining Downstream applications

Anomaly
detection

Decision Tree

Root cause
analysis

Neural networks

13



* Preliminary:Log-based anomaly detection

* The most widely-studied task in log analysis

* Purpose: Detect if a system has run-time anomalies in a period of time via

analyzing log files

v Network error, CPU saturation, power outage etc..

Unexpected behaviors

14




* Preliminary:Log-based anomaly detection
[

The most widely-studied task in log analysis

* Purpose: Detect if a system has run-time anomalies in a period of time

Log collection

Raw Log N g
R Log M 1 2008-11-11 03: 4D 58 BLOCK* NameSystem.allocateBlock: /user/root/randtxtd/
1 mocKa‘rﬁmiimmjﬁiiik “Juser froot/randtxtd] temporary/_task_200811101024_0010_m_000011_0/par
Tt 3008 b o310 m D350 SIpo

D001 ik 904791815409399662
TR i sisiososecs
iving block ik 904791815409399657 s/

) e e 2 | 2008:11.11,03:40:59 Receiving block blk_004791815409399652 src:/
2 | ARG G B S5 Ao I O artltl 0 n an . 10.251.43.210:55700 dest: /10.251.43.210:500:
3 | 20081211 03:a308 Recemgbock ik s0a7ots15409338662 s/ 3| 2008-11-1103:41:01 Receiving block bik pon A, /
102505 1145251 des: /10250 18,114 50010 n O m a e e C 1 O n 10.250.18.114:52231 dest: /10.250.18.114:50010
+ | Somimaing Block bk < . 1 | 2008-11-1103:41:48 PacketResponder O for block blk_904791815409399662
5| 20081111 03:41:88Received bock bk 904791815409399652 o size 67108863 fe atu r e extra Ctl O n terminating
oo 3s01a 121 R
3 forbockb

5 | 2008-11-1103:41:48 Received block blk_904791815409399662 of size 67108864
2oosia from /10.250.18.114

7 | 2008111 s

irom /16.351.43 310

ferminating
B L e T e block: blockMap updated: 008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864
o | 2008-11-11 03:41:48 BLOCK" NomeSystem addstoredBlock: blockMap updatec: (/AR
1o | 1D.250.18.11:50010 s added to bik_50471815403395662 s1ze 671088054 5,500 p008-11-1103:41:48 BLOCK* NameSystem.addstoredBlock: blockMap updated:
2008-11-11 blk s I L 3 §0.251.43.210:50010 is added to blk_904791815409399662 size 67108864
<000 9 [P008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated:
I 5001 }10.250.18.114:50010 is added to blk_904791815409399662 size 67108864

Event3, Event4, Event3

Log parsing Eventl, Event2, Event2 Send to IT team

Log Events - ul 2019 Sep 2019
Eventl | BLOCK* NameSystem.allocateBlock: * 9 : : —
Event2 | Receiving block * src: * dest: * PIeCIng Iog WIndOWS
Event3 | PacketResponder * for block * terminating \
) ) Anomaly
Eventd4 | Received block * of size * from *

Event5 | BLOCK* NameSystem.addStoredBlock:
blockMap updated: * is added to * size *

Event6 | Verification succeeded for * EXtrGCtlng features v W
block namesystem allocateblock 1 - 3 | JWJM
Receiving block src dest g (I

(Event1, Event2, Event2, 0o - 2
Event3, Event4, Event3, ...)

Value

Time

15



® Existing log parser

Log messages

l10: Returning 500 to user

[;: Listing instance in cell 949e1227
[,: Lock 949e1227 acquired by nova.context.get_cell

Traditional log parsers
(Event template, parameters)

Event Template

Listing instance in cell <*>
Lock <*> acquired by <*>

Returning <*> to user

Parameters

949e1227
949e1227, nova.context.get_cell

500




= Existinglog parsers
[

Log messages

" sing nstance Statistical-based Graph-based Tree-based
4: Listing instance in cell 949e1227
Lz: Lock 949€1227 acquired by nova.context.get_cell *  SLCT: word frequency. *  Prefix-graph: * Drain: traverse leaf
hio: Returning 500 to user e Logram: n-gram patterns. probabilistic graph. nodes in a tree
Traditional log parsers «  SHISO: word length. structure.
(Event template, parameters)
: Received | ©
Event Template Parameters °
Listing instance in cell <*> 949e1227
Lock <*> acquired by <*> 949e1227, nova.context.get_cell | Length: 4 | | Length: 5 | e
.I{eturning <*>to user 500 | | | | | | |
- Send Receive Starting *

- -

Log Event: Receive from node *
Log IDs: [1, 23, 25, 46, 345, ...]

~_————

Current parsers are working with syntax-based superficial
features, which cannot capture semantics.

[IPOM’03] SLCT

[TSE’20] Logram

[SCC’13] SHISO

[ICDE’22] Prefix-graph

[ICWS’17] Drain 17



= Existinglog parsers

Log messages

l;: Listing instance in cell 949e1227
l,: Lock 949e1227 acquired by nova.context.get_cell

l10: Returning 500 to user

Why not encode variables? }

Traditional log parsers

(Event template, parameters)

Event Template r
Listing instance in cell <*>
Lock <*> acquired by <*> Out-of-vocabulary
Returning <*> to user -

El
E2

E10

Log Sequence

'\

&:o3
ONO-»
o’

Log mining
algorithms

: Neural networks

Insufficient semantic information obstructs subsequent analysis.

18



® Motivation: We care semantics

Log messages

l;: Listing instance in cell 949e1227
l,: Lock 949e1227 acquired by nova.context.get_cell

l10: Returning 500 to user

Traditional log parsers
(Event template, parameters)

Event Template Parameters
Listing instance in cell <*> 949e1227
Lock <*> acquired by <*> 949e1227, nova.context.get_cell
Returning <*> to user 500

Semantic Parser

Distinguish event templates and parameters.
Acquire semantics of parameters (variables).

Returning 200 to user
Returning 500 to user &G alal=ledlo)ahlagl=le No]bid

Semantics of variables:
e Whatdoes 949e1227 mean?
e CellID

Semantic-based s = CELL: 949e1227
log parsers Listing instance in cet<CELL>
»| Lock <CELE>acquired by <FUNC>

Returning <STATUS> to user
Status: 500

— FUNC: nova.context.get_cell

19



® Preliminary
[

* Terminologies
* Semantic roles
* Concepts: Technical terms in the log message (e.g., block).
 Instances: Variables in the log message (e.g., blk_38865049064139660).
 Variable semantics
» Concept-Instance pairs (CI pairs), describing the concept that the instance refers to.

R
HDFS PacketResponder :1} for [block !Blk_38865049064139669 terminating
. ¢ '“L" I r--I---| FFF I‘ "" 1
Android updateClipping isOverlap :itruei, getTopPadding|=:333.0;, Translation =-452.0 |
____________________ | I
Hadoop Etask_1445144423722_0020_m_000001 Task|Transitioned from NEW to SCHEDULED'

20



= SemParser

Log messages

p———

E—————

Gsting instance in cell 949e1227>

]

@ Semantics Miner

Explicit Cl pairs

Concepts

Instances

[(“cell”, “949e1227")]

[“instance”, “cell’]

[‘949e12277]
[“949e1227”, “Nova.context()"]

(l
l

i
|

Overview (2 steps)

Input: Log messages

Observation#l .
CI pairs can appear in the same log.

Step1l: Semantics Miner
e Mine explicit variable semantics within
single log message.

21



= SemParser
[

Overview (2 steps)

Log messages

—_—

T Lock 9491227... > * Input: Log messages

* Stepl: Semantics Miner
e Mine explicit variable semantics within
single log message.

Domain

1 ! 1
Knowledge \ @) loint Parser * StepZ:]Joint Parser

(“cell”, “949e1227")

S e5616171e// \ \ * Conduct implicit variable semantics
inference across log messages.

Conceptualized template Cl pairs Orphan concepts || Orphan instances

Listing instance in cell <cell> [(“cell”, “949e1227")] || [“instance”] 0

Lock <cell> aceuired by <*> [(“cell”, “949e1227") || [] [“nova.context()"] .
—_— < ——— — Observation#2:

CI pairs can also occur in different logs.

22



= SemParser

Conceptualized template Cl pairs Orphan concepts || Orphan instances
Listing instance in cell <cell> [(“cell”, “949e1227")] || [“instance”] 1
Lock <cell> aceuired by <*> [(“cell”, “949e1227") || [] [“nova.context()"]

N

_ * Root cause analysis
Log analytical tasks « Anomaly detection
» Others

Overview (2 steps)
* Input: Log messages

* Stepl: Semantics Miner
e Mine explicit variable semantics within
single log message.

* StepZ2:]Joint Parser
e Conduct implicit variable semantics
inference across log messages.

* Qutput: Log events (C-Template),
semantic pairs (CI pairs), etc..

23



= Step1:Semantics miner

.
Loss computation LossM, = LossM, - cee + LossP eee  LossM, = Loss
t t t
softmax softmax softmax softmax
ScoreM; 1 1 1
[P(n) ;p(c) 5p(iy)] OO

ScoreP; |
Mention pair feature I
— - = .[Tﬁl ;.m_];éom_x?llﬂ " e ow —i- _— L e W B s e e n D B tmm 5 mmm B S pEmm B Emm 5 mmm 3 mmm w 1

: Bidirectional LSTM :

l !
. Word feature . O . O . O . O . O ‘ O .
l [w; ;char; ; flocal;] |

<TMP> Listing instance in cell 949e1227

Acquire contextual representation for each token:

Token representation Contextual encoder
* Word-level: WordZ2vec. e Bi-LSTM to capture interactions and
* Character-level: CNN encoding. dependencies between words.

* Local-level: One-hot encoding.




= Step1:Semantics miner

I Loss computation ~ LossM, =+ LossM, + oo 4+ LossP «eo  LossM, = |Loss|
T
! softmax softmax
I ScoreM; +
L o) (e iG] @ @0)
i ScoreP;
i Mention pair feature |
[m; ;mj;contxilj] |
Bidirectional LSTM
Word feature . O . O ‘ O . O ‘ O ‘ O
[w; ;char; ; flocal;] .
<TMP> Listing instance in cell 949e1227

Use contextualized word representations for two sub-tasks

» Word scoring: determine the semantic roles.
* Pair matching: extract CI pairs.

Multi-task learning
* Optimized simultaneously.

25



= Step1:Semantics miner

[]
Word scoring Pair matching
e Goal: determine the semantic role * Goal: discern the CI (concept, instance) pairs
* Concept? Instance? Neither of both (N)? . cell
e Multi-classification problem solved by one
feed-forward neural network. DI:ID

<TMP> Listing instance in cell 949e1227

N N concept N concept iInstance

<TMP> Listing instance in cell 949e1227

Semantic role for each word?

26



= Step1:Semantics miner
il

Word scoring Pair matching
* Goal: discern the CI (concept, instance) pairs
* Paring problem: combat the close-world
assumption.

* Goal: determine the semantic role
* Concept? Instance? Neither of both (N)?

e Multi-classification problem solved by one
feed-forward neural network.

v I

<TMP> Listing instance in cell 949e1227
‘ I T . I

Best description for 949e1227°7

N N concept N concept iInstance

<TMP> Listing instance in cell 949e1227

For each word:

1. Form pairs.

2.  Rank the probability score for each pair
(by a feed-forward neural network).

3. Compute loss function.

Semantic role for each word?

27



= Step2:Joint parser

* Resolve implicit variable semantic.

» Sharing knowledge for multiple log messages.

:?é‘:. 1. Incorporate newly discovered CI pairs from the

<% semantics miner.

?) 2. Update the domain knowledge module.

1 3. Match with orphan variables.

Algorithm 1 Implicit instance-level semantics discovery

Input: Log message M = my,...,m,, instance indices I =
[40, ...%;], concept indices C' = [co, ...cx], explicit CI pair indices
P = [(80, to), ceey (Su, tu)]
Output: Instances I’, Concepts C’, CI pairs P’
1: P'=]]
2: C' =]

3: for all p such that p € P do

4 if p contains 1 instance cur; and 1 concept curc then
5: DomainKnowledge.add(M [curc],M [curr])

6: I.REMOVE(cury)

7 C.REMOVE(curc)

8 end if

9: end for;
10: Tor all 7 such that 2 € / do
11: if FINDCONCEPTFROMDOMAINKNOWLEDGE(M [i]) then
12: P’ .APPEND([newfound concept, M|i]])
13: C'.APPEND(newfound concept)
14: I.REMOVE(z)
15: end if
16: end for

17: I' = INDEXTOWORD(J)
18: C’" += INDEXTOWORD(C);
19: P’ += INDEXTOWORD(P)

28




= Experimental settings

[
Can SemParser effectively extract semantics? Can such semantics benefit operation tasks?
(RQ1) (RQZ, RQ3)
* Dataset for evaluating semantics mining * Dataset for downstream task evaluation
* 6 representative system logs from Loghub. e Contain labeled anomalies.
* Finetune: test =50 :1950. » HDFS Dataset.
e Metrics « F-Dataset (from OpenStack).
* Precision
* Recall
* F1 Dataset | #Message | Anomaly rate
System type | System | #Logs | #Pairs | #Temp. | Unseen HDFS dataset H 11,175,629 ‘ 3%
Mobile system | Android | 2,000 | 6,478 | 166 | 82.8% F-Dataset 1,318,860 0.22%
Operating system | Linux | 2,000 | 2,905 | 118 | 86.8%
Hadoop | 2,000 | 2,592 14 84.6%
HDFS 2,000 | 3,105 30 47.0%
Distributed system | OpenStack | 2,000 4,367 43 52.3%
Zookeeper 2,000 1,189 50 75.9%

29



= Experimental results

o Variable semantics mining ability
v 94.3% - 99.5% in accuracy
v Each component is beneficial
i System
Andriod Hadoop HDFS Linux OpenStack Zookeeper
Framework P _ R — FI|P — R — FI|P — R — FI|P —R— FI|P —R — FI|P — R — FI
SemParser 0.951 0.935 0.943 | 0.9930.978 0.985 | 1.000 1.000 1.000 | 0.998 0.977 0.987 | 0.999 0.998 0.999 | 1.000 0.989 0.995
- wlo Fopar 0.981 0.909 0.943 | 0.988 0.9530.970 | 1.0000.998 0999 | 0.9950.9570.976 | 0.9950.9890.992 | 0.993 0.987 0.990
- Wlo Fiocal 0.979 0.858 0.915 | 0.993 0.880 0.933 | 1.000 0.999 0.999 | 0.992 0.947 0.969 | 0.994 0.989 0.992 | 0.997 0.940 0.968
- wlo LSTM || 0979 0.858 0.915 | 0.993 0.879 0.932 | 1.000 0.999 0.999 | 0.9950.909 0.951 | 1.000 0.963 0.981 | 0.966 0.953 0.959

- Ww/o Feontx

0.977 0.060 0.113

0.984 0.253 0.403

0.999 0.289 0.449

0.999 0.242 0.389

1.000 0.256 0.407

0.842 0.197 0.319

30



= Experimental results

o Enhance subsequent anomaly detection

v 0.82% - 2% in HDFS

v 8.27% - 16.58% in OpenStack

(a) HDFS Dataset.

Technique
DeepLog LogRobust CNN Transformer
Baseline P R Fl P R Fl P R Fl P R Fl
LenMa .897 .994 .943 914 .995 .953 924 995 .958 .872 .908 .890
AEL .896 .994 .943 935 .996 .964 | .922 .995 958 | .893 .904 .898
Drain 908 .994 949 | .934 .994 .963 925 .995 .959 | .886 .871 .878
IPLoM .898 .994 944 | .940 .994 .966 | .926 .996 .960 | .889 .904 .896
SemParser 940 .995 .967 | .954 995 .974 | .931 .995 .962 | .881 .954 .916
A% [l +1.86% | +0.82% | +021% | +2.00%
(b) F-Dataset
Technique
DeepLog LogRobust CNN Transformer
Baseline P R F1 P R F1 P R Fl P R Fl
LenMa 717 938 .813 714 924 806 | .793 .815 .804 | .685 .896 .776
AEL 738 934 824 | .791 .877 .832 | .747 924 826 | .503 .962 .660
Drain .824 867 .845 .810 .886 .846 | .737 .943 .827 | .693 .919 .790
IPLoM .863 .833 .848 .808 .877 .841 .834 .834 834 | .929 .683 .787
SemParser 971 927 948 | .952 913 .932 | .907 .899 .903 | .938 .904 .921
A% [l +11.80% | +10.17% | +827% | +16.58%
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= Experimental results
il

o Enhance subsequent failure identification
v 3.81% -12.5% in Recall@1
v -0.42% - 2.65% in Recall@2

|| Model
LSTM Atten-biLSTM CNN Transformer

Baseline Rec@1 Rec@2 Rec@3 | Rec@1 Rec@2 Rec@3 | Rec@1 Rec@2 Rec@3 | Rec@1 Rec@2 Rec@3
LenMa 0.839 0.924 0.953 0.858 0.943 0.957 0.877 0962  0.967 0.919 0.934 0.948
AEL 0.844 0.919 0.953 0.853 0.915 0.962 0.810 0.905 0.929 0.858 0.929 0.953
Drain 0.844 0.919 0.972 0.863 0.938 0.953 0.867 0.948 0.967 0.853 0.919 0.943
IPLoM 0.848 0.943 0.957 0.863 0.948 0.962 0.867 0967  0.986 0.839 0.910 0.948
SemParser 0.954 0.968 0968 | 0.954 0.968 0972 | 0.945 0,963 0972 | 0.954 0,958 0.968
A% | +12.50% +2.65% -041% | +10.54% +2.11% +1.04% | +7.75% -042% -144% | +381% +2.46% +2.11%

API error server add volume

Log message ... Cannot ’attach_volume’ instance 853cfelb ...

C-Template ... Cannot ’attach_volume’ instance <*server*> ...

CI Pairs [(server, 853cfelb)]
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® Summary of Topic 1
[

o SemParser: a semantic-aware log parsing techniques for subsequent analysis
v Motivation: Existing syntax-based parsers ignore semantics within logs.

v’ Building the first semantic-based log parser, which can actively capture intra-log and
inter-log semantics.

v’ Reveal the contribution of log semantics on software operation tasks.
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- Outline

[FSE’24, TSE’24 Major]

o Topicl:Asemantic-aware log parser for [ICSE’23]
software operations (Chapter 3)
Reactive . _ . ,
Log analysis Topic2:Alog localizer for evolving software [ISSRE"23]
systems (Chapter 4)
[ICSE’23,ASE’23, ISSRE’23,
ICSE’24, FSE’24, ISSTA24]
Log-driven Topic3:An automatic log sequence [ASE’23]
automated SRE synthesizer for anomaly detection (Chapter 5)
Proactive o Topic4:An empirical study on automatic [TSE’24 Major]
Logging practice logging statement generator (Chapter 6)

Q Conclusion and Future Work
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® Finer-grained log analysis

[ ~ )] V] S w N »

2008-11-09 20:55:54 PacketResponder O for block
blk_321 terminating

2008-11-09 20:55:54 Received block blk_321 of
size 67108864 from /10.251.195.70

2008-11-09 20:55:54 PacketResponder 2 for block

2008-11-09 20:55:54 Received block blk_321 of

size 67108864 from /10.251.126.5

2008-11-09 21:56:50 10.251.126.5:50010:Got
exception while serving blk_321to /10.251.127.243:
2008-11-10 03:58:04 Verification succeeded for
blk_321

2008-11-10 10:36:37 Deleting block blk_321 file /mnt/
hadoop/dfs/data/current/subdir1l/blk_321
2008-11-10 10:36:50 Deleting block blk_321 file /mnt/
hadoop/dfs/data/current/subdir51/blk_321

a

Anomaly detection

@/

Anomalous

log identification
(root cause analysis)

. Coarse-grained approach
. Detect anomalies in a session
. Provide limited information

line100-200 : Anomalous!

. Fine-grained approach
. |dentify specific “anomaly” logs
. Provide detailed information

line104 : Anomalous!
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® Existing solutions
[

Got assigned task 5

Found block 46

Dropping block 46 from ...
Ignored message: Heartbeat

Got assigned task 7
Got assigned task 8

Raw logs (training phase)

5 blocks selected for drop |

E1: Got assigned task <*>

E2: Found block <*>

E3: Dropping block <*> from ...
E4: Ignored message: Heartbeat

E5: <*> blocks selected for drop >

E1l: Got assigned task <*>
E1l: Got assigned task <*>

Parsed log events
(A sequence of log event ID)

)

/

/
»

@
GoO 3

Reference model/

T

Raw logs (testing phase)

Model all possibilities of the
normal log sequences

Simple assumption

>

Any violation of the reference model will be
considered as the anomalous log.

Strict,
rigorous,

Close-world assumption
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= Software keeps evolving...
[]

[DATE] [TIME] INFO Started reading broadcast variable 9
Version 1.1 [DATE] [TIME] INFO Got assigned task 5
[DATE] [TIME] INFO Found block 46

‘ Log more details?

public void handleEvent(Event event){ More
String path = event.getProperty(PATH); functionalities?
Software - log.info(”Started reading broadcast variable", variable);
0) . + log.info(“Started reading broadcast variable”, variable, “with pieces in total size”, size)
evolution

if (PATH 1= null) {

String includePath = PATH E
-

[DATE] [TIME] INFO Started reading broadcast variable 5 with pieces in

Version 1.2 total size 1024
[DATE] [TIME] INFO Got assigned task 5

[DATE] [TIME] INFO Found block 46
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® The evolution of logging statements

o Spark2 and Spark3

o Evolving logging statements
v’ Insert (12.9%)
v’ Paraphrase (1.49%)
v' Remove (9.7%)

Removed

Paraphrase

Inserted

Unchanged

CASE L Insert a log logging statement in Spark3:

Discovering resources for <*> with script:<*>

CASE 1L Paraphrase a log logging statement in Spark3 from Spark2:
Started reading broadcast variable <*>

Started reading broadcast variable <*> with <*> pieces (estimated total size
<">MiB)

CASE II1. Remove a log logging statement from Spark2:

Scala <*> cannot get type nullability correctly via reflection, thus Spark cannot
add proper input null check for UDF.

Observation#1: A large amount of logging statements
(24.9%) change over software evolution
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® The evolution of logging statements

o Spark2 and Spark3

o Evolving logging statements
v’ Insert (12.9%)
v Paraphrase (1.49%)
v" Remove (9.7%)

1.49% paraphrased
logging statements

‘ Account for

8.75% log messages

CASE L Insert a log logging statement in Spark3:

Discovering resources for <*> with script:<*>

CASE I11. Paraphrase a log logging statement in Spark3 from Spark2:
Started reading broadcast variable <*>
Started reading broadcast variable <*> with <*> pieces (estimated total size
<*> MiB)

CASE II1. Remove a log logging statement from Spark2:

Scala <*> cannot get type nullability correctly via reflection, thus Spark cannot
add proper input null check for UDE.

Observation#2: developers always change the
frequently-used logging statements.
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®" How does the evolution affect reference models?

Raw logs —» Parsed log events | ——» Reference model

#1 Challenge. Parsing error

Parsing result:
Connecting to ResourceManager at sp2sl1/172.17.0.3:8030

Ground truth:
Connecting to ResourceManager at <*>

Parsing result for Spark2: | Parsing result for Spark3:

Changing <*> acls <*> <*>

Changing <*> acls to: root

Changing <*> acls groups to:

Log parsers can introduce
errors.

The evolution of logs over
time can make parsing even
more challenging.
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How does the evolution affect reference models?

Raw logs —» | Parsed log events ———» Reference model

#2 Challenge. Evolving events

* Event-matching.
A paraphrased logging statement can
mislead the reference model.

El: Running task <*> in stage <*> (TID <*>)

E3 (in Spark?2): Started reading broadcast variable <*>

E3’(in Spark3): Started reading broadcast variable <*> with
<*> pieces (estimated total size <*> MiB)
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®" How does the evolution affect reference models?

Raw logs

—» | Parsed log events

— Reference model

#3 Challenge. Unstable sequences

El E2 E2 E3E3 E4 E5 E6
@B BB ® ®
El E4 E5 E6 E3 E3 E2 E2
*—o—o o *—eo *—o

>

Spark2:
El ->E3

|
' Spark3:
' E1->E2->E3
El: Connecting to driver: <*>

E2: Successfully registered with driver
E3: Resources for <*>:

A new logging statement E2 can alter previously collected log
sequences.



Our approach: EvLog

Two Insights
* The majority of logs are normal in a healthy system (normal >> abnormal).

 The anomalous logs are unknown a priori because we cannot inject all kinds of

failures.
Intuition
*  Heappyfamitesare all alike; every-unhappyfamitity-is unhappy in its own way.
Normal logs anomalous log ---<<Anna Karenina>>
®
O 2 ) ; B
/
e e @ .
Basic idea f abn5 ST Cuni
—b: ® |
\ ® ¢ !

/
7’
O 43



® QOurapproach: EvLog

e OQOur goal: Identifying anomalous logs over software evolution
Our challenge: Parsing error, evolving events, unstable sequences

§ Section 4.2.4

A * abnSdore,,+ (1-A)* abnScores, ., > D

Multi-level representation extractor  Anomaly discriminator Unitary discriminator § Section 4.4.2
: Unitary feature B i (; W) o
§ Section 4.1.1 (Center log) PP
Rich representation * vt 4 AN
by
Log messages - a S/ e _JabnScore,,;
—_—— OO0 00OC H™H ]
IR > (G808 Ge0 [ >igi > o !
S ST . I Lk - /
/7
o) e O \
~e__--0°
\ . Local discfiminator § Section 4.2.3
Attention .
——_———Y ¢local(xlw) O _-==~<
I q i Q00000 Q ‘
! | QOOT=00 O e @
o N :
L L I I EX I e
go® | i-emmEED (W I e e
! ! QUOO=00 M o\ 7
' AL u O ‘ ‘
'S vl 1 QOOO0-00 o ® .7 abnScores; by,
HPBSCAN Clustering - T
Section 4.1.2 & Abstract representatipn Local feature ©
§ Section 4.1. (Context)

Anomalous log found

Encoding log \ High-level
representation

messages

\ Context-aware anomaly
discriminator
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= Multi-level representation extractor
il

Multi-level representation extractor

Rich representation "

. Using a pre-trained language model to obtain log semantics. e e
. Eliminating log parsing errors. Rich representation
Log messages CoT ~
. \/\_‘_\/\_ LPLM .-..-.-.E ------------- E ----- -
Abstract representation LS gutee_o00
. Goal: extract a high-level semantic representation
. Cluster the rich representation by HDBSCAN
. Each log is represented by the centroid of its cluster !
L e
| I
| I
I
. . Qe % :
Paraphrased logs will not change their abstract ! |
. . b i i [_9_ |
representation = stable over evolution .
HDBSCAN Clustering

§ Section 4.1.2
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= Anomaly discriminator

§ Section 4.2.4

A* abnScore,,+ (1-A)* abnScores;,.q > D

Anomalous log found

4
abnScores;,,

£ . Anomaly discriminator Unitary discriminator § Section 4.4.2
. . Unitary feature 5
Basic idea . T , /
. : % e abnS\t‘oreuni
. Learn the “normality” of normal logs %% — e
How to measure normality? ? Local discriminator § Section 42.3
' Attention
. Two aspects :  QUOC=0D .
. Unitary > €e8E-8® X .
: CBEe-80
. Local (context) e A4
Abstract representation Local feature
(Context)

Unitary discriminator

Learn the single log feature
The individual log with negative words (“failure”)
usually be anomalous.
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= Anomaly discriminator

§ Section 4.2.4

A* abnScore,,+ (1-A)* abnScores;,.q > D

Anomalous log found

2
N
&
1
'o
\ 1
! :N.
\ /
N
S
.
.

4
’
_-7 abnScores;,y,

£ - Anomaly discriminator Unitary discriminator § Section 4.4.2
. . Unitary felature ¢uni (x; W) o
Basic idea (Cenariog)
u s n ?’I e ﬁ"s'%muni
. Learn the “normality” of normal logs %a; — l ‘ B
How to measure normality? Local discriminator § Section 42.3
Attention ¢ Iocal (x; W) 5
. Two aspects ©Co0-00
. Unitary canmmEd X B — B l | — e e
QO0O0-00 B o
. Local (context) Shas-ns
Abstract representation Local feature
(Context)

Local discriminator

Different logs, different importance

Asynchronized log collection -> unstable sequences
Apply the “attention mechanism” to learn the

surrounding log context

l MatMul I

Q K

A

Vv
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= Anomaly discriminator

:7 Anomaly discriminator Unitary discriminator § Section 4.4.2
Unitary feature : 5
Basic idea (Center log)
“« O Ve ﬁ"sﬁmm
. Learn the “normality” of normal logs %ag —— e
‘ o) O\\‘t —'.’/C;O § Section 4.2.4
HOW to measu re normality? Local discriminator § Section 4.2.3 ﬂ.*abnScoreu,,ﬁ (1-).)*abn5cores,ml>D
atteton Broca(; W) O ma nomalous log foun
° Two aspects % 5 P p S Anomalous log found
: , m=0
° Unltary —>mx -_ Ol ——— — M @ Oc: :'O
Goooos W A~
. Local (context) O Lo amScoresy
Abstract representation Local feature °
(Context)
How to integrate? 1 <& &
: L .. J =min — zi; W) —c|* + = || W]
* Consider the two discriminator jointly W on ; [¢(@s; W) —cl 2 Wl

abnScore = X x abnScore n; + (1 — X) * abnScorejocar,
abnScore; = ||¢;(z; W) — ¢;||?, i € {uni, local}.
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" Experiments

[
Dataset
. 2 widely-studied systems Categories Workloads
. Hadoop and Spark Micro task Sort, Wordcount, etc.
. 2 version for each system Machine learning  Bayes Classification, Gradient Boosted Trees, etc.
. : SQL Aggregation, Join, Scan etc.
22 dlffgrent .workloads Websearch Pagerank

. 18 typical failures Graph NWeight, Graph Pagerank

Streaming Repartition

In total, 6,703,460 log messages with recognized 69,513 anomalous logs.
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" Experiments
[]

Metrics

. (binary classification) Precision, Recall, and F1

True Positive

Precision = — —
True Positive+False Positive

True Positive

Recall = = :
True Positive+False Negative

Precision=Recall

F1=2x

Precision+Recall
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= Experiment results

o Effectiveness in localizing anomalous logs
v 91.5% - 97.2% in F1 for intra-version
v 79.5%-88.4% in F1 for inter-version

LOGEvoL-HADOOP

Hadoop2 — Hadoop2

Intra-version

Hadoop3 — Hadoop3

Hadoop2 — Hadoop3

Inter-version

Hadoop3 — Hadoop2

Baseline Precision  Recall F1 | Precision Recall F1 | Precision Recall F1 | Precision Recall F1
LOGAN 0.894 0.995 0.942 0.899 0.988 0.942 0.360 0.988 0.528 0.376 0.995 0.546
LogSed 0.910 0.995 0.951 0.925 0.986 0.955 0.371 0.988 0.540 0.390 0.993 0.560
DeepLog 0.913 0.985 0.947 0.926 1.000 0.961 0.386 0.999 0.556 0.410 0.971 0.576
LogAnomaly 0.926 0.994 0.958 0.939 0.988 0.963 0.389 0.998 0.560 0.407 0.995 0.578
EvLog 0.945 0.982 0.963 0.952 0.988 0.970 0.770 0.941 0.847 0.857 0.913 0.884
LOGEVOL-SPARK
Intra-version Inter-version
Spark2 — Spark2 Spark3 — Spark3 Spark2 — Spark3 Spark3 — Spark2
Baseline Precision  Recall F1 | Precision Recall F1 | Precision Recall F1 | Precision Recall F1
LOGAN 0.798 0.943 0.865 0.967 0.870 0916 0.016 0.943 0.032 0.012 0.943 0.024
LogSed 0.842 0914 0.877 0.907 0.923 0.915 0.013 0.917 0.026 0.010 0.914 0.020
DeepLog 0.862 0.952 0.905 0.858 0.976 0914 0.017 0.947 0.032 0.014 0.909 0.026
LogAnomaly 0.931 0.939 0.935 0.898 0.947 0.922 0.020 0.923 0.038 0.017 0.948 0.034
EvLog 0.970 0.974 0.972 0.944 0.888 0.915 0.922 0.700 0.795 0.920 0.812 0.863
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= Experiment results

O — Original | Running task 7 in stage 1
@ Add one word into log message. — Original logl log2 log3 log4
@) ROb USt fO r EVOlutl on typ €S (blu e llne) :l s gtk in e }\esﬁmamd @& Duplicate one log in the sequence.
v Evo | vin g | 0g even ts @ Remove one word from log message. | log! |”| log2 H log3 |-»; log3 _
‘/ UnS ta b Ie IO sequences i_ Running task 7 in stage 1 @~ Delete one log from the sequence.
| logl |—>| log2 log4
g q @ Replace one word by another word. = - Im =
i Running task 7 in stage 1 @ Shuffle adjacerrn: logs in tf’?_s_‘i‘llfe”f?; -
i job log3 i—ﬁ log4 ih: log2 i

10 T @ 10 7
,,\ -8~ Evlog
E 0\. —%~ LogAnomaly
0.8 - —M- Deeplog 0.8
\ —¥- LogSed

®
TSN\ —+- LOGAN
e
.\.

0.6 1 0.6 1

F1 score

+

0.4 1 \

F1 score

0.4 1 -8~ Evlog

=3~ LogAnomaly \_

0.2 1 0.2 | M- Deeplog e 00

e —— —¥- LogSed W e
.\v
an: \'sh —— 5 5 —+4~ LOGAN +\+\+
0% 5% 10% 15% 20% 25% 30% 0% 5% 10% 15% 20% 25% 30%
Injection Ratio Injection Ratio
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Case study

Prediction of each model

Log sequence DeepLog LogAnomaly LOGAN LogSed EvLog GT
Running task 6.0 in stage 5.0 (TID 71) @ I

Started reading broadcast variable 8 with 1 pieces (estimated total size 4.0 MiB) (] LI 0 I I

Started reading broadcast variable 6 with 1 pieces (estimated total size 4.0 MiB) [] I I I I

Started 1 remote fetches in2 ms @ -
Started 1 remote fetchesin 4 ms &

I/O error constructing remote block reader. A Iy I I o o I
Failed to connect to /172.17.0.2:50010 for block, add to deadNodes...> ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ

EvLog: Cluster for
abstract representation

! - »[] Started reading broadcast variable 10 (train set)
~ -»[] Started reading broadcast variable 8 with 1 pieces
(estimated total size 4.0 MiB) (test set)
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® Summary of Topic 2
[

o EvLog: an anomalous log localization framework for evolving software systems
v Motivation: Existing approaches rely on unchanged log events
v’ Revealing three challenges from log evolution.

v’ Building the first evolution-adaptive log localizer via one-vs-all classification techniques.
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- Outline

[FSE’24, TSE’24 Major]

o Topicl:Asemantic-aware log parser for [ICSE’23]
software operations (Chapter 3)
Reactive . _ . ,
Log analysis Topic2:Aloglocalizer for evolving software [ISSRE"23]
systems (Chapter 4)
[ICSE’23,ASE’23, ISSRE’23,
ICSE’24, FSE’24, ISSTA24]
Log-driven Topic3:An automatic log sequence [ASE’23]
automated SRE synthesizer for anomaly detection (Chapter 5)
Proactive o Topic4:An empirical study on automatic [TSE’24 Major]
Logging practice logging statement generator (Chapter 6)

Q Conclusion and Future Work
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® Inspired from the training process of LLMs

ChatGPT: Intelligent chatbot

Copilot: Smart programming assistant

Bing Al: Searching with Al

Large language models
(ChatGPT as an exampe)

Continuing developing

o)

Foundation: training with a large amount of high-quality dataset.
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® Datasetis the core of data-driven models
[

What do we have for intelligent log analysis?

* Collecting logs from real-world service providers:
+ Rich log events
-- Privacy issues

* Collecting logs from laboratory environments:
+ Publicly available
-- Simplified log events

Collecting logs for open-source research is demanding yet challenging!
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® Existing log datasets for anomaly detection

[]
One of the most widely-used log datasets, LogHub.

Dataset # Log Event | # Workload | # Failure Type | # Message | Collection Time
‘D-HDFS 30 NA 11 11,175,629 38.7 Hours
‘D-Hadoop 242 2 3 394,308 NA
D-BGL 619 NA NA 4,747,963 214.7 days
D-Zookeeper 77 NA NA 207,820 26.7 days
#1 Comprehensiveness #2 Scalability #3 Flexibility
of log events over diverse systems of log utility
* Limited number of workloads * Not controllable for imitating

e Require human efforts to
deploy new systems.
* Limited in system diversity.

and failures. different scenarios.

* Unrealistic to simulate all
kinds of system behaviors.
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® TheideaofAutolLog

Input domain-based

) 3
Passive-collection I"T 3 ] Run workloads

- Retrieve from “/var/log” ...

)
lw’

Logs
How logs are generated?
1| public void setTemperature(Integer temperature) { . .
| Logging statements in
3 logger.debug("Temperature set to {}. 0ld temperature was {}.", t, oldT);
4 if (temperature.intValue() > 50) { the source COde
5 logger.info("Temperature has risen above 50 degrees.");
o %}
]

0 [setTemperature] DEBUG Wombat - Temperature set to 61. Old temperature was 42.
0 [setTemperature] INFO Wombat - Temperature has risen above 50 degrees.

—

Collected logs

™o

Logs are generated during the execution of logging statements in the source code. ]




® TheideaofAutolLog

Input domain-based

) B
Passive-collection I"T ) ] Run workloads

Retrieve from “/var/log” ...

[ AutoLog
‘. Active-generation
N

>

~ Structure-based

—
—_ _—
e e mm omw = =m ==

_ Constructing log sequences
Log collection problem :> based on the execution order

of logging statements

Logs are generated during the execution of logging statements in the source code. ]




® AutolLog framework

Goal: Constructing execution paths related to logging statements in a program.

AutoLog

PHASE I: Logging Statement Probing

Marking
LogMethod

—_—

Strategy #1 —» methodA: [Log@1,,, callB,4l;
[Log@1,,,, callCypql.
Strategy #2 —» methodB: [Log@2]
Strategy #3 = methodC: [callD]
Strategy #2 ~—> methodD: [Log@3, Log@4]

Acquiring Log-related
Execution Path

V' N

Deriving
Call Graph

A

Pruning
Call Graph

' Restoring
ﬂ Logging Statements

1. Exploring the methods
with logging statements and
their calling relationships.

Log.warn(msg)
“Join on responder
thread, timed out.”

2. Finding log-related execution
paths over the program.

PHASE II: Log-related Execution Path Finding

PHASE III: Log Path Walking

Anomaly Label
5 B @ (Propagation J @ 7@
l F-— [ \

Annotation

l Generating

. [Log@1] Log Sequence
R

[Log@1] (€ &)

@ # Log-based

[Log@1, @2] Anomaly
Lty e qog) Detection

3. Traversing the execution
paths to obtain normal log
sequences and abnormal ones.

61



® Phasel:Logging statement probing

Exploring logging statements in the whole

PHASE I: Logging Statement Probing program.
Marki o . .
Derlv.lng call graphs. . |
— * Marking methods containing logging

statements (LogMethod).

Deriving
Call Graph
1

W=
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® Phase2:Log-related execution path finding

PHASE II: Log-related Execution Path Finding

Strategy #1 —» methodA: [Log@1,,,, callB,4];
[Log@1,,, callC, 4l
Strategy #2 — methodB: [Log@2]
Strategy #3 = methodC: [callD]
Strategy #2 — methodD: [Log@3, Log@4]

Acquiring Log-related
Execution Path

Pruning
l
' ( Restoring )
Lpgging Statements Log.warn(msg)
> “Join on responder
thread, timed out.”

Constructing log-related execution path.

Challenge: Enumerating the paths in large-
scale software is impractical.

Step1: Pruning call graph.
Topological

sorting
)

® LogMethod
O May-induce LogMethod
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® Phase2:Log-related execution path finding

Enter B()

|

Log@2

!

Enter A()

v o
Log@1

!

Enter C()

If-else Condition

D()

Enter D()

!

String msg = ...

return

B0

C0

return

:
Log@3
|
Log@4
!

return

Constructing log-related execution path.

Challenge: Enumerating the paths in large-
scale software is impractical.

Step2: Acquiring log-related execution
paths (LogEPs).

Getting LogEPs

1. Constructing control flow graphs for intra-methods.
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® Phase2:Log-related execution path finding

-

\
— \

Enter B()

l

Log@?2

I

return

Enter A()

|

Log@1

!

7T~

R

~
~

Enter C()

If-else Condition

= SRS
-
-
~
~

-
_———

Enter D()

!

String msg = ...

l

Log@3

!

Log@4

|

return

7
\ '

N -

Constructing log-related execution path.

Challenge: Enumerating the paths in large-
scale software is impractical.

Step2: Acquiring log-related execution

paths (LogEPs).

Getting LogEPs

1. Constructing control flow graphs for intra-methods.
2. Linking the invocations.
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Phase2: Log-related execution path finding

-

¥

Enter B() k

l

Log@2

I

return

Enter A()

|

Log@1

l

7T~

R

~
~

Enter C()

If-else Condition

D()

~
~_ -

o=

return

-
_———

= SRS
-

b |
Enter D()

!

String msg = ...

|

Log@3

!

Log@4

|

return

~N_-"

methodA: [Log@1, callB]; [Log@1, callC]
methodB: [Log@2]
methodC: [callD]

methodD: [Log@3, Log@4]

Constructing log-related execution path.

Challenge: Enumerating the paths in large-
scale software is impractical.

Step2: Acquiring log-related execution
paths (LogEPs).

Getting LogEPs

1. Constructing control flow graphs for intra-methods.
2. Linking the invocations.

3. Recording the invocations and Jlefefejtale Bl CIIRY.
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® Phase3:Log path walking

Generating normal log sequences and anomaly ones.

1. Annotating “seed” anomaly LogEPs.
2. Propagating labels to all LogEPs.

Efficient annotation: seed-propagation

3. Generating log sequences by walking over LogEPs and their invocations.

Bottom-up -
propagation @
1

Anomaly LogEP O Infected LogEP

ﬁ [Log@1]
Top-down  [Log@1]
Generate G e
——
Q @ [Log@1;@2]
[Log@1; @3; @4]
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® Experimental settings

N
Can AutoLog generate quality log sequence? Can such sequence benefit anomaly detection?
(RQ1, RQ2) (RQ3)

* Dataset * Training resource
e Same system as in LogHub * Train in AutoLog VS. Train in LogHub
* 50 most-popular Java projects from Maven

* Benchmarking resource
* Metrics

e Evaluating by AutoLog
* Coverage of all logging statements

* Execution time e Metrics

* Precision
e Recall
e F1
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= RQ1:Comprehensiveness?

)
(] 15
@
3
o Simulate comprehensive system behavior 210
v ES]
9x - 58x on the number of log events :
" =] |4
v’ Covers 87.8% logging statements on average E
0
080  0.85 090 095 100
Logging Coverage
System [| Dataset | # Log Event | Logging Coverage | D-Coverage | | Increment (1)
Logging coverage histogram
D-Hadoop 242 242/3426 (7.1%) (@)
Hadoop AUTOLO0G-Hadoop 2879 2879/3426 (84.0%) | 219242 (90.5%) 12x -
D-HDFS 30 30/1700 (1.8%)
HDFS AUTOLOG-HDFS 1367 1367/1700 (80.4%) | 2730 (90.0%) 28x 490
3
‘D-Zookeeper 77 77/758 (10.2%) >
Zookeeper AUTOLOG-Zookeeper 740 7401758 (97.6%) | /77 (100%) 9x & 15
Apache Storm || AUTOLOG-Apache Storm 1754 1754/1887 (93.0%) - - ?
Flink AUTOLOG-Flink 1574 1574/1711 (92.0%) - - 510
Kafka AuTOoLOG-Kafka 847 847/1002 (84.5%) - - g
Z 5
0

0 500 1000
Number of Templates

(b) # Log event histogram
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® RQ2:Scalable?

o eod — Fitting Curve
o Efficient and scalable approach - LogEPs Mining (Phasel + Phase2)
v" Shortens generation time (15x) < ,,| ™ Confidence Interval
. . . . . £
v Execution within 60 mins for 50 projects i
- 201
O-
10 10* 10°
Methods
System | Dataset | # Message | Execution Time | # Messages/min (speed) || Acceleration (1)
Hadoo D-Hadoop 394,308 NA NA B
P AUTOLOG-Hadoop 392,427 3.41 hours 1,918
D-HDFS 11,175,629 |  38.7 hours' 4,813
HDES AUTOLOG-HDFS 11,376,233 |  2.62 hours 72,367 1ox
D-Zookeeper 207,820 26.7 days’ 6
Zookeeper AUTOLOG-Zookeeper | 211,425 17 mins 12,436 2072x
Apache Storm AUTOLOG-Apache Storm 1,001,245 1.28 hours 13,037 -
Flink AUTOLOG-Flink 1,003,416 1.21 hours 13,821 -
Kafka AUTOLOG-Kafka 1,002,629 39 mins 25,708 -
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® RQ3:Benefit anomaly detection?

o Benefit anomaly detectors
v' Consistently improve (1.93%) performance consistently

Train set || D | AuTOoLoOG

Test set Approach || P R Fl | P R FIl
Transformer 0.889 0.904 0.896 | 0.892 0.996 0.941
D CNN 0.936 0.995 0.965 | 0.959 0.997 0.978
LogRobust 0.942 0.994 0.967 | 0.947 0.988 0.967
Transformer -t 0.723 0.755 0.739
AUTOLOG CNN al 0.697 0.790 0.741
LogRobust = 0.673 0.875 0.761

Log sequence in Datanode

Received <*> size <*> from <*>
blk_3317 terminating ...
Deleted blk_3317 file /data/../blk_3317

Log sequence in Namenode

BLOCK* allocate <*>

updatePipeline <*> success
updatePipeline <*> success

DIR* completeFile: <*> is closed by <*>

& o-1prs () AutoLoc-HDFS

€3 o-HpFs () AutoLoc-HDFS
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® Summary of Topic 3
[

o AutoLog: a code-guided log sequence synthesizer for anomaly detection

v Motivation: Existing public log datasets fall short of comprehensive events, scalability,
and flexibility.

v Formulating the log sequence generation problem as an execution order acquisition task.

v’ Applying program analysis to automatically simulate log sequences.
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- Outline

[FSE’24, TSE’24 Major]

o Topicl:Asemantic-aware log parser for [ICSE’23]
software operations (Chapter 3)
Reactive . _ . ,
Log analysis Topic2:Aloglocalizer for evolving software [ISSRE"23]
systems (Chapter 4)
[ICSE’23,ASE’23, ISSRE’23,
ICSE’24, FSE’24, ISSTA24]
Log-driven Topic3:An automatic log sequence [ASE’23]
automated SRE synthesizer for anomaly detection (Chapter 5)
Proactive o Topic4:An empirical study on automatic [TSE’24 Major]
Log analysis logging statement generator (Chapter 6)

Q Conclusion and Future Work
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" Logging statement generation

il
. Original file
o Logging statements public void handleEvent(Event event){
< - String path = event.getProperty(PATH);
o Natu ral Ia nguage deSCFI pthﬂS -- log.info("Library at {} validated.", path);
o Program variables if (PATH 1= null) {

String includePath = PATH

* Remove logging statement
*  Construct <Logging Point>

/" Model input
| public void handleEvent(Event event){
String path = event.getProperty(PATH);
<Logging Point>
if (PATH != null) {
String includePath = PATH

V Generating human language

' Model output ‘ Generate logging statements

public void handleEvent(Event event){
String path = event.getProperty(PATH);
+ log.debug(“Reload received for path:” + path);
if (PATH !=null) {
String includePath = PATH

’) Generating logging statements?

V Generating programs
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® Study subjects

Pre-trained corpus

Model Access Description #Params Year

. (Data size)
General-purpose LLMs
Davinci is derived from InstructGPT [27] is an “instruct“ model meant
Davinci API to generate texts with clear instructions. We access the Text-davinci-003 - 175B 2022
1 1 to e rfo rm i n L LM S model by calling the official API from OpenAl
O p p g ChatGPT is an enhanced version of GPT-3 models [28], with improved
conversational abilities achieved through reinforcement learning from
/ G e n e ra I_ p u rpose L LM S ChatGPT APL human feedback [29]. It forms the core of the ChatGPT system [30]. We - 1758 2022
access the GPT3.5-turbo model by calling the official API from OpenAl.
/ 4 L Llama2 [31] is an open-sourced LLM trained on publicly available data and Publicly available
LO g g I n g - s p e C I fl C L L M s Llama2 Model outperforms other open-source conversational models on most benchmarks. sources 70B 2023
We deploy the Llama2-70B model provided by the authors. (2T tokens)
v' Code-based LLMs LT
LANCE [15] accepts a method that needs one logging statement and
outputs a proper logging statement in the right position in the code. It is Selected GitHub
LANCE Model built on the T5 model, which has been trained to inject proper logging projects 60M 2022
statements. We re-implement it based on the replication package [32] (6M methods)
.. . . provided by the authors.
o 3traditional logging models Coteased LV
InCoder [18] is a unified generative model trained on vast code benchmarks GitHub, GitLab,
where code regions have been randomly masked. It thus can infill arbitrary StackOverflow
InCoder Model code with bidirectional code context for challenging code-related tasks. We (159GB code, 6.78 2022
57GB StackOverflow)
. R n .
Ingredient Model Description #Params  Venue  Year . (gg";‘]‘;btgl‘(’gss) 3B 2022
Loggin DeepLV [11] leverages syntactic context and message features of the logging L The Stack
le%%,lsg DeepLV statements extracted from the source code to make suggestions on choosing log 0.2M ICSE 2021 - (IT tokens) 1558 2023
levels by feeding all the information into a deep learning model. We reimplement
the model based on the replication package provided by the authors*. 2 Publicly available
code 34B 2023
. y . . . 1e
WhichVar [13] applies an RNN-based neural network with a self-attention mecha- (5008 tokens)
Logging . nism to learn the representation of program tokens, then predicts whether each token n of
: WhichVar . . . 40M TSE 2021
Variables should be logged through a binary classifier. We reimplement the model based on 5 - - 2022
its paper due to missing code artifacts*.
. . . !
LoGenText-Plus [38] generates the logging texts by neural machine translation . 2021
Logein models (NMT). It first extracts a syntactic template of the target logging text by el
geing LoGenText-Plus  code analysis, then feeds such templates and source code into Transformer-based 22M TOSEM 2023
Text .. . nm
NMT models. We reproduce the model based on the replication package provided in ] ) 022
by the authors. el
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Experiment preparation

o LogBench-O o LogBench-T
o Crawling from GitHub o Transforming from LogBench-O
o 2,420 files
o 3,870 methods
o 6,849 logging statements

| v" RQ1: How do different LLMs perform for logging statements generation?

: v' RQ2: How do LLMs compare to conventional logging models in logging ability?

I
1
1
1
I
1
1
v RQ3: How do the prompts for LLMs affect logging performance? :
1
v RQ4: How do external factors influence the effectiveness in generating logging statements? :

I

1

1

|
' v/ RQ5: How do LLMs perform in logging unseen code?

S o e e e e e e e e e e e mmm M e e mmm M e e Mmm M e e Mmm M e e Mmm M e e Mmm M e e Mmm M e e Mmm M e e mmm M e e Mmm M e e Mmm e e e mmm M e e e e e e e e )
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® Selected experiment results & Findings
[

v’ Existing models correctly predict levels for 74.3% of logging statements
v There is significant room for improvement in producing logging variables and logging texts.

Logging Texts
Model BLEU-1 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L Semantics Similarity
General-purpose LLMs
Davinci 0.288 0.211 0.138 0.295 0.127 0.286 0.617
ChatGPT 0.291 0.217 0.149 0.306 0.142 0.298 0.633
Llama2 0.235 0.168 0.102 0.264 0.116 0.261 0.569
Logging-specific LLMs
LANCE' 0.306 0.236 0.167 0.162 0.078 0.162 0.347
Code-based LLMs
InCoder 0.369 0.288 0.203 0.390 0.204 0.383 0.640
CodeGeex 0.330 0.248 0.160 0.339 0.149 0.333 0.598
TabNine 0.406 0.329 0.242 0.421 0.241 0.415 0.669
Copilot 0.417 0.338 0.244 0.435 0.247 0.428 0.703
CodeWhisperer 0.415 0.338 0.249 0.430 0.248 0.425 0.672
CodeLlama 0.216 0.146 0.089 0.258 0.103 0.251 0.546
StarCoder 0.353 0.278 0.195 0.378 0.195 0.369 0.593

T Since LANCE decides logging point and logging statements simultaneously, we only consider its generated logging statements
with correct locations.



® Selected experiment results & Findings
[

o Comment or non-comments?
v" Ignoring code comments results in an average 2.43% decrease in recommending logging

texts.
Logging Levels | Logging Variables Logging Texts

Model AOD F1 BLEU-4 ROUGE-L  Semantics Similarity
Davinci 0.834 (0.0%-) 0.587 (3.1%) 0.133 (3.6%)) 0.283 (1.0%l) 0.608 (1.5%)
ChatGPT 0.833 (0.2%J) 0.592 (2.0%J) 0.149 (0.0%-)  0.294 (1.3%) 0.614 (3.0%J)
Llama2 0.789 (1.3%J,) 0.574 (1.2%J) 0.099 (29%)) 0.255 (2.3%) 0.544 (4.4%)
InCoder 0.789 (1.4%J) 0.674 (1.2%J) 0.201 (1.0%J) 0.377 (9.2%) 0.622 (2.8%J)
CodeGeex 0.848 (0.8%J) 0.617 (6.1%) 0.149 (6.9%)) 0.306 (8.1%J) 0.578 (3.3%.)
TabNine 0.876 (0.5%) 0.690 (1.1%71) 0.239 (1.2%)) 0.412 (0.7%J) 0.655 (2.1%l)
Copilot 0.878 (0.5%J) 0.696 (2.2%J) 0.241 (1.2%)) 0.419 (2.1%J) 0.689 (2.0%J)
CodeWhisperer 0.877 (0.7%J) 0.718 (0.7%J) 0.244 2.0%)) 0.418 (1.6%J) 0.661 (1.6%.)
CodeLlama 0.804 (1.2%) 0.581 (2.0%) 0.087 (2.2%)) 0.247 (1.6%) 0.544 (0.3%l,)
StarCoder 0.823 (0.7%J,) 0.647 (0.9%J) 0.193 (1.0%)) 0.369 (2.4%) 0.591 (0.3%)
Avg. A 0.835 (0.8%J) 0.638 (2.1%J) 0.173 2.2%)) 0.338 (3.0%l) 2.1%]
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® Selected experiment results & Findings
[
o Function-level or file-level?

v" Incorporating file-level programming contexts leads to a great improvement
v" More helpful than comments

Logging Levels | Logging Variables Logging Texts

Model AOD F1 BLEU-4 ROUGE-L Semantics Similarity
Davinci 0.854 (2.6%1) 0.638 (5.3%71) 0.156 (13.0%1) 0.318 (11.2%71) 0.635 (2.9%71)
ChatGPT 0.858 (2.8%1) 0.650 (7.6%1) 0.253 (51.5%1)  0.389 (30.5%71) 0.704 (11.2%1)
Llama2 0.832 (4.1%71) 0.617 (6.2%71) 0.149 (46.1%1)  0.392 (50.2%71) 0.669 (17.6%1)
InCoder 0.815 (1.9%71) 0.745 (9.2%71) 0.307 (51.2%1)  0.521 (35.3%71) 0.734 (11.7%1)
CodeGeex 0.869 (1.6%71) 0.696 (5.9%71) 0.241 (50.6%)) 0.395 (18.6%71) 0.644 (7.7%71)
TabNine 0.912 (3.6%71) 0.767 (9.9%71) 0.375 (55.0%1)  0.530 (27.7%71) 0.783 (17.0%1)
Copilot 0.916 (3.9%71) 0.742 (4.2%71) 0.346 (41.8%1) 0.522 (22.0%71) 0.816 (16.1%1)
CodeWhisperer || 0.913 (3.6%1) 0.792 (9.6%71) 0.401 (61.0%1)  0.559 (31.5%71) 0.811 (20.7%1)
CodeLlama 0.817 (0.4%71) 0.607 (2.4%71) 0.144 (61.8%1) 0.378 (50.6%71) 0.642 (17.6%1)
StarCoder 0.847 (2.2%71) 0.714 (9.3%71) 0.314 (61.0%1) 0.517 (40.1%71) 0.679 (14.5%1)
Avg.A 2.7%% 6.9%1 49.3%1 31.8%7 13.7%*
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® Summary of Topic 4
[

o An empirical study on LLM-powered logging statement generation

v Motivation: To what extent can LLMs produce correct and complete logging statements
for developers?

v Two benchmarks for evaluating logging statement generation.

v Eight findings and five implications
v" File-level context incorporation
v" Generalizability for unseen code
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- Outline

o Topicl:Asemantic-aware log parser for [ICSE’23]
software operations (Chapter 3)

Reactive . _ . ,
Log analysis Topic2:Aloglocalizer for evolving software [ISSRE"23]
systems (Chapter 4)

[ICSE’23,ASE’23,ISSRE’23,
ICSE’24, FSE’24,ISSTA24]

[ASE’23]

Log-driven Topic3:An automatic log sequence
(Chapter 5)

automated SRE synthesizer for anomaly detection

[FSE’24, TSE’24 Major]

Proactive o Topic4:An empirical study on automatic [TSE’24 Major]
Logging practice logging statement generator (Chapter 6)

G Conclusion and Future Work
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® Conclusion

O . N . .
Log-driven automated software reliability engineering

4

Challenges
Logging quality Large volume High variety Evolving software Insufficient data
v /// \‘~\\\\\ \\\\ v I/I
Fault prevention Fault tolerance

[ Proactive logging practice ]’

{/ An empirical study on LLM-powered \‘. [/ SemParser : . | Autolog ‘.
i logging statement generation i | o  Semantic extraction i . * Pinpoint anomalous i i * Synthesize log i
'+ Challenges in logging | i e Eventidentification | i logs Lo sequences I
i * Existing limitations i e Reduce variety .|+ Adaptable to .1 * Dataaugmentation i
.+ Future guidance ! '\\ /: '\\ software evolution : :\ * Training resources /,'
(Chapter6) (Chapter3) (Chapter4) (Chapterb)
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Future work

Log-driven automated software reliability engineering

4

Challenges

Logging quality Large volume High variety Evolving software Insufficient data

T
| 7 S< S | !
1
1

1 ‘£ ~

1 Vi ~

v / Tl
Fault prevention / ‘

v I
Fault tolerance ;

1

[ Proactive logging practice Reactive log analysis }

- = = e e

" Fault removal

[ DevOps ]

-,

Oy

Multimodal
software operations

— - ———

N e e e e e e e e e
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= Multi-modal software operations

= Code production | r | Code repair oFE Software operations
[ 2 | == i
[ICSE'22, FSE'24] cim—- [ICSE’24a] [ASE’23, ICSE’'23, ICSE'24b,
Developer Program Deployment ISSRE’23, FSE'24] Maintenance

LogStudy SCLogger  ARCLIN TypeFix SemParser DivLog LILAC  AutoLog Evlog

L0G N “
Incident  Incident Incident Incident Incident Incident 1 =]
¥ = JJ

‘ ‘ ‘ KPIs Logs, alerts, tickets  Traces, topologies
Numerical data [ Textual data ] [ Graphs ]
Multi-location Multi-source l*
*{; <

» Software becomes more complicated

ANomALY
v

* Incidents are highly-correlated Sk \,‘

« But they are separately resolved i
Anomaly Failure Root cause Failure
detection diagnosis analysis prediction
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= Operation-guided software development

Faultpre.ventlon Faultre.moval | : Faulttol’erance ' : Contl'nuous Integration

2 Code production | [ o] | Code repair i | I Software operations .

|
i
|
|
[
|
|
|
|
|

ICSE’22, FSE'24 — ICSE"24 l I ASE'23, ICSE'23, ICSE'24b,
Developer [ ! Program ! al i Deployment [ ISSRE'23, FSE'24)] Maintenance
i i
LogStudy SCLogger ARCLIN eFix ' SemParser Divlog LILAC AutoLog EvLog ]
1 1

LLMs for Development (LLM4Dev)/ \LLMS for Operations (LLM40ps)

* Operations for software development J p—

J
|

) * Operation-guided software testing
Development * Operation-guided w Operation
Evolution
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