### Achieving Secure and Cooperative Wireless Networks with Trust Modeling and Game Theory



PhD Oral Defense Name: Li Xiaoqi, CSE, CUHK Supervisor: Michael R. Lyu Date: May 29th, 2009 Venue: SHB 1027



#### Background of Mobile Ad Hoc Networks

#### Thesis part I

- A Trusted Routing Protocol for Security Issues of Mobile Ad Hoc Networks
- Thesis part II
  - A Coalitional Game Model for Security Issues of Wireless Networks
- Thesis part III
  - A Coalitional Game Model for Selfishness Issues of Wireless Networks

### Mobile Ad Hoc Network (MANET)

 MANET is a collection of mobile nodes which communicates over wireless media.

#### Characteristics

- Decentralization
- Self-organization
- Cooperation
- Openness
- Uncertainty



# **Applications of MANET**



4

# **Limitations of MANET**

#### Security Issues

- Self-organization, decentralization and openness introduce insecurity.
- Nodes lack sufficient information about each other.
- Malicious nodes can join the network freely.
- The routing protocol has no security considerations.
- Selfishness Issues
  - Being cooperative is the design goal of MANET.
  - Nodes belong to different self-interested entities.
  - The mobile devices have limited resources.

### **Thesis Scope**



### **Objectives and Assumptions**

#### Objectives:

- A self-organized, cost-effective, trusted routing protocol
- Coalitional game models with security and throughput characteristic functions
- An incentive routing scheme with a stable coalitional game solution
- Assumptions:
  - Watchdog mechanism or an intrusion detection system in each node
  - Pre-distributed cryptographic scheme as an assistance
  - Existing payment method

# Part I: **Trusted Routing Protocol** for Security Issues of MANET

### **Related Work and Motivations**

- Two categories of security solutions
  - Secure routing protocols
  - Key management mechanisms
- Most of the two categories of solutions require:
  - A trusted authority to issue certificates
  - A centralized server to monitor the networks
  - A secret association between certain nodes
  - Cryptographic authentication at each routing packet
- Disadvantages
  - Destroy the self-organization nature of MANET
  - Introduce huge performance overhead
  - Single point of failure
  - Less of efficiency and availability

# **Contributions of Part I**

- We, for the first time, introduce the idea of "trust" and "trust model" into the design of secure routing protocols for MANET.
- We novelly derive our trust model based on subjective logic which can fully represent the properties of the trust relationships in MANET.
- We design a trusted routing protocol (TAODV) based on our trust model, which is both secure and cost effective.
- We also enhance the subjective logic to obtain a better trust evaluation.

# What is Trust?

- Trust is fundamental in transactions, interactions, and communications of human life.
- Psychologically, trust is defined as a kind of subjective behavior.
- Sociologically, trust is a means for reducing the complexity of society.
- Mathematically, trust has been studied as a measurable variable, especially as a probability value.
- Trust is also related to cooperation, recommendation, and reputation.

# **Why Trust for MANET?**

- Node relationships in MANET
  - Care about a certain functions •
  - Can exist in each node pair
  - Good or bad nodes
  - Information sharing
  - Based on past evidences
  - Lack of enough information

- Properties of trust relationships
  - Relativity
- Pervasiveness
  - Asymmetry
- Transitivity
  - 🔶 🔹 Measurability
  - Uncertainty

# **Our Trust Model**

- We choose subjective logic trust model as the basis of our trust model, because it
  - best expresses the subjectivity of trust;
  - best exhibits the properties of trust relationship in MANET, especially the uncertainty;
  - is more informative than single value trust representation;
  - is more reasonable with probability representation than discrete value representation;
  - is more flexible than upper/lower bound trust representation.
- We derive our trust model from subjective logic as follows.

# **Trust Representation**

- Denote opinion  $\omega_B^A \equiv (b_B^A, d_B^A, u_B^A)$  to represent the belief from node A to node B
  - *b<sub>B</sub><sup>A</sup>* -- Probability that node A believe in node B
  - *d<sub>B</sub><sup>A</sup>* -- Probability that node A disbelieve in node B
  - *u<sup>A</sup><sub>B</sub>* -- Probability of node A's uncertainty about B's trustworthiness

$$b_{B}^{A} + d_{B}^{A} + u_{B}^{A} = 1$$

- The relative atomicity  $a_B^A$  is set to 0.5 in our application.
- The probability expectation  $E(\omega_B^A) = b_B^A + a_B^A \cdot u_B^A$



### **Trust Mapping Between Evidence and Opinion Space**

Mapping from evidence space to opinion space:

$$\begin{cases} b_B^A = \frac{p}{p+n+2} \\ d_B^A = \frac{n}{p+n+2} \\ u_B^A = \frac{2}{p+n+2} \end{cases}$$

• Mapping from opinion space to evidence space:  $\int p = 2b_{R}^{A}/u_{R}^{A}$ 

$$\begin{cases} p = 2b_B^A / u_B^A \\ n = 2d_B^A / u_B^A \end{cases}, \text{ where } u_B^A \neq 0 \end{cases}$$

- p : positive evidences
- n : negative evidences

### **Trust Combination**

- $\blacklozenge$  Discounting operator :  $\otimes$ 
  - Combine opinions along a path



Combine

$$\begin{array}{c} \omega & (A \to B) \\ \omega & (B \to C) \end{array} \end{array} \Rightarrow \omega & (A \to C) \end{array}$$

• Equation: Let 
$$\omega_C^{AB} = (b_C^{AB}, d_C^{AB}, u_C^{AB})$$
, where

$$\begin{cases} b_C^{AB} = b_B^A b_C^B \\ d_C^{AB} = b_B^A d_C^B \\ u_C^{AB} = d_B^A + u_B^A + b_B^A u_C^B \end{cases}$$

### **Trust Combination**

- ♦ Consensus Combination: ⊕
  - Combine opinions across multiple paths
  - Combine

$$\begin{array}{c} \omega & (A \to C) \\ \omega & (B \to C) \end{array} \end{array} \Rightarrow \omega & (A, B \to C) \end{array}$$

А

(B)

**♦**( C )

• Equation: Let  $\omega_C^{A,B} = (b_C^{A,B}, d_C^{A,B}, u_C^{A,B})$ 

$$\begin{cases} b_{C}^{A,B} = (b_{C}^{A}u_{C}^{B} + b_{C}^{B}u_{C}^{A})/k \\ d_{C}^{A,B} = (d_{C}^{A}u_{C}^{B} + d_{C}^{B}u_{C}^{A})/k , \text{ where } k = u_{C}^{A} + u_{C}^{B} - 2u_{C}^{A}u_{C}^{B} \\ u_{C}^{A,B} = (u_{C}^{A}u_{C}^{B})/k \end{cases}$$

### Trusted Routing Protocol for MANET

#### Background of AODV

- AODV (Ad Hoc On-Demand Distance Vector) is a popular routing protocol for MANET.
- It is designed without security consideration.
- It contains two main routing messages:
  - RREQ: Routing REQuest
  - RREP: Routing REPly
- We take AODV for example to design our Trusted AODV (TAODV) routing protocol based on our proposed trust model.

## **Routing Discovery in AODV**



### **Framework of TAODV**



### **Routing Table and Messages Extensions**

#### Add three fields into original routing table:

- Positive events
- Negative events
- Opinion

#### New routing table format

| DestIP | DestSeq |  | HopCount |  | Lifetime | Positive<br>Events | Negative<br>Events | Opinion |
|--------|---------|--|----------|--|----------|--------------------|--------------------|---------|
|--------|---------|--|----------|--|----------|--------------------|--------------------|---------|

- Add trust information into original AODV routing messages.
  - RREQ  $\rightarrow$  Trusted RREQ (TRREQ)
  - RREP  $\rightarrow$  Trusted RREP (TRREP)

# **Trust Judging Rules**

#### Predefined trust judging rules

| b   | d   | u   | Actions                              |
|-----|-----|-----|--------------------------------------|
|     |     | > h | Request and verify digital signature |
|     | > h |     | Distrust a node for an expire time   |
| > h |     |     | Trust a node and continue routing    |
| ≤h  | ≤h  |     | Request and verify digital signature |

- b belief d disbelief u uncertainty
- h threshold which can be adjusted to meet different applications (default h=0.5)

# **Trust Updating Policies**

#### Update of evidences

- Successful communication → Positive events increased
- Failed communication  $\rightarrow$  Negative events increased
- Mapping from opinion space
- Update of opinions
  - Combination from recommendations
  - Mapping from evidence space

### **Trust Recommendation Protocol**

- Exchange trust information
- Three types of messages:
  - TREQ: Trust REQuest
  - TREP: Trust REPly
  - TWARN: Trust WARNing
- Message structure:



## **Trusted Routing Discovery (1)**

#### Scenario I - Beginning of a TAODV MANET



- Initial opinions are all (0,0,1), set threshold h = 0.5
- Node A broadcasts TRREQ to discover a route to C
- Node B will authenticate A and C because of high uncertainty values (u=1) in its opinions to A and C
- Finally, if the authentication and the discovery succeed, the opinions all become (0.33,0,0.67)

# **Trusted Routing Discovery (2)**

 Scenario II – A TAODV MANET After a Period of Running Time



- Trust relationships have been established among almost all the nodes.
- The values of uncertainty are getting smaller and smaller.
- We take node N for example to illustrate the general procedures of TAODV.

# **Trusted Routing Discovery (3)**

#### On receiving TRREQ/TRREP, N will

- Collect recommendations from its neighbors about the trustworthiness of the predecessor.
- Then according to the value of the new combined opinion, it will trust, distrust or verify the source and the destination one by one.
- If all the trust judging or digital signature verification pass, it will then perform the normal routing decisions. Otherwise, TWARN will be broadcasted.

#### On receiving TREQ/TREP/TWARN

- On TREQ, if the disbelief value is larger than the threshold, N will drop the TREQ; otherwise, N will reply TREP.
- On TREP or TWARN, N will do opinion combinations to prevent malicious trust recommendations.



## **Performance Analysis**

Computation overheads are largely reduced

- No need to perform cryptographic computations in every packet
- Cost of each set of trust operations is O(v) (v is the no. of average neighbors)
- Cost of each set of signature operations is O(k<sup>3</sup>) (k is the length of signature)
- Not introducing much routing overhead
  - The routing message extensions are in short length.

# **Security Analysis**

- Based on our trust model, the risk of being compromised is largely reduced than the original routing protocol.
- Malicious nodes' trust value will be combined and propagated throughout the whole network. They will get large evidence penalties.
- The employment of trust model with the assistance of cryptographic authentication makes the network secure without sacrificing performance.
- The combination of different recommendations make the routing decision more reasonable and objective.

### Flexibility and Scalability Analysis

- Each node is given more flexibility to define its own opinion threshold.
- For high level security requirements, the threshold can be increased.
- For some non-critical applications, the threshold can be decreased.
- The protocol runs in a self-organized way, which remains the scalability of the network.

### Part II: Coalitional Game Model for Security Issues of Wireless Networks



## **Motivations**

- Why game theory for security issues of wireless networks?
  - Game theory studies competition or cooperation among a group of rational players.
  - Under the game rules, game theory provides threat or enforcement for players to achieve individual or social payoff maximization.
  - A wireless network is a network relying on cooperation among a group of nodes.
  - Malicious nodes show certain behavior patterns and must be rational enough.





# **Related Work**

#### In non-cooperative way

- Form a two-player dynamic non-cooperative game with incomplete information.
- The problem is that it does not make use of the cooperation property of MANET.

#### In cooperative way

- Nodes are clustered on the largest payoff defined by cooperation, reputation and quality of security.
- The problem is that the formulation of reputation and quality of security is not convincing.

# **Our Goal and Challenge**

- We will develop a cooperative game model for the security issues of wireless networks.
- The model can be applied to other types of wireless networks, e.g. wireless sensor networks.
- The game we employed is called a coalitional game.
- The key challenge is that how to define a proper payoff characteristic function for any coalition in the network which demonstrates the quality of security.

# **Contributions of Part II**

- We define two characteristic functions, security and throughput, enforcing nodes in wireless networks to cooperate and form coalitions.
- The security characteristic function means the maximal security that a coalition can achieve. The throughput characteristic function means the maximal throughput and the most reliable traffic that a coalition can achieve.
- The payoff share is given by Shapley Value after proving the feasibility of this method.
- Coalition formation procedures are proposed with the integration to wireless routing protocols.

### **Game Overview**

- The game is  $\Gamma = \langle N, v \rangle$ , where
  - N is the set of nodes
  - v is the characteristic function that is associated with every nonempty subset S of N a real number v(S)
- The physical meaning of v(S) is the maximal payoff that a coalition can achieve.
- v(S) is the foundation of the coalition forming procedure and it confines the coalition to admit or exclude a node.
- Nodes that cannot join into any coalition are under very high suspicion of being malicious.
## **Security Characteristic Function**

### Three design factors :

- Support Rate
  - Nodes get more witnesses to testify for them when belonging to a coalition.
- Cooperation Probability
  - Nodes in a coalition can take reference of other nodes' beliefs to get more reasonable and complete information.
- Overlapping Distance
  - Nodes in closer distance will form a coalition so that they can provide more reliable link connection and decrease false positive alarm rate.

# **Three Factors**

- Support Rate: Every node in a coalition S has |S|-1 number of witnesses:  $T_t(S) = |S| - 1$
- Cooperative Probability: Maximal average admitting probability among all members.

$$B_t(S) = \max_{j \in S} \left\{ \left| \frac{\sum_{i \in I} p_{ij}}{|I|} \right| | I = \{i | i \in S, i \neq j, p_{ij} \neq 0\} \right\}$$

 Overlapping Distance: Maximal overlapping value among each of two nodes.

 $D_t(S) = \max_{i,j \in S} O_{ij}(t)$   $O_{ij} = r_i + r_j - d_{ij}$ 

## Security Characteristic Function Definition

### Definition:

#### Definition (Security Characteristic Function)

The security characteristic function  $v_t(S)$  is the linear combination of  $T_t(S)$ ,  $B_t(S)$  and  $D_t(S)$ :

$$v_t(S) = \begin{cases} 0, & |S| = 1\\ \alpha T_t(S) + \beta B_t(S) + \gamma D_t(S), & |S| \ge 2 \end{cases}$$

where  $\alpha$ ,  $\beta$  and  $\gamma$  are weight parameters and  $\alpha + \beta + \gamma = 1$ .

 Based on v<sub>t</sub>(S), nodes can form coalitions to obtain its optimal payoff.

## **Coalition Formation Algorithm**

- The formation process is performed by rounds.
- At each round, each ungrouped node picks a target according to the highest security value of other ungrouped nodes, then publishes its choice for matching process.
- At each successful matching, new coalition is formed and merged with previous coalitions.
- The process will go on until there is no new coalition can be formed. The node that does not belong to any coalition would be under high suspicion.

# **Simulation Setup**

- 10 nodes with 1 or 2 malicious nodes randomly distributed.
- Initialize the support rate, cooperative probability, and overlapping distance for each entry in the routing table of the nodes.
- Run coalition formation algorithm round by round.
- Mark the nodes which do not form into any coalition.

# **Simulation Results**

### Coalition formation demonstration

 10 nodes with 1 malicious node



 10 nodes with 2 malicious nodes



### **Throughput Characteristic Function**

- The previous characteristic function does not consider the throughput performance when existing malicious nodes.
- We will design a throughput characteristic function to address this problem.
- The physical meaning of this function is the maximal throughput and the most reliable traffic that a coalition can achieve.
- It considers the trustworthiness and reliability of each routing path inside the coalition.

## **Formal Definition**

#### **Throughput Characteristic Function**

The throughput characteristic value for any coalition S,  $S \subseteq N$ , is 0 where |S| = 1 and |S| = 0. For other coalition S where  $|S| \ge 2$ , the throughput characteristic function v(S) is defined as:

$$v(S) = \frac{1}{\bigtriangleup t} \sum_{(a,b)\in SD, a,b\in S} Q_{ab} \cdot \max_{k\in P_{ab}(S)} \left\{ t(k) = \prod_{(i,j)\in k} \frac{p_{ij}}{D_{ij}^2} \right\}$$

- Q<sub>ab</sub> is the required number of data packets transmitting between pair (a,b)
- *P<sub>ab</sub>(S)* is the set of routing paths inside coalition S which connect pair (*a*,*b*)
- t(k) stands for the reliability evaluation of routing path k



## **Game Rules**

- A node will join into a coalition only if it can get more payoff share than it stands individually.
- A node will deviate from the current coalition and join into another coalition only if it can get more payoff share there than that of here.
- A coalition will refuse to admit a node if the node cannot increase the total payoff of the coalition.
- A coalition will exclude a node if the node cannot benefit the coalition or even damage the total payoff of the coalition.
- Nodes who are finally failed to join into any coalition will be denied from the network.

### **Coalition Formation Procedure**

- Introduce Gale-Shapley Deferred Acceptance Algorithm (DAA) to help nodes forming coalitions.
  - It was proposed to solve the stable marriage problem
  - It was proven that at the end of the algorithm, no one wants to switch partners to increase his/her happiness.
- The coalition formation procedure is conducted iteratively by all nodes.
- At each round, each source node will choose several preferences according to the reliability of each path t(k), then perform DAA algorithm to find a partner and admit it to the coalition.

## Integration with Wireless Routing Protocols

- The model can be integrated with all kinds of routing protocols (AODV, DSR, DSDV, etc) in many types of wireless network (mobile ad hoc network, wireless sensor network, etc).
- Extend the original routing table of the protocol by adding coalition information.
- New control packet types are created for matching process.
- New dedicated timer is set up to control the iteration of coalition formation procedure.

## Analysis by Game Theory (1)

Speed of convergence and size of coalition:

- In the coalition formation algorithm, at each round of formation, every coalition member tries to find a partner.
- The coalition size is increased almost at an exponential time.
- Therefore, the speed of coalition formation is fast which means the convergence time of formation is short.
- And the size will keep growing until grand coalition is reached or all misbehavior nodes are identified.

## **Analysis by Game Theory (2)**

### Non-emptiness of CORE:

- The stable status of coalitional game is that no coalition can obtain a payoff that exceeds the sum of its members' current payoffs, which means no deviation is profitable for all its members.
- The core is the set of imputation vectors which satisfies the following conditions:

1. 
$$x(i) \ge v(i)$$
  
2.  $x(T) \ge v(T), \quad \forall T \in 2^N$   
3.  $x(N) = v(N), N$  is the player set

where  $x(S) = \sum_{i \in S} x_i, \forall S \in 2^N$ 

# **Analysis by Game Theory (3)**

- The relation between x(S) and v(S) has two situations.
  - 1. x(S) < v(S)
    - In this situation, the core is empty.
    - But our model still provides incentive for nodes to cooperate.
      - When |S| = 1, the node does not belong to any coalition. It cannot form a source-destination pair and consequently no throughput can be obtained.
      - While the payoff share in the coalition is always larger than 0.
    - The above reasons imply that the rational nodes always have incentive to cooperate with each other.

## **Analysis by Game Theory (4)**

### 2. x(S) >= v(S)

- If this situation can be reached, the core is nonempty.
- The stable outcome will last for a certain time under certain conditions.
- In the mobile ad hoc network, the current equilibrium may be destroyed and the network is enforced to re-form again.

## **Analysis by Game Theory (5)**

### 2. x(S) >= v(S) (con'd)

- If that is the case, we can observe x(S) v(S). The difference between them means how hard the core status will be destroyed.
- The larger the difference, the low probability that the S will deviate. Then we can get the probability of the core keeps as follows:

$$p_{keep} = 1 - \prod_{S} \left[ 1 - p_{deviate}(x(S) - v(S)) \right]$$

where  $p_{deviate}(x(S) - v(S))$  can be approximated as an exponential distribution for further investigation.

### Part III: Incentive Routing Scheme and Coalitional Game Model for Selfishness Issues of Wireless Networks

# **Motivation (1)**

- Incentives are needed to encourage cooperation among selfish nodes in wireless networks.
- Monetary Incentive Scheme
  - Nodes get payments for forwarding data packets based on their declared costs.
  - The problem is how to avoid cost cheating.
- Reputation Incentive System
  - Nodes are punished based on their bad reputations.
  - The challenge is how to combine and propagate reputations.





# **Motivation (2)**

### Game Theoretic Formulation

- The above schemes are often analyzed by noncooperative game methods.
- The problem is that they do not make use of the cooperation nature of wireless networks.
- No effective coalitional model has been proposed.
- Our goal
  - Design an incentive routing and forwarding scheme that combines payment and reputation together, and analyze the scheme with a coalitional game model.

# Challenges

- 1. How to obtain a combined and globalized reputation value.
- 2. How to design the payment algorithm that integrates reputation values.
- 3. How to write the value function of the game which can represent the collective payoff of the coalition.
- 4. How to find the stable solution of the game.

## **Contributions of Part III**

- First, we design an incentive routing and forwarding scheme that integrates reputation information into a payment mechanism, which can increase the throughput as well as the security of the network.
- Second, we introduce a heat diffusion model to combine the direct and indirect reputations together and propagate them from locally to globally.
- Third, unlike others, we model this incentive scheme using a coalitional game method. A characteristic value function of the coalition is designed and we prove that this game has a core solution.

# **Heat Diffusion Model**

- We employ a heat diffusion model to fulfill the first challenge.
- Why heat diffusion?
  - In heat diffusion, heat comes from all incoming links of a node and diffuses out to its successors through some media.
  - If heat is diffused on a weighted graph, then the amount of heat that each node obtains will reflect the underlying graph structures.
  - If heat is diffused on a weighted reputation graph, then the process of heat diffusion can be deemed as a combination and propagation of reputations.

# **Heat Diffusion Example**



$$\lambda p_{ik} f_i(t) \Delta t / l_i$$

p<sub>ii</sub>: weight in the reputation graph

- $\lambda$ : thermal conductivity
- l<sub>i</sub>: number of successors of j

The heat difference at node i:

$$f_i(t + \Delta t) - f_i(t) = \lambda \left( \sum_{j:(j,i)\in E} \frac{p_{ji}}{l_j} f_j(t) - \mu_i \sum_{k:(i,k)\in E} \frac{p_{ik}}{l_i} f_i(t) \right) \Delta t$$

## **Heat Diffusion Formulation**

The heat difference at node *i* in a matrix form:

$$\boldsymbol{f}(t) = e^{\lambda t \boldsymbol{H}} \boldsymbol{f}(0)$$

$$H_{ij} = \begin{cases} p_{ji}/l_j, & (j,i) \in E, \\ -(\mu_i/l_i) \sum_{k:(i,k) \in E} p_{ik}, & i = j, \\ 0, & otherwise. \end{cases}$$

 Based on the reputation graph, the amount of heat of a node reflects a combined reputation belief from the viewpoint of the heat source.

## Incentive Routing and Forwarding Scheme

### Basic Notations

- Heat diffuses on this reputation graph G
- s is source, d is destination
- Initially, heat of s is f(0), others' heat is 0.

The initial balance of s is h(0).

- Costs for forwarding and routing are c<sub>i</sub>(f) and c<sub>i</sub>(r)
- Intermediate nodes get f<sub>i</sub>(t) during heat diffusion
- s pays h<sub>i</sub>(t) proportional to f<sub>i</sub>(t) to intermediate nodes
- s discovers a route called Highest Effective Path (HEP)



## **Incentive Routing Algorithm**

- First, each node i claims its forwarding cost to s.
- Then s performs the heat diffusion process.
- Instead of choosing the lowest cost path (LCP), s chooses a highest effective path (HEP): f<sub>i</sub>(t) ≥θ with lowest cost.
- After data transmission, s pays h<sub>i</sub>(t) to each node according to f<sub>i</sub>(t).
- Adjust heat threshold  $\theta$ .
- The reputation graph then is updated in the neighborhood.

## **How Is Incentive Achieved?**

- Nodes are paid by their reputations, not by their claimed cost, which can prevent cost cheating.
- Nodes need to be cooperative to get high reputations so that more payments can be awarded.
- Selfish nodes' reputation would be decreased locally and be globally reflected in the heat diffusion process, so that less payments can be paid to them.
- Forwarding data packets will get higher reputation than forwarding routing packets.
- To transmit their own packets, nodes need to pay to other nodes, so that they'd better be always cooperative and earn enough utilities.

# **Our Coalitional Game**

### Utility characteristic function v(T):

- Takes into account the amount of payment and the costs of nodes in T.
- Each path in the coalition contributes a payoff.

$$w_P(T) = \sum_{i \in T} h_i - \sum_{i \in P} c_i(f) - \sum_{i \notin P} c_i(r)$$

- The path contributing the maximal payoff is HEP<sub>T</sub>.
- We take this maximal payoff as the value of our function, which means the maximal collective utility that T can guarantee.

$$v(T) = \max_{P \subseteq T} \left( \sum_{i \in T} h_i - \sum_{i \in P} c_i(f) - \sum_{i \notin P} c_i(r) \right)$$

May 29, 2009 CSE CUHK

## **Utility Characteristic Function**

♦ Re-write the function with HEP<sub>T</sub>

**Definition: Utility Characteristic Function** 

The value of any coalition is 0 when there is no path between s and d inside coalition T. Otherwise,

$$v(T) = \sum_{i \in T} h_i - \sum_{i \in HEP_T} c_i(f) - \sum_{i \notin HEP_T} c_i(r)$$

## **Non-emptiness of the Core**

Recall the three conditions of the core:

1.  $x(i) \ge v(i)$ 2.  $x(T) \ge v(T), \quad \forall T \in 2^N$ 3. x(N) = v(N), N is the player set

where x(i) is the payoff share of node i in the grand coalition, and

$$x(T) = \sum_{i \in T} x(i)$$

The core is possibly empty in different games.

## **Core Solution**

**Theorem: Core Solution** 

Under the condition of  $h_i \ge c_i(f)$  for each node i, the following payoff profile x is in the core of the coalitional game where

$$x(i) = \begin{cases} h_i - c_i(f), & i \in HEP_N \\ h_i - c_i(r), & i \notin HEP_N \end{cases}$$

# **Proof of Core Solution**

- x(i)≥v(i), x(N)=v(N) are straightforward.
- ◆ To prove x(T)≥v(T):
  - In total there are four situations of HEP in grand coalition N and in any coalition T.
  - Calculate x(T) and v(T) for each situation, compare them, and get proved.



# **Evaluation Setup**

- Each node has an initial balance of 100.
- Each directed link has a local reputation weight.
- At each round a source-destination (s, d) pair is randomly selected.
- s performs the incentive routing and forwarding algorithm to discover HEP to d, and pays to the intermediate nodes.
- The thermal conductivity  $\lambda$  is set to 1.
- The evaluation runs for 1000 seconds.

# **Network Topology**

- 100 nodes in an area of 3000 by 3000 meters.
- The radio range is 422.757 meters.
- Some representative nodes shown in black dots.



## **Overview of Cumulative Utilities**

- A circle means the cumulative utility of the node.
- The larger the circle is, the more utility the node has.
- Nodes in the high density area have large circles around them (like node 44).
- Nodes in the sparse area have indistinctive circles.



## Cumulative Utilities of Selected Nodes

- The evaluation starts from the core of the coalitional game: Nodes are cooperative.
- The cumulative utilities are increased steadily.


### **Balance of Selected Nodes**

- Most of nodes' balance increases steadily.
- Some nodes in sparse area (like node 42 and node 1) have less chance to earn utilities to pay for their own data transmission.
- In summary, the scheme is incentive for nodes to be cooperative.



# **Future Work**

- Apply subjective logic to other applications, such as social computing, information retrieval and so on.
- Study other forms of cooperative games to better formulate the situations of wireless networks.
- Design more effective payment schemes to encourage cooperation as well as prevent cost cheating.

# Conclusions

- We, for the first time, introduce the idea of "trust model" into the design of secure routing protocols of MANET, which largely reduce the performance overhead than traditional cryptographic solutions.
- We propose a novel coalitional game model for the formulation of security issues in wireless networks.
- We also present an incentive routing and forwarding scheme for the selfishness issues of wireless networks based on heat diffusion model and analyze the scheme by a coalitional game model.



### Thank you!



### **Appendix A: Related Trust Models**

- Direct and recommendation trust model
  - Represent trust by one continuous value
  - Basis of many other trust models
- Dempster-Shafer theory trust model
  - Represent trust by upper and lower bound pair
  - Represent trust relationship by trust matrix
  - Combine two matrices using Dempster-Shafer theory
- Subjective logic trust model
  - Represent trust by opinion
  - Opinion has belief, disbelief, and uncertainty values
  - Combine opinions using two subjective logic operators

## **Appendix B: Trusted Routing** Discovery

- Np is the predecessor of the packet.
- If the predecessor does not pass the verification, a TWARN message will be broadcasted.
- If the source or destination node does not pass the verification, then the whole routing discovery process will use cryptographic method. Cryptography



### Appendix C: Trust Evaluation with Enhanced Subjective Logic

- Most trust models lose intuitiveness or disobey common human belief in some cases.
- Subjective logic also introduces counterintuitiveness:
  - The value of uncertainty is only related to the number of positive and negative events, while human usually expect the result according to the ratio of positive and negative events.
  - The mapping function of u is not reasonable in some cases.
- Next, we are going to propose an enhanced subjective logic trust model.

May 29, 2009 CSE CUHK

79

## **Flaws of Subjective Logic**

◆ Let's look at the mapping equation of u:

$$u_B^A = \frac{2}{p+n+2}$$

- When the number of p and n are nearly equal and both large enough, the value of u will be limited to 0, which means total certainty.
- While from common human belief point of view, the uncertainty in this case should be very high.

# **Illustrating Opinion in a New Way**



## **Re-Distribution of Opinions**

- In the case of p and n are large and nearly equal, the opinion is around (0.5,0.5,0).
- We would like to re-distribute opinions to other values.
- Possible solutions to re-calculate u:

1. 
$$\begin{cases} b' = b, \quad u' = 1 - b - \varepsilon, \quad \text{if } b > d \\ b' = \varepsilon, \quad u' = u, \quad \text{if } b < d \end{cases}$$

where  $\epsilon$  is the allowable uncertainty value

2. 
$$u' = u^{|b-d|}$$

3. 
$$u' = u^{\log(b/d)}$$

### **Possible Re-Distribution Figures**



83

### Possible Re-Distribution Functions

- After re-calculating u, we adjust b and d
  according the ratio of original b and d to meet
  the equation of b+d+u=1.
- Observing these figures we can intuitively get that the last one pushes the opinions more evenly and more consistently with the original opinion distribution.
- So, we will employ the last function in simulation to justify its feasibility and validity.

# **Simulation Setup**

### Initial node model:

- We put 100 nodes randomly in a 100\*100 square.
- Each node has 8 neighbors in average.
- When the network is "born", nodes are assigned to be bad nodes or good nodes.
- We define a percentage of bad nodes m, e.g. m=30%
- Nodes in neighborhood knows if their neighbors are good or bad.
- We select a good node as delegate to evaluate the global indirect trust.

# **Simulation Setup**

Opinion assignment model. Initially

- Bad nodes have best opinion for their neighboring bad nodes,
  e.g. (0.9,0.05,0.05).
- Bad nodes have worst opinion for their neighboring good nodes, e.g. (0.05,0.9,0.05).
- Good nodes adjust their direct opinions to their neighbors according to Beta distribution around low belief and high uncertainty.
- The initial opinions from delegated good node to all other nodes has high uncertainty.
- We want to make the uncertainty lower and lower, which means that the node will have more and more definite opinions about other nodes' trustworthiness.

# **Simulation Rounds**

- At each simulation round, four things happen:
  - Each node performs an interaction with its neighbors. For bad node neighbors, negative events will increase by a count, and for good node neighbors, positive events will increase by a count.
  - 2. According to the new evidence events, update the opinions in neighborhood using mapping function.
  - 3. Push the opinions using the re-distribution function.
  - 4. Combine all the opinions from the selected good nodes to all other nodes through different paths using the discounting and consensus algorithm.

# **Simulation Results**

### Initial opinion distribution



### **Simulate Results**

### After 30 rounds



Subjective Logic Distribution

Improved Opinion Distribution

## Simulation Result

#### After 30+1 rounds



Subjective Logic Distribution Improved Opinion Distribution

 We can observe from the results that the redistributed opinions converg better than the original subjective logic opinions after 30 rounds.

### Appendix D: Throughput Characteristic Function

### **Throughput Characteristic Function**

The throughput characteristic value for any coalition S,  $S \subseteq N$ , is 0 where |S| = 1 and |S| = 0. For other coalition S where  $|S| \ge 2$ , the throughput characteristic function v(S) is defined as:

$$v(S) = \frac{1}{\triangle t} \sum_{(a,b)\in SD, a,b\in S} Q_{ab} \cdot \max_{k\in P_{ab}(S)} \left\{ t(k) = \prod_{(i,j)\in k} \frac{p_{ij}}{D_{ij}^2} \right\}$$

- Q<sub>ab</sub> is the required number of data packets transmitting between pair (a,b)
- $P_{ab}(S)$  is the set of routing paths inside coalition S which connect pair (a,b)
- t(k) stands for the reliability evaluation of routing path k



## **Throughput Characteristic Function (1)**

where

- 1.  $\Delta t$  is a certain time interval
- 2.  $SD = \{(a,b) \mid (a,b) \text{ is a source destination pair } \}$
- 3.  $Q_{ab}$  is the required number of data packets transmitting between pair (*a*,*b*)
- 4.  $P_{ab}(S)$  is the set of routing paths inside coalition S which connect pair (a,b)
- 5.  $k \in P_{ab}(S)$  is one of the path in  $P_{ab}(S)$  and  $k = \{(i, j) | i, j | are the adjacent nodes on the same routing path \}$
- 6. t(k) stands for the reliability evaluation of routing path k
- 7.  $p_{ij}$  is the trustworthiness of path (i, j)
- 8.  $\vec{D_{ij}}$  is the distance between node *i* and *j*

## **Throughput Characteristic Function (2)**

### P(S):

- For each coalition S, we generate a weighted directed graph G(S), where
  - Vertexes are nodes inside the coalition
  - Edges represent routing direction between two nodes
  - Weights are trustworthiness of this edge
- Perform routing discovery procedure on the graph and discover the first several possible routing paths P(S) for each source-destination pair inside S.
- The number of routing paths is related to |S|. When |S| increases, more possible paths can be found and more reliable routing and forwarding transmission can be obtained.

## **Throughput Characteristic Function (3)**

### t(k):

- For every possible routing path  $k \in P_{ab}(S)$ between source-destination pair, we get a trustworthiness evaluation t(k).
- The maximal value of t(k) over all k indicates the maximal payoff that the source-destination pair can benefit from the coalition.

# **Throughput Characteristic Function (4)**

- pij : Trustworthiness of routing path from i to j is obtained from two ways:
- Direct experience: Fraction of observed successful transmission times by all the transmission times between i and j.

$$p = \frac{u_{succ}}{u_{all}}$$

 Indirect recommendation: Comes from node i's neighbors. Each neighbor of i returns probability opinions about both i and j, then i combines them together.

$$p' = \frac{\sum_{l \in NB_i} p_{il} p_{li} p_{lj}}{|NB_i|}$$

### **Throughput Characteristic Function (5)**

#### Indirect Recommendation:

- Note that we consider not only neighbors' recommendations towards j but also towards i, which represents the opinions towards the routing path from i to j.
- Multiplying by node i 's own evaluation to its neighbors, we then get the more believable indirect probability p' of communication from i to j.
- Direct experience and indirect recommendation have different weights, we then present the combined probability like this:

$$p_{ij} = \alpha p + (1 - \alpha)p'$$

$$= \alpha \frac{u_{succ}}{u_{all}} + (1 - \alpha) \frac{\sum_{l \in NB_i} p_{il} p_{li} p_{lj}}{|NB_i|}$$

## Appendix E: Payoff Allocation Inside the Coalition (1)

- How to fairly distribute the gains among all the coalition members
  - Some members contribute more than others
  - Shapley value is applicable to this problem if v(S) satisfies: 1. v(φ) = 0
    2. v(S ∪ T) ≥ v(S) + v(T)

whenever S and T are disjoint subsets of N.

The share amount that player i can gets is:

$$x_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

### Payoff Allocation Inside the Coalition (2)

#### Theorem

Shapley Value method is applicable to the payoff allocation inside coalitions given our proposed throughput characteristic function v(s).

#### Proof:

- 1. From definition of v(S), we get  $v(\Phi) = 0$ .
- 2. On the basis of v(S), we have:

$$v(S) = \frac{1}{\triangle t} \sum_{(a,b)\in SD, a,b\in S} Q_{ab} \cdot \max_{k\in P_{ab}(S)} \left\{ t(k) = \prod_{(i,j)\in k} \frac{p_{ij}}{D_{ij}^2} \right\}$$
$$v(T) = \frac{1}{\triangle t} \sum_{(a,b)\in SD, a,b\in T} Q_{ab} \cdot \max_{k\in P_{ab}(T)} \left\{ t(k) = \prod_{(i,j)\in k} \frac{p_{ij}}{D_{ij}^2} \right\}$$

### Payoff Allocation Inside the Coalition (3)

$$\implies v(S \cup T) = \frac{1}{\triangle t} \sum_{(a,b) \in SD, a, b \in S \cup T} Q_{ab} \cdot \max_{k \in P_{ab}(S \cup T)} \left\{ t(k) = \prod_{(i,j) \in k} \frac{p_{ij}}{D_{ij}^2} \right\}$$

The larger the coalition becomes, the more number of possible routing paths can be discovered. Accordingly, the maximal reliability increases when obtained from a larger set. So we get v(S ∪ T) ≥ v(S) + v(T). □

### Appendix F: Attacks to MANET

| Attack Method                         | Motivation/Result                                                                                 | Influence to<br>Security Services           |
|---------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|
| Eavesdropping                         | Obtain contents of messages                                                                       | Loss of Confidentiality                     |
| Masquerading<br>(e.g. Rushing attack) | Impersonate good nodes<br>/Routing Redirection<br>/Routing table poisoning<br>/Routing Loop, etc. | Loss of Authenticity                        |
| Modification<br>(e.g. Man-in-Middle)  | Make a node denial of service<br>/Obtain keys, etc.                                               | Loss of Integrity                           |
| Tunneling<br>(e.g. Wormhole)          | Attract traffic<br>/Routing Redirection                                                           | Loss of Confidentiality<br>and Availability |
| Flooding                              | Denial of Service                                                                                 | Loss of Availability                        |
| Dropping                              | Destroy normal routing progress                                                                   | Loss of Non-reputation<br>and Availability  |
| Replaying/Delaying                    | Destroy normal routing progress<br>/Destroy normal data transmission                              | Loss of Access Control<br>and Integrity     |

### **Appendix G: An Example of Trust Combination**

• Node A has three neighbors  $N_1$ ,  $N_2$ ,  $N_3$ . We have:

 $\omega_{N_1}^A = (0.90, 0.00, 0.10)$   $\omega_B^{N_1} = (0.90, 0.00, 0.10)$ 

 $\omega_{N_2}^A = (0.00, 0.90, 0.10)$   $\omega_B^{N_2} = (0.90, 0.00, 0.10)$ 

 $\omega_{N_3}^A = (0.10, 0.00, 0.90)$   $\omega_B^{N_3} = (0.90, 0.00, 0.10)$ 

 $\omega_B^{A,(N_1N_2N_3)} = (0.8135, 0.0000, 0.1865)$ 



101 May 29, 2009 CSE CUHK

## **Appendix H: Routing Message Extensions**

- Add trust information into original AODV routing messages.
  - RREQ → Trusted RREQ (TRREQ)

■ RREP →

Trusted RREP (TRREP)

| 0                                                                                            | 1                                                                               | 2                                                                                                      | 3                                                | 0                                                                                            | 1                                                                                                                                | 2                                                                                     | 3                                                                                         |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 012345                                                                                       | 678901234                                                                       | 15678901234                                                                                            | 5678901                                          | 0123450                                                                                      | 57890123456                                                                                                                      | 7 8 9 0 1 2 3 4 5 0                                                                   | 678901                                                                                    |
| +-+-+-+-+-+-+                                                                                | -+-+-+-+-+-+-+-+-                                                               | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                               | +-+-+-+-+-+-+                                    | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                     | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                         | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                              | -+-+-+-+-+                                                                                |
| l Type                                                                                       | J R G D U                                                                       | Reserved                                                                                               | Hop Count                                        | Туре                                                                                         | R A  Reserved                                                                                                                    | Prefix Sz  He                                                                         | op Count                                                                                  |
| +-+-+-+-+-+                                                                                  | -+-+-+-+-+-+-+-+-                                                               | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                               | +-+-+-+-+-+-+                                    | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                     | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                         | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                              | -+-+-+-+-+                                                                                |
| RREQ ID                                                                                      |                                                                                 |                                                                                                        | Destination IP Address                           |                                                                                              |                                                                                                                                  |                                                                                       |                                                                                           |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                     |                                                                                 |                                                                                                        |                                                  | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                     |                                                                                                                                  |                                                                                       |                                                                                           |
| Destination IP Address                                                                       |                                                                                 |                                                                                                        | Destination Sequence Number                      |                                                                                              |                                                                                                                                  |                                                                                       |                                                                                           |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                     |                                                                                 |                                                                                                        | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-         |                                                                                              |                                                                                                                                  |                                                                                       |                                                                                           |
| Destination Sequence Number                                                                  |                                                                                 |                                                                                                        | Originator IP Address                            |                                                                                              |                                                                                                                                  |                                                                                       |                                                                                           |
| +-+-+-+-+-+-+                                                                                | -+-+-+-+-+-+-+-+-                                                               | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                               | +-+-+-+-+-+-+                                    | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                         | -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                              | -+-+-+-+-+                                                                                |
| Originator IP Address                                                                        |                                                                                 |                                                                                                        | Lifetime                                         |                                                                                              |                                                                                                                                  |                                                                                       |                                                                                           |
|                                                                                              | Originato                                                                       | or IP Address                                                                                          |                                                  |                                                                                              | Lifeti                                                                                                                           | me                                                                                    |                                                                                           |
| <br>+-+-+-+-+-+-+                                                                            | Originato<br>-+-+-+-+-+-+-+-                                                    | or IP Address<br>-+-+-+-+-+-+-+-+-+-+-+                                                                | <br>+-+-+-+-+-+-+-+                              | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                     | LlIet1<br>+-+-+-+-+-+-+-+-+-                                                                                                     | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+++-                                             | -+-+-+-+                                                                                  |
| <br>+-+-+-+-+-+-+<br>                                                                        | Originato<br>-+-+-+-+-+-+<br>Originator                                         | or IP Address<br>-+-+-+-+-+-+-+-+-+-+<br>Sequence Number                                               | <br>+-+-+-+-+-+-+-+-+<br>                        | <br>+-+-+-+-+-+-+-<br>  Type                                                                 | L11et1<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                 | me<br>-+-+-+-+-+-+-+-+-+-+-+                                                          | <br>+-+-+-+-+-<br>                                                                        |
| <br>+-+-+-+-+-+-+-+<br> <br>+-+-+-+-+-+-+-+-+                                                | Originato<br>-+-+-+-+-+<br>Originator<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | or IP Address<br>-+-+-+-+-+-+-+-+-+-+-+-+<br>Seauence Number<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | <br>+-+-+-+-+-+-+-+-+-+++                        | <br>+-+-+-+-+-+-+-+-+<br>  Type<br>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                    | LIIEL]<br>-+-+-+-+-+-+-+-+<br> T S <br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                    | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                          | <br>+-+-+-+-+-+-<br> <br>-+-+-+-+-+-+                                                     |
| <br>+-+-++++++++<br> <br>+-+-++++++++++++<br>  Type                                          | Originato<br>-+-+-+-+-+-+<br>Originator<br>-+-+-+-+-+-+-+-+<br> T S             | or IP Address<br>-+-+-+-+-+-+-+-+-+-+-+-+-++                                                           | <br>+-+-++-+-+-+-+<br> <br>+-+-+-+-+-+-+-+-+-+-+ | <br>+-+-+-+-+-+-+-+-<br>  Type<br>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                     | LIIEL<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                  | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-<br>Reserved<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | <br>+-+-+-+-+-<br> <br>++-+-+-+-+-<br>                                                    |
| <br>+-+-+++++++++<br> <br>+-+-++-++++++++<br>  Type<br>+-+-+++++++++++++++++++++++++++++++++ | Originato<br>+-+<br>Originator<br>+-+-++                                        | or IP Address<br>-+-+-+-+-+-+-+-+-+-+-+-+-++                                                           | <br> -+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       | <br>+-+-+-+-+-+-+-+-+<br>  Type<br>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                    | LIIEL<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                  | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                          | <br>+-+-+-+-+-+<br> <br> <br> <br>+-+-+-+-+-+-+-+-+-+-                                    |
| <br>+-+-++<br> <br>+-+-+-+-+-+-+-+<br>  Type<br>+-+-+-+-+-+-+-+-+<br>                        | Originato<br><br>Originator<br>                                                 | or IP Address<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++                                                       |                                                  | <br>+-+-+-<br>  Type<br>+-+-+-+-+-+-+-<br> <br>+-+-+-+-+-+-+-+-+-+-+-                        | LIIEL<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                                                  | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-<br>Reserved<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | <br>                                    |
| <br>+-+-+++++++++<br> <br>+-+-+++++++++++++++++                                              | Originato<br>                                                                   | or IP Address<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++                                                   |                                                  | <br>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                   | LIIEL<br>-+-+-+-+-+-+-+-+-+<br> T S <br>-+-+-+-+-+-+-+-+-+-+-+-+-+<br>Opinion about Or<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                          | <br> |
| <br>+-+-+++++++++<br> <br>Type<br>+-+-++++++++++<br> <br>+-+-++++++++++++++<br>              | Originato<br>                                                                   | or IP Address      -+-+-++++++++++++++++++++++++++++++++                                               |                                                  | <br>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                                                   | LIIEL<br>-+-+-+-+-+-+-+-+-+<br> T S <br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                   | me<br>-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                          | <br> |

### **Trust Recommendation Protocol**







0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 -+-+-+-+ -+-+-+-+-+-+ |#of Recommendee| Type Reserved Recommendee IP Address 1 -+-+-+-+-+-+-+-+-+-+-+ Recommendee IP Address n Opinion about Recommendee 1 -+-+-+-+-+-+-+-+-+-+ -+-+-+-+-+ Opinion about Recommendee n 

**103** May 29, 2009 CSE CUHK